Sample records for astronomical image mosaicking

  1. Automated seamline detection along skeleton for remote sensing image mosaicking

    NASA Astrophysics Data System (ADS)

    Zhang, Hansong; Chen, Jianyu; Liu, Xin

    2015-08-01

    The automatic generation of seamline along the overlap region skeleton is a concerning problem for the mosaicking of Remote Sensing(RS) images. Along with the improvement of RS image resolution, it is necessary to ensure rapid and accurate processing under complex conditions. So an automated seamline detection method for RS image mosaicking based on image object and overlap region contour contraction is introduced. By this means we can ensure universality and efficiency of mosaicking. The experiments also show that this method can select seamline of RS images with great speed and high accuracy over arbitrary overlap regions, and realize RS image rapid mosaicking in surveying and mapping production.

  2. Grayscale inhomogeneity correction method for multiple mosaicked electron microscope images

    NASA Astrophysics Data System (ADS)

    Zhou, Fangxu; Chen, Xi; Sun, Rong; Han, Hua

    2018-04-01

    Electron microscope image stitching is highly desired to acquire microscopic resolution images of large target scenes in neuroscience. However, the result of multiple Mosaicked electron microscope images may exist severe gray scale inhomogeneity due to the instability of the electron microscope system and registration errors, which degrade the visual effect of the mosaicked EM images and aggravate the difficulty of follow-up treatment, such as automatic object recognition. Consequently, the grayscale correction method for multiple mosaicked electron microscope images is indispensable in these areas. Different from most previous grayscale correction methods, this paper designs a grayscale correction process for multiple EM images which tackles the difficulty of the multiple images monochrome correction and achieves the consistency of grayscale in the overlap regions. We adjust overall grayscale of the mosaicked images with the location and grayscale information of manual selected seed images, and then fuse local overlap regions between adjacent images using Poisson image editing. Experimental result demonstrates the effectiveness of our proposed method.

  3. Seamless Image Mosaicking via Synchronization

    NASA Astrophysics Data System (ADS)

    Santellani, E.; Maset, E.; Fusiello, A.

    2018-05-01

    This paper proposes an innovative method to create high-quality seamless planar mosaics. The developed pipeline ensures good robustness against many common mosaicking problems (e.g., misalignments, colour distortion, moving objects, parallax) and differs from other works in the literature because a global approach, known as synchronization, is used for image registration and colour correction. To better conceal the mosaic seamlines, images are cut along specific paths, computed using a Voronoi decomposition of the mosaic area and a shortest path algorithm. Results obtained on challenging real datasets show that the colour correction mitigates significantly the colour variations between the original images and the seams on the final mosaic are not evident.

  4. Seamline Determination Based on PKGC Segmentation for Remote Sensing Image Mosaicking

    PubMed Central

    Dong, Qiang; Liu, Jinghong

    2017-01-01

    This paper presents a novel method of seamline determination for remote sensing image mosaicking. A two-level optimization strategy is applied to determine the seamline. Object-level optimization is executed firstly. Background regions (BRs) and obvious regions (ORs) are extracted based on the results of parametric kernel graph cuts (PKGC) segmentation. The global cost map which consists of color difference, a multi-scale morphological gradient (MSMG) constraint, and texture difference is weighted by BRs. Finally, the seamline is determined in the weighted cost from the start point to the end point. Dijkstra’s shortest path algorithm is adopted for pixel-level optimization to determine the positions of seamline. Meanwhile, a new seamline optimization strategy is proposed for image mosaicking with multi-image overlapping regions. The experimental results show the better performance than the conventional method based on mean-shift segmentation. Seamlines based on the proposed method bypass the obvious objects and take less time in execution. This new method is efficient and superior for seamline determination in remote sensing image mosaicking. PMID:28749446

  5. Double regions growing algorithm for automated satellite image mosaicking

    NASA Astrophysics Data System (ADS)

    Tan, Yihua; Chen, Chen; Tian, Jinwen

    2011-12-01

    Feathering is a most widely used method in seamless satellite image mosaicking. A simple but effective algorithm - double regions growing (DRG) algorithm, which utilizes the shape content of images' valid regions, is proposed for generating robust feathering-line before feathering. It works without any human intervention, and experiment on real satellite images shows the advantages of the proposed method.

  6. A multi-focus image fusion method via region mosaicking on Laplacian pyramids

    PubMed Central

    Kou, Liang; Zhang, Liguo; Sun, Jianguo; Han, Qilong; Jin, Zilong

    2018-01-01

    In this paper, a method named Region Mosaicking on Laplacian Pyramids (RMLP) is proposed to fuse multi-focus images that is captured by microscope. First, the Sum-Modified-Laplacian is applied to measure the focus of multi-focus images. Then the density-based region growing algorithm is utilized to segment the focused region mask of each image. Finally, the mask is decomposed into a mask pyramid to supervise region mosaicking on a Laplacian pyramid. The region level pyramid keeps more original information than the pixel level. The experiment results show that RMLP has best performance in quantitative comparison with other methods. In addition, RMLP is insensitive to noise and can reduces the color distortion of the fused images on two datasets. PMID:29771912

  7. Viking image processing. [digital stereo imagery and computer mosaicking

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.

  8. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  9. Underwater image mosaicking and visual odometry

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz; Tangirala, Sekhar; Sorber, Scott

    2017-05-01

    This paper summarizes the results of studies in underwater odometery using a video camera for estimating the velocity of an unmanned underwater vehicle (UUV). Underwater vehicles are usually equipped with sonar and Inertial Measurement Unit (IMU) - an integrated sensor package that combines multiple accelerometers and gyros to produce a three dimensional measurement of both specific force and angular rate with respect to an inertial reference frame for navigation. In this study, we investigate the use of odometry information obtainable from a video camera mounted on a UUV to extract vehicle velocity relative to the ocean floor. A key challenge with this process is the seemingly bland (i.e. featureless) nature of video data obtained underwater which could make conventional approaches to image-based motion estimation difficult. To address this problem, we perform image enhancement, followed by frame to frame image transformation, registration and mosaicking/stitching. With this approach the velocity components associated with the moving sensor (vehicle) are readily obtained from (i) the components of the transform matrix at each frame; (ii) information about the height of the vehicle above the seabed; and (iii) the sensor resolution. Preliminary results are presented.

  10. Automatic Mosaicking of Satellite Imagery Considering the Clouds

    NASA Astrophysics Data System (ADS)

    Kang, Yifei; Pan, Li; Chen, Qi; Zhang, Tong; Zhang, Shasha; Liu, Zhang

    2016-06-01

    With the rapid development of high resolution remote sensing for earth observation technology, satellite imagery is widely used in the fields of resource investigation, environment protection, and agricultural research. Image mosaicking is an important part of satellite imagery production. However, the existence of clouds leads to lots of disadvantages for automatic image mosaicking, mainly in two aspects: 1) Image blurring may be caused during the process of image dodging, 2) Cloudy areas may be passed through by automatically generated seamlines. To address these problems, an automatic mosaicking method is proposed for cloudy satellite imagery in this paper. Firstly, modified Otsu thresholding and morphological processing are employed to extract cloudy areas and obtain the percentage of cloud cover. Then, cloud detection results are used to optimize the process of dodging and mosaicking. Thus, the mosaic image can be combined with more clear-sky areas instead of cloudy areas. Besides, clear-sky areas will be clear and distortionless. The Chinese GF-1 wide-field-of-view orthoimages are employed as experimental data. The performance of the proposed approach is evaluated in four aspects: the effect of cloud detection, the sharpness of clear-sky areas, the rationality of seamlines and efficiency. The evaluation results demonstrated that the mosaic image obtained by our method has fewer clouds, better internal color consistency and better visual clarity compared with that obtained by traditional method. The time consumed by the proposed method for 17 scenes of GF-1 orthoimages is within 4 hours on a desktop computer. The efficiency can meet the general production requirements for massive satellite imagery.

  11. Retinal slit lamp video mosaicking.

    PubMed

    De Zanet, Sandro; Rudolph, Tobias; Richa, Rogerio; Tappeiner, Christoph; Sznitman, Raphael

    2016-06-01

    To this day, the slit lamp remains the first tool used by an ophthalmologist to examine patient eyes. Imaging of the retina poses, however, a variety of problems, namely a shallow depth of focus, reflections from the optical system, a small field of view and non-uniform illumination. For ophthalmologists, the use of slit lamp images for documentation and analysis purposes, however, remains extremely challenging due to large image artifacts. For this reason, we propose an automatic retinal slit lamp video mosaicking, which enlarges the field of view and reduces amount of noise and reflections, thus enhancing image quality. Our method is composed of three parts: (i) viable content segmentation, (ii) global registration and (iii) image blending. Frame content is segmented using gradient boosting with custom pixel-wise features. Speeded-up robust features are used for finding pair-wise translations between frames with robust random sample consensus estimation and graph-based simultaneous localization and mapping for global bundle adjustment. Foreground-aware blending based on feathering merges video frames into comprehensive mosaics. Foreground is segmented successfully with an area under the curve of the receiver operating characteristic curve of 0.9557. Mosaicking results and state-of-the-art methods were compared and rated by ophthalmologists showing a strong preference for a large field of view provided by our method. The proposed method for global registration of retinal slit lamp images of the retina into comprehensive mosaics improves over state-of-the-art methods and is preferred qualitatively.

  12. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera.

    PubMed

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng

    2017-06-20

    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  13. Observatory Sponsoring Astronomical Image Contest

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  14. Aerial video mosaicking using binary feature tracking

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2015-05-01

    Unmanned Aerial Vehicles are becoming an increasingly attractive platform for many applications, as their cost decreases and their capabilities increase. Creating detailed maps from aerial data requires fast and accurate video mosaicking methods. Traditional mosaicking techniques rely on inter-frame homography estimations that are cascaded through the video sequence. Computationally expensive keypoint matching algorithms are often used to determine the correspondence of keypoints between frames. This paper presents a video mosaicking method that uses an object tracking approach for matching keypoints between frames to improve both efficiency and robustness. The proposed tracking method matches local binary descriptors between frames and leverages the spatial locality of the keypoints to simplify the matching process. Our method is robust to cascaded errors by determining the homography between each frame and the ground plane rather than the prior frame. The frame-to-ground homography is calculated based on the relationship of each point's image coordinates and its estimated location on the ground plane. Robustness to moving objects is integrated into the homography estimation step through detecting anomalies in the motion of keypoints and eliminating the influence of outliers. The resulting mosaics are of high accuracy and can be computed in real time.

  15. Future Directions for Astronomical Image Display

    NASA Technical Reports Server (NTRS)

    Mandel, Eric

    2000-01-01

    In the "Future Directions for Astronomical Image Displav" project, the Smithsonian Astrophysical Observatory (SAO) and the National Optical Astronomy Observatories (NOAO) evolved our existing image display program into fully extensible. cross-platform image display software. We also devised messaging software to support integration of image display into astronomical analysis systems. Finally, we migrated our software from reliance on Unix and the X Window System to a platform-independent architecture that utilizes the cross-platform Tcl/Tk technology.

  16. Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Levay, Zoltan G.; Frattare, Lisa M.; English, Jayanne; Pu'uohau-Pummill, Kirk

    2007-02-01

    The quality of modern astronomical data and the agility of current image-processing software enable the visualization of data in a way that exceeds the traditional definition of an astronomical image. Two developments in particular have led to a fundamental change in how astronomical images can be assembled. First, the availability of high-quality multiwavelength and narrowband data allow for images that do not correspond to the wavelength sensitivity of the human eye, thereby introducing ambiguity in the usage and interpretation of color. Second, many image-processing software packages now use a layering metaphor that allows for any number of astronomical data sets to be combined into a color image. With this technique, images with as many as eight data sets have been produced. Each data set is intensity-scaled and colorized independently, creating an immense parameter space that can be used to assemble the image. Since such images are intended for data visualization, scaling and color schemes must be chosen that best illustrate the science. A practical guide is presented on how to use the layering metaphor to generate publication-ready astronomical images from as many data sets as desired. A methodology is also given on how to use intensity scaling, color, and composition to create contrasts in an image that highlight the scientific detail. Examples of image creation are discussed.

  17. Video Mosaicking for Inspection of Gas Pipelines

    NASA Technical Reports Server (NTRS)

    Magruder, Darby; Chien, Chiun-Hong

    2005-01-01

    A vision system that includes a specially designed video camera and an image-data-processing computer is under development as a prototype of robotic systems for visual inspection of the interior surfaces of pipes and especially of gas pipelines. The system is capable of providing both forward views and mosaicked radial views that can be displayed in real time or after inspection. To avoid the complexities associated with moving parts and to provide simultaneous forward and radial views, the video camera is equipped with a wide-angle (>165 ) fish-eye lens aimed along the axis of a pipe to be inspected. Nine white-light-emitting diodes (LEDs) placed just outside the field of view of the lens (see Figure 1) provide ample diffuse illumination for a high-contrast image of the interior pipe wall. The video camera contains a 2/3-in. (1.7-cm) charge-coupled-device (CCD) photodetector array and functions according to the National Television Standards Committee (NTSC) standard. The video output of the camera is sent to an off-the-shelf video capture board (frame grabber) by use of a peripheral component interconnect (PCI) interface in the computer, which is of the 400-MHz, Pentium II (or equivalent) class. Prior video-mosaicking techniques are applicable to narrow-field-of-view (low-distortion) images of evenly illuminated, relatively flat surfaces viewed along approximately perpendicular lines by cameras that do not rotate and that move approximately parallel to the viewed surfaces. One such technique for real-time creation of mosaic images of the ocean floor involves the use of visual correspondences based on area correlation, during both the acquisition of separate images of adjacent areas and the consolidation (equivalently, integration) of the separate images into a mosaic image, in order to insure that there are no gaps in the mosaic image. The data-processing technique used for mosaicking in the present system also involves area correlation, but with several notable

  18. Automated mosaicking of sub-canopy video incorporating ancillary data

    Treesearch

    E. Kee; N.E. Clark; A.L. Abbott

    2002-01-01

    This work investigates the process of mosaicking overlapping video frames of individual tree stems in sub-canopy scenes captured with a portable multisensor instrument. The robust commercial computer vision systems that are in use today typically rely on precisely controlled conditions. Inconsistent lighting as well as image distortion caused by varying interior and...

  19. Coronagraph for astronomical imaging and spectrophotometry

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Smith, Bradford A.

    1987-01-01

    A coronagraph designed to minimize scattered light in astronomical observations caused by the structure of the primary mirror, secondary mirror, and secondary support structure of a Cassegrainian telescope is described. Direct (1:1) and reducing (2.7:1) imaging of astronomical fields are possible. High-quality images are produced. The coronagraph can be used with either a two-dimensional charge-coupled device or photographic film camera. The addition of transmission dispersing optics converts the coronagraph into a low-resolution spectrograph. The instrument is modular and portable for transport to different observatories.

  20. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  1. Processing, mosaicking and management of the Monterey Bay digital sidescan-sonar images

    USGS Publications Warehouse

    Chavez, P.S.; Isbrecht, J.; Galanis, P.; Gabel, G.L.; Sides, S.C.; Soltesz, D.L.; Ross, Stephanie L.; Velasco, M.G.

    2002-01-01

    Sidescan-sonar imaging systems with digital capabilities have now been available for approximately 20 years. In this paper we present several of the various digital image processing techniques developed by the U.S. Geological Survey (USGS) and used to apply intensity/radiometric and geometric corrections, as well as enhance and digitally mosaic, sidescan-sonar images of the Monterey Bay region. New software run by a WWW server was designed and implemented to allow very large image data sets, such as the digital mosaic, to be easily viewed interactively, including the ability to roam throughout the digital mosaic at the web site in either compressed or full 1-m resolution. The processing is separated into the two different stages: preprocessing and information extraction. In the preprocessing stage, sensor-specific algorithms are applied to correct for both geometric and intensity/radiometric distortions introduced by the sensor. This is followed by digital mosaicking of the track-line strips into quadrangle format which can be used as input to either visual or digital image analysis and interpretation. An automatic seam removal procedure was used in combination with an interactive digital feathering/stenciling procedure to help minimize tone or seam matching problems between image strips from adjacent track-lines. The sidescan-sonar image processing package is part of the USGS Mini Image Processing System (MIPS) and has been designed to process data collected by any 'generic' digital sidescan-sonar imaging system. The USGS MIPS software, developed over the last 20 years as a public domain package, is available on the WWW at: http://terraweb.wr.usgs.gov/trs/software.html.

  2. Real-time unmanned aircraft systems surveillance video mosaicking using GPU

    NASA Astrophysics Data System (ADS)

    Camargo, Aldo; Anderson, Kyle; Wang, Yi; Schultz, Richard R.; Fevig, Ronald A.

    2010-04-01

    Digital video mosaicking from Unmanned Aircraft Systems (UAS) is being used for many military and civilian applications, including surveillance, target recognition, border protection, forest fire monitoring, traffic control on highways, monitoring of transmission lines, among others. Additionally, NASA is using digital video mosaicking to explore the moon and planets such as Mars. In order to compute a "good" mosaic from video captured by a UAS, the algorithm must deal with motion blur, frame-to-frame jitter associated with an imperfectly stabilized platform, perspective changes as the camera tilts in flight, as well as a number of other factors. The most suitable algorithms use SIFT (Scale-Invariant Feature Transform) to detect the features consistent between video frames. Utilizing these features, the next step is to estimate the homography between two consecutives video frames, perform warping to properly register the image data, and finally blend the video frames resulting in a seamless video mosaick. All this processing takes a great deal of resources of resources from the CPU, so it is almost impossible to compute a real time video mosaic on a single processor. Modern graphics processing units (GPUs) offer computational performance that far exceeds current CPU technology, allowing for real-time operation. This paper presents the development of a GPU-accelerated digital video mosaicking implementation and compares it with CPU performance. Our tests are based on two sets of real video captured by a small UAS aircraft; one video comes from Infrared (IR) and Electro-Optical (EO) cameras. Our results show that we can obtain a speed-up of more than 50 times using GPU technology, so real-time operation at a video capture of 30 frames per second is feasible.

  3. Astronomical Image Processing with Hadoop

    NASA Astrophysics Data System (ADS)

    Wiley, K.; Connolly, A.; Krughoff, S.; Gardner, J.; Balazinska, M.; Howe, B.; Kwon, Y.; Bu, Y.

    2011-07-01

    In the coming decade astronomical surveys of the sky will generate tens of terabytes of images and detect hundreds of millions of sources every night. With a requirement that these images be analyzed in real time to identify moving sources such as potentially hazardous asteroids or transient objects such as supernovae, these data streams present many computational challenges. In the commercial world, new techniques that utilize cloud computing have been developed to handle massive data streams. In this paper we describe how cloud computing, and in particular the map-reduce paradigm, can be used in astronomical data processing. We will focus on our experience implementing a scalable image-processing pipeline for the SDSS database using Hadoop (http://hadoop.apache.org). This multi-terabyte imaging dataset approximates future surveys such as those which will be conducted with the LSST. Our pipeline performs image coaddition in which multiple partially overlapping images are registered, integrated and stitched into a single overarching image. We will first present our initial implementation, then describe several critical optimizations that have enabled us to achieve high performance, and finally describe how we are incorporating a large in-house existing image processing library into our Hadoop system. The optimizations involve prefiltering of the input to remove irrelevant images from consideration, grouping individual FITS files into larger, more efficient indexed files, and a hybrid system in which a relational database is used to determine the input images relevant to the task. The incorporation of an existing image processing library, written in C++, presented difficult challenges since Hadoop is programmed primarily in Java. We will describe how we achieved this integration and the sophisticated image processing routines that were made feasible as a result. We will end by briefly describing the longer term goals of our work, namely detection and classification

  4. Detecting Moving Sources in Astronomical Images (Abstract)

    NASA Astrophysics Data System (ADS)

    Block, A.

    2018-06-01

    (Abstract only) Source detection in images is an important part of analyzing astronomical data. This project discusses an implementation of image detection in python, as well as processes for performing photometry in python. Application of these tools to looking for moving sources is also discussed.

  5. Empowering schoolchildren to do astronomical science with images

    NASA Astrophysics Data System (ADS)

    Raeside, L.; Busschots, B.; O'Cinneide, E.; Foy, S.; Keating, J. G.

    2005-06-01

    In 1991 the TIE (Telescopes in Education) Foundation provided schoolchildren with the ability to access professional observatory telescopes remotely. TIE has raised the profile of astronomy and science among schoolchildren. Since the initiation of this facility the TIE Foundation have spread their reach from one telescope in the US to many telescopes and many schools across the globe. The VTIE (Virtual Telescopes in Education) project was launched in 2001 to build on the success of TIE. The VTIE VLE (Virtual Learning Environment) provides a Web portal through which pupils can create a scientific proposal, retrieve astronomical images, and produce a scientific paper summarizing their learning experiences of the VTIE scientific process. Since the completion of the first formative evaluations of VTIE (which involved over 250 schoolchildren) it has been observed that the participating schoolchildren have had difficulty completing and understanding the practical imaging aspects of astronomical science. Our experimental observations have revealed that the imaging tools currently available to astronomers have not ported well to schools. The VTIE imaging tools developed during our research will provide schoolchildren with the ability to store, acquire, manipulate and analyze images within the VTIE VLE. It is hypothesized herein that the provision of exclusively child-centered imaging software components will improve greatly the children's empowerment within the VTIE scientific process. Consequentially the addition of fully integrated child-centered imaging tools will contribute positively to the overall VTIE goal to promote science among schoolchildren.

  6. SGM-based seamline determination for urban orthophoto mosaicking

    NASA Astrophysics Data System (ADS)

    Pang, Shiyan; Sun, Mingwei; Hu, Xiangyun; Zhang, Zuxun

    2016-02-01

    Mosaicking is a key step in the production of digital orthophoto maps (DOMs), especially for large-scale urban orthophotos. During this step, manual intervention is commonly involved to avoid the case where the seamline crosses obvious objects (e.g., buildings), which causes geometric discontinuities on the DOMs. How to guide the seamline to avoid crossing obvious objects has become a popular topic in the field of photogrammetry and remote sensing. Thus, a new semi-global matching (SGM)-based method to guide seamline determination is proposed for urban orthophoto mosaicking in this study, which can greatly eliminate geometric discontinuities. The approximate epipolar geometry of the orthophoto pairs is first derived and proven, and the approximate epipolar image pair is then generated by rotating the two orthorectified images according to the parallax direction. A SGM algorithm is applied to their overlaps to obtain the corresponding pixel-wise disparity. According to a predefined disparity threshold, the overlap area is identified as the obstacle and non-obstacle areas. For the non-obstacle regions, Hilditch thinning algorithm is used to obtain the skeleton line, followed by Dijkstra's algorithm to search for the optimal path on the skeleton network as the seamline between two orthophotos. A whole seamline network is constructed based on the strip information recorded in flight. In the experimental section, the approximate epipolar geometric theory of the orthophoto is first analyzed and verified, and the effectiveness of the proposed method is then validated by comparing its results with the results of the geometry-based, OrthoVista, and orthoimage elevation synchronous model (OESM)-based methods.

  7. High-performance compression of astronomical images

    NASA Technical Reports Server (NTRS)

    White, Richard L.

    1993-01-01

    Astronomical images have some rather unusual characteristics that make many existing image compression techniques either ineffective or inapplicable. A typical image consists of a nearly flat background sprinkled with point sources and occasional extended sources. The images are often noisy, so that lossless compression does not work very well; furthermore, the images are usually subjected to stringent quantitative analysis, so any lossy compression method must be proven not to discard useful information, but must instead discard only the noise. Finally, the images can be extremely large. For example, the Space Telescope Science Institute has digitized photographic plates covering the entire sky, generating 1500 images each having 14000 x 14000 16-bit pixels. Several astronomical groups are now constructing cameras with mosaics of large CCD's (each 2048 x 2048 or larger); these instruments will be used in projects that generate data at a rate exceeding 100 MBytes every 5 minutes for many years. An effective technique for image compression may be based on the H-transform (Fritze et al. 1977). The method that we have developed can be used for either lossless or lossy compression. The digitized sky survey images can be compressed by at least a factor of 10 with no noticeable losses in the astrometric and photometric properties of the compressed images. The method has been designed to be computationally efficient: compression or decompression of a 512 x 512 image requires only 4 seconds on a Sun SPARCstation 1. The algorithm uses only integer arithmetic, so it is completely reversible in its lossless mode, and it could easily be implemented in hardware for space applications.

  8. SIP: A Web-Based Astronomical Image Processing Program

    NASA Astrophysics Data System (ADS)

    Simonetti, J. H.

    1999-12-01

    I have written an astronomical image processing and analysis program designed to run over the internet in a Java-compatible web browser. The program, Sky Image Processor (SIP), is accessible at the SIP webpage (http://www.phys.vt.edu/SIP). Since nothing is installed on the user's machine, there is no need to download upgrades; the latest version of the program is always instantly available. Furthermore, the Java programming language is designed to work on any computer platform (any machine and operating system). The program could be used with students in web-based instruction or in a computer laboratory setting; it may also be of use in some research or outreach applications. While SIP is similar to other image processing programs, it is unique in some important respects. For example, SIP can load images from the user's machine or from the Web. An instructor can put images on a web server for students to load and analyze on their own personal computer. Or, the instructor can inform the students of images to load from any other web server. Furthermore, since SIP was written with students in mind, the philosophy is to present the user with the most basic tools necessary to process and analyze astronomical images. Images can be combined (by addition, subtraction, multiplication, or division), multiplied by a constant, smoothed, cropped, flipped, rotated, and so on. Statistics can be gathered for pixels within a box drawn by the user. Basic tools are available for gathering data from an image which can be used for performing simple differential photometry, or astrometry. Therefore, students can learn how astronomical image processing works. Since SIP is not part of a commercial CCD camera package, the program is written to handle the most common denominator image file, the FITS format.

  9. Multi-volumetric registration and mosaicking using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bozic, Ivan; El-Haddad, Mohamed T.; Malone, Joseph D.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-02-01

    Ophthalmic diagnostic imaging using optical coherence tomography (OCT) is limited by bulk eye motions and a fundamental trade-off between field-of-view (FOV) and sampling density. Here, we introduced a novel multi-volumetric registration and mosaicking method using our previously described multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and OCT (SS-SESLO-OCT) system. Our SS-SESLO-OCT acquires an entire en face fundus SESLO image simultaneously with every OCT cross-section at 200 frames-per-second. In vivo human retinal imaging was performed in a healthy volunteer, and three volumetric datasets were acquired with the volunteer moving freely and refixating between each acquisition. In post-processing, SESLO frames were used to estimate en face rotational and translational motions by registering every frame in all three volumetric datasets to the first frame in the first volume. OCT cross-sections were contrast-normalized and registered axially and rotationally across all volumes. Rotational and translational motions calculated from SESLO frames were applied to corresponding OCT B-scans to compensate for interand intra-B-scan bulk motions, and the three registered volumes were combined into a single interpolated multi-volumetric mosaic. Using complementary information from SESLO and OCT over serially acquired volumes, we demonstrated multivolumetric registration and mosaicking to recover regions of missing data resulting from blinks, saccades, and ocular drifts. We believe our registration method can be directly applied for multi-volumetric motion compensation, averaging, widefield mosaicking, and vascular mapping with potential applications in ophthalmic clinical diagnostics, handheld imaging, and intraoperative guidance.

  10. Block iterative restoration of astronomical images with the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don J.

    1987-01-01

    A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images.

  11. IMAGE EXPLORER: Astronomical Image Analysis on an HTML5-based Web Application

    NASA Astrophysics Data System (ADS)

    Gopu, A.; Hayashi, S.; Young, M. D.

    2014-05-01

    Large datasets produced by recent astronomical imagers cause the traditional paradigm for basic visual analysis - typically downloading one's entire image dataset and using desktop clients like DS9, Aladin, etc. - to not scale, despite advances in desktop computing power and storage. This paper describes Image Explorer, a web framework that offers several of the basic visualization and analysis functionality commonly provided by tools like DS9, on any HTML5 capable web browser on various platforms. It uses a combination of the modern HTML5 canvas, JavaScript, and several layers of lossless PNG tiles producted from the FITS image data. Astronomers are able to rapidly and simultaneously open up several images on their web-browser, adjust the intensity min/max cutoff or its scaling function, and zoom level, apply color-maps, view position and FITS header information, execute typically used data reduction codes on the corresponding FITS data using the FRIAA framework, and overlay tiles for source catalog objects, etc.

  12. Preparing Colorful Astronomical Images II

    NASA Astrophysics Data System (ADS)

    Levay, Z. G.; Frattare, L. M.

    2002-12-01

    We present additional techniques for using mainstream graphics software (Adobe Photoshop and Illustrator) to produce composite color images and illustrations from astronomical data. These techniques have been used on numerous images from the Hubble Space Telescope to produce photographic, print and web-based products for news, education and public presentation as well as illustrations for technical publication. We expand on a previous paper to present more detail and additional techniques, taking advantage of new or improved features available in the latest software versions. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to work with scaled images, masks, text and graphics in multiple semi-transparent layers and channels.

  13. Mosaicking Techniques for Deep Submergence Vehicle Video Imagery - Applications to Ridge2000 Science

    NASA Astrophysics Data System (ADS)

    Mayer, L.; Rzhanov, Y.; Fornari, D. J.; Soule, A.; Shank, T. M.; Beaulieu, S. E.; Schouten, H.; Tivey, M.

    2004-12-01

    Severe attenuation of visible light and limited power capabilities of many submersible vehicles require acquisition of imagery from short ranges, rarely exceeding 8-10 meters. Although modern video- and photo-equipment makes high-resolution video surveying possible, the field of view of each image remains relatively narrow. To compensate for the deficiencies in light and field of view researchers have been developing techniques allowing for combining images into larger composite images i.e., mosaicking. A properly constructed, accurate mosaic has a number of well-known advantages in comparison with the original sequence of images, the most notable being improved situational awareness. We have developed software strategies for PC-based computers that permit conversion of video imagery acquired from any underwater vehicle, operated within both absolute (e.g. LBL or USBL) or relative (e.g. Doppler Velocity Log-DVL) navigation networks, to quickly produce a set of geo-referenced photomosaics which can then be directly incorporated into a Geographic Information System (GIS) data base. The timescale of processing is rapid enough to permit analysis of the resulting mosaics between submersible dives thus enhancing the efficiency of deep-sea research. Commercial imaging processing packages usually handle cases where there is no or little parallax - an unlikely situation for undersea world where terrain has pronounced 3D content and imagery is acquired from moving platforms. The approach we have taken is optimized for situations in which there is significant relief and thus parallax in the imagery (e.g. seafloor fault scarps or constructional volcanic escarpments and flow fronts). The basis of all mosaicking techniques is a pair-wise image registration method that finds a transformation relating pixels of two consecutive image frames. We utilize a "rigid affine model" with four degrees of freedom for image registration that allows for camera translation in all directions and

  14. Astronomical Polarimetry with the RIT Polarization Imaging Camera

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry V.; Ninkov, Zoran; Brock, Neal

    2018-06-01

    In the last decade, imaging polarimeters based on micropolarizer arrays have been developed for use in terrestrial remote sensing and metrology applications. Micropolarizer-based sensors are dramatically smaller and more mechanically robust than other polarimeters with similar spectral response and snapshot capability. To determine the suitability of these new polarimeters for astronomical applications, we developed the RIT Polarization Imaging Camera to investigate the performance of these devices, with a special attention to the low signal-to-noise regime. We characterized the device performance in the lab, by determining the relative throughput, efficiency, and orientation of every pixel, as a function of wavelength. Using the resulting pixel response model, we developed demodulation procedures for aperture photometry and imaging polarimetry observing modes. We found that, using the current calibration, RITPIC is capable of detecting polarization signals as small as ∼0.3%. The relative ease of data collection, calibration, and analysis provided by these sensors suggest than they may become an important tool for a number of astronomical targets.

  15. Digital Image Display Control System, DIDCS. [for astronomical analysis

    NASA Technical Reports Server (NTRS)

    Fischel, D.; Klinglesmith, D. A., III

    1979-01-01

    DIDCS is an interactive image display and manipulation system that is used for a variety of astronomical image reduction and analysis operations. The hardware system consists of a PDP 11/40 main frame with 32K of 16-bit core memory; 96K of 16-bit MOS memory; two 9 track 800 BPI tape drives; eight 2.5 million byte RKO5 type disk packs, three user terminals, and a COMTAL 8000-S display system which has sufficient memory to store and display three 512 x 512 x 8 bit images along with an overlay plane and function table for each image, a pseudo color table and the capability for displaying true color. The software system is based around the language FORTH, which will permit an open ended dictionary of user level words for image analyses and display. A description of the hardware and software systems will be presented along with examples of the types of astronomical research that are being performed. Also a short discussion of the commonality and exchange of this type of image analysis system will be given.

  16. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  17. Photometric Lambert Correction for Global Mosaicking of HRSC Data

    NASA Astrophysics Data System (ADS)

    Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas

    2015-04-01

    The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each

  18. Optimized graph-based mosaicking for virtual microscopy

    NASA Astrophysics Data System (ADS)

    Steckhan, Dirk G.; Wittenberg, Thomas

    2009-02-01

    Virtual microscopy has the potential to partially replace traditional microscopy. For virtualization, the slide is scanned once by a fully automatized robotic microscope and saved digitally. Typically, such a scan results in several hundreds to thousands of fields of view. Since robotic stages have positioning errors, these fields of view have to be registered locally and globally in an additional step. In this work we propose a new global mosaicking method for the creation of virtual slides based on sub-pixel exact phase correlation for local alignment in combination with Prim's minimum spanning tree algorithm for global alignment. Our algorithm allows for a robust reproduction of the original slide even in the presence of views with little to no information content. This makes it especially suitable for the mosaicking of cervical smears. These smears often exhibit large empty areas, which do not contain enough information for common stitching approaches.

  19. Preparing Colorful Astronomical Images and Illustrations

    NASA Astrophysics Data System (ADS)

    Levay, Z. G.; Frattare, L. M.

    2001-12-01

    We present techniques for using mainstream graphics software, specifically Adobe Photoshop and Illustrator, for producing composite color images and illustrations from astronomical data. These techniques have been used with numerous images from the Hubble Space Telescope to produce printed and web-based news, education and public presentation products as well as illustrations for technical publication. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to work with scaled images, masks, text and graphics in multiple semi-transparent layers and channels. These features, along with its user-oriented, visual interface, provide convenient tools to produce high-quality, full-color images and graphics for printed and on-line publication and presentation.

  20. Wide-field ultraviolet imager for astronomical transient studies

    NASA Astrophysics Data System (ADS)

    Mathew, Joice; Ambily, S.; Prakash, Ajin; Sarpotdar, Mayuresh; Nirmal, K.; G. Sreejith, A.; Safonova, Margarita; Murthy, Jayant; Brosch, Noah

    2018-04-01

    Though the ultraviolet (UV) domain plays a vital role in the studies of astronomical transient events, the UV time-domain sky remains largely unexplored. We have designed a wide-field UV imager that can be flown on a range of available platforms, such as high-altitude balloons, CubeSats, and larger space missions. The major scientific goals are the variability of astronomical sources, detection of transients such as supernovae, novae, tidal disruption events, and characterizing active galactic nuclei variability. The instrument has a 80 mm aperture with a circular field of view of 10.8 degrees, an angular resolution of ˜22 arcsec, and a 240 - 390 nm spectral observation window. The detector for the instrument is a Microchannel Plate (MCP)-based image intensifier with both photon counting and integration capabilities. An FPGA-based detector readout mechanism and real time data processing have been implemented. The imager is designed in such a way that its lightweight and compact nature are well fitted for the CubeSat dimensions. Here we present various design and developmental aspects of this UV wide-field transient explorer.

  1. Toyz: A framework for scientific analysis of large datasets and astronomical images

    NASA Astrophysics Data System (ADS)

    Moolekamp, F.; Mamajek, E.

    2015-11-01

    As the size of images and data products derived from astronomical data continues to increase, new tools are needed to visualize and interact with that data in a meaningful way. Motivated by our own astronomical images taken with the Dark Energy Camera (DECam) we present Toyz, an open source Python package for viewing and analyzing images and data stored on a remote server or cluster. Users connect to the Toyz web application via a web browser, making it ​a convenient tool for students to visualize and interact with astronomical data without having to install any software on their local machines. In addition it provides researchers with an easy-to-use tool that allows them to browse the files on a server and quickly view very large images (>2 Gb) taken with DECam and other cameras with a large FOV and create their own visualization tools that can be added on as extensions to the default Toyz framework.

  2. Generating Mosaics of Astronomical Images

    NASA Technical Reports Server (NTRS)

    Bergou, Attila; Berriman, Bruce; Good, John; Jacob, Joseph; Katz, Daniel; Laity, Anastasia; Prince, Thomas; Williams, Roy

    2005-01-01

    "Montage" is the name of a service of the National Virtual Observatory (NVO), and of software being developed to implement the service via the World Wide Web. Montage generates science-grade custom mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. "Science-grade" in this context signifies that terrestrial and instrumental features are removed from images in a way that can be described quantitatively. "Custom" refers to user-specified parameters of projection, coordinates, size, rotation, and spatial sampling. The greatest value of Montage is expected to lie in its ability to analyze images at multiple wavelengths, delivering them on a common projection, coordinate system, and spatial sampling, and thereby enabling further analysis as though they were part of a single, multi-wavelength image. Montage will be deployed as a computation-intensive service through existing astronomy portals and other Web sites. It will be integrated into the emerging NVO architecture and will be executed on the TeraGrid. The Montage software will also be portable and publicly available.

  3. Images of the future - Two decades in astronomy

    NASA Technical Reports Server (NTRS)

    Weistrop, D.

    1982-01-01

    Future instruments for the 100-10,000 A UV-wavelength region will require detectors with greater quantum efficiency, smaller picture elements, a greater wavelength range, and greater active area than those currently available. After assessing the development status and performance characteristics of vidicons, image tubes, electronographic cameras, digicons, silicon arrays and microchannel plate intensifiers presently employed by astronomical spacecraft, attention is given to such next-generation detectors as the Mosaicked Optical Self-scanned Array Imaging Camera, which consists of a photocathode deposited on the input side of a microchannel plate intensifier. The problems posed by the signal processing and data analysis requirements of the devices foreseen for the 21st century are noted.

  4. Experiments with recursive estimation in astronomical image processing

    NASA Technical Reports Server (NTRS)

    Busko, I.

    1992-01-01

    Recursive estimation concepts were applied to image enhancement problems since the 70's. However, very few applications in the particular area of astronomical image processing are known. These concepts were derived, for 2-dimensional images, from the well-known theory of Kalman filtering in one dimension. The historic reasons for application of these techniques to digital images are related to the images' scanned nature, in which the temporal output of a scanner device can be processed on-line by techniques borrowed directly from 1-dimensional recursive signal analysis. However, recursive estimation has particular properties that make it attractive even in modern days, when big computer memories make the full scanned image available to the processor at any given time. One particularly important aspect is the ability of recursive techniques to deal with non-stationary phenomena, that is, phenomena which have their statistical properties variable in time (or position in a 2-D image). Many image processing methods make underlying stationary assumptions either for the stochastic field being imaged, for the imaging system properties, or both. They will underperform, or even fail, when applied to images that deviate significantly from stationarity. Recursive methods, on the contrary, make it feasible to perform adaptive processing, that is, to process the image by a processor with properties tuned to the image's local statistical properties. Recursive estimation can be used to build estimates of images degraded by such phenomena as noise and blur. We show examples of recursive adaptive processing of astronomical images, using several local statistical properties to drive the adaptive processor, as average signal intensity, signal-to-noise and autocorrelation function. Software was developed under IRAF, and as such will be made available to interested users.

  5. AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves

    NASA Astrophysics Data System (ADS)

    Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.

    2017-02-01

    ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.

  6. Astronomers Make First Images With Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  7. MOPEX: a software package for astronomical image processing and visualization

    NASA Astrophysics Data System (ADS)

    Makovoz, David; Roby, Trey; Khan, Iffat; Booth, Hartley

    2006-06-01

    We present MOPEX - a software package for astronomical image processing and display. The package is a combination of command-line driven image processing software written in C/C++ with a Java-based GUI. The main image processing capabilities include creating mosaic images, image registration, background matching, point source extraction, as well as a number of minor image processing tasks. The combination of the image processing and display capabilities allows for much more intuitive and efficient way of performing image processing. The GUI allows for the control over the image processing and display to be closely intertwined. Parameter setting, validation, and specific processing options are entered by the user through a set of intuitive dialog boxes. Visualization feeds back into further processing by providing a prompt feedback of the processing results. The GUI also allows for further analysis by accessing and displaying data from existing image and catalog servers using a virtual observatory approach. Even though originally designed for the Spitzer Space Telescope mission, a lot of functionalities are of general usefulness and can be used for working with existing astronomical data and for new missions. The software used in the package has undergone intensive testing and benefited greatly from effective software reuse. The visualization part has been used for observation planning for both the Spitzer and Herschel Space Telescopes as part the tool Spot. The visualization capabilities of Spot have been enhanced and integrated with the image processing functionality of the command-line driven MOPEX. The image processing software is used in the Spitzer automated pipeline processing, which has been in operation for nearly 3 years. The image processing capabilities have also been tested in off-line processing by numerous astronomers at various institutions around the world. The package is multi-platform and includes automatic update capabilities. The software

  8. Source detection in astronomical images by Bayesian model comparison

    NASA Astrophysics Data System (ADS)

    Frean, Marcus; Friedlander, Anna; Johnston-Hollitt, Melanie; Hollitt, Christopher

    2014-12-01

    The next generation of radio telescopes will generate exabytes of data on hundreds of millions of objects, making automated methods for the detection of astronomical objects ("sources") essential. Of particular importance are faint, diffuse objects embedded in noise. There is a pressing need for source finding software that identifies these sources, involves little manual tuning, yet is tractable to calculate. We first give a novel image discretisation method that incorporates uncertainty about how an image should be discretised. We then propose a hierarchical prior for astronomical images, which leads to a Bayes factor indicating how well a given region conforms to a model of source that is exceptionally unconstrained, compared to a model of background. This enables the efficient localisation of regions that are "suspiciously different" from the background distribution, so our method looks not for brightness but for anomalous distributions of intensity, which is much more general. The model of background can be iteratively improved by removing the influence on it of sources as they are discovered. The approach is evaluated by identifying sources in real and simulated data, and performs well on these measures: the Bayes factor is maximized at most real objects, while returning only a moderate number of false positives. In comparison to a catalogue constructed by widely-used source detection software with manual post-processing by an astronomer, our method found a number of dim sources that were missing from the "ground truth" catalogue.

  9. Astronomical imaging Fourier spectroscopy at far-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Brad G.; van der Wiel, Matthijs H. D.; Makiwa, Gibion

    2013-11-01

    The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach–Zehnder (MZ) interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the MZ design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel–SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.

  10. Optimal Compression of Floating-Point Astronomical Images Without Significant Loss of Information

    NASA Technical Reports Server (NTRS)

    Pence, William D.; White, R. L.; Seaman, R.

    2010-01-01

    We describe a compression method for floating-point astronomical images that gives compression ratios of 6 - 10 while still preserving the scientifically important information in the image. The pixel values are first preprocessed by quantizing them into scaled integer intensity levels, which removes some of the uncompressible noise in the image. The integers are then losslessly compressed using the fast and efficient Rice algorithm and stored in a portable FITS format file. Quantizing an image more coarsely gives greater image compression, but it also increases the noise and degrades the precision of the photometric and astrometric measurements in the quantized image. Dithering the pixel values during the quantization process greatly improves the precision of measurements in the more coarsely quantized images. We perform a series of experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate that the magnitudes and positions of stars in the quantized images can be measured with the predicted amount of precision. In order to encourage wider use of these image compression methods, we have made available a pair of general-purpose image compression programs, called fpack and funpack, which can be used to compress any FITS format image.

  11. Astronomical Video Suites

    NASA Astrophysics Data System (ADS)

    Francisco Salgado, Jose

    2010-01-01

    Astronomer and visual artist Jose Francisco Salgado has directed two astronomical video suites to accompany live performances of classical music works. The suites feature awe-inspiring images, historical illustrations, and visualizations produced by NASA, ESA, and the Adler Planetarium. By the end of 2009, his video suites Gustav Holst's The Planets and Astronomical Pictures at an Exhibition will have been presented more than 40 times in over 10 countries. Lately Salgado, an avid photographer, has been experimenting with high dynamic range imaging, time-lapse, infrared, and fisheye photography, as well as with stereoscopic photography and video to enhance his multimedia works.

  12. Lossless Astronomical Image Compression and the Effects of Random Noise

    NASA Technical Reports Server (NTRS)

    Pence, William

    2009-01-01

    In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.

  13. Preparing Colorful Astronomical Images III: Cosmetic Cleaning

    NASA Astrophysics Data System (ADS)

    Frattare, L. M.; Levay, Z. G.

    2003-12-01

    We present cosmetic cleaning techniques for use with mainstream graphics software (Adobe Photoshop) to produce presentation-quality images and illustrations from astronomical data. These techniques have been used on numerous images from the Hubble Space Telescope when producing photographic, print and web-based products for news, education and public presentation as well as illustrations for technical publication. We expand on a previous paper to discuss the treatment of various detector-attributed artifacts such as cosmic rays, chip seams, gaps, optical ghosts, diffraction spikes and the like. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to final presentation images. Other pixel-to-pixel applications such as filter smoothing and global noise reduction will be discussed.

  14. Astronomical image data compression by morphological skeleton transformation

    NASA Astrophysics Data System (ADS)

    Huang, L.; Bijaoui, A.

    A compression method adapted for exact restoring of the detected objects and based on the morphological skeleton transformation is presented. The morphological skeleton provides a complete and compact description of an object and gives an efficient compression rate. The flexibility of choosing a structuring element adapted to different images and the simplicity of the implementation are considered to be advantages of the method. The experiment was carried out on three typical astronomical images. The first two images were obtained by digitizing a Palomar Schmidt photographic plate in a coma field with the PDS microdensitometer at Nice Observatory. The third image was obtained by CCD camera at the Pic du Midi Observatory. Each pixel was coded by 16 bits and stored at a computer system (VAX785) with STII format. Each image is characterized by 256 x 256 pixels. It is found that first image represents a stellar field, the second represents a set of galaxies in the Coma, and the third image contains an elliptical galaxy.

  15. Using Microsoft PowerPoint as an Astronomical Image Analysis Tool

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, Bernhard

    2006-12-01

    Engaging students in the analysis of authentic scientific data is an effective way to teach them about the scientific process and to develop their problem solving, teamwork and communication skills. In astronomy several image processing and analysis software tools have been developed for use in school environments. However, the practical implementation in the classroom is often difficult because the teachers may not have the comfort level with computers necessary to install and use these tools, they may not have adequate computer privileges and/or support, and they may not have the time to learn how to use specialized astronomy software. To address this problem, we have developed a set of activities in which students analyze astronomical images using basic tools provided in PowerPoint. These include measuring sizes, distances, and angles, and blinking images. In contrast to specialized software, PowerPoint is broadly available on school computers. Many teachers are already familiar with PowerPoint, and the skills developed while learning how to analyze astronomical images are highly transferable. We will discuss several practical examples of measurements, including the following: -Variations in the distances to the sun and moon from their angular sizes -Magnetic declination from images of shadows -Diameter of the moon from lunar eclipse images -Sizes of lunar craters -Orbital radii of the Jovian moons and mass of Jupiter -Supernova and comet searches -Expansion rate of the universe from images of distant galaxies

  16. An infrared upconverter for astronomical imaging

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An imaging upconverter has been constructed which is suitable for use in the study of the thermal 10-micron radiation from astronomical sources. The infrared radiation is converted to visible radiation by mixing in a 1-cm-long proustite crystal. The phase-matched 2-kayser bandpass is tunable from 9 to 11 microns. The conversion efficiency is 2 by 10 to the -7th power and the field of view of 40 arc seconds on the sky contains several hundred picture elements, approximately diffraction-limited resolution in a large telescope. The instrument has been used in studies of the sun, moon, Mercury, and VY Canis Majoris.

  17. PhAst: A Flexible IDL Astronomical Image Viewer

    NASA Astrophysics Data System (ADS)

    Rehnberg, Morgan; Crawford, R.; Trueblood, M.; Mighell, K.

    2012-01-01

    We present near-Earth asteroid data analyzed with PhAst, a new IDL astronomical image viewer based on the existing application ATV. PhAst opens, displays, and analyzes an arbitrary number of FITS images. Analysis packages include image calibration, photometry, and astrometry (provided through an interface with SExtractor, SCAMP, and missFITS). PhAst has been designed to generate reports for Minor Planet Center reporting. PhAst is cross platform (Linux/Mac OSX/Windows for image viewing and Linux/Mac OSX for image analysis) and can be downloaded from the following website at NOAO: http://www.noao.edu/staff/mighell/phast/. Rehnberg was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  18. Evaluation of breast tissue with confocal strip-mosaicking microscopy: a test approach emulating pathology-like examination

    PubMed Central

    Abeytunge, Sanjee; Larson, Bjorg; Peterson, Gary; Morrow, Monica; Rajadhyaksha, Milind

    2017-01-01

    Abstract. Confocal microscopy is an emerging technology for rapid imaging of freshly excised tissue without the need for frozen- or fixed-section processing. Initial studies have described imaging of breast tissue using fluorescence confocal microscopy with small regions of interest, typically 750×750  μm2. We present exploration with a microscope, termed confocal strip-mosaicking microscope (CSM microscope), which images an area of 2×2  cm2 of tissue with cellular-level resolution in 10 min of excision. Using the CSM microscope, we imaged 34 fresh, human, large breast tissue specimens from 18 patients, blindly analyzed by a board-certified pathologist and subsequently correlated with the corresponding standard fixed histopathology. Invasive tumors and benign tissue were clearly identified in CSM strip-mosaic images. Thirty specimens were concordant for image-to-histopathology correlation while four were discordant. PMID:28327961

  19. UkrVO astronomical WEB services

    NASA Astrophysics Data System (ADS)

    Mazhaev, A.

    2017-02-01

    Ukraine Virtual Observatory (UkrVO) has been a member of the International Virtual Observatory Alliance (IVOA) since 2011. The virtual observatory (VO) is not a magic solution to all problems of data storing and processing, but it provides certain standards for building infrastructure of astronomical data center. The astronomical databases help data mining and offer to users an easy access to observation metadata, images within celestial sphere and results of image processing. The astronomical web services (AWS) of UkrVO give to users handy tools for data selection from large astronomical catalogues for a relatively small region of interest in the sky. Examples of the AWS usage are showed.

  20. The Astronomical League

    NASA Astrophysics Data System (ADS)

    Stevens, J. A.; Stevens, B. L.

    2000-10-01

    Founded over fifty years ago, the League is the largest general astronomy society in the world. It is a recognized non-profit, educational organization, promoting the science of astronomy. This includes astronomical education, research, individual observing of the heavens and coordination between the amateur and professional astronomy communities. The Astronomical League publishes a quarterly newsletter, the "Reflector", which details amateur activities and amateur collaboration with professional astronomers. The League's Observing Clubs hone the skills of the amateur astronomer in using their telescopes. These clubs provide awards to encourge observing and learning the sky. More general awards are presented to encourage amateur astronomy and the science of astronomy. These include the National Young Astronomer Award, amd the Horkheimer Planetary Imaging Award. They also sponsor conventions on both the National and Regional levels. This year's national is in Ventura, California, next year, near Washington, D.C.

  1. Profile fitting in crowded astronomical images

    NASA Astrophysics Data System (ADS)

    Manish, Raja

    Around 18,000 known objects currently populate the near Earth space. These constitute active space assets as well as space debris objects. The tracking and cataloging of such objects relies on observations, most of which are ground based. Also, because of the great distance to the objects, only non-resolved object images can be obtained from the observations. Optical systems consist of telescope optics and a detector. Nowadays, usually CCD detectors are used. The information that is sought to be extracted from the frames are the individual object's astrometric position. In order to do so, the center of the object's image on the CCD frame has to be found. However, the observation frames that are read out of the detector are subject to noise. There are three different sources of noise: celestial background sources, the object signal itself and the sensor noise. The noise statistics are usually modeled as Gaussian or Poisson distributed or their combined distribution. In order to achieve a near real time processing, computationally fast and reliable methods for the so-called centroiding are desired; analytical methods are preferred over numerical ones of comparable accuracy. In this work, an analytic method for the centroiding is investigated and compared to numerical methods. Though the work focuses mainly on astronomical images, same principle could be applied on non-celestial images containing similar data. The method is based on minimizing weighted least squared (LS) error between observed data and the theoretical model of point sources in a novel yet simple way. Synthetic image frames have been simulated. The newly developed method is tested in both crowded and non-crowded fields where former needs additional image handling procedures to separate closely packed objects. Subsequent analysis on real celestial images corroborate the effectiveness of the approach.

  2. Probabilistic visual and electromagnetic data fusion for robust drift-free sequential mosaicking: application to fetoscopy

    PubMed Central

    Tella-Amo, Marcel; Peter, Loic; Shakir, Dzhoshkun I.; Deprest, Jan; Iglesias, Juan Eugenio; Ourselin, Sebastien

    2018-01-01

    Abstract. The most effective treatment for twin-to-twin transfusion syndrome is laser photocoagulation of the shared vascular anastomoses in the placenta. Vascular connections are extremely challenging to locate due to their caliber and the reduced field-of-view of the fetoscope. Therefore, mosaicking techniques are beneficial to expand the scene, facilitate navigation, and allow vessel photocoagulation decision-making. Local vision-based mosaicking algorithms inherently drift over time due to the use of pairwise transformations. We propose the use of an electromagnetic tracker (EMT) sensor mounted at the tip of the fetoscope to obtain camera pose measurements, which we incorporate into a probabilistic framework with frame-to-frame visual information to achieve globally consistent sequential mosaics. We parametrize the problem in terms of plane and camera poses constrained by EMT measurements to enforce global consistency while leveraging pairwise image relationships in a sequential fashion through the use of local bundle adjustment. We show that our approach is drift-free and performs similarly to state-of-the-art global alignment techniques like bundle adjustment albeit with much less computational burden. Additionally, we propose a version of bundle adjustment that uses EMT information. We demonstrate the robustness to EMT noise and loss of visual information and evaluate mosaics for synthetic, phantom-based and ex vivo datasets. PMID:29487889

  3. GNAT: A Global Network of Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Crawford, David L.

    1995-12-01

    Astronomical resources are increasingly directed toward development of very large telescopes, and many facilities are compelled to cease operations of smaller telescopes. A real concern is emerging with respect to issues of access to astronomical imaging systems for the majority of astronomers who will have little or no opportunity to work with the larger telescopes. Further concern is developing with regard to the means for conducting observationally intensive fundamental astronomical imaging programs, such as surveys, monitoring, and standards calibration. One attractive potential solution is a global network of (automated) astronomical telescopes (GNAT). Initial steps have been taken to turn this network into a reality. GNAT has been incorporated as a nonprofit corporation, membership drives have begun and several institutions have joined. The first two open GNAT meetings have now been held to define hardware and software systems, and an order has been placed for the first of the GNAT automated telescopes. In this presentation we discuss the goals and status of GNAT and its implications for astronomical imaging.

  4. Detecting fluorescence hot-spots using mosaic maps generated from multimodal endoscope imaging

    NASA Astrophysics Data System (ADS)

    Yang, Chenying; Soper, Timothy D.; Seibel, Eric J.

    2013-03-01

    Fluorescence labeled biomarkers can be detected during endoscopy to guide early cancer biopsies, such as high-grade dysplasia in Barrett's Esophagus. To enhance intraoperative visualization of the fluorescence hot-spots, a mosaicking technique was developed to create full anatomical maps of the lower esophagus and associated fluorescent hot-spots. The resultant mosaic map contains overlaid reflectance and fluorescence images. It can be used to assist biopsy and document findings. The mosaicking algorithm uses reflectance images to calculate image registration between successive frames, and apply this registration to simultaneously acquired fluorescence images. During this mosaicking process, the fluorescence signal is enhanced through multi-frame averaging. Preliminary results showed that the technique promises to enhance the detectability of the hot-spots due to enhanced fluorescence signal.

  5. The Galway astronomical Stokes polarimeter: optical development

    NASA Astrophysics Data System (ADS)

    Collins, P.; Redfern, M.; Shearer, A.; Sheehan, B.

    2010-06-01

    The acquisition time of astronomical polarimeters has in the past been restricted to by the use of polarimeters utilizing modulated or rotating components [1]. If the polarisation state being measured is changing in the order of nanoseconds, how does one measure this? The Galway Astronomical Stokes Polarimeter (GASP) is an instantaneous full Stokes Division Of Amplitude Polarimeter (DOAP) that has been developed for astronomical imaging polarimetry. It also uses just one camera thus restricting the acquisition time to photon statistics. Following the work of Compain and Drévillon [2], the main component - the Retarding Beam-Splitter, was redesigned and enhanced for imaging use. We present how the polarization and imaging optics were developed to create a broadband imaging instantaneous polarimeter. unknown author type, collab

  6. Imfit: A Fast, Flexible Program for Astronomical Image Fitting

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2014-08-01

    Imift is an open-source astronomical image-fitting program specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. Its object-oriented design allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with Imfit include Sersic, exponential, and Gaussian galaxy decompositions along with Core-Sersic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or the Cash statistic; the latter is particularly appropriate for cases of Poisson data in the low-count regime. The C++ source code for Imfit is available under the GNU Public License.

  7. Astronomical Archive at Tartu Observatory

    NASA Astrophysics Data System (ADS)

    Annuk, K.

    2007-10-01

    Archiving astronomical data is important task not only at large observatories but also at small observatories. Here we describe the astronomical archive at Tartu Observatory. The archive consists of old photographic plate images, photographic spectrograms, CCD direct--images and CCD spectroscopic data. The photographic plate digitizing project was started in 2005. An on-line database (based on MySQL) was created. The database includes CCD data as well photographic data. A PHP-MySQL interface was written for access to all data.

  8. FITSManager: Management of Personal Astronomical Data

    NASA Astrophysics Data System (ADS)

    Cui, Chenzhou; Fan, Dongwei; Zhao, Yongheng; Kembhavi, Ajit; He, Boliang; Cao, Zihuang; Li, Jian; Nandrekar, Deoyani

    2011-07-01

    With the increase of personal storage capacity, it is easy to find hundreds to thousands of FITS files in the personal computer of an astrophysicist. Because Flexible Image Transport System (FITS) is a professional data format initiated by astronomers and used mainly in the small community, data management toolkits for FITS files are very few. Astronomers need a powerful tool to help them manage their local astronomical data. Although Virtual Observatory (VO) is a network oriented astronomical research environment, its applications and related technologies provide useful solutions to enhance the management and utilization of astronomical data hosted in an astronomer's personal computer. FITSManager is such a tool to provide astronomers an efficient management and utilization of their local data, bringing VO to astronomers in a seamless and transparent way. FITSManager provides fruitful functions for FITS file management, like thumbnail, preview, type dependent icons, header keyword indexing and search, collaborated working with other tools and online services, and so on. The development of the FITSManager is an effort to fill the gap between management and analysis of astronomical data.

  9. Novel optical designs for consumer astronomical telescopes and their application to professional imaging

    NASA Astrophysics Data System (ADS)

    Wise, Peter; Hodgson, Alan

    2006-06-01

    Since the launch of the Hubble Space Telescope there has been widespread popular interest in astronomy. A further series of events, most notably the recent Deep Impact mission and Mars oppositions have served to fuel further interest. As a result more and more amateurs are coming into astronomy as a practical hobby. At the same time more sophisticated optical equipment is becoming available as the price to performance ratio become more favourable. As a result larger and better optical telescopes are now in use by amateurs. We also have the explosive growth in digital imaging technologies. In addition to displacing photographic film as the preferred image capture modality it has made the capture of high quality astronomical imagery more accessible to a wider segment of the astronomy community. However, this customer requirement has also had an impact on telescope design. There has become a greater imperative for wide flat image fields in these telescopes to take advantage of the ongoing advances in CCD imaging technology. As a result of these market drivers designers of consumer astronomical telescopes are now producing state of the art designs that result in wide, flat fields with optimal spatial and chromatic aberrations. Whilst some of these designs are not scalable to the larger apertures required for professional ground and airborne telescope use there are some that are eminently suited to make this transition.

  10. Astronomical database and VO-tools of Nikolaev Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Mazhaev, A. E.; Protsyuk, Yu. I.

    2010-05-01

    Results of work in 2006-2009 on creation of astronomical databases aiming at development of Nikolaev Virtual Observatory (NVO) are presented in this abstract. Results of observations and theirreduction, which were obtained during the whole history of Nikolaev Astronomical Observatory (NAO), are included in the databases. The databases may be considered as a basis for construction of a data centre. Images of different regions of the celestial sphere have been stored in NAO since 1929. About 8000 photo plates were obtained during observations in the 20th century. Observations with CCD have been started since 1996. Annually, telescopes of NAO, using CCD cameras, create data volume of several tens of gigabytes (GB) in the form of CCD images and up to 100 GB of video records. At the end of 2008, the volume of accumulated data in the form of CCD images was about 300 GB. Problems of data volume growth are common in astronomy, nuclear physics and bioinformatics. Therefore, the astronomical community needs to use archives, databases and distributed grid computing to cope with this problem in astronomy. The International Virtual Observatory Alliance (IVOA) was formed in June 2002 with a mission to "enable the international utilization of astronomical archives..." The NVO was created at the NAO website in 2008, and consists of three main parts. The first part contains 27 astrometric stellar catalogues with short descriptions. The files of catalogues were compiled in the standard VOTable format using eXtensible Markup Language (XML), and they are available for downloading. This is an example of the so-called science-ready product. The VOTable format was developed by the International Virtual Observatory Alliance (IVOA) for exchange of tabular data. A user may download these catalogues and open them using any standalone application that supports standards of the IVOA. There are several directions of development for such applications, for example, search of catalogues and images

  11. Minimum Energy-Variance Filters for the detection of compact sources in crowded astronomical images

    NASA Astrophysics Data System (ADS)

    Herranz, D.; Sanz, J. L.; López-Caniego, M.; González-Nuevo, J.

    2006-10-01

    In this paper we address the common problem of the detection and identification of compact sources, such as stars or far galaxies, in Astronomical images. The common approach, that consist in applying a matched filter to the data in order to remove noise and to search for intensity peaks above a certain detection threshold, does not work well when the sources to be detected appear in large number over small regions of the sky due to the effect of source overlapping and interferences among the filtered profiles of the sources. A new class of filter that balances noise removal with signal spatial concentration is introduced, then it is applied to simulated astronomical images of the sky at 857 GHz. We show that with the new filter it is possible to improve the ratio between true detections and false alarms with respect to the matched filter. For low detection thresholds, the improvement is ~ 40%.

  12. Guided color consistency optimization for image mosaicking

    NASA Astrophysics Data System (ADS)

    Xie, Renping; Xia, Menghan; Yao, Jian; Li, Li

    2018-01-01

    This paper studies the problem of color consistency correction for sequential images with diverse color characteristics. Existing algorithms try to adjust all images to minimize color differences among images under a unified energy framework, however, the results are prone to presenting a consistent but unnatural appearance when the color difference between images is large and diverse. In our approach, this problem is addressed effectively by providing a guided initial solution for the global consistency optimization, which avoids converging to a meaningless integrated solution. First of all, to obtain the reliable intensity correspondences in overlapping regions between image pairs, we creatively propose the histogram extreme point matching algorithm which is robust to image geometrical misalignment to some extents. In the absence of the extra reference information, the guided initial solution is learned from the major tone of the original images by searching some image subset as the reference, whose color characteristics will be transferred to the others via the paths of graph analysis. Thus, the final results via global adjustment will take on a consistent color similar to the appearance of the reference image subset. Several groups of convincing experiments on both the synthetic dataset and the challenging real ones sufficiently demonstrate that the proposed approach can achieve as good or even better results compared with the state-of-the-art approaches.

  13. Interference in astronomical speckle patterns

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.

    1976-01-01

    Astronomical speckle patterns are examined in an atmospheric-optics context in order to determine what kind of image quality is to be expected from several different imaging techniques. The model used to describe the instantaneous complex field distribution across the pupil of a large telescope regards the pupil as a deep phase grating with a periodicity given by the size of the cell of uniform phase or the refractive index structure function. This model is used along with an empirical formula derived purely from the physical appearance of the speckle patterns to discuss the orders of interference in astronomical speckle patterns.

  14. California desert resource inventory using multispectral classification of digitally mosaicked Landsat frames

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Mcleod, R. G.; Zobrist, A. L.; Johnson, H. B.

    1979-01-01

    Procedures for adjustment of brightness values between frames and the digital mosaicking of Landsat frames to standard map projections are developed for providing a continuous data base for multispectral thematic classification. A combination of local terrain variations in the Californian deserts and a global sampling strategy based on transects provided the framework for accurate classification throughout the entire geographic region.

  15. Super resolution for astronomical observations

    NASA Astrophysics Data System (ADS)

    Li, Zhan; Peng, Qingyu; Bhanu, Bir; Zhang, Qingfeng; He, Haifeng

    2018-05-01

    In order to obtain detailed information from multiple telescope observations a general blind super-resolution (SR) reconstruction approach for astronomical images is proposed in this paper. A pixel-reliability-based SR reconstruction algorithm is described and implemented, where the developed process incorporates flat field correction, automatic star searching and centering, iterative star matching, and sub-pixel image registration. Images captured by the 1-m telescope at Yunnan Observatory are used to test the proposed technique. The results of these experiments indicate that, following SR reconstruction, faint stars are more distinct, bright stars have sharper profiles, and the backgrounds have higher details; thus these results benefit from the high-precision star centering and image registration provided by the developed method. Application of the proposed approach not only provides more opportunities for new discoveries from astronomical image sequences, but will also contribute to enhancing the capabilities of most spatial or ground-based telescopes.

  16. Recent developments at JPL in the application of digital image processing techniques to astronomical images

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.; Lynn, D. J.; Benton, W. D.

    1976-01-01

    Several techniques of a digital image-processing nature are illustrated which have proved useful in visual analysis of astronomical pictorial data. Processed digital scans of photographic plates of Stephans Quintet and NGC 4151 are used as examples to show how faint nebulosity is enhanced by high-pass filtering, how foreground stars are suppressed by linear interpolation, and how relative color differences between two images recorded on plates with different spectral sensitivities can be revealed by generating ratio images. Analyses are outlined which are intended to compensate partially for the blurring effects of the atmosphere on images of Stephans Quintet and to obtain more detailed information about Saturn's ring structure from low- and high-resolution scans of the planet and its ring system. The employment of a correlation picture to determine the tilt angle of an average spectral line in a low-quality spectrum is demonstrated for a section of the spectrum of Uranus.

  17. Blind deconvolution of astronomical images with band limitation determined by optical system parameters

    NASA Astrophysics Data System (ADS)

    Luo, L.; Fan, M.; Shen, M. Z.

    2007-07-01

    Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of

  18. Custom Sky-Image Mosaics from NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Collier, James; Craymer, Loring; Curkendall, David

    2005-01-01

    yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user

  19. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  20. Side-scan sonar mapping: Pseudo-real-time processing and mosaicking techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danforth, W.W.; Schwab, W.C.; O'Brien, T.F.

    1990-05-01

    The US Geological Survey (USGS) surveyed 1,000 km{sup 2} of the continental shelf off San Francisco during a 17-day cruise, using a 120-kHz side-scan sonar system, and produced a digitally processed sonar mosaic of the survey area. The data were processed and mosaicked in real time using software developed at the Lamont-Doherty Geological Observatory and modified by the USGS, a substantial task due to the enormous amount of data produced by high-resolution side-scan systems. Approximately 33 megabytes of data were acquired every 1.5 hr. The real-time sonar images were displayed on a PC-based workstation and the data were transferred tomore » a UNIX minicomputer where the sonar images were slant-range corrected, enhanced using an averaging method of desampling and a linear-contrast stretch, merged with navigation, geographically oriented at a user-selected scale, and finally output to a thermal printer. The hard-copy output was then used to construct a mosaic of the survey area. The final product of this technique is a UTM-projected map-mosaic of sea-floor backscatter variations, which could be used, for example, to locate appropriate sites for sediment sampling to ground truth the sonar imagery while still at sea. More importantly, reconnaissance surveys of this type allow for the analysis and interpretation of the mosaic during a cruise, thus greatly reducing the preparation time needed for planning follow-up studies of a particular area.« less

  1. More flexibility in representing geometric distortion in astronomical images

    NASA Astrophysics Data System (ADS)

    Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir

    2012-09-01

    A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.

  2. An Integrative Object-Based Image Analysis Workflow for Uav Images

    NASA Astrophysics Data System (ADS)

    Yu, Huai; Yan, Tianheng; Yang, Wen; Zheng, Hong

    2016-06-01

    In this work, we propose an integrative framework to process UAV images. The overall process can be viewed as a pipeline consisting of the geometric and radiometric corrections, subsequent panoramic mosaicking and hierarchical image segmentation for later Object Based Image Analysis (OBIA). More precisely, we first introduce an efficient image stitching algorithm after the geometric calibration and radiometric correction, which employs a fast feature extraction and matching by combining the local difference binary descriptor and the local sensitive hashing. We then use a Binary Partition Tree (BPT) representation for the large mosaicked panoramic image, which starts by the definition of an initial partition obtained by an over-segmentation algorithm, i.e., the simple linear iterative clustering (SLIC). Finally, we build an object-based hierarchical structure by fully considering the spectral and spatial information of the super-pixels and their topological relationships. Moreover, an optimal segmentation is obtained by filtering the complex hierarchies into simpler ones according to some criterions, such as the uniform homogeneity and semantic consistency. Experimental results on processing the post-seismic UAV images of the 2013 Ya'an earthquake demonstrate the effectiveness and efficiency of our proposed method.

  3. EMCCD calibration for astronomical imaging: Wide FastCam at the Telescopio Carlos Sánchez

    NASA Astrophysics Data System (ADS)

    Velasco, S.; Oscoz, A.; López, R. L.; Puga, M.; Pérez-Garrido, A.; Pallé, E.; Ricci, D.; Ayuso, I.; Hernández-Sánchez, M.; Vázquez-Martín, S.; Protasio, C.; Béjar, V.; Truant, N.

    2017-03-01

    The evident benefits of Electron Multiplying CCDs (EMCCDs) -speed, high sensitivity, low noise and their capability of detecting single photon events whilst maintaining high quantum efficiency- are bringing these kinds of detectors to many state-of-the-art astronomical instruments (Velasco et al. 2016; Oscoz et al. 2008). The EMCCDs are the perfect answer to the need for great sensitivity levels as they are not limited by the readout noise of the output amplifier, while conventional CCDs are, even when operated at high readout frame rates. Here we present a quantitative on-sky method to calibrate EMCCD detectors dedicated to astronomical imaging, developed during the commissioning process (Velasco et al. 2016) and first observations (Ricci et al. 2016, in prep.) with Wide FastCam (Marga et al. 2014) at Telescopio Carlos Sánchez (TCS) in the Observatorio del Teide.

  4. SIMULATION OF ASTRONOMICAL IMAGES FROM OPTICAL SURVEY TELESCOPES USING A COMPREHENSIVE PHOTON MONTE CARLO APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J. R.; Peng, E.; Ahmad, Z.

    2015-05-15

    We present a comprehensive methodology for the simulation of astronomical images from optical survey telescopes. We use a photon Monte Carlo approach to construct images by sampling photons from models of astronomical source populations, and then simulating those photons through the system as they interact with the atmosphere, telescope, and camera. We demonstrate that all physical effects for optical light that determine the shapes, locations, and brightnesses of individual stars and galaxies can be accurately represented in this formalism. By using large scale grid computing, modern processors, and an efficient implementation that can produce 400,000 photons s{sup −1}, we demonstratemore » that even very large optical surveys can be now be simulated. We demonstrate that we are able to (1) construct kilometer scale phase screens necessary for wide-field telescopes, (2) reproduce atmospheric point-spread function moments using a fast novel hybrid geometric/Fourier technique for non-diffraction limited telescopes, (3) accurately reproduce the expected spot diagrams for complex aspheric optical designs, and (4) recover system effective area predicted from analytic photometry integrals. This new code, the Photon Simulator (PhoSim), is publicly available. We have implemented the Large Synoptic Survey Telescope design, and it can be extended to other telescopes. We expect that because of the comprehensive physics implemented in PhoSim, it will be used by the community to plan future observations, interpret detailed existing observations, and quantify systematics related to various astronomical measurements. Future development and validation by comparisons with real data will continue to improve the fidelity and usability of the code.« less

  5. Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

    NASA Image and Video Library

    2017-12-08

    Caption: Glowing a dark magenta, the newly discovered exoplanet GJ 504b weighs in with about four times Jupiter's mass, making it the lowest-mass planet ever directly imaged around a star like the sun. Credit: NASA/Goddard/S. Wiessinger Using infrared data from the Subaru Telescope in Hawaii, an international team of astronomers has imaged a giant planet around the bright star GJ 504. Several times the mass of Jupiter and similar in size, the new world, dubbed GJ 504b, is the lowest-mass planet ever detected around a star like the sun using direct imaging techniques. "If we could travel to this giant planet, we would see a world still glowing from the heat of its formation with a color reminiscent of a dark cherry blossom, a dull magenta," said Michael McElwain, a member of the discovery team at NASA's Goddard Space Flight Center in Greenbelt, Md. "Our near-infrared camera reveals that its color is much more blue than other imaged planets, which may indicate that its atmosphere has fewer clouds." Read more: 1.usa.gov/15Ba6fI NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. IMFIT: A FAST, FLEXIBLE NEW PROGRAM FOR ASTRONOMICAL IMAGE FITTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erwin, Peter; Universitäts-Sternwarte München, Scheinerstrasse 1, D-81679 München

    2015-02-01

    I describe a new, open-source astronomical image-fitting program called IMFIT, specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. A key characteristic of the program is an object-oriented design that allows new types of image components (two-dimensional surface-brightness functions) to be easily written and added to the program. Image functions provided with IMFIT include the usual suspects for galaxy decompositions (Sérsic, exponential, Gaussian), along with Core-Sérsic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through three-dimensional luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithmsmore » include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard χ{sup 2} statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or Poisson-based maximum-likelihood statistics; the latter approach is particularly appropriate for cases of Poisson data in the low-count regime. I show that fitting low-signal-to-noise ratio galaxy images using χ{sup 2} minimization and individual-pixel Gaussian uncertainties can lead to significant biases in fitted parameter values, which are avoided if a Poisson-based statistic is used; this is true even when Gaussian read noise is present.« less

  7. Mosaicked Historic Airborne Imagery from Seward Peninsula, Alaska, Starting in the 1950's

    DOE Data Explorer

    Cherry, Jessica; Wirth, Lisa

    2016-12-06

    Historical airborne imagery for each Seward Peninsula NGEE Arctic site - Teller, Kougarok, Council - with multiple years for each site. This dataset includes mosaicked, geolocated and, where possible, orthorectified, historic airborne and recent satellite imagery. The older photos were sourced from USGS's Earth Explorer site and the newer, satellite imagery is from the Statewide Digital Mapping Initiative (SDMI) project managed by the Geographic Information Network of Alaska on behalf of the state of Alaska.

  8. Deconvolution of astronomical images using SOR with adaptive relaxation.

    PubMed

    Vorontsov, S V; Strakhov, V N; Jefferies, S M; Borelli, K J

    2011-07-04

    We address the potential performance of the successive overrelaxation technique (SOR) in image deconvolution, focusing our attention on the restoration of astronomical images distorted by atmospheric turbulence. SOR is the classical Gauss-Seidel iteration, supplemented with relaxation. As indicated by earlier work, the convergence properties of SOR, and its ultimate performance in the deconvolution of blurred and noisy images, can be made competitive to other iterative techniques, including conjugate gradients, by a proper choice of the relaxation parameter. The question of how to choose the relaxation parameter, however, remained open, and in the practical work one had to rely on experimentation. In this paper, using constructive (rather than exact) arguments, we suggest a simple strategy for choosing the relaxation parameter and for updating its value in consecutive iterations to optimize the performance of the SOR algorithm (and its positivity-constrained version, +SOR) at finite iteration counts. We suggest an extension of the algorithm to the notoriously difficult problem of "blind" deconvolution, where both the true object and the point-spread function have to be recovered from the blurred image. We report the results of numerical inversions with artificial and real data, where the algorithm is compared with techniques based on conjugate gradients. In all of our experiments +SOR provides the highest quality results. In addition +SOR is found to be able to detect moderately small changes in the true object between separate data frames: an important quality for multi-frame blind deconvolution where stationarity of the object is a necesessity.

  9. The Expansion of the Astronomical Photographic Data Archive at PARI

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Barker, Thurburn; Castelaz, Michael

    2017-01-01

    A diverse set of photometric, astrometric, spectral and surface brightness data exist on decades of photographic glass plates. The Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI) was established in November 2007 and is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and PARI continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data available in a digital format.In 2016, APDA expanded from 50 collections with about 220,000 plates to more than 55 collections and more than 340,000 plates and films. These account for more than 30% of all astronomical photographic data in the United States. The largest of the new acquisitions are the astronomical photographic plates in the Yale University collection. We present details of the newly added collections and review of other collections in APDA.

  10. Astronomical Microdensitometry Conference

    NASA Technical Reports Server (NTRS)

    Klinglesmith, D. A. (Editor)

    1984-01-01

    The status of the current microdensitometers used for digitizing astronomical imagery is discussed. The tests and improvements that have and can be made to the Photometric Data System PDS microdensitometer are examined. The various types of microdensitometers that currently exist in the world are investigated. Papers are presented on the future needs and the data processing problems associated with digitizing large images.

  11. Snorkelling between the stars: submarine methods for astronomical observations.

    NASA Astrophysics Data System (ADS)

    Velasco, S.; Quevedo, E.; Font, J.; Oscoz, A.; López, R. L.; Puga, M.; Rebolo, R.; Hernáandez Brito, J.; Llinas, O.; Marrero Callico, G.; Sarmiento, R.

    2017-03-01

    Trying to reach diffraction-limited astronomical observations from ground-based telescopes is very challenging due to the atmospheric effects contributing to a general blurring of the images. However, astronomy is not the only science facing turbulence problems; obtaining quality images of the undersea world is as ambitious as it is on the sky. One of the solutions contemplated to reach high-resolution images is the use of multiple frames of the same target, known as fusion super-resolution (Quevedo et al. 2015), which is the principle for Lucky Imaging (Velasco et al. 2016). Here we present the successful result of joining efforts between the undersea and the astronomical research done at the Canary Islands.

  12. Developing Generic Image Search Strategies for Large Astronomical Data Sets and Archives using Convolutional Neural Networks and Transfer Learning

    NASA Astrophysics Data System (ADS)

    Peek, Joshua E. G.; Hargis, Jonathan R.; Jones, Craig K.

    2018-01-01

    Astronomical instruments produce petabytes of images every year, vastly more than can be inspected by a member of the astronomical community in search of a specific population of structures. Fortunately, the sky is mostly black and source extraction algorithms have been developed to provide searchable catalogs of unconfused sources like stars and galaxies. These tools often fail for studies of more diffuse structures like the interstellar medium and unresolved stellar structures in nearby galaxies, leaving astronomers interested in observations of photodissociation regions, stellar clusters, diffuse interstellar clouds without the crucial ability to search. In this work we present a new path forward for finding structures in large data sets similar to an input structure using convolutional neural networks, transfer learning, and machine learning clustering techniques. We show applications to archival data in the Mikulski Archive for Space Telescopes (MAST).

  13. Astronomers without borders

    NASA Astrophysics Data System (ADS)

    Simmons, Mike

    2011-06-01

    ``Astronomers Without Borders'' is a new global organisational dedicated to furthering understanding and goodwill across national and cultural boundaries using the universal appeal of astronomy and space science. A growing network of affiliate organisations brings together clubs, magazines and other organizations involved in astronomy and space science. Forums, galleries, video conferences and other interactive technologies are used to connect participants around the world. Sharing of resources and direct connections through travel programs are also planned. One project, ``The World at Night'' (TWAN), has become an Special Project of IYA2009. TWAN creates wide-angle images of the night sky in important natural and historic settings around the world, dramatically demonstrating the universal nature and appeal of the night sky. ``Astronomers Without Borders'' is also a leader of the 100 Hours of Astronomy IYA2009 Global Cornerstone Project.

  14. Implementation of fluorescence confocal mosaicking microscopy by ``early adopter'' Mohs surgeons and dermatologists: recent progress

    NASA Astrophysics Data System (ADS)

    Jain, Manu; Rajadhyaksha, Milind; Nehal, Kishwer

    2017-02-01

    Confocal mosaicking microscopy (CMM) enables rapid imaging of large areas of fresh tissue ex vivo without the processing that is necessary for conventional histology. When performed in fluorescence mode using acridine orange (nuclear specific dye), it enhances nuclei-to-dermis contrast that enables detection of all types of basal cell carcinomas (BCCs), including micronodular and thin strands of infiltrative types. So far, this technique has been mostly validated in research settings for the detection of residual BCC tumor margins with high sensitivity of 89% to 96% and specificity of 99% to 89%. Recently, CMM has advanced to implementation and testing in clinical settings by "early adopter" Mohs surgeons, as an adjunct to frozen section during Mohs surgery. We summarize the development of CMM guided imaging of ex vivo skin tissues from bench to bedside. We also present its current state of application in routine clinical workflow not only for the assessment of residual BCC margins in the Mohs surgical setting but also for some melanocytic lesions and other skin conditions in clinical dermatology settings. Last, we also discuss the potential limitations of this technology as well as future developments. As this technology advances further, it may serve as an adjunct to standard histology and enable rapid surgical pathology of skin cancers at the bedside.

  15. A Mosaicking Approach for In Vivo Thickness Mapping of the Human Tympanic Membrane Using Low Coherence Interferometry.

    PubMed

    Pande, Paritosh; Shelton, Ryan L; Monroy, Guillermo L; Nolan, Ryan M; Boppart, Stephen A

    2016-10-01

    The thickness of the human tympanic membrane (TM) is known to vary considerably across different regions of the TM. Quantitative determination of the thickness distribution and mapping of the TM is of significant importance in hearing research, particularly in mathematical modeling of middle-ear dynamics. Change in TM thickness is also associated with several middle-ear pathologies. Determination of the TM thickness distribution could therefore also enable a more comprehensive diagnosis of various otologic diseases. Despite its importance, very limited data on human TM thickness distribution, obtained almost exclusively from ex vivo samples, are available in the literature. In this study, the thickness distribution for the in vivo human TM is reported for the first time. A hand-held imaging system, which combines a low coherence interferometry (LCI) technique for single-point thickness measurement, with video-otoscopy for recording the image of the TM, was used to collect the data used in this study. Data were acquired by pointing the imaging probe over different regions of the TM, while simultaneously recording the LCI and concomitant TM surface video image data from an average of 500 locations on the TM. TM thickness distribution maps were obtained by mapping the LCI imaging sites onto an anatomically accurate wide-field image of the TM, which was generated by mosaicking the sequence of multiple small field-of-view video-otoscopy images. Descriptive statistics of the thickness measurements obtained from the different regions of the TM are presented, and the general thickness distribution trends are discussed.

  16. GASP-Galway astronomical Stokes polarimeter

    NASA Astrophysics Data System (ADS)

    Kyne, G.; Sheehan, B.; Collins, P.; Redfern, M.; Shearer, A.

    2010-06-01

    The Galway Astronomical Stokes Polarimeter (GASP) is an ultra-high-speed, full Stokes, astronomical imaging polarimeter based upon a Division of Amplitude Polarimeter. It has been developed to resolve extremely rapid stochastic (~ms) variations in objects such as optical pulsars, magnetars and magnetic cataclysmic variables. The polarimeter has no moving parts or modulated components so the complete Stokes vector can be measured from just one exposure - making it unique to astronomy. The time required for the determination of the full Stokes vector is limited only by detector efficiency and photon fluxes. The polarimeter utilizes a modified Fresnel rhomb that acts as a highly achromatic quarter wave plate and a beamsplitter (referred to as an RBS). We present a description of how the DOAP works, some of the optical design for the polarimeter. Calibration is an important and difficult issue with all polarimeters, but particularly in astronomical polarimeters. We give a description of calibration techniques appropriate to this type of polarimeter.

  17. Application of Astronomical Compositions in Small Architectural Forms

    NASA Astrophysics Data System (ADS)

    Haykazun, Ani

    2016-12-01

    The small architectural forms are an important part of the Armenian architecture. Their compositions are diverse including quadrihedral structures, cross-stones, monuments, gravestones, memorial stones, etc. From ancient times to the late middle ages, and up to themodern small architectural forms, there are many decorative elements of astronomical character. Among them, one can more often see stars, the sun, the moon, the sky, the planets, the sign of eternity and other symbolic decorative images, which play a major role in the formation of the artistic image of the architectural compositions. The analysis of application of astronomical compositions will help more comprehensively introduce the compositional peculiarities of the small architectural forms.

  18. Blind Astronomers

    NASA Astrophysics Data System (ADS)

    Hockey, Thomas A.

    2011-01-01

    The phrase "blind astronomer” is used as an allegorical oxymoron. However, there were and are blind astronomers. What of famous blind astronomers? First, it must be stated that these astronomers were not martyrs to their craft. It is a myth that astronomers blind themselves by observing the Sun. As early as France's William of Saint-Cloud (circa 1290) astronomers knew that staring at the Sun was ill-advised and avoided it. Galileo Galilei did not invent the astronomical telescope and then proceed to blind himself with one. Galileo observed the Sun near sunrise and sunset or through projection. More than two decades later he became blind, as many septuagenarians do, unrelated to their profession. Even Isaac Newton temporarily blinded himself, staring at the reflection of the Sun when he was a twentysomething. But permanent Sun-induced blindness? No, it did not happen. For instance, it was a stroke that left Scotland's James Gregory (1638-1675) blind. (You will remember the Gregorian telescope.) However, he died days later. Thus, blindness little interfered with his occupation. English Abbot Richard of Wallingford (circa 1291 - circa 1335) wrote astronomical works and designed astronomical instruments. He was also blind in one eye. Yet as he further suffered from leprosy, his blindness seems the lesser of Richard's maladies. Perhaps the most famous professionally active, blind astronomer (or almost blind astronomer) is Dominique-Francois Arago (1786-1853), director until his death of the powerful nineteenth-century Paris Observatory. I will share other _ some poignant _ examples such as: William Campbell, whose blindness drove him to suicide; Leonhard Euler, astronomy's Beethoven, who did nearly half of his life's work while almost totally blind; and Edwin Frost, who "observed” a total solar eclipse while completely sightless.

  19. Woods Hole Image Processing System Software implementation; using NetCDF as a software interface for image processing

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1992-01-01

    The Branch of Atlantic Marine Geology has been involved in the collection, processing and digital mosaicking of high, medium and low-resolution side-scan sonar data during the past 6 years. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. With the need to process sidescan data in the field with increased power and reduced cost of major workstations, a need to have an image processing package on a UNIX based computer system which could be utilized in the field as well as be more generally available to Branch personnel was identified. This report describes the initial development of that package referred to as the Woods Hole Image Processing System (WHIPS). The software was developed using the Unidata NetCDF software interface to allow data to be more readily portable between different computer operating systems.

  20. A New Effort for Atmospherical Forecast: Meteorological Image Processing Software (MIPS) for Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Shameoni Niaei, M.; Kilic, Y.; Yildiran, B. E.; Yüzlükoglu, F.; Yesilyaprak, C.

    2016-12-01

    We have described a new software (MIPS) about the analysis and image processing of the meteorological satellite (Meteosat) data for an astronomical observatory. This software will be able to help to make some atmospherical forecast (cloud, humidity, rain) using meteosat data for robotic telescopes. MIPS uses a python library for Eumetsat data that aims to be completely open-source and licenced under GNU/General Public Licence (GPL). MIPS is a platform independent and uses h5py, numpy, and PIL with the general-purpose and high-level programming language Python and the QT framework.

  1. Automatic Reacquisition of Satellite Positions by Detecting Their Expected Streaks in Astronomical Images

    NASA Astrophysics Data System (ADS)

    Levesque, M.

    Artificial satellites, and particularly space junk, drift continuously from their known orbits. In the surveillance-of-space context, they must be observed frequently to ensure that the corresponding orbital parameter database entries are up-to-date. Autonomous ground-based optical systems are periodically tasked to observe these objects, calculate the difference between their predicted and real positions and update object orbital parameters. The real satellite positions are provided by the detection of the satellite streaks in the astronomical images specifically acquired for this purpose. This paper presents the image processing techniques used to detect and extract the satellite positions. The methodology includes several processing steps including: image background estimation and removal, star detection and removal, an iterative matched filter for streak detection, and finally false alarm rejection algorithms. This detection methodology is able to detect very faint objects. Simulated data were used to evaluate the methodology's performance and determine the sensitivity limits where the algorithm can perform detection without false alarm, which is essential to avoid corruption of the orbital parameter database.

  2. Infrared Astronomical Satellite View of the Sky

    NASA Image and Video Library

    2009-11-03

    Nearly the entire sky, as seen in infrared wavelengths and projected at one-half degree resolution, is shown in this image, assembled from six months of data from the NASA Infrared Astronomical Satellite, or IRAS.

  3. Protoplanetary Worlds at the Astronomical Unit Scale. First Step towards Aperture Synthesis Images

    NASA Astrophysics Data System (ADS)

    Berger, J.; Monnier, J.; Millan-Gabet, R.; Malbet, F.; Benisty, M.; Pedretti, E.; Traub, W.

    Optical interferometry has started to play a crucial role in the field of star formation. In particular, it offers a unique opportunity to observe protoplanetary disks at a spatial scale where planets may be forming. We present here some of the most recent discoveries in this field putting the emphasis on the progress towards direct imaging of proto-planetary worlds at the astronomical unit scale. In particular we develop our use of the IOTA/IONIC3 interferometer to measure closure phase quantities, a powerful observable to quantify the degree of skewness of the infrared emission at spatial scales corresponding to the internal part of the disk.

  4. Correction of projective distortion in long-image-sequence mosaics without prior information

    NASA Astrophysics Data System (ADS)

    Yang, Chenhui; Mao, Hongwei; Abousleman, Glen; Si, Jennie

    2010-04-01

    Image mosaicking is the process of piecing together multiple video frames or still images from a moving camera to form a wide-area or panoramic view of the scene being imaged. Mosaics have widespread applications in many areas such as security surveillance, remote sensing, geographical exploration, agricultural field surveillance, virtual reality, digital video, and medical image analysis, among others. When mosaicking a large number of still images or video frames, the quality of the resulting mosaic is compromised by projective distortion. That is, during the mosaicking process, the image frames that are transformed and pasted to the mosaic become significantly scaled down and appear out of proportion with respect to the mosaic. As more frames continue to be transformed, important target information in the frames can be lost since the transformed frames become too small, which eventually leads to the inability to continue further. Some projective distortion correction techniques make use of prior information such as GPS information embedded within the image, or camera internal and external parameters. Alternatively, this paper proposes a new algorithm to reduce the projective distortion without using any prior information whatsoever. Based on the analysis of the projective distortion, we approximate the projective matrix that describes the transformation between image frames using an affine model. Using singular value decomposition, we can deduce the affine model scaling factor that is usually very close to 1. By resetting the image scale of the affine model to 1, the transformed image size remains unchanged. Even though the proposed correction introduces some error in the image matching, this error is typically acceptable and more importantly, the final mosaic preserves the original image size after transformation. We demonstrate the effectiveness of this new correction algorithm on two real-world unmanned air vehicle (UAV) sequences. The proposed method is

  5. Implementation of fluorescence confocal mosaicking microscopy by “early adopter” Mohs surgeons and dermatologists: recent progress

    PubMed Central

    Jain, Manu; Rajadhyaksha, Milind; Nehal, Kishwer

    2017-01-01

    Abstract. Confocal mosaicking microscopy (CMM) enables rapid imaging of large areas of fresh tissue ex vivo without the processing that is necessary for conventional histology. When performed in fluorescence mode using acridine orange (nuclear specific dye), it enhances nuclei-to-dermis contrast that enables detection of all types of basal cell carcinomas (BCCs), including micronodular and thin strands of infiltrative types. So far, this technique has been mostly validated in research settings for the detection of residual BCC tumor margins with high sensitivity of 89% to 96% and specificity of 99% to 89%. Recently, CMM has advanced to implementation and testing in clinical settings by “early adopter” Mohs surgeons, as an adjunct to frozen section during Mohs surgery. We summarize the development of CMM guided imaging of ex vivo skin tissues from bench to bedside. We also present its current state of application in routine clinical workflow not only for the assessment of residual BCC margins in the Mohs surgical setting but also for some melanocytic lesions and other skin conditions in clinical dermatology settings. Last, we also discuss the potential limitations of this technology as well as future developments. As this technology advances further, it may serve as an adjunct to standard histology and enable rapid surgical pathology of skin cancers at the bedside. PMID:28199474

  6. The Research Tools of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO

    2013-01-01

    Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  7. Astronomers Discover Spectacular Structure in Distant Galaxy

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Researchers using the National Science Foundation's Very Large Array (VLA) radio telescope have imaged a "spectacular and complex structure" in a galaxy 50 million light-years away. Their work both resolves a decades-old observational mystery and revises current theories about the origin of X-ray emission coming from gas surrounding the galaxy. The new VLA image is of the galaxy M87, which harbors at its core a supermassive black hole spewing out jets of subatomic particles at nearly the speed of light and also is the central galaxy of the Virgo Cluster of galaxies. The VLA image is the first to show detail of a larger structure that originally was detected by radio astronomers more than a half-century ago. Analysis of the new image indicates that astronomers will have to revise their ideas about the physics of what causes X-ray emission in the cores of many galaxy clusters. Frazer Owen of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; Jean Eilek of the New Mexico Institute of Mining and Technology (NM Tech) in Socorro, NM; and Namir Kassim of the Naval Research Laboratory in Washington, DC, announced their discovery at the American Astronomical Society's meeting today in Austin, TX. The new observations show two large, bubble-like lobes, more than 200,000 light-years across, that emit radio waves. These lobes, which are intricately detailed, apparently are powered by gravitational energy released from the black hole at the galaxy's center. "We think that material is flowing outward from the galaxy's core into these large, bright, radio-emitting 'bubbles,'" Owen said. The newly-discovered "bubbles" sit inside a region of the galaxy known to be emitting X-rays. Theorists have speculated that this X-ray emission arises when gas that originally was part of the Virgo Cluster of galaxies, cools and falls inwards onto M87 itself, at the center of the cluster. Such "cooling flows" are commonly thought to be responsible for strong X-ray emission in many

  8. Astronomers Identify a New Mid-size Black Hole

    NASA Image and Video Library

    2017-12-08

    Nearly all black holes come in one of two sizes: stellar mass black holes that weigh up to a few dozen times the mass of our sun or supermassive black holes ranging from a million to several billion times the sun’s mass. Astronomers believe that medium-sized black holes between these two extremes exist, but evidence has been hard to come by, with roughly a half-dozen candidates described so far. A team led by astronomers at the University of Maryland and NASA’s Goddard Space Flight Center has found evidence for a new intermediate-mass black hole about 5,000 times the mass of the sun. The discovery adds one more candidate to the list of potential medium-sized black holes, while strengthening the case that these objects do exist. The team reported its findings in the September 21, 2015 online edition of Astrophysical Journal Letters. This image, taken with the European Southern Observatory’s Very Large Telescope, shows the central region of galaxy NGC1313. This galaxy is home to the ultraluminous X-ray source NCG1313X-1, which astronomers have now determined to be an intermediate-mass black hole candidate. NGC1313 is 50,000 light-years across and lies about 14 million light-years from the Milky Way in the southern constellation Reticulum. Read more: www.nasa.gov/feature/goddard/astronomers-identify-a-new-m... Image credit: European Southern Observatory #nasagoddard #blackhole #space NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Recent Activity at the Astronomical Photographic Data Archive

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.; Barker, T.

    2011-01-01

    The Astronomical Photographic Data Archive (APDA) located at the Pisgah Astronomical Research Institute (PARI) was established in November 2007. APDA is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data digitally available. APDA is housed in a newly renovated Research Building on the PARI campus. An award from the NSF allowed renovation of the heating and air conditioning. Plates in APDA are kept in a 20 C +/- 1 C area with humidity at 38% +/- 3%. Renovation of the electrical system with backup power allows for support of a data center with a networked storage system and software donated from EMC Corp. The storage system can hold more than 300 terabytes of research data which can be accessed through multiple gigabyte connectivity to the Internet. APDA has a collection of more than 100,000 photographic plates and film collections, as well as major instrumentation, from NASA, the STScI, the US Naval Observatory, the Harvard Smithsonian CfA and others. APDA possesses two high precision glass plate scanners, GAMMA I and GAMMA II, that were built for NASA and the Space Telescope Science Institute (STScI). The scanners were used to develop the HST Guide Star Catalog and Digitized Sky Survey. We will present the status of GAMMA II and the recent donations of astronomical plates and current research projects.

  10. All-sky brightness monitoring of light pollution with astronomical methods.

    PubMed

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Aligning HST Images to Gaia: A Faster Mosaicking Workflow

    NASA Astrophysics Data System (ADS)

    Bajaj, V.

    2017-11-01

    We present a fully programmatic workflow for aligning HST images using the high-quality astrometry provided by Gaia Data Release 1. Code provided in a Jupyter Notebook works through this procedure, including parsing the data to determine the query area parameters, querying Gaia for the coordinate catalog, and using the catalog with TweakReg as reference catalog. This workflow greatly simplifies the normally time-consuming process of aligning HST images, especially those taken as part of mosaics.

  12. Assessment of fresh breast tissue specimens with confocal strip-mosaicking microscopy in an emulated pathology setting (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjeewa; Larson, Bjorg A.; Peterson, Gary; Rajadhyaksha, Milind; Murray, Melissa

    2017-02-01

    Confocal microscopy is in clinical use to diagnose skin cancers in the United States and in Europe. Potentially, this technology may provide bed-side pathology in breast cancer surgery during tumor removal. Initial studies have described major findings of invasive breast cancers as seen on fluorescence confocal microscopy. In many of these studies the region of interest (ROI) used in the analysis was user-selected and small (typically 15 square-mm). Although these important findings open exploration into rapid pathology, further development and implementation in a surgical setting will require examination of large specimens in a blinded fashion that will address the needs of typical surgical settings. In post surgery pathology viewing, pathologists inspect the entire pathology section with a low (2X) magnification objective lens initially and then zoomed in to ROIs with higher magnification lenses (10X to 40X) magnifications to further investigate suspected regions. In this study we explore the possibility of implementation in a typical surgical setting with a new microscope, termed confocal strip-mosaicking microscope (CSM microscope), which images an area of 400 square-mm (2 cm x 2 cm) of tissue with cellular level resolution in 10 minutes. CSM images of 34 human breast tissue specimens from 18 patients were blindly analyzed by a board-certified pathologist and correlated with the corresponding standard fixed histopathology. Invasive tumors and benign tissue were clearly identified in CSM images. Thirty specimens were concordant for images-to-histopathology correlation while four were discordant. Preliminary results from on-going work to molecularly target tumor margin will also be presented.

  13. Hosting an `Ask the Astronomer' Site on the Internet

    NASA Astrophysics Data System (ADS)

    Odenwald, S. F.

    1996-12-01

    Since 1995, the World Wide Web has explosively evolved into a significant medium for dispensing astronomical information to the general public. In addition to the numerous image archives that have proliferated, an increasing number of sites invite visitors to pose questions about astronomy and receive answers provided by professional astronomers. In this paper, I describe the operation of an Ask the Astronomer site that was opened on the WWW during August, 1995 as part of an astronomy education resource area called the "Astronomy Cafe" (URL=http://www2.ari.net/home/odenwald/cafe.html). The Astronomy Cafe includes a number of documents describing: a career in astronomy; how research papers are written; essays about cosmology, hyperspace and infrared astronomy; and the results from a 100-question, just for fun, personality test which distinguishes astronomers from non-astronomers. The Ask the Astronomer site is operated by a single astronomer through private donations and is now approaching its 500th day of operation. It contains over 2000+ questions and answers with a growth rate of 5 - 10 questions per day. It has attracted 70,000 visitors who are responsible for nearly 1 million 'hits' during the site's lifetime. The monthly statistics provide a unique survey of the kinds of individuals and organizations who visit Ask the Astronomer-type web sites, moreover, the accumulated questions provide a diagnostic X-ray into the public mind in the area of astronomy. I will present an analysis of the user demographics, and the types of questions that appear to be the most frequently asked. A paper copy of the complete index of these questions will be available for inspection.

  14. Astronomy Legacy Project - Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).

  15. He2-90'S APPEARANCE DECEIVES ASTRONOMERS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers using NASA's Hubble Space Telescope have stumbled upon a mysterious object that is grudgingly yielding clues to its identity. A quick glance at the Hubble picture at top shows that this celestial body, called He2-90, looks like a young, dust-enshrouded star with narrow jets of material streaming from each side. But it's not. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star. But the Hubble observations suggest that it may not fit that classification, either. The Hubble astronomers now suspect that this enigmatic object may actually be a pair of aging stars masquerading as a single youngster. One member of the duo is a bloated red giant star shedding matter from its outer layers. This matter is then gravitationally captured in a rotating, pancake-shaped accretion disk around a compact partner, which is most likely a young white dwarf (the collapsed remnant of a sun-like star). The stars cannot be seen in the Hubble images because a lane of dust obscures them. The Hubble picture at top shows a centrally bright object with jets, appearing like strings of beads, emanating from both sides of center. (The other streaks of light running diagonally from He2-90 are artificial effects of the telescope's optical system.) Each jet possesses at least six bright clumps of gas, which are speeding along at rates estimated to be at least 375,000 miles an hour (600,000 kilometers an hour). These gaseous salvos are being ejected into space about every 100 years, and may be caused by periodic instabilities in He2-90's accretion disk. The jets from very young stars behave in a similar way. Deep images taken from terrestrial observatories show each jet extending at least 100,000 astronomical units (one astronomical unit equals the Earth-Sun distance, 93 million miles). The jets' relatively modest speed implies that one member of the duo is a white dwarf. Observations by the Compton Gamma-Ray Observatory, however, discovered a

  16. Quasi-random array imaging collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-20

    A hexagonally shaped quasi-random no-two-holes-touching imaging collimator. The quasi-random array imaging collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasing throughput by elimination of a substrate. The present invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  17. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  18. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  19. Exploratory visualization of astronomical data on ultra-high-resolution wall displays

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; del Campo, Fernando; Ibsen, Amanda; Primet, Romain; Appert, Caroline; Chapuis, Olivier; Hempel, Maren; Muñoz, Roberto; Eyheramendy, Susana; Jordan, Andres; Dole, Hervé

    2016-07-01

    Ultra-high-resolution wall displays feature a very high pixel density over a large physical surface, which makes them well-suited to the collaborative, exploratory visualization of large datasets. We introduce FITS-OW, an application designed for such wall displays, that enables astronomers to navigate in large collections of FITS images, query astronomical databases, and display detailed, complementary data and documents about multiple sources simultaneously. We describe how astronomers interact with their data using both the wall's touchsensitive surface and handheld devices. We also report on the technical challenges we addressed in terms of distributed graphics rendering and data sharing over the computer clusters that drive wall displays.

  20. Role of stereoscopic imaging in the astronomical study of nearby stars and planetary systems

    NASA Astrophysics Data System (ADS)

    Mark, David S.; Waste, Corby

    1997-05-01

    The development of stereoscopic imaging as a 3D spatial mapping tool for planetary science is now beginning to find greater usefulness in the study of stellar atmospheres and planetary systems in general. For the first time, telescopes and accompanying spectrometers have demonstrated the capacity to depict the gyrating motion of nearby stars so precisely as to derive the existence of closely orbiting Jovian-type planets, which are gravitationally influencing the motion of the parent star. Also for the first time, remote space borne telescopes, unhindered by atmospheric effects, are recording and tracking the rotational characteristics of our nearby star, the sun, so accurately as to reveal and identify in great detail the heightened turbulence of the sun's corona. In order to perform new forms of stereo imaging and 3D reconstruction with such large scale objects as stars and planets, within solar systems, a set of geometrical parameters must be observed, and are illustrated here. The behavior of nearby stars can be studied over time using an astrometric approach, making use of the earth's orbital path as a semi- yearly stereo base for the viewing telescope. As is often the case in this method, the resulting stereo angle becomes too narrow to afford a beneficial stereo view, given the star's distance and the general level of detected noise in the signal. With the advent, though, of new earth based and space borne interferometers, operating within various wavelengths including IR, the capability of detecting and assembling the full 3-dimensional axes of motion of nearby gyrating stars can be achieved. In addition, the coupling of large interferometers with combined data sets can provide large stereo bases and low signal noise to produce converging 3- dimensional stereo views of nearby planetary systems. Several groups of new astronomical stereo imaging data sets are presented, including 3D views of the sun taken by the Solar and Heliospheric Observatory, coincident

  1. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    USDA-ARS?s Scientific Manuscript database

    Images captured from airborne imaging systems have the advantages of relatively low cost, high spatial resolution, and real/near-real-time availability. Multiple images taken from one or more flight lines could be used to generate a high-resolution mosaic image, which could be useful for diverse rem...

  2. Image processing techniques for digital orthophotoquad production

    USGS Publications Warehouse

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  3. Latin American astronomers and the International Astronomical Union

    NASA Astrophysics Data System (ADS)

    Torres-Peimbert, S.

    2017-07-01

    Selected aspects of the participation of the Latin American astronomers in the International Astronomical Union are presented: Membership, Governing bodies, IAU meetings, and other activities. The Union was founded in 1919 with 7 initial member states, soon to be followed by Brazil. In 1921 Mexico joined, and in 1928 Argentina also formed part of the Union, while Chile joined in 1947. In 1961 Argentina, Brazil, Chile, Mexico and Venezuela were already member countries. At present (October 2016) 72 countries contribute financially to the Union. The Union lists 12,391 professional astronomers as individual members; of those, 692 astronomers work in Latin America and the Caribbean, from 13 member states (Argentina, Bolivia , Brazil, Chile, Colombia, Costa Rica, Cuba, Honduras, Mexico, Panamá, Perú, Uruguay and Venezuela) as well as from Ecuador and Puerto Rico. This group comprises 5.58% of the total membership, a figure somewhat lower than the fraction of the population in the region, which is 8.6% of the world population. Of the Latin American members, 23.4% are women and 76.6% are men; slightly higher than the whole membership of Union, which is of 16.9%. In the governing bodies it can be mentioned that there have been 2 Presidents of the Union (Jorge Sahade and Silvia Torres-Peimbert), 7 VicePresidents (Guillermo Haro, Jorge Sahade, Manuel Peimbert Claudio Anguita, Silvia Torres-Peimbert, Beatriz Barbuy, and Marta G. Rovira). The IAU meetings held in the region, include 2 General Assemblies (the 1991 XXI GA took place in Buenos Aires, Argentina and the 2009 XXVIII GA, in Rio de Janeiro, Brazil), 15 Regional Meetings (in Argentina, Brazil, Chile, Colombia, Mexico, Venezuela and Uruguay), 29 Symposia (in Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Peru and Mexico), 5 Colloquia (in Argentina and Mexico), 8 International Schools for Young Astronomers (in Argentina, Brazil, Cuba, Honduras and Mexico), and 11 projects sponsored by the Office of Astronomy

  4. Astronomical Instrumentation Systems Quality Management Planning: AISQMP

    NASA Astrophysics Data System (ADS)

    Goldbaum, Jesse

    2017-06-01

    The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  5. On Tokugawa Bakufu's astronomical officials

    NASA Astrophysics Data System (ADS)

    Yamada, Keiji

    2005-06-01

    Tokugawa Bakufu's astronomical office, established in 1684, is the post for calendar reform. The reform was conducted when the calendar did not predict peculiar celestial phenomena, such as solar or lunar eclipses. It was, so to speak, the theme of the ancient astronomy. From removal of the embargo on importing western science books in 1720, Japanese astronomers studied European astronomy and attempted to apply its knowledge to calendar making. Moreover, they knew the Copernican system and also faced several modern astronomical subjects. The French astronomer Lalande's work "ASTRONOMY" exerted particularly strong influence on astronomers. This paper overviews the activities of Paris observatory and French astronomers in the 17th and 18th centuries, and survey what modern astronomical subjects were. Finally, it sketches a role of the Edo observatory played in the Japanese cultural history.

  6. The Vector, Signal, and Image Processing Library (VSIPL): an Open Standard for Astronomical Data Processing

    NASA Astrophysics Data System (ADS)

    Kepner, J. V.; Janka, R. S.; Lebak, J.; Richards, M. A.

    1999-12-01

    The Vector/Signal/Image Processing Library (VSIPL) is a DARPA initiated effort made up of industry, government and academic representatives who have defined an industry standard API for vector, signal, and image processing primitives for real-time signal processing on high performance systems. VSIPL supports a wide range of data types (int, float, complex, ...) and layouts (vectors, matrices and tensors) and is ideal for astronomical data processing. The VSIPL API is intended to serve as an open, vendor-neutral, industry standard interface. The object-based VSIPL API abstracts the memory architecture of the underlying machine by using the concept of memory blocks and views. Early experiments with VSIPL code conversions have been carried out by the High Performance Computing Program team at the UCSD. Commercially, several major vendors of signal processors are actively developing implementations. VSIPL has also been explicitly required as part of a recent Rome Labs teraflop procurement. This poster presents the VSIPL API, its functionality and the status of various implementations.

  7. Coded aperture imaging with uniformly redundant arrays

    DOEpatents

    Fenimore, Edward E.; Cannon, Thomas M.

    1980-01-01

    A system utilizing uniformly redundant arrays to image non-focusable radiation. The uniformly redundant array is used in conjunction with a balanced correlation technique to provide a system with no artifacts such that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. Additionally, the array is mosaicked to reduce required detector size over conventional array detectors.

  8. Coded aperture imaging with uniformly redundant arrays

    DOEpatents

    Fenimore, Edward E.; Cannon, Thomas M.

    1982-01-01

    A system utilizing uniformly redundant arrays to image non-focusable radiation. The uniformly redundant array is used in conjunction with a balanced correlation technique to provide a system with no artifacts such that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. Additionally, the array is mosaicked to reduce required detector size over conventional array detectors.

  9. The Practical Astronomer

    NASA Astrophysics Data System (ADS)

    Koester, Jack

    "The Practical Astronomer" by Thomas Dick, LLD, E.C. & J. Biddle, Philadelphia, 1849, is reviewed. Information on telescope makers and astronomers can be found. Mentioned are: Fraunhofer; John Herschel; Lawson; Dollond; Tulley; W. & S. Jones; and S.W. Burnham.

  10. Using Astronomical Photographs to Investigate Misconceptions about Galaxies and Spectra: Question Development for Clicker Use

    ERIC Educational Resources Information Center

    Lee, Hyunju; Schneider, Stephen E.

    2015-01-01

    Many topics in introductory astronomy at the college or high-school level rely implicitly on using astronomical photographs and visual data in class. However, students bring many preconceptions to their understanding of these materials that ultimately lead to misconceptions, and research about students' interpretation of astronomical images has…

  11. Amateur astronomers in support of observing campaigns

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P.

    2014-07-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access, and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: - the establishment of a network of astronomers and related professionals that can be galvanized into action on short notice to support observing campaigns; - assist in various science investigations pertinent to the campaign; - provide an alert-sounding mechanism should the need arise; - immediate outreach and dissemination of results via our media/blogger members; - provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been identified: (1) C/2013 A1 (C/Siding Spring) and (2) 67P/Churyumov-Gerasimenko (CG). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA (Pro-Am Collaborative Astronomy) portal that currently is focused on comets: from supporting observing campaigns for current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The recent observation of comet 67P, at a magnitude of 21.2, from Siding

  12. Astronomical Instrumentation Systems Quality Management Planning: AISQMP (Abstract)

    NASA Astrophysics Data System (ADS)

    Goldbaum, J.

    2017-12-01

    (Abstract only) The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  13. AWOB: A Collaborative Workbench for Astronomers

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lemson, G.; Bulatovic, N.; Makarenko, V.; Vogler, A.; Voges, W.; Yao, Y.; Kiefl, R.; Koychev, S.

    2015-09-01

    We present the Astronomers Workbench (AWOB1), a web-based collaboration and publication platform for a scientific project of any size, developed in collaboration between the Max-Planck institutes of Astrophysics (MPA) and Extra-terrestrial Physics (MPE) and the Max-Planck Digital Library (MPDL). AWOB facilitates the collaboration between geographically distributed astronomers working on a common project throughout its whole scientific life cycle. AWOB does so by making it very easy for scientists to set up and manage a collaborative workspace for individual projects, where data can be uploaded and shared. It supports inviting project collaborators, provides wikis, automated mailing lists, calendars and event notification and has a built in chat facility. It allows the definition and tracking of tasks within projects and supports easy creation of e-publications for the dissemination of data and images and other resources that cannot be added to submitted papers. AWOB extends the project concept to larger scale consortia, within which it is possible to manage working groups and sub-projects. The existing AWOB instance has so far been limited to Max-Planck members and their collaborators, but will be opened to the whole astronomical community. AWOB is an open-source project and its source code is available upon request. We intend to extend AWOB's functionality also to other disciplines, and would greatly appreciate contributions from the community.

  14. Astronomical Research with the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the Micro

  15. Linear feature detection algorithm for astronomical surveys - I. Algorithm description

    NASA Astrophysics Data System (ADS)

    Bektešević, Dino; Vinković, Dejan

    2017-11-01

    Computer vision algorithms are powerful tools in astronomical image analyses, especially when automation of object detection and extraction is required. Modern object detection algorithms in astronomy are oriented towards detection of stars and galaxies, ignoring completely the detection of existing linear features. With the emergence of wide-field sky surveys, linear features attract scientific interest as possible trails of fast flybys of near-Earth asteroids and meteors. In this work, we describe a new linear feature detection algorithm designed specifically for implementation in big data astronomy. The algorithm combines a series of algorithmic steps that first remove other objects (stars and galaxies) from the image and then enhance the line to enable more efficient line detection with the Hough algorithm. The rate of false positives is greatly reduced thanks to a step that replaces possible line segments with rectangles and then compares lines fitted to the rectangles with the lines obtained directly from the image. The speed of the algorithm and its applicability in astronomical surveys are also discussed.

  16. Digital Images on the DIME

    NASA Technical Reports Server (NTRS)

    2003-01-01

    With NASA on its side, Positive Systems, Inc., of Whitefish, Montana, is veering away from the industry standards defined for producing and processing remotely sensed images. A top developer of imaging products for geographic information system (GIS) and computer-aided design (CAD) applications, Positive Systems is bucking traditional imaging concepts with a cost-effective and time-saving software tool called Digital Images Made Easy (DIME(trademark)). Like piecing a jigsaw puzzle together, DIME can integrate a series of raw aerial or satellite snapshots into a single, seamless panoramic image, known as a 'mosaic.' The 'mosaicked' images serve as useful backdrops to GIS maps - which typically consist of line drawings called 'vectors' - by allowing users to view a multidimensional map that provides substantially more geographic information.

  17. Reconstructing color images of astronomical objects using black and white spectroscopic emulsions

    NASA Technical Reports Server (NTRS)

    Dufour, R. I.; Martins, D. H.

    1976-01-01

    A color photograph of the peculiar elliptical galaxy NGC 5128 (Centaurus A) has been reconstructed from three Kodak 103a emulsion type photographs by projecting positives of the three B&W plates through appropriate filters onto a conventional color film. The resulting photograph shows color balance and latitude characteristics superior to color photographs of similar astronomical objects made with commercially available conventional color film. Similar results have been obtained for color reconstructed photographs of the Large and Small Magellanic Clouds. These and other results suggest that these projection-reconstruction techniques can be used to obtain high-quality color photographs of astronomical objects which overcome many of the problems associated with the use of conventional color film for the long exposures required in astronomy.

  18. World's fastest and most sensitive astronomical camera

    NASA Astrophysics Data System (ADS)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  19. Global HRSC Image Mosaics of Mars: Dodging for High-Pass Filtering, Combined with Low-Pass-Filtered OMEGA Mosaics

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Walter, S. H. G.; van Gasselt, S.; Dumke, A.; Dunker, T.; Gross, C.; Michael, G.; Wendt, L.; Audouard, J.; Ody, A.; Poulet, F.

    2014-07-01

    We discuss our approach towards automatically mosaicking hundreds of the HRSC panchromatic or RGB images together. Our best results consist of adding a high-pass-filtered HRSC mosaic to a low-pass-filtered OMEGA global mosaic.

  20. Real-time visual mosaicking and navigation on the seafloor

    NASA Astrophysics Data System (ADS)

    Richmond, Kristof

    -reckoned navigation information in a framework allowing the creation and updating of large, locally consistent mosaics. These mosaics are used as maps in which the vehicle can navigate and localize itself with respect to points in the environment. The system achieves real-time performance in several ways. First, wherever possible, direct sensing of motion parameters is used in place of extracting them from visual data. Second, trajectories are chosen to enable a hierarchical search for side-to-side links which limits the amount of searching performed without sacrificing robustness. Finally, the map estimation is formulated as a sparse, linear information filter allowing rapid updating of large maps. The visual navigation enabled by the work in this thesis represents a new capability for remotely operated vehicles, and an enabling capability for a new generation of autonomous vehicles which explore and interact with remote, unknown and unstructured underwater environments. The real-time mosaic can be used on current tethered vehicles to create pilot aids and provide a vehicle user with situational awareness of the local environment and the position of the vehicle within it. For autonomous vehicles, the visual navigation system enables precise environment-relative positioning and mapping, without requiring external navigation systems, opening the way for ever-expanding autonomous exploration capabilities. The utility of this system was demonstrated in the field at sites of scientific interest using the ROVs Ventana and Tiburon operated by the Monterey Bay Aquarium Research Institute. A number of sites in and around Monterey Bay, California were mosaicked using the system, culminating in a complete imaging of the wreck site of the USS Macon , where real-time visual mosaics containing thousands of images were generated while navigating using only sensor systems on board the vehicle.

  1. Surveys, Fields, and Collections in the Astronomical Photographic Data Archive at PARI

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.; Barker, T.

    2014-01-01

    A diverse set of photometric, astrometric, spectral and surface brightness data exist on more than 100 years of photographic glass plates. About 20 percent of the plates in North America are located in the Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI). APDA was established in November 2007 and is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and PARI continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data available in a digital format. APDA currently has 50 collections with more than 250,000 plates taken for QSO identification, parallax measurements, spectral classification and monitoring, Magellanic Cloud studies, H-alpha emission star surveys, novae evolution, and astrometry of asteroids, outer planet satellites and Pluto. Some examples of collections include the complete set of the Henize H-alpha Southern Survey plates taken between 1949 and 1952 (Henize 1954, AJ, 59, 325), the Case Western Objective Prism All Sky Survey from 1958-1976 (e.g. Pesch, Sanduleak, and Stephenson 1996, ApJS, 103, 513), and QSO Survey from 1980 to 1991 (e.g. Pesch and Stephenson 1983, ApJS, 51, 171). We feature the contents of the APDA collections to provide the opportunity to the astronomical community to advance new and established areas of study.

  2. Armenian Astronomical Society (ArAS) activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    A review on the activities and achievements of Armenian Astronomical Society (ArAS) and Armenian astronomy in general during the last years is given. ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, Annual Meetings, Annual Prize for Young Astronomers (Yervant Terzian Prize) and other awards, international relations, presence in international organizations, local and international summer schools, science camps, astronomical Olympiads and other events, matters related to astronomical education, astronomical heritage, amateur astronomy, astronomy outreach and ArAS further projects are described and discussed.

  3. Commission 5: Documentation and Astronomical Data

    NASA Astrophysics Data System (ADS)

    Norris, Raymond P.; Ohishi, Masatoshi; Genova, Françoise; Grothkopf, Uta; Malkov, Oleg Yu.; Pence, William D.; Schmitz, Marion; Hanisch, Robert J.; Zhou, Xu

    IAU Commission 5 deals with data management issues, and its working groups and task groups deal specifically with information handling, with data centres and networks, with technical aspects of collection, archiving, storage and dissemination of data, with designations and classification of astronomical objects, with library services, editorial policies, computer communications, ad hoc methodologies, and with various standards, reference frames, etc., FITS, astronomys Flexible Image Transport System, the major data exchange format, is controlled, maintained and updated by the Working Group FITS.

  4. Expansion of the visual angle of a car rear-view image via an image mosaic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Zhuangwen; Zhu, Liangrong; Sun, Xincheng

    2015-05-01

    The rear-view image system is one of the active safety devices in cars and is widely applied in all types of vehicles and traffic safety areas. However, studies made by both domestic and foreign researchers were based on a single image capture device while reversing, so a blind area still remained to drivers. Even if multiple cameras were used to expand the visual angle of the car's rear-view image in some studies, the blind area remained because different source images were not mosaicked together. To acquire an expanded visual angle of a car rear-view image, two charge-coupled device cameras with optical axes angled at 30 deg were mounted below the left and right fenders of a car in three light conditions-sunny outdoors, cloudy outdoors, and an underground garage-to capture rear-view heterologous images of the car. Then these rear-view heterologous images were rapidly registered through the scale invariant feature transform algorithm. Combined with the random sample consensus algorithm, the two heterologous images were finally mosaicked using the linear weighted gradated in-and-out fusion algorithm, and a seamless and visual-angle-expanded rear-view image was acquired. The four-index test results showed that the algorithms can mosaic rear-view images well in the underground garage condition, where the average rate of correct matching was the lowest among the three conditions. The rear-view image mosaic algorithm presented had the best information preservation, the shortest computation time and the most complete preservation of the image detail features compared to the mean value method (MVM) and segmental fusion method (SFM), and it was also able to perform better in real time and provided more comprehensive image details than MVM and SFM. In addition, it had the most complete image preservation from source images among the three algorithms. The method introduced by this paper provided the basis for researching the expansion of the visual angle of a car rear

  5. Digitization and Position Measurement of Astronomical Plates of Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Yan, D.; Yu, Y.; Zhang, H. Y.; Qiao, R. C.

    2014-05-01

    Using the advanced commercial scanners to digitize astronomical plates may be a simple and effective way. In this paper, we discuss the method of digitizing and astrometrically reducing six astronomical plates of Saturnian satellites, which were taken from the 1 m RCC (Ritchey Chretien Coude) telescope of Yunnan Observatory in 1988, by using the 10000XL scanner of Epson. The digitized images of the astronomical plates of Saturnian satellites are re-reduced, and the positions of Saturnian satellites based on the UCAC2 (The Second US Naval Observatory CCD Astrograph Catalog) catalogue are given. A comparison of our measured positions with the IMCCE (Institut de Mecanique Celeste et de Calcul des Ephemerides) ephemeris of Saturnian satellites shows the high quality of our measurements, which have an accuracy of 106 mas in right ascension and 89 mas in declination. Moreover, our measurements appear to be consistent with this ephemeris within only about 56 mas in right ascension and 9 mas in declination.

  6. Blind Deconvolution of Astronomical Images with a Constraint on Bandwidth Determined by the Parameters of the Optical System

    NASA Astrophysics Data System (ADS)

    Luo, Lin; Fan, Min; Shen, Mang-zuo

    2008-01-01

    Atmospheric turbulence severely restricts the spatial resolution of astronomical images obtained by a large ground-based telescope. In order to reduce effectively this effect, we propose a method of blind deconvolution, with a bandwidth constraint determined by the parameters of the telescope's optical system based on the principle of maximum likelihood estimation, in which the convolution error function is minimized by using the conjugate gradient algorithm. A relation between the parameters of the telescope optical system and the image's frequency-domain bandwidth is established, and the speed of convergence of the algorithm is improved by using the positivity constraint on the variables and the limited-bandwidth constraint on the point spread function. To avoid the effective Fourier frequencies exceed the cut-off frequency, it is required that each single image element (e.g., the pixel in the CCD imaging) in the sampling focal plane should be smaller than one fourth of the diameter of the diffraction spot. In the algorithm, no object-centered constraint was used, so the proposed method is suitable for the image restoration of a whole field of objects. By the computer simulation and by the restoration of an actually-observed image of α Piscium, the effectiveness of the proposed method is demonstrated.

  7. Amateur Astronomers As Public Outreach Partners

    NASA Astrophysics Data System (ADS)

    Bennett, M. A.

    2006-08-01

    Amateur astronomers involved in public outreach represent a huge, largely untapped source of energy and enthusiasm to help astronomers reach the general public. Even though many astronomy educators already work with amateur astronomers, the potential educational impact of amateur astronomers as public outreach ambassadors remains largely unrealized. Surveys and other work by the ASP in the US show that more than 20% of astronomy club members routinely participate in public engagement and educational events, such as public star parties, classroom visits, work with youth and community groups, etc. Amateur astronomers who participate in public outreach events are knowledgeable about astronomy and passionate about sharing their hobby with other people. They are very willing to work with astronomers and astronomy educators. They want useful materials, support, and training. In the USA, the ASP operates "The Night Sky Network," (funded by NASA). We have developed specialized materials and training, tested by and used by amateur astronomers. This project works with nearly 200 local astronomy clubs in 50 states to help them conduct more effective public outreach events. It has resulted in nearly 3,600 outreach events (reaching nearly 300,000 people) in just two years. In this presentation we examine key success factors, lessons learned, and suggest how astronomers outside the US can recruit and work with "outreach amateur astronomers" in their own countries.

  8. Astronomical Heritage in the National Culture

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.; Mickaelian, A. M.; Parsamian, E. S.

    2014-10-01

    The book contains Proceedings of the Archaeoastronomical Meeting "Astronomical Heritage in the National Culture" Dedicated to Anania Shirakatsi's 1400th Anniversary and XI Annual Meeting of the Armenian Astronomical Society. It consists of 3 main sections: "Astronomical Heritage", "Anania Shirakatsi" and "Modern Astronomy", as well as Literature about Anania Shirakatsi is included. The book may be interesting for astronomers, historians, archaeologists, linguists, students and other readers.

  9. Current and Future Capabilities of the 74-inch Telescope of Kottamia Astronomical Observatory in Egypt

    NASA Astrophysics Data System (ADS)

    Azzam, Y. A.; Ali, G. B.; Ismail, H. A.; Haroon, A.; Selim, I.

    In this paper, we are going to introduce the Kottamia Astronomical Observatory, KAO, to the astronomical community. The current status of the telescope together with the available instrumentations is described. An upgrade stage including a new optical system and a computer controlling of both the telescope and dome are achieved. The specifications of a set of CCD cameras for direct imaging and spectroscopy are given. A grating spectrograph is recently gifted to KAO from Okayama Astrophysical Observatory, OAO, of the National Astronomical Observatories in Japan. This spectrograph is successfully tested and installed at the F/18 Cassegrain focus of the KAO 74" telescope.

  10. Astronomical data analysis software and systems I; Proceedings of the 1st Annual Conference, Tucson, AZ, Nov. 6-8, 1991

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M. (Editor); Biemesderfer, Chris (Editor); Barnes, Jeannette (Editor)

    1992-01-01

    Consideration is given to a definition of a distribution format for X-ray data, the Einstein on-line system, the NASA/IPAC extragalactic database, COBE astronomical databases, Cosmic Background Explorer astronomical databases, the ADAM software environment, the Groningen Image Processing System, search for a common data model for astronomical data analysis systems, deconvolution for real and synthetic apertures, pitfalls in image reconstruction, a direct method for spectral and image restoration, and a discription of a Poisson imagery super resolution algorithm. Also discussed are multivariate statistics on HI and IRAS images, a faint object classification using neural networks, a matched filter for improving SNR of radio maps, automated aperture photometry of CCD images, interactive graphics interpreter, the ROSAT extreme ultra-violet sky survey, a quantitative study of optimal extraction, an automated analysis of spectra, applications of synthetic photometry, an algorithm for extra-solar planet system detection and data reduction facilities for the William Herschel telescope.

  11. Astronomical Ecosystems

    NASA Astrophysics Data System (ADS)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  12. Building large mosaics of confocal edomicroscopic images using visual servoing.

    PubMed

    Rosa, Benoît; Erden, Mustafa Suphi; Vercauteren, Tom; Herman, Benoît; Szewczyk, Jérôme; Morel, Guillaume

    2013-04-01

    Probe-based confocal laser endomicroscopy provides real-time microscopic images of tissues contacted by a small probe that can be inserted in vivo through a minimally invasive access. Mosaicking consists in sweeping the probe in contact with a tissue to be imaged while collecting the video stream, and process the images to assemble them in a large mosaic. While most of the literature in this field has focused on image processing, little attention has been paid so far to the way the probe motion can be controlled. This is a crucial issue since the precision of the probe trajectory control drastically influences the quality of the final mosaic. Robotically controlled motion has the potential of providing enough precision to perform mosaicking. In this paper, we emphasize the difficulties of implementing such an approach. First, probe-tissue contacts generate deformations that prevent from properly controlling the image trajectory. Second, in the context of minimally invasive procedures targeted by our research, robotic devices are likely to exhibit limited quality of the distal probe motion control at the microscopic scale. To cope with these problems visual servoing from real-time endomicroscopic images is proposed in this paper. It is implemented on two different devices (a high-accuracy industrial robot and a prototype minimally invasive device). Experiments on different kinds of environments (printed paper and ex vivo tissues) show that the quality of the visually servoed probe motion is sufficient to build mosaics with minimal distortion in spite of disturbances.

  13. 2D and 3D visualization methods of endoscopic panoramic bladder images

    NASA Astrophysics Data System (ADS)

    Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til

    2011-03-01

    While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.

  14. Astronomical Prospecting of Asteroid Resources

    NASA Astrophysics Data System (ADS)

    Elvis, M.

    2017-09-01

    To make asteroid mining profitable will require professional astronomers using some of the largest telescopes on Earth to make precision measurements. This "astronomical prospecting" information is cheaper to obtain than flying even one or two spacecraft and will drastically cut the number of space probes that have to be sent to find an ore-bearing rock in space. Astronomical prospecting could make the business case for asteroid mining a solid one.

  15. Korean Astronomical Calendar, Chiljeongsan

    NASA Astrophysics Data System (ADS)

    Lee, Eun Hee

    In fifteenth century Korea, there was a grand project for the astronomical calendar and instrument making by the order of King Sejong 世宗 (1418-1450). During this period, many astronomical and calendrical books including Islamic sources in Chinese versions were imported from Ming 明 China, and corrected and researched by the court astronomers of Joseon 朝鮮 (1392-1910). Moreover, the astronomers and technicians of Korea frequently visited China to study astronomy and instrument making, and they brought back useful information in the form of new published books or specifications of instruments. As a result, a royal observatory equipped with 15 types of instrument was completed in 1438. Two types of calendar, Chiljeongsan Naepyeon 七政算內篇 and Chiljeongsan Oepyeon 七政算外篇, based on the Chinese and Islamic calendar systems, respectively, were published in 1444 with a number of calendrical editions such as corrections and example supplements (假令) including calculation methods and results for solar and lunar eclipses.

  16. The System for Quick Search of the Astronomical Objects and Events in the Digital Plate Archives.

    NASA Astrophysics Data System (ADS)

    Sergeev, A. V.; Sergeeva, T. P.

    From the middle of the XIX century observatories all over the world have accumulated about three millions astronomical plates contained the unique information about the Universe which can not be obtained or restored with the help of any newest facilities and technologies but may be useful for many modern astronomical investigations. The threat of astronomical plate archives loss caused by economical, technical or some other causes have put before world astronomical community a problem: the preservation of the unique information kept on those plates. The problem can be solved by transformation of the information from plates to digital form and keeping it on electronic data medium. We began a creation of a system for quick search and analysing of astronomical events and objects in digital plate archive of the Ukrainian Main astronomical observatory of NAS. Connection of the system to Internet will allow a remote user (astronomer or observer) to have access to digital plate archive and to work with it. For providing of the high efficiency of this work the plate database (list of the plates with all information about them and access software) are preparing. Modular structure of the system basic software and standard format of the plate image files allow future development of problem-oriented software for special astronomical researches.

  17. Astronomical Software Directory Service

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; Payne, H.; Hayes, J.

    1998-01-01

    This is the final report on the development of the Astronomical Software Directory Service (ASDS), a distributable, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URL's indexed for full-text searching.

  18. AMICA: The First camera for Near- and Mid-Infrared Astronomical Imaging at Dome C

    NASA Astrophysics Data System (ADS)

    Straniero, O.; Dolci, M.; Valentini, A.; Valentini, G.; di Rico, G.; Ragni, M.; Giuliani, C.; di Cianno, A.; di Varano, I.; Corcione, L.; Bortoletto, F.; D'Alessandro, M.; Magrin, D.; Bonoli, C.; Giro, E.; Fantinel, D.; Zerbi, F. M.; Riva, A.; de Caprio, V.; Molinari, E.; Conconi, P.; Busso, M.; Tosti, G.; Abia, C. A.

    AMICA (Antarctic Multiband Infrared CAmera) is an instrument designed to perform astronomical imaging in the near- (1{-}5 μm) and mid- (5 27 μm) infrared wavelength regions. Equipped with two detectors, an InSb 2562 and a Si:As 1282 IBC, cooled at 35 and 7 K respectively, it will be the first instrument to investigate the potential of the Italian-French base Concordia for IR astronomy. The main technical challenge is represented by the extreme conditions of Dome C (T ˜ -90 °C, p ˜640 mbar). An environmental control system ensures the correct start-up, shut-down and housekeeping of the various components of the camera. AMICA will be mounted on the IRAIT telescope and will perform survey-mode observations in the Southern sky. The first task is to provide important site-quality data. Substantial contributions to the solution of fundamental astrophysical quests, such as those related to late phases of stellar evolution and to star formation processes, are also expected.

  19. New Life for Astronomical Instruments of the Past at the Astronomical Observatory of Taras Shevchenko

    NASA Astrophysics Data System (ADS)

    Kazantseva, Liliya

    2012-09-01

    Astronomical instruments of the past are certainly valuable artifacts of the history of science and education. Like other collections of scientific equipment, they also demonstrate i) development of scientific and technical ideas, ii) technological features of the historical period, iii) professional features of artists or companies -- manufacturers, and iv) national and local specificity of production. However, astronomical instruments are also devices made for observations of rare phenomena -- solar eclipses, transits of planets of the solar disk, etc. Instruments used to study these rare events were very different for each event, since the science changed quickly between events. The Astronomical Observatory of Kyiv National Taras Shevchenko University has a collection of tools made by leading European and local shops from the early nineteenth century. These include tools for optically observing the first artificial Earth satellites, photography, chronometry, and meteorology. In addition, it has assembled a library of descriptions of astronomical instruments and makers'price-lists. Of particular interest are the large stationary tools that are still active in their pavilions. Almost every instrument has a long interesting history. Museification of astronomical instruments gives them a second life, expanding educational programs and tracing the development of astronomy in general and scientific institution and region in particular. It would be advisable to first create a regional database of these rare astronomical instruments (which is already being done in Ukraine), then a common global database. By combining all the historical information about astronomical instruments with the advantages of the Internet, you can show the full evolution of an astronomical instrument with all its features. Time is relentless, and much is destroyed, badly kept and thrown in the garbage. We need time to protect, capture, and tell about it.

  20. The PACA Project: When Amateur Astronomers Become Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2014-12-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013. Following the success of the professional-amateur astronomer collaboration in scientific research via social media, it is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers

  1. Considerations for the Use of STEREO -HI Data for Astronomical Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappin, S. J., E-mail: james.tappin@stfc.ac.uk

    Recent refinements to the photometric calibrations of the Heliospheric Imagers (HI) on board the Solar TErrestrial RElations Observatory ( STEREO ) have revealed a number of subtle effects in the measurement of stellar signals with those instruments. These effects need to be considered in the interpretation of STEREO -HI data for astronomy. In this paper we present an analysis of these effects and how to compensate for them when using STEREO -HI data for astronomical studies. We determine how saturation of the HI CCD detectors affects the apparent count rates of stars after the on-board summing of pixels and exposures.more » Single-exposure calibration images are analyzed and compared with binned and summed science images to determine the influence of saturation on the science images. We also analyze how the on-board cosmic-ray scrubbing algorithm affects stellar images. We determine how this interacts with the variations of instrument pointing to affect measurements of stars. We find that saturation is a significant effect only for the brightest stars, and that its onset is gradual. We also find that degraded pointing stability, whether of the entire spacecraft or of the imagers, leads to reduced stellar count rates and also increased variation thereof through interaction with the on-board cosmic-ray scrubbing algorithm. We suggest ways in which these effects can be mitigated for astronomical studies and also suggest how the situation can be improved for future imagers.« less

  2. The Discovery of Extrasolar Planets by Backyard Astronomers

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; Laughlin, Greg; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The discovery since 1995 of more than 80 planets around nearby solar-like stars and the photometric measurement of a transit of the jovian mass planet orbiting the solar-like star HD 209458 (producing a more than 1% drop in brightness that lasts 3 hours) has heralded a new era in astronomy. It has now been demonstrated that small telescopes equipped with sensitive and stable electronic detectors can produce fundamental scientific discoveries regarding the frequency and nature of planets outside the solar system. The modest equipment requirements for the discovery of extrasolar planetary transits of jovian mass planets in short period orbits around solar-like stars are fulfilled by commercial small aperture telescopes and CCD (charge coupled device) imagers common among amateur astronomers. With equipment already in hand and armed with target lists, observing techniques and software procedures developed by scientists at NASA's Ames Research Center and the University of California at Santa Cruz, non-professional astronomers can contribute significantly to the discovery and study of planets around others stars. In this way, we may resume (after a two century interruption!) the tradition of planet discoveries by amateur astronomers begun with William Herschel's 1787 discovery of the 'solar' planet Uranus.

  3. Commission 5: Documentation and Astronomical Data

    NASA Astrophysics Data System (ADS)

    Ohishi, Masatoshi; Hanisch, Robert J.; Norris, Ray P.; Andernach, Heinz; Bishop, Marsha; Griffin, Elizabeth; Kembhavi, Ajit; Murphy, Tara; Pasian, Fabio

    2012-04-01

    IAU Commission 5 (http://www.nao.ac.jp/IAU/Com5/) deals with data management issues, and its working groups and task group deal specifically with information handling, with data centers and networks, with technical aspects of collection, archiving, storage and dissemination of data, with designations and classification of astronomical objects, with library services, editorial policies, computer communications, ad hoc methodologies, and with various standards, reference frames, etc. FITS (Flexible Image Transport System), the major data exchange format in astronomy, has been standardized, maintained and updated by the FITS working group under Commission 5.

  4. What Lies Behind NSF Astronomer Demographics? Subjectivities of Women, Minorities and Foreign-born Astronomers within Meshworks of Big Science Astronomy

    NASA Astrophysics Data System (ADS)

    Guillen, Reynal; Gu, D.; Holbrook, J.; Murillo, L. F.; Traweek, S.

    2011-01-01

    Our current research focuses on the trajectory of scientists working with large-scale databases in astronomy, following them as they strategically build their careers, digital infrastructures, and make their epistemological commitments. We look specifically at how gender, ethnicity, nationality intersect in the process of subject formation in astronomy, as well as in the process of enrolling partners for the construction of instruments, design and implementation of large-scale databases. Work once figured as merely technical support, such assembling data catalogs, or as graphic design, generating pleasing images for public support, has been repositioned at the core of the field. Some have argued that such databases enable a new kind of scientific inquiry based on data exploration, such as the "fourth paradigm" or "data-driven" science. Our preliminary findings based on oral history interviews and ethnography provide insights into meshworks of women, African-American, "Hispanic," Asian-American and foreign-born astronomers. Our preliminary data suggest African-American men are more successful in sustaining astronomy careers than Chicano and Asian-American men. A distinctive theme in our data is the glocal character of meshworks available to and created by foreign-born women astronomers working at US facilities. Other data show that the proportion of Asian to Asian American and foreign-born Latina/o to Chicana/o astronomers is approximately equal. Futhermore, Asians and Latinas/os are represented in significantly greater numbers than Asian Americans and Chicanas/os. Among professional astronomers in the US, each ethnic minority group is numbered on the order of tens, not hundreds. Project support is provided by the NSF EAGER program to University of California, Los Angeles under award 0956589.

  5. Astronomical Instrumentation System Markup Language

    NASA Astrophysics Data System (ADS)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  6. Retrieval and registration of long-range overlapping frames for scalable mosaicking of in vivo fetoscopy.

    PubMed

    Peter, Loïc; Tella-Amo, Marcel; Shakir, Dzhoshkun Ismail; Attilakos, George; Wimalasundera, Ruwan; Deprest, Jan; Ourselin, Sébastien; Vercauteren, Tom

    2018-05-01

    The standard clinical treatment of Twin-to-Twin transfusion syndrome consists in the photo-coagulation of undesired anastomoses located on the placenta which are responsible to a blood transfer between the two twins. While being the standard of care procedure, fetoscopy suffers from a limited field-of-view of the placenta resulting in missed anastomoses. To facilitate the task of the clinician, building a global map of the placenta providing a larger overview of the vascular network is highly desired. To overcome the challenging visual conditions inherent to in vivo sequences (low contrast, obstructions or presence of artifacts, among others), we propose the following contributions: (1) robust pairwise registration is achieved by aligning the orientation of the image gradients, and (2) difficulties regarding long-range consistency (e.g. due to the presence of outliers) is tackled via a bag-of-word strategy, which identifies overlapping frames of the sequence to be registered regardless of their respective location in time. In addition to visual difficulties, in vivo sequences are characterised by the intrinsic absence of gold standard. We present mosaics motivating qualitatively our methodological choices and demonstrating their promising aspect. We also demonstrate semi-quantitatively, via visual inspection of registration results, the efficacy of our registration approach in comparison with two standard baselines. This paper proposes the first approach for the construction of mosaics of placenta in in vivo fetoscopy sequences. Robustness to visual challenges during registration and long-range temporal consistency are proposed, offering first positive results on in vivo data for which standard mosaicking techniques are not applicable.

  7. Astronomical catalog desk reference, 1994 edition

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Astronomical Catalog Desk Reference is designed to aid astronomers in locating machine readable catalogs in the Astronomical Data Center (ADC) archives. The key reference components of this document are as follows: A listing of shortened titles for all catalogs available from the ADC (includes the name of the lead author and year of publication), brief descriptions of over 300 astronomical catalogs, an index of ADC catalog numbers by subject keyword, and an index of ADC catalog numbers by author. The heart of this document is the set of brief descriptions generated by the ADC staff. The 1994 edition of the Astronomical Catalog Desk Reference contains descriptions for over one third of the catalogs in the ADC archives. Readers are encouraged to refer to this section for concise summaries of those catalogs and their contents.

  8. Computer version of astronomical ephemerides.

    NASA Astrophysics Data System (ADS)

    Choliy, V. Ya.

    A computer version of astronomical ephemerides for bodies of the Solar System, stars, and astronomical phenomena was created at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine and the Astronomy and Cosmic Physics Department of the Taras Shevchenko National University. The ephemerides will be distributed via INTERNET or in the file form. This information is accessible via the web servers space.ups.kiev.ua and alfven.ups.kiev.ua or the address choliy@astrophys.ups.kiev.ua.

  9. International Astronomical Search Collaboration: Online Educational Outreach Program in Astronomical Discovery for Middle School, High School, & College Students and Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Miller, P.

    2016-12-01

    The International Astronomical Search Collaboration (IASC = "Isaac") in an online educational outreach program in planetary science. Citizen scientists and students from middle schools, high schools, and colleges make original discoveries of Main Belt asteroids. They discover trans-Neptunian objects and near-Earth objects. To date there have been discoveries of 1300 provisional MBAs, 7 TNOs, 2 potentially hazardous NEOs, and one Jupiter-family comet 276P/Vorobjov. IASC receives images from the Institute for Astronomy, University of Hawaii. Images are provided by the 1.8-m Pan-STARRS telescopes (PS1, PS2). These telescopes have the world's largest CCD cameras that produce 3o fields containing 1.4 billion pixels. These images are partitioned into 208 sub-images that are distributed online to the participating citizen scientists and schools (see http://iasc.hsutx.edu). Using the software Astrometrica, the sub-images are searched for moving object discoveries that are recorded with astrometry then reported to the Minor Planet Center (Smithsonian Astrophysical Observatory, Harvard). There are >5,000 citizen scientists and 700 schools that participate in the IASC asteroid searches. They come from more than 80 countries. And, the cost to participate…is free. Of the 1300 provisional MBA discoveries, 39 have been numbered and cataloged by the International Astronomical Union (Paris). The numbered discoveries are named by their citizen scientist and student discoverers. IASC works in conjunction with the NASA Asteroid Grand Challenge providing digital badging to the students (https://www.nasa.gov/feature/the-asteroid-grand-challenge-digital-badging-effort). IASC works online with the teachers from the participating schools, training them using videoconferencing to use Astrometrica in the search for, measurement of, and reporting of MBA discoveries by their students.

  10. Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Nabias, Laurent; Schanen, Isabelle; Berger, Jean-Philippe; Kern, Pierre; Malbet, Fabien; Benech, Pierre

    2018-04-01

    This paper, "Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  11. First astronomical unit scale image of the GW Orionis triple system. Direct detection of a new stellar companion

    NASA Astrophysics Data System (ADS)

    Berger, J.-P.; Monnier, J. D.; Millan-Gabet, R.; Renard, S.; Pedretti, E.; Traub, W.; Bechet, C.; Benisty, M.; Carleton, N.; Haguenauer, P.; Kern, P.; Labeye, P.; Longa, F.; Lacasse, M.; Malbet, F.; Perraut, K.; Ragland, S.; Schloerb, P.; Schuller, P. A.; Thiébaut, E.

    2011-05-01

    Context. Young and close multiple systems are unique laboratories to probe the initial dynamical interactions between forming stellar systems and their dust and gas environment. Their study is a key building block to understanding the high frequency of main-sequence multiple systems. However, the number of detected spectroscopic young multiple systems that allow dynamical studies is limited. GW Orionis is one such system. It is one of the brightest young T Tauri stars and is surrounded by a massive disk. Aims: Our goal is to probe the GW Orionis multiplicity at angular scales at which we can spatially resolve the orbit. Methods: We used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared visibilities and closure phases with a good UV coverage we carry out the first image reconstruction of GW Ori from infrared long-baseline interferometry. Results.We obtained the first infrared image of a T Tauri multiple system with astronomical unit resolution. We show that GW Orionis is a triple system, resolve for the first time the previously known inner pair (separation ρ ~ 1.4 AU) and reveal a new more distant component (GW Ori C) with a projected separation of ~ 8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1) H-band flux ratio of the inner components suggests that either GW Ori B is undergoing a preferential accretion event that increases its disk luminosity or that the estimate of the masses has to be revisited in favour of a more equal mass-ratio system that is seen at lower inclination. Conclusions: Accretion disk models of GW Ori will need to be completely reconsidered because of this outer companion C and the unexpected brightness of companion B.

  12. Amateur Astronomers: Secret Agents of EPO

    NASA Astrophysics Data System (ADS)

    Berendsen, M.; White, V.; Devore, E.; Reynolds, M.

    2008-06-01

    Amateur astronomers prime the public to be more interested, receptive, and excited about space science, missions, and programs. Through recent research and targeted programs, amateur astronomy outreach is being increasingly recognized by professional astronomers, educators, and other amateurs as a valued and important service. The Night Sky Network program, administered by the ASP, is the first nationwide research-based program specifically targeted to support outreach by amateur astronomers. This Network of trained and informed amateur astronomers can provide a stimulating introduction to your EPO programs as Network members share the night sky with families, students, and youth groups.

  13. Armenian Astronomical Society Annual Activities in 2014

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    A report is given on the achievements of the Armenian astronomy during the last year and on the present activities of the Armenian Astronomical Society (ArAS). ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, annual meetings, Annual Prize for Young Astronomers (Yervant Terzian Prize) and other awards, international relations, presence in international organizations, summer schools, astronomical Olympiads and other events, matters related to astronomical education, astronomical heritage, astronomy outreach and ArAS further projects are discussed. The present meeting, BAO Science Camp, ArAS School lectures are among 2014 events as well.

  14. Astronomical Surveys, Catalogs, Databases, and Archives

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-06-01

    All-sky and large-area astronomical surveys and their cataloged data over the whole range of electromagnetic spectrum are reviewed, from γ-ray to radio, such as Fermi-GLAST and INTEGRAL in γ-ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and II based catalogues (APM, MAPS, USNO, GSC) in optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio and many others, as well as most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS) and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). Most important astronomical databases and archives are reviewed as well, including Wide-Field Plate DataBase (WFPDB), ESO, HEASARC, IRSA and MAST archives, CDS SIMBAD, VizieR and Aladin, NED and HyperLEDA extragalactic databases, ADS and astro-ph services. They are powerful sources for many-sided efficient research using Virtual Observatory tools. Using and analysis of Big Data accumulated in astronomy lead to many new discoveries.

  15. Meeting Archival Standards in the Astronomical Photographic Data Archive at PARI

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.; Barker, T.; Rottler, L.

    2013-01-01

    The Astronomical Photographic Data Archive (APDA) located at the Pisgah Astronomical Research Institute (PARI) was established in November 2007. APDA is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data digitally available. APDA is housed in a newly renovated Research Building on the PARI campus. An award from the NSF allowed renovation of the heating and air conditioning. Plates in APDA are kept in a 20 C +/- 1 C area with humidity at 38% +/- 3%. Renovation of the electrical system with backup power allows for support of a data center with a networked storage system and software donated from EMC Corp. The storage system can hold more than 400 terabytes of research data which can be accessed through multiple gigabyte connectivity to the Internet. APDA has a collection of more than 200,000 photographic plates and films from more than 40 collections, as well as major instrumentation, from NASA, the STScI, the US Naval Observatory, the Harvard Smithsonian CfA and others. APDA possesses two high precision glass plate scanners, GAMMA I and GAMMA II, built for NASA and the Space Telescope Science Institute (STScI). The scanners were used to develop the HST Guide Star Catalog and Digitized Sky Survey. GAMMA II has been rebuilt and we will report on its status as an astrometric measuring instrument.

  16. Astronomical Data Center Bulletin, volume 1, no. 1

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr. (Editor); Nagy, T. A. (Editor); Mead, J. M. (Editor)

    1980-01-01

    Information about work in progress on astronomical catalogs is presented. In addition to progress reports, an upadated status list for astronomical catalogs available at the Astronomical Data Center is included. Papers from observatories and individuals involved with astronomical data are also presented.

  17. Thomas Kuhn's Influence on Astronomers.

    ERIC Educational Resources Information Center

    Shipman, Harry L.

    2000-01-01

    Surveys the astronomical community on their familiarity with the work of Thomas Kuhn. Finds that for some astronomers, Kuhn's thought resonated well with their picture of how science is done and provided perspectives on their scientific careers. (Author/CCM)

  18. "Word of Discovery": A Planetary Example from Volume I of the Astronomical Journal

    NASA Astrophysics Data System (ADS)

    Hockey, T.

    1998-09-01

    In 1850, William Lassell (1799-1880) discovered a series of bright white spots, in the south temperate latitudes of Jupiter, unlike any that that been seen before. Lassell's note on these STZ features is a useful example of how astronomical discoveries of the day were communicated among astronomers. Word of Lassell's Spots spread quickly by nineteenth-century standards. This was due, in part, to the recent appearance of journals devoted exclusively to astronomy. The transition from letters as a means of conveying scientific information to journals is reflected in the propagation of Lassell's announcement: a report of Lassell's description of the white spots to the Royal Astronomical Society appeared in the Monthly Notices of the Royal Astronomical Society along with a woodblock print of one of his drawings. This report reappeared shortly thereafter in German translation. It was part of a letter to the editor of the Astronomische Nachrichten, Heinrich Schumacher (1780-1850), from an English correspondent of his, the Reverend Richard Sheepshanks (1974-1855). (Sheepshanks was himself editor of the Monthly Notices of the Royal Astronomical Society.) It then made its way across the Atlantic as a letter from Schumacher to Benjamin Gould (1824-1896), who published it in the first volume of his upstart Astronomical Journal. There it appears in English, again, as Schumacher quoting Sheepshanks quoting Lassell! The observations by Lassell and William Dawes (1799-1868) of this phenomenon also were the first major planetary discovery made using a silvered-glass reflecting telescope. Lassell's Spots have remained in the "astronomical news" of the last 150 years: Most recently, they appeared worldwide in images showing the Comet Shoemaker-Levy 9 impact sites.

  19. Technology advancements for future astronomical missions

    NASA Astrophysics Data System (ADS)

    Barnes, Arnold A.; Knight, J. Scott; Lightsey, Paul A.; Harwit, Alex; Coyle, Laura

    2017-09-01

    Future astronomical telescopes in space will have architectures with complex and demanding requirements in order to meet their science goals. The missions currently being studied by NASA for consideration in the next Decadal Survey range in wavelength from the X-ray to Far infrared; examining phenomenon from imaging exoplanets and characterizing their atmospheres to detecting gravitational waves. These missions have technical challenges that are near or beyond the state of the art from the telescope to the detectors. This paper describes some of these challenges and possible solutions. Promising measurements and future demonstrations are discussed that can enhance or enable these missions.

  20. New knowledge in determining the astronomical orientation of Incas object in Ollantaytambo, Peru

    NASA Astrophysics Data System (ADS)

    Hanzalová, K.; Klokočník, J.; Kostelecký, J.

    2014-06-01

    This paper deals about astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen (1993). He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2005) deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (2007) documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images used to approximate estimation of astronomical orientation. The digital elevation model is useful in the mountains, where we need the really horizon for a calculation of sunset and sunrise on specific days (solstices), which were for Incas people very important. By Incas is very famous that they worshiped the Sun. According to him they determined when to plant and when to harvest the crop. In this paper we focused on Temple of the Sun, also known the Wall of six monoliths. We tested which astronomical phenomenon is connected with this Temple. First, we tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn't connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another observation

  1. Advances in Exoplanet Observing by Amateur Astronomers (Abstract)

    NASA Astrophysics Data System (ADS)

    Conti, D. M.

    2017-06-01

    (Abstract only) This past year has seen a marked increase in amateur astronomer participation in exoplanet research. This has ranged from amateur astronomers helping professional astronomers confirm candidate exoplanets, to helping refine the ephemeris of known exoplanets. In addition, amateur astronomers have been involved in characterizing such exotic objects as disintegrating planetesimals. However, the involvement in such pro/am collaborations has also required that amateur astronomers follow a more disciplined approach to exoplanet observing.

  2. Astronomical Association of Queensland Program of Measurements of Seven Southern Multiple Stars

    NASA Astrophysics Data System (ADS)

    Jenkinson, Graeme

    2016-04-01

    This paper presents the results of a mid-2014 program of the Astronomical Association of Queensland of photographic measurements of seven southern multiple stars. The images were obtained using a Meade DSI CCD camera in conjunction with an equatorially mounted 150mm F8 refractor. For each target pair, either a 2x or 5x barlow lens was used as required. Image processing was carried out using Losse's REDUC software.

  3. Astronomical Data Center Bulletin, volume 1, number 2

    NASA Technical Reports Server (NTRS)

    Nagy, T. A.; Warren, W. H., Jr.; Mead, J. M.

    1981-01-01

    Work in progress on astronomical catalogs is presented in 16 papers. Topics cover astronomical data center operations; automatic astronomical data retrieval at GSFC; interactive computer reference search of astronomical literature 1950-1976; formatting, checking, and documenting machine-readable catalogs; interactive catalog of UV, optical, and HI data for 201 Virgo cluster galaxies; machine-readable version of the general catalog of variable stars, third edition; galactic latitude and magnitude distribution of two astronomical catalogs; the catalog of open star clusters; infrared astronomical data base and catalog of infrared observations; the Air Force geophysics laboratory; revised magnetic tape of the N30 catalog of 5,268 standard stars; positional correlation of the two-micron sky survey and Smithsonian Astrophysical Observatory catalog sources; search capabilities for the catalog of stellar identifications (CSI) 1979 version; CSI statistics: blue magnitude versus spectral type; catalogs available from the Astronomical Data Center; and status report on machine-readable astronomical catalogs.

  4. 110th Anniversary of the Engelhardt Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.

    2012-09-01

    The Engelhardt Astronomical Observatory (EAO) was founded in September 21, 1901. The history of creation of the Engelhard Astronomical Observatory was begun in 1897 with transfer a complimentary to the Kazan University of the unique astronomical equipment of the private observatory in Dresden by known astronomer Vasily Pavlovichem Engelgardt. Having stopped astronomical activity owing to advanced years and illnesses Engelgardt has decided to offer all tools and library of the Astronomical observatory of the Kazan University. Vasily Pavlovich has put the first condition of the donation that his tools have been established as soon as possible and on them supervision are started. In 1898 the decree of Emperor had been allocated means and the ground for construction of the Astronomical observatory is allocated. There is the main historical telescope of the Engelhard Astronomical Observatory the 12-inch refractor which was constructed by English master Grubbom in 1875. The unique tool of the Engelhard Astronomical Observatory is unique in the world now a working telescope heliometer. It's one of the first heliometers, left workshops Repsolda. It has been made in 1874 and established in Engelgardt observatory in 1908 in especially for him the constructed round pavilion in diameter of 3.6 m. Today the Engelhard Astronomical Observatory is the only thing scientifically - educational and cultural - the cognitive astronomical center, located on territory from Moscow up to the most east border of Russia. Currently, the observatory is preparing to enter the protected UNESCO World Heritage List.

  5. International Astronomical Search Collaboration: An Online Student-Based Discovery Program in Astronomy (Invited)

    NASA Astrophysics Data System (ADS)

    Pennypacker, C.; Miller, P.

    2009-12-01

    The past 15 years has seen the development of affordable small telescopes, advanced digital cameras, high speed Internet access, and widely-available image analysis software. With these tools it is possible to provide student programs where they make original astronomical discoveries. High school aged students, even younger, have discovered Main Belt asteroids (MBA), near-Earth objects (NEO), comets, supernovae, and Kuiper Belt objects (KBO). Student-based discovery is truly an innovative way to generate enthusiasm for learning science. The International Astronomical Search Collaboration (IASC = “Isaac”) is an online program where high school and college students make original MBA discoveries and important NEO observations. MBA discoveries are reported to the Minor Planet Center (Harvard) and International Astronomical Union. The NEO observations are included as part of the NASA Near-Earth Object Program (JPL). Provided at no cost to participating schools, IASC is centered at Hardin-Simmons University (Abilene, TX). It is a collaboration of the University, Lawrence Hall of Science (University of California, Berkeley), Astronomical Research Institute (ARI; Charleston, IL), Global Hands-On Universe Association (Portugal),and Astrometrica (Austria). Started in Fall 2006, IASC has reached 135 schools in 14 countries. There are 9 campaigns per year, each with 15 schools and lasting 45 days. Students have discovered 150 MBAs and made > 1,000 NEO observations. One notable discovery was 2009 BD81, discovered by two high school teachers and a graduate student at the Bulgarian Academy of Science. This object, about the size of 3 football fields, crosses Earth’s orbit and poses a serious impact risk. Each night with clear skies and no Moon, the ARI Observatory uses its 24" and 32" prime focus telescopes to take images along the ecliptic. Three images are taken of the same field of view (FOV) over a period of 30 minutes. These are bundled together and placed online at

  6. The First Astronomical Observatory in Cluj-Napoca

    NASA Astrophysics Data System (ADS)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  7. Storing Astronomical Information on the Romanian Territory

    NASA Astrophysics Data System (ADS)

    Stavinschi, M.; Mioc, V.

    2004-12-01

    Romanian astronomy has a more than 2000-year old tradition, which is, however, little known abroad. The first known archive of astronomical information is the Dacian sanctuary at Sarmizegetusa Regia, erected in the first century AD, having similarities with that of Stonehenge. After a gap of more than 1000 years, more sources of astronomical information become available, mainly records of astronomical events. Monasteries were the safest storage places of these genuine archives. We present a classification of the ways of storing astronomical information, along with characteristic examples.

  8. Brazilian Participations in the International Astronomical Search Collaboration

    NASA Astrophysics Data System (ADS)

    Rojas, G. A.; Dalla-Costa, L. J.; Kalmus, A. T.; Kroth, E. C.; Matos, M. F.; Silva, A. L.; Silva, G. G.

    2014-10-01

    International Astronomical Search Collaboration (IASC) is an international educational project between universities, schools, observatories and research institutions. Its main objective is to enroll high school and college students in the monitoring and discovery of asteroids and Near Earth Objects (NEOs), especially Potentially Hazardous Asteroids. The methodology consists in the analysis of astronomical images obtained in several observatories in North America and Hawaii. The images are distributed throughout the school network and the results must be delivered in a 72-hour timeframe. Since 2010 Brazilian universities and schools have joined IASC, resulting in over a dozen new asteroids found (3 of them NEOs), and hundreds of measurements for already known asteroids. A major event in this collaboration was the All-Brazil Asteroid Search Campaign, which was conducted in September 2012. 2013 marks the fourth year of Brazilian participations in IASC, with one important milestone: the third straight appearance of a Brazilian institution in the Pan-STARRS campaign, which uses the PS1 telescope in Haleakala, Hawaii. We will present a summary of the overall results, as well as the latest news from 2013 campaigns. We will discuss the impact promoted by the past events, such as how the interest in astronomy changed before and after the campaigns, and it has helped the students to choose their future careers.

  9. Storing Astronomical Information on the Romanian Territory

    NASA Astrophysics Data System (ADS)

    Stavinschi, Magda; Mioc, Vasile

    The Romanian astronomy has a more than 2000-year old tradition which is however too little known abroad. The first known archive of astronomical information is the Dacian sanctuary at Sarmizegetusa Regia very similar to that of Stonehenge. After a gap of more than 1000 years sources of astronomical information became to be recovered. They consist mainly of records of astronomical events seen on the Romanian territory. The most safe places to store these genuine archives were the monasteries. We present a classification of the manners of storing astronomical information along with characteristic examples.

  10. International Schools for Young Astronomers Teaching for Astronomy Development: two programmes of the International Astronomical Union

    NASA Astrophysics Data System (ADS)

    Gerbaldi, Michèle; DeGreve, Jean-Pierre; Guinan, Edward

    2011-06-01

    This text outlines the main features of two educational programmes of the International Astronomical Union (IAU): the International Schools for Young Astronomers (ISYA) and the Teaching for Astronomy Development programme (TAD), developed since 1967. The main goal of the International Schools for Young Astronomers (ISYA) is to support astronomy (education and research) in developing countries in organizing a 3-week School for students with typically M.Sc. degrees. The context in which the ISYA were developed changed drastically during the last decade. From a time when access to large telescopes was difficult and mainly organized on a nation-basis, nowadays the archives of astronomical data have accumulated at the same time that many major telescope become accessible, and they are accessible from everywhere, the concept of virtual observatory reinforcing this access. A second programme of the IAU, Teaching for Astronomy Development (TAD), partially based on a School, but also of shorter duration (typically one week) has a complementary objective. It is dedicated to assist countries that have little or no astronomical activity, but that wish to enhance their astronomy education. The fast development of the TAD programme over the past years is emphasized.

  11. Clementine High Resolution Camera Mosaicking Project. Volume 17; CL 6017; 0 deg to 80 deg S Latitude, 330 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  12. High-resolution image reconstruction technique applied to the optical testing of ground-based astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Jin, Zhenyu; Lin, Jing; Liu, Zhong

    2008-07-01

    By study of the classical testing techniques (such as Shack-Hartmann Wave-front Sensor) adopted in testing the aberration of ground-based astronomical optical telescopes, we bring forward two testing methods on the foundation of high-resolution image reconstruction technology. One is based on the averaged short-exposure OTF and the other is based on the Speckle Interferometric OTF by Antoine Labeyrie. Researches made by J.Ohtsubo, F. Roddier, Richard Barakat and J.-Y. ZHANG indicated that the SITF statistical results would be affected by the telescope optical aberrations, which means the SITF statistical results is a function of optical system aberration and the atmospheric Fried parameter (seeing). Telescope diffraction-limited information can be got through two statistics methods of abundant speckle images: by the first method, we can extract the low frequency information such as the full width at half maximum (FWHM) of the telescope PSF to estimate the optical quality; by the second method, we can get a more precise description of the telescope PSF with high frequency information. We will apply the two testing methods to the 2.4m optical telescope of the GMG Observatory, in china to validate their repeatability and correctness and compare the testing results with that of the Shack-Hartmann Wave-Front Sensor got. This part will be described in detail in our paper.

  13. Franklin Edward Kameny (1925-2011, Astronomer)

    NASA Astrophysics Data System (ADS)

    Wright, Jason

    2012-01-01

    Dr. Frank Kameny is best known today as one of the most important members of the gay rights movement in the United States, but he was also a PhD astronomer. In fact, it was his firing from his civil service position as astronomer for the US Army Map Service on the grounds of homosexuality that sparked his lifelong career of activism. Here, I explore some aspects of his short but interesting astronomical career and the role of the AAS in his life.

  14. Selections from 2017: Image Processing with AstroImageJ

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.AstroImageJ: Image Processing and Photometric Extraction for Ultra-Precise Astronomical Light CurvesPublished January2017The AIJ image display. A wide range of astronomy specific image display options and image analysis tools are available from the menus, quick access icons, and interactive histogram. [Collins et al. 2017]Main takeaway:AstroImageJ is a new integrated software package presented in a publication led byKaren Collins(Vanderbilt University,Fisk University, andUniversity of Louisville). Itenables new users even at the level of undergraduate student, high school student, or amateur astronomer to quickly start processing, modeling, and plotting astronomical image data.Why its interesting:Science doesnt just happen the momenta telescope captures a picture of a distantobject. Instead, astronomical images must firstbe carefully processed to clean up thedata, and this data must then be systematically analyzed to learn about the objects within it. AstroImageJ as a GUI-driven, easily installed, public-domain tool is a uniquelyaccessible tool for thisprocessing and analysis, allowing even non-specialist users to explore and visualizeastronomical data.Some features ofAstroImageJ:(as reported by Astrobites)Image calibration:generate master flat, dark, and bias framesImage arithmetic:combineimages viasubtraction, addition, division, multiplication, etc.Stack editing:easily perform operations on a series of imagesImage stabilization and image alignment featuresPrecise coordinate converters:calculate Heliocentric and Barycentric Julian DatesWCS coordinates:determine precisely where atelescope was pointed for an image by PlateSolving using Astronomy.netMacro and plugin support:write your own macrosMulti-aperture photometry

  15. The League of Astronomers

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Brandel, A.; Paat, A. M.; Schmitz, D.; Sharma, R.; Trujillo, J.; Laws, C. S.

    2014-01-01

    The League of Astronomers is committed to engaging the University of Washington (UW) and the greater Seattle communities through outreach, research, and events. Since its re-founding two years ago, the LOA has provided a clear connection between the UW Astronomy Department, undergraduate students, and members of the public. Weekly outreach activities such as public star parties and planetarium talks in both the UW Planetarium and the Mobile Planetarium have connected enthusiastic LOA volunteers with hundreds of public observers. In addition, collaboration with organizations like the Seattle Astronomical Society and the UW Society of Physics Students has allowed the LOA to reach an even greater audience. The club also provides opportunities for undergraduate students to participate in research projects. The UW Student Radio Telescope (SRT) and the Manastash Ridge Observatory (MRO) both allow students to practice collecting their own data and turning it into a completed project. Students have presented many of these research projects at venues like the UW Undergraduate Research Symposium and meetings of the American Astronomical Society. For example, the LOA will be observing newly discovered globular clusters at the Dominion Astrophysical Observatory (DAO) in Victoria, B.C. and constructing color-magnitude diagrams. The LOA also helps engage students with the Astronomy major through a variety of events. Bimonthly seminars led by graduate students on their research and personal experiences in the field showcase the variety of options available for students in astronomy. Social events hosted by the club encourage peer mentoring and a sense of community among the Astronomy Department’s undergraduate and graduate students. As a part of one of the nation’s largest undergraduate astronomy programs, members of the League of Astronomers have a unique opportunity to connect and interact with not only the Seattle public but also the greater astronomical community.

  16. Astronomical Symbolism in Australian Aboriginal Rock Art

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.; Hamacher, Duane W.

    2011-05-01

    Traditional Aboriginal Australian cultures include a significant astronomical component, perpetuated through oral tradition and ceremony. This knowledge has practical navigational and calendrical functions, and sometimes extends to a deep understanding of the motion of objects in the sky. Here we explore whether this astronomical tradition is reflected in the rock art of Aboriginal Australians. We find several plausible examples of depictions of astronomical figures and symbols, and also evidence that astronomical observations were used to set out stone arrangements. However, we recognise that the case is not yet strong enough to make an unequivocal statement, and describe our plans for further research.

  17. The Victorian Amateur Astronomer: Independent Astronomical Research in Britain 1820-1920

    NASA Astrophysics Data System (ADS)

    Chapman, Allan

    1999-01-01

    This is the first book to look in detail at amateur astronomy in Victorian Britain. It deals with the technical issues that were active in Victorian astronomy, and reviews the problems of finance, patronage and the dissemination of scientific ideas. It also examines the relationship between the amateur and professional in Britain. It contains a wealth of previously unpublished biographical and anecdotal material, and an extended bibliography with notes incorporating much new scholarship. In The Victorian Amateur Astronomer, Allan Chapman shows that while on the continent astronomical research was lavishly supported by the state, in Britain such research was paid for out of the pockets of highly educated, wealthy gentlemen the so-called Grand Amateurs . It was these powerful individuals who commissioned the telescopes, built the observatories, ran the learned societies, and often stole discoveries from their state-employed colleagues abroad. In addition to the Grand Amateurs , Victorian Britain also contained many self-taught amateurs. Although they belonged to no learned societies, these people provide a barometer of the popularity of astronomy in that age. In the late 19th century, the comfortable middle classes clergymen, lawyers, physicians and retired military officers took to astronomy as a serious hobby. They formed societies which focused on observation, lectures and discussions, and it was through this medium that women first came to play a significant role in British astronomy. Readership: Undergraduate and postgraduate students studying the history of science or humanities, professional historians of science, engineering and technology, particularly those with an interest in astronomy, the development of astronomical ideas, scientific instrument makers, and amateur astronomers.

  18. Image processing and products for the Magellan mission to Venus

    NASA Technical Reports Server (NTRS)

    Clark, Jerry; Alexander, Doug; Andres, Paul; Lewicki, Scott; Mcauley, Myche

    1992-01-01

    The Magellan mission to Venus is providing planetary scientists with massive amounts of new data about the surface geology of Venus. Digital image processing is an integral part of the ground data system that provides data products to the investigators. The mosaicking of synthetic aperture radar (SAR) image data from the spacecraft is being performed at JPL's Multimission Image Processing Laboratory (MIPL). MIPL hosts and supports the Image Data Processing Subsystem (IDPS), which was developed in a VAXcluster environment of hardware and software that includes optical disk jukeboxes and the TAE-VICAR (Transportable Applications Executive-Video Image Communication and Retrieval) system. The IDPS is being used by processing analysts of the Image Data Processing Team to produce the Magellan image data products. Various aspects of the image processing procedure are discussed.

  19. ImageX: new and improved image explorer for astronomical images and beyond

    NASA Astrophysics Data System (ADS)

    Hayashi, Soichi; Gopu, Arvind; Kotulla, Ralf; Young, Michael D.

    2016-08-01

    The One Degree Imager - Portal, Pipeline, and Archive (ODI-PPA) has included the Image Explorer interactive image visualization tool since it went operational. Portal users were able to quickly open up several ODI images within any HTML5 capable web browser, adjust the scaling, apply color maps, and perform other basic image visualization steps typically done on a desktop client like DS9. However, the original design of the Image Explorer required lossless PNG tiles to be generated and stored for all raw and reduced ODI images thereby taking up tens of TB of spinning disk space even though a small fraction of those images were being accessed by portal users at any given time. It also caused significant overhead on the portal web application and the Apache webserver used by ODI-PPA. We found it hard to merge in improvements made to a similar deployment in another project's portal. To address these concerns, we re-architected Image Explorer from scratch and came up with ImageX, a set of microservices that are part of the IU Trident project software suite, with rapid interactive visualization capabilities useful for ODI data and beyond. We generate a full resolution JPEG image for each raw and reduced ODI FITS image before producing a JPG tileset, one that can be rendered using the ImageX frontend code at various locations as appropriate within a web portal (for example: on tabular image listings, views allowing quick perusal of a set of thumbnails or other image sifting activities). The new design has decreased spinning disk requirements, uses AngularJS for the client side Model/View code (instead of depending on backend PHP Model/View/Controller code previously used), OpenSeaDragon to render the tile images, and uses nginx and a lightweight NodeJS application to serve tile images thereby significantly decreasing the Time To First Byte latency by a few orders of magnitude. We plan to extend ImageX for non-FITS images including electron microscopy and radiology scan

  20. SOURCE EXPLORER: Towards Web Browser Based Tools for Astronomical Source Visualization and Analysis

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Hayashi, S.; Gopu, A.

    2014-05-01

    As a new generation of large format, high-resolution imagers come online (ODI, DECAM, LSST, etc.) we are faced with the daunting prospect of astronomical images containing upwards of hundreds of thousands of identifiable sources. Visualizing and interacting with such large datasets using traditional astronomical tools appears to be unfeasible, and a new approach is required. We present here a method for the display and analysis of arbitrarily large source datasets using dynamically scaling levels of detail, enabling scientists to rapidly move from large-scale spatial overviews down to the level of individual sources and everything in-between. Based on the recognized standards of HTML5+JavaScript, we enable observers and archival users to interact with their images and sources from any modern computer without having to install specialized software. We demonstrate the ability to produce large-scale source lists from the images themselves, as well as overlaying data from publicly available source ( 2MASS, GALEX, SDSS, etc.) or user provided source lists. A high-availability cluster of computational nodes allows us to produce these source maps on demand and customized based on user input. User-generated source lists and maps are persistent across sessions and are available for further plotting, analysis, refinement, and culling.

  1. SAADA: Astronomical Databases Made Easier

    NASA Astrophysics Data System (ADS)

    Michel, L.; Nguyen, H. N.; Motch, C.

    2005-12-01

    Many astronomers wish to share datasets with their community but have not enough manpower to develop databases having the functionalities required for high-level scientific applications. The SAADA project aims at automatizing the creation and deployment process of such databases. A generic but scientifically relevant data model has been designed which allows one to build databases by providing only a limited number of product mapping rules. Databases created by SAADA rely on a relational database supporting JDBC and covered by a Java layer including a lot of generated code. Such databases can simultaneously host spectra, images, source lists and plots. Data are grouped in user defined collections whose content can be seen as one unique set per data type even if their formats differ. Datasets can be correlated one with each other using qualified links. These links help, for example, to handle the nature of a cross-identification (e.g., a distance or a likelihood) or to describe their scientific content (e.g., by associating a spectrum to a catalog entry). The SAADA query engine is based on a language well suited to the data model which can handle constraints on linked data, in addition to classical astronomical queries. These constraints can be applied on the linked objects (number, class and attributes) and/or on the link qualifier values. Databases created by SAADA are accessed through a rich WEB interface or a Java API. We are currently developing an inter-operability module implanting VO protocols.

  2. Astronomers Find Elusive Planets in Decade-Old Hubble Data

    NASA Image and Video Library

    2017-12-08

    NASA image release Oct. 6, 2011 This is an image of the star HR 8799 taken by Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in 1998. A mask within the camera (coronagraph) blocks most of the light from the star. In addition, software has been used to digitally subtract more starlight. Nevertheless, scattered light from HR 8799 dominates the image, obscuring the faint planets. Object Name: HR 8799 Image Type: Astronomical Credit: NASA, ESA, and R. Soummer (STScI) To read more go to: www.nasa.gov/mission_pages/hubble/science/elusive-planets... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Powerful Radio Burst Indicates New Astronomical Phenomenon

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  4. Reporting Astronomical Discoveries: Past, Now, and Future

    NASA Astrophysics Data System (ADS)

    Yamaoka, Hitoshi; Green, Daniel W. E.; Samus, Nikolai N.; West, Richard

    2015-08-01

    Many new astronomical objects have been discovered over the years by amateur astronomers, and this continues to be the case. They have traditionally reported them (as have professional astronomers) to the Central Bureau for Astronomical Telegrams (CBAT), which was established in the 19th century. This procedure has worked very well throughout the 20th century, moving under the umbrella of the newly established IAU in 1920. The discoverers have been honored by the formal announcement of their discoveries in the publications of the CBAT.In recent years, some professional research groups have established other ways of announcing their discoveries of explosive objects such as novae and supernovae; some do not now report their discoveries or spectroscopic confirmations of the transients to the CBAT, including often spectroscopic reports of objects posted to the CBAT "Transient Objects Confirmation Page" -- the highly successful TOCP webpage, which assigns official positional designations to new transients posted there by approved, registered users. This leads to a delay in formal announcements of discoveries by amateur astronomers in many cases, as well as inconsistent designations being put into use by individual groups. Amateur astronomers are feeling frustrated about this situation, and they hope that the IAU will help to settle the situation.We have proposed the new IAU commission NC-52, which will treat these phenomena in a continuation of Commission 6, through the CBAT. We hope to continuously support the reporting of the discoveries by amateur astronomers, as well as professional astronomers, who all deserve and desire proper recognition. Our strategy will maintain the firm trust between the amateur and professional astronomers, which is necessary for true collaboration. The plan is for the CBAT to work with collaborators to assure that discoveries posted on the TOCP are promptly designated and announced by the CBAT, even when confirmations are made elsewhere

  5. Sports Stars: Analyzing the Performance of Astronomers at Visualization-based Discovery

    NASA Astrophysics Data System (ADS)

    Fluke, C. J.; Parrington, L.; Hegarty, S.; MacMahon, C.; Morgan, S.; Hassan, A. H.; Kilborn, V. A.

    2017-05-01

    In this data-rich era of astronomy, there is a growing reliance on automated techniques to discover new knowledge. The role of the astronomer may change from being a discoverer to being a confirmer. But what do astronomers actually look at when they distinguish between “sources” and “noise?” What are the differences between novice and expert astronomers when it comes to visual-based discovery? Can we identify elite talent or coach astronomers to maximize their potential for discovery? By looking to the field of sports performance analysis, we consider an established, domain-wide approach, where the expertise of the viewer (i.e., a member of the coaching team) plays a crucial role in identifying and determining the subtle features of gameplay that provide a winning advantage. As an initial case study, we investigate whether the SportsCode performance analysis software can be used to understand and document how an experienced Hi astronomer makes discoveries in spectral data cubes. We find that the process of timeline-based coding can be applied to spectral cube data by mapping spectral channels to frames within a movie. SportsCode provides a range of easy to use methods for annotation, including feature-based codes and labels, text annotations associated with codes, and image-based drawing. The outputs, including instance movies that are uniquely associated with coded events, provide the basis for a training program or team-based analysis that could be used in unison with discipline specific analysis software. In this coordinated approach to visualization and analysis, SportsCode can act as a visual notebook, recording the insight and decisions in partnership with established analysis methods. Alternatively, in situ annotation and coding of features would be a valuable addition to existing and future visualization and analysis packages.

  6. Urania in the Marketplace: Astronomical Imagery in Early Twentieth-Century Advertizing

    NASA Astrophysics Data System (ADS)

    Rumstay, Kenneth S.

    2010-01-01

    The pages of popular magazines such as Sky and Telescope and Astronomy are filled with advertisements for telescopes and other equipment. However, during the past century astronomical imagery has been widely used to promote distinctly non-astronomical products and services. One of the earliest and most famous examples is the 1893 Chicago newspaper advertisement for Kirk's Soap, which was inspired by the opening of the Yerkes Observatory. A survey of popular magazines published in America during the first half of the twentieth century suggests that these advertisements fall into four categories: 1) Astronomy is universally regarded as an exact and precise science. Manufacturers of mechanical devices may employ images of telescopes or astronomers at work to suggest that their products meet these same standards of quality. This was primarily the case with makers of automobiles and automotive products, although the Longines Watch Company ran an extensive series of ads featuring observatories. 2) The heavens induce a sense of wonder in most people, and advertisers may locate their products in an a celestial setting to give them an otherworldly flavor. 3) Astronomical observatories themselves are viewed as exotic settings, and have provided backgrounds for automotive and travel ads. They may also appear in advertisements for products used in their construction. 4) Finally, newsworthy astronomical events will inspire advertisers to associate their products with that event, in order to capitalize upon the publicity. This was particularly true in the case of the 1910 passage of Halley's Comet and the 1948 opening of the 200-inch Hale telescope at Mt. Palomar. Examples of magazine advertisements from each category are presented for comparison. This work was supported by a faculty development grant from Valdosta State University.

  7. Some new astronomical facilities in China

    NASA Astrophysics Data System (ADS)

    Wang, Shouguan

    1989-10-01

    For the 1990's, plans for some astronomical facilities and related research are being carried out in China. This report describes in some detail plans for radio astronomical facilities, a 150/220 cm Schmidt telescope, and experiments on a porcelain mirror material.

  8. International Astronomical-Cultural Initiatives and Ukrainian Astronomical Heritage in the Context of World Heritage

    NASA Astrophysics Data System (ADS)

    Kazantseva, L.

    2011-09-01

    Astronomy as science of world view has left its mark in many areas of human culture. Astronomical movable and immovable monuments as cultural and scientific content recently started to be studied carefully, and finally receive their recognition for their further preservation. Various international organizations have initiated a diverse case studies of these monuments, produced some recommendations for their organization, typology, division into periods. In joint programs, experts of IAU, UNESCO, ICOMOS elaborate criteria for selection of monuments of global significance. Complete study of astronomical sights will allow to consider the history of scientific knowledge dissemination in time and in space. Ukraine has also carefully examined their stored astronomical monuments scattered in astronomical observatories, libraries, archives, museums, university collections, architectural ensembles, archaeological parks and cemeteries. In conditions of instability and crises it is important to establish uniqueness or typicality of certain historical sites, to study their characteristics and identity, relationship with global trends that will enable their successful promotion and protection. Part of these research works are conducted in our observatories, but not as intensively as in other countries. They have not engaged in related industries and professionals authorized state institutions. Not having used an active effort in this case, we can stay behind the big international project for study the intellectual and cultural heritage.

  9. Relativistic problems on astronomical constants.

    NASA Astrophysics Data System (ADS)

    Tao, Jinhe; Huang, Tianyi

    1999-06-01

    The fact that modern astronomical observational technique has made rapid progress and the 1PN approximation of general relativity has been extensively applied in celestial mechanics and astrometry, makes it is necessary to investigate and examine the system of astronomical constants carefully and rigorously in the relativistic framework. The mass of a celestial body in the solar system should be defined as its BD mass that changes relatively in an amount less than 10-19 and could be considered as a constant. The equations satisfied by the gravitational potentials are not Poisson equations anymore but depend on the choice of the coordinate gauge. Therefore the gravitational potentials cannot be expanded in the traditional harmonics. It is neccessary to choose the coordinate gauge and take BD multipole moments as astronomical constants. The obliquity of the ecliptic has been determined in high precision and it would be neccessary to give a conventional definition of the 1PN ecliptic. A relativistic definition of the geoid is important and left to be discussed. The astronomical constants that relate the units of time and length have been clearly defined but need to be clarified to avoid their misuse.

  10. First Visiting Astronomers at VLT KUEYEN

    NASA Astrophysics Data System (ADS)

    2000-04-01

    A Deep Look into the Universal Hall of Mirrors Starting in the evening of April 1, 2000, Ghislain Golse and Francisco Castander from the Observatoire Midi-Pyrénées (Toulouse, France) [1] were the first "visiting astronomers" at Paranal to carry out science observations with the second 8.2-m VLT Unit Telescope, KUEYEN . Using the FORS2 multi-mode instrument as a spectrograph, they measured the distances to a number of very remote galaxies, located far out in space behind two clusters of galaxies. Such observations may help to determine the values of cosmological parameters that define the geometry and fate of the Universe. After two nights of observations, the astronomers came away from Paranal with a rich harvest of data and a good feeling. "We are delighted that the telescope performed so well. It is really impressive how far out one can reach with the VLT, compared to the `smaller' 4-meter telescopes with which we previously observed. It opens a new window towards the distant, early Universe. Now we are eager to start reducing and analysing these data!" , Francisco Castander said. Measuring the Geometry of the Universe with Multiple Images in Cluster Lenses The present programme is typical of the fundamental cosmological studies that are now being undertaken with the ESO Very Large Telescope (VLT). Clusters of galaxies are very massive objects. Their gravitational fields intensify ("magnify") and distort the images of galaxies behind them. The magnification factor for the faint background galaxy population seen within a few arcminutes of the centre of a massive cluster at intermediate distance (redshift z ~ 0.2 - 0.4, i.e., corresponding to a look-back time of approx. 2 - 4 billion years) is typically larger than 2, and occasionally much larger. The clusters thus function as gravitational lenses . They may be regarded as "natural telescopes" that help us to see fainter objects further out into space than would otherwise be possible with our own telescopes. In a

  11. Johann Leonhard Rost, "novelist" and astronomer; (German Title: Johann Leonhard Rost, "Romanist" und Astronom)

    NASA Astrophysics Data System (ADS)

    Gaab, Hans; Simons, Olaf

    Johann Leonhard Rost (1688-1727) of Nuremberg studied at Altdorf, Leipzig and Jena. During this time, he earned his living by writing gallant novels. In 1715, he returned to Nuremberg, where he pursued his juvenile inclination towards astronomy and became a serious astronomical observer. His introductions to astronomy, written around this time, contributed a lot to popularize astronomy. This contribution attempts to do justice to both the novelist and the astronomer Rost.

  12. Nonnegative Matrix Factorization for Efficient Hyperspectral Image Projection

    NASA Technical Reports Server (NTRS)

    Iacchetta, Alexander S.; Fienup, James R.; Leisawitz, David T.; Bolcar, Matthew R.

    2015-01-01

    Hyperspectral imaging for remote sensing has prompted development of hyperspectral image projectors that can be used to characterize hyperspectral imaging cameras and techniques in the lab. One such emerging astronomical hyperspectral imaging technique is wide-field double-Fourier interferometry. NASA's current, state-of-the-art, Wide-field Imaging Interferometry Testbed (WIIT) uses a Calibrated Hyperspectral Image Projector (CHIP) to generate test scenes and provide a more complete understanding of wide-field double-Fourier interferometry. Given enough time, the CHIP is capable of projecting scenes with astronomically realistic spatial and spectral complexity. However, this would require a very lengthy data collection process. For accurate but time-efficient projection of complicated hyperspectral images with the CHIP, the field must be decomposed both spectrally and spatially in a way that provides a favorable trade-off between accurately projecting the hyperspectral image and the time required for data collection. We apply nonnegative matrix factorization (NMF) to decompose hyperspectral astronomical datacubes into eigenspectra and eigenimages that allow time-efficient projection with the CHIP. Included is a brief analysis of NMF parameters that affect accuracy, including the number of eigenspectra and eigenimages used to approximate the hyperspectral image to be projected. For the chosen field, the normalized mean squared synthesis error is under 0.01 with just 8 eigenspectra. NMF of hyperspectral astronomical fields better utilizes the CHIP's capabilities, providing time-efficient and accurate representations of astronomical scenes to be imaged with the WIIT.

  13. Astronomical Software Directory Service

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Payne, Harry; Hayes, Jeffrey

    1997-01-01

    With the support of NASA's Astrophysics Data Program (NRA 92-OSSA-15), we have developed the Astronomical Software Directory Service (ASDS): a distributed, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URLs indexed for full-text searching. Users are performing about 400 searches per month. A new aspect of our service is the inclusion of telescope and instrumentation manuals, which prompted us to change the name to the Astronomical Software and Documentation Service. ASDS was originally conceived to serve two purposes: to provide a useful Internet service in an area of expertise of the investigators (astronomical software), and as a research project to investigate various architectures for searching through a set of documents distributed across the Internet. Two of the co-investigators were then installing and maintaining astronomical software as their primary job responsibility. We felt that a service which incorporated our experience in this area would be more useful than a straightforward listing of software packages. The original concept was for a service based on the client/server model, which would function as a directory/referral service rather than as an archive. For performing the searches, we began our investigation with a decision to evaluate the Isite software from the Center for Networked Information Discovery and Retrieval (CNIDR). This software was intended as a replacement for Wide-Area Information Service (WAIS), a client/server technology for performing full-text searches through a set of documents. Isite had some additional features that we considered attractive, and we enjoyed the cooperation of the Isite developers, who were happy to have ASDS as a demonstration project. We ended up staying with the software throughout the project, making modifications to take advantage of new features as they came along, as well as

  14. Primary Objective Grating Astronomical Telescope

    NASA Technical Reports Server (NTRS)

    Ditto, Thomas D.

    2007-01-01

    It has been 370 years since a seventeenth century French mathematician, Mersenne, presciently sketched out an astronomical telescope based on dual parabolic reflectors. Since that time the concept of the primary objective has been virtually unchanged. Now a new class of astronomical telescope with a primary objective grating (POG) has been studied as an alternative. The POG competes with mirrors, in part, because diffraction gratings provide the very chromatic dispersion that mirrors defeat. The resulting telescope deals effectively with long-standing restrictions on multiple object spectroscopy (MOS). Other potential benefits include unprecedented apertures and collection areas. The new design also favors space deployment as a gossamer membrane. The inventor, Tom Ditto, first discovered that higher-order diffraction images contain hidden depth cues, for which he was granted a seminal range finding patent in 1987. Subsequently, he invented and patented 3D localizers, profilometers and microscopes using POGs. The POG telescope was placed in the public domain to expedite research. The function of a telescopes primary objective is to collect flux and to deliver images. Both functions dictate that size matters, and bigger is better. For that reason, there has been a steady push over the past century to ramp up the size of the primary mirror. However, for every doubling of mirror diameter, the elapsed time between initial effort and first light has also doubled. Meanwhile, costs escalated beyond the mirror alone, because larger instruments required larger enclosures and better pointing mechanisms. One key catalog of observation, spectrographic data, is far more difficult to amass than two-dimensional imagery. While the number of observable objects has increased with mirror size, the capacity to take spectra has not increased proportionately. In the best of circumstances, spectrograms are available for one per cent of the all objects surveyed. Spectroscopy was a

  15. Amateur Astronomers as Champions of IYA

    NASA Astrophysics Data System (ADS)

    Berendsen, M.; White, V.; Hawkins, I.; Mayo, L.; Pompea, S. M.; Sparks, R.; Day, B.; Mann, T.; Walker, C.; Fienberg, R. T.

    2008-11-01

    One of the main goals of the International Year of Astronomy 2009 (IYA2009) is to provide the public with opportunities to experience the universe through the eyepiece of a telescope. Amateur astronomers are uniquely equipped to fulfill this goal by offering their knowledge, time, and telescopes at public events in their communities. The NASA Night Sky Network (http://nightsky.jpl.nasa.gov) will be a hub for access to programs that support amateur astronomers doing such outreach during IYA2009, including a set of monthly themes with materials and activities to complement each theme. Many of the programs will be available to amateur astronomers worldwide. Among the other programs and organizations collaborating with the ASP to provide resources to amateur astronomers in their roles as informal educators during IYA2009 are: GLOBE at Night, Dark Skies Discovery Sites, NASA's LCROSS Mission, IYA's Looking through a Telescope working group, NASA's Sun-Earth Connection, and Galileoscopes.

  16. An astronomical murder?

    NASA Astrophysics Data System (ADS)

    Belenkiy, Ari

    2010-04-01

    Ari Belenkiy examines the murder of Hypatia of Alexandria, wondering whether problems with astronomical observations and the date of Easter led to her becoming a casualty of fifth-century political intrigue.

  17. America's foremost early astronomer. [David Rittenhouse

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry; Rubincam, Milton, II

    1995-01-01

    The life of 18th century astronomer, craftsman, and partriot David Rittenhouse is detailed. As a craftsman, he distinguished himself as one of the foremost builders of clocks. He also built magnetic compasses and surveying instruments. The finest examples of his craftsmanship are considered two orreries, mechanical solar systems. In terms of astronomical observations, his best-known contribution was his observation of the transit of Venus in 1769. Rittenhouse constructed the first diffraction grating. Working as Treasurer of Pennsylvania throughout the Revolution, he became the first director of the Mint in 1792. Astronomical observations in later life included charting the position of Uranus after its discovery.

  18. The Astronomical Photographic Data Archive

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Barker, T.; Castelaz, M.

    2010-01-01

    Pisgah Astronomical Research Institute is the home of the Astronomical Photographic Data Archive (APDA), a national effort to preserve, archive, and digitize astronomical photographic plate collections. APDA was formed in 2007 and presently holds more than 100,000 plates and films from more than a dozen observatory collections. While the photographic data pre-dates modern observational data taken with electronic instruments, it is nevertheless of extremely high quality. When one considers 100,000 plates and films in the APDA collection, some with 100's or 1000's of objects per plate, and plates taken over 100 years the value of the data in APDA becomes apparent. In addition to the astronomical photographic data collections, APDA also possesses two high precision glass plate measuring machines, GAMMA I and GAMMA II that were built for NASA and the Space Telescope Science Institute. The measuring machines were used by a team of scientists under the leadership of the late Dr. Barry Lasker to develop the Guide Star Catalog and Digitized Sky Survey that guide and direct the Hubble Space Telescope. We will describe the current set of collections, plans for the measuring machines, and the efforts that have been made to assure preservation of plate collections.

  19. Astronomical Station at Vidojevica

    NASA Astrophysics Data System (ADS)

    Ninković, S.; Pejović, N.; Mijajlović, Ž.

    2007-05-01

    Recently a project was started aimed at building a new astronomical station at the mountain of Vidojevica in Serbia (ASV) as an extension of the Astronomical Observatory in Belgrade. The first phase - ASV1 - is planned to be finished during 2006. ASV1 will consist of one observatory dome, a reflector of 60cm aperture, and a dormitory. In this year, the Faculty of Mathematics and its Department of Astronomy applied for the project of reinforcing and upgrading it to ASV2. The project objective is to improve the research capacities in astronomy and applied mathematics in Serbia and Western Balkan.

  20. Infrared upconversion for astronomical applications. [laser applications to astronomical spectroscopy of infrared spectra

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Ogilvie, K. W.

    1975-01-01

    The performance of an upconversion system is examined for observation of astronomical sources in the low to middle infrared spectral range. Theoretical values for the performance parameters of an upconversion system for astronomical observations are evaluated in view of the conversion efficiencies, spectral resolution, field of view, minimum detectable source brightness and source flux. Experimental results of blackbody measurements and molecular absorption spectrum measurements using a lithium niobate upconverter with an argon-ion laser as the pump are presented. Estimates of the expected optimum sensitivity of an upconversion device which may be built with the presently available components are given.

  1. The Montage architecture for grid-enabled science processing of large, distributed datasets

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Katz, Daniel S .; Prince, Thomas; Berriman, Bruce G.; Good, John C.; Laity, Anastasia C.; Deelman, Ewa; Singh, Gurmeet; Su, Mei-Hui

    2004-01-01

    Montage is an Earth Science Technology Office (ESTO) Computational Technologies (CT) Round III Grand Challenge investigation to deploy a portable, compute-intensive, custom astronomical image mosaicking service for the National Virtual Observatory (NVO). Although Montage is developing a compute- and data-intensive service for the astronomy community, we are also helping to address a problem that spans both Earth and Space science, namely how to efficiently access and process multi-terabyte, distributed datasets. In both communities, the datasets are massive, and are stored in distributed archives that are, in most cases, remote from the available Computational resources. Therefore, state of the art computational grid technologies are a key element of the Montage portal architecture. This paper describes the aspects of the Montage design that are applicable to both the Earth and Space science communities.

  2. getimages: Background derivation and image flattening method

    NASA Astrophysics Data System (ADS)

    Men'shchikov, Alexander

    2017-05-01

    getimages performs background derivation and image flattening for high-resolution images obtained with space observatories. It is based on median filtering with sliding windows corresponding to a range of spatial scales from the observational beam size up to a maximum structure width X. The latter is a single free parameter of getimages that can be evaluated manually from the observed image. The median filtering algorithm provides a background image for structures of all widths below X. The same median filtering procedure applied to an image of standard deviations derived from a background-subtracted image results in a flattening image. Finally, a flattened image is computed by dividing the background-subtracted by the flattening image. Standard deviations in the flattened image are now uniform outside sources and filaments. Detecting structures in such radically simplified images results in much cleaner extractions that are more complete and reliable. getimages also reduces various observational and map-making artifacts and equalizes noise levels between independent tiles of mosaicked images. The code (a Bash script) uses FORTRAN utilities from getsources (ascl:1507.014), which must be installed.

  3. Early Astronomical Sequential Photography, 1873-1923

    NASA Astrophysics Data System (ADS)

    Bonifácio, Vitor

    2011-11-01

    In 1873 Jules Janssen conceived the first automatic sequential photographic apparatus to observe the eagerly anticipated 1874 transit of Venus. This device, the 'photographic revolver', is commonly considered today as the earliest cinema precursor. In the following years, in order to study the variability or the motion of celestial objects, several instruments, either manually or automatically actuated, were devised to obtain as many photographs as possible of astronomical events in a short time interval. In this paper we strive to identify from the available documents the attempts made between 1873 and 1923, and discuss the motivations behind them and the results obtained. During the time period studied astronomical sequential photography was employed to determine the time of the instants of contact in transits and occultations, and to study total solar eclipses. The technique was seldom used but apparently the modern film camera invention played no role on this situation. Astronomical sequential photographs were obtained both before and after 1895. We conclude that the development of astronomical sequential photography was constrained by the reduced number of subjects to which the technique could be applied.

  4. Astronomía en la cultura

    NASA Astrophysics Data System (ADS)

    López, A.; Giménez Benitez, S.; Fernández, L.

    La Astronomía en la Cultura es el estudio interdisciplinario a nivel global de la astronomía prehistórica, antigua y tradicional, en el marco de su contexto cultural. Esta disciplina abarca cualquier tipo de estudios o líneas de investigación en que se relacione a la astronomía con las ciencias humanas o sociales. En ella se incluyen tanto fuentes escritas, relatos orales como fuentes arqueológicas, abarcando entre otros, los siguientes temas: calendarios, observación práctica, cultos y mitos, representación simbólica de eventos, conceptos y objetos astronómicos, orientación astronómica de tumbas, templos, santuarios y centros urbanos, cosmología tradicional y la aplicación ceremonial de tradiciones astronómicas, la propia historia de la astronomía y la etnoastronomía (Krupp, 1989) (Iwaniszewski, 1994). En nuestro trabajo abordamos la historia y situación actual de esta disciplina, sus métodos y sus relaciones con otras áreas de investigación.

  5. Astronomers celebrate a year of new Hubble results

    NASA Astrophysics Data System (ADS)

    1995-02-01

    "We are beginning to understand that because of these observations we are going to have to change the way we look at the Universe," said ESA's Dr Duccio Macchetto, Associate Director for Science Programs at the Space Telescope Science Institute (STScI), Baltimore, Maryland, USA. The European Space Agency plays a major role in the Hubble Space Telescope programme. The Agency provided one of the telescope's four major instruments, called the Faint Object Camera, and two sets of electricity-generating solar arrays. In addition, 15 ESA scientific and technical staff work at the STScI. In return for this contribution, European astronomers are entitled to 15 percent of the telescope's observing time, although currently they account for 20 percent of all observations. "This is a testimony to the quality of the European science community", said Dr Roger Bonnet, Director of Science at ESA. "We are only guaranteed 15 percent of the telescope's use, but consistently receive much more than that." Astronomers from universities, observatories and research institutes across Europe lead more than 60 investigations planned for the telescope's fifth observing cycle, which begins this summer. Many more Europeans contribute to teams led by other astronomers. Looking back to the very start of time European astronomer Dr Peter Jakobsen used ESA's Faint Object Camera to confirm that helium was present in the early Universe. Astronomers had long predicted that 90 percent of the newly born Universe consisted of hydrogen, with helium making up the remainder. Before the refurbished Hubble came along, it was easy to detect the hydrogen, but the primordial helium remained elusive. The ultraviolet capabilities of the telescope, combined with the improvement in spatial resolution following the repair, made it possible for Dr Jakobsen to obtain an image of a quasar close to the edge of the known Universe. A spectral analysis of this picture revealed the quasar's light, which took 13 billion years

  6. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Gray, A.

    2014-04-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex

  7. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Astronomy Data Centre, Canadian

    2014-01-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors, and the local outlier factor. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.

  8. Pointing system for the balloon-borne astronomical payloads

    NASA Astrophysics Data System (ADS)

    Nirmal, Kaipacheri; Sreejith, Aickara Gopinathan; Mathew, Joice; Sarpotdar, Mayuresh; Ambily, Suresh; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-10-01

    We describe the development and implementation of a light-weight, fully autonomous 2-axis pointing and stabilization system designed for balloon-borne astronomical payloads. The system is developed using off-the-shelf components such as Arduino Uno controller, HMC 5883L magnetometer, MPU-9150 inertial measurement unit, and iWave GPS receiver unit. It is a compact and rugged system which can also be used to take images/video in a moving vehicle or in real photography. The system performance is evaluated from the ground, as well as in conditions simulated to imitate the actual flight by using a tethered launch.

  9. Astronomers Win Protection for Key Part of Radio Spectrum

    NASA Astrophysics Data System (ADS)

    2000-06-01

    International Telecommunication Union meet to painstakingly parcel out the radio frequency spectrum between radio-based applications such as personal communications, satellite broadcasting, GPS and amateur radio, and the sciences of radio astronomy, earth exploration and deep space research. The WRC also coordinates sharing between services in the same radio bands. WRC decisions are incorporated into the Radio Regulations that govern radio services worldwide. The new spectrum allocations for radio astronomy are the first since 1979. Millimeter-wave astronomy was then in its infancy and many of its needs were not yet known. As astronomers began to explore this region of the spectrum they found spectral lines from many interesting molecules in space. Many of those lines had not fallen into the areas originally set aside for astronomy, but most will be under the new allocations. "It's a win for millimeter-wave science," said Dr. John Whiteoak of the Australia Telescope National Facility, Australian delegate to WRC-00. "This secures its future." The protection is a significant step for both existing millimeter-wave telescopes and new ones such as the Atacama Large Millimeter Array (ALMA) now being planned by a U.S.-European consortium. Even at its isolated site in Chile's Atacama desert, ALMA would be vulnerable to interference from satellite emissions. Sensitive radio astronomy receivers are blinded by these emissions, just as an optical telescope would be by a searchlight. "There is more energy at millimeter and sub-millimeter wavelengths washing through the Universe than there is of light or any other kind of radiation," said ALMA Project Scientist, Dr. Al Wootten of the National Radio Astronomy Observatory. "Imaging the sources of this energy can tell us a great deal about the formation of stars and galaxies, and even planets." "But the Earth's atmosphere isn't very kind to us - it has only a few windows at these frequencies, and not very transparent ones at that. They are

  10. An empirical comparison of primary baffle and vanes for optical astronomical telescope

    NASA Astrophysics Data System (ADS)

    Li, Taoran; Chen, Yingwei

    2017-09-01

    In optical astronomical telescopes, the primary baffle is a tube-like structure centering in the hole of the primary mirror and the vanes usually locate inside the baffle, improving the suppression of stray light. They are the most common methods of stray light control. To characterize the performance of primary baffle and vanes, an empirical comparison based on astronomical observations has been made with Xinglong 50cm telescope. Considering the convenience of switching, an independent vanes structure is designed, which can also improve the process of the primary mirror cooling and the air circulation. The comparison of two cases: (1) primary baffle plus vanes and (2) vanes alone involves in-dome and on-sky observations. Both the single star and the various off-axis angles of the stray light source observations are presented. The photometrical images are recorded by CCD to analyze the magnitude and the photometric error. The stray light uniformity of the image background derives from the reduction image which utilizes the MATLAB software to remove the stars. The in-dome experiments results reveal the effectiveness of primary baffle and the independent vanes structure. Meanwhile, the on-sky photometric data indicate there are little differences between them. The stray light uniformity has no difference when the angle between the star and the moon is greater than 20 degrees.

  11. Square-core bundles for astronomical imaging

    NASA Astrophysics Data System (ADS)

    Bryant, Julia J.; Bland-Hawthorn, Joss

    2012-09-01

    Optical fibre imaging bundles (hexabundles) are proving to be the next logical step for large galaxy surveys as they offer spatially-resolved spectroscopy of galaxies and can be used with conventional fibre positioners. Hexabundles have been effectively demonstrated in the Sydney-AAO Multi-object IFS (SAMI) instrument at the Anglo- Australian Telescope[5]. Based on the success of hexabundles that have circular cores, we have characterised a bundle made instead from square-core fibres. Square cores naturally pack more evenly, which reduces the interstitial holes and can increase the covering, or filling fraction. Furthermore the regular packing simplifies the process of combining and dithering the final images. We discuss the relative issues of filling fraction, focal ratio degradation (FRD), and cross-talk, and find that square-core bundles perform well enough to warrant further development as a format for imaging fibre bundles.

  12. Advances in a study of sky quality for astronomical observations in Colombia

    NASA Astrophysics Data System (ADS)

    González-Díaz, D.; Pinzón, G.

    2015-10-01

    The aim of this study is to determine the sky quality in Colombia for astronomical observations in the optic. About 10,000 images in infrared (6.7 mu m and 10.7 mu m) were analyzed from the GOES meteorological satellites in three night times taken during a period of five years (2008 to 2014). A novel methodology was followed to determine how clear or covered was the sky in a given image. Meteorological data also were used from the weather stations network of the national meteorological institute, IDEAM. A correlation between threshold temperature and altitude was found for a historical data series of about 30 years. The results of the average percentage of nights with clear skies per year or clear sky fraction (CSF) were validated with the reports on the number of hours of astronomical observation from the logbooks of Llano del Hato Observatory in Merida-Venezuela, obtaining a cumulative percentage difference during the five years less than 10%. Annual cloud covering was computed over the whole country and it was classified the nights as clear or usable based on the definition of a quality factor.

  13. Imaging Young Stellar Objects with VLTi/PIONIER

    NASA Astrophysics Data System (ADS)

    Kluska, J.; Malbet, F.; Berger, J.-P.; Benisty, M.; Lazareff, B.; Le Bouquin, J.-B.; Baron, F.; Dominik, C.; Isella, A.; Juhasz, A.; Kraus, S.; Lachaume, R.; Ménard, F.; Millan-Gabet, R.; Monnier, J.; Pinte, C.; Soulez, F.; Tallon, M.; Thi, W.-F.; Thiébaut, É.; Zins, G.

    2014-04-01

    Optical interferometry imaging is designed to help us to reveal complex astronomical sources without a prior model. Among these complex objects are the young stars and their environments, which have a typical morphology with a point-like source, surrounded by circumstellar material with unknown morphology. To image them, we have developed a numerical method that removes completely the stellar point source and reconstructs the rest of the image, using the differences in the spectral behavior between the star and its circumstellar material. We aim to reveal the first Astronomical Units of these objects where many physical phenomena could interplay: the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, we carried out the first Large Program survey of HAeBe stars with two main goals: statistics on the geometry of these objects at the first astronomical unit scale and imaging their very close environment. The images reveal the environment, which is not polluted by the star and allows us to derive the best fit for the flux ratio and the spectral slope. We present the first images from this survey and the application of the imaging method on other astronomical objects.

  14. NRAO Astronomer Honored by American Astronomical Society

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Dr. Scott Ransom, an astronomer at the National Radio Astronomy Observatory (NRAO), received the American Astronomical Society's (AAS) Helen B. Warner Prize on January 11, at the society's meeting in Seattle, Washington. The prize is awarded annually for "a significant contribution to observational or theoretical astronomy during the five years preceding the award." Presented by AAS President Debra Elmegreen, the prize recognized Ransom "for his astrophysical insight and innovative technical leadership enabling the discovery of exotic, millisecond and young pulsars and their application for tests of fundamental physics." "Scott has made landmark contributions to our understanding of pulsars and to using them as elegant tools for investigating important areas of fundamental physics. We are very proud that his scientific colleagues have recognized his efforts with this prize," said NRAO Director Fred K.Y. Lo. A staff astronomer at the NRAO since 2004, Ransom has led efforts using the National Science Foundation's Green Bank Telescope and other facilities to study pulsars and use them to make advances in areas of frontier astrophysics such as gravitational waves and particle physics. In 2010, he was on a team that discovered the most massive pulsar yet known, a finding that had implications for the composition of pulsars and details of nuclear physics, gravitational waves, and gamma-ray bursts. Ransom also is a leader in efforts to find and analyze rapidly-rotating millisecond pulsars to make the first direct detection of the gravitational waves predicted by Albert Einstein. In other work, he has advanced observational capabilities for finding millisecond pulsars in globular clusters of stars and investigated how millisecond pulsars are formed. A graduate of the United States Military Academy at West Point, NY, Ransom served as an artillery officer in the U.S. Army. After leaving the Army, he earned a Ph.D. at Harvard University in 2001, and was a postdoctoral fellow

  15. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  16. Taking the Observatory to the Astronomer

    NASA Astrophysics Data System (ADS)

    Bisque, T. M.

    1997-05-01

    Since 1992, Software Bisque's Remote Astronomy Software has been used by the Mt. Wilson Institute to allow interactive control of a 24" telescope and digital camera via modem. Software Bisque now introduces a comparable, relatively low-cost observatory system that allows powerful, yet "user-friendly" telescope and CCD camera control via the Internet. Utilizing software developed for the Windows 95/NT operating systems, the system offers point-and-click access to comprehensive celestial databases, extremely accurate telescope pointing, rapid download of digital CCD images by one or many users and flexible image processing software for data reduction and analysis. Our presentation will describe how the power of the personal computer has been leveraged to provide professional-level tools to the amateur astronomer, and include a description of this system's software and hardware components. The system software includes TheSky Astronomy Software?, CCDSoft CCD Astronomy Software?, TPoint Telescope Pointing Analysis System? software, Orchestrate? and, optionally, the RealSky CDs. The system hardware includes the Paramount GT-1100? Robotic Telescope Mount, as well as third party CCD cameras, focusers and optical tube assemblies.

  17. Astronomical Books and Charts in the Book of Bibliographie Coreenne

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Won; Yang, Hong-Jin; Park, Myeong-Gu

    2008-06-01

    We investigate astronomical materials listed in the book of Bibliographie Coréenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (?) and thirty six Classes (?), and published them as three volumes (ranging from 1894 to 1896) and one supplement (in 1901). In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho ????, Si-Heon-Seo ??????, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do ????????, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (?) are related to astronomy or astrology, and verified that most ! of them are located in the Kyujanggak Royal Library ???. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do ??????????. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  18. 150th Anniversary of the Astronomical Observatory Library of Sciences

    NASA Astrophysics Data System (ADS)

    Solntseva, T.

    The scientific library of the Astronomical observatory of Kyiv Taras Shevchenko University is one of the oldest ones of such a type in Ukraine. Our Astronomical Observatory and its scientific library will celebrate 150th anniversary of their foundation. 900 volumes of duplicates of Olbers' private library underlay our library. These ones were acquired by Russian Academy of Sciences for Poulkovo observatory in 1841 but according to Struve's order were transmitted to Kyiv Saint Volodymyr University. These books are of great value. There are works edited during Copernicus', Kepler's, Galilei's, Newton's, Descartes' lifetime. Our library contains more than 100000 units of storage - monographs, periodical astronomical editions from the first (Astronomische Nachrichten, Astronomical journal, Monthly Notices etc.), editions of the majority of the astronomical observatories and institutions of the world, unique astronomical atlases and maps

  19. Image processing via VLSI: A concept paper

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1982-01-01

    Implementing specific image processing algorithms via very large scale integrated systems offers a potent solution to the problem of handling high data rates. Two algorithms stand out as being particularly critical -- geometric map transformation and filtering or correlation. These two functions form the basis for data calibration, registration and mosaicking. VLSI presents itself as an inexpensive ancillary function to be added to almost any general purpose computer and if the geometry and filter algorithms are implemented in VLSI, the processing rate bottleneck would be significantly relieved. A set of image processing functions that limit present systems to deal with future throughput needs, translates these functions to algorithms, implements via VLSI technology and interfaces the hardware to a general purpose digital computer is developed.

  20. The Virtual Astronomical Observatory: Re-engineering access to astronomical data

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J.; McGlynn, T. A.; Plante, R.

    2015-06-01

    The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the US National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both US and internationally developed tools and services, and exhibits and hands-on training at annual meetings of the American Astronomical Society and through summer schools and community days. All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.

  1. ORCID Uptake in the Astronomical Community

    NASA Astrophysics Data System (ADS)

    Holmquist, Jane

    2015-08-01

    The IAU General Assembly provides librarians with a unique opportunity to interact with astronomers from all over the world. From the perspective of an ORCID Ambassador, the Focus Group Meeting on "Scholarly Publication in Astronomy" also provides an opportunity to demonstrate the cooperation and collaboration needed by individual astronomers, societies, librarians, publishers and bibliographic database providers to achieve universal adoption of ORCID, a standard unique identifier for authors, just as the DOI (digital object identifier) has been adopted for each journal article published.I propose to 1) present at the Focus Group Meeting an update on the uptake of ORCID by members of the astronomical community and 2) set up a small station (TBA) near the IAU registration area where librarians can show researchers how to register for an ORCID in 30 seconds.

  2. High-resolution Ceres HAMO Atlas derived from Dawn FC Images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    Introduction: NASA's Dawn spacecraft will orbit the dwarf planet Ceres in August and September 2015 in HAMO (High Altitude Mapping Orbit) with an altitude of about 1,500 km to characterize for instance the geology, topography, and shape of Ceres before it will be transferred to the lowest orbit. One of the major goals of this mission phase is the global mapping of Ceres. Data: The Dawn mission is equipped with a fram-ing camera (FC). The framing camera will take about 2600 clear filter images with a resolution of about 120 m/pixel and different viewing angles and different illumination conditions. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the target. Both, improved orientation and high-resolution shape models, are provided by stereo processing of the HAMO dataset. Ceres' HAMO shape model is used for the calculation of the ray intersection points while the map projection itself will be done onto a reference sphere for Ceres. The final step is the controlled mosaicking of all nadir images to a global mosaic of Ceres, the so called basemap. Ceres map tiles: The Ceres atlas will be produced in a scale of 1:750,000 and will consist of 15 tiles that conform to the quadrangle schema for small planets and medium size Icy satellites. A map scale of 1:750,000 guarantees a mapping at the highest availa-ble Dawn resolution in HAMO. Nomenclature: The Dawn team proposed to the International Astronomical Union (IAU) to use the names of gods and goddesses of agriculture and vege-tation from world mythology as names for the craters. This proposal was accepted by the IAU and the team proposed names for geological features to the IAU based on the HAMO mosaic. These feature names will be applied to the map tiles.

  3. A Student-Centered Astronomical Research Community of Practice

    NASA Astrophysics Data System (ADS)

    Genet, Russell; Johnson, Jolyon; Boyce, Pat; Boyce, Grady; Buchheim, obert; Harshaw, Richard; Kenney, John; Collins, Dwight; Rowe, David; Brewer, Mark; Estrada, Reed; Estrada, Chris; Gillette, Sean; Ridgely, John; McNab, Christine; Freed, Rachel; Wallen, Vera

    2016-05-01

    For over a decade, students from Cuesta College and number of high schools have engaged in astronomical research during one-term seminars. A community of practice - consisting of students, educators, and astronomers - has formed that is centered on supporting the students' astronomical research. The seminar has recently adopted distance education technology and automated telescopes in a hybrid form of on-line and inperson collaborations between students, educators, and astronomers. This hybridization is not only resulting in new areas of growth and opportunity, but has created a number of challenges. For example, as more schools joined this seminar, standardized teaching materials such as a textbook and self-paced, online learning units had to be developed. Automated telescopes devoted to expanding student research opportunities within this community of practice are being brought on line by Concordia University and the Boyce Research Initiatives and Educational Foundation. The Institute for Student Astronomical Research supports this growing community in many ways including maintaining a website and editing books of student papers published through the Collins Foundation Press.

  4. High resolution astrophysical observations using speckle imaging

    NASA Astrophysics Data System (ADS)

    Noyes, R. W.; Nisenson, P.; Papaliolios, C.; Stachnik, R. V.

    1986-04-01

    This report describes progress under a contract to develop a complete astronomical speckle image reconstruction facility and to apply that facility to the solution of astronomical problems. During the course of the contract we have developed the procedures, algorithms, theory and hardware required to perform that function and have made and interpreted astronomical observations of substantial significance. A principal result of the program was development of a photon-counting camera of innovative design, the PAPA detector. Development of this device was, in our view, essential to making the speckle process into a useful astronomical tool, since the principal impediment to that circumstance in the past was the necessity for application of photon noise compensation procedures which were difficult if not impossible to calibrate. The photon camera made this procedure unnecessary and permitted precision image recovery. The result of this effort and the associated algorithm development was an active program of astronomical observation which included investigations into young stellar objects, supergiant structure and measurements of the helium abundance of the early universe. We have also continued research on recovery of high angular resolution images of the solar surface working with scientists at the Sacramento Peak Observatory in this area.

  5. Stardial -- an autonomous astronomical camera on the WWW

    NASA Astrophysics Data System (ADS)

    McCullough, P. R.; Thakkar, U.

    1997-05-01

    The use of an autonomous electronic camera, called ``Stardial,'' for undergraduate instruction is described. Stardial delivers images of the night sky nearly in real-time to the world wide web (www.astro.uiuc.edu/stardial/). The remote instrumentation of Stardial is robust, inexpensive, and accomodates many students asynchronously with respect to the instructor(s). The guiding philosophy of the curriculum is to provide students with authentic astronomical data so that they may learn about science by doing it themselves on the internet. Students respond favorably to the opportunity to learn from their own experiences with genuine data, complete with its irregularities and its surprises. Perhaps surprisingly, 9 of 10 self-selected student volunteers in our pilot project were female. Stardial's instrumentation is similar to that of Gaustad et al., and to that of Richmond, Droege, et al. (both at this same meeting). Stardial has benefitted from contributions from students, especially Lawrence Tan, Troy Klyber, Jim Pulokas, Jim Waldemer, and Diana Lopez, and from a number of professionals, especially G.T. Becker, Mike Newberry, John Dolby, Tom Droege, Bob Mutel, Mike Richmond, John Thorstensen, and Rick White. Stardial is funded by the University of Illinois, primarily from the office of the Vice President for Academic Affairs. We welcome participation from amateur astronomers and other educators.

  6. Women Astronomers: Australia: Women astronomers in Australia

    NASA Astrophysics Data System (ADS)

    Bhathal, Ragbir

    2001-08-01

    Ragbir Bhathal summarizes the role played by women astronomers in Australia's astronomy, now and in the past. Australia has a great tradition in astronomy, from the early observations of Aboriginal people through the colonial drive to explore and understand, culminating in the established excellence of research there today. Women have contributed to this achievement in no small way, yet their contribution has been unremarked, if not ignored. Here I summarize the historical and present state of affairs and look forward to a brighter and more equitable future.

  7. Multimodal ophthalmic imaging using spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mohamed T.; Malone, Joseph D.; Li, Jianwei D.; Bozic, Ivan; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-08-01

    Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.

  8. The Use of Astronomical Seeing Measurements

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2002-12-01

    Very few observatories have access to a daily record of the astronomical seeing over an extended historical period. An exception to this is the Mount Wilson Observatory (MWO) whose astronomical seeing logs cover the period from shortly after the observatory was founded in 1904 through to the present day. These measurements provide a unique look into the changes to the seeing conditions at a major US observatory site. While the keeping of this record has been entrusted to many at the observatory, most often the telescope night assistants, these measurements have been taken diligently and from all accounts repeatably over the years. The early workers at MWO developed an 8-point scale that was used to evaluate the seeing. This scale began as a measure of how large a telescope aperture would provide diffraction limited seeing during a given night. If a small telescope aperture was needed to see diffraction rings, then the seeing was poor and the seeing number would be small. Of course a larger number on the scale then denotes better seeing. This became known as the Mount Wilson Seeing Scale and a variation of it is still in common use at the observatory. This scale has not always had the strongest support in the astronomical community, but its use has resulted in a nearly continuous set of comparable data. In this paper astronomical seeing data from MWO is presented and analyzed using several different approaches. It shows that there are very long period events that can be identified and also shows that the astronomical seeing, even at a very good site, is not guaranteed over the life of the observatory.

  9. Sociological profile of astronomers in Spain.

    NASA Astrophysics Data System (ADS)

    de Ussel, J. I.; Trinidad, A.; Ruíz, D.; Battaner, E.; Delgado, A. J.; Rodríguez-Espinosa, J. M.; Salvador-Solé, E.; Torrelles, J. M.

    In this paper the main findings are presented of a recent study made by a team of sociologists from the University of Granada on the professional astronomers currently working in Spain. Despite the peculiarities of this group - its youth, twentyfold increase in size over the last 20 years, and extremely high rate of specialization abroad - in comparison with other Spanish professionals, this is the first time that the sociological characteristics of the group have been studied discretely. The most significant results of the study are presented in the following sections. Section 1 gives a brief historical background of the development of astronomy in Spain. Section 2 analyzes the socio-demographic profile of Spanish astronomy professionals (sex, age, marital status, etc.). Sections 3-5 are devoted to the college education and study programs followed by Spanish astronomers, focusing on the features and evaluations of the training received, and pre- and postdoctoral study trips made to research centers abroad. The results for the latter clearly show the importance that Spanish astronomers place on having experience abroad. Special attention is paid to scientific papers published as a result of joint research projects carried out with colleagues from centers abroad as a result of these study trips. Section 6 describes the situation of astronomy professionals within the Spanish job market, the different positions available and the time taken to find a job after graduation. Section 7 examines astronomy as a discipline in Spain, including the astronomers' own opinions of the social status of the discipline within Spanish society. Particular attention is paid to how Spanish astronomers view the status of astronomy in Spain in comparison with that of other European countries.

  10. Sociological Profile of Astronomers in Spain

    NASA Astrophysics Data System (ADS)

    Iglesias de Ussel, Julio; Trinidad, Antonio; Ruiz, Diego; Battaner, Eduardo; Delgado, Antonio J.; Rodriguez-Espinosa, José M.; Salvador-Solé, Eduard; Torrelles, José M.

    In this paper the main findings are presented of a recent study made by a team of sociologists from the University of Granada on the professional astronomers currently working in Spain. Despite the peculiarities of this group - its youth, twentyfold increase in size over the last 20 years, and extremely high rate of specialization abroad - in comparison with other Spanish professionals, this is the first time that the sociological characteristics of the group have been studied discretely. The most significant results of the study are presented in the following sections. Section 1 gives a brief historical background of the development of Astronomy in Spain. Section 2 analyzes the socio-demographic profile of Spanish Astronomy professionals (sex, age, marital status, etc.). Sections 3-5 are devoted to the college education and study programs followed by Spanish astronomers, focusing on the features and evaluations of the training received, and pre- and postdoctoral study trips made to research centers abroad. The results for the latter clearly show the importance that Spanish astronomers place on having experience abroad. Special attention is paid to scientific papers published as a result of joint research projects carried out with colleagues from centers abroad as a result of these study trips. Section 6 describes the situation of Astronomy professionals within the Spanish job market, the different positions available and the time taken to find a job after graduation. Section 7 examines Astronomy as a discipline in Spain, including the astronomers' own opinions of the social status of the discipline within Spanish society. Particular attention is paid to how Spanish astronomers view the status of Astronomy in Spain in comparison with that of other European countries.

  11. Clementine High Resolution Camera Mosaicking Project. Volume 13; CL 6013; 0 deg S to 80 deg S Latitude, 240 deg to 270 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  12. Clementine High Resolution Camera Mosaicking Project. Volume 12; CL 6012; 0 deg N to 80 deg N Latitude, 240 deg to 270 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  13. Old Star's "Rebirth" Gives Astronomers Surprises

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope are taking advantage of a once-in-a-lifetime opportunity to watch an old star suddenly stir back into new activity after coming to the end of its normal life. Their surprising results have forced them to change their ideas of how such an old, white dwarf star can re-ignite its nuclear furnace for one final blast of energy. Sakurai's Object Radio/Optical Images of Sakurai's Object: Color image shows nebula ejected thousands of years ago. Contours indicate radio emission. Inset is Hubble Space Telescope image, with contours indicating radio emission; this inset shows just the central part of the region. CREDIT: Hajduk et al., NRAO/AUI/NSF, ESO, StSci, NASA Computer simulations had predicted a series of events that would follow such a re-ignition of fusion reactions, but the star didn't follow the script -- events moved 100 times more quickly than the simulations predicted. "We've now produced a new theoretical model of how this process works, and the VLA observations have provided the first evidence supporting our new model," said Albert Zijlstra, of the University of Manchester in the United Kingdom. Zijlstra and his colleagues presented their findings in the April 8 issue of the journal Science. The astronomers studied a star known as V4334 Sgr, in the constellation Sagittarius. It is better known as "Sakurai's Object," after Japanese amateur astronomer Yukio Sakurai, who discovered it on February 20, 1996, when it suddenly burst into new brightness. At first, astronomers thought the outburst was a common nova explosion, but further study showed that Sakurai's Object was anything but common. The star is an old white dwarf that had run out of hydrogen fuel for nuclear fusion reactions in its core. Astronomers believe that some such stars can undergo a final burst of fusion in a shell of helium that surrounds a core of heavier nuclei such as carbon and oxygen. However, the

  14. Serbian Astronomers in Science Citation Index in the XX Century

    NASA Astrophysics Data System (ADS)

    Dimitrijevic, Milan S.

    The book is written paralelly in Serbian and English. The presence of works of Serbian astronomers and works in astronomical journals published by other Serbian scientists, in Science Citation Index within the period from 1945 up to the end of 2000, has been analyzed. Also is presented the list of 38 papers which had some influence on the development of astronomy in the twentieth century. A review of the development of astronomy in Serbia in the last century is given as well. Particular attention is payed to the Astronomical Observatory, the principal astronomical institution in Serbia, where it is one of the oldest scientific organizations and the only autonomous astronomical institute. Its past development forms an important part of the history of science and culture in these regions. In the book is also considered and the history of the university teaching of astronomy in Serbia after the second world war. First of all the development of the Chair of Astronomy at the Faculty of Mathematics in Belgrade, but also the teaching of astronomy at University in Novi Sad, Ni and Kragujevac is discussed. In addition to professional Astronomy, well developed in Serbia is also the amateur Astronomy. In the review is first of all included the largest and the oldest organization of amateur-astronomers in Serbia, founded in 1934. Besides, here are the Astronomical Society "Novi Sad", ADNOS and Research Station "Petnica". In Valjevo, within the framework of the Society of researchers "Vladimir Mandic - Manda", there is active also the Astronomical Group. In Kragujevac, on the roof of the Institute of Physics of the Faculty of Sciences, there is the "Belerofont" Observatory. In Ni, at the close of the sixties and the start of the seventies, there was operating a branch of the Astronomical Society "Rudjer Bokovic", while at the Faculty of Philosophy there existed in the period 1976-1980 the "Astro-Geophysical Society". In the year 1996 there was founded Astronomical Society

  15. Preservation and maintenance of the astronomical sites in Armenia

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2008-01-01

    Astronomy in Armenia was popular since ancient times. There are signs of astronomical observations coming from a few thousands years ago. Two ancient observatories, Karahunge and Metzamor are especially well known. Karahunge is the Armenian twin of the Stonehenge and is even older. However, there is no proper attention from the state authorities and efforts are needed for preservation of such historical-astronomical monuments. The Byurakan Astrophysical Observatory (BAO) is the modern famous Armenian observatory founded in 1946 by the outstanding scientist Victor Ambartsumian. It was one of the world astronomical centres in 1950-s to 1970-s, and at present is the largest observatory in the Middle East area. As the ancient astronomical sites, Byurakan also needs a proper attitude from the state authorities and corresponding international organizations to preserve its values and importance for the present and future astronomical activities in the region, including its rich observational archive, telescopes, and human resources. Despite all the difficulties, the Armenian astronomers keep high international level of research and display various activities organizing international meetings and schools, preparing new young generation for the future research. The Armenian Astronomical Society (ArAS) is an affiliated member of EAS. Armenia has its Virtual Observatory project (ArVO) as well. The next Joint European and National Astronomy Meeting (JENAM-2007) will be held in Yerevan, Armenia, in August 2007. There are plans to organize astronomical tours to Armenia for making observations from various sites, including the ancient observatories. The future of astronomy in Armenia strongly depends on all of this activities and the proper attention both from state authorities and society.

  16. New astronomical references in two Catalonian late medieval documents.

    PubMed

    Martínez, María José; Marco, Francisco J

    2014-01-01

    In 2008, after 13 years of preparation, the Generalitat of Catalunya finished the publication of the 10 volumes of the Dietaris de la Generalitat de Catalunya. The Dietaris, as well as a closely related source, the llibre de Jornades 1411/1484 de Jaume Safont, cover the period of 1411 to 1539. In this article, we examine astronomical references contained in these two sources, and place them in their historical context. Our main focus lies on astronomical phenomena that have not previously been published in the astronomical literature. In fact, relatively few astronomical records are accessible in Spanish medieval and early modern history, and our paper intends to fill this gap partially.

  17. High event rate ROICs (HEROICs) for astronomical UV photon counting detectors

    NASA Astrophysics Data System (ADS)

    Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2014-07-01

    The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.

  18. Automated generation of image products for Mars Exploration Rover Mission tactical operations

    NASA Technical Reports Server (NTRS)

    Alexander, Doug; Zamani, Payam; Deen, Robert; Andres, Paul; Mortensen, Helen

    2005-01-01

    This paper will discuss, from design to implementation, the methodologies applied to MIPL's automated pipeline processing as a 'system of systems' integrated with the MER GDS. Overviews of the interconnected product generating systems will also be provided with emphasis on interdependencies, including those for a) geometric rectificationn of camera lens distortions, b) generation of stereo disparity, c) derivation of 3-dimensional coordinates in XYZ space, d) generation of unified terrain meshes, e) camera-to-target ranging (distance) and f) multi-image mosaicking.

  19. Fifty Years of Mars Imaging: from Mariner 4 to HiRISE

    NASA Image and Video Library

    2017-11-20

    This image from NASA's Mars Reconnaissance Orbiter (MRO) shows Mars' surface in detail. Mars has captured the imagination of astronomers for thousands of years, but it wasn't until the last half a century that we were able to capture images of its surface in detail. This particular site on Mars was first imaged in 1965 by the Mariner 4 spacecraft during the first successful fly-by mission to Mars. From an altitude of around 10,000 kilometers, this image (the ninth frame taken) achieved a resolution of approximately 1.25 kilometers per pixel. Since then, this location has been observed by six other visible cameras producing images with varying resolutions and sizes. This includes HiRISE (highlighted in yellow), which is the highest-resolution and has the smallest "footprint." This compilation, spanning Mariner 4 to HiRISE, shows each image at full-resolution. Beginning with Viking 1 and ending with our HiRISE image, this animation documents the historic imaging of a particular site on another world. In 1976, the Viking 1 orbiter began imaging Mars in unprecedented detail, and by 1980 had successfully mosaicked the planet at approximately 230 meters per pixel. In 1999, the Mars Orbiter Camera onboard the Mars Global Surveyor (1996) also imaged this site with its Wide Angle lens, at around 236 meters per pixel. This was followed by the Thermal Emission Imaging System on Mars Odyssey (2001), which also provided a visible camera producing the image we see here at 17 meters per pixel. Later in 2012, the High-Resolution Stereo Camera on the Mars Express orbiter (2003) captured this image of the surface at 25 meters per pixel. In 2010, the Context Camera on the Mars Reconnaissance Orbiter (2005) imaged this site at about 5 meters per pixel. Finally, in 2017, HiRISE acquired the highest resolution image of this location to date at 50 centimeters per pixel. When seen at this unprecedented scale, we can discern a crater floor strewn with small rocky deposits, boulders several

  20. Long-publishing astronomers, or the problem of classification

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2012-03-01

    In response to several discussions among astronomers and historians of astronomy, I started out to prepare a paper on long-publishing astronomers-those who published for 70, 75, or even 80 years. However, I soon ran into a number of questions of classification, and that turned out to be at least as interesting. How do we decide on classifications? Every time we choose classes, such as asteroids, planets and stars, we run into objects that seem to be in between. In the present case a number of questions arise: Who is an astronomer? Several of those with the longest publication runs started out as physicists, published for years in that subject only, and later took up astrophysics, eventually publishing a few papers in astronomy journals. What is a publication? Should we count publications in physics, chemistry, or mathematics? What about philosophy of science or history of science? What about the elderly retired astronomer presenting a memoir of his or her own work? Abstracts of oral presentations? Monographs? Textbooks? Book reviews? Obituaries? Then there is the problem of posthumous publications. Probably most would include papers in the pipeline when the astronomer dies, but what about the case where the coauthor finally publishes the paper as much as twenty-two years after the death of the person of interest? I eventually decided to make two lists, one which would include most of the above, and one restricted to papers that make contributions to physical science. Note that I do not say 'refereed', as that presents its own problems, especially when applied to periods before the twentieth century. I present a list of astronomers who have published for periods of 68 to 80 years and discuss the problems of defining such terms as astronomer and publication.

  1. GPU-accelerated algorithms for compressed signals recovery with application to astronomical imagery deblurring

    NASA Astrophysics Data System (ADS)

    Fiandrotti, Attilio; Fosson, Sophie M.; Ravazzi, Chiara; Magli, Enrico

    2018-04-01

    Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain.

  2. The Most Popular Astronomical Web Server in China

    NASA Astrophysics Data System (ADS)

    Cui, Chenzhou; Zhao, Yongheng

    Affected by the consistent depressibility of IT economy free homepage space is becoming less and less. It is more and more difficult to construct websites for amateur astronomers who do not have ability to pay for commercial space. In last May with the support of Chinese National Astronomical Observatory and Large Sky Area Multi-Object Fiber Spectroscopic Telescope project we setup a special web server (amateur.lamost.org) to provide free huge stable and no-advertisement homepage space to Chinese amateur astronomers and non-professional organizations. After only one year there has been more than 80 websites hosted on the server. More than 10000 visitors from nearly 40 countries visit the server and the amount of data downloaded by them exceeds 4 Giga-Bytes per day. The server has become the most popular amateur astronomical web server in China. It stores the most abundant Chinese amateur astronomical resources. Because of the extremely success our service has been drawing tremendous attentions from related institutions. Recently Chinese National Natural Science Foundation shows great interest to support the service. In the paper the emergence of the thought construction of the server and its present utilization and our future plan are introduced

  3. Astrobiology: An astronomer's perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, Edwin A.

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the processmore » of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.« less

  4. Are opthalmic hydrophobic coatings useful for astronomical optics?

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Phillips, Andrew C.

    2010-07-01

    Astronomical optics are often exposed to moisture and dust in observatory environments, which frequently compromises their high-performance coatings. Suitable protective layers to resist dust and moisture accumulation would be extremely advantageous, but have received scant attention thus far. Hydrophobic and scratch-resistant coatings, developed primarily for opthalmic use, exhibit several attractive properties for astronomical optics. We examine the properties of one such coating and its applicability to astronomical mirrors and lenses. This includes efficiency of dust removal, abrasion resistance, moisture resistance, ease of stripping, and transmission across a wide wavelength range.

  5. Astronomical Observatory of Belgrade from 1924 to 1955

    NASA Astrophysics Data System (ADS)

    Radovanac, M.

    2014-12-01

    History of the Astronomical Observatory in Belgrade, as the presentation is done here, become the field of interest to the author of the present monograph in early 2002. Then, together with Luka C. Popovic, during the Conference "Development of Astronomy among Serbs II" held in early April of that year, he prepared a paper entitled "Astronomska opservatorija tokom Drugog Svetskog rata" (Astronomical Observatory in the Second World War). This paper was based on the archives material concerning the Astronomical Observatory which has been professionally bearing in mind the author's position the subject of his work.

  6. Hartung's Astronomical Objects for Southern Telescopes

    NASA Astrophysics Data System (ADS)

    Malin, David; Frew, David J.

    1995-10-01

    Many of the most spectacular astronomical objects are found in the southern skies. With this up-to-date, superbly illustrated handbook, both the amateur with binoculars and the expert with a telescope can make discoveries about new and interesting objects. Professor E. J. Hartung first produced his comprehensive and highly respected guide in 1968. Now the book has been greatly expanded and thoroughly revised, enhancing its character as an indispensable information source. With over 150 illustrations, new material is included on constellations and celestial coordinate systems as well as more modern descriptions of stars, nebulae and galaxies. The authors have included a new "southern Messier" list of objects. The authors' passion for their subject make this a unique and inspirational book. Many of the beautiful photographs were taken by David Malin, the world's leading astronomical photographer. The result will fascinate active and armchair astronomers alike.

  7. The Role of Amateur Astronomy to Outreach Astronomical Knowledge

    NASA Astrophysics Data System (ADS)

    Khachatryan, Vachik; Voskanyan, Tsovak

    2016-12-01

    It is known that in the educational system of republic the astronomy is not taught as a separate subject. Moreover, there are no telescopes in the vast majority of schools. "Goodricke John" NGO of amateur astronomers tries to fill this gap by organizing practical lessons of astronomy in secondary schools. NGO is equipped with high quality portable amateur telescopes and organizes periodic mass observations of planets, Moon, star clusters, nebulae in Yerevan and in regions. In addition, mass observations of rare astronomical phenomena are organized, such as the transit of Venus and Mercury across the disk of the Sun. Being the only NGO of amateur astronomers, it has a goal to contribute to publicizing astronomical knowledge and to ensure the availability of astronomical equipment, telescopes also to those segments of the society who have no opportunity to deal with them, in particular, persons with disabilities, prisoners, persons with disabilities, prisoners, soldiers, children from orphanages, school children and others.

  8. Astronomical Orientation in the Ancient Dacian Sanctuaries of Romania

    NASA Astrophysics Data System (ADS)

    Stănescu, Florin

    Sarmizegetusa Regia, the former capital city of the Dacians' kingdom, is situated in the Şureanu (Orăştie) Mountains in the Southern Carpathians, Romania. This chapter reviews, from the astronomical point of view, two of the monuments located on its Sacred Terrace - the altar known as the "Andesite Sun" and the Central Apse of the Great Round Sanctuary - as well as sanctuaries at the nearby site of Costeşti. Astronomical analyses taking into consideration (a) the astronomical-geometrical methods of the time (the analemma of a sundial after Vitruvius and the stereographical projection in the sense of Hipparchus), (b) astronomical instruments of the time (the gnomon, the sundial and the astrolabe), and (c) other instruments known to the Dacians (the compass), have concluded that these monuments may have enabled the Dacians to carry out a number of astronomical observations. This would confirm several reports by contemporary historians regarding the Dacians' knowledge of astronomy.

  9. Learning from FITS: Limitations in use in modern astronomical research

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Jenness, T.; Economou, F.; Greenfield, P.; Hirst, P.; Berry, D. S.; Bray, E.; Gray, N.; Muna, D.; Turner, J.; de Val-Borro, M.; Santander-Vela, J.; Shupe, D.; Good, J.; Berriman, G. B.; Kitaeff, S.; Fay, J.; Laurino, O.; Alexov, A.; Landry, W.; Masters, J.; Brazier, A.; Schaaf, R.; Edwards, K.; Redman, R. O.; Marsh, T. R.; Streicher, O.; Norris, P.; Pascual, S.; Davie, M.; Droettboom, M.; Robitaille, T.; Campana, R.; Hagen, A.; Hartogh, P.; Klaes, D.; Craig, M. W.; Homeier, D.

    2015-09-01

    The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists and the public to exchange astronomical information easily. The FITS standard, however, is showing its age. Developed in the late 1970s, the FITS authors made a number of implementation choices that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not anticipate the challenges which we are facing today in astronomical computing. Difficulties we now face include, but are not limited to, addressing the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets, and capturing significantly more complex metadata and data relationships. There are members of the community today who find some or all of these limitations unworkable, and have decided to move ahead with storing data in other formats. If this fragmentation continues, we risk abandoning the advantages of broad interoperability, and ready archivability, that the FITS format provides for astronomy. In this paper we detail some selected important problems which exist within the FITS standard today. These problems may provide insight into deeper underlying issues which reside in the format and we provide a discussion of some lessons learned. It is not our intention here to prescribe specific remedies to these issues; rather, it is to call attention of the FITS and greater astronomical computing communities to these problems in the hope that it will spur action to address them.

  10. Astronomers as Software Developers

    NASA Astrophysics Data System (ADS)

    Pildis, Rachel A.

    2016-01-01

    Astronomers know that their research requires writing, adapting, and documenting computer software. Furthermore, they often have to learn new computer languages and figure out how existing programs work without much documentation or guidance and with extreme time pressure. These are all skills that can lead to a software development job, but recruiters and employers probably won't know that. I will discuss all the highly useful experience that astronomers may not know that they already have, and how to explain that knowledge to others when looking for non-academic software positions. I will also talk about some of the pitfalls I have run into while interviewing for jobs and working as a developer, and encourage you to embrace the curiosity employers might have about your non-standard background.

  11. Radio Astronomers Get Their First Glimpse of Powerful Solar Storm

    NASA Astrophysics Data System (ADS)

    2001-08-01

    Astronomers have made the first radio-telescope images of a powerful coronal mass ejection on the Sun, giving them a long-sought glimpse of hitherto unseen aspects of these potentially dangerous events. "These observations are going to provide us with a new and unique tool for deciphering the mechanisms of coronal mass ejections and how they are related to other solar events," said Tim Bastian, an astronomer at the National Science Foundation's National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Radio image of coronal mass ejection; circle indicates the size and location of the Sun. White dots are where radio spectral measurements were made. Bastian, along with Monique Pick, Alain Kerdraon and Dalmiro Maia of the Paris Observatory, and Angelos Vourlidas of the Naval Research Laboratory in Washington, D.C., used a solar radio telescope in Nancay, France, to study a coronal mass ejection that occurred on April 20, 1998. Their results will be published in the September 1 edition of the Astrophysical Journal Letters. Coronal mass ejections are powerful magnetic explosions in the Sun's corona, or outer atmosphere, that can blast billions of tons of charged particles into interplanetary space at tremendous speeds. If the ejection is aimed in the direction of Earth, the speeding particles interact with our planet's magnetic field to cause auroral displays, radio-communication blackouts, and potentially damage satellites and electric-power systems. "Coronal mass ejections have been observed for many years, but only with visible-light telescopes, usually in space. While previous radio observations have provided us with powerful diagnostics of mass ejections and associated phenomena in the corona, this is the first time that one has been directly imaged in wavelengths other than visible light," Bastian said. "These new data from the radio observations give us important clues about how these very energetic events work," he added. The radio images show an

  12. "Movie Star" Acting Strangely, Radio Astronomers Find

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Astronomers have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to make the first-ever time-lapse "movie" showing details of gas motions around a star other than our Sun. The study, the largest observational project yet undertaken using Very Long Baseline Interferometry, has produced surprising results that indicate scientists do not fully understand stellar atmospheres. The "movie" shows that the atmosphere of a pulsating star more than 1,000 light-years away continues to expand during a part of the star's pulsation period in which astronomers expected it to start contracting. Philip Diamond and Athol Kemball, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, announced their findings at the American Astronomical Society's meeting in Austin, TX, today. "The continued expansion we're seeing contradicts current theoretical models for how these stars work," Diamond said. "The models have assumed spherical symmetry in the star's atmosphere, and our movie shows that this is not the case. Such models suggest that a shock wave passes outward from the star. Once it's passed, then the atmosphere should begin to contract because of the star's gravity. We've long passed that point and the contraction has not begun." The time-lapse images show that the gas motions are not uniform around the star. Most of the motion is that of gas moving directly outward from the star's surface. However, in about one-fourth of the ring, there are peculiar motions that do not fit this pattern. The scientists speculate that the rate of mass loss may not be the same from all parts of the star's surface. "A similar star behaved as predicted when studied a few years ago, so we're left to wonder what's different about this one," Diamond said. "Right now, we think that different rates of mass loss in the two stars may be the cause of the difference. This star is losing mass at 100 times the rate of the star in the earlier study." "This

  13. Clementine High Resolution Camera Mosaicking Project. Volume 14; CL 6014; 0 deg N to 80 deg N Latitude, 270 deg E to 300 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  14. Clementine High Resolution Camera Mosaicking Project. Volume 15; CL 6015; 0 deg S to 80 deg S Latitude, 270 deg E to 300 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  15. Clementine High Resolution Camera Mosaicking Project. Volume 18; CL 6018; 80 deg N to 80 deg S Latitude, 330 deg E to 360 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  16. Clementine High Resolution Camera Mosaicking Project. Volume 10; CL 6010; 0 deg N to 80 deg N Latitude, 210 deg E to 240 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  17. Clementine High Resolution Camera Mosaicking Project. Volume 16; CL 6016; 0 deg N to 80 deg N Latitude, 300 deg E to 330 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  18. The Most Productive Years of Average Astronomers

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2017-11-01

    We learned previously that geniuses and outstanding scientists have peak productivities in their 30s but produce little late in life. This time we consider average astronomers who have completed their careers (25 American Astronomical Society members who died recently) and found that they peak in their mid 40s and did half of their life's important output after age 50.

  19. Aristotle University Astronomical Station at Mt. Holomon

    NASA Astrophysics Data System (ADS)

    Avdellidou, C.; Ioannidis, P.; Kouroubatzakis, K.; Nitsos, A.; Vakoulis, J.; Seiradakis, J. H.

    2012-01-01

    The Aristotle University Astronomical Station was established seven years ago in order to fulfill the educational needs of its students. Astronomical observations are undertaken using three fully equipped small telescopes. Some interesting results are presented below, including the study of asteroids and flare stars, the detection of optical emission from supernovae remnants and follow up observations in extra solar planets.

  20. An Astronomer In The Classroom: Observatoire de Paris's Partnership Between Teachers and Astronomers

    NASA Astrophysics Data System (ADS)

    Doressoundiram, A.; Barban, C.

    2006-08-01

    The Observatoire de Paris is offering a partnership between teachers and astronomers. The principle is simple: any teacher wishing to undertake a pedagogical project in astronomy, in the classroom or involving the entire school, can request the help of a mentor. An astronomer from the Observatoire de Paris will then follow the teacher's project progress and offer advice and scientific support throughout the school year. The projects may take different forms: construction projects (models, instruments), lectures, posters, exhibitions, etc. The type of assistance offered is as varied as the projects: lecture(s) in class, telephone and e-mail exchanges, visits to the Observatoire; an almost made-to-measure approach that delighted the thirty or so groups that benefited such partnership in the 2005-2006 academic year. And this number is continuously growing. There was a rich variety of projects undertaken, from mounting a show and building a solar clock to visiting a high altitude observatory, or resolving the mystery of Jupiter's great red spot. The Universe and its mysteries fascinate the young (and the not so- young) and provide a multitude of scientific topics that can be exploited in class. Astronomy offers the added advantage of being a multidisciplinary field. Thus, if most projects are generally initiated by a motivated teacher, they are often taken over by teachers in other subjects: Life and Earth Sciences (SVT), history, mathematics, French, and so forth. The project may consist in an astronomy workshop or be part of the school curriculum. Whatever the case, the astronomer's task is not to replace the teacher or the textbooks, but to propose activities or experiments that are easy to implement. Representing the Solar system on a school-yard scale, for instance, is a perfect way to make youngsters realize that the Universe consists mostly of empty space. There is no shortage of topics, and the students' enthusiasm, seldom absent, is the best reward for the

  1. The Quito Astronomical Instruments Heritage

    NASA Astrophysics Data System (ADS)

    Lopez, Ericsson

    The Quito Astronomical Observatory was build in the 1873s thanks to the generous sponsoring of the president of the Republic of Ecuador Dr. Gabriel García Moreno who desire was to build a long-lasting monument to Ecuadorian science . Thanks to the collaboration of father J. B. Menten one of the leading german astronomer the President' s dream came true. The Observatory with its splendid buildings was in fact equipped with a series of very important instruments such as the 30-cm Mertz refractor a large Molteni meridian instrument and a Bamber of 10 cm. Other instruments were subsequently added in the course of the 20th century. Recently we have performed a detailed inventory of all the historical instruments still preserved at the Observatory. This paper is dedicated to briefly trace the history of the Quito Observatory and describe its most characteristic instruments. Moreover it is presented the work done for preserving this important scientific heritage and discuss some of the typical problems that the researchers the students amateur astronomers and the public find in a still active scientific institution in a developing country.

  2. Ancient Maya astronomical tables from Xultun, Guatemala.

    PubMed

    Saturno, William A; Stuart, David; Aveni, Anthony F; Rossi, Franco

    2012-05-11

    Maya astronomical tables are recognized in bark-paper books from the Late Postclassic period (1300 to 1521 C.E.), but Classic period (200 to 900 C.E.) precursors have not been found. In 2011, a small painted room was excavated at the extensive ancient Maya ruins of Xultun, Guatemala, dating to the early 9th century C.E. The walls and ceiling of the room are painted with several human figures. Two walls also display a large number of delicate black, red, and incised hieroglyphs. Many of these hieroglyphs are calendrical in nature and relate astronomical computations, including at least two tables concerning the movement of the Moon, and perhaps Mars and Venus. These apparently represent early astronomical tables and may shed light on the later books.

  3. Astronomical Data and Information Visualization

    NASA Astrophysics Data System (ADS)

    Goodman, Alyssa A.

    2010-01-01

    As the size and complexity of data sets increases, the need to "see" them more clearly increases as well. In the past, many scientists saw "fancy" data and information visualization as necessary for "outreach," but not for research. In this talk, I wlll demonstrate, using specific examples, why more and more scientists--not just astronomers--are coming to rely upon the development of new visualization strategies not just to present their data, but to understand it. Principal examples will be drawn from the "Astronomical Medicine" project at Harvard's Initiative in Innovative Computing, and from the "Seamless Astronomy" effort, which is co-sponsored by the VAO (NASA/NSF) and Microsoft Research.

  4. Astronomers gossip about the (cosmic) neighborhood.

    PubMed

    Jayawardhana, R

    1994-09-09

    The Hague, Netherlands, last month welcomed 2000 astronomers from around the world for the 22nd General Assembly of the International Astronomical Union (IAU). From 15 to 27 August, they participated in symposia and discussions on topics ranging from the down-to-Earth issue of light and radio-frequency pollution to the creation of elements at the farthest reaches of time and space, in the big bang. Some of the most striking news, however, came in new findings from our galaxy and its immediate surroundings.

  5. Astronomers and the Media: What Reporters Expect

    NASA Astrophysics Data System (ADS)

    Siedgfried, Tom; Witze, Alexandra

    2006-01-01

    Journalists writing about astronomy bring varying levels of knowledge to the task. Most rely on astronomers for help. To be most helpful, astronomers should familiarize themselves with the practices and needs of journalists and learn effective methods for presenting astronomy via news releases, interviews and news conferences. In all aspects of communicating with the media, the ability to express technical findings in plain language is essential.

  6. On the Astronomical Knowledge and Traditions of Aboriginal Australians

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2011-12-01

    Historian of science David Pingree defines science in a broad context as the process of systematically explaining perceived or imaginary phenomena. Although Westerners tend to think of science being restricted to Western culture, I argue in this thesis that astronomical scientific knowledge is found in Aboriginal traditions. Although research into the astronomical traditions of Aboriginal Australians stretches back for more than 150 years, it is relatively scant in the literature. We do know that the sun, moon, and night sky have been an important and inseparable component of the landscape to hundreds of Australian Aboriginal groups for thousands (perhaps tens-of-thousands) of years. The literature reveals that astronomical knowledge was used for time keeping, denoting seasonal change and the availability of food sources, navigation, and tidal prediction. It was also important for rituals and ceremonies, birth totems, marriage systems, cultural mnemonics, and folklore. Despite this, the field remains relatively unresearched considering the diversity of Aboriginal cultures and the length of time people have inhabited Australia (well over 40,000 years). Additionally, very little research investigating the nature and role of transient celestial phenomena has been conducted, leaving our understanding of Indigenous astronomical knowledge grossly incomplete. This thesis is an attempt to overcome this deficiency, with a specific focus on transient celestial phenomena. My research, situated in the field of cultural astronomy, draws from the sub-disciplines of archaeoastronomy, ethnoastronomy, historical astronomy, and geomythology. This approach incorporates the methodologies and theories of disciplines in the natural sciences, social sciences, and humanities. This thesis, by publication, makes use of archaeological, ethnographic, and historical records, astronomical software packages, and geographic programs to better understand the ages of astronomical traditions and the

  7. The ultraviolet imaging telescope: Instrument and data characteristics

    NASA Astrophysics Data System (ADS)

    Stecher, Theodore P.; Ultraviolet Imaging Telescope Team

    1997-05-01

    The Ultraviolet Imaging Telescope (UIT) was flown as part of the Astro Observatory on the Space Shuttle Columbia in December 1990 (see Figure 1) and again on the Space Shuttle Endeavour in March 1995. Ultraviolet (1200-3300 Å) images of a wide variety of astronomical objects were detected with UV image intensifiers and recorded on photographic film. Typical angular resolutions were 2-3 arcsec over a 40 arcmin field of view. The reduced and calibrated images from the first flight are available to the astronomical community through the National Space Science Data Center (NSSDC); the data recorded during the second flight will soon be available as well. UIT's design, operation, data reduction, and calibration are described in detail in Stecher et al. (1997), including a comprehensive description of the data characteristics. This publication provides UIT data users with information for understanding and using the data, as well as guidelines for analyzing other astronomical imagery made with image intensifiers and photographic film. Further information on the Astro missions and the UIT science program is available at the following website http://fondue.gsfc.nasa.gov/UIT/UIT_HomePage.html and in an educational slideset that is available from the Astronomical Society of the Pacific (Waller & Offenberg 1994).

  8. Astronomers Find Enormous Hole in the Universe

    NASA Astrophysics Data System (ADS)

    2007-08-01

    Astronomers have found an enormous hole in the Universe, nearly a billion light-years across, empty of both normal matter such as stars, galaxies, and gas, and the mysterious, unseen "dark matter." While earlier studies have shown holes, or voids, in the large-scale structure of the Universe, this new discovery dwarfs them all. Void Illustration Hole in Universe revealed by its effect on Cosmic Microwave Background radiation. CREDIT: Bill Saxton, NRAO/AUI/NSF, NASA Click on image for page of graphics and detailed information "Not only has no one ever found a void this big, but we never even expected to find one this size," said Lawrence Rudnick of the University of Minnesota. Rudnick, along with Shea Brown and Liliya R. Williams, also of the University of Minnesota, reported their findings in a paper accepted for publication in the Astrophysical Journal. Astronomers have known for years that, on large scales, the Universe has voids largely empty of matter. However, most of these voids are much smaller than the one found by Rudnick and his colleagues. In addition, the number of discovered voids decreases as the size increases. "What we've found is not normal, based on either observational studies or on computer simulations of the large-scale evolution of the Universe," Williams said. The astronomers drew their conclusion by studying data from the NRAO VLA Sky Survey (NVSS), a project that imaged the entire sky visible to the Very Large Array (VLA) radio telescope, part of the National Science Foundation's National Radio Astronomy Observatory (NRAO). Their careful study of the NVSS data showed a remarkable drop in the number of galaxies in a region of sky in the constellation Eridanus. "We already knew there was something different about this spot in the sky," Rudnick said. The region had been dubbed the "WMAP Cold Spot," because it stood out in a map of the Cosmic Microwave Background (CMB) radiation made by the Wilkinson Microwave Anisotopy Probe (WMAP) satellite

  9. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    NASA Astrophysics Data System (ADS)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  10. Manufacture of large glass honeycomb mirrors. [for astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Hill, J. M.

    1982-01-01

    The problem of making very large glass mirrors for astronomical telescopes is examined, and the advantages of honeycomb mirrors made of borosilicate glass are discussed. Thermal gradients in the glass that degrade the figure of thick borosilicate mirrors during use can be largely eliminated in a honeycomb structure by internal ventilation (in air) or careful control of the radiation environment (in space). It is expected that ground-based telescopes with honeycomb mirrors will give better images than those with solid mirrors. Materials, techniques, and the experience that has been gained making trial mirrors and test castings as part of a program to develop 8-10-m-diameter lightweight mirrors are discussed.

  11. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.

    2009-01-01

    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance

  12. AstroVis: Visualizing astronomical data cubes

    NASA Astrophysics Data System (ADS)

    Finniss, Stephen; Tyler, Robin; Questiaux, Jacques

    2016-08-01

    AstroVis enables rapid visualization of large data files on platforms supporting the OpenGL rendering library. Radio astronomical observations are typically three dimensional and stored as data cubes. AstroVis implements a scalable approach to accessing these files using three components: a File Access Component (FAC) that reduces the impact of reading time, which speeds up access to the data; the Image Processing Component (IPC), which breaks up the data cube into smaller pieces that can be processed locally and gives a representation of the whole file; and Data Visualization, which implements an approach of Overview + Detail to reduces the dimensions of the data being worked with and the amount of memory required to store it. The result is a 3D display paired with a 2D detail display that contains a small subsection of the original file in full resolution without reducing the data in any way.

  13. Astronomers Unveiling Life's Cosmic Origins

    NASA Astrophysics Data System (ADS)

    2009-02-01

    Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers armed with powerful new research tools, and even better tools soon will be available. Astronomers described three important developments at a symposium on the "Cosmic Cradle of Life" at the annual meeting of the American Association for the Advancement of Science in Chicago, IL. Chemistry Cycle The Cosmic Chemistry Cycle CREDIT: Bill Saxton, NRAO/AUI/NSF Full Size Image Files Chemical Cycle Graphic (above image, JPEG, 129K) Graphic With Text Blocks (JPEG, 165K) High-Res TIFF (44.2M) High-Res TIFF With Text Blocks (44.2M) In one development, a team of astrochemists released a major new resource for seeking complex interstellar molecules that are the precursors to life. The chemical data released by Anthony Remijan of the National Radio Astronomy Observatory (NRAO) and his university colleagues is part of the Prebiotic Interstellar Molecule Survey, or PRIMOS, a project studying a star-forming region near the center of our Milky Way Galaxy. PRIMOS is an effort of the National Science Foundation's Center for Chemistry of the Universe, started at the University of Virginia (UVa) in October 2008, and led by UVa Professor Brooks H. Pate. The data, produced by the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, came from more than 45 individual observations totalling more than nine GigaBytes of data and over 1.4 million individual frequency channels. Scientists can search the GBT data for specific radio frequencies, called spectral lines -- telltale "fingerprints" -- naturally emitted by molecules in interstellar space. "We've identified more than 720 spectral lines in this collection, and about 240 of those are from unknown molecules," Remijan said. He added, "We're making available to all scientists the best collection of data below 50 GHz ever produced for

  14. Effectiveness of Amateur Astronomers as Informal Science Educators

    ERIC Educational Resources Information Center

    Gibbs, Michael G.; Berendsen, Margaret

    2007-01-01

    The Astronomical Society of the Pacific (ASP) conducted a national survey of in-service teachers participating in Project ASTRO. The survey results document (1) the value that teachers place on supplemental astronomy education provided by professional and amateur astronomers, and (2) the difference that teachers perceive in the value provided by…

  15. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Read more: www.nasa.gov/feature/goddard/astronomers-set-a-new-galaxy... Credits: NASA, ESA, P. Oesch (Yale U.) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Rocket instrument for far-UV spectrophotometry of faint astronomical objects.

    PubMed

    Hartig, G F; Fastie, W G; Davidsen, A F

    1980-03-01

    A sensitive sounding rocket instrument for moderate (~10-A) resolution far-UV (lambda1160-lambda1750-A) spectrophotometry of faint astronomical objects has been developed. The instrument employs a photon-counting microchannel plate imaging detector and a concave grating spectrograph behind a 40-cm Dall-Kirkham telescope. A unique remote-control pointing system, incorporating an SIT vidicon aspect camera, two star trackers, and a tone-encoded command telemetry link, permits the telescope to be oriented to within 5 arc sec of any target for which suitable guide stars can be found. The design, construction, calibration, and flight performance of the instrument are discussed.

  17. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  18. NASA/IPAC Infrared Archive's General Image Cutouts Service

    NASA Astrophysics Data System (ADS)

    Alexov, A.; Good, J. C.

    2006-07-01

    The NASA/IPAC Infrared Archive (IRSA) ``Cutouts" Service (http://irsa.ipac.caltech.edu/applications/Cutouts) is a general tool for creating small ``cutout" FITS images and JPEGs from collections of data archived at IRSA. This service is a companion to IRSA's Atlas tool (http://irsa.ipac.caltech.edu/applications/Atlas/), which currently serves over 25 different data collections of various sizes and complexity and returns entire images for a user-defined region of the sky. The Cutouts Services sits on top of Atlas and extends the Atlas functionality by generating subimages at locations and sizes requested by the user from images already identified by Atlas. These results can be downloaded individually, in batch mode (using the program wget), or as a tar file. Cutouts re-uses IRSA's software architecture along with the publicly available Montage mosaicking tools. The advantages and disadvantages of this approach to generic cutout serving will be discussed.

  19. a New Graduation Algorithm for Color Balance of Remote Sensing Image

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Liu, X.; Yue, T.; Wang, Q.; Sha, H.; Huang, S.; Pan, Q.

    2018-05-01

    In order to expand the field of view to obtain more data and information when doing research on remote sensing image, workers always need to mosaicking images together. However, the image after mosaic always has the large color differences and produces the gap line. This paper based on the graduation algorithm of tarigonometric function proposed a new algorithm of Two Quarter-rounds Curves (TQC). The paper uses the Gaussian filter to solve the program about the image color noise and the gap line. The paper used one of Greenland compiled data acquired in 1963 from Declassified Intelligence Photography Project (DISP) by ARGON KH-5 satellite, and used the photography of North Gulf, China, by Landsat satellite to experiment. The experimental results show that the proposed method has improved the accuracy of the results in two parts: on the one hand, for the large color differences remote sensing image will become more balanced. On the other hands, the remote sensing image will achieve more smooth transition.

  20. The associate principal astronomer telescope operations model

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John; Swanson, Keith; Edgington, Will; Henry, Greg

    1994-01-01

    This paper outlines a new telescope operations model that is intended to achieve low operating costs with high operating efficiency and high scientific productivity. The model is based on the existing Principal Astronomer approach used in conjunction with ATIS, a language for commanding remotely located automatic telescopes. This paper introduces the notion of an Associate Principal Astronomer, or APA. At the heart of the APA is automatic observation loading and scheduling software, and it is this software that is expected to help achieve efficient and productive telescope operations. The purpose of the APA system is to make it possible for astronomers to submit observation requests to and obtain resulting data from remote automatic telescopes, via the Internet, in a highly-automated way that minimizes human interaction with the system and maximizes the scientific return from observing time.

  1. Developing an Undergraduate Astronomical Research Program

    NASA Astrophysics Data System (ADS)

    Genet, R. M.

    2007-05-01

    Time-series astronomical photometry is an area of scientific research well suited to amateurs and undergraduates, and their backyard and campus observatories. I describe two past one-semester community college research programs, one six year ago and one last fall (2006), as well as a program planned for this coming fall (2007). The 2001 program, a course at Central Arizona College, utilized a robotic telescope at the Fairborn Observatory. Results were presented at the 200th meeting of the American Astronomical Society. This past fall, three students, in a 17-week, one-semester course at Cuesta College, were able to plan a research program, make several thousand CCD photometric observations, reduce and analyze their data, write up their results and, on the last day of class, send their paper off to a refereed journal, the JAAVSO. A course is being offered this coming fall (2007) that will involve about a dozen students (including high school students), several local amateur astronomers, and at least three CCD- equipped semi-automatic telescopes. Potential solutions to "scaling up" challenges created by increased class size are discussed.

  2. Elizabeth Brown (1830-1899), solar astronomer

    NASA Astrophysics Data System (ADS)

    Creese, M.

    1998-08-01

    Were it not for the fact that she was a woman, Elizabeth Brown might well be thought of as a fairly typical nineteenth-century British amateur astronomer. She has a place, although a relatively modest one, in the distinguished group of people who, with their own fortunes, carried out much of the astronomical research being done in the country at a time before extensive government support was forthcoming for the work.1 Her career in fact follows a pattern common to several of the nineteenth-century men astronomers in that her full productive period came only after she was freed from her primary responsibilities; she did not have to amass the necessary financial resources as did many of the men,2 but she had the time-consuming responsibility, not unusual for a Victorian woman, of caring for a parent through a lengthy old age. Only after her father died at the age of ninety-one, did Elizabeth, then in her early fifties, begin her sixteen years of remarkable public activity in astronomy.

  3. Significant Problems in FITS Limit Its Use in Modern Astronomical Research

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Jenness, T.; Economou, F.; Greenfield, P.; Hirst, P.; Berry, D. S.; Bray, E. M.; Gray, N.; Muna, D.; Turner, J.; de Val-Borro, M.; Santander-Vela, J.; Shupe, D.; Good, J.; Berriman, G. B.

    2014-05-01

    The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists, and the public to exchange astronomical information easily. The FITS standard is, however, showing its age. Developed in the late 1970s the FITS authors made a number of implementation choices for the format that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not appreciate the challenges which we would be facing today in astronomical computing. Difficulties we now face include, but are not limited to, having to address the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets and the need to capture significantly more complex and data relationships. There are members of the community today who find some (or all) of these limitations unworkable, and have decided to move ahead with storing data in other formats. This reaction should be taken as a wakeup call to the FITS community to make changes in the FITS standard, or to see its usage fall. In this paper we detail some selected important problems which exist within the FITS standard today. It is not our intention to prescribe specific remedies to these issues; rather, we hope to call attention of the FITS and greater astronomical computing communities to these issues in the hopes that it will spur action to address them.

  4. A Graduate Seminar on Astronomical Citizenship at Indiana University

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Durisen, Richard H.

    A series of graduate seminars on the activities of professional astronomers in the astronomical community was held at Indiana University during the spring 2002 semester. The seminars covered such topics as the role of professional societies, scholarly publishing, teaching, public outreach, the NSF and NASA, and the federal research budget. The goal of the series was first to inform our students about the many aspects of being a professional astronomer that are not covered in their normal coursework, and second, to foster in our students an appreciation of the value of service to the community.

  5. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  6. Virtually transparent epidermal imagery (VTEI): on new approaches to in vivo wireless high-definition video and image processing.

    PubMed

    Anderson, Adam L; Lin, Bingxiong; Sun, Yu

    2013-12-01

    This work first overviews a novel design, and prototype implementation, of a virtually transparent epidermal imagery (VTEI) system for laparo-endoscopic single-site (LESS) surgery. The system uses a network of multiple, micro-cameras and multiview mosaicking to obtain a panoramic view of the surgery area. The prototype VTEI system also projects the generated panoramic view on the abdomen area to create a transparent display effect that mimics equivalent, but higher risk, open-cavity surgeries. The specific research focus of this paper is on two important aspects of a VTEI system: 1) in vivo wireless high-definition (HD) video transmission and 2) multi-image processing-both of which play key roles in next-generation systems. For transmission and reception, this paper proposes a theoretical wireless communication scheme for high-definition video in situations that require extremely small-footprint image sensors and in zero-latency applications. In such situations the typical optimized metrics in communication schemes, such as power and data rate, are far less important than latency and hardware footprint that absolutely preclude their use if not satisfied. This work proposes the use of a novel Frequency-Modulated Voltage-Division Multiplexing (FM-VDM) scheme where sensor data is kept analog and transmitted via "voltage-multiplexed" signals that are also frequency-modulated. Once images are received, a novel Homographic Image Mosaicking and Morphing (HIMM) algorithm is proposed to stitch images from respective cameras, that also compensates for irregular surfaces in real-time, into a single cohesive view of the surgical area. In VTEI, this view is then visible to the surgeon directly on the patient to give an "open cavity" feel to laparoscopic procedures.

  7. The challengers of an astronomer being a journalist

    NASA Astrophysics Data System (ADS)

    Podorvanyuk, N.

    2015-03-01

    As the weakness of russian astronomers in observational astronomy became chronic Russia should enter European Southern Observatory. But the Russian government is still not providing any financing of the entrance of Russia to ESO. The author states this situation as an example of his experience of work as an astronomer and as a journalist at the same time.

  8. Scientific and technical collaboration between Russian and Ukranian researchers and manufacturers on the development of astronomical instruments equipped with advanced detection services

    NASA Astrophysics Data System (ADS)

    Vishnevsky, G. I.; Galyatkin, I. A.; Zhuk, A. A.; Iblyaminova, A. F.; Kossov, V. G.; Levko, G. V.; Nesterov, V. K.; Rivkind, V. L.; Rogalev, Yu. N.; Smirnov, A. V.; Gumerov, R. I.; Bikmaev, I. F.; Pinigin, G. I.; Shulga, A. V.; Kovalchyk, A. V.; Protsyuk, Yu. I.; Malevinsky, S. V.; Abrosimov, V. M.; Mironenko, V. N.; Savchenko, V. V.; Ivaschenko, Yu. N.; Andruk, V. M.; Dalinenko, I. N.; Vydrevich, M. G.

    2003-01-01

    The paper presents the possibilities and a list of tasks that are solved by collaboration between research and production companies, and astronomical observatories of Russia and Ukraine in the field of development, modernization and equipping of various telescopes (the AMC, RTT-150, Zeiss-600 and quantum-optical system Sazhen-S types) with advanced charge-coupled device (CCD) cameras. CCD imagers and ditital CCD cameras designed and manufactured by the "Electron-Optronic" Research & Production Company, St Petersburg, to equip astronomical telescopes and scientific instruments are described.

  9. Astronomical Symbolism in Bronze-Age and Iron-Age Rock Art

    NASA Astrophysics Data System (ADS)

    García Quintela, Marco V.; Santos-Estévez, Manuel

    The best-known rock art from Late Prehistory is found in Scandinavia, the Alps, and Galicia, North West Spain. In this chapter, we explore its association with astronomical symbolism from three perspectives: the representation of heavenly bodies, the visibility conditions of the carvings, and their position on astronomical alignments. We also consider temporal variables and the impact of aspects of Indo-European ideology on the construction of the representations in their astronomical relationships.

  10. Filling the Astronomical Void - A Visual Medium for a Visual Subject

    NASA Astrophysics Data System (ADS)

    Ryan, J.

    1996-12-01

    Astronomy is fundamentally a visual subject. The modern science of astronomy has at its foundation the ancient art of observing the sky visually. The visual elements of astronomy are arguably the most important. Every person in the entire world is affected by visually-observed astronomical phenomena such as the seasonal variations in daylight. However, misconceptions abound and the average person cannot recognize the simple signs in the sky that point to the direction, the hour and the season. Educators and astronomy popularizers widely lament that astronomy is not appreciated in our society. Yet, there is a remarkable dearth of popular literature for teaching the visual elements of astronomy. This is what I refer to as *the astronomical void.* Typical works use illustrations sparsely, relying most heavily on text-based descriptions of the visual astronomical phenomena. Such works leave significant inferential gaps to the inexperienced reader, who is unequipped for making astronomical observations. Thus, the astronomical void remains unfilled by much of the currently available literature. I therefore propose the introduction of a visually-oriented medium for teaching the visual elements of Astronomy. To this end, I have prepared a series of astronomy "comic strips" that are intended to fill the astronomical void. By giving the illustrations the central place, the comic strip medium permits the depiction of motion and other sequential activity, thus effectively representing astronomical phenomena. In addition to the practical advantages, the comic strip is a "user friendly" medium that is inviting and entertaining to a reader. At the present time, I am distributing a monthly comic strip entitled *Starman*, which appears in the newsletters of over 120 local astronomy organizations and on the web at http://www.cyberdrive.net/ starman. I hope to eventually publish a series of full-length books and believe that astronomical comic strips will help expand the perimeter of

  11. Thomas Harriot: the first telescopic astronomer

    NASA Astrophysics Data System (ADS)

    Chapman, A.

    2008-12-01

    I am going to devote the 2007 Christmas Lecture to Thomas Harriot. I think it is appropriate to do so because next year, 2008, will be the 400th anniversary of the invention of the telescope, by Hans Lippershey, Zacharias Jannsen, and perhaps other Dutchmen. And although the principles of the instrument were first made public in 1608, it was at least eight months before anybody recognised that it possessed any scientific potential. For at first, the telescope was used as a military or naval device, or regarded purely as a novelty. As far as we can tell from the historical record, however, it was Thomas Harriot who became the first person to look at an astronomical body through a telescope, on or before 1609 July 26, when he came to realise that the image of the Moon produced by it was very different from what was seen by the naked eye, although he did not publish his discovery.

  12. Review on the Celestial Sphere Positioning of FITS Format Image Based on WCS and Research on General Visualization

    NASA Astrophysics Data System (ADS)

    Song, W. M.; Fan, D. W.; Su, L. Y.; Cui, C. Z.

    2017-11-01

    Calculating the coordinate parameters recorded in the form of key/value pairs in FITS (Flexible Image Transport System) header is the key to determine FITS images' position in the celestial system. As a result, it has great significance in researching the general process of calculating the coordinate parameters. By combining CCD related parameters of astronomical telescope (such as field, focal length, and celestial coordinates in optical axis, etc.), astronomical images recognition algorithm, and WCS (World Coordinate System) theory, the parameters can be calculated effectively. CCD parameters determine the scope of star catalogue, so that they can be used to build a reference star catalogue by the corresponding celestial region of astronomical images; Star pattern recognition completes the matching between the astronomical image and reference star catalogue, and obtains a table with a certain number of stars between CCD plane coordinates and their celestial coordinates for comparison; According to different projection of the sphere to the plane, WCS can build different transfer functions between these two coordinates, and the astronomical position of image pixels can be determined by the table's data we have worked before. FITS images are used to carry out scientific data transmission and analyze as a kind of mainstream data format, but only to be viewed, edited, and analyzed in the professional astronomy software. It decides the limitation of popular science education in astronomy. The realization of a general image visualization method is significant. FITS is converted to PNG or JPEG images firstly. The coordinate parameters in the FITS header are converted to metadata in the form of AVM (Astronomy Visualization Metadata), and then the metadata is added to the PNG or JPEG header. This method can meet amateur astronomers' general needs of viewing and analyzing astronomical images in the non-astronomical software platform. The overall design flow is realized

  13. The ESO astronomical site monitor upgrade

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Sommer, Heiko; Sarazin, Marc; Bierwirth, Thomas; Dorigo, Dario; Vera Sequeiros, Ignacio; Navarrete, Julio; Del Valle, Diego

    2016-08-01

    Monitoring and prediction of astronomical observing conditions are essential for planning and optimizing observations. For this purpose, ESO, in the 90s, developed the concept of an Astronomical Site Monitor (ASM), as a facility fully integrated in the operations of the VLT observatory[1]. Identical systems were installed at Paranal and La Silla, providing comprehensive local weather information. By now, we had very good reasons for a major upgrade: • The need of introducing new features to satisfy the requirements of observing with the Adaptive Optics Facility and to benefit other Adaptive Optics systems. • Managing hardware and software obsolescence. • Making the system more maintainable and expandable by integrating off-the-shelf hardware solutions. The new ASM integrates: • A new Differential Image Motion Monitor (DIMM) paired with a Multi Aperture Scintillation Sensor (MASS) to measure the vertical distribution of turbulence in the high atmosphere and its characteristic velocity. • A new SLOpe Detection And Ranging (SLODAR) telescope, for measuring the altitude and intensity of turbulent layers in the low atmosphere. • A water vapour radiometer to monitor the water vapour content of the atmosphere. • The old weather tower, which is being refurbished with new sensors. The telescopes and the devices integrated are commercial products and we have used as much as possible the control system from the vendors. The existing external interfaces, based on the VLT standards, have been maintained for full backward compatibility. All data produced by the system are directly fed in real time into a relational database. A completely new web-based display replaces the obsolete plots based on HP-UX RTAP. We analyse here the architectural and technological choices and discuss the motivations and trade-offs.

  14. Development of a digital astronomical intensity interferometer: laboratory results with thermal light

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David; LeBohec, Stephan

    2018-06-01

    We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.

  15. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  16. Diffraction-limited lucky imaging with a 12" commercial telescope

    NASA Astrophysics Data System (ADS)

    Baptista, Brian J.

    2014-08-01

    Here we demonstrate a novel lucky imaging camera which is designed to produce diffraction-limited imaging using small telescopes similar to ones used by many academic institutions for outreach and/or student training. We present a design that uses a Meade 12" SCT paired with an Andor iXon fast readout EMCCD. The PSF of the telescope is matched to the pixel size of the EMCCD by adding a simple, custom-fabricated, intervening optical system. We demonstrate performance of the system by observing both astronomical and terrestrial targets. The astronomical application requires simpler data reconstruction techniques as compared to the terrestrial case. We compare different lucky imaging registration and reconstruction algorithms for use with this imager for both astronomical and terrestrial targets. We also demonstrate how this type of instrument would be useful for both undergraduate and graduate student training. As an instructional aide, the instrument can provide a hands-on approach for teaching instrument design, standard data reduction techniques, lucky imaging data processing, and high resolution imaging concepts.

  17. Division XII / Commission 46 / Program Group Exchnage of Astronomers

    NASA Astrophysics Data System (ADS)

    Percy, John R.; Leung, Kam-Ching; Tolbert, Charles R.

    The Commission 46 Program Group Exchange of Astronomers (PG-EA) provides travel grants to astronomers and advanced students for research or study trips of at least three months duration. Highest priority is given to applicants from developing countries whose visits will benefit them, their institution and country, and the institution visited. This program, if used strategically, has the potential to support other Commission 46 programs such as Teaching for Astronomical Development (PG-TAD) and World Wide Development of Astronomy (PG-WWDA). Complete information about the program, and the application procedure, can be found at .

  18. Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Bradley G.; Schofield, Ian; Tompkins, Gregory; Davis, Gary R.

    2003-02-01

    Astronomical spectroscopy at submillimeter wavelengths holds much promise for fields as diverse as the study of planetary atmospheres, molecular clouds and extragalactic sources. Fourier transform spectrometers (FTS) represent an important class of spectrometers well suited to observations that require broad spectral coverage at intermediate spectral resolution. In this paper we present the design and performance of a novel FTS, which has been developed for use at the James Clerk Maxwell Telescope (JCMT). The design uses two broadband intensity beamsplitters in a Mach-Zehnder configuration, which provide access to all four interferometer ports while maintaining a high and uniform efficiency over a broad spectral range. Since the interferometer processes both polarizations it is twice as efficient as the Martin-Puplett interferometer (MPI). As with the MPI, the spatial separation of the two input ports allows a reference blackbody to be viewed at all times in one port, while continually viewing the astronomical source in the other. Furthermore, by minimizing the size of the optical beam at the beamsplitter, the design is well suited to imaging Fourier transform spectroscopy (IFTS) as evidenced by its selection for the SPIRE instrument on Herschel.

  19. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  20. The la Plata Astronomical Data Center

    NASA Astrophysics Data System (ADS)

    Marraco, H. G.

    1990-11-01

    RESUMEN. El Centro de Datos Astron6micos tiene su sede en la Facuitad de Ciencias Astron6micas y Geofisicas d la Universidad Nacional de La Plata y funciona por convenio entre esta facultad y el Centre des Stellaires de la Universite' Louis Pasteur en Estrasburgo (CDS), Francia. La finalidad de este centro es la de proveer a los astr6nomos del area con copias de los alrededor de 500 acumulados y/o preparados por el CDS a la vez que promover la producci6n y/o acumulaci6n de en el rea. Para la realizaci6n de esta tarea se cuenta con el apoyo del Centro Superior para el Procesamiento de la Informaci6n (CESPI) de la UNLP cuyos equipos se describen. Las tareas que se estan realizando incluyen la distribuci6n de SIMBAD a los astr6nomos argentinos y se efectuan ensayos de distribuci6n en linea de CD-ROM TEST DISK del Astronomical Data Center (ADC) de la NASA que contiene los 31 mas solicitados por los astr6nomos de todo el mundo. ABSTRACl The La Plata Astronomical Data Center operates by an agreement between the Facultad de Ciencias Astron6micas y Geofisicas at La Plata University and the Centre des Donnees Stellaires of Louis Pasteur University at Strasbourg (CDS), France. The purpose of the Center is to provide to the area astronomers with copies of the catalogs they need amongst those stored and/or prepared at CDS. At the same time the center will act of the astronomical data produced within its area. K words: DATA ANALYSIS

  1. Starstuff.org - Bridging the Cosmos Between Astronomers and the Public

    NASA Astrophysics Data System (ADS)

    Hamm, J. J.; Howell, D. A.

    1998-12-01

    Starstuff.org is a new web site featuring articles written by astronomers to promote general interest in astronomy and communicate directly the ideas and excitement that make astronomy popular with the public. Traditional media are limited as an outreach tool, because journalists and publishers decide which topics are newsworthy, and many facts are lost in the translation. Starstuff.org circumvents these problems by removing the middleman and allowing astronomers to communicate with the public directly. Readers can be assured of getting accurate information through the firsthand accounts of leaders in the field. This format also allows for the discussion of astronomical concepts and issues that may be important to astronomers but not considered newsworthy by journalists. The unique power of the computers and the internet as instructive tools is harnessed with features such as virtual reality (VRML) explorations of 3D concepts, interactive equations, animations to explain dynamic events, and hyperlinks to emphasize the connections between concepts and direct the reader to further resources. Topics may be explored in more creative ways and in greater depth than in traditional media, and astronomers can reach a wider audience than they could in a traditional lecture. The site's infrastructure, automated processing, and professional programmer/digital artist free contributors from having to know HTML, allowing them to concentrate on creative ways of presenting ideas. Any astronomer with email is encouraged to contribute.

  2. Preserving and Archiving Astronomical Photographic Plates

    NASA Astrophysics Data System (ADS)

    Castelaz, M. W.; Cline, J. D.

    2005-05-01

    Astronomical objects change with time. New observations complement past observations recorded on photographic plates. Analyses of changes provide essential routes to information about an object's formation, constitution and evolution. Preserving a century of photographic plate observations is thus of paramount importance. Plate collections are presently widely dispersed; plates may be stored in poor conditions, and are effectively inaccessible to both researchers and historians. We describe a planned project at Pisgah Astronomical Research Institute to preserve the collections of astronomical plates in the United States by gathering them into a single storage location. Collections will be sorted, cleaned, and cataloged on-line so as to provide access to researchers. Full scientific and historic use of the material then requires the observations themselves to be accessible digitally. The project's goal will be the availability of these data as a unique, fully-maintained scientific and educational resource. The new archive will support trans-disciplinary research such as the chemistry of the Earth's atmosphere, library information science, trends in local weather patterns, and impacts of urbanization on telescope use, while the hand-written observatory logs will be a valuable resource for science historians and biographers.

  3. Astronomers Without Borders: A Global Astronomy Community

    NASA Astrophysics Data System (ADS)

    Simmons, M.

    2011-10-01

    Astronomers Without Borders (AWB) brings together astronomy enthusiasts of all types - amateur astronomers, educators, professionals and "armchair" astronomers for a variety of online and physicalworld programs. The AWB web site provides social networking and a base for online programs that engage people worldwide in astronomy activities that transcend geopolitical and cultural borders. There is universal interest in astronomy, which has been present in all cultures throughout recorded history. Astronomy is also among the most accessible of sciences with the natural laboratory of the sky being available to people worldwide. There are few other interests for which people widely separated geographically can engage in activities involving the same objects. AWB builds on those advantages to bring people together. AWB also provides a platform where projects can reach a global audience. AWB also provides unique opportunities for multidisciplinary collaboration in EPO programs. Several programs including The World at Night, Global Astronomy Month and others will be described along with lessons learned.

  4. Misconceptions of Astronomical Distances

    ERIC Educational Resources Information Center

    Miller, Brian W.; Brewer, William F.

    2010-01-01

    Previous empirical studies using multiple-choice procedures have suggested that there are misconceptions about the scale of astronomical distances. The present study provides a quantitative estimate of the nature of this misconception among US university students by asking them, in an open-ended response format, to make estimates of the distances…

  5. ASURV: Astronomical SURVival Statistics

    NASA Astrophysics Data System (ADS)

    Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.

    2014-06-01

    ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

  6. European astronomers' successes with the Hubble Space Telescope*

    NASA Astrophysics Data System (ADS)

    1997-02-01

    [Figure: Laguna Nebula] Their work spans all aspects of astronomy, from the planets to the most distant galaxies and quasars, and the following examples are just a few European highlights from Hubble's second phase, 1994-96. A scarcity of midget stars Stars less massive and fainter than the Sun are much numerous in the Milky Way Galaxy than the big bright stars that catch the eye. Guido De Marchi and Francesco Paresce of the European Southern Observatory as Garching, Germany, have counted them. With the wide-field WFPC2 camera, they have taken sample censuses within six globular clusters, which are large gatherings of stars orbiting independently in the Galaxy. In every case they find that the commonest stars have an output of light that is only one-hundredth of the Sun's. They are ten times more numerous than stars like the Sun. More significant for theories of the Universe is a scarcity of very faint stars. Some astronomers have suggested that vast numbers of such stars could account for the mysterious dark matter, which makes stars and galaxies move about more rapidly than expected from the mass of visible matter. But that would require an ever-growing count of objects at low brightnesses, and De Marchi and Paresce find the opposite to be the case -- the numbers diminish. There may be a minimum size below which Nature finds starmaking difficult. The few examples of very small stars seen so far by astronomers may be, not the heralds of a multitude of dark-matter stars, but rareties. Unchanging habits in starmaking Confirmation that very small stars are scarce comes from Gerry Gilmore of the Institute of Astronomy in Cambridge (UK). He leads a European team that analyses long-exposure images in the WFPC2 camera, obtained as a by-product when another instrument is examining a selected object. The result is an almost random sample of well-observed stars and galaxies. The most remarkable general conclusion is that the make-up of stellar populations never seems to

  7. Lucky Imaging: Improved Localization Accuracy for Single Molecule Imaging

    PubMed Central

    Cronin, Bríd; de Wet, Ben; Wallace, Mark I.

    2009-01-01

    We apply the astronomical data-analysis technique, Lucky imaging, to improve resolution in single molecule fluorescence microscopy. We show that by selectively discarding data points from individual single-molecule trajectories, imaging resolution can be improved by a factor of 1.6 for individual fluorophores and up to 5.6 for more complex images. The method is illustrated using images of fluorescent dye molecules and quantum dots, and the in vivo imaging of fluorescently labeled linker for activation of T cells. PMID:19348772

  8. The National Astronomical Observatory of Japan and Post-war Japanese Optical Astronomy

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiyuki

    This paper depicts some aspects of the formative process of the Japanese optical and infrared astronomical community in the post-war period, featuring the transition of the National Astronomical Observatory of Japan(NAOJ). We take up three cases of telescope construction, examining their background and their contribution to the Japanese astronomical community. Through these cases, the characteristics of traditions and cultures of optical and infrared astronomy in Japan are considered. Although the Tokyo Astronomical Observatory (TAO) of the University of Tokyo, the predecessor of NAOJ, was originally founded as an agency for practical astronomical observation such as time and almanac service, it has become an international centre for all types of astrophysical research. Research and development of telescopes and observational instruments have become an important part of the astronomers' practice. Now, however, a number of Japanese universities are planning to have their own large to middle-sized telescopes, and a new style of astronomical research is emerging involving astrophysical studies utilising data acquired from the Virtual Observatory, so there is a distinct possibility that the status of the NAOJ will change even further in the future.

  9. Astronomy and astronomical education in the FSU (Former Soviet Union)

    NASA Astrophysics Data System (ADS)

    Bochkarev, Nikolai G.

    The current situation in astronomy and astronomical education over the territory of the Former Soviet Union is traced. New facilities for radioastronomy are being put into work - the most important of them being the 2 coupled 32-m dishes, VLBI network "Quasar"; a number of observatories are acquiring an international status (in the frame of CIS); INTERNET is becoming available for an increasing number of astronomical institutions. Azerbaijan astronomers have overcome their isolation from the rest of the world and cooperate actively with the astronomical community. All-Russia and international olympics in astronomy for high school students are held and attract participants from increasing number of regions of Russia and other states. The outcome of the 9th JENAM in Moscow and of the events attached to the Meeting is presented.

  10. Reducing the Requirements and Cost of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, W. Scott; Whitakter, Ann F. (Technical Monitor)

    2002-01-01

    Limits on astronomical telescope apertures are being rapidly approached. These limits result from logistics, increasing complexity, and finally budgetary constraints. In an historical perspective, great strides have been made in the area of aperture, adaptive optics, wavefront sensors, detectors, stellar interferometers and image reconstruction. What will be the next advances? Emerging data analysis techniques based on communication theory holds the promise of yielding more information from observational data based on significant computer post-processing. This paper explores some of the current telescope limitations and ponders the possibilities increasing the yield of scientific data based on the migration computer post-processing techniques to higher dimensions. Some of these processes hold the promise of reducing the requirements on the basic telescope hardware making the next generation of instruments more affordable.

  11. [French astronomical journals an interactivity of the scientific world].

    PubMed

    Vassilieff, Catherine

    2014-01-01

    Astronomical data issued from observatories find multiple uses on land, as well as on sea. Due to their structure and periodicity, scientific reviews are particularly adapted to peer review and sharing of data between astronomers as well as between astronomers and hobbyists. During the 19(th) century regional observatories first gather together professionals interested in the practical applications of the observations and later, under the influence of personalities such as Camille Flammarion, they bring together a larger non-professional audience. Being the epicentre of scientific exchange, the reviews have in the 20(th) century found their place on the websites of academic institutions as well as users forums.

  12. Professional- Amateur Astronomer Partnerships in Scientific Research: The Re-emergence of Jupiter's 5-Micron Hot Spots

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2012-12-01

    The night sky, with all its delights and mysteries, enthrall professional and amateur astronomers alike. The discrete data sets acquired by professional astronomers via their approved observing programs at various national facilities are supplemented by the nearly daily observations of the same celestial object by amateur astronomers around the world. The emerging partnerships between professional and dedicated amateur astronomers rely on creating a niche for long timeline of multispectral remote sensing. "Citizen Astronomy" can be thought of as the paradigm shift transforming the nature of observational astronomy. In the past decade, it is the collective observations and their analyses by the ever-increasing global network of amateur astronomers that has discovered interesting phenomena and provided the reference backdrop for observations by ground-based professional astronomers and spacecraft missions. We shall present results from our collaborations to observe the recent global upheaval on Jupiter for the past five years and illustrate the strong synergy between the two groups. Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. One set of features we are currently tracking is the variability of the discrete equatorial 5-μm hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5°N (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images (1980-1981). Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-μm thermal radiance. During the recent NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were

  13. Project ASTRO: How-To Manual for Teachers and Astronomers.

    ERIC Educational Resources Information Center

    Richter, Jessica; Fraknoi, Andrew

    Project ASTRO is an innovative program to support science education by linking teachers and students in grades 4-9 with amateur and professional astronomers with the overall goal being to increase students' interest in astronomy and science in general. This manual was designed for teachers, amateur and professional astronomers, youth group…

  14. Astronomical databases of Nikolaev Observatory

    NASA Astrophysics Data System (ADS)

    Protsyuk, Y.; Mazhaev, A.

    2008-07-01

    Several astronomical databases were created at Nikolaev Observatory during the last years. The databases are built by using MySQL search engine and PHP scripts. They are available on NAO web-site http://www.mao.nikolaev.ua.

  15. The Production Rate and Employment of Ph.D. Astronomers

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis S.

    2007-05-01

    As in many sciences, the production rate of new Ph.D. astronomers is decoupled from the global demand for trained scientists. As noted by Thronson (1991, PASP, 103, 90), overproduction appears to be built into the system, making the mathematical formulation of surplus astronomer production similar to that for industrial pollution models -- an unintended side effect of the process. Following Harris (1994, ASP Conf., 57, 12), I document the production of Ph.D. astronomers from 1990 to 2005 using the online Dissertation Abstracts database. To monitor the changing patterns of employment, I examine the number of postdoctoral, tenure-track, and other jobs advertised in the AAS Job Register during this same period. Although the current situation is clearly unsustainable, it was much worse a decade ago with nearly 7 new Ph.D. astronomers in 1995 for every new tenure-track job. While the number of new permanent positions steadily increased throughout the late 1990's, the number of new Ph.D. recipients gradually declined. After the turn of the century, the production of new astronomers leveled off, but new postdoctoral positions grew dramatically. There has also been recent growth in the number of non-tenure-track lecturer, research, and support positions. This is just one example of a larger cultural shift to temporary employment that is happening throughout society -- it is not unique to astronomy.

  16. Conducting Original, Hands-On Astronomical Research in the Classroom

    NASA Astrophysics Data System (ADS)

    Corneau, M. J.

    2009-12-01

    teachers to convey moderately complex computer science, optical, geographic, mathematical, informational and physical principles through hands-on telescope operations. In addition to the general studies aspects of classroom internet-based astronomy, Tzec Maun supports real science by enabling operators precisely point telescopes and acquire extremely faint, magnitude 19+ CCD images. Thanks to the creative Team of Photometrica (photometrica.org), my teams now have the ability to process and analyze images online and produce results in short order. Normally, astronomical data analysis packages cost greater than thousands of dollars for single license operations. Free to my team members, Photometrica allows students to upload their data to a cloud computing server and read precise photometric and/or astrometric results. I’m indebted to Michael and Geir for their support. The efficacy of student-based research is well documented. The Council on Undergraduate Research defines student research as, "an inquiry or investigation conducted by an undergraduate that makes an original intellectual or creative contribution to the discipline." (http://serc.carleton.edu/introgeo/studentresearch/What. Teaching from Tzec Maun in the classroom is the most original teaching research I can imagine. I very much look forward to presenting this program to the convened body.

  17. FITS Liberator: Image processing software

    NASA Astrophysics Data System (ADS)

    Lindberg Christensen, Lars; Nielsen, Lars Holm; Nielsen, Kaspar K.; Johansen, Teis; Hurt, Robert; de Martin, David

    2012-06-01

    The ESA/ESO/NASA FITS Liberator makes it possible to process and edit astronomical science data in the FITS format to produce stunning images of the universe. Formerly a plugin for Adobe Photoshop, the current version of FITS Liberator is a stand-alone application and no longer requires Photoshop. This image processing software makes it possible to create color images using raw observations from a range of telescopes; the FITS Liberator continues to support the FITS and PDS formats, preferred by astronomers and planetary scientists respectively, which enables data to be processed from a wide range of telescopes and planetary probes, including ESO's Very Large Telescope, the NASA/ESA Hubble Space Telescope, NASA's Spitzer Space Telescope, ESA's XMM-Newton Telescope and Cassini-Huygens or Mars Reconnaissance Orbiter.

  18. Giovanni Schiaparelli: Visions of a colour blind astronomer

    NASA Astrophysics Data System (ADS)

    Sheehan, W.

    1997-02-01

    The greatest observer of Mars of the nineteenth century was the Italian astronomer Giovanni Virginio Schiaparelli. In his classic compilation of Martian observations, La Planete Mars, published in 1892, Camille Flammarion readily conceded that Schiaparelli's was 'the greatest work which has been carried out with regard to Mars,'1 while another eminent Martian, Percival Lowell, referred to the Italian astronomer alone as his Martian master ('cher maitre Martien').

  19. High-resolution Ceres LAMO atlas derived from Dawn FC images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C.

    2016-12-01

    Introduction: NASA's Dawn spacecraft has been orbiting the dwarf planet Ceres since December 2015 in LAMO (High Altitude Mapping Orbit) with an altitude of about 400 km to characterize for instance the geology, topography, and shape of Ceres. One of the major goals of this mission phase is the global high-resolution mapping of Ceres. Data: The Dawn mission is equipped with a fram-ing camera (FC). The framing camera took until the time of writing about 27,500 clear filter images in LAMO with a resolution of about 30 m/pixel and dif-ferent viewing angles and different illumination condi-tions. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the target. A high-resolution shape model was provided by stereo processing of the HAMO dataset, orbit and attitude data are available as reconstructed SPICE data. Ceres' HAMO shape model is used for the calculation of the ray intersection points while the map projection itself was done onto a reference sphere of Ceres. The final step is the controlled mosaicking of all nadir images to a global mosaic of Ceres, the so called basemap. Ceres map tiles: The Ceres atlas will be produced in a scale of 1:250,000 and will consist of 62 tiles that conforms to the quadrangle schema for Venus at 1:5,000,000. A map scale of 1:250,000 is a compro-mise between the very high resolution in LAMO and a proper map sheet size of the single tiles. Nomenclature: The Dawn team proposed to the International Astronomical Union (IAU) to use the names of gods and goddesses of agriculture and vege-tation from world mythology as names for the craters and to use names of agricultural festivals of the world for other geological features. This proposal was ac-cepted by the IAU and the team proposed 92 names for geological features to the IAU

  20. The Aesthetics of Astrophysics: How to Make Appealing Color-composite Images that Convey the Science

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Levay, Zoltan G.; Frattare, Lisa M.; Arcand, Kimberly K.; Watzke, Megan

    2017-05-01

    Astronomy has a rich tradition of using color photography and imaging, for visualization in research as well as for sharing scientific discoveries in formal and informal education settings (i.e., for “public outreach”). In the modern era, astronomical research has benefitted tremendously from electronic cameras that allow data and images to be generated and analyzed in a purely digital form with a level of precision that previously was not possible. Advances in image-processing software have also enabled color-composite images to be made in ways that are much more complex than with darkroom techniques, not only at optical wavelengths but across the electromagnetic spectrum. The Internet has made it possible to rapidly disseminate these images to eager audiences. Alongside these technological advances, there have been gains in understanding how to make images that are scientifically illustrative as well as aesthetically pleasing. Studies have also given insights on how the public interprets astronomical images and how that can be different than professional astronomers. An understanding of these differences will help in the creation of images that are meaningful to both groups. In this invited review, we discuss the techniques behind making color-composite images as well as examine the factors one should consider when doing so, whether for data visualization or public consumption. We also provide a brief history of astronomical imaging with a focus on the origins of the "modern era" during which distribution of high-quality astronomical images to the public is a part of nearly every professional observatory's public outreach. We review relevant research into the expectations and misconceptions that often affect the public's interpretation of these images.

  1. Annotations of a Public Astronomer

    NASA Astrophysics Data System (ADS)

    Adamo, A.

    2011-06-01

    Angelo Adamo is an Italian astronomer and artist interested in inspiring people with scientifically-based tales. He has recently published two illustrated books exploring the relationships between mankind and cosmos through physics, art, literature, music, cartoons, and movies.

  2. A new product for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Gonsiorowski, Thomas

    1986-01-01

    A new commercial low-light imaging detector, the Photon Digitizing Camera (PDC), is based on the PAPA detector developed at Harvard University. The PDC generates (x, y, t)-coordinate data of each detected photoevent. Because the positional address computation is performed optically, very high counting rates are achieved even at full spatial resolution. Careful optomechanical and electronic design results in a compact, rugged detector with superb performance. The PDC will be used for speckle imaging of astronomical sources and other astronomical and low-light applications.

  3. The "visibility" of West European astronomical research.

    NASA Astrophysics Data System (ADS)

    Jaschek, C.

    Publications and citations of five West European astronomical communities (Switzerland, Sweden, GFR, France and Spain) are compared. A large proportion of astronomers are sparsely cited or not cited at all, a fact which shows that estimations of the number of scientists based upon citation statistics are underestimates. It is found that publication rates are similar but citation rates very dissimilar in the five countries. No clear explanation of these differences is found, except for Spain. A plea is made to use citation statistics rather than publication statistics for evaluation.

  4. Astronomical Activities with Disabled People

    NASA Astrophysics Data System (ADS)

    Gil, Amelia Ortiz

    With this contribution we would like to share our experiences in organizing astronomical activities addressed to people with disabilities. The goal is twofold: we would like to invite all those with similar experiences to contribute to the compilation of a document to guide other astronomers who might be interested in carrying out these kind of activities aimed at groups of people with special needs. We also want to persuade public outreach officers that working with disabled people is not as difficult as it may seem at first, as long as they are provided with adequate educational material and guidelines about how to do it. The final goal is to build a repository that can be used by educators and public outreach officers as a guide when working with disabled people, specially during the International Year of Astronomy.

  5. Reports on Astronomical Constants

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    Recent progress in the determination of astronomical constants is reviewed. By using the latest numerical integration of LC (Irwin and Fukushima, 1999) and the latest value of the geoidal potential W0 (Groten, 1999), we reestimated the general relativistic scale constants as LC = 1.480~826~867~4 × 10-8 ± 1.4 × 10-17, LG = 6.969~290~13 × 10-10 ± 6 × 10-18, and LB = 1.550~519~767~5 × 10-8 ± 2.0 × 10-17. Presented is a proposal to fix the numerical value of LG as the above in order to remove the geophysical ambiguity in its evaluation in the future. Next focused upon is the correction to the IAU 1976 Precession (Lieske et al., 1977). By simply averaging the latest VLBI-based determinations (Mathews et al., 2000; Petrov, 2000; Shirai and Fukushima, 2000; Vondrak and Ron, 2000) and the latest LLR-based determinations (Chapront et al., 1999), we obtained the best estimates of precession-related quantities at J2000.0: the general precession in longitude, p = 5~028.78 ± 0.03 ''/cy; obliquity of the ecliptic, ɛ0 = 23o26'21.''405~6 ± 0.''0005; and the pole offsets of the CEP of ICRS, Δ ψ0 sin ɛ0 = (-17.5 ± 0.8) mas, and Δ ɛ0 = (-5.2 ± 0.4) mas. After quoting the latest determination of mass of Pluto-Charon system (Tholen and Buie, 1997) and the recent change of G (Mohr and Taylor, 1999), proposed is a draft IAU 2000 File of Current Best Estimates of Astronomical Constants to replace the former 1994 version (Standish, 1995). It may even supplant the IAU 1976 System of Astronomical Constants (Duncombe et al., 1977), subject to discussion at this General Assembly.

  6. ODI - Portal, Pipeline, and Archive (ODI-PPA): a web-based astronomical compute archive, visualization, and analysis service

    NASA Astrophysics Data System (ADS)

    Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Harbeck, Daniel R.; Boroson, Todd; Liu, Wilson; Kotulla, Ralf; Shaw, Richard; Henschel, Robert; Rajagopal, Jayadev; Stobie, Elizabeth; Knezek, Patricia; Martin, R. Pierre; Archbold, Kevin

    2014-07-01

    The One Degree Imager-Portal, Pipeline, and Archive (ODI-PPA) is a web science gateway that provides astronomers a modern web interface that acts as a single point of access to their data, and rich computational and visualization capabilities. Its goal is to support scientists in handling complex data sets, and to enhance WIYN Observatory's scientific productivity beyond data acquisition on its 3.5m telescope. ODI-PPA is designed, with periodic user feedback, to be a compute archive that has built-in frameworks including: (1) Collections that allow an astronomer to create logical collations of data products intended for publication, further research, instructional purposes, or to execute data processing tasks (2) Image Explorer and Source Explorer, which together enable real-time interactive visual analysis of massive astronomical data products within an HTML5 capable web browser, and overlaid standard catalog and Source Extractor-generated source markers (3) Workflow framework which enables rapid integration of data processing pipelines on an associated compute cluster and users to request such pipelines to be executed on their data via custom user interfaces. ODI-PPA is made up of several light-weight services connected by a message bus; the web portal built using Twitter/Bootstrap, AngularJS and jQuery JavaScript libraries, and backend services written in PHP (using the Zend framework) and Python; it leverages supercomputing and storage resources at Indiana University. ODI-PPA is designed to be reconfigurable for use in other science domains with large and complex datasets, including an ongoing offshoot project for electron microscopy data.

  7. Professional Ethics for Astronomers

    NASA Astrophysics Data System (ADS)

    Marvel, K. B.

    2005-05-01

    There is a growing recognition that professional ethics is an important topic for all professional scientists, especially physical scientists. Situations at the National Laboratories have dramatically proven this point. Professional ethics is usually only considered important for the health sciences and the legal and medical professions. However, certain aspects of the day to day work of professional astronomers can be impacted by ethical issues. Examples include refereeing scientific papers, serving on grant panels or telescope allocation committees, submitting grant proposals, providing proper references in publications, proposals or talks and even writing recommendation letters for job candidates or serving on search committees. This session will feature several speakers on a variety of topics and provide time for questions and answers from the audience. Confirmed speakers include: Kate Kirby, Director Institute for Theoretical Atomic and Molecular Physics - Professional Ethics in the Physical Sciences: An Overview Rob Kennicutt, Astrophysical Journal Editor - Ethical Issues for Publishing Astronomers Peggy Fischer, Office of the NSF Inspector General - Professional Ethics from the NSF Inspector General's Point of View

  8. Long-publishing Astronomers, or the Problem of Classification

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2012-01-01

    In response to several discussions among astronomers and historians of astronomy, I started out to prepare a paper on long-publishing astronomers--those who published for 70, 75, or even 80 years. However, I soon ran into a number of questions of classification, and that turned out to be at least as interesting. How do we decide on classifications? Every time we choose classes, such as asteroids, planets and stars, we run into objects that seem to be in between. In the present case a number of questions arise: Who is an astronomer? Several of those with the longest publication runs started out as physicists, published for years in that subject only, and later took up astrophysics, eventually publishing a few (or even no) papers in astronomy journals. What is a publication? Should we count publications in physics, chemistry, or mathematics? What about philosophy of science or history of science? What about the elderly retired astronomer presenting a memoir of his or her own work? Abstracts of oral presentations? Textbooks? Monographs? Book reviews? Obituaries? Then there is the problem of posthumous publications. Probably most would include papers in the pipeline when the astronomer dies, but what about the case where the coauthor finally publishes the paper eight years after the death of the person of interest? I eventually decided to make two lists, one which would include most of the above, and one restricted to papers that make contributions to physical science. Note that I do not say "refereed,” as that presents its own problems, especially when applied to periods before the twentieth century.

  9. Improved Wallis Dodging Algorithm for Large-Scale Super-Resolution Reconstruction Remote Sensing Images.

    PubMed

    Fan, Chong; Chen, Xushuai; Zhong, Lei; Zhou, Min; Shi, Yun; Duan, Yulin

    2017-03-18

    A sub-block algorithm is usually applied in the super-resolution (SR) reconstruction of images because of limitations in computer memory. However, the sub-block SR images can hardly achieve a seamless image mosaicking because of the uneven distribution of brightness and contrast among these sub-blocks. An effectively improved weighted Wallis dodging algorithm is proposed, aiming at the characteristic that SR reconstructed images are gray images with the same size and overlapping region. This algorithm can achieve consistency of image brightness and contrast. Meanwhile, a weighted adjustment sequence is presented to avoid the spatial propagation and accumulation of errors and the loss of image information caused by excessive computation. A seam line elimination method can share the partial dislocation in the seam line to the entire overlapping region with a smooth transition effect. Subsequently, the improved method is employed to remove the uneven illumination for 900 SR reconstructed images of ZY-3. Then, the overlapping image mosaic method is adopted to accomplish a seamless image mosaic based on the optimal seam line.

  10. This Month in Astronomical History: Preliminary Survey Results

    NASA Astrophysics Data System (ADS)

    Wilson, Teresa

    2017-01-01

    This Month in Astronomical History is a short (~500 word) column on the AAS website that revisits significant astronomical events or the lives of people who have made a large impact on the field. The monthly column began in July 2016 at the request of the Historical Astronomical Division. Examples of topics that have been covered include Comet Shoemaker-Levy’s collision with Jupiter, the discovery of the moons of Mars, the life of Edwin Hubble, Maria Mitchell’s comet discovery, and the launch of Sputnik II. A survey concerning the column is in progress to ensure the column addresses the interests and needs of a broad readership, including historians, educators, research astronomers, and the general public. Eleven questions focus on the style and content of the column, while eight collect simple demographics. The survey has been available on the AAS website since and was mentioned in several AAS newsletters; however, non-members of AAS were also recruited to include respondents from a variety of backgrounds. Preliminary results of the survey are presented and will be used to hone the style and content of the column to serve the widest possible audience. Responses continue to be collected at: https://goo.gl/forms/Lhwl2aWJl2Vkoo7v1

  11. Astronomical dating in the 19th century

    NASA Astrophysics Data System (ADS)

    Hilgen, Frederik J.

    2010-01-01

    Today astronomical tuning is widely accepted as numerical dating method after having revolutionised the age calibration of the geological archive and time scale over the last decades. However, its origin is not well known and tracing its roots is important especially from a science historic perspective. Astronomical tuning developed in consequence of the astronomical theory of the ice ages and was repeatedly used in the second half of the 19th century before the invention of radio-isotopic dating. Building upon earlier ideas of Joseph Adhémar, James Croll started to formulate his astronomical theory of the ice ages in 1864 according to which precession controlled ice ages occur alternatingly on both hemispheres at times of maximum eccentricity of the Earth's orbit. The publication of these ideas compelled Charles Lyell to revise his Principles of Geology and add Croll's theory, thus providing an alternative to his own geographical cause of the ice ages. Both Croll and Lyell initially tuned the last glacial epoch to the prominent eccentricity maximum 850,000 yr ago. This age was used as starting point by Lyell to calculate an age of 240 million years for the beginning of the Cambrium. But Croll soon revised the tuning to a much younger less prominent eccentricity maximum between 240,000 and 80,000 yr ago. In addition he tuned older glacial deposits of late Miocene and Eocene ages to eccentricity maxima around 800,000 and 2,800,000 yr ago. Archibald and James Geikie were the first to recognize interglacials during the last glacial epoch, as predicted by Croll's theory, and attempted to tune them to precession. Soon after Frank Taylor linked a series of 15 end-moraines left behind by the retreating ice sheet to precession to arrive at a possible age of 300,000 yr for the maximum glaciation. In a classic paper, Axel Blytt (1876) explained the scattered distribution of plant groups in Norway to precession induced alternating rainy and dry periods as recorded by the

  12. Division B Commission 6: Astronomical Telegrams

    NASA Astrophysics Data System (ADS)

    Yamaoka, H.; Green, D. W. E.; Samus, N. N.; Aksnes, K.; Gilmore, A. C.; Nakano, S.; Sphar, T.; Tichá, J.; Williams, G. V.

    2016-04-01

    IAU Commission 6 ``Astronomical Telegrams'' had a single business meeting during Honolulu General Assembly of the IAU. It took place on Tuesday, 11 August 2015. The meeting was attended by Hitoshi Yamaoka (President), Daniel Green (Director of the Central Bureau for Astronomical Telegrams, CBAT, via Skype), Steven Chesley (JPL), Paul Chodas (JPL), Alan Gilmore (Canterbury University), Shinjiro Kouzuma (Chukyo University), Paolo Mazzali (Co-Chair of the Supernova Working Group), Elena Pian (Scuola Normale Superiore di Pisa), Marion Schmitz (chair IAU Working Group Designations + NED), David Tholen (University of Hawaii), Jana Ticha (Klet Observatory), Milos Tichy (Klet Observatory), Giovanni Valsecchi (INAF\\slash Italy), Gareth Williams (Minor Planet Center). Apologies: Nikolai Samus (General Catalogue of Variable Stars, GCVS).

  13. Automated microdensitometer for digitizing astronomical plates

    NASA Technical Reports Server (NTRS)

    Angilello, J.; Chiang, W. H.; Elmegreen, D. M.; Segmueller, A.

    1984-01-01

    A precision microdensitometer was built under control of an IBM S/1 time-sharing computer system. The instrument's spatial resolution is better than 20 microns. A raster scan of an area of 10x10 sq mm (500x500 raster points) takes 255 minutes. The reproducibility is excellent and the stability is good over a period of 30 hours, which is significantly longer than the time required for most scans. The intrinsic accuracy of the instrument was tested using Kodak standard filters, and it was found to be better than 3%. A comparative accuracy was tested measuring astronomical plates of galaxies for which absolute photoelectric photometry data were available. The results showed an accuracy excellent for astronomical applications.

  14. Astronomical Network for Teachers in Thailand

    NASA Astrophysics Data System (ADS)

    Kramer Hutawarakorn, Busaba; Soonthornthum, Boonraksar; Poshyachinda, Saran

    We report the latest development of a pilot project in establishing the astronomical network for teachers in Thailand. The project has been recently granted by the Institute for the Promotion of Teaching Science and Technology Thailand and operated by Sirindhorn Observatory Chiangmai University. The objectives of the project are (1) to establish a16-inch semi-robotic telescope which can be accessed from schools nationwide; and (2) to establish an educational website in Thai language which contains electronic textbook of astronomy online encyclopedia of astronomy observing projects astronomical database and links to other educational websites worldwide. The network will play important role in the development of teaching and learning astronomy in Thailand.

  15. Astronomers Gain Clues About Fundamental Physics

    NASA Astrophysics Data System (ADS)

    2005-12-01

    An international team of astronomers has looked at something very big -- a distant galaxy -- to study the behavior of things very small -- atoms and molecules -- to gain vital clues about the fundamental nature of our entire Universe. The team used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to test whether the laws of nature have changed over vast spans of cosmic time. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) "The fundamental constants of physics are expected to remain fixed across space and time; that's why they're called constants! Now, however, new theoretical models for the basic structure of matter indicate that they may change. We're testing these predictions." said Nissim Kanekar, an astronomer at the National Radio Astronomy Observatory (NRAO), in Socorro, New Mexico. So far, the scientists' measurements show no change in the constants. "We've put the most stringent limits yet on some changes in these constants, but that's not the end of the story," said Christopher Carilli, another NRAO astronomer. "This is the exciting frontier where astronomy meets particle physics," Carilli explained. The research can help answer fundamental questions about whether the basic components of matter are tiny particles or tiny vibrating strings, how many dimensions the Universe has, and the nature of "dark energy." The astronomers were looking for changes in two quantities: the ratio of the masses of the electron and the proton, and a number physicists call the fine structure constant, a combination of the electron charge, the speed of light and the Planck constant. These values, considered fundamental physical constants, once were "taken as time independent, with values given once and forever" said German particle physicist Christof Wetterich. However, Wetterich explained, "the viewpoint of modern particle theory has changed in recent years," with ideas such as

  16. Examination and notes to the astronomical records in >SUISHU<.

    NASA Astrophysics Data System (ADS)

    Liu, Ciyuan

    1996-06-01

    Astronomical records are an important part in Chinese official historical books. Their main purpose was for astrology and they are an obstacle for historians who read those books. With modern astronomical methods, one can compute and examine most of those ancient records. By comparing the computed results with the original texts, one can examine the texts, find their mistakes, study their observation method and regulation, inspect astrological theory, take a deeper understanding to those important historical materials. As an example the author deals with the astronomcial records of Dynasties Liang and Chen for 60 years in >SUISHU<, the official history of Dynasty Sui. He also synthesized other historical sources in addition to the astronomical computation.

  17. Recent Astronomical Development in Asia Pacific Rim

    NASA Astrophysics Data System (ADS)

    Leung, K.-C.

    2009-08-01

    For over two decades The Pacific Rim Conference on Stellar Astrophysics series has been held exclusively at the Asian Rim. The primary reason is that the majority of nations in Asia are less developed in Astronomy than many countries on the American Rim. At time same time, many nations in Asia are less able to afford the costs of long distance travel for astronomical conferences. As a result Asia has had a hold on the Pacific Rim Conferences. Over the last few years new research institutes have been coming on board. The ones that have most visibly emerged are; National Astronomical Research Institute of Thailand, NARIT, The Astrophysical Research Center for the Structure and Evolution of the Cosmos, ARCSEC, and Kavli Institute of Astronomy and Astrophysics at Peking University, KIAA-PKU. It is interesting to note the development and structure of each is very different. So far they all appear to be working well. Hopefully they will provide a variety of models for astronomical institutes in developing nations of the region and perhaps beyond.

  18. Different Categories of Astronomical Heritage: Issues and Challenges

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive

    2012-09-01

    Since 2008 the AWHWG has, on behalf of the IAU, been working with UNESCO and its advisory bodies to help identify, safeguard and promote cultural properties relating to astronomy and, where possible, to try to facilitate the eventual nomination of key astronomical heritage sites onto the World Heritage List. Unfortunately, the World Heritage Convention only covers fixed sites (i.e., the tangible immovable heritage of astronomy), and a key question for the UNESCO-IAU Astronomy and World Heritage Initiative (AWHI) is the extent to which the tangible moveable and intangible heritage of astronomy (e.g. moveable instruments; ideas and theories) influence the assessment of the tangible immovable heritage. Clearly, in an ideal world we should be concerned not only with tangible immovable heritage but, to quote the AWHWG's own Terms of Reference, ``to help ensure that cultural properties and artefacts significant in the development of astronomy, together with the intangible heritage of astronomy, are duly studied, protected and maintained, both for the greater benefit of humankind and to the potential benefit of future historical research''. With this in mind, the IAU/INAF symposium on ``Astronomy and its Instruments before and after Galileo'' held in Venice in Sep-Oct 2009 recommended that urgent steps should be taken 1. to sensitise astronomers and the general public, and particularly observatory directors and others with direct influence and control over astronomical resources, to the importance of identifying, protecting and preserving the various material products of astronomical research and discovery that already have, or have significant potential to acquire, universal value; (N.B. National or regional interests and concerns have no relevance in the assessment of ``universal value'', which, by definition, extends beyond cultural boundaries and, by reasonable expectation, down the generations into the future. 2. to identify modes of interconnectivity between

  19. The first massive astronomical observation event in Mexico City

    NASA Astrophysics Data System (ADS)

    Espinosa, Mariana; Hernandez, Xavier

    2011-06-01

    On the night of the 20th of February 2008 there was a total eclipse of the moon visible from Mexico City, with a total duration from 19:42 hrs to 23:09 hrs. At the Instituto de Astronomía, UNAM, we took this opportunity to organise a massive astronomical party on the central plaza of the city, the Zocalo. Over a period of about 6 hrs. we set up a huge astro-party, with free use of over 100 telescopes, where we estimate over 40,000 persons looked through an astronomical telescope at the moon and Saturn, most for the first time in their lives. Numerous stands including a children's games, an Astronomy conference room, and the free distribution of Astronomical material were organised. Here we describe some of the issues associated with the planning and implementation of the event. Coordination issues were complex, involving interaction with divers and numerous authorities, city, national, police, traffic, medical assistance in readiness, aide from other universities, and amateur astronomical societies, which supplied most of the telescopes. An extensive publicity campaign was launched with several weeks of anticipation, and although we had no way of estimating the public response, we were ready with over 800 volunteers at the Zócalo on the 20th of February. The public response was massive and overwhelmingly positive, thousands swarmed the square in a completely peaceful and well organised interaction between Astronomy and society at large, over many complementary levels

  20. Stars Take Longer to Form, Need a 'Kick' to Get Started, Astronomers Say

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Star formation is a longer process than previously thought, and is heavily dependent on outside events, such as supernova explosions, to trigger it, a team of astronomers has concluded. The scientists reached their conclusions after making a detailed study of a number of the dark gas clouds in which new stars are formed. Optical and mm-wave overlay of dark cloud Optical image of the dark cloud L57, with white contours indicating submillimeter-wave emission from dust within the dark cloud. "Our observations indicate that we need to drastically revise our ideas about the very early stages of star formation," said Claire Chandler, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. Chandler, who worked with John Richer and Anja Visser at the Mullard Radio Astronomy Observatory in the United Kingdom, presented the results at the American Astronomical Society's meeting in Washington, D.C. The astronomers observed the gas clouds with the SCUBA camera on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. This instrument is sensitive to submillimeter-wavelength radiation, which lies between radio waves and infrared waves in the electromagnetic spectrum. They studied clouds that previously had been observed with optical and infrared telescopes. The SCUBA images allowed them to see aspects of the clouds not visible at other wavelengths. Some young "protostars" are so deeply embedded in their parent gas clouds that they are invisible to infrared telescopes, while others have become visible by consuming and blowing away much of their surrounding clouds. Earlier studies had indicated that the "invisible" stars are only about one-tenth as common as those visible to infrared telescopes. "What we see in our study, however, is equal numbers of both types," said Chandler, who added, "This means that both stages probably have about the same lifetime -- roughly 200,000 years each." Another conclusion coming from the study is that star

  1. Astronomía Mocoví

    NASA Astrophysics Data System (ADS)

    López, A.; Giménez Benitez, S.; Fernández, L.

    El presente trabajo, es una revisión crítica de la astronomía en la cultura Mocoví, aportando a lo realizado previamente por Lehmann Nistche (Lehmann Nistche, 1924 y 1927) el resultado de nuestro trabajo de campo. Un mayor conocimiento de las cosmovisiones de las etnias de esta área es fundamental para una mejor comprensión de la dispersión de las ideas cosmológicas entre los pueblos aborígenes americanos, dada la importancia del corredor chaqueño como conexión entre las altas culturas andinas, la mesopotamia y la región pampeana (Susnik, 1972). Para ello se realiza una comparación con otras cosmovisiones del área americana. Nuestro aporte se enmarca dentro de las actuales líneas de trabajo mundialmente en desarrollo en Astronomía en la Cultura.

  2. Background derivation and image flattening: getimages

    NASA Astrophysics Data System (ADS)

    Men'shchikov, A.

    2017-11-01

    Modern high-resolution images obtained with space observatories display extremely strong intensity variations across images on all spatial scales. Source extraction in such images with methods based on global thresholding may bring unacceptably large numbers of spurious sources in bright areas while failing to detect sources in low-background or low-noise areas. It would be highly beneficial to subtract background and equalize the levels of small-scale fluctuations in the images before extracting sources or filaments. This paper describes getimages, a new method of background derivation and image flattening. It is based on median filtering with sliding windows that correspond to a range of spatial scales from the observational beam size up to a maximum structure width Xλ. The latter is a single free parameter of getimages that can be evaluated manually from the observed image ℐλ. The median filtering algorithm provides a background image \\tilde{Bλ} for structures of all widths below Xλ. The same median filtering procedure applied to an image of standard deviations 𝓓λ derived from a background-subtracted image \\tilde{Sλ} results in a flattening image \\tilde{Fλ}. Finally, a flattened detection image I{λD} = \\tilde{Sλ}/\\tilde{Fλ} is computed, whose standard deviations are uniform outside sources and filaments. Detecting sources in such greatly simplified images results in much cleaner extractions that are more complete and reliable. As a bonus, getimages reduces various observational and map-making artifacts and equalizes noise levels between independent tiles of mosaicked images.

  3. Improved upper winds models for several astronomical observatories.

    PubMed

    Roberts, Lewis C; Bradford, L William

    2011-01-17

    An understanding of wind speed and direction as a function of height are critical to the proper modeling of atmospheric turbulence. We have used radiosonde data from launch sites near significant astronomical observatories and created averaged profiles of wind speed and direction and have also computed Richardson number profiles. Using data from the last 30 years, we confirm a 1977 Greenwood wind profile, and extend it to include parameters that show seasonal variations and differences in location. The added information from our models is useful for the design of adaptive optics systems and other imaging systems. Our analysis of the Richardson number suggests that persistent turbulent layers may be inferred when low values are present in our long term averaged data. Knowledge of the presence of these layers may help with planning for adaptive optics and laser communications.

  4. Education and Outreach with the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Eisenhamer, B.; Raddick, M. J.; Mattson, B. J.; Harris, J.

    2012-01-01

    The Virtual Observatory (VO) is an international effort to bring a large-scale electronic integration of astronomy data, tools, and services to the global community. The Virtual Astronomical Observatory (VAO) is the U.S. NSF- and NASA-funded VO effort that seeks to put efficient astronomical tools in the hands of U.S. astronomers, students, educators, and public outreach leaders. These tools will make use of data collected by the multitude of ground- and space-based missions over the previous decades. Many future missions will also be incorporated into the VAO tools when they launch. The Education and Public Outreach (E/PO) program for the VAO is led by the Space Telescope Science Institute in collaboration with the HEASARC E/PO program and Johns Hopkins University. VAO E/PO efforts seek to bring technology, real-world astronomical data, and the story of the development and infrastructure of the VAO to the general public, formal education, and informal education communities. Our E/PO efforts will be structured to provide uniform access to VAO information, enabling educational opportunities across multiple wavelengths and time-series data sets. The VAO team recognizes that many VO programs have built powerful tools for E/PO purposes, such as Microsoft's World Wide Telescope, SDSS Sky Server, Aladin, and a multitude of citizen-science tools available from Zooniverse. We are building partnerships with Microsoft, Zooniverse, and NASA's Night Sky Network to leverage the communities and tools that already exist to meet the needs of our audiences. Our formal education program is standards-based and aims to give teachers the tools to use real astronomical data to teach the STEM subjects. To determine which tools the VAO will incorporate into the formal education program, needs assessments will be conducted with educators across the U.S.

  5. A sensitive infrared imaging up converter and spatial coherence of atmospheric propagation

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An infrared imaging technique based on the nonlinear interaction known as upconversion was used to obtain images of several astronomical objects in the 10 micrometer spectral region, and to demonstrate quantitatively the sharper images allowed for wavelengths beyond the visible region. The deleterious effects of atmospheric inhomogeneities on telescope resolution were studied in the infrared region using the technique developed. The low quantum efficiency of the device employed severely limited its usefulness as an astronomical detector.

  6. Laboratory Molecular Astrophysics as an Invaluable Tool in understanding Astronomical Observations.

    NASA Astrophysics Data System (ADS)

    Fraser, Helen Jane

    2015-08-01

    We are entering the decade of molecular astrochemistry: spectroscopic data pertaining to the interactions between baryonic matter and electromagnetic radiation are now at the forefront of astronomical observations. Elucidating such data is reliant on inputs from laboratory experiments, modeling, and theoretical chemistry / physics, a field that is intended to be a key focus for the proposed new commission in Laboratory Astrophysics.Here, we propose a “tour de force” review of some recent successes since the last GA in molecular astrophysics, particularly those that have been directly facilitated by laboratory data in Astrochemistry. It is vital to highlight to the astronomers that the absence of laboratory data from the literature would otherwise have precluded advances in our astronomical understanding, e.g:the detection of gas-phase water deep in pre-stellar cores,the detection of water and other molecular species in gravitationally lensed galaxies at z~6“Jumps” in the appearance or disappearance of molecules, including the very recent detection of the first branched organic molecule in the ISM, iso-propyl-cyanide,disentangling dense spectroscopic features in the sub-mm as measured by ALMA, Herschel and SOFIA, the so-called “weeds” and “flowers”,the first ''image'' of a CO snow-line in a protoplanetary disk.Looking forward, the advent of high spatial and spectral resolution telescopes, particularly ALMA, SKA E-ELT and JWST, will continue to drive forward the needs and interests of laboratory astrochemistry in the coming decade. We will look forward to five key areas where advances are expected, and both observational and laboratory techniques are evolving:-(a) understanding star forming regions at very high spatial and spectral senstivity and resolution(b) extragalactic astrochemistry(c) (exo-)planetary atmospheres, surfaces and Solar System sample return - linkinginterstellar and planetary chemistry(d) astrobiology - linking simple molecular

  7. Future Astronomical Observatories on the Moon

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Mendell, Wendell W. (Editor)

    1988-01-01

    Papers at a workshop which consider the topic astronomical observations from a lunar base are presented. In part 1, the rationale for performing astronomy on the Moon is established and economic factors are considered. Part 2 includes concepts for individual lunar based telescopes at the shortest X-ray and gamma ray wavelengths, for high energy cosmic rays, and at optical and infrared wavelengths. Lunar radio frequency telescopes are considered in part 3, and engineering considerations for lunar base observatories are discussed in part 4. Throughout, advantages and disadvantages of lunar basing compared to terrestrial and orbital basing of observatories are weighted. The participants concluded that the Moon is very possibly the best location within the inner solar system from which to perform front-line astronomical research.

  8. Daytime School Guided Visits to an Astronomical Observatory in Brazil

    ERIC Educational Resources Information Center

    Colombo, Pedro Donizete, Jr.; Silva, Cibelle Celestino; Aroca, Silvia Calbo

    2010-01-01

    This article analyzes the activity "Daytime School Guided Visits" at an astronomical observatory in Brazil with pupils from primary school. The adopted research methodology relied on questionnaire applications and semistructured interviews. The objectives were to identify the influences of the visits on learning of astronomical concepts…

  9. Astronomers' Do-It-Yourself Project Opening A New Window on the Universe

    NASA Astrophysics Data System (ADS)

    1999-05-01

    that we can see only by observing at these longer wavelengths," Kassim said. The results of their first observations with the new VLA system have proven their point. Aiming the VLA at the supernova remnant Cassiopeia A, the shell of debris from a giant stellar explosion, they found evidence for cool gas inside the shell that has not yet been shocked by the "reverse shock" that propagates backwards through the "ejecta" towards the explosion's center "We know how old this supernova remnant is -- about 300 years -- and whether or not the reverse shock would have passed through all the ejecta yet depends on the nature of the star that exploded and the characteristics of its winds and surroundings before its death," Kassim said. "Finding unshocked gas inside this remnant, the first direct case for such material detected in the radio part of the spectrum, confirms the predictions of supernova evolution theory and thereby advances them." Other observations showed giant, radio-emitting "bubbles" in the galaxy M87 in the constellation Virgo. These objects, also seen with the VLA at the somewhat higher frequency of 330 MHz, raised questions about how old they were and how they were powered, as well as how they are linked to the even larger halo of X-ray emission generated around this galaxy. "The shape and extent of these huge, radio-emitting regions suggests that they are relatively young, expanding, and are being powered by particles shot out of the galaxy's nucleus by the gravitational energy of a supermassive black hole," said Kassim. "Comparison of the higher frequency images with our new one made at 74 MHz show exactly the correspondence we would expect if the black hole is powering these regions," he added. The researchers, together with astronomer Phillip Kronberg and his collaborators from the University of Toronto, also looked at the Coma Cluster of galaxies, some 450 million light-years distant. "There is a radio-emitting halo around this cluster, and our image made

  10. Material parameters that determine the surface accuracy of large astronomical mirrors

    NASA Astrophysics Data System (ADS)

    Amur, G. I.

    1983-03-01

    The design and manufacture of large astronomical mirrors are examined from both theoretical and practical perspectives. The effects of birefringence, tool-load relief, cord position, and temperature gradient on the surface quality are assessed quantitatively and discussed in terms of material choice and fabrication technique. It is shown that a single cord positioned horizontally produces only minimum image distortion. Formulas for calculating the deformation of the wave front by the mirror surface due to birefringence difference, the optimum load relief, and the deformation temperature, are presented. Graphs of important relationships and a table listing the diameters and surface parameters of recently built large telescopes are provided.

  11. Space astronomical telescopes and instruments; Proceedings of the Meeting, Orlando, FL, Apr. 1-4, 1991

    NASA Astrophysics Data System (ADS)

    Bely, Pierre Y.; Breckinridge, James B.

    The present volume on space astronomical telescopes and instruments discusses lessons from the HST, telescopes on the moon, future space missions, and mirror fabrication and active control. Attention is given to the in-flight performance of the Goddard high-resolution spectrograph of the HST, the initial performance of the high-speed photometer, results from HST fine-guidance sensors, and reconstruction of the HST mirror figure from out-of-focus stellar images. Topics addressed include system concepts for a large UV/optical/IR telescope on the moon, optical design considerations for next-generation space and lunar telescopes, the implications of lunar dust for astronomical observatories, and lunar liquid-mirror telescopes. Also discussed are space design considerations for the Space Infrared Telescope Facility, the Hubble extrasolar planet interferometer, Si:Ga focal-plane arrays for satellite and ground-based telescopes, microchannel-plate detectors for space-based astronomy, and a method for making ultralight primary mirrors.

  12. Groth Deep Image

    NASA Image and Video Library

    2003-07-25

    This ultraviolet color blowup of the Groth Deep Image was taken by NASA Galaxy Evolution Explorer on June 22 and June 23, 2003. Many hundreds of galaxies are detected in this portion of the image. NASA astronomers believe the faint red galaxies are 6 billion light years away. http://photojournal.jpl.nasa.gov/catalog/PIA04625

  13. Some early astronomical sites in the Kashmir region

    NASA Astrophysics Data System (ADS)

    Iqbal, Naseer; Vahia, M. N.; Masood, Tabasum; Ahmad, Aijaz

    2009-03-01

    We discuss a number of early rock art sites in the Kashmir Valley in northern India and neighbouring Pakistan, and suggest that some of these contain depictions of astronomical objects or events. The sites are in the Srinagar and Sopore regions and in or near the Ladakh region, and date to Neolithic or Upper Paleolithic times. Our studies suggest that during this period some of the ancient astronomers recorded supernovae, meteorite impacts, the Sun, the Moon and the seasons in their rock art.

  14. Book Review: Scientific Writing for Young Astronomers

    NASA Astrophysics Data System (ADS)

    Uyttenhove, Jos

    2011-12-01

    EDP Sciences, Les Ulis, France. Part 1 : 162 pp. € 35 ISBN 978-2-7598-0506-8 Part 2 : 298 pp. € 60 ISBN 978-2-7598-0639-3 The journal Astronomy & Astrophysics (A&A) and EDP Sciences decided in 2007 to organize a School on the various aspects of scientific writing and publishing. In 2008 and 2009 Scientific Writing for Young Astronomers (SWYA) Schools were held in Blankenberge (B) under the direction of Christiaan Sterken (FWO-VUB). These two books (EAS publication series, Vol. 49 and 50) reflect the outcome of these Schools. Part 1 contains a set of contributions that discuss various aspects of scientific publication; it includes A&A Editors' view of the peer review and publishing process. A very interesting short paper by S.R. Pottasch (Kapteyn Astronomical Institute, Groningen, and one of the two first Editors-in Chief of A&A) deals with the history of the creation of the journal Astronomy & Astrophysics. Two papers by J. Adams et al. (Observatoire de Paris) discuss language editing, including a detailed guide for any non-native user of the English language. In 2002 the Board of Directors decided that all articles in A&A must be written in clear and correct English. Part 2 consists of three very extensive and elaborated papers by Christiaan Sterken, supplying guidelines to PhD students and postdoctoral fellows to help them compose scientific papers for different forums (journals, proceedings, thesis, etc.). This part is of interest not only for young astronomers but it is very useful for scholars of all ages and disciplines. Paper I "The writing process" (60 pp.) copes with the preparation of manuscripts, with communicating with editors and referees and with avoiding common errors. Delicate problems on authorship, refereeing, revising multi-authored papers etc. are treated in 26 FAQ's. Paper II "Communication by graphics" (120 pp.) is entirely dedicated to the important topic of communication with images, graphs, diagrams, tables etc. Design types of graphs

  15. Providing comprehensive and consistent access to astronomical observatory archive data: the NASA archive model

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas; Fabbiano, Giuseppina; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick; Pevunova, Olga; Imel, David; Berriman, Graham B.; Teplitz, Harry I.; Groom, Steve L.; Desai, Vandana R.; Landry, Walter

    2016-07-01

    Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.

  16. Providing Comprehensive and Consistent Access to Astronomical Observatory Archive Data: The NASA Archive Model

    NASA Technical Reports Server (NTRS)

    McGlynn, Thomas; Guiseppina, Fabbiano A; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick; hide

    2016-01-01

    Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.

  17. POST WWII Astronomy and Rebuilding U.S. Astronomical Institutions--The U.S. Perspective

    NASA Astrophysics Data System (ADS)

    Howard, W. E.

    1993-12-01

    A belief that technology contributed substantially to the winning of World War II spurred the formation of ONR, then NSF which was formed in ONR's image. NASA's space support, cold war competition, and ARPA's funding of high risk, high payoff technologies led to state-of-the-art instrumentation in astronomy. Limits on funding for instrumentation at individual institutions led to the concept and growth of national astronomy observatories that made observing time available to the best ideas from astronomers who had no access to big telescopes at home. Success of these major observatories lay also in their treatment of visitors who were made to feel a part of the institution. As federal funding became available, several issues were heavily debated, among which were overhead costs on grant awards, what the breakdown of responsibility should be for institutional vs. federal funding, spreading vs. concentrating the available funding, the role of the AAS and advisory groups, federal vs. researcher specification of the research program, and the roots of the modern debate concerning research relevance. U.S. astronomers are unique because of our eclecticism, our development of a winning system of workplaces, our peer review system, our united front presented by our projective planning and our periodic decade reviews, our international orientation, all in the context of national support that is preeminent in the world. These features operate within an economic system that enables us to communicate and travel easily, and scientific and academic administrations that permit astronomers to concentrate on their research without excess internal or external politics.

  18. Skype Me! Astronomers, Students, and Cutting-Edge Research

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan C.; Gauthier, Adrienne J.

    2014-06-01

    A primary goal of many university science courses is to promote understanding of the process of contemporary scientific inquiry. One powerful way to achieve this is for students to explore current research and then interact directly with the leading scientist, the feasibility of which has recently increased dramatically due to free online video communication tools. We report on a program implemented at Dartmouth College in which students connect with a guest astronomer through Skype (video chat). The Skype session is wrapped in a larger activity where students explore current research articles, interact with the astronomer, and then reflect on the experience. The in-class Skype discussions require a small time commitment from scientists (20-30 minutes, with little or no need for preparation) while providing students direct access to researchers at the cutting edge of modern astronomy. We outline the procedures used to implement these discussions, and present qualitative assessments of student's understanding of the process of research, as well as feedback from the guest astronomers.

  19. John Twysden and John Palmer: 17th-century Northamptonshire astronomers

    NASA Astrophysics Data System (ADS)

    Frost, M. A.

    2008-01-01

    John Twysden (1607-1688) and John Palmer (1612-1679) were two astronomers in the circle of Samuel Foster (circa 1600-1652), the subject of a recent paper in this journal. John Twysden qualified in law and medicine and led a peripatetic life around England and Europe. John Palmer was Rector of Ecton, Northamptonshire and later Archdeacon of Northampton. The two astronomers catalogued observations made from Northamptonshire from the 1640s to the 1670s. In their later years Twysden and Palmer published works on a variety of topics, often astronomical. Palmer engaged in correspondence with Henry Oldenburg, the first secretary of the Royal Society, on topics in astronomy and mathematics.

  20. Video-mosaicking of in vivo reflectance confocal microscopy images for noninvasive examination of skin lesion (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kose, Kivanc; Gou, Mengran; Yelamos, Oriol; Cordova, Miguel A.; Rossi, Anthony; Nehal, Kishwer S.; Camps, Octavia I.; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind

    2017-02-01

    In this report we describe a computer vision based pipeline to convert in-vivo reflectance confocal microscopy (RCM) videos collected with a handheld system into large field of view (FOV) mosaics. For many applications such as imaging of hard to access lesions, intraoperative assessment of MOHS margins, or delineation of lesion margins beyond clinical borders, raster scan based mosaicing techniques have clinically significant limitations. In such cases, clinicians often capture RCM videos by freely moving a handheld microscope over the area of interest, but the resulting videos lose large-scale spatial relationships. Videomosaicking is a standard computational imaging technique to register, and stitch together consecutive frames of videos into large FOV high resolution mosaics. However, mosaicing RCM videos collected in-vivo has unique challenges: (i) tissue may deform or warp due to physical contact with the microscope objective lens, (ii) discontinuities or "jumps" between consecutive images and motion blur artifacts may occur, due to manual operation of the microscope, and (iii) optical sectioning and resolution may vary between consecutive images due to scattering and aberrations induced by changes in imaging depth and tissue morphology. We addressed these challenges by adapting or developing new algorithmic methods for videomosaicking, specifically by modeling non-rigid deformations, followed by automatically detecting discontinuities (cut locations) and, finally, applying a data-driven image stitching approach that fully preserves resolution and tissue morphologic detail without imposing arbitrary pre-defined boundaries. We will present example mosaics obtained by clinical imaging of both melanoma and non-melanoma skin cancers. The ability to combine freehand mosaicing for handheld microscopes with preserved cellular resolution will have high impact application in diverse clinical settings, including low-resource healthcare systems.

  1. A website for astronomical news in Spanish

    NASA Astrophysics Data System (ADS)

    Ortiz-Gil, A.

    2008-06-01

    Noticias del Cosmos is a collection of web pages within the Astronomical Observatory of the University of Valencia's website where we publish short daily summaries of astronomical press releases. Most, if not all of, the releases are originally written in English, and often Spanish readers may find them difficult to understand because not many people are familiar with the scientific language employed in these releases. Noticias del Cosmos has two principal aims. First, we want to communicate the latest astronomical news on a daily basis to a wide Spanish-speaking public who would otherwise not be able to read them because of the language barrier. Second, daily news can be used as a tool to introduce the astronomical topics of the school curriculum in a more immediate and relevant way. Most of the students at school have not yet reached a good enough level in their knowledge of English to fully understand a press release, and Noticias del Cosmos offers them and their teachers this news in their mother tongue. During the regular programme of school visits at the Observatory we use the news as a means of showing that there is still a lot to be discovered. So far the visits to the website have been growing steadily. Between June 2003 and June 2007 we had more than 30,000 visits (excluding 2006). More than 50% of the visits come from Spain, followed by visitors from South and Central America. The feedback we have received from teachers so far has been very positive, showing the usefulness of news items in the classroom when teaching astronomy.

  2. A generalized measurement equation and van Cittert-Zernike theorem for wide-field radio astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Carozzi, T. D.; Woan, G.

    2009-05-01

    We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard `Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.

  3. Profiling Some of the Lesser-Known Historical Women Astronomers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley

    2016-01-01

    Although some historical women astronomers such as Henrietta Swan Leavitt and Cecilia Payne Gaposchkin have recently become somewhat well known among the astronomical community, many others--especially those from non-Western cultures--remain a mystery even to those of us who are actively aware of and interested in the role of early women in astronomy. As part of a project to educate myself on some of these women, I started a blog series (http://ashpags.tumblr.com/tagged/lady-astronomers) to share this newfound knowledge with a population that is on average relatively young, extremely tech savvy, and generally would not consider themselves to be science-inclined. I will discuss some of the more interesting women I have profiled, as well as my observations on the efficacy of this method of history education.

  4. MOSAIC: Software for creating mosaics from collections of images

    NASA Technical Reports Server (NTRS)

    Varosi, F.; Gezari, D. Y.

    1992-01-01

    We have developed a powerful, versatile image processing and analysis software package called MOSAIC, designed specifically for the manipulation of digital astronomical image data obtained with (but not limited to) two-dimensional array detectors. The software package is implemented using the Interactive Data Language (IDL), and incorporates new methods for processing, calibration, analysis, and visualization of astronomical image data, stressing effective methods for the creation of mosaic images from collections of individual exposures, while at the same time preserving the photometric integrity of the original data. Since IDL is available on many computers, the MOSAIC software runs on most UNIX and VAX workstations with the X-Windows or Sun View graphics interface.

  5. Astronomical masers and lasers

    NASA Astrophysics Data System (ADS)

    Townes, C. H.

    1997-12-01

    A brief account is given of the discovery of the astronomical maser and laser effects in OH radicals and in molecules of water (H2O), carbon monoxide and dioxide (CO and CO2), ammonia (NH3), methyl alcohol (CH3OH), formaldehyde (CH2O), and silicon oxide (SiO). A detailed table is given of all the currently known molecular stimulated-emission lines.

  6. Simple Astronomical Theory of Climate.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1979-01-01

    The author derives, applying perturbation theory, from a simple astronomical model the approximate periods of secular variation of some of the parameters of the Earth's orbit and relates these periods to the past climate of the Earth, indicating the difficulties in predicting the climate of the future. (GA)

  7. On astronomical drawing [1846

    NASA Astrophysics Data System (ADS)

    Smyth, Charles Piazzi

    Reprinted from the Memoirs of the Royal Astronomical Society 15, 1846, pp. 71-82. With annotations and illustrations added by Klaus Hentschel. The activities of the Astronomer Royal for Scotland, Charles Piazzi Smyth (1819-1900), include the triangulation of South African districts, landscape painting, day-to-day or tourist sketching, the engraving and lithographing of prominent architectural sites, the documentary photography of the Egyptian pyramids or the Tenerife Dragon tree, and `instant photographs' of the clouds above his retirement home in Clova, Ripon. His colorful records of the aurora polaris, and solar and terrestrial spectra all profited from his trained eye and his subtle mastery of the pen and the brush. As his paper on astronomical drawing, which we chose to reproduce in this volume, amply demonstrates, he was conversant in most of the print technology repertoire that the 19th century had to offer, and carefully selected the one most appropriate to each sujet. For instance, he chose mezzotint for the plates illustrating Maclear's observations of Halley's comet in 1835/36, so as to achieve a ``rich profundity of shadows, the deep obscurity of which is admirably adapted to reproduce those fine effects of chiaroscuro frequently found in works where the quantity of dark greatly predominates.'' The same expertise with which he tried to emulate Rembrandt's chiaroscuro effects he applied to assessing William and John Herschel's illustrations of nebulae, which appeared in print between 1811 and 1834. William Herschel's positive engraving, made partly by stippling and partly by a coarse mezzotint, receives sharp admonishment because of the visible ruled crossed lines in the background and the fact that ``the objects, which are also generally too light, [have] a much better definition than they really possess.'' On the other hand, John Herschel's illustration of nebulae and star clusters, given in negative, ``in which the lights are the darkest part of the

  8. The Binary Offset Effect in CCDs: an Anomalous Readout Artifact Affecting Most Astronomical CCDs in Use

    NASA Astrophysics Data System (ADS)

    Boone, Kyle Robert; Aldering, Gregory; Copin, Yannick; Dixon, Samantha; Domagalski, Rachel; Gangler, Emmanuel; Pecontal, Emmanuel; Perlmutter, Saul; Nearby Supernova Factory Collaboration

    2018-01-01

    We discovered an anomalous behavior of CCD readout electronics that affects their use in many astronomical applications, which we call the “binary offset effect”. Due to feedback in the readout electronics, an offset is introduced in the values read out for each pixel that depends on the binary encoding of the previously read-out pixel values. One consequence of this effect is that a pathological local background offset can be introduced in images that only appears where science data are present on the CCD. The amplitude of this introduced offset does not scale monotonically with the amplitude of the objects in the image, and can be up to 4.5 ADU per pixel for certain instruments. Additionally, this background offset will be shifted by several pixels from the science data, potentially distorting the shape of objects in the image. We tested 22 instruments for signs of the binary offset effect and found evidence of it in 16 of them, including LRIS and DEIMOS on the Keck telescopes, WFC3-UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT. A large amount of archival data is therefore affected by the binary offset effect, and conventional methods of reducing CCD images do not measure or remove the introduced offsets. As a demonstration of how to correct for the binary offset effect, we have developed a model that can accurately predict and remove the introduced offsets for the SNIFS instrument on the UH88 telescope. Accounting for the binary offset effect is essential for precision low-count astronomical observations with CCDs.

  9. Project of space research and technology center in Engelhardt astronomical observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.; Gusev, A.; Sherstukov, O.; Kascheev, R.; Zagretdinov, R.

    2012-09-01

    Today on the basis of Engelhardt astronomical observatory (EAO) is created Space research and technology center as consistent with Program for expansion of the Kazan University. The Centre has the following missions: • EDUCATION • SCIENCE • ASTRONOMICAL TOURISM

  10. Astronomical Applications - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Information Center Background information on common astronomical phenomena, calendars and time, and related topics Rise, Set, and Twilight Definitions World Time Zone Map Phases of the Moon and Percent of the Moon

  11. Ticking Stellar Time Bomb Identified - Astronomers find prime suspect for a Type Ia supernova

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Using ESO's Very Large Telescope and its ability to obtain images as sharp as if taken from space, astronomers have made the first time-lapse movie of a rather unusual shell ejected by a "vampire star", which in November 2000 underwent an outburst after gulping down part of its companion's matter. This enabled astronomers to determine the distance and intrinsic brightness of the outbursting object. It appears that this double star system is a prime candidate to be one of the long-sought progenitors of the exploding stars known as Type Ia supernovae, critical for studies of dark energy. "One of the major problems in modern astrophysics is the fact that we still do not know exactly what kinds of stellar system explode as a Type Ia supernova," says Patrick Woudt, from the University of Cape Town and lead author of the paper reporting the results. "As these supernovae play a crucial role in showing that the Universe's expansion is currently accelerating, pushed by a mysterious dark energy, it is rather embarrassing." The astronomers studied the object known as V445 in the constellation of Puppis ("the Stern") in great detail. V445 Puppis is the first, and so far only, nova showing no evidence at all for hydrogen. It provides the first evidence for an outburst on the surface of a white dwarf [1] dominated by helium. "This is critical, as we know that Type Ia supernovae lack hydrogen," says co-author Danny Steeghs, from the University of Warwick, UK, "and the companion star in V445 Pup fits this nicely by also lacking hydrogen, instead dumping mainly helium gas onto the white dwarf." In November 2000, this system underwent a nova outburst, becoming 250 times brighter than before and ejecting a large quantity of matter into space. The team of astronomers used the NACO adaptive optics instrument [2] on ESO's Very Large Telescope (VLT) to obtain very sharp images of V445 Puppis over a time span of two years. The images show a bipolar shell, initially with a very narrow

  12. An Investigation into the Spectral Imaging of Hall Thruster Plumes

    DTIC Science & Technology

    2015-07-01

    imaging experiment. It employs a Kodak KAF-3200E 3 megapixel CCD (2184×1472 with 6.8 µm pixels). The camera was designed for astronomical imaging and thus...19 mml 14c--7_0_m_m_~•... ,. ,. 50 mm I· ·I ,. 41 mm I Kodak KAF- 3200E ceo 2184 x 1472 px 14.9 x 10.0 mm 6.8 x 6.8J..Lm pixel size SBIG ST...It employs a Kodak KAF-3200E 3 megapixel CCD (2184×1472 with 6.8 µm pixels). The camera was designed for astronomical imaging and thus long exposure

  13. Virtual Astronomy: The Legacy of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, J.; Szalay, A. S.; Fabbiano, G.; Plante, R. L.; McGlynn, T. A.; Evans, J.; Emery Bunn, S.; Claro, M.; VAO Project Team

    2014-01-01

    Over the past ten years, the Virtual Astronomical Observatory (VAO, http://usvao.org) and its predecessor, the National Virtual Observatory (NVO), have developed and operated a software infrastructure consisting of standards and protocols for data and science software applications. The Virtual Observatory (VO) makes it possible to develop robust software for the discovery, access, and analysis of astronomical data. Every major publicly funded research organization in the US and worldwide has deployed at least some components of the VO infrastructure; tens of thousands of VO-enabled queries for data are invoked daily against catalog, image, and spectral data collections; and groups within the community have developed tools and applications building upon the VO infrastructure. Further, NVO and VAO have helped ensure access to data internationally by co-founding the International Virtual Observatory Alliance (IVOA, http://ivoa.net). The products of the VAO are being archived in a publicly accessible repository. Several science tools developed by the VAO will continue to be supported by the organizations that developed them: the Iris spectral energy distribution package (SAO), the Data Discovery Tool (STScI/MAST, HEASARC), and the scalable cross-comparison service (IPAC). The final year of VAO is focused on development of the data access protocol for data cubes, creation of Python language bindings to VO services, and deployment of a cloud-like data storage service that links to VO data discovery tools (SciDrive). We encourage the community to make use of these tools and services, to extend and improve them, and to carry on with the vision for virtual astronomy: astronomical research enabled by easy access to distributed data and computational resources. Funding for VAO development and operations has been provided jointly by NSF and NASA since May 2010. NSF funding will end in September 2014, though with the possibility of competitive solicitations for VO-based tool

  14. TMT in the Astronomical Landscape of the 2020s

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark; Inami, Hanae

    2014-07-01

    Thirty Meter Telescope Observatory and NOAO will host the second TMT Science Forum at Loews Ventana Canyon Resort in Tucson, Arizona. The TMT Science Forum is an an annual gathering of astronomers, educators, and observatory staff, who meet to explore TMT science, instrumentation, observatory operations, archiving and data processing, astronomy education, and science, technology, engineering, and math (STEM) issues. It is an opportunity for astronomers from the international TMT partners and from the US-at-large community to learn about the observatory status, discuss and plan cutting-edge science, establish collaborations, and to help shape the future of TMT. One important theme for this year's Forum will be the synergy between TMT and other facilities in the post-2020 astronomical landscape. There will be plenary sessions, an instrumentation workshop, topical science sessions and meetings of the TMT International Science Development Teams (ISDTs).

  15. Astronomical and Cosmological Aspects of Maya Architecture and Urbanism

    NASA Astrophysics Data System (ADS)

    Šprajc, I.

    2009-08-01

    Archaeoastronomical studies carried out so far have shown that the orientations in the ancient Maya architecture were, like elsewhere in Mesoamerica, largely astronomical, mostly referring to sunrises and sunsets on particular dates and allowing the use of observational calendars that facilitated a proper scheduling of agricultural activities. However, the astronomical alignments cannot be understood in purely utilitarian terms. Since the repeatedly occurring directions are most consistently incorporated in monumental architecture of civic and ceremonial urban cores, they must have had an important place in religion and worldview. The characteristics of urban layouts, as well as architectural and other elements associated with important buildings, reveal that the Maya architectural and urban planning was dictated by a complex set of rules, in which astronomical considerations related to practical needs were embedded in a broader framework of cosmological concepts substantiated by political ideology.

  16. Astronomía y Física: un matrimonio Sartriano

    NASA Astrophysics Data System (ADS)

    Vucetich, H.

    Desde el siglo XVII, Física y Astronomía han formado un matrimonio similar al de Sartre y Beauvoir: lleno de amores contingentes, pero firme y duradero. En la charla examino tres de los frutos más recientes de este matrimonio: - La confirmación de la Relatividad General con datos astronómicos. - Astrofísica y Física de neutrinos. - Teorías de supercuerdas y astronomía.

  17. Astronomical random numbers for quantum foundations experiments

    NASA Astrophysics Data System (ADS)

    Leung, Calvin; Brown, Amy; Nguyen, Hien; Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason

    2018-04-01

    Photons from distant astronomical sources can be used as a classical source of randomness to improve fundamental tests of quantum nonlocality, wave-particle duality, and local realism through Bell's inequality and delayed-choice quantum eraser tests inspired by Wheeler's cosmic-scale Mach-Zehnder interferometer gedanken experiment. Such sources of random numbers may also be useful for information-theoretic applications such as key distribution for quantum cryptography. Building on the design of an astronomical random number generator developed for the recent cosmic Bell experiment [Handsteiner et al. Phys. Rev. Lett. 118, 060401 (2017), 10.1103/PhysRevLett.118.060401], in this paper we report on the design and characterization of a device that, with 20-nanosecond latency, outputs a bit based on whether the wavelength of an incoming photon is greater than or less than ≈700 nm. Using the one-meter telescope at the Jet Propulsion Laboratory Table Mountain Observatory, we generated random bits from astronomical photons in both color channels from 50 stars of varying color and magnitude, and from 12 quasars with redshifts up to z =3.9 . With stars, we achieved bit rates of ˜1 ×106Hz/m 2 , limited by saturation of our single-photon detectors, and with quasars of magnitudes between 12.9 and 16, we achieved rates between ˜102 and 2 ×103Hz /m2 . For bright quasars, the resulting bitstreams exhibit sufficiently low amounts of statistical predictability as quantified by the mutual information. In addition, a sufficiently high fraction of bits generated are of true astronomical origin in order to address both the locality and freedom-of-choice loopholes when used to set the measurement settings in a test of the Bell-CHSH inequality.

  18. GalileoMobile: Astronomical activities in schools

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Vasquez, Mayte; Kobel, Philippe

    GalileoMobile is an itinerant science education initiative run on a voluntary basis by an international team of astronomers, educators, and science communicators. Our team's main goal is to make astronomy accessible to schools and communities around the globe that have little or no access to outreach actions. We do this by performing teacher workshops, activities with students, and donating educational material. Since the creation of GalileoMobile in 2008, we have travelled to Chile, Bolivia, Peru, India, and Uganda, and worked with 56 schools in total. Our activities are centred on the GalileoMobile Handbook of Activities that comprises around 20 astronomical activities which we adapted from many different sources, and translated into 4 languages. The experience we gained in Chile, Bolivia, Peru, India, and Uganda taught us that (1) bringing experts from other countries was very stimulating for children as they are naturally curious about other cultures and encourages a collaboration beyond borders; (2) high-school students who were already interested in science were always very eager to interact with real astronomers doing research to ask for career advice; (3) inquiry-based methods are important to make the learning process more effective and we have therefore, re-adapted the activities in our Handbook according to these; (4) local teachers and university students involved in our activities have the potential to carry out follow-up activities, and examples are those from Uganda and India.

  19. Multichannel blind iterative image restoration.

    PubMed

    Sroubek, Filip; Flusser, Jan

    2003-01-01

    Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun.

  20. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Redmond, Jay; Kodak, Charles

    2001-01-01

    This report summarizes the technical parameters and the technical staff of the Very Long Base Interferometry (VLBI) system at the fundamental station Goddard Geophysical and Astronomical Observatory (GGAO). It also gives an overview about the VLBI activities during the previous year. The outlook lists the outstanding tasks to improve the performance of GGAO.

  1. SAO/NASA joint investigation of astronomical viewing quality at Mount Hopkins Observatory: 1969-1971

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Bufton, J. L.; Hogan, D.; Kurtenbach, D.; Goodwin, K.

    1974-01-01

    Quantitative measurements of the astronomical seeing conditions have been made with a stellar-image monitor system at the Mt. Hopkins Observatory in Arizona. The results of this joint SAO-NASA experiment indicate that for a 15-cm-diameter telescope, image motion is typically 1 arcsec or less and that intensity fluctuations due to scintillation have a coefficient of irradiance variance of less than 0.12 on the average. Correlations between seeing quality and local meteorological conditions were investigated. Local temperature fluctuations and temperature gradients were found to be indicators of image-motion conditions, while high-altitude-wind conditions were shown to be somewhat correlated with scintillation-spectrum bandwidth. The theoretical basis for the relationship of atmospheric turbulence to optical effects is discussed in some detail, along with a description of the equipment used in the experiment. General site-testing comments and applications of the seeing-test results are also included.

  2. Isaac Newton and the astronomical refraction.

    PubMed

    Lehn, Waldemar H

    2008-12-01

    In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.

  3. Design and Implement of Astronomical Cloud Computing Environment In China-VO

    NASA Astrophysics Data System (ADS)

    Li, Changhua; Cui, Chenzhou; Mi, Linying; He, Boliang; Fan, Dongwei; Li, Shanshan; Yang, Sisi; Xu, Yunfei; Han, Jun; Chen, Junyi; Zhang, Hailong; Yu, Ce; Xiao, Jian; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Liu, Liang; Chen, Xiao; Song, Wenming; Du, Kangyu

    2017-06-01

    Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.

  4. Photonic ring resonator filters for astronomical OH suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials suchmore » as Si and Si 3N 4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.« less

  5. Photonic ring resonator filters for astronomical OH suppression

    DOE PAGES

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.; ...

    2017-01-01

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials suchmore » as Si and Si 3N 4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.« less

  6. Grigor Narekatsi's astronomical insights

    NASA Astrophysics Data System (ADS)

    Poghosyan, Samvel

    2015-07-01

    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  7. Light Pollution: A Primer for Astronomers to Engage in Teaching and Outreach

    NASA Astrophysics Data System (ADS)

    Caton, Daniel Bruce

    2018-01-01

    Most astronomers are familiar with the basic problem of light pollution but may not have explored how to teach their students about the problem or to inform officials in their community in order to help mitigate the problem. Indeed, many professional and amateur astronomers leave their light-polluted community to observe the sky from dark research observatories and rural star parties,, and then return to take no action to alleviate and reduce the light pollution in their own community. This is not a sustainable approach, and eventually this will lead to fewer sites to do their observations.In this presentation we give the basics of the problem and provide information on effective solutions. A link will be provided to download a sample PowerPoint, with Notes providing guidance to edit it to include images of both good and bad lighting in their own community. This can be shown to students as part of introductory astronomy and observational techniques courses, so the students might be able to help their with the problem in their own communities. Indeed this may satisfy curriculum requirements as a component of sustainable development. It may also be presented to local planning and permitting officials to develop at least a simple outdoor lighting ordinance.

  8. PySE: Python Source Extractor for radio astronomical images

    NASA Astrophysics Data System (ADS)

    Spreeuw, Hanno; Swinbank, John; Molenaar, Gijs; Staley, Tim; Rol, Evert; Sanders, John; Scheers, Bart; Kuiack, Mark

    2018-05-01

    PySE finds and measures sources in radio telescope images. It is run with several options, such as the detection threshold (a multiple of the local noise), grid size, and the forced clean beam fit, followed by a list of input image files in standard FITS or CASA format. From these, PySe provides a list of found sources; information such as the calculated background image, source list in different formats (e.g. text, region files importable in DS9), and other data may be saved. PySe can be integrated into a pipeline; it was originally written as part of the LOFAR Transient Detection Pipeline (TraP, ascl:1412.011).

  9. ALOHA—Astronomical Light Optical Hybrid Analysis - From experimental demonstrations to a MIR instrument proposal

    NASA Astrophysics Data System (ADS)

    Lehmann, L.; Darré, P.; Szemendera, L.; Gomes, J. T.; Baudoin, R.; Ceus, D.; Brustlein, S.; Delage, L.; Grossard, L.; Reynaud, F.

    2018-04-01

    This paper gives an overview of the Astronomical Light Optical Hybrid Analysis (ALOHA) project dedicated to investigate a new method for high resolution imaging in mid infrared astronomy. This proposal aims to use a non-linear frequency conversion process to shift the thermal infrared radiation to a shorter wavelength domain compatible with proven technology such as guided optics and detectors. After a description of the principle, we summarise the evolution of our study from the high flux seminal experiments to the latest results in the photon counting regime.

  10. The Aosta Valley Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Carbognani, A.

    2011-06-01

    OAVdA stands for Astronomical Observatory of the Autonomous Region of the Aosta Valley (Italy). The centre is located in the northwestern Italian Alps, near the border with France and Switzerland (Lat: 45° 47' 22" N, Long: 7° 28' 42" E), at 1675 m above sea level in the Saint-Barthélemy Valley and is managed by the "Fondazione Clément Fillietroz", with funding from local administrations. OAVdA was opened in 2003 as a centre for the popularization of astronomy but, since 2006, the main activity has been scientific research, as a consequence of an official cooperation agreement established with the Italian National Institute for Astrophysics (INAF). In 2009, a planetarium was built near the observatory with a 10-meter dome and 67 seats, which is currently used for educational astronomy. In the year 2009 about 15,200 people visited OAVdA and the planetarium. The staff in 2010 was made up of 12 people, including a scientific team of 5 physicists and astronomers on ESF (European Social Fund) grants and permanently residing at the observatory.

  11. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  12. LGBT Workplace Issues for Astronomers

    NASA Astrophysics Data System (ADS)

    Kay, Laura E.; Danner, R.; Sellgren, K.; Dixon, V.; GLBTQastro

    2011-01-01

    Federal Equal Employment Opportunity laws and regulations do not provide protection from discrimination on the basis of sexual orientation or gender identity or gender expression. Sexual minority astronomers (including lesbian, gay, bisexual and transgender people; LGBT) can face additional challenges at school and work. Studies show that LGBT students on many campuses report experiences of harassment. Cities, counties, and states may or may not have statutes to protect against such discrimination. There is wide variation in how states and insurance plans handle legal and medical issues for transgender people. Federal law does not acknowledge same-sex partners, including those legally married in the U.S. or in other countries. Immigration rules in the U.S. (and many other, but not all) countries do not recognize same-sex partners for visas, employment, etc. State `defense of marriage act' laws have been used to remove existing domestic partner benefits at some institutions, or benefits can disappear with a change in governor. LGBT astronomers who change schools, institutions, or countries during their career may experience significant differences in their legal, medical, and marital status.

  13. Preserving Astronomy's Photographic Legacy: Current State and the Future of North American Astronomical Plates

    NASA Astrophysics Data System (ADS)

    Osborn, W.; Robbins, L.

    2009-08-01

    This book contains articles on preserving astronomy's valuable heritage of photographic observations, most of which are on glass plates. It is intended to serve as a reference for institutions charged with preserving and managing plate archives and astronomers interested in using archival photographic plates in their research. The first portion of the book focuses on previous activities and recommendations related to plate archiving. These include actions taken by the International Astronomical Union, activities in Europe and a detailed account of a workshop on preserving astronomical photographic data held in 2007 at the Pisgah Astronomical Research Institute, North Carolina. The workshop discussions covered a wide range of issues that must be considered in any effort to archive plates and culminated in a set of recommendations on preserving, cataloging and making publicly available these irreplaceable data. The second part of the book reports on some recent efforts to implement the recommendations. These include essays on the recently established Astronomical Photographic Data Archive, projects to make photographic collections available electronically, evaluations of commercial scanners for digitization of astronomical plates and the case for the continuing value of these data along with a report on the census of astronomical plate collections in North America carried out in 2008. The census cataloged the locations, numbers, and types of astronomical plates in the US and Canada. Comprehensive appendices identify all the significant collections in North America and detail the current contents, state and status of their holdings.

  14. The Astronomical Low-Frequency Array

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Allen, R. J.; Blume, W. H.; Desch, M. M.; Erickson, W. C.; Kaiser, M. L.; Kassim, N. E.; Kuiper, T. B. H.; Mahoney, M. J.; Marsh, K. A.; hide

    1996-01-01

    An array of satellites is proposed to make astronomic observations in the low frequency range of a few tens of MHz down to roughly 100 kHz, a range that cannot be observed through the ionosphere. The array would be in a solar orbit to avoid radio interference from Earth and to simplify trajectory tracking and control.

  15. Recent Advances for LGBT Astronomers in the United States

    NASA Astrophysics Data System (ADS)

    Dixon, William V.; Rigby, Jane; Oppenheimer, Rebecca

    2015-08-01

    The legal environment for lesbian, gay, bisexual, and transgender (LGBT) astronomers in the United States has changed dramatically in recent years. In 2013, the Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA), which had barred the federal government from recognizing same-sex marriages, was unconstitutional. This decision particularly affects astronomers, since astronomers in the U.S. are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In 2014, the Attorney General directed the Department of Justice to take the position in litigation that the protection of Title VII of the Civil Rights Act of 1964 extends to claims of discrimination based on an individual’s gender identity, including transgender status. Title VII makes it unlawful for employers to discriminate in the employment of an individual “because of such individual’s... sex,” among other protected characteristics. As of March 2015, more than 70% of the population lives in states that recognize same-sex marriage, and the Supreme Court is expected to rule on the constitutionality of the remaining same-sex marriage bans during the current term. In this poster, we discuss these advances and their implications for the personal and professional lives of LGBT astronomers across the United States.

  16. How did the Supreme Court ruling on DOMA affect astronomers?

    NASA Astrophysics Data System (ADS)

    Rigby, Jane R.; The AAS Working Group on LGBTIQ Equality

    2014-01-01

    In June 2013, the United States Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA) was unconstitutional. Section 3 had barred the federal government from recognizing same-sex marriages. The decision in United States v. Windsor, made headlines around the world, and particularly affected astronomers, since astronomers in the US are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In this poster, we highlight some of the real-world ways that the Windsor case has affected US astronomers and our profession. Bi-national couples can now apply for green cards granting permanent residency. Scientists who work for the federal government, including NASA and the NSF, can now obtain health insurance for a same-sex spouse. From taxes to death benefits, health insurance to daycare, immigration to ethics laws, the end of S3 of DOMA has had profoundly improved the lives of US scientists who are lesbian, gay, bisexual, or transgender (LGBT). Here we, highlight several real-world examples of how DOMA's demise has improved the lives and careers of US astronomer.

  17. Landsat TM image maps of the Shirase and Siple Coast ice streams, West Antarctica

    USGS Publications Warehouse

    Ferrigno, Jane G.; Mullins, Jerry L.; Stapleton, Jo Anne; Bindschadler, Robert; Scambos, Ted A.; Bellisime, Lynda B.; Bowell, Jo-Ann; Acosta, Alex V.

    1994-01-01

    Fifteen 1: 250000 and one 1: 1000 000 scale Landsat Thematic Mapper (TM) image mosaic maps are currently being produced of the West Antarctic ice streams on the Shirase and Siple Coasts. Landsat TM images were acquired between 1984 and 1990 in an area bounded approximately by 78°-82.5°S and 120°- 160° W. Landsat TM bands 2, 3 and 4 were combined to produce a single band, thereby maximizing data content and improving the signal-to-noise ratio. The summed single band was processed with a combination of high- and low-pass filters to remove longitudinal striping and normalize solar elevation-angle effects. The images were mosaicked and transformed to a Lambert conformal conic projection using a cubic-convolution algorithm. The projection transformation was controled with ten weighted geodetic ground-control points and internal image-to-image pass points with annotation of major glaciological features. The image maps are being published in two formats: conventional printed map sheets and on a CD-ROM.

  18. Tensor voting for image correction by global and local intensity alignment.

    PubMed

    Jia, Jiaya; Tang, Chi-Keung

    2005-01-01

    This paper presents a voting method to perform image correction by global and local intensity alignment. The key to our modeless approach is the estimation of global and local replacement functions by reducing the complex estimation problem to the robust 2D tensor voting in the corresponding voting spaces. No complicated model for replacement function (curve) is assumed. Subject to the monotonic constraint only, we vote for an optimal replacement function by propagating the curve smoothness constraint using a dense tensor field. Our method effectively infers missing curve segments and rejects image outliers. Applications using our tensor voting approach are proposed and described. The first application consists of image mosaicking of static scenes, where the voted replacement functions are used in our iterative registration algorithm for computing the best warping matrix. In the presence of occlusion, our replacement function can be employed to construct a visually acceptable mosaic by detecting occlusion which has large and piecewise constant color. Furthermore, by the simultaneous consideration of color matches and spatial constraints in the voting space, we perform image intensity compensation and high contrast image correction using our voting framework, when only two defective input images are given.

  19. Conceptual Astronomy Knowledge among Amateur Astronomers

    NASA Astrophysics Data System (ADS)

    Berendsen, Margaret L.

    Amateur astronomers regularly serve as informal astronomy educators for their communities. This research inquires into the level of knowledge of basic astronomy concepts among amateur astronomers and examines factors related to amateur astronomy that affect that knowledge. Using the concept questions from the Astronomy Diagnostic Test Version 2, an online survey was developed as an assessment. In particular, astronomy club members with at least some college-level astronomy education score substantially higher on the assessment (mean score: 85) than do college undergraduates after taking their first astronomy course (mean score: 47). Astronomy club members scored up to 17% higher than unaffiliated amateurs, an indication that regular contact with like-minded hobbyists improves basic knowledge. Proportionally more astronomy club members report doing outreach than do unaffiliated amateurs (87% vs. 46%). It appears that those who are likely to be more knowledgeable are also those doing more outreach.

  20. The Importance of Geodetically Controlled Data Sets: THEMIS Controlled Mosaics of Mars, a Case Study

    NASA Astrophysics Data System (ADS)

    Fergason, R. L.; Weller, L.

    2018-04-01

    Accurate image registration is necessary to answer questions that are key to addressing fundamental questions about our universe. To provide such a foundational product for Mars, we have geodetically controlled and mosaicked THEMIS IR images.

  1. ARNICA, the Arcetri near-infrared camera: Astronomical performance assessment.

    NASA Astrophysics Data System (ADS)

    Hunt, L. K.; Lisi, F.; Testi, L.; Baffa, C.; Borelli, S.; Maiolino, R.; Moriondo, G.; Stanga, R. M.

    1996-01-01

    The Arcetri near-infrared camera ARNICA was built as a users' instrument for the Infrared Telescope at Gornergrat (TIRGO), and is based on a 256x256 NICMOS 3 detector. In this paper, we discuss ARNICA's optical and astronomical performance at the TIRGO and at the William Herschel Telescope on La Palma. Optical performance is evaluated in terms of plate scale, distortion, point spread function, and ghosting. Astronomical performance is characterized by camera efficiency, sensitivity, and spatial uniformity of the photometry.

  2. Computer simulations of interferometric imaging with the Very Large Telescope Interferometer and its Astronomical Multibeam Recombiner instrument

    NASA Astrophysics Data System (ADS)

    Przygodda, Frank; Bloecker, Thomas; Hofmann, Karl-Heinz; Weigelt, Gerd

    2001-05-01

    We present computer simulations of interferometric imaging with the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory and the Astronomical Multibeam Recombiner (AMBER) phase-closure instrument. These simulations include both the astrophysical modeling of a stellar object by radiative-transfer calculations and the simulation of light propagation from the object to the detector (through atmosphere, telescopes, and the AMBER instrument), simulation of photon noise and detector readout noise, and finally data processing of the interferograms. The results show the dependence of the visibility error bars on the following observational parameters: different seeing during the observation of object and reference star (Fried parameters r0,object and r0,ref ranging between 0.9 and 1.2 m), different residual tip-tilt error ((delta) tt,object and (delta) tt,ref ranging between 0.1% and 20% of the Airy-disk diameter), and object brightness (Kobject equals 0.7 to 10.2 mag, Kref equals 0.7 mag). As an example, we focus on stars in late stages of stellar evolution and study one of the key objects of that kind, the dusty super-giant IRC + 10420, which is rapidly evolving on human time scales. We show computer simulations of VLT interferometer (visibility and phase-closure measurements) of IRC + 10420 with two and three auxiliary telescopes (in AMBER wide-field mode, i.e., without fiber optic spatial filters) and discuss whether the visibility accuracy is sufficient to distinguish between different theoretical model predictions.

  3. How Do Astronomers Share Data? Reliability and Persistence of Datasets Linked in AAS Publications and a Qualitative Study of Data Practices among US Astronomers

    PubMed Central

    Pepe, Alberto; Goodman, Alyssa; Muench, August; Crosas, Merce; Erdmann, Christopher

    2014-01-01

    We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it); unfamiliarity with options that make data-sharing easier (faster) and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date. PMID:25165807

  4. How do astronomers share data? Reliability and persistence of datasets linked in AAS publications and a qualitative study of data practices among US astronomers.

    PubMed

    Pepe, Alberto; Goodman, Alyssa; Muench, August; Crosas, Merce; Erdmann, Christopher

    2014-01-01

    We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it); unfamiliarity with options that make data-sharing easier (faster) and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date.

  5. How Do Astronomers Share Data? Reliability and Persistence of Datasets Linked in AAS Publications and a Qualitative Study of Data Practices among US Astronomers

    NASA Astrophysics Data System (ADS)

    Pepe, Alberto; Goodman, Alyssa; Muench, August; Crosas, Merce; Erdmann, Christopher

    2014-08-01

    We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it); unfamiliarity with options that make data-sharing easier (faster) and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date.

  6. The Application of the Montage Image Mosaic Engine To The Visualization Of Astronomical Images

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce; Good, J. C.

    2017-05-01

    The Montage Image Mosaic Engine was designed as a scalable toolkit, written in C for performance and portability across *nix platforms, that assembles FITS images into mosaics. This code is freely available and has been widely used in the astronomy and IT communities for research, product generation, and for developing next-generation cyber-infrastructure. Recently, it has begun finding applicability in the field of visualization. This development has come about because the toolkit design allows easy integration into scalable systems that process data for subsequent visualization in a browser or client. The toolkit it includes a visualization tool suitable for automation and for integration into Python: mViewer creates, with a single command, complex multi-color images overlaid with coordinate displays, labels, and observation footprints, and includes an adaptive image histogram equalization method that preserves the structure of a stretched image over its dynamic range. The Montage toolkit contains functionality originally developed to support the creation and management of mosaics, but which also offers value to visualization: a background rectification algorithm that reveals the faint structure in an image; and tools for creating cutout and downsampled versions of large images. Version 5 of Montage offers support for visualizing data written in HEALPix sky-tessellation scheme, and functionality for processing and organizing images to comply with the TOAST sky-tessellation scheme required for consumption by the World Wide Telescope (WWT). Four online tutorials allow readers to reproduce and extend all the visualizations presented in this paper.

  7. Research on schedulers for astronomical observatories

    NASA Astrophysics Data System (ADS)

    Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian

    2012-09-01

    The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.

  8. Ernesto Vasconcellos' Astronomia Photographica: the earliest popular book on astronomical photography?

    NASA Astrophysics Data System (ADS)

    Bonifácio, Vitor; Malaquias, Isabel; Fernandes, João

    2008-07-01

    Portugal, albeit with its own cultural distinctiveness, was not immune to the ideologies permeating nineteenth-century European society, in particular those concerning the social advantages of science and science popularisation. The country's high illiteracy rate hampered but did not prevent several popularisation efforts, which were usually led by professors and armed forces officers. In 1886 Astronomia Photographica (Astronomical Photography), a book popularising astrophotography, was published in Lisbon as part of a collection entitled People and Schools Library. The book seems an odd editorial choice given that, at the time, Portugal's major astronomical institutions pursued astrometric research and there was a virtual absence in the country of amateur astronomers. International astronomical developments, the author's interest in the scientific applications of photography and even the editorial timing are likely explanations for the publication of Astronomia Photographica, but we believe a definitive answer is still not available. The style of Astronomia Photographica is historical and informative, without being technical; clearly it is not a ‘hands-on guide’. The contents of the book show that the author, Ernesto Júlio de Carvalho e Vasconcellos, a naval officer, contacted several experts and was aware of the latest developments in astronomical photography. What makes this a unique book is its content, and its inclusion in a popularisation collection with an exceptionally high circulation at such an early time.

  9. Building a VO-compliant Radio Astronomical DAta Model for Single-dish radio telescopes (RADAMS)

    NASA Astrophysics Data System (ADS)

    Santander-Vela, Juan de Dios; García, Emilio; Leon, Stephane; Espigares, Victor; Ruiz, José Enrique; Verdes-Montenegro, Lourdes; Solano, Enrique

    2012-11-01

    The Virtual Observatory (VO) is becoming the de-facto standard for astronomical data publication. However, the number of radio astronomical archives is still low in general, and even lower is the number of radio astronomical data available through the VO. In order to facilitate the building of new radio astronomical archives, easing at the same time their interoperability with VO framework, we have developed a VO-compliant data model which provides interoperable data semantics for radio data. That model, which we call the Radio Astronomical DAta Model for Single-dish (RADAMS) has been built using standards of (and recommendations from) the International Virtual Observatory Alliance (IVOA). This article describes the RADAMS and its components, including archived entities and their relationships to VO metadata. We show that by using IVOA principles and concepts, the effort needed for both the development of the archives and their VO compatibility has been lowered, and the joint development of two radio astronomical archives have been possible. We plan to adapt RADAMS to be able to deal with interferometry data in the future.

  10. Astronomers Find New Evidence for the Violent Demise of Sun-like Stars

    NASA Astrophysics Data System (ADS)

    2005-06-01

    Two astronomers have used NASA's Chandra X-ray Observatory to discover a shell of superheated gas around a dying star in the Milky Way galaxy. Joel Kastner, professor of imaging science at the Rochester Institute of Technology, and Rodolpho Montez, a graduate student in physics and astronomy at the University of Rochester, will present their results today at the American Astronomical Society meeting in Minneapolis. Their discovery shows how material ejected at two million miles per hour during the final, dying stages of sun-like stars can heat previously ejected gas to the point where it will emit X-rays. The study also offers new insight into how long the ejected gas around dying stars can persist in such a superheated state. According to Kastner, the hot gas shows up in high-resolution Chandra X-ray images of the planetary nebula NGC 40, which is located about 3,000 light years away from Earth in the direction of the constellation Cepheus. Chandra X-ray & NOAO Optical Composite of NGC 40 Chandra X-ray & NOAO Optical Composite of NGC 40 "Planetary nebulae are shells of gas ejected by dying stars," Kastner explains. "They offer astronomers a 'forecast' of what could happen to our own sun about five billion years from now - when it finally exhausts the reservoir of hydrogen gas at its core that presently provides its source of nuclear power." In his research, Montez discovered the X-ray emitting shell in NGC 40 by generating an image that uses only specific energy-selected X-rays - revealing a ring of superheated gas that lies just within the portions of the nebula that appear in optical and infrared images. "This hot bubble of gas vividly demonstrates how, as a planetary nebula forms, the gas ejection process of the central, dying star becomes increasingly energetic," Kastner notes. "Mass ejection during stellar death can result in violent collisions that can heat the ejected gas up to temperatures of more than a million degrees." The detection of X-rays from NGC

  11. A new astronomical dating of Odysseus return to Ithaca.

    NASA Astrophysics Data System (ADS)

    Papamarinopoulos, St. P.; Preka-Papadema, P.; Antonopoulos, P.; Mitropetrou, H.; Tsironi, A.; Mitropetros, P.

    The annular solar eclipse, of 30 October 1207 B.C. (Julian Day-JD 1280869), calculated by NASA together with the analysis of the weather's and the environment's description (long nights, plants, animals and peoples' habits) and the astronomical data (guiding constellations and Venus in the east horizon) mentioned by Homer in the epic, constitute an autumn return of Odysseus to Ithaca five days before the above characterized day. The latter offers a precise astronomical dating of the event and dates the legendary Trojan War's end as well.

  12. AAS Publishing News: Astronomical Software Citation Workshop

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    Do you write code for your research? Use astronomical software? Do you wish there were a better way of citing, sharing, archiving, or discovering software for astronomy research? You're not alone! In April 2015, AAS's publishing team joined other leaders in the astronomical software community in a meeting funded by the Sloan Foundation, with the purpose of discussing these issues and potential solutions. In attendance were representatives from academic astronomy, publishing, libraries, for-profit software sharing platforms, telescope facilities, and grantmaking institutions. The goal of the group was to establish “protocols, policies, and platforms for astronomical software citation, sharing, and archiving,” in the hopes of encouraging a set of normalized standards across the field. The AAS is now collaborating with leaders at GitHub to write grant proposals for a project to develop strategies for software discoverability and citation, in astronomy and beyond. If this topic interests you, you can find more details in this document released by the group after the meeting: http://astronomy-software-index.github.io/2015-workshop/ The group hopes to move this project forward with input and support from the broader community. Please share the above document, discuss it on social media using the hashtag #astroware (so that your conversations can be found!), or send private comments to julie.steffen@aas.org.

  13. Australian sites of astronomical heritage

    NASA Astrophysics Data System (ADS)

    Stevenson, T.; Lomb, N.

    2015-03-01

    The heritage of astronomy in Australia has proven an effective communication medium. By interpreting science as a social and cultural phenomenon new light is thrown on challenges, such as the dispersal of instruments and problems identifying contemporary astronomy heritage. Astronomers are asked to take note and to consider the communication of astronomy now and in the future through a tangible heritage legacy.

  14. Visiting Astronomers Travel Guide | CTIO

    Science.gov Websites

    please advise Ximena Herreros at the time that you initiate travel plans, if your stay in Chile will , well in advance of their travel time, regarding current visa requirements for Chile. back to top Visiting Astronomers Travel Guide Director's Discretionary (DD) Time CTIO 2016 Ephemeris ToO Policy CTIO

  15. Factors Contributing to Amateur Astronomers' Involvement in Education and Public Outreach

    ERIC Educational Resources Information Center

    Yocco, Victor; Jones, Eric C.; Storksdieck, Martin

    2012-01-01

    Amateur astronomers play a critical role engaging the general public in astronomy. The role of individual and club-related factors is explored using data from two surveys (Survey 1 N = 1142; Survey 2 N = 1242) of amateur astronomers. Analysis suggests that formal or informal training in astronomy, age, club membership, length of club membership,…

  16. Astronomical calibration of the geological timescale: closing the middle Eocene gap

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Röhl, U.; Frederichs, T.; Bohaty, S. M.; Zachos, J. C.

    2015-09-01

    To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.

  17. OpenCluster: A Flexible Distributed Computing Framework for Astronomical Data Processing

    NASA Astrophysics Data System (ADS)

    Wei, Shoulin; Wang, Feng; Deng, Hui; Liu, Cuiyin; Dai, Wei; Liang, Bo; Mei, Ying; Shi, Congming; Liu, Yingbo; Wu, Jingping

    2017-02-01

    The volume of data generated by modern astronomical telescopes is extremely large and rapidly growing. However, current high-performance data processing architectures/frameworks are not well suited for astronomers because of their limitations and programming difficulties. In this paper, we therefore present OpenCluster, an open-source distributed computing framework to support rapidly developing high-performance processing pipelines of astronomical big data. We first detail the OpenCluster design principles and implementations and present the APIs facilitated by the framework. We then demonstrate a case in which OpenCluster is used to resolve complex data processing problems for developing a pipeline for the Mingantu Ultrawide Spectral Radioheliograph. Finally, we present our OpenCluster performance evaluation. Overall, OpenCluster provides not only high fault tolerance and simple programming interfaces, but also a flexible means of scaling up the number of interacting entities. OpenCluster thereby provides an easily integrated distributed computing framework for quickly developing a high-performance data processing system of astronomical telescopes and for significantly reducing software development expenses.

  18. Astronomical Data Bank: The Solar System.

    ERIC Educational Resources Information Center

    Morrison, David

    1983-01-01

    Provided are two tables which contain the latest orbital and physical characteristics of the planets and their main satellites. These tables are part of a series of information materials available from the Astronomical Society of the Pacific, 1290 24th Avenue, San Francisco, CA 94122. (JN)

  19. Nathaniel Bowditch, Early American Amateur Astronomer

    NASA Astrophysics Data System (ADS)

    Williams, Thomas R.

    1984-10-01

    Nathaniel Bowditch had very successful careers as a seaman/ship's master and as an actuary/insurance executive. In addition he managed to make very substantial contributions to mathematics and astronomy. Bowditch is therefore important as one of the earliest significant amateur astronomers in the United States.

  20. The Impact of the Qur'anic Conception of Astronomical Phenomena on Islamic Civilization

    NASA Astrophysics Data System (ADS)

    Ahmad, I. A.

    Discussions of astronomical phenomena in religious texts usually center around either their literal astronomical content or their symbolic significance. We shall instead consider the use of frequent references to astronomical phenomena in the Qur'an as exhortations to a worldview that ushered in the modern era. The Qur'anic conception of astronomical phenomena had a critical impact on Islamic civilization and the civilizations that followed because it introduced and mandated the adoption of certain attitudes. Among these were a greater respect for empirical data than was common in the preceding Greek civilization and an insistence that the Universe is ruled by a single set of laws. Both of these were rooted in the Islamic concept of tawhîd, the unity of God.

  1. Recruitment and Retention of LGBTIQ Astronomers

    NASA Astrophysics Data System (ADS)

    Dixon, William Van Dyke

    2012-01-01

    While lesbian, gay, bisexual, transgender, intersex, or questioning (LGBTIQ) astronomers face many of the same workplace challenges as women and racial/ethnic minorities, from implicit bias to overt discrimination, other challenges are unique to this group. An obvious example is the absence at many institutions of health insurance and other benefits for the same-sex domestic partners of their employees. More subtle is the psychological toll paid by LGBTIQ astronomers who remain "in the closet," self-censoring every statement about their personal lives. Paradoxically, the culture of the physical sciences, in which sexuality, gender identity, and gender expression are considered irrelevant, can discourage their discussion, further isolating LGBTIQ researchers. Addressing these challenges is not just a matter of fairness; it is an essential tool in the recruitment and retention of the brightest researchers and in assuring their productivity. We will discuss these issues and what individuals and departments can to make their institutions more welcoming to their LGBTIQ colleagues.

  2. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  3. Marshal Wrubel and the Electronic Computer as an Astronomical Instrument

    NASA Astrophysics Data System (ADS)

    Mutschlecner, J. P.; Olsen, K. H.

    1998-05-01

    In 1960, Marshal H. Wrubel, professor of astrophysics at Indiana University, published an influential review paper under the title, "The Electronic Computer as an Astronomical Instrument." This essay pointed out the enormous potential of the electronic computer as an instrument of observational and theoretical research in astronomy, illustrated programming concepts, and made specific recommendations for the increased use of computers in astronomy. He noted that, with a few scattered exceptions, computer use by the astronomical community had heretofore been "timid and sporadic." This situation was to improve dramatically in the next few years. By the late 1950s, general-purpose, high-speed, "mainframe" computers were just emerging from the experimental, developmental stage, but few were affordable by or available to academic and research institutions not closely associated with large industrial or national defense programs. Yet by 1960 Wrubel had spent a decade actively pioneering and promoting the imaginative application of electronic computation within the astronomical community. Astronomy upper-level undergraduate and graduate students at Indiana were introduced to computing, and Ph.D. candidates who he supervised applied computer techniques to problems in theoretical astrophysics. He wrote an early textbook on programming, taught programming classes, and helped establish and direct the Research Computing Center at Indiana, later named the Wrubel Computing Center in his honor. He and his students created a variety of algorithms and subroutines and exchanged these throughout the astronomical community by distributing the Astronomical Computation News Letter. Nationally as well as internationally, Wrubel actively cooperated with other groups interested in computing applications for theoretical astrophysics, often through his position as secretary of the IAU commission on Stellar Constitution.

  4. Interconnecting astronomical networks: evolving from single networks to meta-networks

    NASA Astrophysics Data System (ADS)

    White, R. R.; Allan, A.; Evans, S.; Vestrand, W. T.; Wren, J.; Wozniak, P.

    2006-06-01

    Over the past four years we have seen continued advancement in network technology and how those technologies are beginning to enable astronomical science. Even though some sociological aspects are hindering full cooperation between most observatories and telescopes outside of their academic or institutional connections, an unprecedented step during the summer of 2005 was taken towards creating a world-wide interconnection of astronomical assets. The Telescope Alert Operations Network System (TALONS), a centralized server/client bi-directional network developed and operated by Los Alamos National Laboratory, integrated one of its network nodes with a node from the eScience Telescopes for Astronomical Research (eSTAR), a peer-to-peer agent based network developed and operated by The University of Exeter. Each network can act independently, providing support for their direct clients, and by interconnection provide local clients with access to; outside telescope systems, software tools unavailable locally, and the ability to utilize assets far more efficiently, thereby enabling science on a world-wide scale. In this paper we will look at the evolution of these independent networks into the worlds first heterogeneous telescope network and where this may take astronomy in the future. We will also examine those key elements necessary to providing universal communication between diverse astronomical networks.

  5. Astronomical diaries and observations from the time of the Great War

    NASA Astrophysics Data System (ADS)

    Shanklin, J. D.

    2003-10-01

    My great grandfather Harry Thomas, of Llandudno, kept diaries for many years. Only those for 1913 to 1916 survive, though they contain passing references to earlier volumes. Items of astronomical interest are presented here. Harry's brother, Dr Bernard Thomas (1868?1935 May 13), at this time lived in Hobart, Tasmania and was a more serious amateur astronomer.

  6. Connecting the time domain community with the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.; Djorgovski, S. G.; Donalek, Ciro; Drake, Andrew J.; Mahabal, Ashish A.; Plante, Raymond L.; Kantor, Jeffrey; Good, John C.

    2012-09-01

    The time domain has been identied as one of the most important areas of astronomical research for the next decade. The Virtual Observatory is in the vanguard with dedicated tools and services that enable and facilitate the discovery, dissemination and analysis of time domain data. These range in scope from rapid notications of time-critical astronomical transients to annotating long-term variables with the latest modelling results. In this paper, we will review the prior art in these areas and focus on the capabilities that the VAO is bringing to bear in support of time domain science. In particular, we will focus on the issues involved with the heterogeneous collections of (ancilllary) data associated with astronomical transients, and the time series characterization and classication tools required by the next generation of sky surveys, such as LSST and SKA.

  7. Harold F. Weaver: California Astronomer

    NASA Astrophysics Data System (ADS)

    Shields, J. C.

    1993-05-01

    This talk will give an overview of an oral history recently completed with Harold F. Weaver, Professor Emeritus of Astronomy at the University of California at Berkeley. Weaver grew up in California and studied as an undergraduate at Berkeley, where he also pursued graduate work incorporating research at Lick and Mount Wilson Observatories. After pursuing postdoctoral research at Yerkes Observatory and war work in Cambridge (Massachusetts) and Berkeley, Weaver was appointed to the staff of Lick Observatory. In 1951 he joined the faculty at Berkeley, where he later played a major role in founding Hat Creek Radio Observatory. As Director of the Berkeley Radio Astronomy Laboratory, Weaver oversaw construction of the 85-foot telescope at Hat Creek, which is the subject of a special session at this meeting. Two aspects of Weaver's career will be highlighted. The first is the somewhat unusual and very successful transition in Weaver's observational research from emphasis on classical photographic techniques at optical wavelengths to use of emerging radio technology for the study of Galactic structure. The second is service provided by Weaver to the American Astronomical Society and Astronomical Society of the Pacific at several key junctures in the development of both organizations.

  8. Astroinformatics, data mining and the future of astronomical research

    NASA Astrophysics Data System (ADS)

    Brescia, Massimo; Longo, Giuseppe

    2013-08-01

    Astronomy, as many other scientific disciplines, is facing a true data deluge which is bound to change both the praxis and the methodology of every day research work. The emerging field of astroinformatics, while on the one end appears crucial to face the technological challenges, on the other is opening new exciting perspectives for new astronomical discoveries through the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of scientific problems, however, call for innovative algorithms and methods as well as for an extreme usage of ICT technologies.

  9. Astronomer's new guide to the galaxy: largest map of cold dust revealed

    NASA Astrophysics Data System (ADS)

    2009-07-01

    Astronomers have unveiled an unprecedented new atlas of the inner regions of the Milky Way, our home galaxy, peppered with thousands of previously undiscovered dense knots of cold cosmic dust -- the potential birthplaces of new stars. Made using observations from the APEX telescope in Chile, this survey is the largest map of cold dust so far, and will prove an invaluable map for observations made with the forthcoming ALMA telescope, as well as the recently launched ESA Herschel space telescope. ESO PR Photo 24a/09 View of the Galactic Plane from the ATLASGAL survey (annotated and in five sections) ESO PR Photo 24b/09 View of the Galactic Plane from the ATLASGAL survey (annotated) ESO PR Photo 24c/09 View of the Galactic Plane from the ATLASGAL survey (in five sections) ESO PR Photo 24d/09 View of the Galactic Plane from the ATLASGAL survey ESO PR Photo 24e/09 The Galactic Centre and Sagittarius B2 ESO PR Photo 24f/09 The NGC 6357 and NGC 6334 nebulae ESO PR Photo 24g/09 The RCW120 nebula ESO PR Video 24a/09 Annotated pan as seen by the ATLASGAL survey This new guide for astronomers, known as the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) shows the Milky Way in submillimetre-wavelength light (between infrared light and radio waves [1]). Images of the cosmos at these wavelengths are vital for studying the birthplaces of new stars and the structure of the crowded galactic core. "ATLASGAL gives us a new look at the Milky Way. Not only will it help us investigate how massive stars form, but it will also give us an overview of the larger-scale structure of our galaxy", said Frederic Schuller from the Max Planck Institute for Radio Astronomy, leader of the ATLASGAL team. The area of the new submillimetre map is approximately 95 square degrees, covering a very long and narrow strip along the galactic plane two degrees wide (four times the width of the full Moon) and over 40 degrees long. The 16 000 pixel-long map was made with the LABOCA submillimetre

  10. An earth remote sensing satellite- 1 Synthetic Aperture Radar Mosaic of the Tanana River Basin in Alaska

    USGS Publications Warehouse

    Wivell, Charles E.; Olmsted, Coert; Steinwand, Daniel R.; Taylor, Christopher

    1993-01-01

    Because the pixel location in a line of Synthetic Aperture Radar (SAR) image data is directly related to the distance the pixel is from the radar, terrain elevations cause large displacement errors in the geo-referenced location of the pixel. This is especially true for radar systems with small angles between the nadir and look vectors. Thus, to geo-register a SAR image accurately, the terrain of the area must be taken into account. (Curlander et al., 1987; Kwok et al., 1987, Schreier et al., 1990; Wivell et al., 1992). As part of the 1992 National Aeronautics and Space Administration's Earth Observing System Version 0 activities, a prototype SAR geocod-. ing and terrain correction system was developed at the US. Geological Survey's (USGS) E~os Data Center (EDC) in Sioux Falls, South Dakota. Using this system with 3-arc-second digital elevation models (DEMs) mosaicked at the ED^ Alaska Field Office, 21 ERS-I s.4~ scenes acquired at the Alaska SAR Facility were automatically geocoded, terrain corrected, and mosaicked. The geo-registered scenes were mosaicked using a simple concatenation.

  11. Free-space laser communication system with rapid acquisition based on astronomical telescopes.

    PubMed

    Wang, Jianmin; Lv, Junyi; Zhao, Guang; Wang, Gang

    2015-08-10

    The general structure of a free-space optical (FSO) communication system based on astronomical telescopes is proposed. The light path for astronomical observation and for communication can be easily switched. A separate camera is used as a star sensor to determine the pointing direction of the optical terminal's antenna. The new system exhibits rapid acquisition and is widely applicable in various astronomical telescope systems and wavelengths. We present a detailed analysis of the acquisition time, which can be decreased by one order of magnitude compared with traditional optical communication systems. Furthermore, we verify software algorithms and tracking accuracy.

  12. Explanatory Supplement to the Astronomical Almanac (3rd Edition)

    NASA Astrophysics Data System (ADS)

    Urban, Sean E.; Seidelmann, P. K.

    2014-01-01

    Publications and software from the the Astronomical Applications Department of the US Naval Observatory (USNO) are used throughout the world, not only in the Department of Defense for safe navigation, but by many people including other navigators, astronomers, aerospace engineers, and geodesists. Products such as The Nautical Almanac, The Astronomical Almanac, and the Multiyear Interactive Computer Almanac (MICA) are regarded as international standards. To maintain credibility, it is imperative that the methodologies employed and the data used are well documented. "The Explanatory Supplement to the Astronomical Almanac" (hereafter, "The ES") is a major source of such documentation. It is a comprehensive reference book on positional astronomy, covering the theories and algorithms used to produce The Astronomical Almanac, an annual publication produced jointly by the Nautical Almanac Office of USNO and Her Majesty's Nautical Almanac Office (HMNAO). The first edition of The ES appeared in 1961, and the second followed in 1992. Several major changes have taken place in fundamental astronomy since the second edition was published. Advances in radio observations allowed the celestial reference frame to be tied to extragalactic radio sources, thus the International Celestial Reference System replaced the FK5 system. The success of ESA's Hipparcos satellite dramatically altered observational astrometry. Improvements in Earth orientation observations lead to new precession and nutation theories. Additionally, a new positional paradigm, no longer tied to the ecliptic and equinox, was accepted. Largely because of these changes, staff at USNO and HMNAO decided the time was right for the next edition of The ES. The third edition is now available; it is a complete revision of the 1992 book. Along with subjects covered in the previous two editions, the book also contains descriptions of the major advancements in positional astronomy over the last 20 years, some of which are

  13. Political Repression Against Soviet Astronomers in the 1930s

    NASA Astrophysics Data System (ADS)

    Eremmeva, A. I.

    1993-12-01

    The Soviet government's repression of the Russian intelligentsia in the late 1930s had a devastating effect on astronomy. This period was marked by the strengthening of a rigid ideology in society and a growing atmosphere of suspicion, fear, and spy mania. Under these conditions the international nature of astronomy--in particular the need for foreign contacts--became the excuse for accusations of "wrecking" against astronomers. The fate of individual astronomers and institutions depended greatly, however, on local circumstances. For example, the general political repression of the 1930s began in Leningrad at a time when Pulkovo Observatory director B. P. Gerasimovich was engaged in a sharp conflict with a small group of junior staff led by V. A. Ambartsumian. In addition, the very first arrest of a Leningrad astronomer--namely the arrest of B. V. Numerov--appears to have initiated a cascading series of arrests that spread like an avalanche through the close-knit com- munity of Leningrad astronomers. These two factors led to the devastating ruin of Pulkovo. Completely different circumstances saved GAISh. This was a com- paratively young institute whose junior staff had spent its formative years at GAISh rather than joining the staff from out- side (as had been the case at Pulkovo). Thus the GAISh staff had a greater degree of homogeneity and solidarity, and this, in turn, may explain why the ideological department at GAISh (the "partburo") conducted itself in a manner that differed sharply from that of the "partburo" at Pulkovo. Thanks to these circum- stances not even one arrest occurred at GAISh. The directors of Pulkovo and GAISh came from very similar back- grounds, but the different conditions at Pulkovo and GAISh led to dramatic differences in their fates: execution for B. P. Gerasimovich in 1937 and "only" the persecution of GAISh director V. G. Fesenkov. The persecution of V. G. Fesenkov included his dismissal from the post of chairman of the Astronomical

  14. Rhea North Polar Maps - January 2011

    NASA Image and Video Library

    2011-05-02

    The northern and southern hemispheres of Rhea are seen in these polar stereographic maps, mosaicked from the best-available NASA Cassini and Voyager images. Six Voyager images fill in gaps in Cassini coverage of the moon north pole.

  15. Rhea South Polar Map - January 2011

    NASA Image and Video Library

    2011-05-02

    The northern and southern hemispheres of Rhea are seen in these polar stereographic maps, mosaicked from the best-available NASA Cassini and Voyager images. Six Voyager images fill in gaps in Cassini coverage of the moon north pole.

  16. Center determination for trailed sources in astronomical observation images

    NASA Astrophysics Data System (ADS)

    Du, Jun Ju; Hu, Shao Ming; Chen, Xu; Guo, Di Fu

    2014-11-01

    Images with trailed sources can be obtained when observing near-Earth objects, such as small astroids, space debris, major planets and their satellites, no matter the telescopes track on sidereal speed or the speed of target. The low centering accuracy of these trailed sources is one of the most important sources of the astrometric uncertainty, but how to determine the central positions of the trailed sources accurately remains a significant challenge to image processing techniques, especially in the study of faint or fast moving objects. According to the conditions of one-meter telescope at Weihai Observatory of Shandong University, moment and point-spread-function (PSF) fitting were chosen to develop the image processing pipeline for space debris. The principles and the implementations of both two methods are introduced in this paper. And some simulated images containing trailed sources are analyzed with each technique. The results show that two methods are comparable to obtain the accurate central positions of trailed sources when the signal to noise (SNR) is high. But moment tends to fail for the objects with low SNR. Compared with moment, PSF fitting seems to be more robust and versatile. However, PSF fitting is quite time-consuming. Therefore, if there are enough bright stars in the field, or the high astronometric accuracy is not necessary, moment is competent. Otherwise, the combination of moment and PSF fitting is recommended.

  17. Brightness Variations of Sun-like Stars: The Mystery Deepens - Astronomers facing Socratic "ignorance"

    NASA Astrophysics Data System (ADS)

    2009-12-01

    An extensive study made with ESO's Very Large Telescope deepens a long-standing mystery in the study of stars similar to the Sun. Unusual year-long variations in the brightness of about one third of all Sun-like stars during the latter stages of their lives still remain unexplained. Over the past few decades, astronomers have offered many possible explanations, but the new, painstaking observations contradict them all and only deepen the mystery. The search for a suitable interpretation is on. "Astronomers are left in the dark, and for once, we do not enjoy it," says Christine Nicholls from Mount Stromlo Observatory, Australia, lead author of a paper reporting the study. "We have obtained the most comprehensive set of observations to date for this class of Sun-like stars, and they clearly show that all the possible explanations for their unusual behaviour just fail." The mystery investigated by the team dates back to the 1930s and affects about a third of Sun-like stars in our Milky Way and other galaxies. All stars with masses similar to our Sun become, towards the end of their lives, red, cool and extremely large, just before retiring as white dwarfs. Also known as red giants, these elderly stars exhibit very strong periodic variations in their luminosity over timescales up to a couple of years. "Such variations are thought to be caused by what we call 'stellar pulsations'," says Nicholls. "Roughly speaking, the giant star swells and shrinks, becoming brighter and dimmer in a regular pattern. However, one third of these stars show an unexplained additional periodic variation, on even longer timescales - up to five years." In order to find out the origin of this secondary feature, the astronomers monitored 58 stars in our galactic neighbour, the Large Magellanic Cloud, over two and a half years. They acquired spectra using the high resolution FLAMES/GIRAFFE spectrograph on ESO's Very Large Telescope and combined them with images from other telescopes [1

  18. Survival analysis, or what to do with upper limits in astronomical surveys

    NASA Technical Reports Server (NTRS)

    Isobe, Takashi; Feigelson, Eric D.

    1986-01-01

    A field of applied statistics called survival analysis has been developed over several decades to deal with censored data, which occur in astronomical surveys when objects are too faint to be detected. How these methods can assist in the statistical interpretation of astronomical data are reviewed.

  19. ISO Results Presented at International Astronomical Union

    NASA Astrophysics Data System (ADS)

    1997-08-01

    Some of the work being presented is collected in the attached ESA Information Note N 25-97, ISO illuminates our cosmic ancestry. A set of six colour images illustrating various aspects have also been released and are available at http://www.estec.esa.nl/spdwww/iso1808.htm or in hard copy from ESA Public Relations Paris (fax:+33.1.5369.7690). These pictures cover: 1. Distant but powerful infrared galaxies 2. A scan across the milky way 3. Helix nebula: the shroud of a dead star 4. Supernova remnant Cassiopeia A 5. Trifid nebula: a dusty birthplace of stars 6. Precursors of stars and planets The International Astronomical Union provides a forum where astronomers from all over the world can develop astronomy in all its aspects through international co-operation. General Assemblies are held every three years. It is expected that over 1600 astronomers will attend this year's meeting, which is being held in Kyoto, Japan from 18-30 August. Further information on the meeting can be found at: www.tenmon.or.jp/iau97/ . ISO illuminates our cosmic ancestry The European Space Agency's Infrared Space Observatory, ISO, is unmatched in its ability to explore and analyse many of the universal processes that made our existence possible. We are children of the stars. Every atom in our bodies was created in cosmic space and delivered to the Sun's vicinity in time for the Earth's formation, during a ceaseless cycle of birth, death and rebirth among the stars. The most creative places in the sky are cool and dusty, and opaque even to the Hubble Space Telescope. Infrared rays penetrating the dust reveal to ISO hidden objects, and the atoms and molecules of cosmic chemistry. "ISO is reading Nature's recipe book," says Roger Bonnet, ESA's director of science. "As the world's only telescope capable of observing the Universe over a wide range of infrared wavelengths, ISO plays an indispensable part in astronomical discoveries that help to explain how we came to exist." This Information Note

  20. Multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography at 400 kHz

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mohamed T.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-02-01

    Multimodal imaging systems that combine scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) have demonstrated the utility of concurrent en face and volumetric imaging for aiming, eye tracking, bulk motion compensation, mosaicking, and contrast enhancement. However, this additional functionality trades off with increased system complexity and cost because both SLO and OCT generally require dedicated light sources, galvanometer scanners, relay and imaging optics, detectors, and control and digitization electronics. We previously demonstrated multimodal ophthalmic imaging using swept-source spectrally encoded SLO and OCT (SS-SESLO-OCT). Here, we present system enhancements and a new optical design that increase our SS-SESLO-OCT data throughput by >7x and field-of-view (FOV) by >4x. A 200 kHz 1060 nm Axsun swept-source was optically buffered to 400 kHz sweep-rate, and SESLO and OCT were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.2 GS/s per channel using a custom k-clock. We show in vivo human imaging of the anterior segment out to the limbus and retinal fundus over a >40° FOV. In addition, nine overlapping volumetric SS-SESLO-OCT volumes were acquired under video-rate SESLO preview and guidance. In post-processing, all nine SESLO images and en face projections of the corresponding OCT volumes were mosaicked to show widefield multimodal fundus imaging with a >80° FOV. Concurrent multimodal SS-SESLO-OCT may have applications in clinical diagnostic imaging by enabling aiming, image registration, and multi-field mosaicking and benefit intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted image-based surrogate biomarkers of disease.

  1. A Workshop on High Energy Astrophysical for Amateur Astronomers

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Mattei, J. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Amateur astronomers are, in general, an enthusiastic and dynamic group of individuals who can help greatly in astronomy public outreach and education programs. In the U.S., they outnumber professional astronomers by over a factor of ten. Over eighty amateur astronomers from all over the U.S. and abroad attended a unique workshop in Huntsville, Alabama in April of this year. Most attendees were provided with travel grants under the condition that they disseminate knowledge gained at the workshop to civic groups, astronomy clubs and science teacher groups in their home communities. Twelve lecturers were given over two days, primarily by active high-energy researchers from NASA-MSFC and NASA-GSFC. Funding for the workshop was provided by a variety of NASA-sponsored projects, offices within OSS and private funding sources. The workshop attendees were selected by the AAVSO, which also administered the funding for the workshop. This high-leverage educational and public outreach program was deemed to be highly successful and bodes well for similar, future workshops. Many of the participants have already begun to give public talks on HEA and GRBs.

  2. On AIPS++, a new astronomical information processing system

    NASA Technical Reports Server (NTRS)

    Croes, G. A.

    1992-01-01

    The AIPS system that has served the needs of the radio astronomical community remarkably well during the last 15 years is showing signs of age and is being replaced by a more modern system, AIPS++. As the name implies, AIPS++ will be developed in a object oriented fashion and will use C++ as its main programming language. The work is being done by a consortium of seven organizations, with coordinated activities worldwide. After a review of the history of the project to this date from management, astronomical and technical viewpoints, and the current state of the project, the paper concentrates on the tradeoffs implied by the choice of implementation style and the lessons we have learned, good and bad.

  3. Precise Modelling of Telluric Features in Astronomical Spectra

    NASA Astrophysics Data System (ADS)

    Seifahrt, A.; Käufl, H. U.; Zängl, G.; Bean, J.; Richter, M.; Siebenmorgen, R.

    2010-12-01

    Ground-based astronomical observations suffer from the disturbing effects of the Earth's atmosphere. Oxygen, water vapour and a number of atmospheric trace gases absorb and emit light at discrete frequencies, shaping observing bands in the near- and mid-infrared and leaving their fingerprints - telluric absorption and emission lines - in astronomical spectra. The standard approach of removing the absorption lines is to observe a telluric standard star: a time-consuming and often imperfect solution. Alternatively, the spectral features of the Earth's atmosphere can be modelled using a radiative transfer code, often delivering a satisfying solution that removes these features without additional observations. In addition the model also provides a precise wavelength solution and an instrumental profile.

  4. Night Sky Network: A partnership with NASA, the ASP and Astronomical League

    NASA Astrophysics Data System (ADS)

    Chippindale, S.; Berendsen, M.

    2003-12-01

    In 2002, the Astronomical Society of the Pacific (ASP) surveyed amateur astronomers to determine their views and experiences with public outreach. The ultimate goal was to discover methods to support amateur astronomers in their outreach efforts. The survey discovered that they are looking for ready-made, themed materials, training in astronomy content and presentation skills, mentoring, and networking to enhance their astronomy events and support their ability to do educational outreach. Acting on these results and with funding from NASA, the ASP is forming a nationwide coalition of amateur astronomy clubs whose members bring the science, technology and inspiration of NASA's missions to the general public. The program consists of three primary components: outreach materials, training, and community building. Member-based astronomy clubs will receive kits of materials on various astronomy topics to supplement and enhance their events as well as a "professional development" component that includes training on how to use the materials and tips to strengthen their individual presentation skills. The Night Sky Network web site includes public pages and a user area where success stories and challenges can be exchanged, new information downloaded, and a support area for amateur astronomers doing outreach. We are currently testing our first kit, "PlanetQuest: The Search for Another Earth", in over two dozen clubs across the country. The second kit, "Big Bang to Black Holes" is under development for NASA's Structure and Evolution of the Universe Forum through the SAO and will be beta tested over the spring and summer of 2004. Sponsored and supported by NASA-Navigator Program, NASA-SAO Education Forum, the Astronomical Society of the Pacific, and the Astronomical League.

  5. The re-definition of the astronomical unit of length:reasons and consequences

    NASA Astrophysics Data System (ADS)

    Capitaine, Nicole; Klioner, Sergei; McCarthy, Dennis

    2012-08-01

    The astronomical unit (au) is a unit of length approximating the Sun - Earth distance that is used mainly to express the scale of the solar system. Its current definition is based on the value of the Gaussian gravitational constant, k. This conveniently provided accurate relative distances (expressed in astronomical units) when absolute distances could not be estimated with high accuracy. The huge improvement achieved in solar system ephemerides during the last decade provides an opportunity to re - consider the definition and status of the au. This issue was discussed recently by Klioner (2008), Capitaine & Guinot (2009) and Capitaine et al. (2011), as well as within the IAU Working Group on "Numerical Standards for Fundamental astronomy". This resulted in a proposed IAU Resolution recommending that the astronomical unit be re - defined as a fixed number of Système International d ’ Unités (SI) metres through a defining constant. For continuity that constant should be the value of the current best estimate in metres as adopted by IAU 2009 Resolution B2 (i.e. 149 597 870 700 m). After reviewing the properties of the IAU 1976 astronomical unit and its status in the IAU 2009 System of Astronomical Constants, we explain the main reasons for a change; we present and discuss the proposed new definition as well as the advantages over the historical definition. One important consequence is that the heliocentric gravitational constant, GM(Sun), would cease to have a fixed value in astronomical units and will have to be determined experimentally. This would be compliant with modern dynamics of the solar system as it would allow

  6. The Amateur Astronomer's Introduction to the Celestial Sphere

    NASA Astrophysics Data System (ADS)

    Millar, William

    2005-12-01

    This introduction to the night sky is for amateur astronomers who desire a deeper understanding of the principles and observations of naked-eye astronomy. It covers topics such as terrestrial and astronomical coordinate systems, stars and constellations, the relative motions of the sky, sun, moon and earth leading to an understanding of the seasons, phases of the moon, and eclipses. Topics are discussed and compared for observers located in both the northern and southern hemispheres. Written in a conversational style, only addition and subtraction are needed to understand the basic principles and a more advanced mathematical treatment is available in the appendices. Each chapter contains a set of review questions and simple exercises to reinforce the reader's understanding of the material. The last chapter is a set of self-contained observation projects to get readers started with making observations about the concepts they have learned. William Charles Millar, currently Professor of Astronomy at Grand Rapids Community College in Michigan, has been teaching the subject for almost twenty years and is very involved with local amateur astronomy groups. Millar also belongs to The Planetary Society and the Astronomical Society of the Pacific and has traveled to Europe and South America to observe solar eclipses. Millar holds a Masters degree in Physics from Western Michigan University.

  7. Bringing the Virtual Astronomical Observatory to the Education Community

    NASA Astrophysics Data System (ADS)

    Lawton, B.; Eisenhamer, B.; Mattson, B. J.; Raddick, M. J.

    2012-08-01

    The Virtual Observatory (VO) is an international effort to bring a large-scale electronic integration of astronomy data, tools, and services to the global community. The Virtual Astronomical Observatory (VAO) is the U.S. NSF- and NASA-funded VO effort that seeks to put efficient astronomical tools in the hands of U.S. astronomers, students, educators, and public outreach leaders. These tools will make use of data collected by the multitude of ground- and space-based missions over the previous decades. The Education and Public Outreach (EPO) program for the VAO will be led by the Space Telescope Science Institute in collaboration with the High Energy Astrophysics Science Archive Research Center (HEASARC) EPO program and Johns Hopkins University. VAO EPO efforts seek to bring technology, real-world astronomical data, and the story of the development and infrastructure of the VAO to the general public and education community. Our EPO efforts will be structured to provide uniform access to VAO information, enabling educational and research opportunities across multiple wavelengths and time-series data sets. The VAO team recognizes that the VO has already built many tools for EPO purposes, such as Microsoft's World Wide Telescope, SDSS Sky Server, Aladin, and a multitude of citizen-science tools available from Zooniverse. However, it is not enough to simply provide tools. Tools must meet the needs of the education community and address national education standards in order to be broadly utilized. To determine which tools the VAO will incorporate into the EPO program, needs assessments will be conducted with educators across the U.S.

  8. BOREAS RSS-17 1994 ERS-1 Level-3 Freeze/Thaw Backscatter Change Images

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Way, JoBea; McDonald, Kyle C.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-17 team acquired and analyzed imaging radar data from the European Space Agency's (ESA's) European Remote Sensing Satellite (ERS)-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. Two independent transitions corresponding to soil thaw and possible canopy thaw were revealed by the data. The results demonstrated that radar provides an ability to observe thaw transitions at the beginning of the growing season, which in turn helps constrain the length of the growing season. The data set presented here includes change maps derived from radar backscatter images that were mosaicked together to cover the southern BOREAS sites. The image values used for calculating the changes are given relative to the reference mosaic image. The data are stored in binary image format files. The imaging radar data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  9. Climate and carbon-cycle response to astronomical forcing over the last 35 Ma.

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, D.; Palike, H.; Vahlenkamp, M.; Crucifix, M.

    2017-12-01

    On a million-year time scale, the characteristics of insolation forcing caused by cyclical variations in the astronomical parameters of the Earth remain stable. Nevertheless, Earth's climate responded very differently to this forcing during different parts of the Cenozoic. The recently-published ∂18Obenthic megasplice (De Vleeschouwer et al., 2017) allowed for a clear visualization of these changes in global climate response to astronomical forcing. However, many open questions remain regarding how carbon-cycle dynamics influence Earth's climate sensitivity to astronomical climate forcing. To provide insight into the interaction between the carbon cycle and astronomical insolation forcing, we built a benthic carbon isotope (∂13Cbenthic) megasplice for the last 35 Ma, employing the same technique used to build the ∂18Obenthic megasplice. The ∂13Cbenthic megasplice exhibits a strong imprint of the 405 and 100-kyr eccentricity cycles throughout the last 35 Ma. This is intriguing, as the oxygen isotope megasplice looses its eccentricity imprint after the mid-Miocene climatic transition (MMCT; see Fig. 1 in De Vleeschouwer et al., 2017). In other words, the carbon cycle responded completely differently to astronomical forcing, compared to global climate during the late Miocene. We visualize this difference in response by the application of a Gaussian process, which renders the dependence of one variable (here ∂18Obenthic or ∂13Cbenthic) in a multidimensional space (here precession, obliquity and eccentricity). Together, the ∂13Cbenthic and ∂18Obenthic megasplices thus provide a unique tool for paleoclimatology, allowing for the quantification and visualization of the changing paleoclimate and carbon-cycle response to astronomical forcing throughout geologic time. References De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., Pälike, H., 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m

  10. Pulkovo Observatory - One of the Main Centers of Astronomical Education in Russia

    NASA Astrophysics Data System (ADS)

    Shakht, Natalia A.

    2007-08-01

    Since the beginning of the activity in 1839, Pulkovo observatory was an important center of the teaching of astronomy and geodesy in Russia. The first director of Pulkovo observatory W. Ja. Struve together with Pulkovo astronomers taught the topographers and specialists in geodesy and to naval officers the methods of geographic coordinates determinations. Pulkovo observatory was the center of the improvement of such specialists till 1928. Pulkovo astronomers lecture for students in the leading educational centers during many decades and at present and also lead the aspirants and researchers. The works of Pulkovo astronomers have been united in the known textbooks of astronomy and stellar astronomy with several re-editions. In 1957-1965 after the first launch of artificial satellite, many seminars and schools, which were dedicated to study of observations of artificial satellites and to the space geodesy have been organized at Pulkovo. Each year, about 10-15 thousands of guests visit Pulkovo. Our astronomers have the contact with the amateurs of astronomy in many countries and collect the information on their observations. More than 1,000,000 observations of asteroids and comets made by amateurs are collected with the scientific aims, particularly for the enlargement of the information about NEOs. Pulkovo astronomers lecture and give the practical lessons in ecological expeditions, which unite young people of various places of Russia.

  11. The Hunt for Pristine Cretaceous Astronomical Rhythms at Demerara Rise (Cenomanian-Coniacian)

    NASA Astrophysics Data System (ADS)

    Ma, C.; Meyers, S. R.

    2014-12-01

    Rhythmic Upper Cretaceous strata from Demerara Rise (ODP leg 207) preserve a strong astronomical signature, and this attribute has facilitated the development of continuous astrochronologies to refine the geologic time scale and calibrate Late Cretaceous biogeochemical events. While the mere identification of astronomical rhythms is a crucial first step in many deep-time paleoceanographic investigations, accurate evaluation of often subtle amplitude and frequency modulations are required to: (1) robustly constrain the linkage between climate and sedimentation, and (2) evaluate the plausibility of different theoretical astrodynamical models. The availability of a wide range of geophysical, lithologic and geochemical data from multiple sites drilled at Demerara Rise - when coupled with recent innovations in the statistical analysis of cyclostratigraphic data - provides an opportunity to hunt for the most pristine record of Cretaceous astronomical rhythms at a tropical Atlantic location. To do so, a statistical metric is developed to evaluate the "internal" consistency of hypothesized astronomical rhythms observed in each data set, particularly with regard to the expected astronomical amplitude modulations. In this presentation, we focus on how the new analysis yields refinements to the existing astrochronologies, provides constraints on the linkages between climate and sedimentation (including the deposition of organic carbon-rich sediments at Demerara Rise), and allows a quantitative evaluation of the continuity of deposition across sites at multiple temporal scales.

  12. Critical factors for a successful astronomical research program in a developing country

    NASA Astrophysics Data System (ADS)

    Hearnshaw, John B.

    I discuss the critical conditions for undertaking a successful research program in a developing country. There are many important factors, all or most of which have to be satisfied: funding, library holdings, computing access, Internet access (e-mail, WWW, ftp, telnet), collaboration with astronomers in developed countries, provision of proper offices for staff, supply of graduate students, access to travel for conferences, ability to publish in international journals, critical mass of researchers, access to a telescope (for observational astronomers), support from and interaction with national electronics, optics and precision engineering industries, a scientific culture backed by a national scientific academy, and lack of inter-institutional rivalry. I make a list of a total of 15 key factors and rank them in order of importance, and discuss the use of an astronomical research index (ARI) suitable for measuring the research potential of a given country or institution. I also discuss whether astronomers in developing countries in principle fare better in a university or in the environment of a government national observatory or research institution, and topics such as the effect of the cost of page charges and journal subscriptions on developing countries. Finally I present some statistics on astronomy in developing countries and relate the numbers of astronomers to the size of the economy and population in each country.

  13. Stellar Family Portrait Takes Imaging Technique to New Extremes

    NASA Astrophysics Data System (ADS)

    2009-12-01

    The young star cluster Trumpler 14 is revealed in another stunning ESO image. The amount of exquisite detail seen in this portrait, which beautifully reveals the life of a large family of stars, is due to the Multi-conjugate Adaptive optics Demonstrator (MAD) on ESO's Very Large Telescope. Never before has such a large patch of sky been imaged using adaptive optics [1], a technique by which astronomers are able to remove most of the atmosphere's blurring effects. Noted for harbouring Eta Carinae - one of the wildest and most massive stars in our galaxy - the impressive Carina Nebula also houses a handful of massive clusters of young stars. The youngest of these stellar families is the Trumpler 14 star cluster, which is less than one million years old - a blink of an eye in the Universe's history. This large open cluster is located some 8000 light-years away towards the constellation of Carina (the Keel). A team of astronomers, led by Hugues Sana, acquired astounding images of the central part of Trumpler 14 using the Multi-conjugate Adaptive optics Demonstrator (MAD, [2]) mounted on ESO's Very Large Telescope (VLT). Thanks to MAD, astronomers were able to remove most of the blurring effects of the atmosphere and thus obtain very sharp images. MAD performs this correction over a much larger patch of the sky than any other current adaptive optics instrument, allowing astronomers to make wider, crystal-clear images. Thanks to the high quality of the MAD images, the team of astronomers could obtain a very nice family portrait. They found that Trumpler 14 is not only the youngest - with a refined, newly estimated age of just 500 000 years - but also one of the most populous star clusters within the nebula. The astronomers counted about 2000 stars in their image, spanning the whole range from less than one tenth up to a factor of several tens of times the mass of our own Sun. And this in a region which is only about six light-years across, that is, less than twice the

  14. Achievements of the Armenian Astronomy and the Present Activities of the Armenian Astronomical Society

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2014-10-01

    A report is given on the achievements of the Armenian astronomy during the last years and on the present activities of the Armenian Astronomical Society (ArAS). ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, international collaboration, Armenian Virtual Observatory (ArVO), membership in international organizations, grants, prizes, meetings, summer schools, astronomical Olympiads, other matters related to astronomical education, archaeoastronomy, astronomy outreach and ArAS further projects are discussed.

  15. Supporting Evidence for the Astronomically Calibrated Age of Fish Canyon Sanidine

    NASA Astrophysics Data System (ADS)

    Rivera, T. A.; Storey, M.; Zeeden, C.; Kuiper, K.; Hilgen, F.

    2010-12-01

    The relative nature of the 40Ar/39Ar radio-isotopic dating technique requires that the age and error of the monitor mineral be accurately known. The most widely accepted monitor for Cenozoic geochronology is the Fish Canyon sanidine (FCs), whose recommended published ages have varied by up to 2% over the past two decades. To reconcile the discrepancy among recommended ages, researchers have turned to the use of (i) intercalibration experiments with primary argon standards, (ii) cross-calibration with U-Pb ages, and (iii) cross-calibration with sanidine-hosted tephras present in astronomically tuned stratigraphic sections. The increasingly robust quality of the astronomical timescale, with precision better than 0.1% for the last 10 million years, suggests this method of intercalibration as the best way to proceed with addressing the true age of FCs. Recently, Kuiper, et al. (2008) determined an astronomically calibrated age of 28.201 ± 0.046 Ma (2σ), based upon the Moroccan Melilla Basin Messâdit section. Here, we provide independent verification for the Kuiper, et al. (2008) FCs age using sanidines extracted from a tephra intercalated in another Mediterranean-based astronomically tuned section. The direct tuning of this section was achieved through correlation to long (~400 kyr) and short (~100 kyr) eccentricity, followed by tuning of basic sedimentary cycles to precession and summer insolation, using the La2004(1,1) astronomical solution (Laskar, et al., 2004). We employed a Nu Instruments Noblesse multi-collector noble gas mass spectrometer for the 40Ar/39Ar experiments, analyzing single crystals of FCs relative to sanidines from the astronomically dated tephra. The use of the multi-collector instrument allowed us to obtain high precision analyses with a level of precision for fully propagated external errors for FCs near the 0.1% goal of EARTHTIME. The research leading to these results has received funding from the European Community's Seventh Framework

  16. Astronomical fire: Richard Carrington and the solar flare of 1859.

    PubMed

    Clark, Stuart

    2007-09-01

    An explosion on the Sun in 1859, serendipitously witnessed by amateur astronomer Richard Carrington, plunged telegraphic communications into chaos and bathed two thirds of the Earth's skies in aurorae. Explaining what happened to the Sun and how it could affect Earth, 93 million miles away, helped change the direction of astronomy. From being concerned principally with charting the stars to aid navigation, astronomers became increasingly concerned with what the celestial objects were, how they behaved and how they might affect life on Earth.

  17. US Gateway to SIMBAD Astronomical Database

    NASA Technical Reports Server (NTRS)

    Eichhorn, G.

    1998-01-01

    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. User registration is required by the SIMBAD project in France. Currently, there are almost 3000 US users registered. We also provide user support by answering questions from users and handling requests for lost passwords. We have worked with the CDS SIMBAD project to provide access to the SIMBAD database to US users on an Internet address basis. This will allow most US users to access SIMBAD without having to enter passwords. This new system was installed in August, 1998. The SIMBAD mirror database at SAO is fully operational. We worked with the CDS to adapt it to our computer system. We implemented automatic updating procedures that update the database and password files daily. This mirror database provides much better access to the US astronomical community. We also supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We shipped computer equipment to the meeting and provided support for the demonstration activities at the SIMBAD booth. We continued to improve the cross-linking between the SIMBAD project and the Astro- physics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SAO makes this connection faster for the US astronomers. The close cooperation between the CDS in Strasbourg and SAO, facilitated by this project, is an important part of the astronomy-wide digital library initiative called Urania. It has proven to be a model in how different data centers can collaborate and enhance the value of their products by linking with other data centers.

  18. Astronomical Optical Interferometry. I. Methods and Instrumentation

    NASA Astrophysics Data System (ADS)

    Jankov, S.

    2010-12-01

    Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas) resolution and astrometry with micro-arcsecond (muas) precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are disscused as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers). Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  19. MAISIE: a multipurpose astronomical instrument simulator environment

    NASA Astrophysics Data System (ADS)

    O'Brien, Alan; Beard, Steven; Geers, Vincent; Klaassen, Pamela

    2016-07-01

    Astronomical instruments often need simulators to preview their data products and test their data reduction pipelines. Instrument simulators have tended to be purpose-built with a single instrument in mind, and at- tempting to reuse one of these simulators for a different purpose is often a slow and difficult task. MAISIE is a simulator framework designed for reuse on different instruments. An object-oriented design encourages reuse of functionality and structure, while offering the flexibility to create new classes with new functionality. MAISIE is a set of Python classes, interfaces and tools to help build instrument simulators. MAISIE can just as easily build simulators for single and multi-channel instruments, imagers and spectrometers, ground and space based instruments. To remain easy to use and to facilitate the sharing of simulators across teams, MAISIE is written in Python, a freely available and open-source language. New functionality can be created for MAISIE by creating new classes that represent optical elements. This approach allows new and novel instruments to add functionality and take advantage of the existing MAISIE classes. MAISIE has recently been used successfully to develop the simulator for the JWST/MIRI- Medium Resolution Spectrometer.

  20. Astronomers in the Chemist's War

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-01-01

    World War II, with radar, rockets, and "atomic" bombs was the physicists' war. And many of us know, or think we know, what our more senior colleagues did during it, with Hubble and Hoffleit at Aberdeen; M. Schwarzschild on active duty in Italy; Bondi, Gold, and Hoyle hunkered down in Dunsfeld, Surrey, talking about radar, and perhaps steady state; Greenstein and Henyey designing all-sky cameras; and many astronomers teaching navigation. World War I was The Chemists' War, featuring poison gases, the need to produce liquid fuels from coal on one side of the English Channel and to replace previously-imported dyesstuffs on the other. The talke will focus on what astronomers did and had done to them between 1914 and 1919, from Freundlich (taken prisoner on an eclipse expedition days after the outbreak of hostilities) to Edwin Hubble, returning from France without ever having quite reached the front lines. Other events bore richer fruit (Hale and the National Research Council), but very few of the stories are happy ones. Most of us have neither first nor second hand memories of The Chemists' War, but I had the pleasure of dining with a former Freundlich student a couple of weeks ago.

  1. The League of Astronomers: Outreach

    NASA Astrophysics Data System (ADS)

    Paat, Anthony; Brandel, A.; Schmitz, D.; Sharma, R.; Thomas, N. H.; Trujillo, J.; Laws, C. S.; Astronomers, League of

    2014-01-01

    The University of Washington League of Astronomers (LOA) is an organization comprised of University of Washington (UW) undergraduate students. Our main goal is to share our interest in astronomy with the UW community and with the general public. The LOA hosts star parties on the UW campus and collaborates with the Seattle Astronomical Society (SAS) on larger Seattle-area star parties. At the star parties, we strive to teach our local community about what they can view in our night sky. LOA members share knowledge of how to locate constellations and use a star wheel. The relationship the LOA has with members of SAS increases both the number of events and people we are able to reach. Since the cloudy skies of the Northwest prevent winter star parties, we therefore focus our outreach on the UW Mobile Planetarium, an inflatable dome system utilizing Microsoft’s WorldWide Telescope (WWT) software. The mobile planetarium brings astronomy into the classrooms of schools unable to travel to the UW on-campus planetarium. Members of the LOA volunteer their time towards this project and we make up the majority of the Mobile Planetarium volunteers. Our outreach efforts allow us to connect with the community and enhance our own knowledge of astronomy.

  2. Automated geographic registration and radiometric correction for UAV-based mosaics

    USDA-ARS?s Scientific Manuscript database

    Texas A&M University has been operating a large-scale, UAV-based, agricultural remote-sensing research project since 2015. To use UAV-based images in agricultural production, many high-resolution images must be mosaicked together to create an image of an agricultural field. Two key difficulties to s...

  3. Ancient Astronomical Hieroglyphs of the Armenian Highland and their Echo in Architectural Structures

    NASA Astrophysics Data System (ADS)

    Ter-Gulanyan, Ani

    2014-10-01

    The credo-spiritual structure formed as a result of astronomical knowledge in the Armenian Highland and recognition of the universe, with its symbolistic signs - which, in our opinion, were expressed in particular by astronomic horoscope hieroglyphs - have had their worship and spiritual speculative feedback both in architecture and in different other arts, especially in symbolic jewelry. A visible link is noticed between the shift of constellations and the civilization development phases. Identification of archeological sources gives the ground to conclude that Armenia has been one of the centers of astronomy. The astronomical signs, having a local origin and having formed ancient astronomical-worship, spiritual-credo structure, have found the feedback of its developments also in other biospheres with respective unique manifestations, in both ancient pagan church architecture and the Christian church architecture, both as a volume form and as a spiritual ideology, with its credosymbolistic signs.

  4. Astronomers' Race to Test Relativity, 1911-1930

    NASA Astrophysics Data System (ADS)

    Crelinsten, Jeffrey

    2006-11-01

    Einstein's theory of relativity changed our notions of space and time and has dramatically altered the way we look at the universe and our place in it. Yet to this day a working knowledge of the theory is beyond most people. In today's popular culture, Einstein is a remote, loveable genius and his theory is incomprehensible. While Einstein's theory ultimately laid the foundation for modern studies of the universe, it took a long time to be accepted. Between 1905 and 1930, relativity was poorly understood and Einstein worked hard to try to make it more accessible to scientists and scientifically literate laypeople. Its acceptance was largely due to the astronomy community, which undertook precise measurements to test Einstein's astronomical predictions. How astronomers approached the ``Einstein problem'' in these early years and how the public reacted to what they reported helped to shape attitudes we hold today about Einstein and his ideas.

  5. Astronomical chemistry.

    PubMed

    Klemperer, William

    2011-01-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  6. "She is an astronomer" in Spain; the International Year of Astronomy 2009 and beyond

    NASA Astrophysics Data System (ADS)

    Márquez, I.

    2011-11-01

    The work of the Spanish node for the IYA2009 Cornerstoneproject, "She is an Astronomer" is presented. Our team developedseveral projects with the common goal of promoting gender equality andwomen participation in professional and amateur astronomy, andsupporting the training of young women researchers andtechnologists. The main ones were: 1)Calendar "Women astronomerswho made history". We highlighted exceptional women, fromdifferent epochs and countries, whose contributions to theadvancement of science deserve to transcend anonymity and occupy aplace in history.2) "Women in the stars" was a series of 8 TV programsdevoted to the contribution of Spanish women astronomers, made incollaboration with the UNED.3) "Women in Spanish Astronomy: analysis of a peculiar situation: A universe to discover", was the first sociological study of this type, including quantitative and qualitative (individual and group interviews) analyses. 4) The exhibit "She Astronomer", was aimed at teaching astronomy from a new perspective: the relevant contributions by women astronomers from different times and places.The main aims of the "Commission for Women and Astronomy",recently created within the Spanish Astronomical Society (SEA), are alsodescribed.

  7. Deferred slanted-edge analysis: a unified approach to spatial frequency response measurement on distorted images and color filter array subsets.

    PubMed

    van den Bergh, F

    2018-03-01

    The slanted-edge method of spatial frequency response (SFR) measurement is usually applied to grayscale images under the assumption that any distortion of the expected straight edge is negligible. By decoupling the edge orientation and position estimation step from the edge spread function construction step, it is shown in this paper that the slanted-edge method can be extended to allow it to be applied to images suffering from significant geometric distortion, such as produced by equiangular fisheye lenses. This same decoupling also allows the slanted-edge method to be applied directly to Bayer-mosaicked images so that the SFR of the color filter array subsets can be measured directly without the unwanted influence of demosaicking artifacts. Numerical simulation results are presented to demonstrate the efficacy of the proposed deferred slanted-edge method in relation to existing methods.

  8. Astronomical, physical, and meteorological parameters for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Travis, Larry D.

    1986-01-01

    A newly compiled table of astronomical, physical, and meteorological parameters for planetary atmospheres is presented. Formulae and explanatory notes for their application and a complete listing of sources are also given.

  9. The caracol tower at chichen itza: an ancient astronomical observatory?

    PubMed

    Aveni, A F; Gibbs, S L; Hartung, H

    1975-06-06

    Although our investigations reveal a number of significant astronomical events coinciding with many of the measured alignments presented in Table 1, not every alignment appears to have an astronomical match which we can recognize. It may be that only some of the sighting possibilities we have discussed were actually functional. Moreover, our search of significant astronomical events to match the alignments has included only those which seem of obvious functional importance to us: sun, moon, and planetary extremes and the setting positions of the brightest stars. We have emphasized those celestial bodies which are documented in the literature as having been of importance. Perhaps hitherto unrecognized constellations were sighted in the windows, perhaps fainter stars, the heliacal rising and setting times of which could have served to mark important dates in the calendar. While we propose no grand cosmic scheme for the astronomical design of the Caracol it can be inferred that the building, apart from being a monument related to Quetzalcoatl, was erected primarily for the purpose of embodying in its architecture certain significant astronomical event alignments, in the same sense that a modern astronomical ephemeris exhibits information of importance to us in the keeping of the current calendar. There are examples in the Mesoamerican historical literature of deliberate attempts to align buildings with astronomical directions of importance. For example, Maudslay (33) quotes Father Motolinia, who tells us that in Tenochtitlan the festival called Tlacaxipeualistli "took place when the sun stood in the middle of Huicholobos, which was at the equinox, and because it was a little out of the straight, Montezuma wished to pull it down and set it right." According to Maudslay, worshipers were probably facing east to watch the sun rise between the two oratories on the Great Temple of Tenochtitlan at the time of the equinox. The directions of the faces of the Lower and Upper

  10. Astronomical Research Institute Photometric Results

    NASA Astrophysics Data System (ADS)

    Linder, Tyler R.; Sampson, Ryan; Holmes, Robert

    2013-01-01

    The Astronomical Research Institute (ARI) conducts astrometric and photometric studies of asteroids with a concentration on near-Earth objects (NEOs). A 0.76-m autoscope was used for photometric studies of seven asteroids of which two were main-belt targets and five were NEOs, including one potentially hazardous asteroid (PHA). These objects are: 3122 Florence, 3960 Chaliubieju, 5143 Heracles, (6455) 1992 HE, (36284) 2000 DM8, (62128) 2000 SO1, and 2010 LF86.

  11. Astronomy textbook images: do they really help students?

    NASA Astrophysics Data System (ADS)

    Testa, Italo; Leccia, Silvio; Puddu, Emanuella

    2014-05-01

    In this paper we present a study on the difficulties secondary school students experience in interpreting textbook images of elementary astronomical phenomena, namely, the changing of the seasons, Sun and lunar eclipses and Moon phases. Six images from a commonly used textbook in Italian secondary schools were selected. Interviews of 45 min about the astronomical concepts related to the images were carried out with eighteen students attending the last year of secondary school (aged 17-18). Students’ responses were analyzed through a semiotic framework based on the different types of visual representation structures. We found that the wide range of difficulties shown by students come from naïve or alternative ideas due to incorrect or inadequate geometric models of the addressed phenomena. As a primary implication of this study, we suggest that teachers should pay attention to specific iconic features of the discussed images, e.g., the compositional structure and the presence of real/symbolic elements.

  12. The New Amateur Astronomer

    NASA Astrophysics Data System (ADS)

    Mobberley, Martin

    Amateur astronomy has changed beyond recognition in less than two decades. The reason is, of course, technology. Affordable high-quality telescopes, computer-controlled 'go to' mountings, autoguiders, CCD cameras, video, and (as always) computers and the Internet, are just a few of the advances that have revolutionized astronomy for the twenty-first century. Martin Mobberley first looks at the basics before going into an in-depth study of what’s available commercially. He then moves on to the revolutionary possibilities that are open to amateurs, from imaging, through spectroscopy and photometry, to patrolling for near-earth objects - the search for comets and asteroids that may come close to, or even hit, the earth. The New Amateur Astronomer is a road map of the new astronomy, equally suitable for newcomers who want an introduction, or old hands who need to keep abreast of innovations. From the reviews: "This is one of several dozen books in Patrick Moore's "Practical Astronomy" series. Amid this large family, Mobberley finds his niche: the beginning high-tech amateur. The book's first half discusses equipment: computer-driven telescopes, CCD cameras, imaging processing software, etc. This market is changing every bit as rapidly as the computer world, so these details will be current for only a year or two. The rest of the book offers an overview of scientific projects that serious amateurs are carrying out these days. Throughout, basic formulas and technical terms are provided as needed, without formal derivations. An appendix with useful references and Web sites is also included. Readers will need more than this book if they are considering a plunge into high-tech amateur astronomy, but it certainly will whet their appetites. Mobberley's most valuable advice will save the book's owner many times its cover price: buy a quality telescope from a reputable dealer and install it in a simple shelter so it can be used with as little set-up time as

  13. Abilities of Celestial Observations in Astronomical Observatory of Physics Institute in Opole

    NASA Astrophysics Data System (ADS)

    Godłowski, W.; Szpanko, M.

    2010-12-01

    We present possibilities of astronomical investigation in Astronomical Observatory in Opole. Our observatory uses two telescopes: Celestron CGE-1400 XLT (35 cm) and Meade LX200 (30 cm) with spectrograph and CCD Camera. Main topic of our observational investigation is connected with observations of variable stars, minor bodies of the solar system, blazers and the Sun.

  14. ``Orion, I Don't Love You'': The Astronomical Legacy of Carl Sandburg

    NASA Astrophysics Data System (ADS)

    Ricca, B.

    2013-04-01

    Can poetry provide an accurate means of representing the scientific universe? This paper looks at the astronomical poetry of Carl Sandburg and how the poet employs a scientific framework to deepen his work. Sandburg's method is then compared to a class project of middle school students who use his poetry (and their own) to learn and understand astronomical facts.

  15. The Production Rate and Employment of Ph.D. Astronomers

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis S.

    2008-02-01

    In an effort to encourage self-regulation of the astronomy job market, I examine the supply of, and demand for, astronomers over time. On the supply side, I document the production rate of Ph.D. astronomers from 1970 to 2006 using the UMI Dissertation Abstracts database, along with data from other independent sources. I compare the long-term trends in Ph.D. production with federal astronomy research funding over the same time period, and I demonstrate that additional funding is correlated with higher subsequent Ph.D. production. On the demand side, I monitor the changing patterns of employment using statistics about the number and types of jobs advertised in the AAS Job Register from 1984 to 2006. Finally, I assess the sustainability of the job market by normalizing this demand by the annual Ph.D. production. The most recent data suggest that there are now annual advertisements for about one postdoctoral job, half a faculty job, and half a research/support position for every new domestic Ph.D. recipient in astronomy and astrophysics. The average new astronomer might expect to hold up to 3 jobs before finding a steady position.

  16. Polishers around the globe: an overview on the market of large astronomical mirrors

    NASA Astrophysics Data System (ADS)

    Döhring, Thorsten

    2014-07-01

    Astronomical mirrors are key elements in modern optical telescopes, their dimensions are usually large and their specifications are demanding. Only a limited number of skilled companies respectively institutions around the world are able to master the challenge to polish an individual astronomical mirror, especially in dimensions above one meter. This paper presents an overview on the corresponding market including a listing of polishers around the globe. Therefore valuable information is provided to the astronomical community: Polishers may use the information as a global competitor database, astronomers and project managers may get more transparency on potential suppliers, and suppliers of polishing equipment may learn about unknown potential customers in other parts of the world. An evaluation of the historical market demand on large monolithic astronomical mirrors is presented. It concluded that this is still a niche market with a typical mean rate of 1-2 mirrors per year. Polishing of such mirrors is an enabling technology with impact on the development of technical know-how, public relation, visibility and reputation of the supplier. Within a corresponding technical discussion different polishing technologies are described. In addition it is demonstrated that strategic aspects and political considerations are influencing the selection of the optical finisher.

  17. Science Initiatives of the US Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2012-09-01

    The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (Fabbiano et al. 2011), we have focused on five science initiatives in the first two years of VAO operations: 1) scalable cross-comparisons between astronomical source catalogs, 2) dynamic spectral energy distribution construction, visualization, and model fitting, 3) integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, 4) integration of VO data discovery and access tools into the IRAF data analysis environment, and 5) a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  18. Using XML and Java for Astronomical Instrument Control

    NASA Astrophysics Data System (ADS)

    Koons, L.; Ames, T.; Evans, R.; Warsaw, C.; Sall, K.

    1999-12-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests. Instrument description is too tightly coupled with details of implementation. NASA/Goddard Space Flight Center and AppNet, Inc. are developing a very general and highly extensible framework that applies to virtually any kind of instrument that can be controlled by a computer (e.g., telescopes, microscopes and printers). A key aspect of the object-oriented architecture, implemented in Java, involves software that is driven by an instrument description. The Astronomical Instrument Markup Language (AIML) is a domain-specific implementation of the more generalized Instrument Markup Language (IML). The software architecture combines the platform-independent processing capabilities of Java with the vendor-independent data description syntax of Extensible Markup Language (XML), a human-readable and machine-understandable way to describe structured data. IML is used to describe command sets (including parameters, datatypes, and constraints) and their associated formats, telemetry, and communication mechanisms. The software uses this description to present graphical user interfaces to control and monitor the instrument. Recent efforts have extended to command procedures (scripting) and representation of data pipeline inputs, outputs, and connections. Near future efforts are likely to include an XML description of data visualizations, as well as the potential use of XSL (Extensible Stylesheet Language) to permit astronomers to customize the user interface on several levels: per user, instrument, subsystem, or observatory-wide. Our initial prototyping effort was targeted for HAWC (High-resolution Airborne Wideband Camera), a first-light instrument of SOFIA (the Stratospheric Observatory for Infrared Astronomy

  19. The astronomer of the duchess -- Life and work of Franz Xaver von Zach 1754-1832. (German Title: Der Astronom der Herzogin -- Leben und Werk von Franz Xaver von Zach 1754-1832)

    NASA Astrophysics Data System (ADS)

    Brosche, Peter

    The astronomer, geodesist, geographer and historian of science Franz Xaver von Zach (1754-1832) lived and worked in several European countries. Duke Ernst II of Saxe-Gotha-Altenburg appointed him as the founding scientist of his Seeberg Observatory. This was the place of his strongest activity. Why should we have an interest in him today? There is a rational and an emotional answer. First, he has rendered organisational services to his sciences which are equivalent to a great scientific achievement. Second, Zach was a very colourful character, travelled across many states in a time of radical changes and had connections with many colleagues and public figures. Images from his life therefore provide outlooks, insights and relations.

  20. First Images from the PIONIER/VLTI optical interferometry imaging survey of Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Kluska, Jacques; Malbet, Fabien; Berger, Jean-Philippe; Benisty, Myriam; Lazareff, Bernard; Le Bouquin, Jean-Baptiste; Baron, Fabien; Dominik, Carsten; Isella, Andrea; Juhasz, Attila; Kraus, Stefan; Lachaume, Régis; Ménard, François; Millan-Gabet, Rafael; Monnier, John; Pinte, Christophe; Thi, Wing-Fai; Thiébaut, Eric; Zins, Gérard

    2013-07-01

    The morphology of the close environment of herbig stars is being revealed step by step and appears to be quite complex. Many physical phenomena could interplay : the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, getting images at the first Astronomical Unit scale is crucial. This has become possible with near infrared instruments on the VLTi. We are carrying out the first Large Program survey of HAeBe stars with statistics on the geometry of these objects at the first astronomical unit scale and the first images of the very close environment of some of them. We have developed a new numerical method specific to young stellar objects which removes the stellar component reconstructing an image of the environment only. To do so we are using the differences in the spectral behaviour between the star and its environment. The images reveal the environement which is not polluted by the star and allow us to derive the best fit for the flux ratio and the spectral slope between the two components (stellar and environmental). We present the results of the survey with some statistics and the frist images of Herbig stars made by PIONIER on the VLTi.