Science.gov

Sample records for astronomical spectrograph calibration

  1. A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration

    NASA Astrophysics Data System (ADS)

    Quinlan, F.; Ycas, G.; Osterman, S.; Diddams, S. A.

    2010-06-01

    A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is ~350 kHz at 1550 nm. The comb frequency uncertainty is bounded by +/-30 kHz (corresponding to a radial velocity of +/-5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR.

  2. A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration

    SciTech Connect

    Quinlan, F.; Diddams, S. A.; Ycas, G.; Osterman, S.

    2010-06-15

    A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is {approx}350 kHz at 1550 nm. The comb frequency uncertainty is bounded by {+-}30 kHz (corresponding to a radial velocity of {+-}5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR.

  3. Wavelength References for the Calibration of Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Nave, Gillian

    2017-09-01

    "Thorium-argon hollow cathode lamps have long been used for wavelength calibration of spectrographs on ground-based astronomical telescopes. New high-resolution spectrographs, covering wavelengths up through the infrared region, requiring new calibration sources that are convenient, inexpensive, and readily available. I shall describe activities at NIST in the past few years to address these needs, using high-resolution Fourier transform spectroscopy to produce reference data of Th/Ar and U/Ne hollow cathode lamps, gas cells, and fiber Fabrey-Perot interferometers."

  4. Redesign of the integrated photonic spectrograph for improved astronomical performance

    NASA Astrophysics Data System (ADS)

    Cvetojevic, Nick; Jovanovic, Nemanja; Lawrence, Jon S.; Withford, Michael J.; Bland-Hawthorn, Joss

    2012-09-01

    The Integrated Photonic Spectrograph (IPS) is a complete spectrograph within a single silica photonic chip, that has no moving parts, is highly resistant to stress and temperature induced flexure and is far smaller than existing bulk-optic spectrographs. There has been considerable development in this all-photonic approach, culminating in a recent successful on-telescope test, which saw the world's first astronomical spectra taken using a photonic spectrograph. However, the device's performance (in terms of resolving power and wavelength coverage) was limited by the predominantly telecommunications-grade design parameters used in chip manufacturing, and at this stage warrants a substantial redesign of the arrayed waveguide grating structure inside the IPS chips, to optimize it for astronomy. In this body of work we present a comprehensive redesign of arrayed waveguide grating chips to improve specific performance parameters of interest to astronomy. These include the free-spectral range, resolving power and the operational wavelength for the devices, with an analysis of the limitations and benefits of the redesigns for typical astronomical goals. We propose how the redesigns, along with other advancements in astrophotonics, can be used in conjunction with adaptive-optics systems to make a prototype instrument with competitive throughput and resolving power.

  5. Modelling high resolution Echelle spectrographs for calibrations: Hanle Echelle spectrograph, a case study

    NASA Astrophysics Data System (ADS)

    Chanumolu, Anantha; Jones, Damien; Thirupathi, Sivarani

    2015-06-01

    We present a modelling scheme that predicts the centroids of spectral line features for a high resolution Echelle spectrograph to a high accuracy. Towards this, a computing scheme is used, whereby any astronomical spectrograph can be modelled and controlled without recourse to a ray tracing program. The computations are based on paraxial ray trace and exact corrections added for certain surface types and Buchdahl aberration coefficients for complex modules. The resultant chain of paraxial ray traces and corrections for all relevant components is used to calculate the location of any spectral line on the detector under all normal operating conditions with a high degree of certainty. This will allow a semi-autonomous control using simple in-house, programming modules. The scheme is simple enough to be implemented even in a spreadsheet or in any scripting language. Such a model along with an optimization routine can represent the real time behaviour of the instrument. We present here a case study for Hanle Echelle Spectrograph. We show that our results match well with a popular commercial ray tracing software. The model is further optimized using Thorium Argon calibration lamp exposures taken during the preliminary alignment of the instrument. The model predictions matched the calibration frames at a level of 0.08 pixel. Monte Carlo simulations were performed to show the photon noise effect on the model predictions.

  6. Fiber optics for astronomical spectroscopy - The Medusa Spectrograph

    NASA Technical Reports Server (NTRS)

    Hill, J. M.; Angel, J. R. P.; Scott, J. S.

    1983-01-01

    An instrument has been built to obtain simultaneous spectra of 32 objects in the field of view of the Steward Observatory 2.3 m telescope. Short lengths of optical fiber are used to bring light from galaxy images at the focus of the telescope into a line at the spectrograph slit. This multi-fiber aperture plate instrument has been dubbed the Medusa Spectrograph. The Medusa is now producing spectra of about 100 galaxies per clear night. An optimized version of the instrument called the MX Spectrometer is being constructed to record spectra at a higher rate. This new instrument will have remotely positioned fibers under computer control. A Charge Coupled Device will be used as the spectrograph detector to allow sky subtraction, give increased dynamic range and provide more accurate wavelength calibration. Transmission characteristics of some commercial fibers are discussed, and the microlens optics used to match the telescope and the spectrograph to the fibers to avoid focal ratio degradation are described.

  7. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level.

    PubMed

    Wilken, Tobias; Curto, Gaspare Lo; Probst, Rafael A; Steinmetz, Tilo; Manescau, Antonio; Pasquini, Luca; González Hernández, Jonay I; Rebolo, Rafael; Hänsch, Theodor W; Udem, Thomas; Holzwarth, Ronald

    2012-05-30

    The best spectrographs are limited in stability by their calibration light source. Laser frequency combs are the ideal calibrators for astronomical spectrographs. They emit a spectrum of lines that are equally spaced in frequency and that are as accurate and stable as the atomic clock relative to which the comb is stabilized. Absolute calibration provides the radial velocity of an astronomical object relative to the observer (on Earth). For the detection of Earth-mass exoplanets in Earth-like orbits around solar-type stars, or of cosmic acceleration, the observable is a tiny velocity change of less than 10 cm s(-1), where the repeatability of the calibration--the variation in stability across observations--is important. Hitherto, only laboratory systems or spectrograph calibrations of limited performance have been demonstrated. Here we report the calibration of an astronomical spectrograph with a short-term Doppler shift repeatability of 2.5 cm s(-1), and use it to monitor the star HD 75289 and recompute the orbit of its planet. This repeatability should make it possible to detect Earth-like planets in the habitable zone of star or even to measure the cosmic acceleration directly.

  8. Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.

    2012-09-01

    Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.

  9. Absolute calibration of vacuum ultraviolet spectrograph system for plasma diagnostics

    SciTech Connect

    Yoshikawa, M.; Kubota, Y.; Kobayashi, T.; Saito, M.; Numada, N.; Nakashima, Y.; Cho, T.; Koguchi, H.; Yagi, Y.; Yamaguchi, N.

    2004-10-01

    A space- and time-resolving vacuum ultraviolet (VUV) spectrograph system has been applied to diagnose impurity ions behavior in plasmas produced in the tandem mirror GAMMA 10 and the reversed field pinch TPE-RX. We have carried out ray tracing calculations for obtaining the characteristics of the VUV spectrograph and calibration experiments to measure the absolute sensitivities of the VUV spectrograph system for the wavelength range from 100 to 1100 A. By changing the incident angle, 50.6 deg. -51.4 deg., to the spectrograph whose nominal incident angle is 51 deg., we can change the observing spectral range of the VUV spectrograph. In this article, we show the ray tracing calculation results and absolute sensitivities when the angle of incidence into the VUV spectrograph is changed, and the results of VUV spectroscopic measurement in both GAMMA 10 and TPE-RX plasmas.

  10. Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb.

    PubMed

    Phillips, David F; Glenday, Alexander G; Li, Chih-Hao; Cramer, Claire; Furesz, Gabor; Chang, Guoqing; Benedick, Andrew J; Chen, Li-Jin; Kärtner, Franz X; Korzennik, Sylvain; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2012-06-18

    We deployed two wavelength calibrators based on laser frequency combs ("astro-combs") at an astronomical telescope. One astro-comb operated over a 100 nm band in the deep red (∼ 800 nm) and a second operated over a 20 nm band in the blue (∼ 400 nm). We used these red and blue astro-combs to calibrate a high-resolution astrophysical spectrograph integrated with a 1.5 m telescope, and demonstrated calibration precision and stability sufficient to enable detection of changes in stellar radial velocity < 1 m/s.

  11. Calibrating echelle spectrographs with Fabry-Pérot etalons

    NASA Astrophysics Data System (ADS)

    Bauer, F. F.; Zechmeister, M.; Reiners, A.

    2015-09-01

    Context. Over the past decades hollow-cathode lamps have been calibration standards for spectroscopic measurements. Advancing to cm/s radial velocity precisions with the next generation of instruments requires more suitable calibration sources with more lines and fewer dynamic range problems. Fabry-Pérot interferometers provide a regular and dense grid of lines and homogeneous amplitudes, which makes them good candidates for next-generation calibrators. Aims: We investigate the usefulness of Fabry-Pérot etalons in wavelength calibration, present an algorithm to incorporate the etalon spectrum in the wavelength solution, and examine potential problems. Methods: The quasi-periodic pattern of Fabry-Pérot lines was used along with a hollow-cathode lamp to anchor the numerous spectral features on an absolute scale. We tested our method with the HARPS spectrograph and compared our wavelength solution to the one derived from a laser frequency comb. Results: The combined hollow-cathode lamp/etalon calibration overcomes large distortion (50 m/s) in the wavelength solution of the HARPS data reduction software. The direct comparison to the laser frequency comb shows differences of only 10 m/s at most. Conclusions: Combining hollow-cathode lamps with Fabry-Pérot interferometers can lead to substantial improvements in the wavelength calibration of echelle spectrographs. Etalons can provide economical alternatives to the laser frequency comb, especially for smaller projects.

  12. Automated model-based calibration of imaging spectrographs

    NASA Astrophysics Data System (ADS)

    Kosec, Matjaž; Bürmen, Miran; Tomaževič, Dejan; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Hyper-spectral imaging has gained recognition as an important non-invasive research tool in the field of biomedicine. Among the variety of available hyperspectral imaging systems, systems comprising an imaging spectrograph, lens, wideband illumination source and a corresponding camera stand out for the short acquisition time and good signal to noise ratio. The individual images acquired by imaging spectrograph-based systems contain full spectral information along one spatial dimension. Due to the imperfections in the camera lens and in particular the optical components of the imaging spectrograph, the acquired images are subjected to spatial and spectral distortions, resulting in scene dependent nonlinear spectral degradations and spatial misalignments which need to be corrected. However, the existing correction methods require complex calibration setups and a tedious manual involvement, therefore, the correction of the distortions is often neglected. Such simplified approach can lead to significant errors in the analysis of the acquired hyperspectral images. In this paper, we present a novel fully automated method for correction of the geometric and spectral distortions in the acquired images. The method is based on automated non-rigid registration of the reference and acquired images corresponding to the proposed calibration object incorporating standardized spatial and spectral information. The obtained transformation was successfully used for sub-pixel correction of various hyperspectral images, resulting in significant improvement of the spectral and spatial alignment. It was found that the proposed calibration is highly accurate and suitable for routine use in applications involving either diffuse reflectance or transmittance measurement setups.

  13. LAMOST Spectrograph Response Curves: Stability and Application to Flux Calibration

    NASA Astrophysics Data System (ADS)

    Du, Bing; Luo, A.-Li; Kong, Xiao; Zhang, Jian-Nan; Guo, Yan-Xin; Cook, Neil James; Hou, Wen; Yang, Hai-Feng; Li, Yin-Bi; Song, Yi-Han; Chen, Jian-Jun; Zuo, Fang; Wu, Ke-Fei; Wang, Meng-Xin; Wu, Yue; Wang, You-Fen; Zhao, Yong-Heng

    2016-12-01

    The task of flux calibration for Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) spectra is difficult due to many factors, such as the lack of standard stars, flat-fielding for large field of view, and variation of reddening between different stars, especially at low Galactic latitudes. Poor selection, bad spectral quality, or extinction uncertainty of standard stars not only might induce errors to the calculated spectral response curve (SRC) but also might lead to failures in producing final 1D spectra. In this paper, we inspected spectra with Galactic latitude | b| ≥slant 60^\\circ and reliable stellar parameters, determined through the LAMOST Stellar Parameter Pipeline (LASP), to study the stability of the spectrograph. To guarantee that the selected stars had been observed by each fiber, we selected 37,931 high-quality exposures of 29,000 stars from LAMOST DR2, and more than seven exposures for each fiber. We calculated the SRCs for each fiber for each exposure and calculated the statistics of SRCs for spectrographs with both the fiber variations and time variations. The result shows that the average response curve of each spectrograph (henceforth ASPSRC) is relatively stable, with statistical errors ≤10%. From the comparison between each ASPSRC and the SRCs for the same spectrograph obtained by the 2D pipeline, we find that the ASPSRCs are good enough to use for the calibration. The ASPSRCs have been applied to spectra that were abandoned by the LAMOST 2D pipeline due to the lack of standard stars, increasing the number of LAMOST spectra by 52,181 in DR2. Comparing those same targets with the Sloan Digital Sky Survey (SDSS), the relative flux differences between SDSS spectra and LAMOST spectra with the ASPSRC method are less than 10%, which underlines that the ASPSRC method is feasible for LAMOST flux calibration.

  14. Precision spectroscopy with a frequency-comb-calibrated solar spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.

    2015-06-01

    The measurement of the velocity field of the plasma at the solar surface is a standard diagnostic tool in observational solar physics. Detailed information about the energy transport as well as on the stratification of temperature, pressure and magnetic fields in the solar atmosphere are encoded in Doppler shifts and in the precise shape of the spectral lines. The available instruments deliver data of excellent quality and precision. However, absolute wavelength calibration in solar spectroscopy was so far mostly limited to indirect methods and in general suffers from large systematic uncertainties of the order of 100 m/s. During the course of this thesis, a novel wavelength calibration system based on a laser frequency comb was deployed to the solar Vacuum Tower Telescope (VTT), Tenerife, with the goal of enabling highly accurate solar wavelength measurements at the level of 1 m/s on an absolute scale. The frequency comb was developed in a collaboration between the Kiepenheuer-Institute for Solar Physics, Freiburg, Germany and the Max Planck Institute for Quantum Optics, Garching, Germany. The efforts cumulated in the new prototype instrument LARS (Lars is an Absolute Reference Spectrograph) for solar precision spectroscopy which is in preliminary scientific operation since~2013. The instrument is based on the high-resolution echelle spectrograph of the VTT for which feed optics based on single-mode optical fibres were developed for this project. The setup routinely achieves an absolute calibration accuracy of 60 cm/s and a repeatability of 2.5 cm/s. An unprecedented repeatability of only 0.32 cm/s could be demonstrated with a differential calibration scheme. In combination with the high spectral resolving power of the spectrograph of 7x10^5 and virtually absent internal scattered light, LARS provides a spectral purity and fidelity that previously was the domain of Fourier-transform spectrometers only. The instrument therefore provides unique capabilities for

  15. Calibrating the SNfactory Integral Field Spectrograph (SNIFS) with SCALA

    NASA Astrophysics Data System (ADS)

    Küsters, Daniel; Lombardo, Simona; Kowalski, Marek; Aldering, Greg; Nordin, Jakob; Rigault, Mickael

    2016-08-01

    The SNIFS CALibration Apparatus (SCALA), a device to calibrate the Supernova Integral Field Spectrograph on the University Hawaii 2.2m telescope, was developed and installed in Spring 2014. SCALA produces an artificial planet with a diameter of 1° and a constant surface brightness. The wavelength of the beam can be tuned between 3200 Å and 10000 Å and has a bandwidth of 35 Å. The amount of light injected into the telescope is monitored with NIST calibrated photodiodes. SCALA was upgraded in 2015 with a mask installed at the entrance pupil of the UH88 telescope, ensuring that the illumination of the telescope by stars is similar to that of SCALA. With this setup, a first calibration run was performed in conjunction with the spectrophotometric observations of standard stars. We present first estimates for the expected systematic uncertainties of the in-situ calibration and discuss the results of tests that examine the influence of stray light produced in the optics.

  16. The extreme ultraviolet spectrograph: A radial groove grating, sounding rocket-borne, astronomical instrument

    NASA Technical Reports Server (NTRS)

    Wilkinson, Erik; Green, James C.; Cash, Webster

    1993-01-01

    The design, calibration, and sounding rocket flight performance of a novel spectrograph suitable for moderate-resolution EUV spectroscopy are presented. The sounding rocket-borne instrument uses a radial groove grating to maintain a high system efficiency while controlling the aberrations induced when doing spectroscopy in a converging beam. The instrument has a resolution of approximately 2 A across the 200-330 A bandpass with an average effective area of 2 sq cm. The instrument, called the Extreme Ultraviolet Spectrograph, acquired the first EUV spectra in this wavelength region of the hot white dwarf G191-B2B and the late-type star Capella.

  17. Demonstration of an efficient, photonic-based astronomical spectrograph on an 8-m telescope.

    PubMed

    Jovanovic, N; Cvetojevic, N; Norris, B; Betters, C; Schwab, C; Lozi, J; Guyon, O; Gross, S; Martinache, F; Tuthill, P; Doughty, D; Minowa, Y; Takato, N; Lawrence, J

    2017-07-24

    We demonstrate for the first time an efficient, photonic-based astronomical spectrograph on the 8-m Subaru Telescope. An extreme adaptive optics system is combined with pupil apodiziation optics to efficiently inject light directly into a single-mode fiber, which feeds a compact cross-dispersed spectrograph based on array waveguide grating technology. The instrument currently offers a throughput of 5% from sky-to-detector which we outline could easily be upgraded to ∼ 13% (assuming a coupling efficiency of 50%). The isolated spectrograph throughput from the single-mode fiber to detector was 42% at 1550 nm. The coupling efficiency into the single-mode fiber was limited by the achievable Strehl ratio on a given night. A coupling efficiency of 47% has been achieved with ∼ 60% Strehl ratio on-sky to date. Improvements to the adaptive optics system will enable 90% Strehl ratio and a coupling of up to 67% eventually. This work demonstrates that the unique combination of advanced technologies enables the realization of a compact and highly efficient spectrograph, setting a precedent for future instrument design on very-large and extremely-large telescopes.

  18. Wavelength Calibration of the VLT-UVES Spectrograph

    NASA Astrophysics Data System (ADS)

    Whitmore, Jonathan B.; Murphy, Michael T.; Griest, Kim

    2010-11-01

    We attempt to measure possible miscalibration of the wavelength scale of the VLT-UVES spectrograph. We take spectra of QSO HE0515-4414 through the UVES iodine cell which contains thousands of well-calibrated iodine lines and compare these lines to the wavelength scale from the standard thorium-argon pipeline calibration. Analyzing three exposures of this z = 1.71 QSO, we find two distinct types of calibration shifts needed to correct the Th/Ar wavelength scale. First, there is an overall average velocity shift of between 100 m s-1 and 500 m s-1 depending upon the exposure. Second, within a given exposure, we find intra-order velocity distortions of 100 m s-1 up to more than 200 m s-1. These calibration errors are similar to, but smaller than, those found earlier in the Keck HIRES spectrometer. We discuss the possible origins of these two types of miscalibration. We also explore the implications of these calibration errors on the systematic error in measurements of Δ α \\over α, the change in the fine-structure constant derived from measurement of the relative redshifts of absorption lines in QSO absorption systems. The overall average, exposure-dependent shifts should be less relevant for fine-structure work, but the intra-order shifts have the potential to affect these results. Using either our measured calibration offsets or a Gaussian model with sigma of around 90 m s-1, Monte Carlo mock experiments find errors in Δ α \\over α of between 1 × 10-6 N -1/2 sys and 3 × 10-6 N -1/2 sys, where N sys is the number of systems used and the range is due to dependence on how many metallic absorption lines in each system are compared.

  19. Testing of an extended-wavelength InGaAs array in an astronomical spectrograph

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew; Yao, Lihong; Wong, Andre F.; Skrutskie, Michael; Wilson, John C.; Kanneganti, Shrikrishna

    2010-07-01

    We present the integration of a low dark current extended wavelength (2.3μm cutoff) InGaAs array into the Cornell-Massachusetts Slit Spectrograph (CorMASS) spectrograph. The InGaAs array was fabricated onto a SB- 206 512×512 readout integrated circuit (ROIC) by Goodrich/Sensors Unlimited and subsequently went through a series of laboratory characterization tests at the University of Virginia demonstrating dark current performance of better than 10 e-/s. The InGaAs array is adapted for use with the CorMASS to verify its performance in a proven astronomical instrument, and for eventual deployment to a telescope to test stability and performance.

  20. Calibration techniques for the NASA ICON Extreme Ultraviolet Spectrograph (EUV)

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yuzo; Sirk, Martin; Wishnow, Ed; Korpela, Eric; Edelstein, Jerry; Curtis, James; Gibson, Steven R.; McCauley, Jeremy; McPhate, Jason; Smith, Christopher

    2016-09-01

    The Ionospheric Connection Explorer (ICON) is a NASA Heliophysics Explorer Mission designed to study the ionosphere. ICON will examine the Earth's upper atmosphere to better understand the relationship between Earth weather and space-weather drivers. ICON will accomplish its science objectives using a suite of 4 instruments, one of which is the Extreme Ultraviolet Spectrograph (EUV). EUV will measure daytime altitude intensity profile and spatial distribution of ionized oxygen emissions (O+ at 83.4 nm and 61.7 nm) on the limb in the thermosphere (100 to 500 km tangent altitude). EUV is a single-optic imaging spectrometer that observes in the extreme ultraviolet region of the spectrum. In this paper, we describe instrumental performance calibration measurement techniques and data analysis for EUV. Various measurements including Lyman-α scattering, instrumental and component efficiency, and field-of-view alignment verification were done in custom high-vacuum ultraviolet calibration facilities. Results from the measurements and analysis will be used to understand the instrument performance during the in-flight calibration and observations after launch.

  1. The assembly, calibration, and preliminary results from the Colorado high-resolution Echelle stellar spectrograph (CHESS)

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin; Nell, Nicholas; Kane, Robert; Schultz, Ted; Beasley, Matthew; Green, James; Kulow, Jen; Kersgaard, Eliot; Fleming, Brian

    2014-07-01

    The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) is a far ultraviolet (FUV) rocket-borne experiment designed to study the atomic-to-molecular transitions within translucent interstellar clouds. CHESS is an objective echelle spectrograph operating at f/12.4 and resolving power of 120,000 over a band pass of 100 - 160 nm. The echelle flight grating is the product of a research and development project with LightSmyth Inc. and was coated at Goddard Space Flight Center (GSFC) with Al+LiF. It has an empirically-determined groove density of 71.67 grooves/mm. At the Center for Astrophysics and Space Astronomy (CASA) at the University of Colorado (CU), we measured the efficiencies of the peak and adjacent dispersion orders throughout the 90 - 165 nm band pass to characterize the behavior of the grating for pre-flight calibrations and to assess the scattered-light behavior. The crossdispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, low line density (351 grooves/mm), powered optic with a toroidal surface curvature. The CHESS cross-disperser was also coated at GSFC; Cr+Al+LiF was deposited to enhance far-UV efficiency. Results from final efficiency and reflectivity measurements of both optics are presented. We utilize a cross-strip anode microchannel plate (MCP) detector built by Sensor Sciences to achieve high resolution (25 μm spatial resolution) and data collection rates (~ 106 photons/second) over a large format (40mm round, digitized to 8k x 8k) for the first time in an astronomical sounding rocket flight. The CHESS instrument was successfully launched from White Sands Missile Range on 24 May 2014. We present pre-flight sensitivity, effective area calculations, lab spectra and calibration results, and touch on first results and post-flight calibration plans.

  2. Photometer calibration problem for extended astronomical sources

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.

    1975-01-01

    Analysis of calibration tests for the Skylab experimental T027 photometer is used to show that if an instrument is focused at infinity, the uniform extended calibration source should be positioned at distances at least equal to the hyperfocal distance and should be large enough to fill the field of view. It is noted that the field depth can be increased by focusing the optical system at the hyperfocal distance and that this method of focusing reduces the needed diameter of the calibration source to half that of a system focused at infinity. Other calibration methods discussed includes determining the radiance responsivity distance and extrapolating the curve to larger distances as well as extensive mapping of the spatial response combined with the irradiance responsivity to obtain the radiance responsivity.

  3. Design and modeling of a moderate-resolution astronomic spectrograph with volume-phase holographic gratings

    NASA Astrophysics Data System (ADS)

    Muslimov, Eduard R.; Valyavin, Gennady G.; Fabrika, Sergey N.; Pavlycheva, Nadezhda K.

    2016-08-01

    We present an optical design of astronomic spectrograph based on a cascade of volume-phase holographic gratings. The cascade consists of three gratings. Each of them provides moderately high spectral resolution in a narrow range of 83nm. Thus the spectrum image represents three lines covering region 430-680nm. Two versions of the scheme are described: a full-scale one with estimated resolving power of 5300-7900 and a small-sized one intended for creation of a lab prototype, which provides the resolving power of 1500-3000. Diffraction efficiency modeling confirms that the system throughput can reach 75%, while stray light caused by the gratings crosstalk is negligible. We also propose a design of image slicer and focal reducer allowing to couple the instrument with a 6m-telescope. Finally, we present concept of the instrument's optomechanical design.

  4. Field application of moment-based wavefront sensing to in-situ alignment and image quality assessment of astronomical spectrographs: results and analysis of aligning VIRUS unit spectrographs

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, Gary J.; Tuttle, Sarah E.; Noyola, Eva; Peterson, Trent; Vattiat, Brian L.

    2014-07-01

    Teague introduced a phase retrieval method that uses the image shape moments. More recently, an independent study arrived at a similar technique, which was then applied to in-situ full-field image-quality evaluation of spectroscopic systems. This moment-based wavefront sensing (MWFS) method relies on the geometric relation between the image shape moments and the geometric wavefront modal coefficients. The MWFS method allows a non-iterative determination of the modal coefficients from focus-modulated images at arbitrary spatial resolutions. The determination of image moments is a direct extension of routine centroid and image size calculation, making its implementation easy. Previous studies showed that the MWFS works well in capturing large low-order modes, and is quite suitable for in-situ alignment diagnostics. At the Astronomical Instrumentation conference in 2012, we presented initial results of the application of the moment-based wavefront sensing to a fiber-fed astronomical spectrograph, called VIRUS (a set of replicated 150 identical integral-field unit spectrographs contained in 75 unit pairs). This initial result shows that the MWFS can provide accurate full-field image-quality assessment for efficiently aligning these 150 spectrographs. Since then, we have assembled more than 24 unit pairs using this technique. In this paper, we detail the technical update/progress made so far for the moment-based wavefront sensing method and the statistical estimates of the before/after alignment aberrations, image-quality, and various efficiency indicators of the unit spectrograph alignment process.

  5. Combining freeform-shaped holographic grating and curved detectors in a scheme of multi-slit astronomic spectrograph

    NASA Astrophysics Data System (ADS)

    Muslimov, Eduard R.; Hugot, Emmanuel; Ferrari, Marc

    2017-05-01

    In the present work we consider optical design of a multi-slit astronomic spectrograph for UV domain with freeform reflective elements. The scheme consists of only two reflective elements - a holographic grating imposed on freeform surface and a freeform mirror. The freeforms are described by standard Zernike polynomials and the hologram is recorded by two coherent point sources. We demonstrate that in such a scheme it's possible to obtain quite high optical quality for an extended field of view and relatively high dispersion on a curved image surface. The spectrograph works with linear field of view of 76x32 mm and provides reciprocal linear dispersion equal to 0.5 nm/mm and typical resolving power of 15 000 over the UV range of 100-200 nm. Feasibility of the optical components is discussed and coupling of the spectrograph with a TMA telescope is demonstrated.

  6. Ultraviolet Spectrograph Telescope for Astronomical Research (UVSTAR): a spectrographic telescope for the Shuttle Hitchhiker-M bridge

    NASA Astrophysics Data System (ADS)

    Stalio, Roberto; Broadfoot, A. Lyle; Holberg, J. B.; Viola, F.; Sabbah, J.

    1994-11-01

    UVSTAR is an EUV spectral imager intended as a facility instrument devoted to solar system and astronomy studies. It covers the wavelength range of 500 to 1250 angstrom, with sufficient spectral resolution to separate emission lines and to form spectrally resolved images of extended plasma sources. Targets include the Io plasma torus at Jupiter, hot stars, planetary nebulae and bright galaxies. UVSTAR consists of a pair of telescopes and concave grating spectrographs that cover the overlapping spectral ranges of 500 - 900 and 850 - 1250 angstrom. The telescopes use two 30 cm diameter off-axis paraboloids having a focal length of 1.5 m. An image of the target is formed at the entrance slits of the two concave grating spectrographs. The gratings provide dispersion and re-image the slits at the detectors, intensified CCDs. The readout format of the detectors can be chosen by computer, and three slit widths are selectable to adapt the instrument to specific tasks. UVSTAR has internal gimbals which allow rotation of +/- 3 degree(s) about each of two axes. Dedicated finding and tracking telescopes will acquire and track the target after rough pointing is achieved by orienting the orbiter. Responsibilities for implementation and utilization of UVSTAR are shared by groups in Italy and the U.S. The first of the five approved UVSTAR flights is scheduled for May 1995.

  7. Absolute calibration of a soft X-ray spectrograph for X-ray laser research using white beam.

    PubMed

    Fujikawa, C; Kawachi, T; Ando, K; Yamaguchi, N; Hara, T

    1998-05-01

    Absolute calibration of a soft X-ray spectrograph has been performed using a white beam of synchrotron radiation. The calibrated spectrograph was a flat-field grazing-incidence spectrograph with an X-ray CCD detector for X-ray laser research. Absolute sensitivity of the spectrograph system can be obtained from transmitted spectra using filters made of several different materials, each providing an absorption-edge wavelength standard. The absolute sensitivity determined in this work shows nearly the same behaviour with wavelength as that in another calibration experiment using a laser-produced plasma as an X-ray source.

  8. Improvements to the FUV and NUV Wavelength Calibrations of the Cosmic Origins Spectrograph (COS)

    NASA Astrophysics Data System (ADS)

    Plesha, Rachel; Ake, Thomas B.; De Rosa, Gisella; Oliveira, Cristina M.; Penton, Steven V.; Roman-Duval, Julia; Sonnentrucker, Paule

    2017-06-01

    The Cosmic Origins Spectrograph (COS) was installed on the Hubble Space Telescope in 2009 during Servicing Mission 4. Since then, the teams at the Space Telescope Science Institute have striven to provide the highest quality scientific products to the community. Over the past two years the COS team has been implementing improved wavelength calibrations for both the FUV and NUV channels. Here we present the methodology and current results behind these new wavelength calibration solutions.

  9. Defining High-Energy Calibration Standards: IACHEC (International Astronomical Consortium for High-Energy Calibration)

    NASA Astrophysics Data System (ADS)

    Sembay, S.; Guainazzi, M.; Plucinsky, P.; Nevalainen, J.

    2010-07-01

    The International Astronomical Consortium for High-Energy Calibration (IACHEC) aims to provide standards for high energy calibration and supervise cross-calibration between different X-ray and Gamma-ray observatories. This goal is reached through Working Groups, involving around 40 astronomers worldwide. In these Groups, IACHEC members co-operate to define calibration standards and procedures. Their scope is primarily a practical one: a set of astronomical sources, data and results (eventually published in refereed journals) will be the outcome of a co-ordinated and standardized analysis of reference sources (``high-energy standard candles''). We briefly describe here just two of the many studies undertaken by the IACHEC; a cross-calibration analysis of O and Ne line fluxes from the thermal SNR 1E0102.2-7219, and at higher energies a comparison study of a sample of cluster temperatures and fluxes. A more detailed picture of the activities of the IACHEC is available via the information portal at http://web.mit.edu/iachec/.

  10. Fine optical alignment correction of astronomical spectrographs via in-situ full-field moment-based wavefront sensing

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, Gary J.; Tuttle, Sarah E.; Vattiat, Brian L.

    2012-09-01

    The image moment-based wavefront sensing (IWFS) utilizes moments of focus-modulated focal plane images to determine modal wavefront aberrations. This permits fast, easy, and accurate measurement of wavefront error (WFE) on any available finite-sized isolated targets across the entire focal plane (FP) of an imaging system, thereby allowing not only in-situ full-field image quality assessment, but also deterministic fine alignment correction of the imaging system. We present an experimental demonstration where fine alignment correction of a fast camera system in a fiber-fed astronomical spectrograph, called VIRUS, is accomplished by using IWFS.

  11. A flux calibration device for the SuperNova Integral Field Spectrograph (SNIFS)

    NASA Astrophysics Data System (ADS)

    Lombardo, Simona; Aldering, Greg; Hoffmann, Akos; Kowalski, Marek; Kuesters, Daniel; Reif, Klaus; Rigault, Michael

    2014-07-01

    Observational cosmology employing optical surveys often require precise flux calibration. In this context we present SNIFS Calibration Apparatus (SCALA), a flux calibration system developed for the SuperNova Integral Field Spectrograph (SNIFS), operating at the University of Hawaii 2.2 m telescope. SCALA consists of a hexagonal array of 18 small parabolic mirrors distributed over the face of, and feeding parallel light to, the telescope entrance pupil. The mirrors are illuminated by integrating spheres and a wavelength-tunable (from UV to IR) light source, generating light beams with opening angles of 1°. These nearly parallel beams are flat and flux-calibrated at a subpercent level, enabling us to calibrate our "telescope + SNIFS system" at the required precision.

  12. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  13. Stability of the FOCES spectrograph using an astro-frequency comb as calibrator

    NASA Astrophysics Data System (ADS)

    Brucalassi, Anna; Grupp, Frank; Kellermann, Hanna; Wang, Liang; Lang-Bardl, Florian; Baisert, Nils; Hu, Shao Ming; Hopp, Ulrich; Bender, Ralf

    2016-08-01

    We present the results of a series of measurements conducted using the upgraded Fiber Optic Cassegrain Echelle Spectrograph (FOCES)1 intended to be operated at the 2.0 m Fraunhofer Telescope at the Wendelstein Observatory (Germany) in combination with a laser frequency comb as calibrator. Details about the laboratory set-up of the system integrated with FOCES are shown. Different analysis techniques are applied to investigate the calibration precision and the medium-long term stability of the system in term of changes in stellar radial velocity.

  14. SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) on the South African Astronomical Observatory's 74-inch telescope

    NASA Astrophysics Data System (ADS)

    Crause, Lisa A.; Carter, Dave; Daniels, Alroy; Evans, Geoff; Fourie, Piet; Gilbank, David; Hendricks, Malcolm; Koorts, Willie; Lategan, Deon; Loubser, Egan; Mouries, Sharon; O'Connor, James E.; O'Donoghue, Darragh E.; Potter, Stephen; Sass, Craig; Sickafoose, Amanda A.; Stoffels, John; Swanevelder, Pieter; Titus, Keegan; van Gend, Carel; Visser, Martin; Worters, Hannah L.

    2016-08-01

    SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) is the extensively upgraded Cassegrain Spectrograph on the South African Astronomical Observatory's 74-inch (1.9-m) telescope. The inverse-Cassegrain collimator mirrors and woefully inefficient Maksutov-Cassegrain camera optics have been replaced, along with the CCD and SDSU controller. All moving mechanisms are now governed by a programmable logic controller, allowing remote configuration of the instrument via an intuitive new graphical user interface. The new collimator produces a larger beam to match the optically faster Folded-Schmidt camera design and nine surface-relief diffraction gratings offer various wavelength ranges and resolutions across the optical domain. The new camera optics (a fused silica Schmidt plate, a slotted fold flat and a spherically figured primary mirror, both Zerodur, and a fused silica field-flattener lens forming the cryostat window) reduce the camera's central obscuration to increase the instrument throughput. The physically larger and more sensitive CCD extends the available wavelength range; weak arc lines are now detectable down to 325 nm and the red end extends beyond one micron. A rear-of-slit viewing camera has streamlined the observing process by enabling accurate target placement on the slit and facilitating telescope focus optimisation. An interactive quick-look data reduction tool further enhances the user-friendliness of SpUpNI

  15. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    NASA Technical Reports Server (NTRS)

    Hock, R. A.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Chamberlin, P. C.; Woods, E. C.

    2010-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  16. A laser locked Fabry-Perot etalon with 3 cm/s stability for spectrograph calibration

    NASA Astrophysics Data System (ADS)

    Gurevich, Yulia V.; Stürmer, Julian; Schwab, Christian; Führer, Thorsten; Lamoreaux, Steve K.; Quirrenbach, Andreas; Walther, Thomas

    2014-08-01

    Accurate wavelength calibration is crucial for attaining superior Doppler precision with high resolution spectrographs. Upcoming facilities aim for 10 cm/s or better radial velocity precision to access the discovery space for Earth-like exoplanets. To achieve such precision over timescales of years, currently used wavelength cal- ibrators such as thorium-argon lamps and iodine cells will need to be replaced by more precise and stable sources. The ideal wavelength calibrator would produce an array of lines that are uniformly spaced, narrower than the spectrograph resolution, of equal brightness, cover the entire wavelength range of the spectrograph, and whose frequencies do not change with time. Laser frequency combs are an extremely accurate and stable, albeit technically challenging and costly, option that has received much attention recently. We present an alter- native method that uses a Fabry-Perot (FP) etalon illuminated by a white light source to produce a comb-like spectrum over a wide wavelength range. Previous work focused on the development of passively stabilized FP etalons for wavelength calibration. We improve on this method by locking the etalon to an atomic transition, the frequency of which is known to < 2 x 10-11.7 We use a diode laser to observe both the rubidium (Rb) D2 transition at 780 nm and the etalon transmission spectrum. Saturated absorption spectroscopy is used to resolve the Rb hyperfine lines and precisely determine their locations. Since the etalon spectrum is probed with the same laser, the etalon can be locked by ensuring that one of its transmission peaks coincides with a particular Rb hyperfine peak (via either temperature tuning or a piezoelectric transducer incorporated into the etalon). By measuring the frequency of one etalon peak directly via comparison with the Rb, we remove any drifts or aging effects of the etalon that could cause problems for passively stabilized etalon references. We demonstrate a locking precision that

  17. Transferring the Rb+ hyperfine-structure stability to a Fabry-Perot resonator used as a frequency standard for astronomical spectrographs

    NASA Astrophysics Data System (ADS)

    Huke, Philipp; Holzhüter, Hanno; Reiners, Ansgar

    2015-06-01

    We report on the experimental realization of locking a Fabry-Perot interferometer (FPI) onto a stabilized diode laser for the calibration of astronomical spectrographs. The external cavity diode laser (ECDL) is stabilized to the 85Rb+ F* = 2 --> F = 3 transition with a pump-probe setup. The stability of the 85Rb+ reached between optical clocks is on the order of 10-13.1 and can be used to reduce the linewidth / drift of the ECDL to a few kHz.2 The measured linewidth of the transition is around 20 MHz due to unavoidable misalignment between pump- and probe-beam, power- and Doppler-broadening at room temperature.2 The aim is to transfer this stability to a FPI that can be used as optical frequency standard: Therefore the phase of the light reflected from the FPI is observed using the Pound-Drever-Hall method. The theoretically reachable stability of a few mHz/Hz3 is limited by different noise factors. In order to identify these noise factors we a) follow the calculation of noise factors given by, 4 b) calculate the contribution of misalignment and insufficient mode matching by applying the generalized matrix-formalism, 5 and c) estimate the contribution of the initial laser linewidth and the present electronic noise sources.

  18. A list of tantalum lines for the wavelength calibration of the Hamilton echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Pakhomov, Yu. V.

    2015-10-01

    A solution to the problem of wavelength calibration for Hamilton echelle spectrographs using a hollow cathode lamp operating at the Lick Observatory Shane telescope until June 9, 2011 is presented. The spectrum of the nominally thorium—argon lamp also contains, in addition to lines of thorium and argon, a number of unknown lines identified with tantalum. Atomic data for measured lines of tantalum and thorium are used to estimate the temperature of the gas in the lamp, T = 3120 ± 60 K. All all lines of TaI and TaII visible in the lamp spectrum have been selected from the VALD3 atomic line database, and a list compiled for use in the processing of spectral observations. The accuracy of this calibration approach is limited by the influence of hyperfine line splitting.

  19. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    NASA Astrophysics Data System (ADS)

    Hock, R. A.; Chamberlin, P. C.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Woods, E. C.

    2012-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. ( Solar Phys., 2010, doi:10.1007/s11207-009-9485-8). In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  20. Design of the calibration unit for the WEAVE multi-object spectrograph at the WHT

    NASA Astrophysics Data System (ADS)

    Domínquez, Lilian; Cano, Diego; O'Mahony, Neil; Martín, Carlos; Picó, Sergio; Benn, Chris; Trager, Scott; Lhomé, Émilie; Ridings, Andy; Fariña, Cecilia; Abrams, D. C.; Balcells, Marc; Irwin, Mike; Lewis, Jim; Dalton, Gavin; Aguerri, J. A.; Bonifacio, P.; Vallenari, A.; Carrasco, E.

    2016-08-01

    WEAVE is the next-generation spectroscopic facility for the William Herschel Telescope (WHT), offering multi-object (1000 fibres) and integral-field spectroscopy at two resolutions (R 5000, 20000) over a 2-deg field of view at prime focus. WEAVE will (mainly) provide optical follow up of ground-based (LOFAR) and space-based (GAIA) surveys. First light is expected in mid 2018. Here, we describe the calibration unit, which will be adapted from an existing unit for the AF2+WYFFOS spectrograph (WEAVE's precursor) at the WHT. We summarise the results from a thorough characterisation of current performance (e.g. intensity, stability and focal-plane coverage of illumination as a function of lamp type and wavelength). We then set out our plans for upgrading the unit and its control systems to meet the WEAVE science and operational requirements. We conclude from this assessment that the upgraded AF2+WYFFOS calibration unit will meet the requirements for WEAVE. The design of the WEAVE calibration unit is now complete.

  1. EUV variability experiment (EVE); multiple EUV grating spectrographs (MEGS), radiometric calibrations and results

    NASA Astrophysics Data System (ADS)

    Chamberlin, Phillip C.; Hock, Rachel A.; Crotser, David A.; Eparvier, Francis G.; Furst, Mitch; Triplett, Matthew A.; Woodraska, Donald L.; Woods, Thomas N.

    2007-09-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2009, incorporates a suite of instruments including the EUV Variability Experiment (EVE). Two channels of EVE, the Multiple EUV Grating Spectrograph (MEGS) A and B channels use concave reflection gratings to image solar spectra onto CCDs to measure the solar extreme ultraviolet (EUV) irradiance from 5 to 105 nm. MEGS provides these spectra at 0.1nm spectral resolution every 10 seconds with an absolute accuracy of better than 25% over the SDO 5-year mission. The calibration of the MEGS channels in order to convert the instrument counts in to physical units of W/m2/nm was performed at the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility III (SURF III) located in Gaithersburg, Maryland. Although the final post-environmental calibrations have yet to be performed, preliminary results from the pre-environmental calibrations show very good agreement with the theoretical optical design given by Crotser et al. Further analysis is still needed in regards to the higher order contributions to determine the final first order QT for all channels, but two techniques are currently being analyzed and show promising results.

  2. The lick-index calibration of the Gemini multi-object spectrographs

    SciTech Connect

    Puzia, Thomas H.; Miller, Bryan W.; Trancho, Gelys; Basarab, Brett; Mirocha, Jordan T.; Butler, Karen E-mail: bmiller@gemini.edu

    2013-06-01

    We present the calibration of the spectroscopic Lick/IDS standard line-index system for measurements obtained with the Gemini Multi-Object Spectrographs known as GMOS-North and GMOS-South. We provide linear correction functions for each of the 25 standard Lick line indices for the B600 grism and two instrumental setups, one with 0.''5 slit width and 1 × 1 CCD pixel binning (corresponding to ∼2.5 Å spectral resolution) and the other with 0.''75 slit width and 2 × 2 binning (∼4 Å). We find small and well-defined correction terms for the set of Balmer indices Hβ, Hγ {sub A}, and Hδ {sub A} along with the metallicity sensitive indices Fe5015, Fe5270, Fe5335, Fe5406, Mg{sub 2}, and Mgb that are widely used for stellar population diagnostics of distant stellar systems. We find other indices that sample molecular absorption bands, such as TiO{sub 1} and TiO{sub 2}, with very wide wavelength coverage or indices that sample very weak molecular and atomic absorption features, such as Mg{sub 1}, as well as indices with particularly narrow passband definitions, such as Fe4384, Ca4455, Fe4531, Ca4227, and Fe5782, which are less robustly calibrated. These indices should be used with caution.

  3. Radio Astronomical Polarimetry and Point-Source Calibration

    NASA Astrophysics Data System (ADS)

    van Straten, W.

    2004-05-01

    A mathematical framework is presented for use in the experimental determination of the polarimetric response of observatory instrumentation. Elementary principles of linear algebra are applied to model the full matrix description of the polarization measurement equation by least-squares estimation of nonlinear, scalar parameters. The formalism is applied to calibrate the center element of the Parkes Multibeam receiver using observations of the millisecond pulsar PSR J0437-4715 and the radio galaxy 3C 218 (Hydra A).

  4. Extracting Radial Velocities of A- and B-type Stars from Echelle Spectrograph Calibration Spectra

    NASA Astrophysics Data System (ADS)

    Becker, Juliette C.; Johnson, John Asher; Vanderburg, Andrew; Morton, Timothy D.

    2015-04-01

    We present a technique to extract radial velocity (RV) measurements from echelle spectrograph observations of rapidly rotating stars (V sin i≳ 50 km s-1). This type of measurement is difficult because the line widths of such stars are often comparable to the width of a single echelle order. To compensate for the scarcity of lines and Doppler information content, we have developed a process that forward-models the observations, fitting the RV shift of the star for all echelle orders simultaneously with the echelle blaze function. We use our technique to extract RV measurements from a sample of rapidly rotating A- and B-type stars used as calibrator stars observed by the California Planet Survey observations. We measure absolute RVs with a precision ranging from 0.5-2.0 km s-1 per epoch for more than 100 A- and B-type stars. In our sample of 10 well-sampled stars with RV scatter in excess of their measurement uncertainties, three of these are single-lined binaries with long observational baselines. From this subsample, we present detections of two previously unknown spectroscopic binaries and one known astrometric system. Our technique will be useful in measuring or placing upper limits on the masses of sub-stellar companions discovered by wide-field transit surveys, and conducting future spectroscopic binarity surveys and Galactic space-motion studies of massive and/or young, rapidly rotating stars.

  5. Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550 to 890 nm.

    PubMed

    McCracken, Richard A; Depagne, Éric; Kuhn, Rudolf B; Erasmus, Nicolas; Crause, Lisa A; Reid, Derryck T

    2017-03-20

    A visible astrocomb spanning 555-890 nm has been implemented on the 10-m Southern African Large Telescope, delivering complete calibration of one channel of its high-resolution spectrograph and an accurate determination of its resolving power. A novel co-coupling method allowed simultaneous observation of on-sky, Th-Ar lamp and astrocomb channels, reducing the wavelength calibration uncertainty by a factor of two compared to that obtained using only Th-Ar lines. The excellent passive stability of the master frequency comb laser enabled broadband astrocomb generation without the need for carrier-envelope offset frequency locking, and an atomically referenced narrow linewidth diode laser provided an absolute fiducial marker for wavelength calibration. The simple astrocomb architecture enabled routine operation by non-specialists in an actual telescope environment. On-sky spectroscopy results are presented with direct calibration achieved entirely using the astrocomb.

  6. Polarimetric calibrations and astronomical polarimetry in the V-band with Solar Orbiter/METIS instrument

    NASA Astrophysics Data System (ADS)

    Capobianco, Gerardo; Fineschi, Silvano; Focardi, Mauro; Andretta, Vincenzo; Massone, Giuseppe; Bemporad, Alessandro; Romoli, Marco; Antonucci, Ester; Naletto, Giampiero; Nicolini, Gianalfredo; Nicolosi, Piergiorgio; Spadaro, Daniele

    2014-08-01

    METIS is one of the remote sensing instruments on board the ESA- Solar Orbiter mission, that will be launched in July 2017. The Visible Light Channel (VLC) of the instrument is composed by an achromatic LC-based polarimeter for the study of the linearly polarized solar K-corona in the 580-640 nm bandpass. The laboratory calibrations with spectropolarimetric techniques and the in-flight calibrations of this channel, using some well knows linearly polarized stars in the FoV of the instrument with a degree of linear polarization DOLP > 10% are here discussed. The selection of the stars and the use of other astronomical targets (i.e. planets, comets,…) and the opportunity of measurements of the degree of linear polarization in the visible bandpass of some astronomical objects (i.e. Earth, comets,…) are also objects of this paper.

  7. EMCCD calibration for astronomical imaging: Wide FastCam at the Telescopio Carlos Sánchez

    NASA Astrophysics Data System (ADS)

    Velasco, S.; Oscoz, A.; López, R. L.; Puga, M.; Pérez-Garrido, A.; Pallé, E.; Ricci, D.; Ayuso, I.; Hernández-Sánchez, M.; Vázquez-Martín, S.; Protasio, C.; Béjar, V.; Truant, N.

    2017-03-01

    The evident benefits of Electron Multiplying CCDs (EMCCDs) -speed, high sensitivity, low noise and their capability of detecting single photon events whilst maintaining high quantum efficiency- are bringing these kinds of detectors to many state-of-the-art astronomical instruments (Velasco et al. 2016; Oscoz et al. 2008). The EMCCDs are the perfect answer to the need for great sensitivity levels as they are not limited by the readout noise of the output amplifier, while conventional CCDs are, even when operated at high readout frame rates. Here we present a quantitative on-sky method to calibrate EMCCD detectors dedicated to astronomical imaging, developed during the commissioning process (Velasco et al. 2016) and first observations (Ricci et al. 2016, in prep.) with Wide FastCam (Marga et al. 2014) at Telescopio Carlos Sánchez (TCS) in the Observatorio del Teide.

  8. Development of Fiber Fabry-Perot Interferometers as Stable Near-infrared Calibration Sources for High Resolution Spectrographs

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel; Mahadevan, Suvrath; Ramsey, Lawrence; Hearty, Fred; Wilson, John; Holtzman, Jon; Redman, Stephen; Nave, Gillian; Nidever, David; Nelson, Matt; Venditti, Nick; Bizyaev, Dmitry; Fleming, Scott

    2014-05-01

    We discuss the ongoing development of single-mode fiber Fabry-Perot (FFP) Interferometers as precise astro-photonic calibration sources for high precision radial velocity (RV) spectrographs. FFPs are simple, inexpensive, monolithic units that can yield a stable and repeatable output spectrum. An FFP is a unique alternative to a traditional etalon, as the interferometric cavity is made of single-mode fiber rather than an air-gap spacer. This design allows for excellent collimation, high spectral finesse, rigid mechanical stability, insensitivity to vibrations, and no need for vacuum operation. The device we have tested is a commercially available product from Micron Optics. Our development path is targeted towards a calibration source for the Habitable-Zone Planet Finder (HPF), a near-infrared spectrograph designed to detect terrestrial-mass planets around low-mass stars, but this reference could also be used in many existing and planned fiber-fed spectrographs as we illustrate using the Apache Point Observatory Galactic Evolution Experiment (APOGEE) instrument. With precise temperature control of the fiber etalon, we achieve a thermal stability of 100 $\\mu$K and associated velocity uncertainty of 22 cm s$^{-1}$. We achieve a precision of $\\approx$2 m s$^{-1}$ in a single APOGEE fiber over 12 hours using this new photonic reference after removal of systematic correlations. This high precision (close to the expected photon-limited floor) is a testament to both the excellent intrinsic wavelength stability of the fiber interferometer and the stability of the APOGEE instrument design. Overall instrument velocity precision is 80 cm s$^{-1}$ over 12 hours when averaged over all 300 APOGEE fibers and after removal of known trends and pressure correlations, implying the fiber etalon is intrinsically stable to significantly higher precision.

  9. A laser locked Fabry-Perot etalon with 3 cm/s stability for wavelength calibration of Doppler spectrographs

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Gurevich, Yulia; Stuermer, Julian; Fuehrer, Thorsten; Lamoreaux, Steve; Walther, Thomas; Quirrenbach, Andreas

    2015-12-01

    Superior wavelength calibration is a major component in attaining Doppler precision of 10 cm/s and better with high resolution spectrographs. To achieve this goal, current calibration methods like thorium-argon lamps and iodine cells need to be replaced by more precise techniques. The ideal wavelength calibrator has a grid of densely spaced, narrow lines of equal brightness and works over a wide wavelength range. Laser frequency combs have received much attention recently, but they are complex and costly. We present an alternative method that builds on the success of passively stabilized Fabry-Perot etalons: we actively stabilize the etalon to an atomic transition, which provides an absolute frequency reference. We use saturated absorption laser spectroscopy to detect the hyperfine transitions of rubidium at 780 nm, a well-established frequency standard. Then we tune an etalon parameter (for instance, temperature) to keep one etalon peak coincident with the rubidium transition. Our setup is designed to be simple and robust, adaptable to various etalons, and to work in the infrared as well as the visible spectral range. We achieve a locking precision that is equivalent to a Doppler precision of better than 3 cm/s over any reasonable integration time.

  10. Astronomical calibration and global correlation of the Santonian (Cretaceous) based on the marine carbon isotope record

    NASA Astrophysics Data System (ADS)

    Thibault, N.; Jarvis, I.; Voigt, S.; Gale, A. S.; Attree, K.; Jenkyns, H. C.

    2016-06-01

    High-resolution records of bulk carbonate carbon isotopes have been generated for the Upper Coniacian to Lower Campanian interval of the sections at Seaford Head (southern England) and Bottaccione (central Italy). An unambiguous stratigraphic correlation is presented for the base and top of the Santonian between the Boreal and Tethyan realms. Orbital forcing of carbon and oxygen isotopes at Seaford Head points to the Boreal Santonian spanning five 405 kyr cycles (Sa1 to Sa5). Correlation of the Seaford Head time scale to that of the Niobrara Formation (Western Interior Basin) permits anchoring these records to the La2011 astronomical solution at the Santonian-Campanian (Sa/Ca) boundary, which has been recently dated to 84.19 ± 0.38 Ma. Among the five tuning options examined, option 2 places the Sa/Ca at the 84.2 Ma 405 kyr insolation minimum and appears as the most likely. This solution indicates that minima of the 405 kyr filtered output of the resistivity in the Niobrara Formation correlate to 405 kyr insolation minima in the astronomical solution and to maxima in the filtered δ13C of Seaford Head. We suggest that variance in δ13C is driven by climate forcing of the proportions of CaCO3 versus organic carbon burial on land and in oceanic basins. The astronomical calibration generates a 200 kyr mismatch of the Coniacian-Santonian boundary age between the Boreal Realm in Europe and the Western Interior, due either to diachronism of the lowest occurrence of the inoceramid Cladoceramus undulatoplicatus between the two regions or to remaining uncertainties of radiometric dating and cyclostratigraphic records.

  11. Calibration of a cylindrical RF capacitance probe. [for radio astronomical studies

    NASA Technical Reports Server (NTRS)

    Mosier, S. R.; Kaiser, M. L.

    1974-01-01

    The calibration is considered of an RF antenna capacitance probe carried aboard the RAE-1 spacecraft and the correction of the probe for external effects, believed to be primarily due to local positive ion sheaths and/or photoelectron sheaths surrounding the antenna. The RAE-1 spacecraft was launched in July 1968 into a 5850-km. Circular orbit of 121-degree inclination and carried several antenna and radiometer systems covering a frequency range of 0.2 to 9.2 MHz for radio astronomical studies. The RF capacitance probe measurements discussed utilized a 37-meter electric dipole antenna formed by two monopoles made of silver-coated beryllium-copper alloy tapes formed into hollow cylindrical tubes 1.3 cm in diameter.

  12. Echelle spectrograph calibration with a frequency comb based on a harmonically mode-locked fiber laser: a proposal

    SciTech Connect

    McFerran, J. J.

    2009-05-10

    Details for constructing an astronomical frequency comb suitable as a wavelength reference for echelle spectrographs associated with optical telescopes are outlined. The source laser for the frequency comb is a harmonically mode-locked fiber laser with a central wavelength of 1.56 {mu}m. The means of producing a repetition rate greater than 7 GHz and a peak optical power of {approx}8 kW are discussed. Conversion of the oscillator light into the visible can occur through a two-step process of (i) nonlinear conversion in periodically poled lithium niobate and (ii) spectral broadening in photonic crystal fiber. While not necessarily octave spanning in spectral range to permit the use of an f -to- 2f interferometer for offset frequency control, the frequency comb can be granted accuracy by linking the mode spacing and a comb tooth to separate frequency references. The design avoids the use of a Fabry-Perot cavity to increase the mode spacing of the frequency comb; however, the level of supermode suppression and sideband asymmetry in the fiber oscillator and in the subsequent frequency conversion stages are aspects that need to be experimentally tested.

  13. Current Calibration Efforts and Performance of the HST Space Telescope Imaging Spectrograph: Echelle Flux Calibration, the BAR5 Occulter, and Lamp Lifetimes

    NASA Astrophysics Data System (ADS)

    Monroe, TalaWanda R.; Aloisi, Alessandra; Debes, John H.; Jedrzejewski, Robert I.; Lockwood, Sean A.; Peeples, Molly S.; Proffitt, Charles R.; Riley, Allyssa; Walborn, Nolan R.

    2016-06-01

    The variety of operating modes of the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) continues to allow STIS users to obtain unique, high quality observations and cutting-edge results 19 years after its installation on HST. STIS is currently the only instrument available to the astronomy community that allows high spectral and spatial resolution spectroscopy in the FUV and NUV, including echelle modes. STIS also supports solar-blind imaging in the FUV. In the optical, STIS provides long-slit, first-order spectra that take advantage of HST's superb spatial resolution, as well as several unique unfiltered coronagraphic modes, which continue to benefit the exoplanet and debris-disk communities. The STIS instrument team monitors the instrument’s health and performance over time to characterize the effects of radiation damage and continued use of the detectors and optical elements. Additionally, the STIS team continues to improve the quality of data products for the user community. We present updates on efforts to improve the echelle flux calibration of overlapping spectral orders due to changes in the grating blaze function since HST Servicing Mission 4, and efforts to push the contrast limit and smallest inner working angle attainable with the coronagraphic BAR5 occulter. We also provide updates on the performance of the STIS calibration lamps, including work to maintain the accuracy of the wavelength calibration for all modes.

  14. A stable and inexpensive wavelength reference for precise wavelength calibration of radial velocity spectrographs

    NASA Astrophysics Data System (ADS)

    Feger, Tobias; Ireland, Michael J.; Bento, Joao; Bacigalupo, Carlos

    2014-08-01

    We present a stable, inexpensive wavelength reference, based on a white-light interferometer for the use on current and future (arrays of) diffraction-limited radial velocity (RV) spectrographs. The primary aim of using an interferometer is to obtain a dense sinusoidal wavelength reference with spectral coverage between 450-650 nm. Its basic setup consists of an unbalanced fiber Mach-Zehnder interferometer (FMZI) that creates an interference pattern in the spectral domain due to superposition of phase delayed light, set by a fixed optical path-length difference (OPD). To achieve long-term stability, the interferometer is actively locked to a stable atomic line. The system operates in closed-loop using a thermo-optic modulator as the phase feedback component. We conducted stability measurements by superimposing the wavelength reference with thorium-argon (ThAr) emission lines and found the differential RMS shift to be ~5 m s-1 within 30 minute bins in an experiment lasting 5 hours.

  15. Astronomical calibration of the Boreal Santonian (Cretaceous) based on the marine carbon isotope record and correlation to the tropical realm

    NASA Astrophysics Data System (ADS)

    Thibault, Nicolas; Jarvis, Ian; Voigt, Silke; Gale, Andy; Attree, Kevin; Jenkyns, Hugh

    2016-04-01

    New high-resolution records of bulk carbonate carbon isotopes have been generated for the Upper Coniacian to Lower Campanian interval of the reference sections at Seaford Head (southern England) and Bottaccione (Gubbio, central Italy). These records allow for a new and unambiguous stratigraphic correlation of the base and top of the Santonian between the Boreal and Tethyan realms. Orbital forcing of stable carbon and oxygen isotopes can be highlighted in the Seaford Head dataset, and a floating astronomical time scale is presented for the Santonian of the section, which spans five 405 kyr cycles (Sa1 to Sa5). Macro-, micro- and nannofossil biostratigraphy of the Seaford section is integrated along with magnetostratigraphy, carbon-isotope chemostratigraphy and cyclostratigraphy. Correlation of the Seaford Head astronomical time scale to that of the Niobrara Formation (U.S. Western Interior Basin) allows for anchoring these records to the La2011 astronomical solution at the Santonian-Campanian (Sa/Ca) boundary, which has been recently dated to 84.19±0.38 Ma. Five different astronomical tuning options are examined. The astronomical calibration generates a c. 200 kyr mismatch of the Coniacian-Santonian boundary age between the Boreal Realm in Europe and the Western Interior, likely due either to slight diachronism of the first occurrence of the inoceramid Cladoceramus undulatoplicatus between the two regions, or to remaining uncertainties of radiometric dating and the cyclostratigraphic records.

  16. Ultraviolet interstellar linear polarization. IV. Cross-calibration between the Wisconsin ultraviolet photo-polarimeter experiment and the faint object spectrograph.

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey C.; Wolff, Michael J.; Allen, R. G.; Babler, B. L.; Meade, M. R.; Hordsieck, Kenneth H.; Anderson, C. M.; Martin, P. G.; Whittet, D. C. B.

    1997-09-01

    The Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) and the Faint Object Spectrograph (FOS) started gathering UV spectropolarimetry in 1990. Each observed a wide range of polarimetrically interesting objects before being retired. This paper examines the polarimetric calibration of each instrument and compares the absolute calibrations through the use of the limited sample of ``standard stars'' observed by both instruments. In general, there is good agreement between the FOS and WUPPE results at the 2sigma statistical level. Data from each instrument can be compared directly on a straightforward basis.

  17. Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb.

    PubMed

    Ycas, Gabriel G; Quinlan, Franklyn; Diddams, Scott A; Osterman, Steve; Mahadevan, Suvrath; Redman, Stephen; Terrien, Ryan; Ramsey, Lawrence; Bender, Chad F; Botzer, Brandon; Sigurdsson, Steinn

    2012-03-12

    We describe and characterize a 25 GHz laser frequency comb based on a cavity-filtered erbium fiber mode-locked laser. The comb provides a uniform array of optical frequencies spanning 1450 nm to 1700 nm, and is stabilized by use of a global positioning system referenced atomic clock. This comb was deployed at the 9.2 m Hobby-Eberly telescope at the McDonald Observatory where it was used as a radial velocity calibration source for the fiber-fed Pathfinder near-infrared spectrograph. Stellar targets were observed in three echelle orders over four nights, and radial velocity precision of ∼10 m/s (∼6 MHz) was achieved from the comb-calibrated spectra.

  18. LONG-TERM CALIBRATION STABILITY OF A RADIO ASTRONOMICAL PHASED ARRAY FEED

    SciTech Connect

    Elmer, Michael; Jeffs, Brian D.; Warnick, Karl F.

    2013-01-01

    There are many challenges associated with the implementation of a phased array feed for radio astronomy applications. Among these is the need to have an adequate set of calibration measurements so that reliable beamformers can be computed. Changes in the operating environment and temporal gain drift in the electronics contribute to calibration drift, which affects the beamformer performance. We will show that calibration measurements are relatively stable over a 5 day period and may remain so for up to 70 days or longer. We have incorporated the use of a calibration update system that has the potential to refresh a set of old calibrators, specifically correcting for electronic gain drift. However, the long-term variations that are present with fresh, current calibrators are greater than the degradation due to using an old calibration set, suggesting that, at this time, there is not a need for sophisticated calibration update systems or algorithms.

  19. An astronomically calibrated early Paleocene magnetostratigraphy and biostratigraphy at Zumaia (Basque Basin, Northern Spain)

    NASA Astrophysics Data System (ADS)

    Dinarès-Turell, J.; Baceta, J. I.; Pujalte, V.; Orue-Etxebarria, X.; Bernaola, G.; Lorito, S.

    2003-04-01

    .22 m corresponds to the ~110 ky eccentricity cycle. We have used a band-pass filter on the coded lithologic series in the depth domain to extract the latest cycle and subsequently tuned the filter output assuming a value of 110 ky for the period of this eccentricity cycle target and then have re-evaluated the wavelet spectral content. The ~400 ky eccentricity cycle and modulations at longer periods are not significantly present. We provide a cycle-tuned duration for all intervening early Paleocene polarity chrons and estimate relative ages for bioevents. Our chronology is more complete and slightly different but compatible with an astronomically calibrated magnetostratigraphy from ODP Sites 1001A (Caribbean Sea) and 1050C (western North Atlantic) (Röhl et al, 2001), and partly with the standard GPTS of Cande and Kent (1995), which seem to have overestimated the duration of chrons C28 and C27 by 14 and 23% respectively with respect to our cycle-tuned durations. Our data may prove useful in the redefinition of the boundary between the Danian and Selandian stages.

  20. Ultraviolet Interstellar Linear Polarization. IV. Cross-Calibration Between the Wisconsin Ultraviolet Photo-Polarimeter Experiment and the Faint Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Clayton, G. C.; Allen, R. G.; Babler, B. L.; Meade, M. R.; Nordsieck, K. H.; Anderson, C. M.; Martin, P. G.; Whittet, D. C. B.

    1997-05-01

    The Wisconsin Ultraviolet Photo-Polarimeter experiment (WUPPE) and the Faint Object Spectrograph (FOS) started gathering UV spectropolarimetry from space in 1990. Although both instruments are no longer operating, each observed a wide range of polarimetrically interesting objects before being retired. We examined the polarimetric calibration of each instrument and compared the absolute calibrations through the use of the limited sample of ``standard stars'' observed by both instruments. We found: The internal polarization calibration of FOS for the pre- and post-COSTAR eras are consistent within the estimated statistical and systematic errors. The much higher post-COSTAR instrumental polarization is stable and correctable. The internal polarization calibration of WUPPE for Astro-1 and -2 are consistent within the estimated statistical and systematic errors. However, there appears to be some variation in region to the red of 3.5 micron (-1) , where the unpolarized star data show a larger dispersion. This may be related to focus issues. The systematic errors are estimated to be 0.1%+ 0.02p(%) and 0.1%+0.1p(%) for pre- and post-COSTAR datasets, respectively. For WUPPE, the systematic error is 0.05%+0.05p(%). The observations in common between FOS and WUPPE for HD 197770, 161056, and 161961 show that the data can be compared on same basis. Each calibration produces consistent results. This work was supported by NASA grants NAS5-26777, NAG5-3032 and NAG5-3032.

  1. Design and integration of a mechanism for focusing and alignment of the Echelle spectrograph for the telescope of 2.1 meters of the National Astronomic Observatory

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Horacio O. A.; Farah, Alejandro S.; Echevarria R., Juan M.; Sierra, Gerardo D.

    2014-08-01

    This paper is focused on an engineering project applied to astronomy for scientific purposes. The project consisted elementally on the design, fabrication and characterization of an interface or mechanism to align and focus the lens of the Echelle spectrograph and its CCD camera. This instrument is part of the 2.1 m telescope of the Observatorio Astronómico Nacional located at the Sierra de San Pedro Martir, B. C., Mexico (OAN-SPM). The mechanism described in this article is composed functionally of the next pieces: two half- clamps, three profiles type "L" (that function as support columns), a fixed plate, a reference sliding plate, and three digital sensors for measuring the relative position between the camera interface of the spectrograph and the plane of its dewar. The cryostat system has a lens that must be focused and aligned with the spectrograph. The cryostat and the mechanism have to be attached and it has to allow rotational movements around the three axes with linear adjustments along them. Similarly there is a brief description of the adjacent elements to understand the mechanism and functionality design criteria used in order to ensure the proper functionality of the mechanism that has been tested and integrated in the telescope. Such results are also described as well as the technical specifications, the manufacturing process and the manufacturing drawings. A brief description of the scientific instrument and some finite element simulations are also included in this work. Finally, some recommendations and future work that may be carried out as a continuous improvement mechanism are presented.

  2. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob

    2016-07-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.

  3. Calibration of radio-astronomical data on the cloud. LOFAR, the pathway to SKA

    NASA Astrophysics Data System (ADS)

    Sabater, J.; Sánchez-Expósito, S.; Garrido, J.; Ruiz, J. E.; Best, P. N.; Verdes-Montenegro, L.

    2015-05-01

    The radio interferometer LOFAR (LOw Frequency ARray) is fully operational now. This Square Kilometre Array (SKA) pathfinder allows the observation of the sky at frequencies between 10 and 240 MHz, a relatively unexplored region of the spectrum. LOFAR is a software defined telescope: the data is mainly processed using specialized software running in common computing facilities. That means that the capabilities of the telescope are virtually defined by software and mainly limited by the available computing power. However, the quantity of data produced can quickly reach huge volumes (several Petabytes per day). After the correlation and pre-processing of the data in a dedicated cluster, the final dataset is handled to the user (typically several Terabytes). The calibration of these data requires a powerful computing facility in which the specific state of the art software under heavy continuous development can be easily installed and updated. That makes this case a perfect candidate for a cloud infrastructure which adds the advantages of an on demand, flexible solution. We present our approach to the calibration of LOFAR data using Ibercloud, the cloud infrastructure provided by Ibergrid. With the calibration work-flow adapted to the cloud, we can explore calibration strategies for the SKA and show how private or commercial cloud infrastructures (Ibercloud, Amazon EC2, Google Compute Engine, etc.) can help to solve the problems with big datasets that will be prevalent in the future of astronomy.

  4. Panchromatic Calibration of Astronomical Observations with State-of-the-Art White Dwarf Model Atmospheres

    NASA Astrophysics Data System (ADS)

    Rauch, T.

    2016-05-01

    Theoretical spectral energy distributions (SEDs) of white dwarfs provide a powerful tool for cross-calibration and sensitivity control of instruments from the far infrared to the X-ray energy range. Such SEDs can be calculated from fully metal-line blanketed NLTE model-atmospheres that are e.g. computed by the Tübingen NLTE Model-Atmosphere Package (TMAP) that has arrived at a high level of sophistication. TMAP was successfully employed for the reliable spectral analysis of many hot, compact post-AGB stars. High-quality stellar spectra obtained over a wide energy range establish a data base with a large number of spectral lines of many successive ions of different species. Their analysis allows to determine effective temperatures, surface gravities, and element abundances of individual (pre-)white dwarfs with very small error ranges. We present applications of TMAP SEDs for spectral analyses of hot, compact stars in the parameter range from (pre-) white dwarfs to neutron stars and demonstrate the improvement of flux calibration using white-dwarf SEDs that are e.g. available via registered services in the Virtual Observatory.

  5. Updates to the Performance and Calibration of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Ely, Justin; Becker, George; Biretta, John; Debes, John; Fox, Andrew; Lockwood, sean; Massa, Derck; Monroe, TalaWanda; Oliveira, Cristina; Jedrzejekski, Robert; Peeples, Molly; Penton, Steven Victor; Plesha, Rachel; Proffitt, Charles; Roman-Duval, Julia; Sahnow, David; Sana, Hugues; Sonnentrucker, Paule G.; Taylor, Joanna; Walborn, Nolan

    2015-08-01

    The Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) has been on orbit for approximately 18 years and continues to produce high quality scientific results using a diverse complement of operating modes. These include spatially resolved spectroscopy in the UV and optical, high spatial resolution echelle spectroscopy in the UV, and solar-blind imaging in the UV. In addition, STIS possesses unique visible-light coronagraphic modes that keep the instrument at the forefront of exoplanet and debris-disk research. As the instrument's characteristics evolve over the instrument’s lifetime, the instrument team at Space Telescope Science Institute monitors its performance and works towards improving the quality of its products. Here we present updates on the status of the STIS CCD and FUV &NUV MAMA detectors, as well as changes to the CalSTIS reduction pipeline and available instrument modes. As the STIS CCD detector continues to suffer from charge transfer inefficiency (CTI) due to prolonged radiation damage, we also present an update on the on-going effort to develop a stand-alone tool to perform a pixel-based CTI correction on the STIS CCD, for distribution to the community.

  6. Astronomical calibration of 40Ar/39Ar reference minerals using high-precision, multi-collector (ARGUSVI) mass spectrometry

    NASA Astrophysics Data System (ADS)

    Phillips, D.; Matchan, E. L.; Honda, M.; Kuiper, K. F.

    2017-01-01

    The new generation of multi-collector mass spectrometers (e.g. ARGUSVI) permit ultra-high precision (<0.1%) 40Ar/39Ar geochronology of rocks and minerals. At the same time, the 40Ar/39Ar method is limited by relatively large uncertainties (>1%) in 40K decay constants and the ages of natural reference minerals that form the basis of the technique. For example, reported ages for widely used 40Ar/39Ar reference materials, such as the ca. 28 Ma Fish Canyon Tuff sanidine (FCTs) and the ca. 1.2 Ma Alder Creek Rhyolite sanidine (ACRs), vary by >1%. Recent attempts to independently calibrate these reference minerals have focused on K-Ar analyses of the same minerals and inter-comparisons with astronomically tuned tephras in sedimentary sequences and U-Pb zircon ages from volcanic rocks. Most of these studies used older generation (effectively single-collector) mass spectrometers that employed peak-jumping analytical methods to acquire 40Ar/39Ar data. In this study, we reassess the inter-calibration and ages of commonly used 40Ar/39Ar reference minerals Fish Canyon Tuff sanidine (FCTs), Alder Creek Rhyolite sanidine (ACRs) and Mount Dromedary biotite (MD2b; equivalent to GA-1550 biotite), relative to the astronomically tuned age of A1 Tephra sanidine (A1Ts), Faneromeni section, Crete (Rivera et al., 2011), using a multi-collector ARGUSVI mass spectrometer. These analyses confirm the exceptional precision capability (<0.1%) of this system, compared to most previous studies. All sanidine samples (FCTs, ACRs and A1Ts) exhibit discordant 40Ar/39Ar step-heating spectra, with generally monotonically increasing ages (∼1% gradients). The similarity in these patterns, mass-dependent fractionation modeling, and results from step-crushing experiments on FCTs, which yield younger apparent ages, suggest that the discordance may be due to a combination of recoil loss and redistribution of 39ArK and isotope mass fractionation. In contrast to our previous inferences, these results imply

  7. Replicated spectrographs in astronomy

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.

    2014-06-01

    As telescope apertures increase, the challenge of scaling spectrographic astronomical instruments becomes acute. The next generation of extremely large telescopes (ELTs) strain the availability of glass blanks for optics and engineering to provide sufficient mechanical stability. While breaking the relationship between telescope diameter and instrument pupil size by adaptive optics is a clear path for small fields of view, survey instruments exploiting multiplex advantages will be pressed to find cost-effective solutions. In this review we argue that exploiting the full potential of ELTs will require the barrier of the cost and engineering difficulty of monolithic instruments to be broken by the use of large-scale replication of spectrographs. The first steps in this direction have already been taken with the soon to be commissioned MUSE and VIRUS instruments for the Very Large Telescope and the Hobby-Eberly Telescope, respectively. MUSE employs 24 spectrograph channels, while VIRUS has 150 channels. We compare the information gathering power of these replicated instruments with the present state of the art in more traditional spectrographs, and with instruments under development for ELTs. Design principles for replication are explored along with lessons learned, and we look forward to future technologies that could make massively-replicated instruments even more compelling.

  8. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records

    PubMed Central

    Storey, Michael; Roberts, Richard G.; Saidin, Mokhtar

    2012-01-01

    The Toba supereruption in Sumatra, ∼74 thousand years (ka) ago, was the largest terrestrial volcanic event of the Quaternary. Ash and sulfate aerosols were deposited in both hemispheres, forming a time-marker horizon that can be used to synchronize late Quaternary records globally. A precise numerical age for this event has proved elusive, with dating uncertainties larger than the millennial-scale climate cycles that characterized this period. We report an astronomically calibrated 40Ar/39Ar age of 73.88 ± 0.32 ka (1σ, full external errors) for sanidine crystals extracted from Toba deposits in the Lenggong Valley, Malaysia, 350 km from the eruption source and 6 km from an archaeological site with stone artifacts buried by ash. If these artifacts were made by Homo sapiens, as has been suggested, then our age indicates that modern humans had reached Southeast Asia by ∼74 ka ago. Our 40Ar/39Ar age is an order-of-magnitude more precise than previous estimates, resolving the timing of the eruption to the middle of the cold interval between Dansgaard–Oeschger events 20 and 19, when a peak in sulfate concentration occurred as registered by Greenland ice cores. This peak is followed by a ∼10 °C drop in the Greenland surface temperature over ∼150 y, revealing the possible climatic impact of the eruption. Our 40Ar/39Ar age also provides a high-precision calibration point for other ice, marine, and terrestrial archives containing Toba sulfates and ash, facilitating their global synchronization at unprecedented resolution for a critical period in Earth and human history beyond the range of 14C dating. PMID:23112159

  9. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records

    NASA Astrophysics Data System (ADS)

    Storey, Michael; Roberts, Richard G.; Saidin, Mokhtar

    2012-11-01

    The Toba supereruption in Sumatra, ∼74 thousand years (ka) ago, was the largest terrestrial volcanic event of the Quaternary. Ash and sulfate aerosols were deposited in both hemispheres, forming a time-marker horizon that can be used to synchronize late Quaternary records globally. A precise numerical age for this event has proved elusive, with dating uncertainties larger than the millennial-scale climate cycles that characterized this period. We report an astronomically calibrated 40Ar/39Ar age of 73.88 ± 0.32 ka (1σ, full external errors) for sanidine crystals extracted from Toba deposits in the Lenggong Valley, Malaysia, 350 km from the eruption source and 6 km from an archaeological site with stone artifacts buried by ash. If these artifacts were made by Homo sapiens, as has been suggested, then our age indicates that modern humans had reached Southeast Asia by ∼74 ka ago. Our 40Ar/39Ar age is an order-of-magnitude more precise than previous estimates, resolving the timing of the eruption to the middle of the cold interval between Dansgaard-Oeschger events 20 and 19, when a peak in sulfate concentration occurred as registered by Greenland ice cores. This peak is followed by a ∼10 °C drop in the Greenland surface temperature over ∼150 y, revealing the possible climatic impact of the eruption. Our 40Ar/39Ar age also provides a high-precision calibration point for other ice, marine, and terrestrial archives containing Toba sulfates and ash, facilitating their global synchronization at unprecedented resolution for a critical period in Earth and human history beyond the range of 14C dating.

  10. Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?

    NASA Astrophysics Data System (ADS)

    Westerhold, Thomas; Röhl, Ursula; Frederichs, Thomas; Agnini, Claudia; Raffi, Isabella; Zachos, James C.; Wilkens, Roy H.

    2017-09-01

    To fully understand the global climate dynamics of the warm early Eocene with its reoccurring hyperthermal events, an accurate high-fidelity age model is required. The Ypresian stage (56-47.8 Ma) covers a key interval within the Eocene as it ranges from the warmest marine temperatures in the early Eocene to the long-term cooling trends in the middle Eocene. Despite the recent development of detailed marine isotope records spanning portions of the Ypresian stage, key records to establish a complete astronomically calibrated age model for the Ypresian are still missing. Here we present new high-resolution X-ray fluorescence (XRF) core scanning iron intensity, bulk stable isotope, calcareous nannofossil, and magnetostratigraphic data generated on core material from ODP Sites 1258 (Leg 207, Demerara Rise), 1262, 1263, 1265, and 1267 (Leg 208, Walvis Ridge) recovered in the equatorial and South Atlantic Ocean. By combining new data with published records, a 405 kyr eccentricity cyclostratigraphic framework was established, revealing a 300-400 kyr long condensed interval for magnetochron C22n in the Leg 208 succession. Because the amplitudes are dominated by eccentricity, the XRF data help to identify the most suitable orbital solution for astronomical tuning of the Ypresian. Our new records fit best with the La2010b numerical solution for eccentricity, which was used as a target curve for compiling the Ypresian astronomical timescale (YATS). The consistent positions of the very long eccentricity minima in the geological data and the La2010b solution suggest that the macroscopic feature displaying the chaotic diffusion of the planetary orbits, the transition from libration to circulation in the combination of angles in the precession motion of the orbits of Earth and Mars, occurred ˜ 52 Ma. This adds to the geological evidence for the chaotic behavior of the solar system. Additionally, the new astrochronology and revised magnetostratigraphy provide robust ages and

  11. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales

    NASA Astrophysics Data System (ADS)

    Clyde, William C.; Ramezani, Jahandar; Johnson, Kirk R.; Bowring, Samuel A.; Jones, Matthew M.

    2016-10-01

    The Cretaceous-Paleogene (K-Pg) boundary is the best known and most widely recognized global time horizon in Earth history and coincides with one of the two largest known mass extinctions. We present a series of new high-precision uranium-lead (U-Pb) age determinations by the chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) method from volcanic ash deposits within a tightly constrained magnetobiostratigraphic framework across the K-Pg boundary in the Denver Basin, Colorado, USA. This new timeline provides a precise interpolated absolute age for the K-Pg boundary of 66.021 ± 0.024 / 0.039 / 0.081 Ma, constrains the ages of magnetic polarity Chrons C28 to C30, and offers a direct and independent test of early Paleogene astronomical and 40Ar/39Ar based timescales. Temporal calibration of paleontological and palynological data from the same deposits shows that the interval between the extinction of the dinosaurs and the appearance of earliest Cenozoic mammals in the Denver Basin lasted ∼185 ky (and no more than 570 ky) and the 'fern spike' lasted ∼1 ky (and no more than 71 ky) after the K-Pg boundary layer was deposited, indicating rapid rates of biotic extinction and initial recovery in the Denver Basin during this event.

  12. Wavelength calibration from 1-5μm for the CRIRES+ high-resolution spectrograph at the VLT

    NASA Astrophysics Data System (ADS)

    Seemann, U.; Anglada-Escude, G.; Baade, D.; Bristow, P.; Dorn, R. J.; Follert, R.; Gojak, D.; Grunhut, J.; Hatzes, A. P.; Heiter, U.; Ives, D. J.; Jeep, P.; Jung, Y.; Käufl, H.-U.; Kerber, F.; Klein, B.; Lizon, J.-L.; Lockhart, M.; Löwinger, T.; Marquart, T.; Oliva, E.; Paufique, J.; Piskunov, N.; Pozna, E.; Reiners, A.; Smette, A.; Smoker, J.; Stempels, E.; Valenti, E.

    2014-08-01

    CRIRES at the VLT is one of the few adaptive optics enabled instruments that offer a resolving power of 105 from 1 - 5 μm. An instrument upgrade (CRIRES+) is proposed to implement cross-dispersion capabilities, spectro-polarimetry modes, a new detector mosaic, and a new gas absorption cell. CRIRES+ will boost the simultaneous wavelength coverage of the current instrument (~ γ/70 in a single-order) by a factor of 10 in the cross-dispersed configuration, while still retaining a ~> 10 arcsec slit suitable for long-slit spectroscopy. CRIRES+ dramatically enhances the instrument's observing efficiency, and opens new scientific opportunities. These include high-precision radial-velocity studies on the 3 m/s level to characterize extra-solar planets and their athmospheres, which demand for specialized, highly accurate wavelength calibration techniques. In this paper, we present a newly developed absorption gas-cell to enable high-precision wavelength calibration for CRIRES+. We also discuss the strategies and developments to cover the full operational spectral range (1 - 5 μµm), employing cathode emission lamps, Fabry-Perot etalons, and absorption gas-cells.

  13. HIRDES UV spectrographs

    NASA Astrophysics Data System (ADS)

    Kappelmann, N.; Barnstedt, J.; Gringel, W.; Werner, K.; Becker-Ross, H.; Florek, S.; Graue, R.; Kampf, D.; Reutlinger, A.; Neumann, C.; Shustov, B.; Sachkov, M.; Panchuk, V.; Yushkin, M.; Moisheev, A.; Skripunov, E.

    2006-06-01

    The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the ultraviolet range of the spectrum. The development of the WSO/UV S/C and the telescope is headed by the Russian Federal Space Agency (Roscosmos). The mission is scheduled to be launched in 2010 into the L2 orbit. The WSO/UV consists of a single Ultraviolet Telescope, incorporating a primary mirror of 1.7 m diameter feeding UV spectrometer and UV imagers. The UV spectrometer comprises three different single spectrographs, two high resolution echelle spectrographs - the High Resolution Double Echelle Spectrograph (HIRDES) - and a low dispersion long slit instrument. Within the HIRDES the spectral band (102 - 310 nm) is separated into two echelle spectrographs covering the UV range between 174- and 310 nm (UVES) and VacuumUV range between 102 and 176 nm (VUVES) with a very high spectral resolution of > 50000. Each spectrograph encompass a stand alone optical bench structure with a fully redundant high speed MCP detector system, the optomechanics and a network of mechanisms with different functionalities. The fundamental technical concept is based on the heritage of the two previous ORFEUS SPAS missions. The phase B1 development activities are described in this paper under consideration of performance aspects, design drivers, the related trade offs (e.g. mechanical concepts, material selection etc.) and the critical functional and environmental test verification approach. Furthermore the actual state of the other scientific instruments of the WSO/UV (e.g. UV imagers) project is described.

  14. Development of compact and ultra-high-resolution spectrograph with multi-GHz optical frequency comb

    NASA Astrophysics Data System (ADS)

    Endo, Mamoru; Sukegawa, Takashi; Silva, Alissa; Kobayashi, Yohei

    2014-08-01

    In recent years, a calibration method for an astronomical spectrograph using an optical frequency comb (OFC) with a repetition rate of more than ten GHz has been developed successfully [1-5]. But controlling filtering cavities that are used for thinning out longitudinal modes precludes long term stability. The super-mode noise coming from the fundamental repetition rate is an additional problem. We developed a laser-diode pumped Yb:Y2O3 ceramic oscillator, which enabled the generation of 4-GHz (maximum repetition rate of 6.7 GHz) pulse trains directly with a spectrum width of 7 nm (full-width half-maximum, FWHM), and controlled its optical frequency within a MHz level of accuracy using a beat note between the 4-GHz laser and a 246-MHz Yb-fiber OFC. The optical frequency of the Yb-fiber OFC was phase locked to a Rb clock frequency standard. Furthermore we also built a table-top multi-pass spectrograph with a maximum frequency resolution of 600 MHz and a bandwidth of 1 nm using a large-size high-efficiency transmission grating. The resolution could be changed by selecting the number of passes through the grating. This spectrograph could resolve each longitudinal mode of our 4-GHz OFC clearly, and more than 10% throughput was obtained when the resolution was set to 600 MHz. We believe that small and middle scale astronomical observatories could easily implement such an OFC-calibrated spectrograph.

  15. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  16. Astronomical photography, part T

    NASA Technical Reports Server (NTRS)

    Dunkelman, L.; Mercer, R. D.; Ross, C. L.; Worden, A. M.

    1972-01-01

    Photographic observations of astronomical interest conducted during the Apollo 15 mission are discussed. Procedures used in photographing the solar corona are described together with calibration and reduction methods. In addition, selected preliminary results obtained from the photography are presented.

  17. Spectrographs and Large Telescopes: A Study of Instrumentation

    NASA Astrophysics Data System (ADS)

    Fica, Haley Diane; Crane, Jeffrey D.; Uomoto, Alan K.; Hare, Tyson

    2017-01-01

    It is a truth universally acknowledged, that a telescope in possession of a large aperture, must be in want of a high resolution spectrograph. Subsystems of these instruments require testing and upgrading to ensure that they can continue to be scientifically productive and usher in a new era of astronomical research. The Planet Finder Spectrograph (PFS) and Magellan Inamori Kyocera Echelle (MIKE), both on the Magellan II Clay telescope at Las Campanas Observatory, and the Giant Magellan Telescope (GMT) Consortium Large Earth Finder (G-CLEF) are examples of such instruments. Bluer flat field lamps were designed for PFS and MIKE to replace lamps no longer available in order to ensure continued, efficient functionality. These newly designed lamps will result in better flat fielding and calibration of data, and thus result in increased reduction of instrument noise. When it is built and installed in 2022, G-CLEF will be be fed by a tertiary mirror on the GMT. Stepper motors attached to the back of this mirror will be used to correct misalignments in the optical relay system. These motors were characterized to ensure that they function as expected to an accuracy of a few microns. These projects incorporate several key aspects of astronomical instrumentation: designing, building, and testing.

  18. CESAR: Compact Echelle Spectrograph for Aeronomical Research

    NASA Astrophysics Data System (ADS)

    Melchiorri, R.; Grill, M.; Kendall, E. A.; Schiesser, E.; Slanger, T. G.; Radovan, M.; Lacoursiere, J.

    2010-12-01

    CESAR (Compact Echelle Spectrograph for Aeronomical Research) is a state-of-the-art instrument being constructed at SRI International under an NSF Major Research Instrumentation (MRI) program grant. Conceptually, CESAR is an outgrowth of nightglow studies carried out over the last 10 years utilizing the sky spectra of the 8 10 m class optical telescopes - Keck I and Keck II on Mauna Kea, and the VLT (Very Large Telescope) in Chile. Our goal is to significantly expand the range of upper atmospheric science investigations (nightglow, aurora, and dayglow emissions) by providing aeronomers with a high-throughput, high-dispersion, large-passband spectrograph of a caliber heretofore only available to astronomers at a handful of large observatories. We have scaled an astronomical grade echelle spectrograph into a portable version which can be sited at multiple geophysically significant stations. CESAR will cover the wavelength range from 300 to 1000nm with a spectral resolution of 20,000 and observe the sky in any direction with a FOV ranging from 7° to 20° and with a spatial resolution ranging from 0.06° to 0.5°. Upon completion, CESAR will be sited at Flat Research Range (PFRR) in Alaska for studies of aurorae and nightglow. We will first demonstrate CESAR capabilities in comparison to existing instruments, in terms of data acquisition rates, spectral coverage, and sensitivity. Focused experiments will follow, including (1) studies of sources of the oxygen atom Rydberg lines in aurora, looking at many more lines than the standard 777.4 and 844.6 nm emissions; (2) studies of the highly vibrationally excited levels in the O2(b-X) atmospheric bands, well known at equatorial latitudes, but unexplored at high latitudes and in aurorae; (3) continued studies of the OH Meinel bands and influences related to the presence of aurorae and to the general coupling of nightglow and auroral features; and (4) observation of the 2D and 2P states of O+ in aurorae. CESAR has now

  19. Updated Status and Performance of the Cosmic Origins Spectrograph on the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Fix, Mees Bernard; De Rosa, Gisella; Fox, Andrew; Indriolo, Nick; James, Bethan; Jedrzejewski, Robert I.; Oliveira, Cristina M.; Penton, Steven V.; Plesha, Rachel; Rafelski, Marc; Roman-Duval, Julia; Sahnow, David J.; Sonnentrucker, Paule; Snyder, Elaine M.; Taylor, Joanna M.; White, James

    2017-01-01

    The Cosmic Origins Spectrograph (COS) was installed on the Hubble Space Telescope (HST) in May 2009. COS was designed to perform high-sensitivity medium and low-resolution spectroscopy of astronomical objects in the far-ultraviolet (FUV) and near-ultraviolet (NUV) wavelength regimes. Here, we present updates on the time-dependent sensitivities (TDS) for the NUV and FUV detectors, NUV wavelength calibration, and the FUV and NUV dark rates. Additionally, we discuss the move to lifetime position four (LP4) planned for July 2017, including the detector location and impact on resolution.

  20. Astronomical timescale calibration for the Permian-Triassic boundary transition interval from global correlation of cyclic marine sequences

    NASA Astrophysics Data System (ADS)

    Huang, C.; Hinnov, L. A.; Tong, J.; Chen, Z.

    2011-12-01

    The mass extinctions near the Permian-Triassic boundary (PTB) resulted in the greatest dying of life on Earth. The cause of this catastrophe remains enigmatic. High-resolution chronology is crucial to understanding the recorded pattern of biotic evolution and possible causes for the extinctions. Magnetic susceptibility (MS) data from Shangsi, South China shows evidence for astronomical forcing through the PTB interval, with strong 405-kyr cycling. This allows development of an astrochronology for the PTB interval based on the 405-kyr orbital eccentricity metronome that has been proposed for the Mesozoic timescale. Radioisotope dating combined with the 405-kyr tuned MS series from Shangsi shows that the 405-kyr-cycle predominates throughout the PTB interval. In the Permian segment, ~100-kyr cyclicity dominates, and the 100-kyr-scale MS maxima correlate with high-amplitude precession-scale MS variations. Minima in the ~1.5-Myr, 405-kyr and ~100-kyr cycles converge at 252.6 Ma, approximately 200 kyr before the onset of the main mass extinction near the PTB. In the Triassic aftermath, the recorded astronomical signal is different, with predominant 405-kyr cycles and loss of 100 kyr cyclicity, and appearance of ~33 kyr (obliquity scale) cyclicity; 100-kyr cyclicity strengthens again 2 Myr later. This pattern indicates a change in the response of the depositional environment (or magnetic susceptibility) to astronomical forcing before and after the mass extinction interval. The astrochronology interpolates the timescale between the radioisotopically determined absolute dates; this facilitates estimation of ages for specific events in the PTB crisis, including magnetic reversals, biozone boundaries, and the mass extinctions. An estimated ~700 kyr duration for the Mass Extinction Interval (MEI) at Shangsi based on the 405-kyr tuning is supported by eccentricity-tuned estimates of three other sections in China (Meishan, Huangzhishan, and Heping), and two Alpine sections

  1. The Wide Integral Field Infrared Spectrograph (WIFIS): optomechanical design and development

    NASA Astrophysics Data System (ADS)

    Meyer, R. Elliot; Moon, Dae-Sik; Sivanandam, Suresh; Ma, Ke; Henderson, Chuck; Blank, Basil; Chou, Chueh-Yi; Jarvis, Miranda; Eikenberry, Stephen S.

    2016-08-01

    We present the optomechanical design and development of the Wide Integral Field Infrared Spectrograph (WIFIS). WIFIS will provide an unrivalled integral field size of 20"×50" for a near-infrared (0.9-1.7 μm) integral-field spectrograph at the 2.3-meter Steward Bok telescope. Its main optomechanical system consists of two assemblies: a room-temperature bench housing the majority of the optical components and a cryostat for a field-flattening lens, thermal blocking filter, and detector. Two additional optical subsystems will provide calibration functionality, telescope guiding, and off-axis optical imaging. WIFIS will be a highly competitive instrument for seeing-limited astronomical investigations of the dynamics and chemistry of extended objects in the near-infrared wavebands. WIFIS is expected to be commissioned during the end of 2016 with scientific operations beginning in 2017.

  2. A compact echelle spectrograph for characterization of astro-combs

    NASA Astrophysics Data System (ADS)

    Probst, Rafael A.; Steinmetz, Tilo; Wu, Yuanjie; Grupp, Frank; Udem, Thomas; Holzwarth, Ronald

    2017-03-01

    We present an echelle spectrograph that is optimized for characterization of frequency combs for astronomical applications (astro-combs). In spite of its very compact and cost-efficient design, it allows viewing the spectrum of a frequency comb in nearly the same way as a full-sized high-resolution echelle spectrograph as used at astronomical observatories. This is of great value for testing and characterizing astro-combs during their assembly phase. The spectrograph can further be utilized to effectfully demonstrate the remarkable capabilities of astro-combs.

  3. SPIRou @ CFHT: spectrograph optical design

    NASA Astrophysics Data System (ADS)

    Thibault, Simon; Rabou, Patrick; Donati, Jean-Francois; Desaulniers, Pierre; Dallaire, Xavier; Artigau, Etienne; Pepe, Francesco; Micheau, Yoan; Vallée, Philippe; Pepe, Francesco; Barrick, Greg; Reshetov, Vlad; Hernandez, Olivier; Saddlemyer, Leslie; Pazder, John; Parès, Laurent P.; Doyon, Rene; Delfosse, Xavier; Kouach, Driss; Loop, David

    2012-09-01

    SPIRou is a near-infrared, echelle spectropolarimeter/velocimeter under design for the 3.6m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea, Hawaii. The unique scientific capabilities and technical design features are described in the accompanying (eight) papers at this conference. In this paper we focus on the lens design of the optical spectrograph. The SPIROU spectrograph is a near infrared fiber fed double pass cross dispersed spectrograph. The cryogenic spectrograph is connected with the Cassegrain unit by the two science fibers. It is also fed by the fiber coming from the calibration box and RV reference module of the instrument. It includes 2 off-axis parabolas (1 in double pass), an echelle grating, a train of cross disperser prisms (in double pass), a flat folding mirror, a refractive camera and a detector. This paper describes the optical design of the spectrograph unit and estimates the performances. In particular, the echelle grating options are discussed as the goal grating is not available from the market.

  4. Removing the Fringes from Space Telescope Imaging Spectrograph Slitless Spectra

    NASA Astrophysics Data System (ADS)

    Malumuth, Eliot M.; Hill, Robert S.; Gull, Ted; Woodgate, Bruce E.; Bowers, Charles W.; Kimble, Randy A.; Lindler, Don; Plait, Phil; Blouke, Morley

    2003-02-01

    Using what is known about the physical and chemical structure of the CCD detector on the Space Telescope Imaging Spectrograph (STIS) and over 50 calibration images taken with different wavelength mappings onto the detector, we have devised a model function that allows us to predict the fringing of any spectral image taken with the STIS CCD. This function is especially useful for spectra taken without a slit with the G750L grating. The STIS parallel observing program uses this ``slitless spectroscopy'' mode extensively. The arbitrary mapping of wavelength versus position that results from each source's chance position in the field renders direct calibration of the fringe amplitudes in this mode impossible. However, we find that correcting observed data using our semiempirical fringing model produces a substantial reduction in the fringe amplitudes. Tests using the flux calibration white dwarf standard G191-B2B show that we can reduce the fringe amplitude in the 9000-10000 Å region from about 20% peak to peak (10% rms) to about 4% peak to peak (2% rms) using the model, while a standard calibration using a ``fringe flat'' reduces the fringe amplitudes to 3.3% peak to peak (1.7% rms). The same technique is applicable to other astronomical CCDs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Funding of this activity was through the Space Telescope Imaging Spectrograph Guaranteed Time Observations.

  5. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    SciTech Connect

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  6. The Infrared Imaging Spectrograph (IRIS) for TMT: data reduction system

    NASA Astrophysics Data System (ADS)

    Walth, Gregory; Wright, Shelley A.; Weiss, Jason; Larkin, James E.; Moore, Anna M.; Chapin, Edward L.; Do, Tuan; Dunn, Jennifer; Ellerbroek, Brent; Gillies, Kim; Hayano, Yutaka; Johnson, Chris; Marshall, Daniel; Riddle, Reed L.; Simard, Luc; Sohn, Ji Man; Suzuki, Ryuji; Wincentsen, James

    2016-08-01

    IRIS (InfraRed Imaging Spectrograph) is the diffraction-limited first light instrument for the Thirty Meter Telescope (TMT) that consists of a near-infrared (0.84 to 2.4 μm) imager and integral field spectrograph (IFS). The IFS makes use of a lenslet array and slicer for spatial sampling, which will be able to operate in 100's of different modes, including a combination of four plate scales from 4 milliarcseconds (mas) to 50 mas with a large range of filters and gratings. The imager will have a field of view of 34×34 arcsec2 with a plate scale of 4 mas with many selectable filters. We present the preliminary design of the data reduction system (DRS) for IRIS that need to address all of these observing modes. Reduction of IRIS data will have unique challenges since it will provide real-time reduction and analysis of the imaging and spectroscopic data during observational sequences, as well as advanced post-processing algorithms. The DRS will support three basic modes of operation of IRIS; reducing data from the imager, the lenslet IFS, and slicer IFS. The DRS will be written in Python, making use of open-source astronomical packages available. In addition to real-time data reduction, the DRS will utilize real-time visualization tools, providing astronomers with up-to-date evaluation of the target acquisition and data quality. The quick look suite will include visualization tools for 1D, 2D, and 3D raw and reduced images. We discuss the overall requirements of the DRS and visualization tools, as well as necessary calibration data to achieve optimal data quality in order to exploit science cases across all cosmic distance scales.

  7. Astronomical calibration of the Toarcian Stage: Implications for sequence stratigraphy and duration of the early Toarcian OAE

    NASA Astrophysics Data System (ADS)

    Boulila, Slah; Galbrun, Bruno; Huret, Emilia; Hinnov, Linda A.; Rouget, Isabelle; Gardin, Silvia; Bartolini, Annachiara

    2014-01-01

    The Toarcian Oceanic Anoxic Event (T-OAE) of the early Jurassic period involves one of the largest perturbations of the carbon cycle in the past 250 Ma, recorded by a pronounced negative carbon-isotope excursion (CIE). Numerous studies have focused on potential causes of the T-OAE and CIE, but are hampered by an uncertain timescale. Here we present high-resolution (∼ 2 kyr) magnetic susceptibility (MS) measurements from the marine marls of the Sancerre-Couy drill-core, southern Paris Basin, spanning the entire Toarcian Stage. The MS variations document a rich series of sub-Milankovitch to Milankovitch frequencies (precession, obliquity and eccentricity) with the periodic g2-g5 (405 kyr) and quasi-periodic g4-g3 (∼ 2.4 Myr Cenozoic mean periodicity) eccentricity terms being the most prominent. The MS-related g4-g3 variation reflects third-order eustatic sequences, and constrains the sequence stratigraphic framework of the Toarcian Stage. In addition, MS variations reveal a modulation of g2-g5 by g4-g3 eccentricity related cycles, suggesting that sea-level change was the main control on the deposition of the Toarcian Sancerre marls, in tune with the astro-climatic frequencies. The stable 405 kyr cyclicity constrains a minimum duration of the Toarcian Stage to ∼ 8.3 Myr, and the well documented CIE, associated with the T-OAE, to ∼300 to 500 kyr. The 405 kyr MS timescale calibrates the periodicity of the prominent high-frequency δ13C cycles that occur in the decreasing part of the CIE to 30 to 34 kyr, consistent with the Toarcian obliquity period predicted for an Earth experiencing sustained tidal dissipation.

  8. Curved VPH gratings for novel spectrographs

    NASA Astrophysics Data System (ADS)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  9. Integrating TV/digital data spectrograph system

    NASA Technical Reports Server (NTRS)

    Duncan, B. J.; Fay, T. D.; Miller, E. R.; Wamsteker, W.; Brown, R. M.; Neely, P. L.

    1975-01-01

    A 25-mm vidicon camera was previously modified to allow operation in an integration mode for low-light-level astronomical work. The camera was then mated to a low-dispersion spectrograph for obtaining spectral information in the 400 to 750 nm range. A high speed digital video image system was utilized to digitize the analog video signal, place the information directly into computer-type memory, and record data on digital magnetic tape for permanent storage and subsequent analysis.

  10. Mauna Kea Spectrographic Explorer (MSE): a conceptual design for multi-object high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.

  11. NRES: The Network of Robotic Echelle Spectrographs

    NASA Astrophysics Data System (ADS)

    Siverd, Robert; Eastman, Jason D.; Brown, Timothy M.; Hygelund, John; Henderson, Todd; Tufts, Joseph; Van Eyken, Julian C.; Barnes, Stuart

    2015-01-01

    Las Cumbres Observatory Global Network (LCOGT) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by two 1 meter telescopes and a thorium argon calibration source, one at each of our observatory sites in the Northern and Southern hemispheres. Thus, NRES will be a single, globally-distributed, autonomous observing facility using twelve 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of better than 3 m/s in less than an hour for stars brighter than V = 12. We have been funded with NSF MRI and ATI grants, and expect our first spectrograph to be deployed in mid 2015, with the full network operation of all 6 units beginning in 2016. We will discuss the NRES design, goals, robotic operation, and status, as well as the early results from our prototype spectrograph.

  12. Rocket instrument for far-UV spectrophotometry of faint astronomical objects.

    PubMed

    Hartig, G F; Fastie, W G; Davidsen, A F

    1980-03-01

    A sensitive sounding rocket instrument for moderate (~10-A) resolution far-UV (lambda1160-lambda1750-A) spectrophotometry of faint astronomical objects has been developed. The instrument employs a photon-counting microchannel plate imaging detector and a concave grating spectrograph behind a 40-cm Dall-Kirkham telescope. A unique remote-control pointing system, incorporating an SIT vidicon aspect camera, two star trackers, and a tone-encoded command telemetry link, permits the telescope to be oriented to within 5 arc sec of any target for which suitable guide stars can be found. The design, construction, calibration, and flight performance of the instrument are discussed.

  13. Rocket instrument for far-UV spectrophotometry of faint astronomical objects

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Fastie, W. G.; Davidsen, A. F.

    1980-01-01

    A sensitive sounding rocket instrument for moderate (about 10-A) resolution far-UV (1160-1750-A) spectrophotometry of faint astronomical objects has been developed. The instrument employes a photon-counting microchannel plate imaging detector and a concave grating spectrograph behind a 40-cm Dall-Kirkham telescope. A unique remote-control pointing system, incorporating an SIT vidicon aspect camera, two star trackers, and a tone-encoded command telemetry link, permits the telescope to be oriented to within 5 arc sec of any target for which suitable guide stars can be found. The design, construction, calibration, and flight performance of the instrument are discussed.

  14. A high-resolution Fourier transform spectrometer for astronomical observations and development of wavelength standards

    NASA Astrophysics Data System (ADS)

    Lemke, Ulrike; Reiners, Ansgar; Schäfer, Sebastian

    2012-09-01

    At the Institute for Astrophysics Goettingen (IAG), we are purchasing a high resolution Fourier Transform Spectrograph (FTS) for astronomical observations and development of calibration standards aiming at high wavelength precision. Astronomical spectrographs that work in the regime of very high resolution (resolving powers λ/δλ>=105) now achieve unprecedented precision and stability. Precise line shifts can be investigated to conclude for an objects radial velocity relative to the observer. As a long-term scientific goal, the evolution of galaxy redshift due to dark energy can be monitored. Also, the detection of lower mass, down to Earth-like planets will become feasible. Here, M-dwarfs are promising objects where an orbiting exo-Earth can cause a wavelength shift large enough to be detected. Emitting mainly in the near infrared (NIR), these objects require novel calibration standards. Current schemes under consideration are gas cathode lamps (e.g. CN, UNe) and a highly stable Fabry-Perot interferometer (FPI) to act as a cost-efficient alternative to the laser frequency comb (LFC, [1]). In addition to experiments exploring novel wavelength calibration types, light will be fed from our telescopes at IAG. A Vacuum Tower Telescope (VTT) for solar observations and the 50 cm Cassegrain telescope allow to investigate stellar and spatially resolved light at our facilities.

  15. WES—Weihai Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Gao, Dong-Yang; Ji, Hang-Xin; Cao, Chen; Hu, Shao-Ming; Wittenmyer, Robert A.; Hu, Zhong-Wen; Grupp, Frank; Kellermann, Hanna; Li, Kai; Guo, Di-Fu

    2016-12-01

    The Weihai Echelle Spectrograph (WES) is the first fiber-fed echelle spectrograph for astronomical observation in China. It is primarily used for chemical abundance and asteroseismology studies of nearby bright stars, as well as radial velocity (RV) detections for exoplanets. The optical design of WES is based on the widely demonstrated and well-established white-pupil concept. We describe the WES in detail and present some examples of its performance. A single exposure echelle image covers the spectral region 371-1100 nm in 107 spectral orders over the rectangular CCD. The spectral resolution R=λ /{{Δ }}λ changes from 40,600 to 57,000 through adjusting the entrance slit width from full to 2.2 pixels sampling at the fiber-exit. The limiting magnitude scales to V = 8 with a signal-to-noise ratio of more than 100 in V for an hour exposure, at the spectral resolution R ≈ 40,000 in the median seeing of 1.″7 at Weihai Observatory for the 1 m telescope. The RV measurement accuracy of WES is estimated to be <10 m s-1 in 10 months (302 days) and better than 15 m s-1 in 4.4 years (1617 days) in the recent data processing.

  16. The end-to-end simulator for the E-ELT HIRES high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Genoni, M.; Landoni, M.; Riva, M.; Pariani, G.; Mason, E.; Di Marcantonio, P.; Disseau, K.; Di Varano, I.; Gonzalez, O.; Huke, P.; Korhonen, H.; Li Causi, Gianluca

    2017-06-01

    We present the design, architecture and results of the End-to-End simulator model of the high resolution spectrograph HIRES for the European Extremely Large Telescope (E-ELT). This system can be used as a tool to characterize the spectrograph both by engineers and scientists. The model allows to simulate the behavior of photons starting from the scientific object (modeled bearing in mind the main science drivers) to the detector, considering also calibration light sources, and allowing to perform evaluation of the different parameters of the spectrograph design. In this paper, we will detail the architecture of the simulator and the computational model which are strongly characterized by modularity and flexibility that will be crucial in the next generation astronomical observation projects like E-ELT due to of the high complexity and long-time design and development. Finally, we present synthetic images obtained with the current version of the End-to-End simulator based on the E-ELT HIRES requirements (especially high radial velocity accuracy). Once ingested in the Data reduction Software (DRS), they will allow to verify that the instrument design can achieve the radial velocity accuracy needed by the HIRES science cases.

  17. Astronomical masers

    NASA Technical Reports Server (NTRS)

    Elitzur, Moshe

    1992-01-01

    Recent research related to astronomical masers is reviewed. First, attention is given to phenomenology, including observations and modeling of galactic and extragalactic maser sources. The discussion then focuses on the developments concerning the physical properties of maser radiation. Finally, the use of masers as general tools for the study of astronomical environments where the radiation is produced and where it propagates, is discussed.

  18. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  19. Blind Astronomers

    NASA Astrophysics Data System (ADS)

    Hockey, Thomas A.

    2011-01-01

    The phrase "blind astronomer” is used as an allegorical oxymoron. However, there were and are blind astronomers. What of famous blind astronomers? First, it must be stated that these astronomers were not martyrs to their craft. It is a myth that astronomers blind themselves by observing the Sun. As early as France's William of Saint-Cloud (circa 1290) astronomers knew that staring at the Sun was ill-advised and avoided it. Galileo Galilei did not invent the astronomical telescope and then proceed to blind himself with one. Galileo observed the Sun near sunrise and sunset or through projection. More than two decades later he became blind, as many septuagenarians do, unrelated to their profession. Even Isaac Newton temporarily blinded himself, staring at the reflection of the Sun when he was a twentysomething. But permanent Sun-induced blindness? No, it did not happen. For instance, it was a stroke that left Scotland's James Gregory (1638-1675) blind. (You will remember the Gregorian telescope.) However, he died days later. Thus, blindness little interfered with his occupation. English Abbot Richard of Wallingford (circa 1291 - circa 1335) wrote astronomical works and designed astronomical instruments. He was also blind in one eye. Yet as he further suffered from leprosy, his blindness seems the lesser of Richard's maladies. Perhaps the most famous professionally active, blind astronomer (or almost blind astronomer) is Dominique-Francois Arago (1786-1853), director until his death of the powerful nineteenth-century Paris Observatory. I will share other _ some poignant _ examples such as: William Campbell, whose blindness drove him to suicide; Leonhard Euler, astronomy's Beethoven, who did nearly half of his life's work while almost totally blind; and Edwin Frost, who "observed” a total solar eclipse while completely sightless.

  20. NRES: The Network of Robotic Echelle Spectrographs

    NASA Astrophysics Data System (ADS)

    Siverd, Robert; Brown, Timothy M.; Henderson, Todd; Hygelund, John; Barnes, Stuart; Bowman, Mark; De Vera, Jon; Eastman, Jason D.; Kirby, Annie; Norbury, Martin; Smith, Cary; Taylor, Brook; Tufts, Joseph; Van Eyken, Julian C.

    2017-06-01

    Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four to six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12. Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. Barring serious complications, we expect regular scheduled science observing to begin in mid-2017. Three additional units are in building or testing phases and slated for deployment in late 2017. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities. We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first unit, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of science cases.

  1. The AIS: A Spectrograph/Imager Ensemble for Space Flight

    DTIC Science & Technology

    1990-05-17

    emissions in the vicinity of spacecraft. It includes nine spectrographs, which cover the spectral range from 115 to 1100 snm#.Vlithpe- tralI ...designations, wavelength ranges, and fields of view. 10 3. Spectrograph parameters and calibration results . 26 4. Imager parameters and calibration... results . 28 BI Weights and Dimensions of the boxes that comprise the AIS 42 Accession For NTIS GRA& DTIC TAB 0 Unamotced E0 Just ificat1o by Distrlbution

  2. Polarizer mechanism for the space telescope faint object spectrograph

    NASA Technical Reports Server (NTRS)

    Thulson, M. D.

    1983-01-01

    The polarizer mechanism for the Space Telescope Faint Object Spectrograph is described. This device will allow spectropolarimetric measurements of faint astronomical objects. The mechanism employs a unique arrangement to meet functional requirements in a compact package and with only one actuator. Detailed tolerance analysis and a variety of tests indicate that the polarizer is capable of accurate and reliable performance.

  3. Multiple object fiber optics spectrograph feed for the Hale telescope

    NASA Technical Reports Server (NTRS)

    Tubbs, E. F.; Goss, W. C.; Cohen, J. G.

    1982-01-01

    The preliminary design for a computer-controlled fiber-optics feed linking the 5-m Hale telescope at Palomar Observatory to the entrance slit of an astronomical spectrograph is presented. A 76-mm square field will be divided into ten strips containing two movable fibers each; the fibers can be moved by stepper-motor-driven lead screws to any position on the strip. The device is designed to allow the simultaneous spectrographic observation of many astronomical objects in a small angular field. A prototype feed using two fibers and manually commanded digital control is described in detail. Test observations of two bright O stars made in April, 1981 using the prototype with the Hale telescope are considered sufficiently positive to warrant construction of the 20-fiber feed, which would enhance the spectrographic-survey effectiveness of the telescope by a factor of ten.

  4. Littrow spectrographs for moderate resolution infrared applications

    NASA Astrophysics Data System (ADS)

    Warren, David W.; Lampen, Sara

    2016-09-01

    The Littrow form of spectrograph has a long and storied history in astronomical spectroscopy since its presentation in 1862 by Otto von Littrow. Light from an input slit traverses the same optical elements in reaching the dispersing element (prism or grating) and returning to a focused, dispersed image at the focal plane. This 1:1 symmetry helps cancel aberrations in the reimaging optics while presenting the dispersing element with the geometry most favorable to dispersion, efficiency and anamorphic scale change. Historically, Littrow spectrographs have not been pushed to high throughputs (fast f/ratios). However in the short- and mid-wave infrared particularly, high index, low dispersion materials like silicon and germanium can be combined effectively into compact, high throughput (spectrographic space missions such as atmospheric sounders. We present some high throughput Littrow spectrograph concepts designed for infrared atmospheric sounding missions and incorporating both plane and immersion gratings.

  5. Observing Resolved Stellar Populations with the JWST Near-Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Gilbert, K. M.; Beck, T. L.; Karakla, D. M.

    2016-10-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) will provide a multi-object spectroscopy (MOS) mode through the Micro-Shutter Array (MSA). Each MSA quadrant is a grid of contiguous shutters that can be configured to form slits on more than 100 astronomical targets simultaneously. The combination of JWST's sensitivity and superb resolution in the infrared and NIRSpec's full wavelength coverage over 0.6 to 5 μm will open new parameter space for studies of galaxies and resolved stellar populations alike. We describe a NIRSpec MSA observing scenario of spectroscopy of individual stars in an external galaxy, and investigate the technical challenges posed by this scenario. This use case and others, including a deep galaxy survey and observations of Galactic HII regions, are guiding development of the NIRSpec user interfaces including proposal planning and pipeline calibrations.

  6. HERMES: a high-resolution fiber-fed spectrograph for the Mercator Telescope

    NASA Astrophysics Data System (ADS)

    Raskin, Gert; Van Winckel, Hans

    2008-07-01

    HERMES, a fiber-fed , high-resolution echelle spectrograph is currently in its integration phase at the 1.2-meter Mercator Telescope at the Roque de Los Muchachos Observatory on La Palma, Spain). The design of HERMES, optimized for high efficiency and high instrumental stability, is based on a large R2.7 echelle grating. It is operating in quasi-Littrow white-pupil configuration, with a double-prism as cross-disperser. It records the complete spectrum from 377 to 900 nm on one 2048×4608 pixel CCD in a single exposure. HERMES offers 1) a high-resolution and high-efficiency observation mode through a 80-μm optical fiber (2.5 arcsec sky aperture) equipped with a two-slice image slicer, resulting in a spectral resolution of R=85000 and a peak-efficiency above 25%; and 2) a high-stability mode through a 60-μm fiber (2.15 arcsec sky aperture, R=55000) equipped with a double fiber scrambler for improved spectrograph illumination stability. This mode is intended for high-precision radial velocity measurements and it offers the possibility of recording simultaneously the spectrum of a wavelength calibration lamp interlaced with the science spectrum. This allows for precise tracking of instrumental drifts during integration. To increase instrumental stability further, the spectrograph will be housed in a temperature and pressure controlled chamber. This spectrograph mounted on a flexible-scheduling telescope has a wide astronomical scope, going from asteroseismology to binary star research and chemical studies of stars and circumstellar material. In this contribution we present the final design of HERMES and we report on the project status.

  7. Airborne spectrograph for the thermal IR: Broadband Array Spectrograph System

    NASA Astrophysics Data System (ADS)

    Russell, Ray W.; Hackwell, John; Lynch, David; Mazuk, Ann

    Spectroscopic studies in the 'fingerprint' region of the thermal IR from 3 to 14 microns of celestial dust components and the overall energy distribution of the sources are best served by moderate spectral resolution (R = lambda/Delta lambda approximately 30 to 200), high sensitivity observations. Spectral purity and the reproducibility of the spectral shape are critical as well, when using the spectral shape to assign temperatures to dust grains or to gas clouds based on the wavelength and shape of molecular bands. These sensor attributes are also important to the use of wavelengths and ratios of solid state features to derive compositions of dust grains in celestial sources. The advent of high quality linear arrays of blocked impurity band (BIB) detectors of Si:As permitted the development of a state-of-the-art, patented, cooled prism spectrograph. Developed at The Aerospace Corporation largely with in-house funds, the Broadband Array Spectrograph System (BASS) has been used for a variety of remote sensing applications, but especially for IR astronomical studies on the Kuiper Airborne Observatory and at the NASA Infrared Telescope Facility (IRTF). The attributes of the spectrograph, specifically having the pupil imaged onto the 2 linear 58 element detector arrays so that the effects of guiding errors are minimized, being able to maximally exploit the limited observing time by acquiring all 116 spectral channels simultaneously, and having all spectral channels imaged through the same aperture so that spectral mapping is readily and reliably accomplished, afford the scientist with a unique opportunity to conduct both surveys of examples of many different types of sources as well as in-depth studies of a given class of object by thoroughly sampling the class members. This duality was demonstrated with the BASS through a combination of KAO flights where spectral maps were obtained as part of in-depth studies of specific source regions (such as Orion and W3) and

  8. Airborne spectrograph for the thermal IR: Broadband Array Spectrograph System

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.; Hackwell, John; Lynch, David; Mazuk, Ann

    1995-01-01

    Spectroscopic studies in the 'fingerprint' region of the thermal IR from 3 to 14 microns of celestial dust components and the overall energy distribution of the sources are best served by moderate spectral resolution (R = lambda/Delta lambda approximately 30 to 200), high sensitivity observations. Spectral purity and the reproducibility of the spectral shape are critical as well, when using the spectral shape to assign temperatures to dust grains or to gas clouds based on the wavelength and shape of molecular bands. These sensor attributes are also important to the use of wavelengths and ratios of solid state features to derive compositions of dust grains in celestial sources. The advent of high quality linear arrays of blocked impurity band (BIB) detectors of Si:As permitted the development of a state-of-the-art, patented, cooled prism spectrograph. Developed at The Aerospace Corporation largely with in-house funds, the Broadband Array Spectrograph System (BASS) has been used for a variety of remote sensing applications, but especially for IR astronomical studies on the Kuiper Airborne Observatory and at the NASA Infrared Telescope Facility (IRTF). The attributes of the spectrograph, specifically having the pupil imaged onto the 2 linear 58 element detector arrays so that the effects of guiding errors are minimized, being able to maximally exploit the limited observing time by acquiring all 116 spectral channels simultaneously, and having all spectral channels imaged through the same aperture so that spectral mapping is readily and reliably accomplished, afford the scientist with a unique opportunity to conduct both surveys of examples of many different types of sources as well as in-depth studies of a given class of object by thoroughly sampling the class members. This duality was demonstrated with the BASS through a combination of KAO flights where spectral maps were obtained as part of in-depth studies of specific source regions (such as Orion and W3) and

  9. NRES: The Network of Robotic Echelle Spectrographs

    NASA Astrophysics Data System (ADS)

    Siverd, Robert; Brown, Timothy M.; Hygelund, John; Henderson, Todd; Tufts, Joseph; Eastman, Jason; Van Eyken, Julian C.; Barnes, Stuart

    2016-01-01

    Las Cumbres Observatory Global Network (LCOGT) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a thorium argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to twelve 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 12. We have been funded with NSF MRI and ATI grants, and expect our first spectrograph to be deployed in early 2016, with the full network operation of 5 or 6 units beginning in 2017. We will briefly overview the NRES design, goals, robotic operation, and status. In addition, we will discuss early results from our prototype spectrograph, the laboratory and on-sky performance of our first production unit, and the ongoing software development effort to bring this resource online.

  10. NRES: The Network of Robotic Echelle Spectrographs

    NASA Astrophysics Data System (ADS)

    Siverd, Robert; Brown, Timothy M.; Henderson, Todd; Hygelund, John; Tufts, Joseph; Eastman, Jason; Barnes, Stuart; Van Eyken, Julian C.

    2016-06-01

    Las Cumbres Observatory Global Network (LCOGT) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a thorium argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to twelve 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 12. We have been funded with NSF MRI and ATI grants, and expect to deploy the first spectrograph in fall 2016, with the full network operation of 5 or 6 units beginning in 2017. We will briefly overview the NRES design, goals, robotic operation, and status. In addition, we will discuss early results from our prototype spectrograph, the laboratory and on-sky performance of our first production unit, initial science results, and the ongoing software development effort to bring this resource online.

  11. NRES: the network of robotic Echelle spectrographs

    NASA Astrophysics Data System (ADS)

    Siverd, Robert J.; Brown, Timothy M.; Hygelund, John; Henderson, Todd; Tufts, Joseph R.; Eastman, Jason D.; van Eyken, Julian; Barnes, Stuart

    2016-08-01

    Las Cumbres Observatory Global Network (LCOGT) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a thorium argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to twelve 1-meter telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 12. We have been funded with NSF MRI and ATI grants, and expect our first spectrograph to be deployed in fall 2016, with the full network operation of 5 or 6 units beginning in 2017. We will briefly overview the NRES design, goals, robotic operation, and status. In addition, we will discuss early results from our prototype spectrograph, the laboratory and on-sky performance of our first production unit, and the ongoing software development effort to bring this resource online.

  12. The calibration of photographic and spectrographic films

    NASA Technical Reports Server (NTRS)

    Hammond, E. C., Jr.

    1976-01-01

    Certain techniques and procedures are developed and evaluated for the ascertainment of the relative spectral-photometric characteristics of standard and special spectroscopic films and plates in the visible and UV regions. These films are used in ground based and rocket launched instruments. Two photographic spectral sensitometers were developed. One instrument is a vacuum sensitometer covering a range of 1,000 to 3,000 Angstroms and the other sensitometer is the device this investigator used to study its spectral responses in the visible region of the spectrum through the utilization of a computer microdensitometric and photometric plot and contour routines.

  13. Astronomical kaleidoscope

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    2005-10-01

    The entry contains two Moon eclipses (a picture of a total eclipse and a photo of a penumbral one), photographs of monuments of few greatest astronomers: Nikolay Kopernik, Tiho Brahe and Johannes Kepler, a photo from the JENAM-1995 (Catania, Sicily) as well as photographs of few astronomers related with Moldova and Romania: V. Grigorevskii, N. Donitch, V.Nadolschi, D. Mangeron, two nice clocks in Prague, as well as a map of the Sanctuary in Orheiul -Vechi (Bessarabia) with an supposed ancient calendar.

  14. Sky subtraction with fiber spectrographs

    NASA Astrophysics Data System (ADS)

    Lissandrini, C.; Cristiani, S.; La Franca, F.

    1994-11-01

    The sky-subtraction performance of multifiber spectrographs is discussed, analyzing in detail the case of the OPTOPUS system at the 3.6-m European Space Observatory (ESO) telescope at La Silla. A standard technique, based on flat fields obtained with a uniformly illuminated screen on the dome, provides poor results. A new method has been developed, using the (O I) emission line at 5577 A as a calibrator of the fiber transmittance, taking into account the diffuse light and the influence of each fiber on the adjacent ones, and correcting for the effects of the image distortions on the sky sampling. In this way the accuracy of the sky subtraction improves from 2%-8% to 1.3%-1.6%.

  15. Immersion echelle spectrograph

    DOEpatents

    Stevens, Charles G.; Thomas, Norman L.

    2000-01-01

    A small spectrograph containing no moving components and capable of providing high resolution spectra of the mid-infrared region from 2 microns to 4 microns in wavelength. The resolving power of the spectrograph exceeds 20,000 throughout this region and at an optical throughput of about 10.sup.-5 cm.sup.2 sr. The spectrograph incorporates a silicon immersion echelle grating operating in high spectral order combined with a first order transmission grating in a cross-dispersing configuration to provide a two-dimensional (2-D) spectral format that is focused onto a two-dimensional infrared detector array. The spectrometer incorporates a common collimating and condensing lens assembly in a near aberration-free axially symmetric design. The spectrometer has wide use potential in addition to general research, such as monitoring atmospheric constituents for air quality, climate change, global warming, as well as monitoring exhaust fumes for smog sources or exhaust plumes for evidence of illicit drug manufacture.

  16. PRISM Spectrograph Optical Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1995-01-01

    The objective of this contract is to explore optical design concepts for the PRISM spectrograph and produce a preliminary optical design. An exciting optical configuration has been developed which will allow both wavelength bands to be imaged onto the same detector array. At present the optical design is only partially complete because PRISM will require a fairly elaborate optical system to meet its specification for throughput (area*solid angle). The most complex part of the design, the spectrograph camera, is complete, providing proof of principle that a feasible design is attainable. This camera requires 3 aspheric mirrors to fit inside the 20x60 cm cross-section package. A complete design with reduced throughput (1/9th) has been prepared. The design documents the optical configuration concept. A suitable dispersing prism material, CdTe, has been identified for the prism spectrograph, after a comparison of many materials.

  17. Spaceborne UV imaging spectrograph for environmental sensing

    NASA Astrophysics Data System (ADS)

    Graue, Roland; Kampf, Dirk; Rippel, Harald

    1993-09-01

    An imaging spectrograph with high spectral resolution (< 0.55 nm) operating in the UV region between 300 - 320 nm is presented. The instrument uses Differential Optical Absorption Spectroscopy (DOAS) to monitor the SO2 total content in the earth's atmosphere from a sun synchronous orbit. The design of the entire instrument including wide-angle optics (+/- 57.5 degree(s)), opto- mechanics and sensor electronics (low light CCD application) and the in-flight calibration unit are described. The requirements on stability and calibration accuracy of the instrument caused by the DOAS method are outlined.

  18. Single Mode, Extreme Precision Doppler Spectrographs

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2014-04-01

    The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.

  19. An Opto-MEMS Multiobject Spectrograph

    NASA Astrophysics Data System (ADS)

    Kearney, K.; Ninkov, Z.; Zwarg, D.

    2000-05-01

    Optical MEMS (Micro-Electro-Mechanical-Structures) are an enabling technology for a new class of optical instrumentation designs. An opto-MEMS device consists of an array of microfabricated structures, each of which modulates the phase and/or amplitude of an incident light beam. Typically the devices consist of an array of moveable micromirrors - each of which reflects an incident beam in a unique direction (tilt), or with a unique phase shift (piston). One widely available opto-MEMS device is the Texas Instruments' Digital Micromirror Device (DMD). The DMD is an array of 16 micron x 16 micron square mirrors postioned on a 17 micron pitch. Each mirror can tilt +/- 10 degrees from the normal - reflecting a normally incident light beam +/- 20 degrees. By positioning the DMD in an intermediate image plane in an optical system, portions of the image can be directed into- or out-of the input pupil of the follow-on imaging optics. RIT is utilizing the DMD to construct a prototype multiobject spectrograph (RIT-MOS) for visible observations with terrestrial telescopes. The DMD array replaces the input slit of an imaging spectrograph, forming a 'virtual', programmable slit assembly. By acquiring a pre-image of the astronomical field, it is possible to select a multidude of objects, and to program the DMD to pass only those objects into the input optics of the imaging spectrograph. We will report on the design and characterizatotion of the RIT-MOS, as well as preliminary imaging results.

  20. The GlobalJetWatch spectrographs: a fibre-fed spectrograph for small telescopes

    NASA Astrophysics Data System (ADS)

    Clarke, Fraser J.; Gosling, Andrew J.; Doolin, Sam; Goodall, Paul; Perez, Sebastian; Pattinson, Paul; Makin, Rick; Blundell, Katherine M.

    2008-07-01

    The GlobalJetWatch project (www.globaljetwatch.net) will place small (0.5-metre) commerical telescopes in four schools around the world. Each telescope will be equipped with a custom designed spectrograph, currently being built by the Astrophysics sub-department of the University of Oxford. The scientific goal of the project is to provide continual monitoring of a rosetta stone object, the micro-quasar SS433. In addition, the project has a significant out-reach element, aiming to involve school children on four-continents in front-line astronomical research. The spectrograph is a fibre-fed fixed format cross-dispersed echellete design providing R~6000 spectra from 4300-8500 in a single exposure. The spectrograph is built almost entirely from off-the-shelf components. The four GlobalJetWatch sites (Australia, India, South Africa, Chile) will be commissioned in 2008/09. Here we present the baseline design of the spectrograph, and initial results from the prototype on-sky commissioning in Oxford.

  1. Stigmatic flat focal field spectrograph

    NASA Astrophysics Data System (ADS)

    Niemczyk, T. M.; Gobeli, G. W.

    Advances in two dimensional detectors have created a need for a spectrograph that can produce high fidelity images. Aberrations that detract from image quality in conventional spectrographs are discussed. Ray trace and experimental results obtained for a unique spectrograph designed for use with array detectors, i.e., designed to produce high fidelity images, are presented. The spectrograph employs toroidal mirrors to achieve stigmatic imaging in a flat focal field.

  2. FEROS: the new fiber-linked echelle spectrograph for the ESO 1.52-m telescope

    NASA Astrophysics Data System (ADS)

    Kaufer, Andreas; Pasquini, Luca

    1998-07-01

    FEROS is a new fiber-fed bench-mounted prism crossdispersed echelle spectrograph for the ESO 1.52-m telescope at the European Southern Observatory (ESO) in La Silla, Chile. It works with a 79 lines/mm R2 echelle grating in quasi-Littrow mode and in white pupil configuration. With two fibers of 100 micrometer core diameter for the object and the nearby sky, the complete optical spectrum from 370 - 860 nm is recorded in one single exposure on a 2k X 4k thinned CCD with 15 micrometer pixels. Therefore, the instrument can work in a fixed configuration on the optical bench without movable parts besides the CCD shutter mechanics. For the highest-possible opto-mechanical stability. FEROS will be housed in a temperature and humidity controlled room in the former Coude room of the telescope. The resolving power of R equals 48,000 is reached by the use of a newly designed two-slice image slicer which is fed by the two fibers. Alternatively, the sky fiber can be illuminated with a calibration lamp during the whole object exposure to monitor the spectrograph's residual motions for high-precision radial-velocity work. FEROS is built for ESO by a consortium of four European astronomical institutes under the leadership of the Landessternwarte Heidelberg, Germany. Further members of the consortium are the Astronomical Observatory Copenhagen, Denmark, the Institut d'Astrophysique de Paris, and the Observatoire de Paris/Meudon, France. It is planned that FEROS will be fully operational at the ESO 1.52-m telescope in December 1998 and will be available to the community in early 1999.

  3. CEOI microslice spectrograph

    NASA Astrophysics Data System (ADS)

    Content, Robert; Blake, Simon; Dunlop, Colin; Nandi, David; Sharples, Ray; Talbot, Gordon; Shanks, Tom; Donoghue, Danny; Galiatsatos, Nikolaos; Luke, Peter

    2012-09-01

    We developed the technology of microslice integral field units some years ago as the next step in SAURON type microlens IFU design with typically 5 times more spatial elements (spaxels) for the same spectrograph and spectral length aiming at 1,000,000 spaxels IFUs. A full instrument for laboratory demonstration composed of the fore-optics, the IFU, the spectrograph and the detector has now been built and tested. It has about 10,000 spatial elements and spectra 150 pixel long. Our IFU has 5 cylindrical microlens arrays along the optical axis as opposed to one hexagonal array in the previous design. Instead of imaging pupils on the spectrograph input focal plane, our IFU images short slitlets 17 pixel long that keep the spatial information along the spatial direction then giving 17 spaxels per slitlet instead of one in pupil imaging. This removes most of the lost space between spectra leaving place for more and keeps the spatial information over the element size while pupil images lose it. The fore-optics re-images the field on the input of the IFU. They are made of cylindrical optics to get the desired different magnifications in both directions. All the optics and detector fit in a cylinder 35 mm in diameter and 280 mm long. With a different set of fore-optics on a 4-m telescope, a field of 43" x 6.7" with spatial elements of 0.14" x 0.22" could be observed so 12 of these mini-spectrographs would cover a field surface area of about 1 arcmin2 and 120,000 spaxels.

  4. Immersion echelle spectrograph

    SciTech Connect

    Stevens, C.G.; Thomas, N.L.

    2000-06-20

    A small spectrograph is disclosed containing no moving components and capable of providing high resolution spectra of the mid-infrared region from 2 microns to 4 microns in wavelength. The resolving power of the spectrograph exceeds 20,000 throughout this region and at an optical throughput of about 10{sup {minus}5}cm{sup 2}sr. The spectrograph incorporates a silicon immersion echelle grating operating in high spectral order combined with a first order transmission grating in a cross-dispersing configuration to provide a two-dimensional (2-D) spectral format that is focused onto a two-dimensional infrared detector array. The spectrometer incorporates a common collimating and condensing lens assembly in a near aberration-free axially symmetric design. The spectrometer has wide use potential in addition to general research, such as monitoring atmospheric constituents for air quality, climate change, global warming, as well as monitoring exhaust fumes for smog sources or exhaust plumes for evidence of illicit drug manufacture.

  5. Design of HERMES: a high-resolution fiber-fed spectrograph for the Mercator Telescope

    NASA Astrophysics Data System (ADS)

    Raskin, Gert; Van Winckel, Hans; Lehmann, Holger

    2006-06-01

    HERMES is a high-resolution fiber-fed echelle spectrograph combining high throughput with high instrumental stability. The optical design is based on a large R2.7 echelle grating, operating in quasi-Littrow and white-pupil configuration, using a double-prism cross-disperser. It records the complete spectrum from 380 to 900 nm in a single exposure on a monolithic 2kx4.5k pixels CCD. HERMES offers 1) a high-resolution and high-efficiency observation mode through a 80-μm optical fiber (2.5 arcsec sky aperture) equipped with a two-slice image slicer, resulting in a resolution of λ/Δλ = 85000 and a peak-efficiency higher than 25%; and 2) a high-stability mode through a 60-μm fiber (2.15 arcsec sky aperture, R = 55000) equipped with a double fiber scrambler for improved spectrograph illumination stability. The latter mode is intended for high-precision radial velocity measurements and it offers the possibility of recording the spectrum of a wavelength calibration lamp simultaneously and interlaced with the stellar spectrum for precise tracking of instrumental drifts. To optimize instrumental stability, the spectrograph will be housed in a temperature and pressure controlled chamber, and it will operate in one fixed optical configuration. This instrument has a wide astronomical scope, going from asteroseismology to binary star research and chemical studies of stars and circumstellar material. HERMES is currently under construction and will be mounted on the 1.2-meter Mercator Telescope at the Roque de Los Muchachos Observatory on La Palma.

  6. Coronagraph for astronomical imaging and spectrophotometry

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Smith, Bradford A.

    1987-01-01

    A coronagraph designed to minimize scattered light in astronomical observations caused by the structure of the primary mirror, secondary mirror, and secondary support structure of a Cassegrainian telescope is described. Direct (1:1) and reducing (2.7:1) imaging of astronomical fields are possible. High-quality images are produced. The coronagraph can be used with either a two-dimensional charge-coupled device or photographic film camera. The addition of transmission dispersing optics converts the coronagraph into a low-resolution spectrograph. The instrument is modular and portable for transport to different observatories.

  7. Laboratory Testing and Performance Verification of the CHARIS Integral Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier; hide

    2016-01-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically the relative alignment of the lens let array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being

  8. Laboratory testing and performance verification of the CHARIS integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier; Jovanovic, Nemanja; McElwain, Michael W.; Takato, Naruhisa; Hayashi, Masahiko

    2016-08-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically, the relative alignment of the lenslet array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2 as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being

  9. V. M. Slipher and the Development of the Nebular Spectrograph

    NASA Astrophysics Data System (ADS)

    Thompson, L. A.

    2013-04-01

    Vesto Melvin Slipher was the first astronomer to clearly define the factors that determine the “speed” of a nebular spectrograph. This brief historical summary recounts the way these ideas developed and how Slipher's early work on galaxy Doppler shifts was so quickly extended in the 1930s when Milton Humason and Edwin Hubble at Mt. Wilson Observatory began to push the velocity-distance relationship to such a depth that no one could doubt its cosmological significance.

  10. THE COSMIC ORIGINS SPECTROGRAPH

    SciTech Connect

    Green, James C.; Michael Shull, J.; Snow, Theodore P.; Stocke, John; Froning, Cynthia S.; Osterman, Steve; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Sembach, Kenneth; Linsky, Jeffrey L.; Savage, Blair D.; Siegmund, Oswald H. W.; Spencer, John; Alan Stern, S.; Welsh, Barry; and others

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F{sub {lambda}} Almost-Equal-To 1.0 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1} A{sup -1}, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Ly{alpha} absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  11. The Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; Siegmund, Oswald H. W.; Snow, Theodore P.; Spencer, John; Stern, S. Alan; Stocke, John; Welsh, Barry; Béland, Stéphane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V.; Andrews, John; Brownsberger, Kenneth; Morse, Jon; Wilkinson, Erik

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F λ ≈ 1.0 × 10-14 erg cm-2 s-1 Å-1, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Lyα absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  12. PyWiFeS: Wide Field Spectrograph data reduction pipeline

    NASA Astrophysics Data System (ADS)

    Childress, Michael; Vogt, Frédéric; Nielsen, Jon; Sharp, Rob

    2014-02-01

    PyWiFeS is a Python-based data reduction pipeline for the Wide Field Spectrograph (WiFeS). Its core data processing routines are built on standard scientific Python packages commonly used in astronomical applications. It includes an implementation of a global optical model of the spectrograph which provides wavelengths solutions accurate to ˜0.05 Å (RMS) across the entire detector. Through scripting, PyWiFeS can enable batch processing of large quantities of data.

  13. Faint-object spectrograph for Space Telescope

    NASA Technical Reports Server (NTRS)

    Harms, r. J.; Beaver, E.; Burbidge, E. M.; Angel, R.; Bartko, F.; Bloomquist, W.; Flemming, J. C.; Bohlin, R.; Davidsen, A. F.; Ford, H.

    1979-01-01

    The paper presents the Faint Object Spectrograph (FOS) for the Space Telescope to provide a digitized spectra of faint astronomical objects over the 115 to 700 nm wavelength range at resolving powers of 1000 and 100. A variety of concave gratings and prisms is employed to form nearly stigmatic spectra on one of the two Digicon photon counting detectors which are optimized for two different but overlapping ranges. The scientific goals associated with quasars, active galaxies, and objects within our solar system are discussed, and the FOS optical design features, including detectors, electronics, signal processing, power supplies, and data handling are examined. The FOS structural system, mechanism, and controls are described, along with the predicted performance capabilities in the spectral and spectropolarimetry modes. Finally, system performance parameters, including spatial resolution, time resolution, noise, and efficiency are discussed.

  14. Design and Construction of VUES: The Vilnius University Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Jurgenson, Colby; Fischer, Debra; McCracken, Tyler; Sawyer, David; Giguere, Matt; Szymkowiak, Andrew; Santoro, Fernando; Muller, Gary

    2016-03-01

    In February 2014, the Yale Exoplanet Laboratory was commissioned to design, build, and deliver a high resolution (R=60,000) spectrograph for the 1.65m telescope at the Molėtai Astronomical Observatory. The observatory is operated by the Institute of Theoretical Physics and Astronomy at Vilnius University. The Vilnius University Echelle Spectrograph (VUES) is a white-pupil design that is fed via an octagonal fiber from the telescope and has an operational bandpass from 400nm to 880nm. VUES incorporates a novel modular optomechanical design that allows for quick assembly and alignment on commercial optical tables. This approach allowed the spectrograph to be assembled and commissioned at Yale using lab optical tables and then reassembled at the observatory on a different optical table with excellent repeatability. The assembly and alignment process for the spectrograph was reduced to a few days, allowing the spectrograph to be completely disassembled for shipment to Lithuania, and then installed at the observatory during a 10-day period in June of 2015.

  15. Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Bonaccini Calia, Domenico; Hackenberg, Wolfgang; Opitom, Cyrielle; Comin, Mauro; Schmidtobreik, Linda; Smoker, Jonathan; Blanchard, Israel; Espinoza Contreras, Marcela; Aranda, Ivan; Milli, Julien; Jaffe, Yara L.; Selman, Fernando; Kolb, Johann; Hibon, Pascale; Kuntschner, Harald; Madec, Pierre-Yves

    2017-04-01

    Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part) the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF) on Unit Telescope 4 (UT4) of the Very Large Telescope (VLT), we characterize the spectral signature of the uplink beams from the 22-W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the Multi-Unit Spectroscopic Explorer (MUSE) optical integral field spectrograph mounted on the Nasmyth B focus of UT4 to acquire spectra at a resolution of R ≅3000 of the uplink laser beams over the wavelength range of 4750 Å-9350 Å. We report the first detection of laser-induced Raman scattering by N2 , O2 , CO2 , H2O , and (tentatively) CH4 molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons—but 480 Å to 2210 Å redder than the original laser wavelength of 5889.959 Å—landing on the 8.2-m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering, a phenomenon not usually discussed in the astronomical context, is not unique to the observatory of Cerro Paranal, but it is common to any astronomical telescope employing a laser guide star (LGS) system. It is thus essential for any optical spectrograph coupled to a LGS system to thoroughly handle the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope (ELT). At sites hosting multiple telescopes, laser-collision-prediction tools should also account for the presence of Raman emission from the uplink laser beam(s) to avoid the unintentional

  16. MEGARA spectrograph mechanics and opto-mechanics in the AIV phase

    NASA Astrophysics Data System (ADS)

    Maldonado-Medina, Manuel; Pérez-Calpena, Ana; García Vargas, María. Luisa; Sánchez-Blanco, Ernesto; Martínez Delgado, Ismael; Gil de Paz, Armando; Arrillaga Echaniz, Xabier; Gallego Maestro, Jesús; Carrasco Licea, Esperanza; Iglesias-Páramo, Jorge; Sánchez-Moreno, Francisco

    2016-08-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the future optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) for the GTC 10.4m telescope. The spectrograph is currently being integrated in the laboratory for a pre-shipping review in September 2016. This paper presents the current status and final performance of the spectrograph mechanics and opto-mechanics, composed of the mechanisms and the large optomechanical elements mounts.

  17. The Faulkes Telescope Optical Spectrographs and Swift

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul

    The Faulkes Telescope project funded primarily by the Dill Faulkes Educational Trust is currently constructing two 2-m robotic telescopes to be located in Hawaii and Australia. These will be the largest and most powerful telescopes ever built dedicated for use by schools and colleges. We have been awarded funding to build two optical spectrographs to be permanently mounted on these telescopes by the end of 2003. At this time an astronomical satellite called Swift will be launched by NASA. Swift is dedicated to the study of gamma-ray bursts the most powerful explosive events in the Universe. The Department of Physics and Astronomy at the University of Leicester has provided the X-ray camera for Swift and is a partner in the Faulkes Telescopes project. To enhance both projects we intend to use the Faulkes Telescope optical spectrographs to study the gamma-ray bursts identified by Swift. These data will also be made available to schools thereby raising the profile of physics and astronomy in the educational community.

  18. Spectrographic imaging system

    DOEpatents

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  19. The Robotic FLOYDS Spectrographs

    NASA Astrophysics Data System (ADS)

    Sand, D.

    I will discuss the twin FLOYDS robotic spectrographs, operating at the 2m Faulkes Telescopes North and South. The FLOYDS instruments were designed with supernova classification and monitoring in mind, with a very large wavelength coverage (˜320 to 1000 nm) and a resolution (R ˜ 300 - 500, wavelength dependent) well-matched to the broad features of these and other transient and time domain events. Robotic acquisition of spectroscopic targets is the key ingredient for making robotic spectroscopy possible, and FLOYDS uses a slit-viewing camera with a ˜ 4‧ × 6‧ field to either do direct world coordinate system fitting or standard blind offsets to automatically place science targets into the slit. Future work includes an 'all-electronic' target of opportunity mode, which will allow for fast transient spectroscopy with no human necessary, even for inputting information into a phase 2 GUI. Initial science highlights from FLOYDS will also be presented.

  20. The Cosmic Origins Spectrograph

    NASA Technical Reports Server (NTRS)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; hide

    2010-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F(sub lambda) approximates 1.0 X 10(exp -14) ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  1. Interferometric resolution boosting for spectrographs

    SciTech Connect

    Erskine, D J; Edelstein, J

    2004-05-25

    Externally dispersed interferometry (EDI) is a technique for enhancing the performance of spectrographs for wide bandwidth high resolution spectroscopy and Doppler radial velocimetry. By placing a small angle-independent interferometer near the slit of a spectrograph, periodic fiducials are embedded on the recorded spectrum. The multiplication of the stellar spectrum times the sinusoidal fiducial net creates a moir{acute e} pattern, which manifests high detailed spectral information heterodyned down to detectably low spatial frequencies. The latter can more accurately survive the blurring, distortions and CCD Nyquist limitations of the spectrograph. Hence lower resolution spectrographs can be used to perform high resolution spectroscopy and radial velocimetry. Previous demonstrations of {approx}2.5x resolution boost used an interferometer having a single fixed delay. We report new data indicating {approx}6x Gaussian resolution boost (140,000 from a spectrograph with 25,000 native resolving power), taken by using multiple exposures at widely different interferometer delays.

  2. Astronomical cooperation

    NASA Image and Video Library

    2017-02-20

    The events surrounding the Big Bang were so cataclysmic that they left an indelible imprint on the fabric of the cosmos. We can detect these scars today by observing the oldest light in the Universe. As it was created nearly 14 billion years ago, this light — which exists now as weak microwave radiation and is thus named the cosmic microwave background (CMB) — has now expanded to permeate the entire cosmos, filling it with detectable photons. The CMB can be used to probe the cosmos via something known as the Sunyaev-Zel’dovich (SZ) effect, which was first observed over 30 years ago. We detect the CMB here on Earth when its constituent microwave photons travel to us through space. On their journey to us, they can pass through galaxy clusters that contain high-energy electrons. These electrons give the photons a tiny boost of energy. Detecting these boosted photons through our telescopes is challenging but important — they can help astronomers to understand some of the fundamental properties of the Universe, such as the location and distribution of dense galaxy clusters. The NASA/ESA Hubble Space Telescope observed one of most massive known galaxy clusters, RX J1347.5–1145, seen in this Picture of the Week, as part of the Cluster Lensing And Supernova survey with Hubble (CLASH). This observation of the cluster, 5 billion light-years from Earth, helped the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to study the cosmic microwave background using the thermal Sunyaev-Zel’dovich effect. The observations made with ALMA are visible as the blue-purple hues. Links ESO Picture of the Week RX J1347.5–1145 seen by Hubble only

  3. Compact low resolution spectrograph, an imaging and long slit spectrograph for robotic telescopes.

    PubMed

    Rabaza, O; Jelinek, M; Castro-Tirado, A J; Cunniffe, R; Zeman, J; Hudec, R; Sabau-Graziati, L; Ruedas-Sánchez, J

    2013-11-01

    The COmpact LOw REsolution Spectrograph (COLORES) is a compact and lightweight (13 kg) f/8 imaging spectrograph designed for robotic telescopes, now installed and operating on the TELMA, a rapid-slewing 60 cm telescope of the BOOTES-2 observatory in Málaga (Spain). COLORES is a multi-mode instrument that enables the observer to seamlessly switch between low-dispersion spectroscopy and direct imaging modes during an observation. In this paper, we describe the instrument and its development, from the initial scientific requirements through the optical design process to final configuration with theoretical performance calculations. The mechanical and electronic design is described, methods of calibration are discussed and early laboratory and scientific results are shown.

  4. Compact low resolution spectrograph, an imaging and long slit spectrograph for robotic telescopes

    SciTech Connect

    Rabaza, O.; Zeman, J.; Hudec, R.; Sabau-Graziati, L.

    2013-11-15

    The COmpact LOw REsolution Spectrograph (COLORES) is a compact and lightweight (13 kg) f/8 imaging spectrograph designed for robotic telescopes, now installed and operating on the TELMA, a rapid-slewing 60 cm telescope of the BOOTES-2 observatory in Málaga (Spain). COLORES is a multi-mode instrument that enables the observer to seamlessly switch between low-dispersion spectroscopy and direct imaging modes during an observation. In this paper, we describe the instrument and its development, from the initial scientific requirements through the optical design process to final configuration with theoretical performance calculations. The mechanical and electronic design is described, methods of calibration are discussed and early laboratory and scientific results are shown.

  5. Compact low resolution spectrograph, an imaging and long slit spectrograph for robotic telescopes

    NASA Astrophysics Data System (ADS)

    Rabaza, O.; Jelinek, M.; Castro-Tirado, A. J.; Cunniffe, R.; Zeman, J.; Hudec, R.; Sabau-Graziati, L.; Ruedas-Sánchez, J.

    2013-11-01

    The COmpact LOw REsolution Spectrograph (COLORES) is a compact and lightweight (13 kg) f/8 imaging spectrograph designed for robotic telescopes, now installed and operating on the TELMA, a rapid-slewing 60 cm telescope of the BOOTES-2 observatory in Málaga (Spain). COLORES is a multi-mode instrument that enables the observer to seamlessly switch between low-dispersion spectroscopy and direct imaging modes during an observation. In this paper, we describe the instrument and its development, from the initial scientific requirements through the optical design process to final configuration with theoretical performance calculations. The mechanical and electronic design is described, methods of calibration are discussed and early laboratory and scientific results are shown.

  6. Current and Future Capabilities of the 74-inch Telescope of Kottamia Astronomical Observatory in Egypt

    NASA Astrophysics Data System (ADS)

    Azzam, Y. A.; Ali, G. B.; Ismail, H. A.; Haroon, A.; Selim, I.

    In this paper, we are going to introduce the Kottamia Astronomical Observatory, KAO, to the astronomical community. The current status of the telescope together with the available instrumentations is described. An upgrade stage including a new optical system and a computer controlling of both the telescope and dome are achieved. The specifications of a set of CCD cameras for direct imaging and spectroscopy are given. A grating spectrograph is recently gifted to KAO from Okayama Astrophysical Observatory, OAO, of the National Astronomical Observatories in Japan. This spectrograph is successfully tested and installed at the F/18 Cassegrain focus of the KAO 74" telescope.

  7. Frequency Combs for Astronomical Applications

    NASA Astrophysics Data System (ADS)

    Wu, Yuanjie

    2017-09-01

    "Laser frequency combs (LFCs) have found their way from laboratory spectroscopy into astronomy to serve as calibrators for spectrographs. We introduce the basic concepts of frequency combs and how they are used for astronomy. We present the results from test campaigns on HARPS, especially our last campaign in April 2015, when we permanently installed the LFC for HARPS and brought another LFC there for testing. Some lessons are learned from HARPS results for ESPRESSO. The ESPRESSO LFC in under building in Menlo and the laboratory characterization is showed."

  8. A new fiber slit assembly for the FOCES spectrograph

    NASA Astrophysics Data System (ADS)

    Kellermann, Hanna; Grupp, Frank; Brucalassi, Anna; Lang-Bardl, Florian; Franik, Christian; Hopp, Ulrich; Bender, Ralf

    2015-09-01

    After successful operation at the Calar Alto telescope until 2009, and extensive lab tests at the Munich University Observatory the high resolution Échelle spectrograph FOCES (Fiber Optics Cassegrain Échelle Spectrograph) is now about to be reinstalled at the 2 m Wendelstein Observatory in the German Alps. For this new phase of operation FOCES will be equipped with new components that will improve time stability and wavelength calibration. With these modifications FOCES will meet the requirements for performing precision radial velocity measurements on a competitive level. One of the key features of the upgraded spectrograph is the new calibration system, which uses a laser frequency comb as reference light source. Another aspect is the possibility to perform simultaneous wavelength calibration, while recording science data. For this purpose a new 4-fiber slit has been developed, which opens up the possibility to feed light from different sources at the same time through the entrance slit of the spectrograph. We present a detailed characterization of this new device, based on the results of extensive lab tests performed at the Munich University Observatory.

  9. The BigBOSS spectrograph

    NASA Astrophysics Data System (ADS)

    Jelinsky, Patrick; Bebek, Chris; Besuner, Robert; Carton, Pierre-Henri; Edelstein, Jerry; Lampton, Michael; Levi, Michael E.; Poppett, Claire; Prieto, Eric; Schlegel, David; Sholl, Michael

    2012-09-01

    BigBOSS is a proposed ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a 14,000 square degree galaxy and quasi-stellar object redshift survey. It consists of a 5,000- fiber-positioner focal plane feeding the spectrographs. The optical fibers are separated into ten 500 fiber slit heads at the entrance of ten identical spectrographs in a thermally insulated room. Each of the ten spectrographs has a spectral resolution (λ/Δλ) between 1500 and 4000 over a wavelength range from 360 - 980 nm. Each spectrograph uses two dichroic beam splitters to separate the spectrograph into three arms. It uses volume phase holographic (VPH) gratings for high efficiency and compactness. Each arm uses a 4096x4096 15 μm pixel charge coupled device (CCD) for the detector. We describe the requirements and current design of the BigBOSS spectrograph. Design trades (e.g. refractive versus reflective) and manufacturability are also discussed.

  10. The spectrograph units for the HARMONI integral field spectrograph

    NASA Astrophysics Data System (ADS)

    O'Brien, Kieran; Allen, Jamie R.; Lynn, James D.; Thatte, Niranjan A.; Bryson, Ian; Clarke, Fraser; Schnetler, Hermine; Tecza, Matthias

    2014-08-01

    The spectrograph sub-system is responsible for dispersing the light from the slicer with the required spectral resolving power and imaging the spectra on to a detector. Each image slicer creates a single exit slit feeding a single spectrograph unit containing visible (VIS) and infrared (IR) cameras. The four HARMONI slicers in total create four exit slits, feeding four spectrograph units comprising of collimators, dispersers, and cameras. The focal plane of each camera contains a mosaic of two 4Kx4K detectors, leading to 8K pixels along the length of the slit. The HARMONI wavelength range (0.43 μm to 2.45 μm) splits into a visible and a near-infrared wavelength range with a transition wavelength at 0.8 μm. The optical design of HARMONI up to the dispersers is fully reflective and therefore the pre-optics and IFU subsystems, as well the spectrograph collimator, can be used for both the visible and near-infrared wavelength range. Only the dispersers and the spectrograph cameras are different for the visible and near infrared spectral ranges. To not duplicate sub-systems unnecessarily the wavelength split in the spectrograph is realised by inserting a dichroic in the collimated beam before the disperser to either direct the light towards the visible disperser and camera, or let it pass toward the near-infrared disperser and camera. In contrast to the Phase A study all of HARMONI spectrograph unit will have both visible and near infrared disperser and cameras.

  11. Design and Capabilities of the AAT/HERMES Spectrograph

    NASA Astrophysics Data System (ADS)

    de Silva, G. M.; Heijmans, J.; Gers, L.; Zucker, D.; Aao Hermes Team

    2012-08-01

    The High Efficiency and Resolution Multi-Element spectrograph (HERMES) currently under construction at the Australian Astronomical Observatory will be the next major instrument for the Anglo-Australian Telescope. It will provide a unique and powerful new facility for multi-object spectroscopy. HERMES uses the 2dF fibre positioning system to provide up to 392 multiplex capability over a 2 degree field of view. The spectrograph design includes 4 wavelength channels, each with VPH-gratings providing a nominal spectral resolving power of 28,000 and a high-resolution mode of 50,000. The initial wavelength channels are tailored for determining a large range of chemical elements suitable for chemical tagging, but allow for grating upgrades reconfigurable between 370 - 1000 nm. An overview of the project and expected performance based on the HERMES simulated data is presented.

  12. 4MOST low-resolution spectrograph: design and performances

    NASA Astrophysics Data System (ADS)

    Laurent, F.; Kosmalski, Johan; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Migniau, Jean-Emmanuel; Pécontal, Arlette; Richard, Johan; Barden, Samuel C.; Bellido-Tirado, Olga; Frey, Steffen; Saviauk, Allar

    2016-08-01

    4MOST, the 4m Multi Object Spectroscopic Telescope, is an upcoming optical, fibre-fed, MOS facility for the VISTA telescope at ESO's Paranal Observatory in Chile. Its main science drivers are in the fields of galactic archeology, highenergy physics, galaxy evolution and cosmology. The preliminary design of 4MOST features 2436 fibres split into lowresolution (1624 fibres, 370-950 nm, R > 4000) and high-resolution spectrographs (812 fibres, three arms, 44-69 nm coverage each, R >18000) with a fibre positioner and covering an hexagonal field of view of 4.1 deg2. The 4MOST consortium consists of several institutes in Europe and Australia under leadership of the Leibniz-Institut für Astrophysik, Potsdam (AIP). 4MOST is currently in its Preliminary Design Phase with an expected start of science operations in 2021. Two third of fibres go to two Low Resolution Spectrographs with three channels per spectrograph. Each low resolution spectrograph is composed of 812 scientific and 10 calibration fibres using 85μm core fibres at f/3, a 200mm beam for an off-axis collimator associated to its Schmidt corrector, 3 arms with f/1.73 cameras and standard 6k x 6k 15μm pixel detectors. CRAL has the responsibility of the Low Resolution Spectrographs. In this paper, the optical design and performances of 4MOST Low Resolution Spectrograph designed for 4MOST PDR in June, 2016 will be presented. Special emphasis will be put on the Low Resolution Spectrograph system budget and performance analysis.

  13. Astronomical Institute of Athens

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Astronomical Institute of Athens is the oldest research institute of modern Greece (it faces the Parthenon). The Astronomical Institute (AI) of the National Observatory of Athens (NOA) started its observational projects in 1847. The modern computer and research center are housed at the Penteli Astronomical Station with major projects and international collaborations focused on extragalactic ...

  14. LOTUS: a low-cost, ultraviolet spectrograph

    NASA Astrophysics Data System (ADS)

    Steele, I. A.; Marchant, J. M.; Jermak, H. E.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Fitzsimmons, A.; Jehin, E.; Jones, G.; Mottram, C. J.; Smith, R. J.; Snodgrass, C.; de Val-Borro, M.

    2016-08-01

    We describe the design, construction and commissioning of a simple, low-cost long-slit spectrograph for the Liverpool Telescope. The design is optimized for near-UV and visible wavelengths and uses all transmitting optics. It exploits the instrument focal plane field curvature to partially correct axial chromatic aberration. A stepped slit provides narrow (2.5 × 95 arcsec) and wide (5 × 25 arcsec) options that are optimized for spectral resolution and flux calibration, respectively. On sky testing shows a wavelength range of 3200-6300 Å with a peak system throughput (including detector quantum efficiency) of 15 per cent and wavelength dependent spectral resolution of R = 225-430. By repeated observations of the symbiotic emission line star AG Peg, we demonstrate the wavelength stability of the system is <2 Å rms and is limited by the positioning of the object in the slit. The spectrograph is now in routine operation monitoring the activity of comet 67P/Churyumov-Gerasimenko during its current post-perihelion apparition.

  15. Radioastronomy at the National Astronomical Observatory of Colombia

    NASA Astrophysics Data System (ADS)

    Guevara Gómez, J. C.; Calvo-Mozo, B.; Martinez Oliveros, J. C.

    2015-12-01

    Colombia is located in the northern tip of South America close to the amazon rain forest. This makes astronomical observations in the visible range very challenging, as cloud coverage is relatively high. Hence, radio astronomy becomes a natural and good choice. We present the design, characterization and first results of the Observatorio Astronomico Nacional solar radio spectrograph. This instrument is a Log-Periodic Dipole Array Antenna (LPDA) working between 100 MHz and 1 GHz optimized for solar observations. The radio spectrograph is a working prototype for a more ambitious solar radio interferometer, that will be the first instrument of this kind in Colombia.

  16. Optical Comb from a Whispering Gallery Mode Resonator for Spectroscopy and Astronomy Instruments Calibration

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nam; Thompson, Robert J.

    2012-01-01

    The most accurate astronomical data is available from space-based observations that are not impeded by the Earth's atmosphere. Such measurements may require spectral samples taken as long as decades apart, with the 1 cm/s velocity precision integrated over a broad wavelength range. This raises the requirements specifically for instruments used in astrophysics research missions -- their stringent wavelength resolution and accuracy must be maintained over years and possibly decades. Therefore, a stable and broadband optical calibration technique compatible with spaceflights becomes essential. The space-based spectroscopic instruments need to be calibrated in situ, which puts forth specific requirements to the calibration sources, mainly concerned with their mass, power consumption, and reliability. A high-precision, high-resolution reference wavelength comb source for astronomical and astrophysics spectroscopic observations has been developed that is deployable in space. The optical comb will be used for wavelength calibrations of spectrographs and will enable Doppler measurements to better than 10 cm/s precision, one hundred times better than the current state-of-the- art.

  17. Fibre positioning algorithms for the WEAVE spectrograph

    NASA Astrophysics Data System (ADS)

    Terrett, David L.; Lewis, Ian J.; Dalton, Gavin; Abrams, Don Carlos; Aguerri, J. Alfonso L.; Bonifacio, Piercarlo; Middleton, Kevin; Trager, Scott C.

    2014-07-01

    WEAVE is the next-generation wide-field optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. It is a multi-object "pick and place" fibre fed spectrograph with more than one thousand fibres, similar in concept to the Australian Astronomical Observatory's 2dF1 instrument with two observing plates, one of which is observing the sky while other is being reconfigured by a robotic fibre positioner. It will be capable of acquiring more than 10000 star or galaxy spectra a night. The WEAVE positioner concept uses two robots working in tandem in order to reconfigure a fully populated field within the expected 1 hour dwell-time for the instrument (a good match between the required exposure times and the limit of validity for a given configuration due to the effects of differential refraction). This presents additional constraints and complications for the software that determines the optimal path from one configuration to the next, particularly given the large number of fibre crossings implied by the 1000 fibre multiplex. This paper describes the algorithms and programming techniques used in the prototype implementations of the field configuration tool and the fibre positioner robot controller developed to support the detailed design of WEAVE.

  18. Texas echelon cross echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Lacy, John H.; Richter, Matthew J.; Yu, Wanglong; Basso, Bianca S.

    1998-08-01

    A new mid-IR spectrograph, the Texas Echelon Cross Echelle Spectrograph (TEXES) is under construction. The primary motivation for TEXES is to observe interstellar molecules at very high resolution. TEXES will operate at 7-25 micrometers wavelength with three spectrographic modes: a high resolution cross-dispersed mode, with R approximately equals 100,000, a mid-resolution long-slit mode, with R approximately equals 14,000, and a low resolution long-slit mode, with R approximately equals 2000. In hi-res mode, the primary disperser is a 36 inch long, R10 grating with a 7 mm groove spacing. The echelon is cross-dispersed with a 7 in long R2 echelle. In mid-res mode, the echelon is by-passed with an Offner relay, and the echelle is used by itself. In lo-res mode, a first-order grating is inserted over the echelle. For initial test, TEXES will use a Hughes Aircraft 20 X 64 pixel Si:As impurity-band array, which covers only two echelon orders. It will later be replaced with a 256 X 256 pixel array, which will Nyquist sample approximately 10 orders. The spectrograph has been assembled and tested with a partially complete echelon, demonstrating the soundness of the design. When we began this project, we were unable to find a vendor capable of machining or ruling a diffraction grating with the very coarse ruling required. Consequently, we attempted to hand-fabricate the echelon. We have not succeeded in assembling the echelon with the required precision, missing by about a factor of two. Fortunately, Hyperfine, Inc. is now capable of diamond machining the echelon. We are purchasing a machined echelon, and hope to complete the spectrograph by the end of summer 1998.

  19. Armenian Astronomical Heritage

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2014-10-01

    A review is given on the Armenian Astronomical Heritage from ancient times to nowadays. Armenian ancient astronomy includes the division of the skies into constellations, rock art, ancient Armenian calendar, ancient observatories (such as Metsamor and Karahunge), records of astronomical events (such as Halley's Comet recorded on Tigranes the Great's coin), ancient names of celestial bodies (planets, stars, constellations), etc. The Medieval Armenian astronomy includes two more calendars, Anania Shirakatsi's scientific heritage, the record of 1054 Supernova, sky maps by Luca Vanandetsi and Mkhitar Sebastatsi, etc. Modern Armenian astronomical heritage first of all consists of the famous Byurakan Astrophysical Observatory founded in 1946 by Viktor Ambartsumian, as well as Yerevan Astronomical Observatory, Armenian Astronomical Society, Armenian Virtual Observatory, Yerevan State University Department of Astrophysics, Astrofizika journal, and brilliant young students who systematically win high positions at International Astronomical Olympiads.

  20. COBE Astronomical Databases

    NASA Astrophysics Data System (ADS)

    Freedman, I.; Raugh, A. C.; Cheng, E. S.

    A project to store and convert external astronomical survey maps to the Cosmic Background Explorer (COBE) spacecraft pixelization is described. Established software is reused in order to reduce development costs. The proposed packages and systems include the Image Reduction and Analysis Facility (IRAF), Interactive Data Language Astronomy Library (IDL), the FITSIO data transfer package and the Astronomical Image Processing System (AIPS). The software structure of the astronomical databases, projected conversion schemes, quality assurance procedures and outstanding problems will be discussed.

  1. Calibration beads containing luminescent lanthanide ion complexes

    EPA Science Inventory

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  2. Calibration beads containing luminescent lanthanide ion complexes

    EPA Science Inventory

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  3. The development of WIFIS: a wide integral field infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Sivanandam, Suresh; Chou, Richard C. Y.; Moon, Dae-Sik; Ma, Ke; Millar-Blanchaer, Maxwell; Eikenberry, Stephen S.; Chun, Moo-Young; Kim, Sang Chul; Raines, Steven N.; Eisner, Joshua

    2012-09-01

    We present the current results from the development of a wide integral field infrared spectrograph (WIFIS). WIFIS offers an unprecedented combination of etendue and spectral resolving power for seeing-limited, integral field observations in the 0.9 - 1.8 μm range and is most sensitive in the 0.9 - 1.35 μ,m range. Its optical design consists of front-end re-imaging optics, an all-reflective image slicer-type, integral field unit (IFU) called FISICA, and a long-slit grating spectrograph back-end that is coupled with a HAWAII 2RG focal plane array. The full wavelength range is achieved by selecting between two different gratings. By virtue of its re-imaging optics, the spectrograph is quite versatile and can be used at multiple telescopes. The size of its field-of-view is unrivalled by other similar spectrographs, offering a 4.511x 1211 integral field at a 10-meter class telescope (or 2011 x 5011 at a 2.3-meter telescope). The use of WIFIS will be crucial in astronomical problems which require wide-field, two-dimensional spectroscopy such as the study of merging galaxies at moderate redshift and nearby star/planet-forming regions and supernova remnants. We discuss the final optical design of WIFIS, and its predicted on-sky performance on two reference telescope platforms: the 2.3-m Steward Bok telescope and the 10.4-m Gran Telescopio Canarias. We also present the results from our laboratory characterization of FISICA. IFU properties such as magnification, field-mapping, and slit width along the entire slit length were measured by our tests. The construction and testing of WIFIS is expected to be completed by early 2013. We plan to commission the instrument at the 2.3-m Steward Bok telescope at Kitt Peak, USA in Spring 2013.

  4. Nicolaus Copernicus Astronomical Center

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nicolaus Copernicus Astronomical Center is the largest astronomical institution in Poland, located in Warsaw and founded in 1956. At present it is a government-funded research institute supervised by the Polish Academy of Sciences and licensed by the government of Poland to award PhD and doctor habilitatus degrees in astronomy and astrophysics. In September 1999 staff included 21 senior scientist...

  5. Queen Jadwiga Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Wszołek, Bogdan

    2016-06-01

    Private Astronomical Observatory was open in June 2015. The main aim of the observatory is to provide and share astronomical and space knowledge. It collects research instruments and expands didactic infrastructure. Continuously, there is an open call for specialists to join the Honorary Staff of the Observatory.

  6. Astronomical Software Directory Service

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; Payne, H.; Hayes, J.

    1998-01-01

    This is the final report on the development of the Astronomical Software Directory Service (ASDS), a distributable, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URL's indexed for full-text searching.

  7. EGRAM- ECHELLE SPECTROGRAPH DESIGN AID

    NASA Technical Reports Server (NTRS)

    Dantzler, A. A.

    1994-01-01

    EGRAM aids in the design of spectrographic systems that utilize an echelle-first order cross disperser combination. This optical combination causes a two dimensional echellogram to fall on a detector. EGRAM describes the echellogram with enough detail to allow the user to effectively judge the feasibility of the spectrograph's design. By iteratively altering system parameters, the desired echellogram can be achieved without making a physical model. EGRAM calculates system parameters which are accurate to the first order and compare favorably to results from ray tracing techniques. The spectrographic system modelled by EGRAM consists of an entrance aperture, collimator, echelle, cross dispersion grating, focusing options, and a detector. The system is assumed to be free of aberrations and the echelle, cross disperser, and detector should be planar. The EGRAM program is menu driven and has a HELP facility. The user is prompted for information such as minimum and maximum wavelengths, slit dimensions, ruling frequencies, detector geometry, and angle of incidence. EGRAM calculates the resolving power and range of order numbers covered by the echellogram. A numerical map is also produced. This tabulates the order number, slit bandpass, and high/middle/low wavelengths. EGRAM can also compute the centroid coordinates of a specific wavelength and order (or vice versa). EGRAM is written for interactive execution and is written in Microsoft BASIC A. It has been implemented on an IBM PC series computer operating under DOS. EGRAM was developed in 1985.

  8. EGRAM- ECHELLE SPECTROGRAPH DESIGN AID

    NASA Technical Reports Server (NTRS)

    Dantzler, A. A.

    1994-01-01

    EGRAM aids in the design of spectrographic systems that utilize an echelle-first order cross disperser combination. This optical combination causes a two dimensional echellogram to fall on a detector. EGRAM describes the echellogram with enough detail to allow the user to effectively judge the feasibility of the spectrograph's design. By iteratively altering system parameters, the desired echellogram can be achieved without making a physical model. EGRAM calculates system parameters which are accurate to the first order and compare favorably to results from ray tracing techniques. The spectrographic system modelled by EGRAM consists of an entrance aperture, collimator, echelle, cross dispersion grating, focusing options, and a detector. The system is assumed to be free of aberrations and the echelle, cross disperser, and detector should be planar. The EGRAM program is menu driven and has a HELP facility. The user is prompted for information such as minimum and maximum wavelengths, slit dimensions, ruling frequencies, detector geometry, and angle of incidence. EGRAM calculates the resolving power and range of order numbers covered by the echellogram. A numerical map is also produced. This tabulates the order number, slit bandpass, and high/middle/low wavelengths. EGRAM can also compute the centroid coordinates of a specific wavelength and order (or vice versa). EGRAM is written for interactive execution and is written in Microsoft BASIC A. It has been implemented on an IBM PC series computer operating under DOS. EGRAM was developed in 1985.

  9. Astronomical Equipment for Amateurs

    NASA Astrophysics Data System (ADS)

    Mobberley, Martin

    Telescopes - refractors and reflectors - are the main items of equipment used by almost every amateur astronomer. The purpose of astronomical telescopes is to collect and focus more light than the human eye can, forming an image that can be viewed, photographed, or analysed. Astronomical Equipment for Amateurs makes buying and using both telescopes and their ancillary instruments easy for astronomers of all abilities. It begins by looking at the advantages and disadvantages of the basic types of refractors, reflectors, mountings and accessories. Observation techniques are also included, along with the use of filters, (colour, anti-pollution and nebula), types of photography (piggy-back, prime focus and eyepiece projection), and also CCD imaging (including types of CCD camera and their advantages and disadvantages compared to photography). Martin Mobberley provides a fascinating insight into astronomical software.

  10. The Astronomical League

    NASA Astrophysics Data System (ADS)

    Stevens, J. A.; Stevens, B. L.

    2000-10-01

    Founded over fifty years ago, the League is the largest general astronomy society in the world. It is a recognized non-profit, educational organization, promoting the science of astronomy. This includes astronomical education, research, individual observing of the heavens and coordination between the amateur and professional astronomy communities. The Astronomical League publishes a quarterly newsletter, the "Reflector", which details amateur activities and amateur collaboration with professional astronomers. The League's Observing Clubs hone the skills of the amateur astronomer in using their telescopes. These clubs provide awards to encourge observing and learning the sky. More general awards are presented to encourage amateur astronomy and the science of astronomy. These include the National Young Astronomer Award, amd the Horkheimer Planetary Imaging Award. They also sponsor conventions on both the National and Regional levels. This year's national is in Ventura, California, next year, near Washington, D.C.

  11. Russian Astronomical Data Resources

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.; Kovaleva, D. A.; Kilpio, E. Yu.

    2006-08-01

    The ultimate goal of the RVO initiative is to integrate resources of astronomical data accumulated in Russian observatories and institutions, and to provide Russian data to the rest of the world. We collect information about all available Russian and some former Soviet Union (fSU) astronomical data resources, classify them and register them in the registries of other VO projects. A new version of the list of Russian and fSU astronomical resources is recently compiled and presented here. The original resources that contain astronomical data obtained by Russian and fSU astronomers are listed by kind of object they treat (Sun, Solar System, Stars, Stellar Systems, Radioastronomy, Cosmic Rays, Mixed Data Archives). This list of resources (as well as other information on RVO) can be found on the RVO web page.

  12. The COS Calibration Pipeline

    NASA Astrophysics Data System (ADS)

    Hodge, Philip E.; Kaiser, M. E.; Keyes, C. D.; Ake, T. B.; Aloisi, A.; Friedman, S. D.; Oliveira, C. M.; Shaw, B.; Sahnow, D. J.; Penton, S. V.; Froning, C. S.; Beland, S.; Osterman, S.; Green, J.; COS/STIS STScI Team; IDT, COS

    2008-05-01

    The Cosmic Origins Spectrograph, COS, (Green, J, et al., 2000, Proc SPIE, 4013) will be installed in the Hubble Space Telescope (HST) during the next servicing mission. This will be the most sensitive ultraviolet spectrograph ever flown aboard HST. The program (CALCOS) for pipeline calibration of HST/COS data has been developed by the Space Telescope Science Institute. As with other HST pipelines, CALCOS uses an association table to list the data files to be included, and it employs header keywords to specify the calibration steps to be performed and the reference files to be used. COS includes both a cross delay line detector for the far ultraviolet (FUV) and a MAMA detector for the near ultraviolet (NUV). CALCOS uses a common structure for both channels, but the specific calibration steps differ. The calibration steps include pulse-height filtering and geometric correction for FUV, and flat-field, deadtime, and Doppler correction for both detectors. A 1-D spectrum will be extracted and flux calibrated. Data will normally be taken in TIME-TAG mode, recording the time and location of each detected photon, although ACCUM mode will also be supported. The wavelength calibration uses an on-board spectral line lamp. To enable precise wavelength calibration, default operations will simultaneously record the science target and lamp spectrum by executing brief (tag-flash) lamp exposures at least once per external target exposure.

  13. Toward an Internally Consistent Astronomical Distance Scale

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Courbin, Frédéric; Martínez-Vázquez, Clara E.; Monelli, Matteo; Oguri, Masamune; Suyu, Sherry H.

    2017-08-01

    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.

  14. SAMI: Sydney-AAO Multi-object Integral field spectrograph pipeline

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Green, A. W.; Fogarty, L. M. R.; Sharp, R.; Nielsen, J.; Konstantopoulos, I.; Taylor, E. N.; Scott, N.; Cortese, L.; Richards, S. N.; Croom, S.; Owers, M. S.; Bauer, A. E.; Sweet, S. M.; Bryant, J. J.

    2014-07-01

    The SAMI (Sydney-AAO Multi-object Integral field spectrograph) pipeline reduces data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) for the SAMI Galaxy Survey. The python code organizes SAMI data and, along with the AAO 2dfdr package, carries out all steps in the data reduction, from raw data to fully calibrated datacubes. The principal steps are: data management, use of 2dfdr to produce row-stacked spectra, flux calibration, correction for telluric absorption, removal of atmospheric dispersion, alignment of dithered exposures, and drizzling onto a regular output grid. Variance and covariance information is tracked throughout the pipeline. Some quality control routines are also included.

  15. The integral field spectrograph for the Gemini planet imager

    NASA Astrophysics Data System (ADS)

    Larkin, James E.; Chilcote, Jeffrey K.; Aliado, Theodore; Bauman, Brian J.; Brims, George; Canfield, John M.; Cardwell, Andrew; Dillon, Daren; Doyon, René; Dunn, Jennifer; Fitzgerald, Michael P.; Graham, James R.; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Ingraham, Patrick; Johnson, Christopher A.; Kress, Evan; Konopacky, Quinn M.; Macintosh, Bruce A.; Magnone, Kenneth G.; Maire, Jerome; McLean, Ian S.; Palmer, David; Perrin, Marshall D.; Quiroz, Carlos; Rantakyrö, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Serio, Andrew; Thibault, Simon; Thomas, Sandrine J.; Vallee, Philippe; Weiss, Jason L.

    2014-07-01

    The Gemini Planet Imager (GPI) is a complex optical system designed to directly detect the self-emission of young planets within two arcseconds of their host stars. After suppressing the starlight with an advanced AO system and apodized coronagraph, the dominant residual contamination in the focal plane are speckles from the atmosphere and optical surfaces. Since speckles are diffractive in nature their positions in the field are strongly wavelength dependent, while an actual companion planet will remain at fixed separation. By comparing multiple images at different wavelengths taken simultaneously, we can freeze the speckle pattern and extract the planet light adding an order of magnitude of contrast. To achieve a bandpass of 20%, sufficient to perform speckle suppression, and to observe the entire two arcsecond field of view at diffraction limited sampling, we designed and built an integral field spectrograph with extremely low wavefront error and almost no chromatic aberration. The spectrograph is fully cryogenic and operates in the wavelength range 1 to 2.4 microns with five selectable filters. A prism is used to produce a spectral resolution of 45 in the primary detection band and maintain high throughput. Based on the OSIRIS spectrograph at Keck, we selected to use a lenslet-based spectrograph to achieve an rms wavefront error of approximately 25 nm. Over 36,000 spectra are taken simultaneously and reassembled into image cubes that have roughly 192x192 spatial elements and contain between 11 and 20 spectral channels. The primary dispersion prism can be replaced with a Wollaston prism for dual polarization measurements. The spectrograph also has a pupil-viewing mode for alignment and calibration.

  16. The Astronomers' Data Manifesto

    NASA Astrophysics Data System (ADS)

    Norris, R. P.

    2006-08-01

    A draft manifesto is presented for discussion. The manifesto sets out guidelines to which the astronomical community should aspire to maximise the rate and cost-effectiveness of scientific discovery. The challenges are not underestimated, but can still be overcome if astronomers, observatories, journals, data centres, and the Virtual Observatory Alliance work together to overcome the hurdles. The key points of the manifesto are: 1. All major tables, images, and spectra published in journals should appear in the astronomical data centres. 2. All data obtained with publicly-funded observatories should, after appropriate proprietary periods, be placed in the public domain. 3. In any new major astronomical construction project, the data processing, storage, migration, and management requirements should be built in at an early stage of the project plan, and costed along with other parts of the project. 4. Astronomers in all countries should have the same access to astronomical data and information. 5. Legacy astronomical data can be valuable, and high-priority legacy data should be preserved and stored in digital form in the data centres. 6. The IAU should work with other international organisations to achieve our common goals and learn from our colleagues in other fields.

  17. Lunar orbital photography of astronomical phenomena.

    NASA Technical Reports Server (NTRS)

    Mercer, R. D.; Dunkelman, L.; Ross, C. L.; Worden, A.

    1972-01-01

    This paper reports further progress on photography of faint astronomical and geophysical phenomena accomplished during the recent Apollo missions. Command module pilots have been able to photograph such astronomical objects as the solar corona, zodiacal light-corona transition region, lunar libration region, and portions of the Milky Way. The methods utilized for calibration of the film by adaptation of the High Altitude Observatory sensitometer are discussed. Kodak 2485 high-speed recording film was used in both 35-mm and 70-mm formats. The cameras used were Nikon f/1.2 55-mm focal length and Hasselblad f/2.8 80-mm focal length. Preflight and postflight calibration exposures were included on both the flight and control films, corresponding to luminances extending from the inner solar corona to as faint as 1/10 of the luminance of the light of the night sky. The photographs obtained from unique vantage points available during lunar orbit are discussed.

  18. An astronomical murder?

    NASA Astrophysics Data System (ADS)

    Belenkiy, Ari

    2010-04-01

    Ari Belenkiy examines the murder of Hypatia of Alexandria, wondering whether problems with astronomical observations and the date of Easter led to her becoming a casualty of fifth-century political intrigue.

  19. Decoding Astronomical Concepts

    ERIC Educational Resources Information Center

    Durisen, Richard H.; Pilachowski, Catherine A.

    2004-01-01

    Two astronomy professors, using the Decoding the Disciplines process, help their students use abstract theories to analyze light and to visualize the enormous scale of astronomical concepts. (Contains 5 figures.)

  20. Improved ground calibration results from Southwest Research Institute Ultraviolet Radiometric Calibration Facility (UV-RCF)

    NASA Astrophysics Data System (ADS)

    Davis, Michael W.; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.; Slater, David C.; Stern, S. Alan; Versteeg, Maarten H.

    2014-07-01

    Four compact planetary ultraviolet spectrographs have been built by Southwest Research Institute and successfully operated on different planetary missions. These spectrographs underwent a series of ground radiometric calibrations before delivery to their respective spacecraft. In three of the four cases, the in-flight measured sensitivity was approximately 50% lower than the ground measurement. Recent tests in the Southwest Research Institute Ultraviolet Radiometric Calibration Facility (UV-RCF) explain the discrepancy between ground and flight results. Revised ground calibration results are presented for the Rosetta-Alice, New Horizons-Alice, the Lunar Reconnaissance Orbiter Lyman- Alpha Mapping Project, and Juno-Ultraviolet Spectrograph (UVS) and are then compared to the original ground and flight calibrations. The improved understanding of the calibration system reported here will result in improved ground calibration of the upcoming Jupiter Icy Moons Explorer (JUICE)-UVS.

  1. Thinking Like an Astronomer

    NASA Astrophysics Data System (ADS)

    Gorman, Michael E.

    2006-12-01

    Astronomers have to gain three types of knowledge: information, skills and wisdom. Amateurs can gain aspects of this knowledge as well, but they are not subjected to the kind of peer review experienced by professionals. Astronomers increasingly collaborate with other disciplines on the development of new instruments, which calls for interactional expertise. Examples are drawn from the history of astronomy, from the own experience as an amateur, and from recent developments like the Hub-ble Space Telescope.

  2. Multi-Object Spectroscopy with the James Webb Space Telescope’s Near Infrared Spectrograph: Observing Resolved Stellar Populations

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Karakla, Diane M.; Beck, Tracy

    2015-08-01

    The James Webb Space Telescope’s (JWST) Near Infrared Spectrograph (NIRSpec) will provide a multi-object spectroscopy mode through the four Micro-Shutter Arrays (MSAs). Each MSA is a grid of contiguous shutters that can be configured to form slits on more than 100 astronomical targets simultaneously. The combination of JWST’s sensitivity and superb resolution in the infrared and NIRSpec’s full wavelength coverage from 0.6 to 5 μm will open new parameter space for studies of galaxies and resolved stellar populations alike. We describe a NIRSpec MSA observing scenario for obtaining spectroscopy of individual stars in an external galaxy, and investigate the technical challenges posed by this scenario. We examine the multiplexing capability of the MSA as a function of the possible MSA configuration design choices, and investigate the primary sources of error in velocity measurements and the prospects for minimizing them. We give examples of how this and other use cases are guiding development of the NIRSpec user interfaces, including proposal planning and pipeline calibrations.

  3. The Cosmic Origins Spectrograph: NUV Imaging Performance

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul; Burgh, E.; Aloisi, A.; Keyes, C.; Sahnow, D.; Penton, S.; STScI COS Team; COS IDT Team

    2010-01-01

    The Cosmic Origins Spectrograph (COS) includes an NUV imaging mode, which is selected by means of the optical elements MIRRORA or MIRRORB. While the greatest use of this imaging capability is expected to be for target acquisition, science exposures may be obtained as well. COS NUV imaging (with MIRRORA) has specific advantages over other NUV imaging options available on HST, which renders it especially powerful for the purpose of spatially resolving faint, compact, and/or time-variable targets. It features the best spatial sampling available for any imaging mode on HST within its field of view of about 2 arcsec in radius, a much lower dark current rate than the NUV-MAMA detector aboard STIS, and no read noise or charge transfer inefficiency which hamper CCD observations of faint targets in the NUV. This paper reports on the on-orbit calibration of the COS NUV imaging modes, concentrating on accurate measurements of the point spread function, imaging quality, plate scale, photometric zeropoints, and throughput as functions of (a) measurement aperture size and (b) target location within the COS aperture.

  4. The upgraded WIYN bench spectrograph

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia M.; Bershady, Matthew A.; Willmarth, Daryl; Glaspey, John; Poczulp, Gary; Blanco, Dan; Britanik, Lana; McDougall, Eugene; Corson, Charles; Liang, Ming; Keyes, Joe; Jacoby, George

    2010-07-01

    We present the as-built design overview and post-installation performance of the upgraded WIYN Bench Spectrograph. This Bench is currently fed by either of the general-use multi-fiber instruments at the WIYN 3.5m telescope on Kitt Peak, the Hydra multi-object positioner, and the SparsePak integral field unit (IFU). It is very versatile, and can be configured to accommodate low-order, echelle, and volume phase holographic gratings. The overarching goal of the upgrade was to increase the average spectrograph throughput by ~60% while minimizing resolution loss (< 20%). In order to accomplish these goals, the project has had three major thrusts: (1) a new CCD was provided with a nearly constant 30% increase is throughput over 320-1000 nm; (2) two Volume Phase Holographic (VPH) gratings were delivered; and (3) installed a new all-refractive collimator that properly matches the output fiber irradiance (EE90) and optimizes pupil placement. Initial analysis of commissioning data indicates that the total throughput of the system has increased 50-70% using the 600 l/mm surface ruled grating, indicating that the upgrade has achieved its goal. Furthermore, it has been demonstrated that overall image resolution meets the requirement of <20% loss.

  5. Fibre positioning concept for the WEAVE spectrograph at the WHT

    NASA Astrophysics Data System (ADS)

    Lewis, Ian J.; Dalton, Gavin B.; Brock, Matthew; Gilbert, James; Abrams, Don C.; Aguerri, J. Alfonso L.; Bonifacio, Piercarlo; Middleton, Kevin; Trager, Scott C.

    2014-07-01

    WEAVE is the next-generation wide-field optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. It is a multi-object "pick and place" fibre fed spectrograph with more than one thousand fibres behind a new dedicated 2° prime focus corrector, This is similar in concept to the Australian Astronomical Observatory's 2dF instrument1 with two observing plates, one of which is observing the sky while other is being reconfigured by a robotic fibre positioner. It will be capable of acquiring more than 10000 star or galaxy spectra a night. The WEAVE positioner concept uses two robots working in tandem in order to reconfigure a fully populated field within the expected 1 hour dwell-time for the instrument (a good match between the required exposure times and the limit of validity for a given configuration due to the effects of differential refraction).

  6. A Portable Ultra-Stable Calibration Source for Precision RV Measurements in NIR

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Ge, J.; Wan, X.; Delgado, A.; Jakeman, H.

    2011-09-01

    In the next decade, astronomers are aiming at reaching 0.1 m/s RV precision, which will enable discoveries of Earth-like planets around solar-type stars. However, the RV precision is currently limited by stellar activity, the stability and bandwidth of RV calibration sources. We proposed to use an ultra-stable monolithic Michelson interferometer as an RV calibration source. This monolithic interferometer source has several advantages over the conventional RV calibration sources: (1), it produces sinusoidal spectral features which can be easily processed, unlike gas absorption cells or emission lamps, which spectral line distributions are extremely nonuniform; (2), it has a wide spectral coverage from visible to near infrared (NIR); (3), it is designed to be thermal-stable (thermally compensated) so that the thermal induced RV drift is very small; (4), it is also field compensated to ensure a high optical efficiency so that a spatially incoherent continuum light source is suitable for producing bright calibration light (unlike the faint ThAr emission lamp); (5). it is extremely compact ( 10x10x10 cm3) and low cost compared to the bulky (more than 1x1x1 m3) and extremely high cost laser frequency combs. With the help of the proposed RV calibration source, the search of exoplanets around M dwarfs or even L, T dwarfs can be extended to the NIR band. The predicted sub m/s RV calibration precision will enable the discovery of Earth-like planets in the habitable zone around M dwarfs. The proposed calibration source may be quite useful for calibrating future space instruments for possible space RV exoplanet searches in the IR region where RV measurements are free of contamination of the Earth's telluric lines, which is a serious issue for ground-based IR RV observations. We will present our latest results of the calibration source on its application for both Echelle spectrograph and the instrument adopting DFDI method.

  7. Fast camera objective designs for spectrograph of Mont Megantique telescope

    NASA Astrophysics Data System (ADS)

    Thibault, Simon; Wang, Min

    2004-02-01

    All-reflective optics is conventionally required for extended spectral region observations in astronomical spectrograph. But the spatial resolution is usually not good enough while the large-size CCD will be used for observation in all-reflective optics. In this paper, all-refractive optics has been investigated to design a fast (F/1.55) and wide angle camera objective for large spectral coverage, from UV to VIS and up to NIR, when a large-size CCD is used on the focal plane of the spectrograph of Mont Megantique telescope. The case of achromatic and apochromatic condition has been investigated for axial and lateral color controls. The new proposed solutions have been optimized from two to three different glass combinations in order to have higher throughputs for large spectral coverage, especially in UV region. The used components have been minimized to reduce the light inherent lost. The monochromatic aberrations have been corrected and controlled by using optimized lens bending and shapes to make the camera have the CCD pixel resolution. Ray tracing results displayed the good optical performance of the camera to cover from 350 nm to 1000 nm spectral region with high resolution. The broadband AR coating, enhanced on UV region, will be used on each surface of the lenses in the camera. Final throughputs for the designed camera has been estimated and given in the paper.

  8. CUBES: cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Bawden Macanhan, V.; Bristow, P.; Castilho, B.; Dekker, H.; Delabre, B.; Diaz, M.; Gneiding, C.; Kerber, F.; Kuntschner, H.; La Mura, G.; Maciel, W.; Meléndez, J.; Pasquini, L.; Pereira, C. B.; Petitjean, P.; Reiss, R.; Siqueira-Mello, C.; Smiljanic, R.; Vernet, J.

    2014-11-01

    CUBES is a high-efficiency, medium-resolution ( R˜20,000) ground based UV (300-400 nm) spectrograph, to be installed in the cassegrain focus of one of ESO's VLT unit telescopes in 2017/18. The CUBES project is a joint venture between ESO and IAG/USP, and LNA/MCTI. CUBES will provide access to a wealth of new and relevant information for stellar as well as extragalactic sources. Main science cases include the study of beryllium and heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range, as well as the study of active galactic nuclei and the quasar absorption lines. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will give a significant gain in sensitivity over existing ground based medium-high resolution spectrographs, enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project including the status, science cases and a discussion of the design options.

  9. Honeycomb: a concept for a programmable integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, Joss; McGrath, Andrew J.; Saunders, Will; Haynes, Roger; Gillingham, Peter

    2004-09-01

    An unsolved problem in astronomical instrumentation is an imaging integral field spectrograph where the user has the freedom to specify arbitrarily complex, contiguous or disjoint regions over the focal plane, rather than a contiguous rectangular field. We present a new concept to solve this problem. Our device allows the user to format the field of view with fibre bundles packed into arbitrary patterns. The field of view is segmented by a large N(N microlens array (e.g. N=1000). This element divides the wavefront into small beams which pass through a metal plate drilled with a grid of holes in the same format as the microlens array. On the reverse side of the grid, hexagonal blocks comprising 67 input fibres are plugged into position on the grid with a pair of sliding "croupier" sticks. The fibred blocks transport the light to the spectrograph. The blocks are held magnetically and the plugging ensures accurate and repeatable registration with respect to the microlens array. The grid plate is micromachined with baffled holes in order to ensure photometric uniformity over the field of view.

  10. 16 years of airglow measurement with astronomical facilities

    NASA Astrophysics Data System (ADS)

    Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Unterguggenberger, Stefanie; Jones, Amy; Proxauf, Bastian

    2017-04-01

    Observations taken with ground-based astronomical telescopes are affected by various airglow emission processes in the Earth's upper atmosphere. This chemiluminescent emission can be used to investigate the physical state of the meso- and the thermosphere. By applying a modified approach of techniques originally developed to characterise and remove these features from the astronomical spectra, which are not primarily taken for airglow studies, these spectra are suitable for airglow research. For our studies, we currently use data from two observing sites on both hemispheres for our studies: The European Southern Observatory operates four 8m telescopes at the Very Large Telescope (VLT) in the Chilean Atacama desert (24.6°S, 70.4°W). The 2.5m Sloan Digital Sky Survey telescope (SDSS) located in New Mexico/USA (32.8°N, 105.8°W) provides observations from the northern hemisphere. Each of these telescopes is equipped with several astronomical instruments. Among them are several spectrographs operating in the optical and near-IR regime with medium to high spectral resolution. Currently, we work on data from the following three spectrographs (1) UVES@VLT (Ultraviolet and Visual Echelle Spectrograph): This instrument provides spectra in the wavelength regime from 0.3 to 1.1μm in small spectral ranges. Its high resolving power (up to R˜110 000) allows a detailed study of oxygen (OI@557nm, OI@630nm), sodium (NaD@589nm), nitrogen (NI@520nm), and many OH bands. UVES has been in operation since 1999 providing the longest time series. (2) X-Shooter@VLT: This spectrograph is unique as it provides the whole wavelength range from 0.3 to 2.5μm at once with medium resolving power (R˜3 300 to 18 000, depending on the setup). This enables us to study the dependency of optical and near-IR airglow processes simultaneously, e.g. the OH bands. In addition, weak airglow continuum emission, e.g. arising from FeO and NiO can be studied. In operation since 2009, the data cover half a

  11. Field Raman spectrograph for environmental analysis

    SciTech Connect

    Haas, J.W. III; Forney, R.W.; Carrabba, M.M.

    1995-10-01

    This project entails the development of a compact raman spectrograph for field screening and monitoring of a wide variety of wastes, pollutants, and corrosion products in tanks, and environmental materials. The design of a fiber optic probe for use with the spectrograph is also discussed.

  12. Spectrographic Analysis and Patterns in Pronunciation.

    ERIC Educational Resources Information Center

    Molholt, Garry

    1990-01-01

    Examines how sound spectrographs provide students learning a second language direct, visual feedback that is more useful than instructors' comments on articulation. Shows spectrographs of words pronounced by native and non-native English speakers. Argues this real-time acoustic analysis is less frustrating and more productive than traditional…

  13. Ultraviolet-visible spectrograph optics: ODIN project.

    PubMed

    Powell, I; Bewsher, A

    1995-10-01

    We describe one of the possible designs for the UV-visible spectrograph optics to be employed in the ODIN project. The spectrograph will be used in a future satellite mission for aeronomy observations and will image a column of atmosphere just above the Earth's surface onto a two-dimensional CCD array with the spatial and spectral content aligned orthogonal to one another.

  14. Theory of astronomical masers

    NASA Astrophysics Data System (ADS)

    Kylafis, Nikolaos D.

    The theory of astronomical masers is reviewed. As with laboratory masers, masing occurs when a transition between two energy levels of a molecule exhibits inverted populations. In order to present the basic concepts about masers, an idealized two-level system is used. The exact energy level structure is taken into account later on when the pumping of specific molecules is discussed. Unlike laboratory masers, where the radiation must be bounced between two mirrors to accumulate gain, the propagation of radiation in astronomical masers is a lot simpler. This is because astronomical masers are single-pass and broadband. Thus, the main theoretical effort has concentrated on inventing efficient mechanisms that produce population inversion. Specific pumping mechanisms for the three molecules (H2O, SiO and OH) that exhibit strong masing are presented and their ability to explain the observations is discussed.

  15. Applications of hybrid-optical spectrographic processor

    NASA Astrophysics Data System (ADS)

    Liu, Yuexin; Wang, Bo; Fu, John Y.; Guo, Ruyan; Yu, Francis T. S.

    2004-10-01

    Optical spectrographic processing systems have been shown to be the most widely used techniques for time-varying signals that usually contain very distinct characteristics in spectral distributions and are difficult to categorize in time (spatial) domain. In this paper, an optical architecture for spectrograph generation, by which time-varying signal processing can be performed, is proposed and its implementation is described in detail. Some potential applications using optical spectrographic processing system in phonetics, linguistics, speech identification are investigated. Simulation results are also presented to demonstrate the effectiveness of the optical spectrographic processing system in those application areas. Other applications of the optical spectrographic analysis system in identifying individuals through "voice prints" or in detecting mechanical fatigue through abnormal noise are also indicated.

  16. High-resolving mass spectrographs and spectrometers

    NASA Astrophysics Data System (ADS)

    Wollnik, Hermann

    2015-11-01

    Discussed are different types of high resolving mass spectrographs and spectrometers. In detail outlined are (1) magnetic and electric sector field mass spectrographs, which are the oldest systems, (2) Penning Trap mass spectrographs and spectrometers, which have achieved very high mass-resolving powers, but are technically demanding (3) time-of-flight mass spectrographs using high energy ions passing through accelerator rings, which have also achieved very high mass-resolving powers and are equally technically demanding, (4) linear time-of-flight mass spectrographs, which have become the most versatile mass analyzers for low energy ions, while the even higher performing multi-pass systems have only started to be used, (5) orbitraps, which also have achieved remarkably high mass-resolving powers for low energy ions.

  17. Reconstructing the astronomical heritage

    NASA Astrophysics Data System (ADS)

    Planesas, Pere

    2011-06-01

    Studies of the astronomical heritage can deal with the ancient astronomical knowledge, traditions and myths, as well as with old instruments and observatories. It is urgent to work for their recovery, before they are definitely forgoten, lost or destroyed. On the cultural side, the Joint ALMA Observatory is sponsoring the study of the local cosmology and sky of the indigenous people living in the region where ALMA is currently being build. In the case of ancient instruments, several success stories already exist, the most recent one being the reconstruction of the Madrid 25ft Herschel telescope. Examples of notable instruments pending reconstruction are listed.

  18. Updated Status and Performance of the Space Telescope Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Wolfe, Michael A.; Dixon, W. V.; Mason, E.; Proffitt, C.; Aloisi, A.; Oliveira, C.; Bohlin, R. C.; Osten, R.; Bostroem, K. A.; Zheng, W.; Pascucci, I.; Niemi, S.; York, B.; Sonnentracker, P.; Diaz, R.; Ely, J. C.

    2011-05-01

    A description is provided of the overall performance of the Space Telescope Imaging Spectrograph after Cycle 17 and through the first half of Cycle 18. Most aspects of performance are still found to be consistent with extrapolations of the trends seen during Cycle 17 calibrations. Many of the characteristics of the instrument have changed over time, and we present here an update on its current performance based on the latest Cycle 18 calibration observations. We discuss changes in the CCD and MAMA dark currents, provide updates on the sensitivity of STIS modes, echelle blaze function, discuss changes, if any, in number of hot pixels, flat fields, charge transfer inefficiency, read noise, and spurious charge.

  19. NRAO Astronomer Honored by American Astronomical Society

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Dr. Scott Ransom, an astronomer at the National Radio Astronomy Observatory (NRAO), received the American Astronomical Society's (AAS) Helen B. Warner Prize on January 11, at the society's meeting in Seattle, Washington. The prize is awarded annually for "a significant contribution to observational or theoretical astronomy during the five years preceding the award." Presented by AAS President Debra Elmegreen, the prize recognized Ransom "for his astrophysical insight and innovative technical leadership enabling the discovery of exotic, millisecond and young pulsars and their application for tests of fundamental physics." "Scott has made landmark contributions to our understanding of pulsars and to using them as elegant tools for investigating important areas of fundamental physics. We are very proud that his scientific colleagues have recognized his efforts with this prize," said NRAO Director Fred K.Y. Lo. A staff astronomer at the NRAO since 2004, Ransom has led efforts using the National Science Foundation's Green Bank Telescope and other facilities to study pulsars and use them to make advances in areas of frontier astrophysics such as gravitational waves and particle physics. In 2010, he was on a team that discovered the most massive pulsar yet known, a finding that had implications for the composition of pulsars and details of nuclear physics, gravitational waves, and gamma-ray bursts. Ransom also is a leader in efforts to find and analyze rapidly-rotating millisecond pulsars to make the first direct detection of the gravitational waves predicted by Albert Einstein. In other work, he has advanced observational capabilities for finding millisecond pulsars in globular clusters of stars and investigated how millisecond pulsars are formed. A graduate of the United States Military Academy at West Point, NY, Ransom served as an artillery officer in the U.S. Army. After leaving the Army, he earned a Ph.D. at Harvard University in 2001, and was a postdoctoral fellow

  20. Astronomical education in Mongolia

    NASA Astrophysics Data System (ADS)

    Dulmaa, A.; Tsolmon, R.; Lkhagvajav, Ch.; Jargalsuren, Sh.; Bayartungalag, B.; Zaya, M.

    2011-06-01

    The history, current situation, education and future directions of modern Mongolian space science and astronomy is reviewed. This paper discusses recent efforts to develop astronomy education and research capacity in Mongolia with cooperation of the International Astronomical Union. Various capacity-building initiatives in space science including remote sensing in Mongolia are discussed.

  1. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  2. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  3. Astronomical Microdensitometry Conference

    NASA Technical Reports Server (NTRS)

    Klinglesmith, D. A. (Editor)

    1984-01-01

    The status of the current microdensitometers used for digitizing astronomical imagery is discussed. The tests and improvements that have and can be made to the Photometric Data System PDS microdensitometer are examined. The various types of microdensitometers that currently exist in the world are investigated. Papers are presented on the future needs and the data processing problems associated with digitizing large images.

  4. ASURV: Astronomical SURVival Statistics

    NASA Astrophysics Data System (ADS)

    Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.

    2014-06-01

    ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

  5. Misconceptions of Astronomical Distances

    ERIC Educational Resources Information Center

    Miller, Brian W.; Brewer, William F.

    2010-01-01

    Previous empirical studies using multiple-choice procedures have suggested that there are misconceptions about the scale of astronomical distances. The present study provides a quantitative estimate of the nature of this misconception among US university students by asking them, in an open-ended response format, to make estimates of the distances…

  6. Korean Astronomical Calendar, Chiljeongsan

    NASA Astrophysics Data System (ADS)

    Lee, Eun Hee

    In fifteenth century Korea, there was a grand project for the astronomical calendar and instrument making by the order of King Sejong 世宗 (1418-1450). During this period, many astronomical and calendrical books including Islamic sources in Chinese versions were imported from Ming 明 China, and corrected and researched by the court astronomers of Joseon 朝鮮 (1392-1910). Moreover, the astronomers and technicians of Korea frequently visited China to study astronomy and instrument making, and they brought back useful information in the form of new published books or specifications of instruments. As a result, a royal observatory equipped with 15 types of instrument was completed in 1438. Two types of calendar, Chiljeongsan Naepyeon 七政算內篇 and Chiljeongsan Oepyeon 七政算外篇, based on the Chinese and Islamic calendar systems, respectively, were published in 1444 with a number of calendrical editions such as corrections and example supplements (假令) including calculation methods and results for solar and lunar eclipses.

  7. Russian astronomical software

    NASA Astrophysics Data System (ADS)

    Lukashova, Marina V.; Glebova, Nina I.; Netsvetaev, Ilja N.; Netsvetaeva, Galina A.; Parijskaja, Ekaterina Ju.; Pitieva, Elena V.; Sveshnikov, Michael L.; Skripnichenko, Vladimir I.

    2012-08-01

    Institute of Applied Astronomy of RAS has published “ The Astronomical Yearbook ” ( AY) with 1921, “ The Nautical Astronomical Yearbook ” (NAY) with 1930, “ The Nautical Astronomical Almanac ”’ biennial (NAA - 2) with 2001. The new IAU2006/2000 precession - nutation models, and the FK6/HIPPARCOS stellar catalogues were used in these editions. Ephemeris editions are based on the domestic EPM2004 (IAA RAS) theory of movement of planets, Sun and Moon. The electronic versions are developed for two editions. The important stage of work is creation of “The Personal Astronomical Yearbook ”’ (PersAY). The system gives ample opportunities to the user to put and to solve tasks of calculation of ephemerides for any moment in various time scales, and for any location of the observer on a terrestrial surface. Also in PersAY it is possible to calculate by means of DE405/LE405 theory to make comparison with others ephemeris editions. The time interval of validity of the system makes 2010 - 2015. Besides system of the removed access the "Navigator" was developed. It intended to solve some the navigating tasks describe d in NAA - 2. The system is accessible on a site http://shturman.ipa.nw.ru/ (in Russian). In electronic systems as in Y the same reduce theories and the theory of movement of planets, the Sun, the Moon are used. All calculations are work out on the basis of the multifunctional software system ERA.

  8. Trieste Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Founded in 1866 as the Austrian K. u. K. Maritimes Observatorium, in 1898 the Trieste Astronomical Observatory became an independent institute for research in astronomy. Now it is part of INAF (Istituto Nazionale di Astrofisica) and the Italian council for research in astrophysics. Staff include 20 researchers and 42 technicians and administrators. Research fields are extragalactic, stellar physi...

  9. Misconceptions of Astronomical Distances

    ERIC Educational Resources Information Center

    Miller, Brian W.; Brewer, William F.

    2010-01-01

    Previous empirical studies using multiple-choice procedures have suggested that there are misconceptions about the scale of astronomical distances. The present study provides a quantitative estimate of the nature of this misconception among US university students by asking them, in an open-ended response format, to make estimates of the distances…

  10. SAOIMAGE -- Astronomical image display

    NASA Astrophysics Data System (ADS)

    Morris, Rhys; Privett, G. J.

    SAOimage is an astronomical image display program which works on computers with X-window displays. It allows you to manipulate images in a number of ways, see the changes applied, and when you are happy with the result, produce a hard copy on a Postscript printer. An example of the output is included with this document.

  11. The Knorre astronomers' dynasty

    NASA Astrophysics Data System (ADS)

    Pinigin, G.

    2009-06-01

    We attempt to throw light upon the poorly known astronomical dynasty of Knorre and describe its contribution to astronomy. The founder of the dynasty, Ernst Christoph Friedrich Knorre (1759-1810), was born in Germany in 1759, and since 1802 he was a Professor of Mathematics at the Tartu University, and observer at its temporary observatory. He determined the first coordinates of Tartu by stellar observations. Karl Friedrich Knorre (1801-1883) was the first director of the Naval Observatory in Nikolaev since the age of 20, provided the Black Sea navy with accurate time and charts, trained mariners in astronomical navigation, and certified navigation equipment. He compiled star maps and catalogues, and determined positions of comets and planets. He also participated in Bessel's project of the Academic Star Charts, and was responsible for Hora 4, published by the Berlin Academy of Sciences. This sheet permitted to discover two minor planets, Astraea and Flora. Viktor Knorre (1840-1919) was born in Nikolaev. In 1862 he left for Berlin to study astronomy. After defending his thesis for a doctor's degree, he went to Pulkovo as an astronomical calculator in 1867. Since 1873 Viktor worked as an observer of the Berlin Observatory Fraunhofer refractor. His main research focussed on minor planets, comets and binary stars. He discovered the minor planets Koronis, Oenone, Hypatia and Penthesilea. Viktor Knorre also worked on improving astronomical instrumentation, e.g. the Knorre / Heele equatorial telescope mounting.

  12. Digitizer of astronomical plates at Shanghai Astronomical Observatory and its performance test

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Zhao, Jian-Hai; Tang, Zheng-Hong; Shang, Zheng-Jun

    2017-02-01

    Before CCD detectors were widely employed in observational astronomy, the main method of detection was the use of glass astrophotographic plates. Astronomical plates have been used to record information on the position and activity of celestial bodies for more than 100 years. There are about 30 000 astronomical plates in China, and the digitization of astronomical plates is of great significance for permanent preservation and to make full use of these valuable observation data. A digitizer with high precision and high measuring speed is a key piece of equipment for carrying out the task of digitizing these astronomical plates. A digitizer for glass astrophotographic plates was developed jointly by Shanghai Astronomical Observatory and Nishimura Co., Ltd of Japan. The digitizer’s hardware was manufactured by Nishimura Co., Ltd, and the performance test, error corrections as well as image processing of the digitizer were carried out by Shanghai Astronomical Observatory. The main structure and working mode of the digitizer are introduced in this paper. A performance test shows that brightness uniformity of illumination within the measuring area is better than 0.15%, the repeatability of digitized positions is better than 0.2 µm and the repeatability of digitized brightness is better than 0.01 instrumental magnitude. The systematic factors affecting digitized positions, such as lens distortion, the actual optical resolution, non-linearity of guide rails, non-uniformity of linear motors in the mobile platform, deviation of the image mosaic, and non-orthogonality between the direction of scanning and camera linear array, are calibrated and evaluated. Based on an astronomical plate with a size of 300mm × 300mm, which was digitized at different angles, the conversion residuals of positions of common stars on different images were investigated. The results show that the standard deviations of the residuals are better than 0.9 µm and the residual distribution is almost

  13. Astronomical Data in Undergraduate courses

    NASA Astrophysics Data System (ADS)

    Clarkson, William I.; Swift, Carrie; Hughes, Kelli; Burke, Christopher J. F.; Burgess, Colin C.; Elrod, Aunna V.; Howard, Brittany; Stahl, Lucas; Matzke, David; Bord, Donald J.

    2016-06-01

    We present status and plans for our ongoing efforts to develop data analysis and problem-solving skills through Undergraduate Astronomy instruction. While our initiatives were developed with UM-Dearborn’s student body primarily in mind, they should be applicable for a wide range of institution and of student demographics. We focus here on two strands of our effort.Firstly, students in our Introductory Astronomy (ASTR 130) general-education course now perform several “Data Investigations”, in which they interrogate the Hubble Legacy Archive to illustrate important course concepts. This was motivated in part by the realization that typical public data archives now include tools to interrogate the observations that are sufficiently accessible that introductory astronomy students can use them to perform real science, albeit mostly at a descriptive level. We are continuing to refine these investigations, and, most importantly, to critically assess their effectiveness in terms of the student learning outcomes we wish to achieve. This work is supported by grant HST-EO-13758, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Secondly, at the advanced-undergraduate level, students taking courses in our Astronomy minor are encouraged to gain early experience in techniques of astronomical observation and analysis that are used by professionals. We present two example projects from the Fall 2015 iteration of our upper-division course ASTR330 (The Cosmic Distance Ladder), one involving Solar System measurements, the second producing calibrated aperture photometry. For both projects students conducted, analysed, and interpreted observations using our 0.4m campus telescope, and used many of the same analysis tools as professional astronomers. This work is supported partly from a Research Initiation and Seed grant from the

  14. The League of Astronomers

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Brandel, A.; Paat, A. M.; Schmitz, D.; Sharma, R.; Trujillo, J.; Laws, C. S.

    2014-01-01

    The League of Astronomers is committed to engaging the University of Washington (UW) and the greater Seattle communities through outreach, research, and events. Since its re-founding two years ago, the LOA has provided a clear connection between the UW Astronomy Department, undergraduate students, and members of the public. Weekly outreach activities such as public star parties and planetarium talks in both the UW Planetarium and the Mobile Planetarium have connected enthusiastic LOA volunteers with hundreds of public observers. In addition, collaboration with organizations like the Seattle Astronomical Society and the UW Society of Physics Students has allowed the LOA to reach an even greater audience. The club also provides opportunities for undergraduate students to participate in research projects. The UW Student Radio Telescope (SRT) and the Manastash Ridge Observatory (MRO) both allow students to practice collecting their own data and turning it into a completed project. Students have presented many of these research projects at venues like the UW Undergraduate Research Symposium and meetings of the American Astronomical Society. For example, the LOA will be observing newly discovered globular clusters at the Dominion Astrophysical Observatory (DAO) in Victoria, B.C. and constructing color-magnitude diagrams. The LOA also helps engage students with the Astronomy major through a variety of events. Bimonthly seminars led by graduate students on their research and personal experiences in the field showcase the variety of options available for students in astronomy. Social events hosted by the club encourage peer mentoring and a sense of community among the Astronomy Department’s undergraduate and graduate students. As a part of one of the nation’s largest undergraduate astronomy programs, members of the League of Astronomers have a unique opportunity to connect and interact with not only the Seattle public but also the greater astronomical community.

  15. Thomas Kuhn's Influence on Astronomers.

    ERIC Educational Resources Information Center

    Shipman, Harry L.

    2000-01-01

    Surveys the astronomical community on their familiarity with the work of Thomas Kuhn. Finds that for some astronomers, Kuhn's thought resonated well with their picture of how science is done and provided perspectives on their scientific careers. (Author/CCM)

  16. Thomas Kuhn's Influence on Astronomers.

    ERIC Educational Resources Information Center

    Shipman, Harry L.

    2000-01-01

    Surveys the astronomical community on their familiarity with the work of Thomas Kuhn. Finds that for some astronomers, Kuhn's thought resonated well with their picture of how science is done and provided perspectives on their scientific careers. (Author/CCM)

  17. High School Teachers as Astronomers

    ERIC Educational Resources Information Center

    Sather, Robert

    1977-01-01

    Discusses a joint research program between several high school teachers and solar system astronomers in which data were collected on photoelectric observations of asteroids and minor planets via astronomical telescopes. (MLH)

  18. High School Teachers as Astronomers

    ERIC Educational Resources Information Center

    Sather, Robert

    1977-01-01

    Discusses a joint research program between several high school teachers and solar system astronomers in which data were collected on photoelectric observations of asteroids and minor planets via astronomical telescopes. (MLH)

  19. Armenian Astronomical Archives and Databases

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Astsatryan, H. V.; Knyazyan, A. V.; Mikayelyan, G. A.

    2017-01-01

    The major characteristics of modern astronomy are multiwavelength studies (from γ-ray to radio) and big data (data acquisition, storage and analysis). Present astronomical databases and archives contain billions of objects observed in various wavelengths, both galactic and extragalactic, and the vast amount of data on them allows new studies and discoveries. Astronomical Data are one of the largest collections of World Data System. The Armenian astronomical databases maintain large amount of data accumulated during dozens of years of observations with a number of telescopes in the Byurakan Astrophysical Observatory (BAO). Among them most important are two Schmidt type telescopes, 0.5m and 1m (one of the biggest in the world), and the 2.6m classical reflector. Some of these data are unique, such as the First Byurakan Survey (FBS or better known as Mark Arian Survey) objective prism photographic plates and its digitized version, the Digitized First Byurakan Survey (DFBS). It consists of 1874 photographic plates containing some 40,000,000 low-dispersion spectra for some 20,000,000 objects covering 17,000 square degrees at declinations δ>-15 ° and galactic latitudes |b|>15°. DFBS provides images and extracted spectra for all objects present in the FBS plates. Programs were developed to compute astrometric solution, extract spectra, and apply wavelength and photometric calibration for objects. A DFBS database and catalog has been assembled. A classification scheme for the DFBS spectra is being developed. A few other digitization projects have been accomplished or are ongoing: Second Byurakan Survey (SBS) spectroscopic plates, FBS Blue Stellar Objects and Late Type Stars photographic spectra taken with the 2.6m telescope, the variability of the Blazar ON 231 obtained from numerous photometric observations, etc. At present BAO Plate Archive Project is active and is aimed at digitization of some 37,000 photographic plates, construction of a full plate database and

  20. Multi-fiber coupling through a miniature lens system into the FOCES spectrograph

    NASA Astrophysics Data System (ADS)

    Kellermann, Hanna; Grupp, Frank; Brucalassi, Anna; Wang, Liang; Baisert, Nils; Lang-Bardl, Florian; Hopp, Ulrich; Bender, Ralf

    2016-08-01

    We present a new fiber-based light injection system for the high resolution spectrograph FOCES (Fiber Optics Cassegrain Echelle Spectrograph)1 which will soon start operating at the Wendelstein Observatory. The new system consists of several components such as a 4-fiber assembly (for simultaneous calibration), a new miniature lens system to reimage the light leaving the fibers onto the slit, as well as a new slit mask. The whole concept is specifically designed to provide high-accuracy, long-term stability for accurate radial velocity measurements and stellar atmosphere analyses.

  1. The Schmidt-Czerny-Turner spectrograph

    NASA Astrophysics Data System (ADS)

    McClure, Jason P.

    2014-09-01

    Since the invention of the CCD detector in 1969 by George Smith and Willard Boyle, incremental innovations to the dispersive imaging spectrograph have slowly materialized in response the abounding advances in CCD detector technology. The modern Czerny-Turner type spectrograph, arguably the most commonly used instrument in optical spectroscopy, fails to uphold the ever increasing needs today's researchers demand, let alone tomorrow's. This paper discusses an innovative solution to the Czerny-Turner imaging spectrograph bridging a more than 20 year gap in development and understanding. A manifold of techniques in optical spectroscopy both advantaged and enabled by this innovation are expounded upon.

  2. Near Ultraviolet Spectrograph for Cubesats

    NASA Astrophysics Data System (ADS)

    Aickara Gopinathan, Sreejith; Mathew, Joice; Sarpotdar, Mayuresh; Suresh, Ambily; Kaippacheri, Nirmal; Safonova, Margarita; Murthy, Jayant

    2017-01-01

    We have designed a near ultraviolet (200 - 400 nm) spectrograph to fit into a 2U CubeSat and planned for flight in mid-2017 with a scientific goal of obtaining NUV spectra of bright sources (< 6th magnitude) with a spectral resolution of 10 Å. The aggressive timeline drives the design to include only off-the-shelf items to minimize procurement delays and cost. Our baseline optical design consists of a collecting mirror with a 70 mm diameter which reflects light onto a concave reflection grating with a spacing of 1200 lines per mm. The grating focuses the light onto a linear array back-thinned FFT CCD with a pixel size of 14-μm × 14-μm.We will present the design of the payload and the choices forced on us by the restrictive CubeSat environment and the short lead times. This payload is a part of our program to build payloads that will address limited scientific goals but making full use of the opportunities that are arising for CubeSat class missions.

  3. NIR Camera/spectrograph: TEQUILA

    NASA Astrophysics Data System (ADS)

    Ruiz, E.; Sohn, E.; Cruz-Gonzalez, I.; Salas, L.; Parraga, A.; Torres, R.; Perez, M.; Cobos, F.; Tejada, C.; Iriarte, A.

    1998-11-01

    We describe the configuration and operation modes of the IR camera/spectrograph called TEQUILA, based on a 1024X1024 HgCdTe FPA (HAWAII). The optical system will allow three possible modes of operation: direct imaging, low and medium resolution spectroscopy and polarimetry. The basic system is being designed to consist of the following: 1) A LN$_2$ dewar that allocates the FPA together with the preamplifiers and a 24 filter position cylinder. 2) Control and readout electronics based on DSP modules linked to a workstation through fiber optics. 3) An optomechanical assembly cooled to -30oC that provides an efficient operation of the instrument in its various modes. 4) A control module for the moving parts of the instrument. The opto-mechanical assembly will have the necessary provisions to install a scanning Fabry-Perot interferometer and an adaptive optics correction system. The final image acquisition and control of the whole instrument is carried out in a workstation to provide the observer with a friendly environment. The system will operate at the 2.1 m telescope at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), and is intended to be a first-light instrument for the new 7.8 m Mexican Infrared-Optical Telescope (TIM).

  4. Summary of the COS Cycle 20 Calibration Program

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia; Aloisi, Alessandra; Bostroem, K. Azalee; Ely, Justin; Holland, Stephen; Lockwood, Sean; Oliveira, Cristina; Penton, Steven; Proffitt, Charles; Sahnow, David; Sonnentrucker, Paule; Welty, Alan D.; Wheeler, Thomas

    2015-06-01

    We summarize the Cycle 20 calibration program for the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, covering the time period from November 2012 through October 2013. We give an overview of the Calibration plan and status summaries for each of the individual proposals comprising the C20 Calibration program.

  5. Summary of the COS Cycle 21 Calibration Program

    NASA Astrophysics Data System (ADS)

    Sana, Hugues; Fox, Andrew; Roman-Duval, Julia; Ely, Justin; Bostroem, K. Azalee; Lockwood, Sean; Oliveira, Cristina; Penton, Steve; Proffitt, Charles; Sahnow, David; Sonnentrucker, Paule; Welty, Alan D.; Wheeler, Thomas

    2015-09-01

    We summarize the Cycle 21 calibration program for the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, covering the time period from November 2013 through October 2014. We give an overview of the Calibration plan and status summaries for each of the individual proposals comprising the C21 Calibration program.

  6. The Gemini High-Resolution Optical SpecTrograph (GHOST) bench spectrograph optical design

    NASA Astrophysics Data System (ADS)

    Pazder, John; Burley, Greg; Ireland, Michael J.; Robertson, Gordon; Sheinis, Andrew; Zhelem, Ross

    2016-08-01

    Gemini High-Resolution Optical SpecTrograph (GHOST) is a fiber-fed spectrograph being developed for the Gemini telescope. GHOST is a white pupil échelle spectrograph with high efficiency and a broad continuous wavelength coverage (363-1000nm) with R>50,000 in two-object mode and >75,000 in single-object mode. The design incorporates a novel zero-Petzval sum white pupil relay to eliminate grating aberrations at the cross-dispersers. Cameras are based on non-achromatic designs with tilted detectors to eliminate the need for exotic glasses. This paper outlines the optical design of the bench-mounted spectrograph and the predicted spectrograph resolution and efficiency for the spectrograph.

  7. Summary of COS Cycle 23 Calibration Plan

    NASA Astrophysics Data System (ADS)

    Sonnentrucker, Paule; De Rosa, Gisella; Debes, John H.; Ely, Justin; Fox, Andrew; Lockwood, Sean; Fix, Mees; Oliveira, Cristina; Penton, Steven; Roman-Duval, Julia; Sahnow, David; Taylor, Jo; Welty, Alan D.; Wheeler, Thomas; White, James

    2016-09-01

    We summarize the calibration activities for the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope during Cycle 23 which ran from November 2015 through October 2016. We give an overview of the COS calibration plan, COS usage statistics and we briefly describe major changes with respect to the previous cycle. High-level executive summaries for each calibration program comprising Cycle 23 are also given here. Results of the analysis attached to each program are published in separate ISRs.

  8. GRASSP (GRAnada Sprite Spectrograph and Polarimeter). Design and implementation.

    NASA Astrophysics Data System (ADS)

    Passas, María; Sánchez, Justo; Gordillo-Vázquez, Francisco J.; Luque, Alejandro; Parra-Rojas, Francisco C.

    2013-04-01

    Transient luminous events (TLEs) are short optical emissions that occur in the upper atmosphere above storm systems. They appear between 15 and 90 km altitude and last between less than a millisecond to up to two seconds. So far there are no polarization studies of TLEs, nor high-resolution spectroscopy results which could help us to understand the kinetics and electrodynamics of these kind of optical emissions. The GRASSP (Granada Sprite Spectrograph and Polarimeter) instrument has been developed to measure simultaneously the polarization and the spectra of the light emitted from these TLEs with medium spectral resolution (0.45nm). By consulting a real-time lightning database, the telescope aims automatically to the region of the sky where a TLE is predicted to appear. The instrument is located outside the 2.2 m dome of the German-Spanish Astronomical Center at Calar Alto, Sierra de Los Filabres, north of Almería (Andalucía, Southern Spain), at 2168 meters above mean sea level. From this location we can observe the western Mediterranean Sea zone (37°-45°N; 2°W-6°E) with an elevation of 10°-35° above the horizon, a region where the most TLE activity in Europe takes place. GRASSP is a prototype which consists of a spectrograph and a polarimeter, both installed on a telescope mount. The 6-channel imaging polarimeter will cover a spectral range from 500 - 750 nm, with a polarized / unpolarized sensitivity smaller than 5 %. It will present a circular field of view of 5° and a CCD of 2000 × 2000 pixels with a FOV of 15 µm/px. The goal is to find the 4 Stokes parameters in a single shot. To do so, the polarimeter consists of seven circular windows disposed over a telescope surface, six of them are located around the border of the circle and the last one is located in the center. This single window will show the unfiltered image and the six remaining ones include a different polarizer ( 0° 45° 90° 180° linear polarizers and left and right circular

  9. Improving Performance in Planetary Ultraviolet Spectrographs

    NASA Astrophysics Data System (ADS)

    Davis, M. W.; Gladstone, G. R.; Retherford, K. D.

    2016-10-01

    Four planetary ultraviolet spectrographs by SwRI have successfully operated on different planetary missions. Two more will operate aboard the JUICE and Europa missions with advancements to allow operations in the Jovian environment.

  10. System selects framing rate for spectrograph camera

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Circuit using zero-order light is reflected to a photomultiplier in the incoming radiation of a spectrograph monitor to provide an error signal which controls the advancing and driving rate of the film through the camera.

  11. The simulated space proton environment for radiation effects on Space Telescope Imaging Spectrograph (STIS)

    NASA Technical Reports Server (NTRS)

    Becher, Jacob; Fowler, Walter

    1992-01-01

    The space telescope imaging spectrograph (STIS) is a second generation instrument planned for the Hubble Space Telescope (HST) which is currently in orbit. Candidate glasses and other transmitting materials are being considered for order sorters, in-flight calibration filters, detector windows, and calibration lamps. The glasses for in-flight calibration filters showed significant drop in UV transmission, but can probably still be used on STIS. The addressed topics include the Hubble radiation environment, simulation of orbital exposure at Harvard Cyclotron Laboratory, measurement of spectral transmission, and comments on individual samples.

  12. Astronomers without borders

    NASA Astrophysics Data System (ADS)

    Simmons, Mike

    2011-06-01

    ``Astronomers Without Borders'' is a new global organisational dedicated to furthering understanding and goodwill across national and cultural boundaries using the universal appeal of astronomy and space science. A growing network of affiliate organisations brings together clubs, magazines and other organizations involved in astronomy and space science. Forums, galleries, video conferences and other interactive technologies are used to connect participants around the world. Sharing of resources and direct connections through travel programs are also planned. One project, ``The World at Night'' (TWAN), has become an Special Project of IYA2009. TWAN creates wide-angle images of the night sky in important natural and historic settings around the world, dramatically demonstrating the universal nature and appeal of the night sky. ``Astronomers Without Borders'' is also a leader of the 100 Hours of Astronomy IYA2009 Global Cornerstone Project.

  13. Network resources for astronomers

    NASA Astrophysics Data System (ADS)

    Andernach, H.; Hanisch, Robert J.; Murtagh, F.

    1994-11-01

    The amount of data produced by large observational facilities and space missions has led to the archiving and on-line accessibility of much of these data, available to the entire astronomical community. This allows a much wider multifrequency approach to astronomical research than previously possible. Here we provide an overview of these services, and give a basic description of their contents and possibilities for accessing them. Apart from services providing observational data, many of those providing general information, e.g., on addresses, bibliographies, software, etc., are also described. The field is rapidly growing with improved network technology, and out attempt to keep the report as complete and up-to-date as possible will inevitably be outdated shortly. We will endeavor to maintain an updated version of this document on-line.

  14. Astronomical Kalendar-2011

    NASA Astrophysics Data System (ADS)

    Kozlovskii, Alexander Nikolaevich; Kuznetsov, Alexander

    The webpage give the Astronomical Kalendars for the Months of 2010, 2011 as well as a General Kalendar of astronomical events for schoolars and beginners for 2011 to be downloaded in pdf or word formats. The Kalendar for schoolars and beginners include on 149 pp. the following sections: 1) recommendations for Schoolars 2) the general review of events for 2011 3) The Moon in 2011 4) Moon and Sun Ephemerides with comments 5) Planets visibility for the latituide 56 Deg N. 6) Planets conjunctions for 2011 7) Eclipses in 2011 8) Stars and planets occultations by the Moon 9) Phenomena for Jupiter satellites 10) Phenomena for Saturn satellites 11) Small Planets (Iris, Thalia, Nisa, Junona, Gigeia, Ariadna, Vesta, Cerera and other) 12) Comets (C/2009 P1 ( Garradd ), 103P/Hartley 2, P/2006 T1 ( Levy ) 13) variable Stars 14) Meteor showers. Both Calendars include maps and tables

  15. Astronomers as Software Developers

    NASA Astrophysics Data System (ADS)

    Pildis, Rachel A.

    2016-01-01

    Astronomers know that their research requires writing, adapting, and documenting computer software. Furthermore, they often have to learn new computer languages and figure out how existing programs work without much documentation or guidance and with extreme time pressure. These are all skills that can lead to a software development job, but recruiters and employers probably won't know that. I will discuss all the highly useful experience that astronomers may not know that they already have, and how to explain that knowledge to others when looking for non-academic software positions. I will also talk about some of the pitfalls I have run into while interviewing for jobs and working as a developer, and encourage you to embrace the curiosity employers might have about your non-standard background.

  16. Astronomical Fourier spectropolarimetry

    NASA Technical Reports Server (NTRS)

    Forbes, F. F.; Fymat, A. L.

    1974-01-01

    Spectra of the Stokes polarization parameters of Venus (resolution 0.5 per cm) are presented. They were obtained at the Cassegrain focus of the 154-cm telescope of the National Mexican Observatory, Baja California, Mexico, July 12 and 13, 1972, with the Fourier Interferometer Polarimeter (FIP). A preliminary, limited analysis of four spectral features and of the CO2 rotational band structures at 6080 and 6200 per cm has demonstrated that spectral polarization is indeed present. These experimental results, confirmed by two series of observations, provide substantiation for this theoretically predicted phenomenon. They also tend to show that the FIP represents a novel astronomical tool for variable spectral resolution studies of both the intensity and the state of polarization of astronomical light sources.

  17. Ancient Egyptian Astronomical Calander

    NASA Astrophysics Data System (ADS)

    Marshall, Patrice; Lodhi, M. A. K.

    2001-03-01

    In this paper, we discuss how certain astronomical concepts are related to the ancient Egyptian culture and their daily life. One of them is different ways of creating their calendar systems. The ancient Egyptian calendar seems to have quite a bit of its origin in astronomy and its development over the course of history. There is an important role played by events, as determined in the heavens, in developing their calendar system. Along with astronomical observations by the ancient people of Egypt, there were several outside cultures that helped develop their calendar system and Egyptian idea of how life was created on this planet, most notably the inclusion of the star Sirius in the constellation of Canis Major. We give a brief discussion of these influences. For the ancient Egyptians, the cycle of life and death is a concept that ties in with a calendar system used to determine daily events.

  18. Astronomical Fourier spectropolarimetry

    NASA Technical Reports Server (NTRS)

    Forbes, F. F.; Fymat, A. L.

    1974-01-01

    Spectra of the Stokes polarization parameters of Venus (resolution 0.5 per cm) are presented. They were obtained at the Cassegrain focus of the 154-cm telescope of the National Mexican Observatory, Baja California, Mexico, July 12 and 13, 1972, with the Fourier Interferometer Polarimeter (FIP). A preliminary, limited analysis of four spectral features and of the CO2 rotational band structures at 6080 and 6200 per cm has demonstrated that spectral polarization is indeed present. These experimental results, confirmed by two series of observations, provide substantiation for this theoretically predicted phenomenon. They also tend to show that the FIP represents a novel astronomical tool for variable spectral resolution studies of both the intensity and the state of polarization of astronomical light sources.

  19. Misconceptions about astronomical magnitudes

    NASA Astrophysics Data System (ADS)

    Schulman, Eric; Cox, Caroline V.

    1997-10-01

    The present system of astronomical magnitudes was created as an inverse scale by Claudius Ptolemy in about 140 A.D. and was defined to be logarithmic in 1856 by Norman Pogson, who believed that human eyes respond logarithmically to the intensity of light. Although scientists have known for some time that the response is instead a power law, astronomers continue to use the Pogson magnitude scale. The peculiarities of this system make it easy for students to develop numerous misconceptions about how and why to use magnitudes. We present a useful exercise in the use of magnitudes to derive a cosmologically interesting quantity (the mass-to-light ratio for spiral galaxies), with potential pitfalls pointed out and explained.

  20. Conceptual design for an AIUC multi-purpose spectrograph camera using DMD technology

    NASA Astrophysics Data System (ADS)

    Rukdee, S.; Bauer, F.; Drass, H.; Vanzi, L.; Jordan, A.; Barrientos, F.

    2017-02-01

    Current and upcoming massive astronomical surveys are expected to discover a torrent of objects, which need groundbased follow-up observations to characterize their nature. For transient objects in particular, rapid early and efficient spectroscopic identification is needed. In particular, a small-field Integral Field Unit (IFU) would mitigate traditional slit losses and acquisition time. To this end, we present the design of a Digital Micromirror Device (DMD) multi-purpose spectrograph camera capable of running in several modes: traditional longslit, small-field patrol IFU, multi-object and full-field IFU mode via Hadamard spectra reconstruction. AIUC Optical multi-purpose CAMera (AIUCOCAM) is a low-resolution spectrograph camera of R 1,600 covering the spectral range of 0.45-0.85 μm. We employ a VPH grating as a disperser, which is removable to allow an imaging mode. This spectrograph is envisioned for use on a 1-2 m class telescope in Chile to take advantage of good site conditions. We present design decisions and challenges for a costeffective robotized spectrograph. The resulting instrument is remarkably versatile, capable of addressing a wide range of scientific topics.

  1. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  2. Astrobiology: An astronomer's perspective

    SciTech Connect

    Bergin, Edwin A.

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.

  3. Astrobiology: An astronomer's perspective

    NASA Astrophysics Data System (ADS)

    Bergin, Edwin A.

    2014-12-01

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.

  4. Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Explanatory Supplement

    NASA Technical Reports Server (NTRS)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, T. J. (Editor)

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) mission is described. An overview of the mission, a description of the satellite and its telescope system, and a discussion of the mission design, requirements, and inflight modifications are given. Data reduction, flight tests, flux reconstruction and calibration, data processing, and the formats of the IRAS catalogs and atlases are also considered.

  5. On Tokugawa Bakufu's astronomical officials

    NASA Astrophysics Data System (ADS)

    Yamada, Keiji

    2005-06-01

    Tokugawa Bakufu's astronomical office, established in 1684, is the post for calendar reform. The reform was conducted when the calendar did not predict peculiar celestial phenomena, such as solar or lunar eclipses. It was, so to speak, the theme of the ancient astronomy. From removal of the embargo on importing western science books in 1720, Japanese astronomers studied European astronomy and attempted to apply its knowledge to calendar making. Moreover, they knew the Copernican system and also faced several modern astronomical subjects. The French astronomer Lalande's work "ASTRONOMY" exerted particularly strong influence on astronomers. This paper overviews the activities of Paris observatory and French astronomers in the 17th and 18th centuries, and survey what modern astronomical subjects were. Finally, it sketches a role of the Edo observatory played in the Japanese cultural history.

  6. The Very Large Telescope Visible Multi-Object Spectrograph Mask Preparation Software

    NASA Astrophysics Data System (ADS)

    Bottini, D.; Garilli, B.; Maccagni, D.; Tresse, L.; Le Brun, V.; Le Fèvre, O.; Picat, J. P.; Scaramella, R.; Scodeggio, M.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnaboldi, M.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Guzzo, L.; Ilbert, O.; Iovino, A.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mathez, G.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pollo, A.; Pozzetti, L.; Radovich, M.; Zamorani, G.; Zucca, E.

    2005-09-01

    VIMOS (Visible Multi-Object Spectrograph) is a multiobject imaging spectrograph installed at the VLT (Very large Telescope) at the ESO (European Southern Observatory) Paranal Observatory that is especially suited for survey work. VIMOS is characterized by its very high multiplexing factor: it is possible to take up to 800 spectra with 10" long slits in a single exposure. To fully exploit its multiplexing potential, we designed and implemented a dedicated software tool: the VIMOS Mask Preparation Software (VMMPS), which allows the astronomer to select the objects to be spectroscopically observed, and provides for automatic slit positioning and slit number maximization within the instrumental constraints. The output of VMMPS is used to manufacture the slit masks to be mounted in the instrument for spectroscopic observations.

  7. Astronomical Software Directory Service

    NASA Technical Reports Server (NTRS)

    Hanisch, Robert J.; Payne, Harry; Hayes, Jeffrey

    1997-01-01

    With the support of NASA's Astrophysics Data Program (NRA 92-OSSA-15), we have developed the Astronomical Software Directory Service (ASDS): a distributed, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URLs indexed for full-text searching. Users are performing about 400 searches per month. A new aspect of our service is the inclusion of telescope and instrumentation manuals, which prompted us to change the name to the Astronomical Software and Documentation Service. ASDS was originally conceived to serve two purposes: to provide a useful Internet service in an area of expertise of the investigators (astronomical software), and as a research project to investigate various architectures for searching through a set of documents distributed across the Internet. Two of the co-investigators were then installing and maintaining astronomical software as their primary job responsibility. We felt that a service which incorporated our experience in this area would be more useful than a straightforward listing of software packages. The original concept was for a service based on the client/server model, which would function as a directory/referral service rather than as an archive. For performing the searches, we began our investigation with a decision to evaluate the Isite software from the Center for Networked Information Discovery and Retrieval (CNIDR). This software was intended as a replacement for Wide-Area Information Service (WAIS), a client/server technology for performing full-text searches through a set of documents. Isite had some additional features that we considered attractive, and we enjoyed the cooperation of the Isite developers, who were happy to have ASDS as a demonstration project. We ended up staying with the software throughout the project, making modifications to take advantage of new features as they came along, as well as

  8. EUCLID: design of the prism DMD NIR spectrograph

    NASA Astrophysics Data System (ADS)

    Content, Robert; Sharples, Ray M.; Blake, Simon; Talbot, R. Gordon

    2010-07-01

    EUCLID, the ESA Dark Energy Mission, contains a NIR and a visible imagers (NIP & VIS), and an NIR spectrograph (NIS). Different designs of the NIS have been studied especially a slitless design, a Digital Micromirror Device (DMD) design using grisms and another using prisms, and more recently a combination of the NIP and NIS into one instrument. We present the design of the prism DMD NIS. This design has the advantage over the slitless design of having a DMD mask which reduces the background by a factor of more than 100 and all the advantages over the grism DMD NIS that a prism gives over a grism as a higher and more uniform transmission, the absence of parasite orders, and a choice of the slope of the spectral resolution with wavelength. The field per spectrograph was made sufficiently large to reduce the number of spectrographs to two. The design was made so that the mapping of the sky of the NIS is easily compatible with the mapping strategy of the NIP and VIS. Two designs were made. In one, the field is larger but the surface shapes of the optics are complex which makes manufacturing more challenging. In the other, the design was made to be fully compatible with the manufacturing criteria of SESO after extensive discussions to carefully understand the manufacturing limitations especially the formula for highly aspheric surface shapes as biconics. This was done by directly integrating the criteria into the optimization process of ZEMAX. A calibration system that uses the DMD with the micromirrors in their OFF positions was also developed.

  9. MEGARA: a new generation optical spectrograph for GTC

    NASA Astrophysics Data System (ADS)

    Gil de Paz, A.; Gallego, J.; Carrasco, E.; Iglesias-Páramo, J.; Cedazo, R.; Vílchez, J. M.; García-Vargas, M. L.; Arrillaga, X.; Carrera, M. A.; Castillo-Morales, A.; Castillo-Domínguez, E.; Eliche-Moral, M. C.; Ferrusca, D.; González-Guardia, E.; Lefort, B.; Maldonado, M.; Marino, R. A.; Martínez-Delgado, I.; Morales Durán, I.; Mujica, E.; Páez, G.; Pascual, S.; Pérez-Calpena, A.; Sánchez-Penim, A.; Sánchez-Blanco, E.; Tulloch, S.; Velázquez, M.; Zamorano, J.; Aguerri, A. L.; Barrado y Naváscues, D.; Bertone, E.; Cardiel, N.; Cava, A.; Cenarro, J.; Chávez, M.; García, M.; Guichard, J.; Gúzman, R.; Herrero, A.; Huélamo, N.; Hughes, D.; Jiménez-Vicente, J.; Kehrig, C.; Márquez, I.; Masegosa, J.; Mayya, Y. D.; Méndez-Abreu, J.; Mollá, M.; Muñoz-Tuñón, C.; Peimbert, M.; Pérez-González, P. G.; Pérez Montero, E.; Rodríguez, M.; Rodríguez-Espinosa, J. M.; Rodríguez-Merino, L.; Rosa-González, D.; Sánchez-Almeida, J.; Sánchez Contreras, C.; Sánchez-Blázquez, P.; Sánchez Moreno, F. M.; Sánchez, S. F.; Sarajedini, A.; Serena, F.; Silich, S.; Simón-Díaz, S.; Tenorio-Tagle, G.; Terlevich, E.; Terlevich, R.; Torres-Peimbert, S.; Trujillo, I.; Tsamis, Y.; Vega, O.; Villar, V.

    2014-07-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma. MEGARA offers two IFU fiber bundles, one covering 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec (Large Compact Bundle; LCB) and another one covering 8.5x6.7 arcsec2 with a spaxel size of 0.42 arcsec (Small Compact Bundle; SCB). The MEGARA MOS mode will allow observing up to 100 objects in a region of 3.5x3.5 arcmin2 around the two IFU bundles. Both the LCB IFU and MOS capabilities of MEGARA will provide intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3650-9700ÅÅ. These values become RFWHM~7,000, 13,500, and 21,500 when the SCB is used. A mechanism placed at the pseudo-slit position allows exchanging the three observing modes and also acts as focusing mechanism. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts an E2V231-84 4kx4k CCD. The UCM (Spain) leads the MEGARA Consortium that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). MEGARA is being developed under a contract between GRANTECAN and UCM. The detailed design, construction and AIV phases are now funded and the instrument should be delivered to GTC before the end of 2016.

  10. [Development of a High Spectral Resolution UV Flat-Field Spectrograph].

    PubMed

    Du, Liang-liang; Du, Xue-wei; Li, Chao-yang; An, Ning; Wang, Qiu-ping

    2015-06-01

    As an important optical splitting element, grating is used in many different spectrometers and spectrographs. Spherical varied-line-spacing grating (SVLSG) is easily combined with array detectors to get a wide wavelength range of spectrums in one time, because it can focus the spectrums in approximately a plane. Therefore, it's widely used in many spectral instruments. We usually only know the central groove density of a commercial grating and its mounting parameters, while its line spacing parameters are unknown. Moreover, the mounting parameters are optimized within the whole using wavelength range of the grating. However, in most circumstances only part of the wavelength range is used. Therefore, the mounting parameters are not optimized for the needed wavelength range. Under this condition, in this article we developed a method based on the focusing theory of the flat-field grating and the mounting parameters the manufacture provided to deduce the line spacing parameters of the grating. With these parameters, we can optimize the detector position according to the wavelength range we need and ray tracing can be done to test the optical system. In this article we developed a high spectral resolution ultraviolet spectrograph, covering a wavelength range of 230-280 nm. The grating used in this spectrograph has a central groove density of 1 200 lines x mm(-1) and a designed wavelength range of 170-500 nm. We deduced the line spacing parameters of the grating and optimized the detector mounting parameters. Hollow cathode lamps of different elements were used to calibrate the spectrograph and test the spectral resolution of it. Wavelength calibration of the spectrograph has been done with the parameter fitting method, and the calibration accuracy is better than 0.01 nm. Results show the spectral resolution of the spectral graph is about 0.08 nm at 280.20 nm.

  11. The Rapid Acquisition Imaging Spectrograph Experiment (RAISE) Sounding Rocket Investigation

    NASA Astrophysics Data System (ADS)

    Laurent, Glenn T.; Hassler, Donald M.; Deforest, Craig; Slater, David D.; Thomas, Roger J.; Ayres, Thomas; Davis, Michael; de Pontieu, Bart; Diller, Jed; Graham, Roy; Michaelis, Harald; Schuele, Udo; Warren, Harry

    2016-03-01

    We present a summary of the solar observing Rapid Acquisition Imaging Spectrograph Experiment (RAISE) sounding rocket program including an overview of the design and calibration of the instrument, flight performance, and preliminary chromospheric results from the successful November 2014 launch of the RAISE instrument. The RAISE sounding rocket payload is the fastest scanning-slit solar ultraviolet imaging spectrograph flown to date. RAISE is designed to observe the dynamics and heating of the solar chromosphere and corona on time scales as short as 100-200ms, with arcsecond spatial resolution and a velocity sensitivity of 1-2km/s. Two full spectral passbands over the same one-dimensional spatial field are recorded simultaneously with no scanning of the detectors or grating. The two different spectral bands (first-order 1205-1251Å and 1524-1569Å) are imaged onto two intensified Active Pixel Sensor (APS) detectors whose focal planes are individually adjusted for optimized performance. RAISE reads out the full field of both detectors at 5-10Hz, recording up to 1800 complete spectra (per detector) in a single 6-min rocket flight. This opens up a new domain of high time resolution spectral imaging and spectroscopy. RAISE is designed to observe small-scale multithermal dynamics in Active Region (AR) and quiet Sun loops, identify the strength, spectrum and location of high frequency waves in the solar atmosphere, and determine the nature of energy release in the chromospheric network.

  12. On astronomical drawing [1846

    NASA Astrophysics Data System (ADS)

    Smyth, Charles Piazzi

    Reprinted from the Memoirs of the Royal Astronomical Society 15, 1846, pp. 71-82. With annotations and illustrations added by Klaus Hentschel. The activities of the Astronomer Royal for Scotland, Charles Piazzi Smyth (1819-1900), include the triangulation of South African districts, landscape painting, day-to-day or tourist sketching, the engraving and lithographing of prominent architectural sites, the documentary photography of the Egyptian pyramids or the Tenerife Dragon tree, and `instant photographs' of the clouds above his retirement home in Clova, Ripon. His colorful records of the aurora polaris, and solar and terrestrial spectra all profited from his trained eye and his subtle mastery of the pen and the brush. As his paper on astronomical drawing, which we chose to reproduce in this volume, amply demonstrates, he was conversant in most of the print technology repertoire that the 19th century had to offer, and carefully selected the one most appropriate to each sujet. For instance, he chose mezzotint for the plates illustrating Maclear's observations of Halley's comet in 1835/36, so as to achieve a ``rich profundity of shadows, the deep obscurity of which is admirably adapted to reproduce those fine effects of chiaroscuro frequently found in works where the quantity of dark greatly predominates.'' The same expertise with which he tried to emulate Rembrandt's chiaroscuro effects he applied to assessing William and John Herschel's illustrations of nebulae, which appeared in print between 1811 and 1834. William Herschel's positive engraving, made partly by stippling and partly by a coarse mezzotint, receives sharp admonishment because of the visible ruled crossed lines in the background and the fact that ``the objects, which are also generally too light, [have] a much better definition than they really possess.'' On the other hand, John Herschel's illustration of nebulae and star clusters, given in negative, ``in which the lights are the darkest part of the

  13. Astronomical Fourier spectrometer.

    PubMed

    Connes, P; Michel, G

    1975-09-01

    A high resolution near ir Fourier spectrometer with the same general design as previously described laboratory instruments has been built for astronomical observations at a coudé focus. Present spectral range is 0.8-3.5 microm with PbS and Ge detectors and maximum path difference 1 m. The servo system can accommodate various recording modes: stepping or continuous scan, path difference modulation, sky chopping. A real time computer is incorporated into the system, which has been set up at the Hale 500-cm telescope on Mount Palomar. Samples of the results are given.

  14. Astronomical Instruments in India

    NASA Astrophysics Data System (ADS)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  15. MIRADAS - The Next-Generation Near-Infrared Spectrograph for the GTC

    NASA Astrophysics Data System (ADS)

    Eikenberry, S. S.

    2013-05-01

    We describe the Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS) being developed by the MIRADAS Consortium institutions (including the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto Astrofísica de Canarias, Institut de Física d' Altes Energies, Institut d' Estudis Espacials de Catalunya and Universidad Nacional Autonoma de México) for the Gran Telescopio Canarias. MIRADAS is the most powerful astronomical instrument of its kind ever envisioned. The combination of the collecting area of GTC and the multi-object mid-resolution near-infrared spectra provided by MIRADAS make its capabilities unparalleled for addressing some of the leading scientific challenges of the coming decades, with an observing efficiency more than an order of magnitude greater than current capabilities for 10-meter-class telescopes. We briefly review the science drivers for the instrument, the basic design features, and the current status of the instrument development.

  16. Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy.

    PubMed

    Cvetojevic, N; Lawrence, J S; Ellis, S C; Bland-Hawthorn, J; Haynes, R; Horton, A

    2009-10-12

    We present results from the first on-sky demonstration of a prototype astronomical integrated photonic spectrograph (IPS) using the Anglo-Australian Telescope near-infrared imaging spectrometer (IRIS2) at Siding Spring Observatory to observe atmospheric molecular OH emission lines. We have succeeded in detecting upwards of 27 lines, and demonstrated the practicality of the IPS device for astronomy. Furthermore, we present a laboratory characterization of the device, which is a modified version of a commercial arrayed-waveguide grating multiplexer. We measure the spectral resolution full-width-half-maximum to be 0.75 +/- 0.05 nm (giving R = lambda/deltalambda = 2100 +/- 150 at 1500 nm). We find the free spectral range to be 57.4 +/- 0.6 nm and the peak total efficiency to be approximately 65%. Finally, we briefly discuss the future steps required to realize an astronomical instrument based on this technology concept.

  17. Self-scanned photodiode array - High performance operation in high dispersion astronomical spectrophotometry

    NASA Technical Reports Server (NTRS)

    Vogt, S. S.; Tull, R. G.; Kelton, P.

    1978-01-01

    A multichannel spectrophotometric detector system has been developed using a 1024 element self-scanned silicon photodiode array, which is now in routine operation with the high-dispersion coude spectrograph of the University of Texas McDonald Observatory 2.7-m telescope. Operational considerations in the use of such arrays for high precision and low light level spectrophotometry are discussed. A detailed description of the system is presented. Performance of the detector as measured in the laboratory and on astronomical program objects is described, and it is shown that these arrays are highly effective detectors for high dispersion astronomical spectroscopy.

  18. Design and Performance of the ICON EUV Spectrograph

    NASA Astrophysics Data System (ADS)

    Sirk, Martin M.; Korpela, Eric J.; Ishikawa, Yuzo; Edelstein, Jerry; Wishnow, Edward H.; Smith, Christopher; McCauley, Jeremy; McPhate, Jason B.; Curtis, James; Curtis, Travis; Gibson, Steven R.; Jelinsky, Sharon; Lynn, Jeffrey A.; Marckwordt, Mario; Miller, Nathan; Raffanti, Michael; Van Shourt, William; Stephan, Andrew W.; Immel, Thomas J.

    2017-07-01

    We present the design, implementation, and on-ground performance measurements of the Ionospheric Connection Explorer EUV spectrometer, ICON EUV, a wide field ( 17° × 12°) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54-88 nm, are the Ouc(ii) emission lines at 61.6 nm and 83.4 nm. Its design, using a single optical element, permits a imaging resolution perpendicular to the spectral dispersion direction with a large ( 12° ) acceptance parallel to the dispersion direction while providing a slit-width dominated spectral resolution of R˜25 at 58.4 nm. Pre-flight calibration shows that the instrument has met all of the science performance requirements.

  19. XXXVI Polish Astronomical Society Meeting

    NASA Astrophysics Data System (ADS)

    Różańska, Agata; Bejger, Michał

    2014-12-01

    XXXVI meeting of Polish Astronomical Society was held in Warsaw on Sept. 11-14, 2013. The conference brought together 150 astronomers working in different institutes in Poland and abroad. The highlight of the Congress was the first awarding of the Paczynski's Medal. The first laureate of the Medal is Professor Martin Rees from University of Cambridge. Medal was given by the President of the Polish Astronomical Society prof. Bozena Czerny.

  20. Goddard High Resolution Spectrograph SV/GTO Project

    NASA Technical Reports Server (NTRS)

    Ebbets, Dennis

    1999-01-01

    Contract number NAS5-30433, known at Ball Aerospace as the GHRS SV/GTO project, supported our participation in the post-launch activities of the Goddard High Resolution Spectrograph aboard the Hubble Space Telescope. The period of performance was December 1988 through December 1998. The contract supported the involvement of Dr Dennis Ebbets in the work of the GHRS Investigation Definition Team, and several of the Ball people in the documentation and publication of results. Three main categories of tasks were covered by this contract; in-orbit calibration of the GHRS, guaranteed time observations, and education and public outreach. The nature and accomplishments of these tasks are described in the report. This summary makes many references to publications in the scientific and technical literature. Appendix A is extracted from a complete bibliography, and lists those papers that are directly related to work performed under this GHRS contract. The tasks related to the in-orbit calibration of the GHRS were by far the largest responsibility during the first six years of the project. During this period Dr. Ebbets was responsible for the definition of calibration requirements, design of experiments, preparation of observing proposals, tracking their implementation and execution, and coordinating the analysis and publication of the results. Prior to the launch of HST in 1990 the observing proposals were developed in cooperation with the scientists on the GHRS DDT, engineers at Ball Aerospace, the operations staff at the STScI, and project coordinators at GSFC.

  1. Professional Ethics for Astronomers

    NASA Astrophysics Data System (ADS)

    Marvel, K. B.

    2005-05-01

    There is a growing recognition that professional ethics is an important topic for all professional scientists, especially physical scientists. Situations at the National Laboratories have dramatically proven this point. Professional ethics is usually only considered important for the health sciences and the legal and medical professions. However, certain aspects of the day to day work of professional astronomers can be impacted by ethical issues. Examples include refereeing scientific papers, serving on grant panels or telescope allocation committees, submitting grant proposals, providing proper references in publications, proposals or talks and even writing recommendation letters for job candidates or serving on search committees. This session will feature several speakers on a variety of topics and provide time for questions and answers from the audience. Confirmed speakers include: Kate Kirby, Director Institute for Theoretical Atomic and Molecular Physics - Professional Ethics in the Physical Sciences: An Overview Rob Kennicutt, Astrophysical Journal Editor - Ethical Issues for Publishing Astronomers Peggy Fischer, Office of the NSF Inspector General - Professional Ethics from the NSF Inspector General's Point of View

  2. Really Bad Astronomers

    NASA Astrophysics Data System (ADS)

    Hockey, Thomas A.

    2009-01-01

    What happens when even Percival Lowell stops believing in your Mars observations? History can be troubling. This I learned while editing the Biographical Encyclopedia of Astronomers (Springer, 2007). There have been astronomers who do not fit our commonly held, and clung to, conceptual model: a sociological system that sifts out generally like-minded and sensible colleagues. I refer to those individuals who (for at least a time) successfully entered the mainstream profession, but now disturb our worldview that says prosperity as a scientist usually is achieved by a rational being holding certain common values. My List of Shame includes examples from each of the last four centuries. Not "crack pot” cosmologists, these were hard-working observers for whom the end justified the means. And they all got away with it. Each person I discuss was vetted by the professional establishment of the day. Yet you will learn how to be fired from a major observatory, banned from prominent journals. But only after damage to the science is done. Be afraid.

  3. Astronomer's Proposal Tool

    NASA Technical Reports Server (NTRS)

    Krueger, Tony

    2005-01-01

    Astronomer's Proposal Tool (APT) is a computer program that assists astronomers in preparing their Phase 1 and Phase 2 Hubble Space Telescope science programs. APT is a successor to the Remote Proposal Submission System 2 (RPS2) program, which has been rendered obsolete by more recent advances in computer software and hardware. APT exploits advances associated with widespread use of the Internet, multiplatform visual development software tools, and overall increases in the power of desktop computer hardware, all in such a way as to make the preparation and submission of proposals more intuitive and make observatory operations less cumbersome. APT provides documentation and help that are friendly, up to date, and easily accessible to users of varying levels of expertise, while defining an extensible framework that is responsive to changes in both technology and observatory operations. APT consists of two major components: (1) a set of software tools that are intuitive, visual, and responsive and (2) an integrated software environment that unifies all the tools and makes them interoperable. The APT tools include the Visual Target Tuner, Proposal Editor, Exposure Planner, Bright Object Checker, and Visit Planner.

  4. Grigor Narekatsi's astronomical insights

    NASA Astrophysics Data System (ADS)

    Poghosyan, Samvel

    2015-07-01

    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  5. Strasbourg's "First" astronomical observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The turret lantern located at the top of the Strasbourg Hospital Gate is generally considered as the first astronomical observatory of the city, but such a qualification must be treated with caution. The thesis of this paper is that the idea of a tower-observatory was brought back by a local scholar, Julius Reichelt (1637-1717), after he made a trip to Northern Europe around 1666 and saw the "Rundetårn" (Round Tower) recently completed in Copenhagen. There, however, a terrace allowed (and still allows) the full viewing of the sky, and especially of the zenith area where the atmospheric transparency is best. However, there is no such terrace in Strasbourg around the Hospital Gate lantern. Reichelt had also visited Johannes Hevelius who was then developing advanced observational astronomy in Gdansk, but nothing of the kind followed in Strasbourg. Rather, the Hospital Gate observatory was built essentially for the prestige of the city and for the notoriety of the university, and the users of this observing post did not make any significant contributions to the progress of astronomical knowledge. We conclude that the Hospital Gate observatory was only used for rudimentary viewing of bright celestial objects or phenomena relatively low on the horizon.

  6. A new generation of spectral extraction and analysis package for Fiber Optics Cassegrain Echelle Spectrograph (FOCES)

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Grupp, Frank; Kellermann, Hanna; Brucalassi, Anna; Schlichter, Jörg; Hopp, Ulrich; Bender, Ralf

    2016-08-01

    We describe a new generation of spectral extraction and analysis software package (EDRS2) for the Fibre Optics Cassegrain Echelle Spectrograph (FOCES), which will be attached to the 2m Fraunhofer Telescope on the Wendelstein Observatory. The package is developed based on Python language and relies on a variety of third party, open source packages such as Numpy and Scipy. EDRS2 contains generalized image calibration routines including overscan correction, bias subtraction, flat fielding and background correction, and can be supplemented by user customized functions to fit other echelle spectrographs. An optimal extraction method is adopted to obtain the one dimensional spectra, and the output multi order, wavelength calibrated spectra are saved in FITS files with binary table format. We introduce the algorithm and performance of major routines in EDRS2.

  7. An Ultraviolet Imaging Spectrograph for JIMO

    NASA Technical Reports Server (NTRS)

    Hendrix, A. R.; Esposito, L. W.; Pryor, W. R.; Stewart, A. I. F.; McClintock, W. E.; Hansen, C. J.

    2003-01-01

    It is vital to include an ultraviolet spectrograph as part of the JIMO payload to Europa, Ganymede and Callisto. Ultraviolet measurements are key for understanding the atmospheres, auroral activity and surfaces of these icy satellites, and a UV imaging spectrograph will also complement a visible camera and near-IR spectrometer, to achieve full wavelength coverage in remote sensing of the icy satellites. The UV instrument proposed for JIMO will be similar to that currently on board the Cassini spacecraft. The design draws on the experience of building UV spectrometers for Mariner, Pioneer, Galileo and Cassini. It will have three spectrographic channels that provide images and spectra of the atmosphere, aurorae and surface: An EUV channel (800-110 nm), an FUV channel (110 to 190 nm) range, and an NUV channel (180 to 350 nm).

  8. High Resolution Rocket EUV Solar Spectrograph.

    PubMed

    Behring, W E; Ugiansky, R J; Feldman, U

    1973-03-01

    The design and performance of an Aerobee 150 rocket-borne solar spectrograph covering a wavelength range of 10-385 A are discussed. The spectrograph uses a gold-coated replica concave grating of 3-m radius with 1200 grooves/mm at an angle of incidence of 88 degrees . The spectra are recorded on glass photographic plates making possible wavelength determination to 0.003 A if known standard wavelengths occur frequently enough. Special attention to scattered light made possible the photographing of the solar spectrum from 60 A to 385 A without using filters to absorb the strong visible and uv sunlight, although the solar spectrum was also recorded through metal foil filters. In the laboratory the spectrograph has been used to record spectra of highly ionized metals with a resolution of 0.03 A or better.

  9. National Student Solar Spectrograph Competition overview

    NASA Astrophysics Data System (ADS)

    Larimer, Randal M.; DesJardins, Angela; Shaw, Joseph A.; Kankelborg, Charles C.; Palmer, Christopher; Springer, Larry; Key, Joey; Knighton, W. Berk; Repasky, Kevin S.; Pust, Nathan J.; Hobish, Mitchell K.; Wilson, Edmond W.; Fitzgerald, Carrie; Fitzgerald, Ryan; Trickel, Thomas; Jensen, Clyde; Dorsett, Skye; Anderson, Matt; Boger, Jim; McCrady, Nate; Naylor, Jaylene; Battle, Laurie

    2012-10-01

    The yearly National Student Solar Spectrograph Competition (NSSSC) is Montana Space Grant Consortium's Education and Public Outreach (EP/O) Program for NASA's Interface Region Imaging Spectrograph (IRIS) mission. The NSSSC is designed to give schools with less aerospace activity such as Minority Serving Institutions and Community Colleges an opportunity for hands on real world research experience. The NSSSC provides students from across the country the opportunity to work as part of an undergraduate interdisciplinary team to design, build and test a ground based solar spectrograph. Over the course of nine months, teams come up with their own science goals and then build an instrument to collect data in support of their goals. Teams then travel to Bozeman, MT to demonstrate their instruments and present their results in a competitive science fair environment. This paper and poster will discuss the 2011-2012 competition along with results as well as provide information on the 2012 -2013 competition opportunities.

  10. IFSRED: Data Reduction for Integral Field Spectrographs

    NASA Astrophysics Data System (ADS)

    Rupke, David S. N.

    2014-09-01

    IFSRED is a general-purpose library for reducing data from integral field spectrographs (IFSs). For a general IFS data cube, it contains IDL routines to: (1) find and apply a zero-point shift in a wavelength solution on a spaxel-by-spaxel basis, using sky lines; (2) find the spatial coordinates of a flux peak; (3) empirically correct for differential atmospheric refraction; (4) mosaic dithered exposures; (5) (integer) rebin; and (6) apply a telluric correction. A sky-subtraction routine for data from the Gemini Multi-Object Spectrograph and Imager (GMOS) that can be easily modified for any instrument is also included. IFSRED also contains additional software specific to reducing data from GMOS and the Gemini Near-Infrared Integral Field Spectrograph (NIFS).

  11. HIRDES - The high-resolution double-echelle spectrograph for the World Space Observatory Ultraviolet (WSO/UV)

    NASA Astrophysics Data System (ADS)

    Werner, K.; Wso/Uv-Hirdes Team

    The World Space Observatory Ultraviolet WSO UV is a multi-national project grown out of the needs of the astronomical community to have future access to the ultraviolet range of the electromagnetic spectrum The development of the WSO UV S C and the telescope is headed by the Russian Federal Space Agency Roscosmos The mission is scheduled to be launched in 2010 into the L2 orbit The WSO UV consists of a single Ultraviolet Telescope incorporating a primary mirror of 1 7 m diameter feeding UV spectrometer and UV imagers The UV spectrometer comprises three different single spectrographs two high resolution echelle spectrographs - the High Resolution Double Echelle Spectrograph HIRDES - and a low dispersion long slit instrument Within the HIRDES the spectral band 102 - 310 nm is separated to feed two echelle spectrographs covering the UV range between 174 and 310 nm UVES and the Vacuum-UV range between 102 and 176 nm VUVES with a very high spectral resolution of 50000 Each spectrograph encompasses a stand-alone optical bench structure with a fully redundant high-speed MCP detector system the optomechanics and a network of mechanisms with different functionalities The fundamental technical concept is based on the heritage of the two previous ORFEUS-SPAS missions The phase B1 development activities are described in this paper under consideration of performance aspects design drivers the related trade offs e g mechanical concepts material selection MCP detector efficiency etc and the critical functional and environmental test

  12. Integrating the HERMES spectrograph for the AAT

    NASA Astrophysics Data System (ADS)

    Heijmans, Jeroen; Asplund, Martin; Barden, Sam; Birchall, Michael; Carollo, Daniela; Bland-Hawthorn, Joss; Brzeski, Jurek; Case, Scott; Churilov, Vladimir; Colless, Matthew; Dean, Robert; De Silva, Gayandhi; Farrell, Tony; Fiegert, Kristin; Freeman, Kenneth; Gers, Luke; Goodwin, Michael; Gray, Doug; Heald, Ron; Heng, Anthony; Jones, Damien; Kobayashi, Chiaki; Klauser, Urs; Kondrat, Yuriy; Lawrence, Jon; Lee, Steve; Mathews, Darren; Mayfield, Don; Miziarski, Stan; Monnet, Guy J.; Muller, Rolf; Pai, Naveen; Patterson, Robert; Penny, Ed; Orr, David; Sheinis, Andrew; Shortridge, Keith; Smedley, Scott; Smith, Greg; Stafford, Darren; Staszak, Nicholas; Vuong, Minh; Waller, Lewis; Whittard, Denis; Wylie de Boer, Elisabeth; Xavier, Pascal; Zheng, Jessica; Zhelem, Ross; Zucker, Daniel

    2012-09-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an optical spectrograph designed primarily for the GALAH, Galactic Archeology Survey, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way1. The goal of the GALAH survey is to reconstruct the mass assembly history of the of the Milky way, through a detailed spatially tagged abundance study of one million stars in the Milky Way. The spectrograph will be based at the Anglo Australian Telescope (AAT) and be fed with the existing 2dF robotic fibre positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 aiming for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2 degree field of view. Current efforts are focused on manufacturing and integration. The delivery date of spectrograph at the telescope is scheduled for 2013. A performance prediction is presented and a complete overview of the status of the HERMES spectrograph is given. This paper details the following specific topics: The approach to AIT, the manufacturing and integration of the large mechanical frame, the opto-mechanical slit assembly, collimator optics and cameras, VPH gratings, cryostats, fibre cable assembly, instrument control hardware and software, data reduction.

  13. Mass producing an efficient NIR spectrograph

    NASA Astrophysics Data System (ADS)

    Wilson, John C.; Henderson, Charles P.; Herter, Terry L.; Matthews, Keith; Skrutskie, Michael F.; Adams, Joseph D.; Moon, Dae-Sik; Smith, Roger; Gautier, Nick; Ressler, Michael; Soifer, B. T.; Lin, Sean; Howard, James; LaMarr, John; Stolberg, Todd M.; Zink, Jeff

    2004-09-01

    Four institutions are collaborating to design and build three near identical R ~2700 cross-dispersed near-infrared spectrographs for use on various 5-10 meter telescopes. The instrument design addresses the common observatory need for efficient, reliable near-infrared spectrographs through such features as broad wavelength coverage across 6 simultaneous orders (0.8 - 2.4 microns) in echelle format, real-time slit viewing through separate optics and detector, and minimal moving parts. Lastly, the collaborators are saving money and increasing the likelihood of success through economies of scale and sharing intellectual capital.

  14. High Resolution Telescope and Spectrograph (HRTS)

    NASA Astrophysics Data System (ADS)

    Moore, R.

    1986-01-01

    The major objectives of the high resolution telescope and spectrograph (HRTS) are: (1) the investigation of the energy balance and mass balance of the temperature minimum, chromosphere, transition zone, and corona in quiet regions on the Sun as well as in plages, flares, and sunspots; (2) the investigation of the velocity field of the lower corona to study the origin of the solar wind; and (3) the investigation of preflare and flare phenomena. The HRTS instruments consists of a telescope, an ultraviolet spectrograph, an ultraviolet spectroheliograph, and an H alpha slit display system, all housed in a thermal control cannister mounted on an instrument pointing system.

  15. High Resolution Telescope and Spectrograph (HRTS)

    NASA Astrophysics Data System (ADS)

    Moore, R. L.

    The major objectives of the high resolution telescope and spectrograph (HRTS) are: (1) the investigation of the energy balance and mass balance of the temperature minimum, chromosphere, transition zone, and corona in quiet regions on the Sun as well as in plages, flares, and sunspots; (2) the investigation of the velocity field of the lower corona to study the origin of the solar wind; (3) the investigation of preflare and flare phenomena. The HRTS instruments consists of a telescope, an ultraviolet spectrograph, and ultraviolet spectroheliograph, and an H alpha slit display system, all housed in a thermal control canister mounted on an instrument pointing system.

  16. Initial results from VIRUS production spectrographs

    NASA Astrophysics Data System (ADS)

    Tuttle, Sarah E.; Allen, Richard D.; Chonis, Taylor S.; Cornell, Mark E.; DePoy, Darren L.; Hill, Gary J.; Lee, Hanshin; Marshall, Jennifer L.; Prochaska, Travis; Rafal, Marc D.; Savage, Richard D.; Vattiat, Brian L.

    2012-09-01

    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) uses a novel technique of replicated spectrographs (VIRUS) to measure dark energy at intermediate redshifts (2 < z < 4). VIRUS contains over 30,000 fibers and over 160 independent and identical channels. Here we report on the construction and characterization of the initial batch of VIRUS spectrograph cameras. Assembly of the first batch of 16 is in progress. A brief overview of the assembly is presented, and where available performance is compared to specification.

  17. VIRUS spectrograph assembly and alignment procedures

    NASA Astrophysics Data System (ADS)

    Prochaska, Travis; Allen, Richard D.; Boster, Emily; DePoy, D. L.; Herbig, Benjamin; Hill, Gary J.; Lee, Hanshin; Marshall, Jennifer L.; Martin, Emily C.; Meador, William; Rheault, Jean-Philippe; Tuttle, Sarah E.; Vattiat, Brian L.

    2012-09-01

    We describe the mechanical assembly and optical alignment processes used to construct the Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument. VIRUS is a set of 150+ optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). To meet the instrument's manufacturing constraints, a production line will be set up to build subassemblies in parallel. To aid in the instrument's assembly and alignment, specialized fixtures and adjustment apparatuses have been developed. We describe the design and operations of the various optics alignment apparatuses, as well as the mirrors' alignment and bonding fixtures.

  18. HETDEX: VIRUS Spectrographs Assembly and Alignment

    NASA Astrophysics Data System (ADS)

    Prochaska, Travis; Marshall, J. L.; DePoy, D. L.; Boster, E.; Meador, W.; Allen, R.; Hill, G. J.; HETDEX Collaboration

    2012-01-01

    We describe the assembly and optical alignment process used to construct the Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument. VIRUS is a set of 150+ optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). To meet the accuracy, interchangeability, time and cost constraints, a production line will be set up to construct and test modular subassemblies in parallel. To facilitate the VIRUS production, fixtures and adjustment mechanisms have been designed to aid in assembly and alignment. This poster describes the details and operations of the camera mirror, collimator mirror and grating adjustment mechanisms, as well as the fold flat mirror alignment fixture.

  19. The Spartan-281 Far Ultraviolet Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Heckathorn, Harry M.; Dufour, Reginald J.; Opal, Chet B.; Raymond, John C.

    1988-01-01

    The U.S. Naval Research Laboratory's Far Ultraviolet Imaging Spectrograph (FUVIS), currently under development for flight as a Spartan shuttle payload, is designed to perform spectroscopy of diffuse sources in the FUV with very high sensitivity and moderate spatial and spectral resolution. Diffuse nebulae, the general galactic background radiation, and artificially induced radiation associated with the Space Shuttle vehicle are sources of particular interest. The FUVIS instrument will cover the wavelength range of 970-2000 A with selectable resolutions of 5 and 30 A. It is a slit imaging spectrograph having 3 arcmin spatial resolution along its 2.7 deg long slit.

  20. Performance estimates for spectrographs using photonic reformatters

    NASA Astrophysics Data System (ADS)

    Harris, Robert J.; Labadie, Lucas; Lemke, Ulrike; MacLachlan, David G.; Thomson, Robert R.; Reffert, Sabine; Quirrenbach, Andreas

    2016-07-01

    Using a photonic reformatter to eliminate the effects of conventional modal noise could greatly improve the stability of a high resolution spectrograph. However the regimes where this advantage becomes clear are not yet defined. Here we will look at where modal noise becomes a problem in conventional high resolution spectroscopy and what impact photonic spectrographs could have. We will theoretically derive achievable radial velocity measurements to compare photonic instruments and conventional ones. We will discuss the theoretical and experimental investigations that will need to be undertaken to optimize and prove the photonic reformatting concept.

  1. Measuring the color and brightness of artificial sky glow from cities using an all-sky imaging system calibrated with astronomical methods in the Johnson-Cousins B and V photometric systems

    NASA Astrophysics Data System (ADS)

    Pipkin, Ashley; Duriscoe, Dan M.; Lughinbuhl, Christian

    2017-01-01

    Artificial light at night, when observed at some distance from a city, results in a dome of sky glow, brightest at the horizon. The spectral power distribution of electric light utilized will determine its color of the light dome and the amount of light will determine its brightness. Recent outdoor lighting technologies have included blue-rich light emitting diode (LED) sources that may increase the relative amount of blue to green light in sky glow compared to typical high pressure sodium (HPS) sources with warmer spectra. Measuring and monitoring this effect is important to the preservation of night sky visual quality as seen from undeveloped areas outside the city, such as parks or other protected areas, since the dark-adapted human eye is more sensitive to blue and green. We present a method using a wide field CCD camera which images the entire sky in both Johnson V and B photometric bands. Standard stars within the images are used for calibration. The resulting all-sky brightness maps, and a derived B-V color index map, provide a means to assess and track the impact of specific outdoor lighting practices. We also present example data from several cities, including Las Vegas, Nevada, Flagstaff, Arizona, and Cheyenne, Wyoming.

  2. Space Telescope Imaging Spectrograph Co-Investigator Support

    NASA Technical Reports Server (NTRS)

    Weistrop, Donna

    2003-01-01

    The purpose of this contract has been to support investigation of astronomical problems primarily using data from the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). As a Co-investigator on STIS, I participated in several projects, which will be described below. The research resulted in 19 papers in refereed journals, 8 papers published in conference proceedings, and 27 papers presented at meetings. There are still at least four papers submitted or in press, as well as some additional research yet to be written up for publication. The research has also produced one master's thesis and two PhD dissertations currently underway, with one to be completed Spring 2003. Undergraduates have participated in the analysis of supporting observations. One student has published some of his results in a web- based refereed publication for undergraduate research (www.jyi.org). I have given several talks to the general public describing results from the HST as well as the results of my research. I have been named the UNLV Regents' Outstanding Faculty Member for 1995 and received the 2002 College of Science Distinguished Researcher's Award as a result of these activities.

  3. GO-IRS: GTC Optical Intermediate-Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.; Ge, J.; Moles, M.; Alfaro, E.; Montes, D.; Jing, Y. P.; Chu, J.; González, A. H.; Wang, T. G.; Hao, L.

    2011-11-01

    GO-IRS stands for "GTC Optical Intermediate Resolution Spectrograph". It is the answer of a big team of over 100 experienced researchers and engineersin the United States, China and Spain to the recent call for new instrumentationfor the 10.4 m Gran Telescopio Canarias. The GO-IRS main facts are: 1000 MOS fibres in a 15 arcmin circular field of view; 4 x 400 IFU fibres in the central 2 arcmin; two channels: blue Δλ = 0.37 - 0.60 μ m) and red (Δλ = 0.60 - 1.00 μ m); R= 20k, 10k, 5k (red), 2k (blue) and intermediate spectral resolutions; and use of telescope-proof technology (e.g. LAMOST, MARVELS). The GO-IRS Science Team is developing three design reference cases on near-fieldcosmology in the Milky Way, kinematics and abundances in galaxies of the LocalGroup and of the local Universe, and astrophysical properties and clustering ofdistant galaxies at z=1-4. We open our GO-IRS Science Team to all Spanish astronomers interested in workingwith us. Visit our URL at http://marvels.astro.ufl.edu/GO-IRS

  4. EMIR: the GTC NIR multi-object imager-spectrograph

    NASA Astrophysics Data System (ADS)

    Garzón, F.; Abreu, D.; Barrera, S.; Correa, S.; Díaz, J. J.; Fragoso, A. B.; Fuentes, F. J.; Gago, F.; González, C.; López, P.; Manescau, A.; Patrón, J.; Pérez, J.; Redondo, P.; Restrepo, R.; Sánchez, V.; Villegas, A.

    2005-12-01

    We present the final global design and performances of EMIR, the NIR multiobject spectrograph of the GTC, as well as the plan for its early scientific exploitation. EMIR, currently in the middle of its final phase, will be one of the first common user instruments for the GTC, the 10 meter telescope under construction by GRANTECAN at the Roque de los Muchachos Observatory (Canary Islands, Spain). EMIR is being built by a Consortium of Spanish and French institutes led by the IAC. EMIR is designed to realize one of the central goals of 10m class telescopes, allowing observers to obtain spectra for large numbers of faint sources in an time-efficient manner. EMIR is primarily designed to be operated as a MOS in the K band, but offers a wide range of observing modes, which include imaging and spectroscopy, both long slit and multiobject, in the wavelength range 0.9 to 2.5μ m. It is equipped with two innovative subsystems: a robotic reconfigurable multislit mask and dispersive elements formed by the combination of high quality diffraction grating and conventional prisms, both at the heart of the instrument. The present status of development, expected performances, schedule and plans for scientific exploitation are described and discussed. This project is mostly funded by GRANTECAN and the Plan Nacional de Astronomía y Astrofísica (National Plan for Astronomy and Astrophysics, Spain).

  5. EMIR: a Near-Infrared Multiobject Spectrograph for the GTC

    NASA Astrophysics Data System (ADS)

    Garzón, F.; Fuentes, J.; Manescau, A.; Díaz, J. J.; Patrón, J.; Pelló, R.; López, J. C.; Pérez, J.; Fragoso, A. B.; Gago, F.; Beigbeder, F.; Sanchez, V.; Correa, S.; Villegas, A.

    In this contribution, we review the overall features of EMIR, the NIR multiobject spectrograph of the GTC. EMIR is at present in the middle of its PD phase and will be one of the first common user instruments for the GTC, the 10 meter telescope under construction by GRANTECAN at the Roque de los Muchachos Observatory (Canary Islands, Spain). EMIR is being built by a Consortium of Spanish, French, and British institutes led by the IAC. EMIR is designed to realize one of the central goals of 10 m class telescopes, that of allowing observers to obtain spectra for large numbers of faint sources in a time-efficient manner. EMIR is primarily designed to be operated as a MOS in the K band but offers a wide range of observing modes, including imaging and spectroscopy, both long slit and multiobject, in the wavelength range 0.9 to 2.5 μ m. The present status of development of EMIR, its expected performance, and the project schedule are described and discussed. This project is funded by GRANTECAN and the Plan Nacional de Astronomía y Astrofísica (National Plan for Astronomy and Astrophysics, Spain).

  6. Immanuel Halton, the astronomer

    NASA Astrophysics Data System (ADS)

    Barber, P. M.

    1996-02-01

    Immanuel Halton was born in Cumberland, studied at Grays Inn, London during the later stages of the English Civil War and, during the Commonwealth, entered the service of Henry Howard, later 6th Duke of Norfolk. He pursued his mathematical and astronomical interests while auditor to the Duke of Norfolk. He met with John Flamsteed, encouraged the latter's interest in mathematics and astronomy and became his first patron, as well as contributing observations to Flamsteed's published works. Immanuel ended his days at Wingfield Manor, Derbyshire. A short biographical piece on Immanuel Halton appeared in the Journal in the early 1950s, consisting mostly of quotations from Flamsteed's 'Self Inspections' and Baily's 'Life of Flamsteed'. 1996 is the 350th anniversary of Flamsteed's birth, and it is hoped that this fuller account will flesh out the bones of his first patron.

  7. Astronomers against Newton.

    PubMed

    Higgitt, Rebekah

    2004-03-01

    Francis Baily's publication of the manuscripts of John Flamsteed, the first Astronomer Royal, provoked a furious response. Flamsteed had quarrelled with Isaac Newton, and described him in terms unforgivable to those who claimed him as a paragon of all virtues, both moral and scientific. Baily was condemned for putting Flamsteed's complaints in the public sphere. However, his supporters saw his work as a critique of the excessive hero-worship accorded to Newton. Written when the word 'scientist' had been newly coined, this work and the debates it provoked gives us an insight into contemporary views of the role of the man of science and of the use of science to back political, religious and moral positions.

  8. The Amateur Astronomer

    NASA Astrophysics Data System (ADS)

    Moore, Patrick

    This 2000 Edition of Sir Patrick Moore’s classic book has been completely revised in the light of changes in technology. Not only do these changes include commercially available astronomical telescopes and software, but also what we know and understand about the universe. There are many new photographs and illustrations. Writing in the easy-going style that made him famous as a writer and broadcaster, Sir Patrick introduced astronomy and amateur observing together, so that his reader gets an idea of what he is observing at the same time as how to observe. Almost half the book is Appendices. These are hugely comprehensive and provide hints and tips, as well as data (year 2000 onwards) for pretty well every aspect of amateur astronomy. This is probably the only book in which all this information is collected in one place.

  9. Astronomy without astronomers?

    NASA Astrophysics Data System (ADS)

    Stavinschi, Magdalena

    Astronomy in Romania has an old tradition. After half a century of privations and isolation from the rest of the world, we believed that the changes undergone by our country in 1989 (and by the neighbour countries, as well) will be benefit for the Romanian astronomy, too. Indeed, it was, but for a very short period. The young people left the country, one by one, and others cannot accept the low salary offered by a research institute. The economy doesn't allow us to enrich the astronomical endowment. Of course, we cannot close the observatories. We have to find other ways to save the astronomy in this part of Europe, especially in the epoch of the space astronomy.

  10. East Asian astronomical records

    NASA Astrophysics Data System (ADS)

    Stephenson, F. Richard

    Chinese, Japanese and Korean celestial observations have made major contributions to Applied Historical Astronomy, especially in the study of supernovae, comets, Earth's rotation (using eclipses) and solar variability (via sunspots and aurorae). Few original texts now survive; almost all extant records exist only in printed versions, often with the loss of much detail. The earliest Chinese astronomical observations extend back to before 1000 BC. However, fairly systematic records are only available since 200 BC - and even these have suffered losses through wars, etc. By around AD 800, many independent observations are available from Japan and Korea and these provide a valuable supplement to the Chinese data. Throughout East Asia dates were expressed in terms of a luni-solar calendar and conversion to the Julian or Gregorian calendar can be readily effected.

  11. Astronomical education in Armenia

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.

    2006-08-01

    First ideas on astronomy pupils in Armenia get at elementary schools. Astronomy as a distinct subject is taught at all secondary schools in the country. Teaching is conducted according to a unified program elaborated jointly by professional astronomers and astronomy teachers. Unfortunately only one hour per week is allotted for teaching astronomy which obviously is not enough workload to hire specialized astronomy teachers at every school and at many schools this subject is tutored by non-specialists. Many schools partly compensate this lack organizing visits to the Byurakan observatory (BAO) for pupils where they also attend short lectures on astronomy. In some schools facultative training is organized faced to the amateurs purposive for deeper learning astronomy. During recent years annual competitions for revealing gifted pupils in astronomy are organized. These competitions have three rounds, namely, in schools, in districts and final one as a rule holds at BAO. The country winners successfully participate and win prestigious prizes in the international astronomical Olympiads as well. At Yerevan State University (YSU) a department for astrophysics was set up in 1946 operating to date. This department trains specialists for a career in astrophysics. Only one or two students graduate from this department yearly at present while in 80s a dozen of specialists were trained every year. BAO serves as the scientific base for the students of YSU as well and a number of staff members from BAO conduct special courses for YSU students. YSU provides Master's degree in astrophysics, and BAO is granting Doctor's (PhD) degree since 70s of last century.

  12. An Astronomically Dated Standard in 40Ar/39Ar Geochronology?

    NASA Astrophysics Data System (ADS)

    Kuiper, K.; Hilgen, F.; Krijgsman, W.; Wijbrans, J.

    2003-12-01

    The standard geological time scale of Berggren et al. (1995) and Cande and Kent (1995) is calibrated with different absolute dating techniques, i.e. the Plio - Pleistocene relies on astronomical tuning, and older parts of the time scale are based on radio-isotopic (40Ar/39Ar and U/Pb) calibration methods. In the new edition of the standard geological timescale (Lourens et al., to be published in 2004) the entire Neogene will rely on astronomical dating. Therefore, it is of crucial importance that all dating methods produce equivalent absolute ages when the same geological event is dated. The Mediterranean Neogene provides an excellent opportunity to compare different dating methods by isotopic dating (40Ar/39Ar, U/Pb) of volcanic ash layers intercalated in astronomically dated sediments. Here we will show that in spite of potential errors in all methods, we succeeded to intercalibrate the 40Ar/39Ar and astronomical methods, arriving at astronomically calibrated age of 28.24 +/- 0.01 Ma for the in 40Ar/39Ar geochronology commonly used standard FCT sanidine. The advantage of an astronomically calibrated FCT above a K/Ar calibrated standard is a smaller error in the absolute age due to the lack of uncertainties related to 40K and radiogenic 40Ar contents in the primary standard and a decreasing influence of errors in the decay constant (branching ratio is not required). In addition to an astronomically calibrated FCT age we propose to introduce an astronomically dated standard. A direct astronomically dated standard can be regarded as a "primary" standard and does not require intercalibration with other standards, thus reducing analytical (and geological) uncertainties. Ash layers intercalated in sedimentary sequences in the Melilla Basin, Morocco appear to be the most suitable for this purpose. A reliable astronomical time control is available and intercalated ash layers contain sanidine phenocrysts up to 2 mm. Four ash layers are not or barely affected by

  13. pwkit: Astronomical utilities in Python

    NASA Astrophysics Data System (ADS)

    Williams, Peter K. G.; Clavel, Maïca; Newton, Elisabeth; Ryzhkov, Denis

    2017-04-01

    pwkit is a collection of miscellaneous astronomical utilities in Python, with an emphasis on radio astronomy, reading and writing various data formats, and convenient command-line utilities. Utilities include basic astronomical calculations, data visualization tools such as mapping arbitrary data to color scales and tracing contours, and data input and output utilities such as streaming output from other programs.

  14. Radiation events in astronomical CCD images

    SciTech Connect

    Smith, A.R.; McDonald, R.J.; Hurley, D.L.; Holland, S.E.; Groom, D.E.; Brown, W.E.; Gilmore, D.K.; Stover, R.J.; Wei, M.

    2001-12-18

    The remarkable sensitivity of depleted silicon to ionizing radiation is a nuisance to astronomers. ''Cosmic rays'' degrade images because of struck pixels, leading to modified observing strategies and the development of algorithms to remove the unwanted artifacts. In the new-generation CCD's with thick sensitive regions, cosmic-ray muons make recognizable straight tracks and there is enhanced sensitivity to ambient gamma radiation via Compton-scattered electrons (''worms''). Beta emitters inside the dewar, for example high-potassium glasses such as BK7, also produce worm-like tracks. The cosmic-ray muon rate is irreducible and increases with altitude. The gamma rays are mostly by-products of the U and Th decay chains; these elements always appear as traces in concrete and other materials. The Compton recoil event rate can be reduced significantly by the choice of materials in the environment and dewar and by careful shielding. Telescope domes appear to be significantly cleaner than basement laboratories and Coude spectrograph rooms. Radiation sources inside the dewar can be eliminated by judicious choice of materials. Cosmogenic activation during high-altitude flights does not appear to be a problem. Our conclusions are supported by tests at the Lawrence Berkeley National Laboratory low-level counting facilities in Berkeley and at Oroville, California (180 m underground).

  15. Radiation events in astronomical CCD images

    NASA Astrophysics Data System (ADS)

    Smith, Alan R.; McDonald, Richard J.; Hurley, D. C.; Holland, Steven E.; Groom, Donald E.; Brown, William E.; Gilmore, David K.; Stover, Richard J.; Wei, Mingzhi

    2002-04-01

    The remarkable sensitivity of depleted silicon to ionizing radiation is a nuisance to astronomers. 'Cosmic rays' degrade images because of struck pixels, leading to modified observing strategies and the development of algorithms to remove the unwanted artifacts. In the new-generation CCD's with thick sensitive regions, cosmic-ray muons make recognizable straight tracks and there is enhanced sensitivity to ambient gamma radiation via Compton-scattered electrons ('worms'). Beta emitters inside the dewar, for example high-potassium glasses such as BK7 , also produce worm-like tracks. The cosmic-ray muon rate is irreducible and increases with altitude. The gamma rays are mostly by- products of 40K decay and the U and Th decay chains; these elements commonly appear as traces in concrete and other materials. The Compton recoil event rate can be reduced significantly by the choice of materials in the environment and dewar and by careful shielding. Telescope domes appear to have significantly lower rates than basement laboratories and Coude spectrograph rooms. Radiation sources inside the dewar can be eliminated by judicious choice of materials. Cosmogenic activation during high-altitude fights does not appear to be a problem. Our conclusion are supported by tests at the Lawrence Berkeley National Laboratory low-level counting facilities in Berkeley and at Oroville, California (180 m underground).

  16. Pipeline Calibration for STIS

    NASA Astrophysics Data System (ADS)

    Hodge, P. E.; Hulbert, S. J.; Lindler, D.; Busko, I.; Hsu, J.-C.; Baum, S.; McGrath, M.; Goudfrooij, P.; Shaw, R.; Katsanis, R.; Keener, S.; Bohlin, R.

    The CALSTIS program for calibration of Space Telescope Imaging Spectrograph data in the OPUS pipeline differs in several significant ways from calibration for earlier HST instruments, such as the use of FITS format, computation of error estimates, and association of related exposures. Several steps are now done in the pipeline that previously had to be done off-line by the user, such as cosmic ray rejection and extraction of 1-D spectra. Although the program is linked with IRAF for image and table I/O, it is written in ANSI C rather than SPP, which should make the code more accessible. FITS extension I/O makes use of the new IRAF FITS kernel for images and the HEASARC FITSIO package for tables.

  17. Improving the automatic wavelength calibration of EMIR spectroscopic data

    NASA Astrophysics Data System (ADS)

    Cardiel, N.; Pascual, S.; Picazo, P.; Gallego, J.; Garzón, F.; Castro-Rodríguez, N.; González-Fernández, C.; Hammersley, P.; Insausti, M.; Manjavacas, E.; Miluzio, M.

    2017-03-01

    EMIR, the near-infrared camera-spectrograph operating in the near-infrared (NIR) wavelengths 0.9-2.5μm, is being commissioned at the Nasmyth focus of the Gran Telescopio CANARIAS. One of the most outstanding capabilities of EMIR will be its multi-object spectroscopic mode which, with the help of a robotic reconfigurable slit system, will allow to take around 53 spectra simultaneously. A data reduction pipeline, PyEmir, based on Python, is being developed in order to facilitate the automatic reduction of EMIR data taken in both imaging and spectroscopy mode. Focusing on the reduction of spectroscopic data, some critical manipulations include the geometric distortion correction and the wavelength calibration. Although usually these reductions steps are carried out separately, it is important to realise that these kind of manipulations involve data rebinning and interpolation, which in addition unavoidably lead to the increase of error correlation and to resolution degradation. In order to minimise these effects, it is possible to incorporate those data manipulations as a single geometric transformation. This approach is being used in the development of PyEmir. For this purpose, the geometric transformations available in the Python package Scikit-image are being used. This work was funded by the Spanish Programa Nacional de Astronomía y Astrofísica under grant AYA2013-46724-P.

  18. The FIREBall fiber-fed UV spectrograph

    NASA Astrophysics Data System (ADS)

    Tuttle, Sarah E.; Schiminovich, David; Milliard, Bruno; Grange, Robert; Martin, D. Christopher; Rahman, Shahinur; Deharveng, Jean-Michel; McLean, Ryan; Tajiri, Gordon; Matuszewski, M.

    2008-07-01

    FIREBall (Faint Intergalactic Redshifted Emission Balloon) had a successful first engineering flight in July of 2007 from Palestine, Texas. Here we detail the design and construction of the spectrograph. FIREBall consists of a 1m telescope coupled to a fiber-fed ultraviolet spectrograph flown on a short duration balloon. The spectrograph is designed to map hydrogen and metal line emission from the intergalactic medium at several redshifts below z=1, exploiting a small window in atmospheric oxygen absorption at balloon altitudes. The instrument is a wide-field IFU fed by almost 400 fibers. The Offner mount spectrograph is designed to be sensitive in the 195-215nm window accessible at our altitudes of 35-40km. We are able to observe Lyα, as well as OVI and CIV doublets, from 0.3 < z < 0.9. Observations of UV bright B stars and background measurements allow characterization of throughput for the entire system and will inform future flights.

  19. Sky Subtraction with Fiber-Fed Spectrograph

    NASA Astrophysics Data System (ADS)

    Rodrigues, Myriam

    2017-09-01

    "Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."

  20. Phase A: calibration concepts for HIRES

    NASA Astrophysics Data System (ADS)

    Huke, Philipp; Origlia, Livia; Riva, Marco; Charsley, Jake; McCracken, Richard; Reid, Derryck; Kowzan, Grzegorz; Maslowski, Piotr; Disseau, Karen; Schäfer, Sebastian; Broeg, Christopher; Sarajlic, Mirsad; Dolon, François; Korhonen, Heidi; Reiners, Ansgar; Boisse, Isabelle; Perruchot, Sandrine; Ottogalli, Sebastien; Pepe, Francesco; Oliva, Ernesto

    2017-06-01

    The instrumentation plan for the E-ELT foresees a High Resolution Spectrograph (HIRES). Among its main goals are the detection of atmospheres of exoplanets and the determination of fundamental physical constants. For this, high radial velocity precision and accuracy are required. HIRES will be designed for maximum intrinsic stability. Systematic errors from effects like intrapixel variations or random errors like fiber noise need to be calibrated. Based on the main requirements for the calibration of HIRES, we discuss different potential calibration sources and how they can be applied. We outline the frequency calibration concept for HIRES using these sources.

  1. VXMS: the VISTA extreme multiplex spectrograph

    NASA Astrophysics Data System (ADS)

    Content, Robert; Shanks, Tom; Sharples, Ray; Bramall, David; Percival, Will

    2012-09-01

    A study for a spectrograph delivering at least 10000 slits for galaxies and 20000 for stars over a 2.5 deg2 field have been completed as an answer to the call for proposal for future VISTA MOS instrumentation. In a single night, 65000 galaxy redshifts can be measured to z~0.7 and beyond for measuring the Baryon Acoustic Oscillation (BAO) scale and many other science goals. The design features ten cloned spectrographs which give a smaller total weight and length than a unique spectrograph to make it placable in the space envelope of the Cassegrain focus. The clones use a transparent design including a grism in which all optics are about the size or smaller than the clone rectangular subfield so that they can be tightly packed with little gaps between subfields. Only low cost glasses are used; the variations in chromatic aberrations between bands are compensated by changing a box containing the grism and two adjacent lenses. Two bands cover the 550nm to 900nm wavelength range at resolution of 1100 for blue end and 3000 for red end while another cover the Calcium triplet at 5000. An optional box does imaging but we studied different innovative methods for acquisition without imaging. A new 2.3° corrector was designed that places the pupil before and relatively near the focal plane which permits to give more space at the back of the spectrographs by placing them in a hedgehog configuration. An offaxis field lens in each spectrograph permits to control the pupil position.

  2. Ground support electronic interface for the ionospheric spectroscopy and atmospheric chemistry (ISAAC) ultraviolet spectrograph. Master`s thesis

    SciTech Connect

    MacQuarrie, J.A.

    1994-12-01

    This thesis details the design and development of an electronic Ground Support Equipment (GSE) interface for the Naval Postgraduate School`s (NPS) Ionospheric Spectroscopy and Atmospheric Chemistry (ISAAC) spectrograph. The ISAAC spectrograph, which was designed at NPS and built by Research Support Instruments, Inc., is intended to observe atmospheric airglow and auroral emissions in the ultraviolet (1800A to 3300A) wavelength region. It is to be included as one of several sensors flown onboard the Advanced Research and Global Observation Satellite (ARGOS), which is scheduled for an early 1996 launch. The GSE was developed in order to allow ground testing and calibration of the instrument prior to and during integration with the satellite bus. The GSE includes hardware to provide the connections between various components of the spectrograph and a Macintosh computer with an installed I/O card. The GSE also includes a user-friendly software interface written with LabVIEW 2.2 that provides the ability to view spectra obtained from the instrument and to remotely control mechanical functions of the spectrograph. An initial wavelength calibration of the spectrograph has been performed using the completed GSE.

  3. Astronomical dating in the 19th century

    NASA Astrophysics Data System (ADS)

    Hilgen, Frederik J.

    2010-01-01

    Today astronomical tuning is widely accepted as numerical dating method after having revolutionised the age calibration of the geological archive and time scale over the last decades. However, its origin is not well known and tracing its roots is important especially from a science historic perspective. Astronomical tuning developed in consequence of the astronomical theory of the ice ages and was repeatedly used in the second half of the 19th century before the invention of radio-isotopic dating. Building upon earlier ideas of Joseph Adhémar, James Croll started to formulate his astronomical theory of the ice ages in 1864 according to which precession controlled ice ages occur alternatingly on both hemispheres at times of maximum eccentricity of the Earth's orbit. The publication of these ideas compelled Charles Lyell to revise his Principles of Geology and add Croll's theory, thus providing an alternative to his own geographical cause of the ice ages. Both Croll and Lyell initially tuned the last glacial epoch to the prominent eccentricity maximum 850,000 yr ago. This age was used as starting point by Lyell to calculate an age of 240 million years for the beginning of the Cambrium. But Croll soon revised the tuning to a much younger less prominent eccentricity maximum between 240,000 and 80,000 yr ago. In addition he tuned older glacial deposits of late Miocene and Eocene ages to eccentricity maxima around 800,000 and 2,800,000 yr ago. Archibald and James Geikie were the first to recognize interglacials during the last glacial epoch, as predicted by Croll's theory, and attempted to tune them to precession. Soon after Frank Taylor linked a series of 15 end-moraines left behind by the retreating ice sheet to precession to arrive at a possible age of 300,000 yr for the maximum glaciation. In a classic paper, Axel Blytt (1876) explained the scattered distribution of plant groups in Norway to precession induced alternating rainy and dry periods as recorded by the

  4. Mass production of volume phase holographic gratings for the VIRUS spectrograph array

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis

    2014-07-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 < λ (nm) < 550. Including witness samples, a suite of 170 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.

  5. A simple method to calibrate intensities of photographic slit spectrograms

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Barrera, L. H.

    1985-07-01

    A wavelength-dependent intensity calibration of photographic spectrograms can be obtained through the spectrograph without any additional equipment beyond a simple neutral density filter of known transparency. This filter is introduced in the focal plane of the telescope covering part of the spectrograph slit. Exposure of the comparison lamps through the entire slit yields a calibration plate which shows a well defined density jump within each line. From the height of this jump (for many lines of widely ranging strengths) the characteristic curve can be derived. The method is described and compared to the classical calibration method with a tube sensitometer.

  6. Successful "First Light" for VLT High-Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    1999-10-01

    Great Research Prospects with UVES at KUEYEN A major new astronomical instrument for the ESO Very Large Telescope at Paranal (Chile), the UVES high-resolution spectrograph, has just made its first observations of astronomical objects. The astronomers are delighted with the quality of the spectra obtained at this moment of "First Light". Although much fine-tuning still has to be done, this early success promises well for new and exciting science projects with this large European research facility. Astronomical instruments at VLT KUEYEN The second VLT 8.2-m Unit Telescope, KUEYEN ("The Moon" in the Mapuche language), is in the process of being tuned to perfection before it will be "handed" over to the astronomers on April 1, 2000. The testing of the new giant telescope has been successfully completed. The latest pointing tests were very positive and, from real performance measurements covering the entire operating range of the telescope, the overall accuracy on the sky was found to be 0.85 arcsec (the RMS-value). This is an excellent result for any telescope and implies that KUEYEN (as is already the case for ANTU) will be able to acquire its future target objects securely and efficiently, thus saving precious observing time. This work has paved the way for the installation of large astronomical instruments at its three focal positions, all prototype facilities that are capable of catching the light from even very faint and distant celestial objects. The three instruments at KUEYEN are referred to by their acronyms UVES , FORS2 and FLAMES. They are all dedicated to the investigation of the spectroscopic properties of faint stars and galaxies in the Universe. The UVES instrument The first to be installed is the Ultraviolet Visual Echelle Spectrograph (UVES) that was built by ESO, with the collaboration of the Trieste Observatory (Italy) for the control software. Complete tests of its optical and mechanical components, as well as of its CCD detectors and of the complex

  7. RHEA: the ultra-compact replicable high-resolution exoplanet and Asteroseismology spectrograph

    NASA Astrophysics Data System (ADS)

    Feger, Tobias; Bacigalupo, Carlos; Bedding, Timothy R.; Bento, Joao; Coutts, David W.; Ireland, Michael J.; Parker, Quentin A.; Rizzuto, Aaron; Spaleniak, Izabela

    2014-08-01

    We present the opto-mechanical design and the characterization of the Replicable High-resolution Exoplanet and Asteroseismology (RHEA) spectrograph. RHEA is an ultra-compact fiber-fed echelle spectrograph designed to be used at 0.2-0.4 m class robotic telescopes where long term dedicated projects are possible. The instrument will be primarily used for radial velocity (RV) studies of low to intermediate-mass giant stars for the purpose of searching for hot Jupiters and using asteroseismology to simultaneously measure the host star parameters and de-correlate stellar pulsations. The optical design comprises a double-pass (i.e. near Littrow) configuration with prism cross-disperser and single-mode fiber (SMF) input. The spectrograph has a resolving power of R>70,000 and operates at 430-670 nm with minimum order separation of ~180 μm. This separation allows a 1x6 photonic lantern integration at a later stage which is currently under development. The current design is built with the aim of creating an inexpensive and replicable unit. The spectrograph is optimised for long-baseline RV observations through careful temperature stabilisation and simultaneous wavelength calibration. As a further improvement the echelle grating is housed in a vacuum chamber to maintain pressure stability. The performance of the current prototype is currently being tested on a 0.4 m telescope at the Macquarie University Observatory.

  8. Computer version of astronomical ephemerides.

    NASA Astrophysics Data System (ADS)

    Choliy, V. Ya.

    A computer version of astronomical ephemerides for bodies of the Solar System, stars, and astronomical phenomena was created at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine and the Astronomy and Cosmic Physics Department of the Taras Shevchenko National University. The ephemerides will be distributed via INTERNET or in the file form. This information is accessible via the web servers space.ups.kiev.ua and alfven.ups.kiev.ua or the address choliy@astrophys.ups.kiev.ua.

  9. Spectrographs for the Measurement of Radial Velocities

    NASA Astrophysics Data System (ADS)

    Baranne, A.

    A radial-velocity measurement derives from a shift in position of spectral features at the focus of a spectrographic instrument. We do not often think about how small these shifts are. It is not generally appreciated that the accuracy to which this shift must be measured is a tiny fraction of a pixel. Or, if we prefer to calculate in microns a surprising minuteness. What precautions should we be taking for the measurement of such small shifts? It is true that, thanks to computers, modern reduction methods allows us to correct for a wide variety of pertubations, provided that these are foreseen and understood; but such reduction procedures will give the best results if such pertubations are kept very small. We must therefore analyse these pertubations and think about how we can control them. The correlation method initiated in its modern form by Roger Griffin, and which we developed further with an optical mask in CORAVEL twenty-five years ago and more recently with a numerical mask in ELODIE, has demonstrated its power. In terms of these methods, the problem of high precision is to improve the correlation peak. Can this be done? Does the correlation method allow us to distinguish the overall radial velocity of the object from possible distortions of the lines? This is certainly a major problem which must be solved. The luminous efficiency of high-precision spectrographs is low. If the use of an optical fibre with scrambling for feeding the spectrograph seems inevitable to us today, it seems to me that the transmission of this system can be considerably improved by a better choice of the F-ratio of the image beam of the telescope which is to be matched with that of the spectrograph. This problem, common to all spectrographs, could be resolved with a specialised focal-plane instrument, giving a much greater than usual F-ratio, resulting in a simplification of the spectrograph optics, and hence an improvement in transmission and a serious decrease in size (which is

  10. The Astronomical Unit now

    NASA Astrophysics Data System (ADS)

    Standish, E. M.

    2005-04-01

    The Astronomical Unit is one of the most basic units of astronomy: the scale of the solar system. Yet its long and colorful history is sprinkled liberally with incorrect descriptions and mis-quoted definitions - today as much as ever. Over the last half century, the accuracy of the au determinations has improved dramatically: optical (triangulation) methods have given way to modern electronic observations, high-speed computers, and dedicated efforts to improve planetary ephemerides. Typical uncertainties in the value of the au have decreased from many tens of thousands of kilometers to the present level of only a few meters. With the solar system providing a very clean, undisturbed dynamical model, the ephemerides have been used for a variety of exotic physical tests: alternative theories of gravitation, d(G)/dt, d(au)/dt, etc. In the beginning of this modern era, the author happened to be a witness to a couple of rather key events; more lately, a participant. A couple of these personal experiences are related.

  11. XEphem: Interactive Astronomical Ephemeris

    NASA Astrophysics Data System (ADS)

    Downey, Elwood Charles

    2011-12-01

    XEphem is a scientific-grade interactive astronomical ephemeris package for UNIX-like systems. Written in C, X11 and Motif, it is easily ported to systems. Among other things, XEphem: computes heliocentric, geocentric and topocentric information for all objects; has built-in support for all planets; the moons of Mars, Jupiter, Saturn, Uranus and Earth; central meridian longitude of Mars and Jupiter; Saturn's rings; and Jupiter's Great Red Spot; allows user-defined objects including stars, deepsky objects, asteroids, comets and Earth satellites; provides special efficient handling of large catalogs including Tycho, Hipparcos, GSC; displays data in configurable tabular formats in conjunction with several interactive graphical views; displays a night-at-a-glance 24 hour graphic showing when any selected objects are up; displays 3-D stereo Solar System views that are particularly well suited for visualizing comet trajectories; quickly finds all close pairs of objects in the sky; and sorts and prints all catalogs with very flexible criteria for creating custom observing lists. Its capabilities are listed more fully in the user manual introduction.

  12. Virtual Astronomical Pipelines

    NASA Astrophysics Data System (ADS)

    Dave, R.; Protopapas, P.; Lehner, M.

    2007-10-01

    The sheer magnitude of databases and data rates in new surveys makes it hard to develop pipelines to enable both the analysis of data and the federation of these databases for correlation and followup. There is thus a compelling need to facilitate the creation and management of dynamic workflow pipelines that enable correlating data between separate, parallel streams; changing the workflow in response to an event; using the NVO to obtain additional needed information from databases; and modifying the observing program of a primary survey to follow-up a transient or moving object. This paper describes such a Virtual Astronomical Pipeline (VAP) system which is running in the TAOS project. The software enables components in the pipeline to react to events encapsulated in XML messages, modifying and subsequently routing these messages to multiple other components. This architecture allows for the bootstrapping of components individually in the development process and for dynamic reconfiguration of the pipeline as a response to external and internal events. The software will be extended for future work in combining the results of surveys and followups into a global virtual pipeline.

  13. Ray-tracing the convex curved crystal X-ray spectrograph. [instrument design and data interpretation technique

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.

    1979-01-01

    The convex curved crystal X-ray spectrograph has recently seen increasing use for the spectral analysis of transient plasmas. The present paper describes the calculation of ray paths through the spectrograph for both localized and extended sources. The method traces a ray from any given source point to its point of diffraction by the curved crystal and then to the imaging circle, where the image point is obtained. Application of the ray tracing method is made to some actual experimental configurations to obtain resolution values and source sizes. Wavelength calibrations are obtainable with the ray tracing method in advance of instrument construction.

  14. The Wide Field Spectrograph (WiFeS)

    NASA Astrophysics Data System (ADS)

    Dopita, Michael; Hart, John; McGregor, Peter; Oates, Patrick; Bloxham, Gabe; Jones, Damien

    2007-08-01

    This paper describes the Wide Field Spectrograph (WiFeS) under construction at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) for the ANU 2.3 m telescope at the Siding Spring Observatory. WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent throughput, wavelength stability, spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320 950 nm wavelength region. It provides a 25×38 arcsec field with 0.5 arcsec sampling along each of twenty five 38×1 arcsec slitlets. The output format is optimized to match the 4096×4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of “interleaved nod-and-shuffle” will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions of 3000 and 7000 are provided. The full spectral range is covered in a single exposure at R=3000, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope atmosphere and detector) >30% over a wide spectral range. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.

  15. Numerical simulation of space UV spectrographs

    NASA Astrophysics Data System (ADS)

    Yushkin, Maksim; Fatkhullin, Timur; Panchuk, Vladimir; Sachkov, Mikhail; Kanev, Evgeny

    2016-07-01

    Based on the ray tracing method, we developed algorithms for constructing numerical model of spectroscopic instrumentation. The Software is realized in C ++ using nVidia CUDA technology. The software package consists of three separate modules: the ray tracing module, a module for calculating energy efficiency and module of CCD image simulation. The main objective of this work was to obtain images of the spectra for the cross-dispersed spectrographs as well as segmented aperture Long Slit Spectrograph. The software can be potentially used by WSO-UV project. To test our algorithms and the software package we have performed simulations of the ground cross-dispersed Nasmyth Echelle Spectrometer (NES) installed on the platform of the Nasmyth focus of the Russian 6-meter BTA telescope. The comparison of model images of stellar spectra with observations on this device confirms that the software works well. The high degree of agreement between the theoretical and real spectra is shown.

  16. HETDEX: Optical Alignment Of The Virus Spectrographs

    NASA Astrophysics Data System (ADS)

    Martin, Emily; Marshall, J.; Rheault, J.; DePoy, D.; Prochaska, T.; Allen, R.; Hill, G.; HETDEX Collaboration

    2012-01-01

    We present an optical alignment procedure for the Visible Integral-Field Replicable Unit Spectrograph (VIRUS) collimator. Texas A&M is helping to build the VIRUS spectrographs, designed in collaboration with The University of Texas at Austin. The Hobby Eberly Telescope Dark Energy Experiment (HETDEX) will use as many as 192 units of this instrument to search for answers regarding Dark Energy. Texas A&M is currently assembling the collimators for VIRUS and designing alignment fixtures to aid in the assembly. We used ZEMAX models of VIRUS optics made by UT engineers to analyze various alignment methods we have considered. Our current plan uses two steps to properly align the collimator within the tolerance of 0.1-degrees. This will permit interchangeability among the various VIRUS parts.

  17. Multiple object spectroscopy - The Medusa spectrograph

    NASA Technical Reports Server (NTRS)

    Hill, J. M.; Angel, J. R. P.; Scott, J. S.; Lindley, D.; Hintzen, P.

    1980-01-01

    An instrument has been built to obtain simultaneous spectra of many objects in the field of view of the Steward 90 inch (2.29 m) telescope. Short lengths of fused silica fiber 300 microns in diameter are used to bring the light from galaxy images at the Cassegrain focus into a line along the spectrograph slit. From a single exposure of the cluster Abell 1904, which has a redshift of 20,000 km/s, the redshifts of 26 individual galaxies were determined, each with a precision of 100 km/s. The present device, while already giving a sixfold reduction in the mean telescope time per galaxy, has significant light losses because it is not ideally matched to the telescope. An instrument being designed for the prime focus will transmit light from each object as efficiently as a conventional spectrograph.

  18. Designing the optimal semi-warm NIR spectrograph for SALT via detailed thermal analysis

    NASA Astrophysics Data System (ADS)

    Wolf, Marsha J.; Sheinis, Andrew I.; Mulligan, Mark P.; Wong, Jeffrey P.; Rogers, Allen

    2008-07-01

    The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the optical spectrograph. The RSS/NIR is a low to medium resolution spectrograph with broadband, spectropolarimetric, and Fabry-Perot imaging capabilities. The optical and NIR arms can be used simultaneously to extend spectral coverage from 3200 Å to approximately 1.6 μm. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera incorporates a HAWAII-2RG detector with an Epps optical design consisting of 6 spherical elements and providing subpixel rms image sizes of 7.5 +/- 1.0 μm over all wavelengths and field angles. The NIR spectrograph is semi-warm, sharing a common slit plane and partial collimator with the optical arm. A pre-dewar, cooled to below ambient temperature, houses the final NIR collimator optic, the grating/Fabry-Perot etalon, the polarizing beam splitter, and the first three camera optics. The last three camera elements, blocking filters, and detector are housed in a cryogenically cooled dewar. The semi-warm design concept has long been proposed as an economical way to extend optical instruments into the NIR, however, success has been very limited. A major portion of our design effort entails a detailed thermal analysis using non-sequential ray tracing to interactively guide the mechanical design and determine a truly realizable long wavelength cutoff over which astronomical observations will be sky-limited. In this paper we describe our thermal analysis, design concepts for the staged cooling scheme, and results to be incorporated into the overall mechanical design and baffling.

  19. Astronomical Instrumentation System Markup Language

    NASA Astrophysics Data System (ADS)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  20. Astronomical Significance of Ancient Monuments

    NASA Astrophysics Data System (ADS)

    Simonia, I.

    2011-06-01

    Astronomical significance of Gokhnari megalithic monument (eastern Georgia) is considered. Possible connection of Amirani ancient legend with Gokhnari monument is discussed. Concepts of starry practicality and solar stations are proposed.

  1. Annotations of a Public Astronomer

    NASA Astrophysics Data System (ADS)

    Adamo, A.

    2011-06-01

    Angelo Adamo is an Italian astronomer and artist interested in inspiring people with scientifically-based tales. He has recently published two illustrated books exploring the relationships between mankind and cosmos through physics, art, literature, music, cartoons, and movies.

  2. Digital display of astronomical data

    NASA Astrophysics Data System (ADS)

    Grandi, S. A.

    1982-08-01

    A brief summary is given of techniques to enhance for photographic display digital astronomical images. The phenomenon of photographic deresolution is discussed and a proposed algorithm, the highpass squared filter, is presented to correct for this effect.

  3. Islamic Astronomical Instruments and Observatories

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  4. A Spectrograph for BigBOSS

    NASA Astrophysics Data System (ADS)

    CARTON, Pierre-Henri; Bebek, C.; Cazaux, S.; Ealet, A.; Eppelle, D.; Kneib, J.; Karst, P.; levi, M.; magneville, C.; Palanque-Delabrouille, N.; Ruhlmann-Kleider, V.; Schlegel, D.; Yeche, C.

    2012-01-01

    The Big-Boss spectrographs assembly will take in charge the light from the fiber output to the detector, including the optics, gratings, mechanics and cryostats. The 5000 fibers are split in 10 bundles of 500 ones. Each of these channel feed one spectrograph. The full bandwidth from 0.36µm to 1.05µm is split in 3 bands. Each channel is composed with one collimator (doublet lenses), a VPH grating, and a 6 lenses camera. The 500 fiber spectrum are imaged onto a 4kx4k detector thanks to the F/2 camera. Each fiber core is imaged onto 4 pixels. Each channel of the BigBOSS spectrograph will be equipped with a single-CCD camera, resulting in 30 cryostats in total for the instrument. Based on its experience of CCD cameras for projects like EROS and MegaCam, CEA/Saclay has designed small and autonomous cryogenic vessels which integrate cryo-cooling, CCD positioning and slow control interfacing capabilities. The use of a Linear Pulse Tube with its own control unit, both developed by Thales Cryogenics BV, will ensure versatility, reliability and operational flexibility. CCD's will be cooled down to 140K, with stability better than 1K. CCD's will be positioned within 15µm along the optical axis and 50µm in the XY Plan. Slow Control machines will be directly interfaced to an Ethernet network, which will allow them to be operated remotely. The concept of spectrograph leads to a very robust concept without any mechanics (except the shutters). This 30 channels has a impressive compactness with its 3m3 volume. The development of such number of channel will drive to a quasi mass production philosophy.

  5. Young Astronomers' Observe with ESO Telescopes

    NASA Astrophysics Data System (ADS)

    1995-11-01

    somewhat similar to the Earth, but it is too cold for life as we know it, and because of its comparatively small size, the atmospheric pressure is very low. It would in principle be possible to detect the outermost planet with the HST, if the distance to this planetary system was less than about 30 light-years. Ireland: Mr. Declan MacCuarta (Teacher), Mr. Colm McLoughlin (St. Peter's College, Wexford, Co. Wexford) The nearest star, Alpha Centauri, is a double star and a hypothetical planetary system around the A-component, a solar-type star, is studied in some detail. The presence of the companion star makes some planetary orbits unstable. In this project, 4 planets are placed within 2 AU (300 million km) of the central star; 3 of these are terrestrial (no. 3 is Earth-like) and the outermost is a small gaseous planet. Cometary orbits may be very complex in this gravitatinal field. A planetary system like the one described may be barely observable with the Hubble Space Telescope, and only if one of the planets passes in front of the star (an `occultation') and its light diminishes accordingly. Italy: Mr. Pasquale Ciarletta, Ms. Francesca D'elia, Ms. Ada Fortugna (Teacher), Mr. Alfredo Pudano (Liceo Scientifico `Leonardo da Vinci', Reggio Calabria) This group built a spectrograph from scratch, with a grating and all the usual optical parts. They were able to calibrate the solar spectrum with the help of standard lamps and in this way, they observed several prominent, solar absorption lines. Among them were the H-alpha line at 6562 A, the sodium D-lines at 5890--96 And the magnesium triplet near 5175 A. These observations were made with the eye and also with the photographic recording technique. They were planning to observe the spectra of some stars also, but in the end time was too short and they had to hurry to send in the report. The Netherlands: Mr. Alex De Beer, Mr. KlAs Huijbregts, Mr. Ruud Nellen (Norbertuscollege, RosendAl) This team has designed their own planetary

  6. Interactive Astronomical Data Analysis Facility

    NASA Technical Reports Server (NTRS)

    Klinglesmith, D. A., III

    1980-01-01

    A description is given of the Interactive Astronomical Data Analysis Facility (IADAF) which performs interactive analysis of astronomical data for resident and visiting scientists. The facilities include a Grant measuring engine, a PDS 1010A microdensitometer, a COMTAL image display system and a PDP 11/40 computer system. Both hardware and software systems are examined, including a description of thirteen overlay programs. Some uses of the IADAF are indicated.

  7. KAOS: kilo-aperture optical spectrograph

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.; Dey, Arjun; Boyle, Brian; Glazebrook, Karl

    2004-09-01

    A design is described for a potential new facility capable of taking detailed spectroscopy of millions of objects in the Universe to explore the complexity of the Universe and to answer fundamental questions relating to the equation of state of dark energy and to how the Milky Way galaxy formed. The specific design described is envisioned for implementation on the Gemini 8-meter telescopes. It utilizes a 1.5° field of view and samples that field with up to ~5000 apertures. This Kilo-Aperture Optical Spectrograph (KAOS) is mounted at prime focus with a 4-element corrector, atmospheric dispersion compensator (ADC), and an Echidna-style fiber optic positioner. The ADC doubles as a wobble plate, allowing fast guiding that cancels out the wind buffeting of the telescope. The fibers, which can be reconfigured in less than 10 minutes, feed to an array of 12 spectrographs located in the pier of the telescope. The spectrographs are capable of provided spectral resolving powers of a few thousand up to about 40,000.

  8. CARMENES: the VIS channel spectrograph in operation

    NASA Astrophysics Data System (ADS)

    Seifert, W.; Xu, W.; Stahl, O.; Hagen, H. J.; Sánchez Carrasco, M. A.; Veredas, G.; Caballero, J. A.; Guardia, J.; Helmling, J.; Hernandez, L.; Pérez-Calpena, A.; Tulloch, S.; Kaminski, A.; Zechmeister, M.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Mandel, H.

    2016-08-01

    CARMENES is a fiber-fed high-resolution Echelle spectrograph for the Calar Alto 3.5m telescope. The instrument is built by a German-Spanish consortium under the lead of the Landessternwarte Heidelberg. The search for planets around M dwarfs with a radial velocity of 1 m/s is the main focus of the planned science. Two channels, one for the visible, another for the near-infrared, will allow observations in the complete wavelength range from 550 to 1700 nm. To ensure the stability, the instrument is working in vacuum in a thermally controlled environment. The VIS channel spectrograph is covering the visible wavelength range from 0.55 to 0.95 μm with a spectral resolution of R=93,400 in a thermally and pressure-wise very stable environment. The VIS channel spectrograph started science operation in January 2016. Here we present the opto-mechanical and system design of the channel with the focus on the (re-)integration phase at the observatory and the measured performance during the testing and commissioning periods, including the lessons learned.

  9. Sixteenth Century Astronomical Telescopy

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    2001-12-01

    Ophelia in Shakespeare's Hamlet is named for the ``moist star" which in mythology is the partner of Hamlet's royal Sun. Together the couple seem destined to rule on earth just as their celestial counterparts rule the heavens, but the tragedy is that they are afflicted, just as the Sun and Moon are blemished. In 1.3 Laertes lectures Ophelia on love and chastity, describing first Cytherean phases (crescent to gibbous) and then Lunar craters. Spots mar the Sun (1.1, 3.1). Also reported are Jupiter's Red Spot (3.4) and the resolution of the Milky Way into stars (2.2). These interpretations are well-founded and support the cosmic allegory. Observations must have been made with optical aid, probably the perspective glass of Leonard Digges, father of Thomas Digges. Notably absent from Hamlet is mention of the Galilean moons, owing perhaps to the narrow field-of-view of the telescope. That discovery is later celebrated in Cymbeline, published soon after Galileo's Siderius Nuncius in 1610. In 5.4 of Cymbeline the four ghosts dance ``in imitation of planetary motions" and at Jupiter's behest place a book on the chest of Posthumus Leonatus. His name identifies the Digges father and son as the source of data in Hamlet since Jupiter's moons were discovered after the deaths of Leonard (``leon+hart") and Thomas (the ``lion's whelp"). Lines in 5.4 urge us not to read more into the book than is contained between its covers; this is understandable because Hamlet had already reported the other data in support of heliocentricism and the cosmic model discussed and depicted by Thomas Digges in 1576. I conclude therefore that astronomical telescopy began in England before the last quarter of the sixteenth century.

  10. SUBARU prime focus spectrograph: integration, testing and performance for the first spectrograph

    NASA Astrophysics Data System (ADS)

    Madec, F.; Le Fur, A.; Le Mignant, D.; Dohlen, K.; Barrette, R.; Belhadi, M.; Pascal, S.; Smee, S.; Gunn, J.; Le Merrer, J.; Lorred, M.; Jaquet, M.; Balard, P.; Blanchard, P.; Tao, W.; Lapere, V.; Gabriel, J. F.; Loomis, C.; Golebiowski, M.; Hart, M.; Oliveira, L.; Oliveira, A.; Tamura, N.; Shimono, A.

    2016-08-01

    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project for Subaru telescope consists in four identical spectrographs fed by 600 fibers each. Each spectrograph is composed by an optical entrance unit that creates a collimated beam and distributes the light to three channels, two visibles and one near infrared. This paper presents the on-going effort for the tests and integration process for the first spectrograph channel: we have developed a detailed Assembly Integration and Test (AIT) plan, as well as the methods, detailed processes and I and T tools. We describe the tools we designed to assemble the parts and to test the performance of the spectrograph. We also report on the thermal acceptance tests we performed on the first visible camera unit. We also report on and discuss the technical difficulties that did appear during this integration phase. Finally, we detail the important logistic process that is require to transport the components from other country to Marseille.

  11. Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy.

    PubMed

    Weiser, H; Vitz, R C; Moos, H W; Weinstein, A

    1976-12-01

    An evacuated high transmission prism spectrograph using a microchannel plate detection system with resistive strip readout was flown behind a precision pointing telescope on a sounding rocket. The construction, preparation, flight performance, and calibration stability of the system are discussed. Despite the adverse environmental conditions associated with sounding rocket flights, the microchannel detector system performed well. Far uv spectra (1160-1750 A) of stellar and planetary objects were obtained; spectral features with fluxes as low as 0.06 photons cm(-2) sec(-1) were detectable. This was achieved by operating the plates at lower than normal gains, using sensitive pulse counting electronics with both upper and lower limit discriminators, and maintaining the spectrograph and detector at a pressure of ~10(-6) Torr until reaching altitude.

  12. High Resolution Spectroscopy for the Amateur: Experiences with the LHIRES III Spectrograph

    NASA Astrophysics Data System (ADS)

    Gorodenski, Stanley A.

    2012-05-01

    This paper describes the author's experience with the high resolution LHIRES III spectrograph and other equipment used. It discusses mechanical improvements made that may have increased the calibration accuracy of the spectrograph, problems with guiding, and the need to take flat fields. It also briefly mentions the freeware software used and the types of computer programs written by the author to aid in the reduction and analysis of the spectra. An assessment is made of the method for determining equivalent width the author described in the 2011 issue of the SAS News. It finishes by illustrating the ability to study binary stars, such as V1143 Cyg, with the LHIRES III, and discusses some interesting results that were obtained on Epsilon Aurigae. The evolution of a split line centered at around 5853 Angstroms is mentioned, as well as other aspects of the Sodium D Lines region, such as the constancy of separation between the two lines.

  13. PISCES High Contrast Integral Field Spectrograph Simulations and Data Reduction Pipeline

    NASA Technical Reports Server (NTRS)

    Llop Sayson, Jorge Domingo; Memarsadeghi, Nargess; McElwain, Michael W.; Gong, Qian; Perrin, Marshall; Brandt, Timothy; Grammer, Bryan; Greeley, Bradford; Hilton, George; Marx, Catherine

    2015-01-01

    The PISCES (Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies) is a lenslet array based integral field spectrograph (IFS) designed to advance the technology readiness of the WFIRST (Wide Field Infrared Survey Telescope)-AFTA (Astrophysics Focused Telescope Assets) high contrast Coronagraph Instrument. We present the end to end optical simulator and plans for the data reduction pipeline (DRP). The optical simulator was created with a combination of the IDL (Interactive Data Language)-based PROPER (optical propagation) library and Zemax (a MatLab script), while the data reduction pipeline is a modified version of the Gemini Planet Imager's (GPI) IDL pipeline. The simulations of the propagation of light through the instrument are based on Fourier transform algorithms. The DRP enables transformation of the PISCES IFS data to calibrated spectral data cubes.

  14. PISCES High Contrast Integral Field Spectrograph Simulations and Data Reduction Pipeline

    NASA Technical Reports Server (NTRS)

    Llop Sayson, Jorge Domingo; Memarsadeghi, Nargess; McElwain, Michael W.; Gong, Qian; Perrin, Marshall; Brandt, Timothy; Grammer, Bryan; Greeley, Bradford; Hilton, George; Marx, Catherine

    2015-01-01

    The PISCES (Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies) is a lenslet array based integral field spectrograph (IFS) designed to advance the technology readiness of the WFIRST (Wide Field Infrared Survey Telescope)-AFTA (Astrophysics Focused Telescope Assets) high contrast Coronagraph Instrument. We present the end to end optical simulator and plans for the data reduction pipeline (DRP). The optical simulator was created with a combination of the IDL (Interactive Data Language)-based PROPER (optical propagation) library and Zemax (a MatLab script), while the data reduction pipeline is a modified version of the Gemini Planet Imager's (GPI) IDL pipeline. The simulations of the propagation of light through the instrument are based on Fourier transform algorithms. The DRP enables transformation of the PISCES IFS data to calibrated spectral data cubes.

  15. EXPRES: a next generation RV spectrograph in the search for earth-like worlds

    NASA Astrophysics Data System (ADS)

    Jurgenson, C.; Fischer, D.; McCracken, T.; Sawyer, D.; Szymkowiak, A.; Davis, A.; Muller, G.; Santoro, F.

    2016-08-01

    The EXtreme PREcision Spectrograph (EXPRES) is an optical fiber fed echelle instrument being designed and built at the Yale Exoplanet Laboratory to be installed on the 4.3-meter Discovery Channel Telescope operated by Lowell Observatory. The primary science driver for EXPRES is to detect Earth-like worlds around Sun-like stars. With this in mind, we are designing the spectrograph to have an instrumental precision of 15 cm/s so that the on-sky measurement precision (that includes modeling for RV noise from the star) can reach to better than 30 cm/s. This goal places challenging requirements on every aspect of the instrument development, including optomechanical design, environmental control, image stabilization, wavelength calibration, and data analysis. In this paper we describe our error budget, and instrument optomechanical design.

  16. The New Amateur Astronomer

    NASA Astrophysics Data System (ADS)

    Mobberley, Martin

    Amateur astronomy has changed beyond recognition in less than two decades. The reason is, of course, technology. Affordable high-quality telescopes, computer-controlled 'go to' mountings, autoguiders, CCD cameras, video, and (as always) computers and the Internet, are just a few of the advances that have revolutionized astronomy for the twenty-first century. Martin Mobberley first looks at the basics before going into an in-depth study of what’s available commercially. He then moves on to the revolutionary possibilities that are open to amateurs, from imaging, through spectroscopy and photometry, to patrolling for near-earth objects - the search for comets and asteroids that may come close to, or even hit, the earth. The New Amateur Astronomer is a road map of the new astronomy, equally suitable for newcomers who want an introduction, or old hands who need to keep abreast of innovations. From the reviews: "This is one of several dozen books in Patrick Moore's "Practical Astronomy" series. Amid this large family, Mobberley finds his niche: the beginning high-tech amateur. The book's first half discusses equipment: computer-driven telescopes, CCD cameras, imaging processing software, etc. This market is changing every bit as rapidly as the computer world, so these details will be current for only a year or two. The rest of the book offers an overview of scientific projects that serious amateurs are carrying out these days. Throughout, basic formulas and technical terms are provided as needed, without formal derivations. An appendix with useful references and Web sites is also included. Readers will need more than this book if they are considering a plunge into high-tech amateur astronomy, but it certainly will whet their appetites. Mobberley's most valuable advice will save the book's owner many times its cover price: buy a quality telescope from a reputable dealer and install it in a simple shelter so it can be used with as little set-up time as

  17. Enthusiastic Little Astronomers

    NASA Astrophysics Data System (ADS)

    Novak, Ines

    2016-04-01

    Younger primary school students often show great interest in the vast Universe hiding behind the starry night's sky, but don't have a way of learning about it and exploring it in regular classes. Some of them would search children's books, Internet or encyclopedias for information or facts they are interested in, but there are those whose hunger for knowledge would go unfulfilled. Such students were the real initiators of our extracurricular activity called Little Astronomers. With great enthusiasm they would name everything that interests them about the Universe that we live in and I would provide the information in a fun and interactive yet acceptable way for their level of understanding. In our class we learn about Earth and its place in the Solar System, we learn about the planets and other objects of our Solar System and about the Sun itself. We also explore the night sky using programs such as Stellarium, learning to recognize constellations and name them. Most of our activities are done using a PowerPoint presentation, YouTube videos, and Internet simulations followed by some practical work the students do themselves. Because of the lack of available materials and funds, most of materials are hand made by the teacher leading the class. We also use the school's galileoscope as often as possible. Every year the students are given the opportunity to go to an observatory in a town 90 km away so that they could gaze at the sky through the real telescope for the first time. Our goal is to start stepping into the world of astronomy by exploring the secrets of the Universe and understanding the process of rotation and revolution of our planet and its effects on our everyday lives and also to become more aware of our own role in our part of the Universe. The hunger for knowledge and enthusiasm these students have is contagious. They are becoming more aware of their surroundings and also understanding their place in the Universe that helps them remain humble and helps

  18. PyWiFeS: a rapid data reduction pipeline for the Wide Field Spectrograph (WiFeS)

    NASA Astrophysics Data System (ADS)

    Childress, Michael J.; Vogt, Frédéric P. A.; Nielsen, Jon; Sharp, Robert G.

    2014-02-01

    We present PyWiFeS, a new Python-based data reduction pipeline for the Wide Field Spectrograph (WiFeS). PyWiFeS consists of a series of core data processing routines built on standard scientific Python packages commonly used in astronomical applications. Included in PyWiFeS is an implementation of a new global optical model of the spectrograph which provides wavelengths solutions accurate to ˜0.05 Å (RMS) across the entire detector. The core PyWiFeS package is designed to be scriptable to enable batch processing of large quantities of data, and we present a default format for handling of observation metadata and scripting of data reduction.

  19. MICRONERVA: A Novel Approach to Large Aperture Astronomical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hall, Ryan; Plavchan, Peter; Geneser, Claire; Giddens, Frank; Klenke, Christopher; Weigand, Denise

    2017-01-01

    MICRONERVA (MICRO Novel Exoplanet Radial Velocity Array) is a prototype observatory for measuring spectroscopic radial velocities. The primary goal of MICRONERVA is to demonstrate that an array of 8-inch CPC Celestron telescopes can be used at a lower cost in place of a single, larger telescope. The equivalent light gathering power of the larger telescope is achieved by sending the starlight from each of the eight-inch telescopes down single mode fibers and combining the fiber output at a single entrance slit to a multi-object high resolution spectrograph. All of the hardware from the system is automated using Python programs, ASCOM and MaximDL drivers. The detection of exoplanets using the techniques of MICRONERVA opens the door to reducing costs for astronomical spectroscopy.

  20. Early Results from the Gemini Multi-Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Roth, K. C.; Jorgensen, I.; Hook, I. M.; Takamiya, M. Y.

    2001-12-01

    We present examples of early science results achieved with the newly commissioned Gemini Multi-Object Spectrograph (GMOS) on the Gemini North 8-m Telescope. GMOS provides long- and multi-slit spectroscopy and imaging over a 5.5 arcmin field of view, and these three modes were successfully commissioned during the second half of 2001. GMOS was built by a collaboration between the UK (Astronomical Technology Centre at ROE and University of Durham) and Canada (HIA). As part of System Verification (SV) we have executed several imaging, long-slit, and multi-object spectroscopic programs designed to test and demonstrate the scientific capabilities of GMOS. Two of these programs, for which we present the imaging and preliminary MOS results, target the fields around RXJ0142.0+2131 and UM224. The first program is aimed at investigating galaxy evolution through observations of a rich cluster at intermediate redshift (z=0.28) and measuring stellar populations and dynamics of the member galaxies. The goal of the second program is to measure redshifts of galaxies in the field of a high redshift QSO (z=2.08) with intervening metal-line absorption in order to identify which galaxies may be responsible for the absorption and investigate their group/clustering properties. All data obtained as part of SV will become public within a few months. We are currently in the final stages of SV observations including full commissioning of the IFU, and have begun obtaining data for the community as of November 2001. The Gemini Observatory is operated by AURA, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: NSF (United States), PPARC (United Kingdom), NRC (Canada), CONICYT (Chile), ARC (Australia), CNPq (Brazil) and CONICET (Argentina).

  1. Summary of the COS Cycle 22 Calibration Program

    NASA Astrophysics Data System (ADS)

    Sonnentrucker, Paule; Becker, George; Bostroem, Azalee; Debes, John H.; Ely, Justin; Fox, Andrew; Lockwood, Sean; Oliveira, Cristina; Penton, Steven; Proffitt, Charles; Roman-Duval, Julia; Sahnow, David; Sana, Hugues; Taylor, Jo; Welty, Alan D.; Wheeler, Thomas

    2016-09-01

    We summarize the calibration activities for the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope during Cycle 22 which ran from November 2014 through October 2015. We give an overview of the COS calibration plan, COS usage statistics and we briefly describe major changes with respect to the previous cycle. High-level executive summaries for each calibration program comprising Cycle 22 are also given here. Results of the analysis attached to each program are published in separate ISRs.

  2. Balloon UV experiments for astronomical and atmospheric observations

    NASA Astrophysics Data System (ADS)

    A. G., Sreejith; Mathew, Joice; Sarpotdar, Mayuresh; K., Nirmal; Ambily, S.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-08-01

    The ultraviolet (UV) window has been largely unexplored through balloons for astronomy. We discuss here the development of a compact near-UV spectrograph with fiber optics input for balloon flights. It is a modified Czerny-Turner system built using off-the-shelf components. The system is portable and scalable to different telescopes. The use of reflecting optics reduces the transmission loss in the UV. It employs an image-intensified CMOS sensor, operating in photon counting mode, as the detector of choice. A lightweight pointing system developed for stable pointing to observe astronomical sources is also discussed, together with the methods to improve its accuracy, e.g. using the in-house build star sensor and others. Our primary scientific objectives include the observation of bright Solar System objects such as visible to eye comets, Moon and planets. Studies of planets can give us valuable information about the planetary aurorae, helping to model and compare atmospheres of other planets and the Earth. The other major objective is to look at the diffuse UV atmospheric emission features (airglow lines), and at column densities of trace gases. This UV window includes several lines important to atmospheric chemistry, e.g. SO2, O3, HCHO, BrO. The spectrograph enables simultaneous measurement of various trace gases, as well as provides better accuracy at higher altitudes compared to electromechanical trace gas measurement sondes. These lines contaminate most astronomical observations but are poorly characterized. Other objectives may include sprites in the atmosphere and meteor ashes from high altitude burn-outs. Our recent experiments and observations with high-altitude balloons are discussed.

  3. Radial Velocity Fiber-Fed Spectrographs Towards the Discovery of Compact Planets and Pulsations on M Stars

    NASA Astrophysics Data System (ADS)

    Berdiñas, Zaira M.

    2016-11-01

    This thesis is developed in the framework of the paradigm that seeks for the discovery of an Earth analog. Nowadays, low mass stars, and in particular M dwarf stars, are key targets towards achieving this goal. In this thesis, I focus on the study of the short-time domain of M dwarf stars with the aim of searching for short period planets, but also for the first detection of stellar pulsations on this spectral type. Both science goals are the primary objectives of the “Cool Tiny Beats” (CTB) survey, which has produced most of the data used in this thesis. CTB data consist in high resolution and high-cadence spectroscopic Doppler measurements taken either with HARPS or HARPS-N spectrographs. First of all, a thorough understanding of the spectrographs response in the short time domain was performed to characterize the sources of noise in our range of study. Our first approach to the goals of this thesis consisted in the design of an observational experiment to delve into the HARPS-N sub-night performance. Results unveiled variability of the spectra continuum correlated with instabilities of the spectrograph illumination associated to the airmass. Such distortions, which are wavelength and time dependent, are also present in at least one of the data-products given by the HARPS-N reduction software: the width of the mean-line profiles (i.e. the so-called FWHM index), an index commonly used as a proxy of the stellar activity. As a consequence, we searched for an alternative approach to measure the width index. In particular, we calculated the mean-line profile of the spectrum with a least-squares-deconvolution technique and we obtained the profile indices as the moments of the profile distribution. As part of this study, we also corroborated that the radial velocities calculated with our template matching algorithm TERRA are not affected by the illumination stability. This work unveiled a possible failure of the HARPS-N atmospheric dispersion corrector (or ADC) and

  4. The Ultraviolet Spectrograph (UVS) on Juno

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Persyn, S.; Eterno, J.; Slater, D. C.; Davis, M. W.; Versteeg, M. H.; Persson, K. B.; Siegmund, O. H.; Marquet, B.; Gerard, J.; Grodent, D. C.

    2008-12-01

    Juno, a NASA New Frontiers mission, plans for launch in August 2011, a 5-year cruise (including a flyby of Earth in October 2013 for a gravity boost), and 14 months around Jupiter after arriving in August 2016. The spinning (2 RPM), solar-powered Juno will study Jupiter from a highly elliptical orbit, in which the spacecraft (for about 6 hours once every 11 days) dives down over the north pole, skims the outermost atmosphere, and rises back up over the south pole. This orbit allows Juno avoid most of the intense particle radiation surrounding the planet and provides an excellent platform for investigating Jupiter's polar magnetosphere. Part of the exploration of Jupiter's polar magnetosphere will involve remote sensing of the far-ultraviolet H and H2 auroral emissions, plus gases such as methane and acetylene which add their absorption signature to the H2 emissions. This hydrocarbon absorption can be used to estimate the energy of the precipitating electrons; since more energetic electrons penetrate deeper into the atmosphere and the UV emissions they produce will show more absorption. Juno will carry an Ultraviolet Spectrograph (UVS) to make spectral images of Jupiter's aurora. UVS is a UV imaging spectrograph sensitive to both extreme and far ultraviolet emissions in the 70-205~nm range that will characterize the morphology and spectral nature of Jupiter's auroral emissions. Juno UVS consists of two separate sections: a dedicated telescope/spectrograph assembly and a vault electronics box. The telescope/spectrograph assembly contains a telescope which feeds a 0.15-m Rowland circle spectrograph. The telescope has an input aperture 40×40~mm2 and uses an off-axis parabolic primary mirror. A flat scan mirror situated at the front end of the telescope (used to target specific auroral features at up to ±30° perpendicular to the Juno spin plane) directs incoming light to the primary. The light is then focused onto the spectrograph entrance slit, which has a 'dog

  5. Metrology of complex astigmatic surfaces for astronomical optics

    NASA Astrophysics Data System (ADS)

    Rolt, Stephen; Kirby, Andrew K.; Robertson, David J.

    2010-07-01

    This paper will focus on the metrology of multiple complex surfaces that are to be integrated into the KBand Multi- Object Spectrograph (KMOS). KMOS is a multi-field astronomical spectrograph designed for integration with the 8.2m diameter European Southern Observatory Very Large Telescope (VLT). There are 1080 separate optical surfaces in the design, many of them complex freeform surfaces. Optical surfaces were manufactured in aluminium by precision freeform diamond machining. This flexible technique allows the fabrication of extremely complex surfaces with an accuracy of better than 15 nm RMS over a 20 mm aperture, giving the designer great freedom in generating powerful and unorthodox designs. However, the complexity of these freeform surfaces poses a challenge to their accurate characterisation. This paper will discuss in detail the metrology of a specific freeform component in the instrument. The form of these complex astigmatic surfaces was measured using spherical wavefronts by adapting a tilted Twyman-Green Interferometer arrangement. There are eight separate designs for this type of component, each with a different orientation and magnitude of astigmatism. Careful mechanical fixturing is essential to align the astigmatic axis to the test set up. The impact of mechanical tolerances on measurement uncertainty will be discussed in detail.

  6. Astronomical spectra as powerful source for airglow studies

    NASA Astrophysics Data System (ADS)

    Kausch, W.; Noll, S.; Unterguggenberger, S.; Proxauf, B.; Kimeswenger, S.

    2015-03-01

    Light from astronomical objects has to pass the Earth's atmosphere before it reaches ground-based telescopes. Thus, any observation taken with such facilities contains information on the chemical composition and the physical state of the atmosphere. In particular, optical and near-infrared spectra taken with such telescopes are well suited to study various airglow emissions arising in the upper atmosphere thanks to the small field-of-view of the telescopes, large mirror sizes, and the frequent usage of medium to high resolution spectrographs. We study data taken by two frequently used echelle spectrographs from the Very Large Telescope (VLT) of the European Southern Observatory at Cerro Paranal (Chile): UVES, operative since 1999, is a high-resolution (20000 R 110000) instrument covering the wavelength range from 300 to 1100 nm. Hence, several O2 band systems (Herzberg I+II, Chamberlain, atmospheric), the green and red OI lines ( 557 nm; 630 nm), the recently discovered FeO bands ( 550 to 720 nm), NaID ( 589 nm), and all hydroxyl bands up to OH(3-0) can be investigated. The high temporal coverage allows investigations for more than one solar cycle. The X-Shooter instrument is an echelle spectrograph which is able to take medium-resolution (3000 R 18000) spectra from 300 to 2480 nm within one shot. Therefore, it is well suited for a comprehensive study of OH, as it covers all bands with a vibrational level difference 2 (up to OH(9-7)) simultaneously, apart from the previously mentioned other lines and bands. X-Shooter was put into operation in 2009. In this presentation, we will give a review on the available spectra, their quality and time coverage. Moreover, we will illustrate the potential of the data for airglow studies by showing results

  7. Upgrade of the area II spectrograph

    SciTech Connect

    Rehm, K.E.; Bolduc, C.

    1995-08-01

    Because of the low beam energies required for experiments of astrophysical interest, the first test experiments with radioactive {sup 18}F beams can be performed in Area II. Because of the shorter distances between ion source and detector this also results in higher transmission efficiencies. The Enge split-pole spectrograph, which was not used during the last 8 years, was equipped with a new cryopump system, upgrades to the magnet power supply and the NMR system were performed. A rotating target system was built which should alleviate target deterioration effects that were observed in first test experiments.

  8. Performance of MEGARA spectrograph optical elements

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Páez, G.; Izazaga, R.; de la Luz Hurtado, J.; Pérez, C.; Granados, F.; Aguirre, D.; Percino, E.; Reyes, J.; Gil de Paz, A.; Gallego, J.; Iglesias, J.

    2016-08-01

    MEGARA is the new IFU and multiobject spectrograph for Gran Telescopio Canarias. The spectograph will offer spectral resolution Rfwhm 6,000, 12,000 and 18,700. Except for the optical fibers and microlenses, the complete MEGARA optical system has been manufactured in Mexico. This includes a field lens, a 5-lenses collimator, a 7-lenses camera and a complete set of volume phase holographic gratings with 36 flat windows and 24 prisms. All these elements are very large and complex, with very efficient antireflection coatings. Here the optical performance of MEGARA collimator and camera lenses and the field lens is presented.

  9. Knowledge discovery in astronomical data

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxia; Zheng, Hongwen; Zhao, Yongheng

    2008-08-01

    With the construction and development of ground-based and space-based observatories, astronomical data amount to Terascale, even Petascale. How to extract knowledge from so huge data volume by automated methods is a big challenge for astronomers. Under this situation, many researchers have studied various approaches and developed different softwares to solve this issue. According to the special task of data mining, we need to select an appropriate technique suiting the requirement of data characteristics. Moreover all algorithms have their own pros and cons. We introduce the characteristics of astronomical data, present the taxonomy of knowledge discovery, and describe the functionalities of knowledge discovery in detail. Then the methods of knowledge discovery are touched upon. Finally the successful applications of data mining techniques in astronomy are summarized and reviewed. Facing data avalanche in astronomy, knowledge discovery in databases (KDD) shows its superiority.

  10. The Management of Astronomical Data

    NASA Astrophysics Data System (ADS)

    Norris, R. P.

    2006-08-01

    Astronomy has a distinguished tradition of using technology to accelerate the quality and effectiveness of science. However, amongst the shining examples of excellent data management by major projects lie examples of projects and institutions where data management has not been properly resourced, or where hard-earned data remain inaccessible to most astronomers. We need to establish and agree on a set of guiding principles for the management of astronomical data. For example, all OECD governments, representing nearly all countries with major astronomical facilities, have committed to the principle that publicly-funded data should be placed in the public domain. The last IAU GA in Sydney passed a resolution that archive data from publicly funded observatories should be placed in the public domain. The HST archive, which quadruples the number of science publications resulting from HST data, has demonstrated the value to science of doing so. And yet many observatory archives are still inaccessible. Another example is the barrier between journals and data centres. The astronomical data centres are enormously successful, and provide powerful tools which have accelerated the advance of science, and some of our journals are forward-looking and receptive to new ideas. And yet most data published in those journals never appear in the data centres. These two examples show that we are not making most effective use of our data, and consequently are not extracting the maximum scientific value from our observatories and astronomers. The Virtual Observatory promises us tools to provide better access to data, but these tools lose their value if the data are not available. It is time for the astronomical community to adopt a professional approach to data management, to maximise the science that can be achieved with our new and existing facilities.

  11. Development of an NPS Middle Ultraviolet Spectrograph (MUSTANG) electronic interface

    NASA Astrophysics Data System (ADS)

    Quint, John H.

    1991-12-01

    This thesis developed a robust electronic interface package for the Naval Postgraduate School (NPS) Middle Ultraviolet Spectrograph (MUSTANG) experiment. The MUSTANG instrument was designed to observe atmospheric emissions in the 1800 to 3400 A wavelength region. MUSTANG has flown along with a Naval Research Laboratory (NRL) instrument on a NASA sounding rocket experiment, and is scheduled to fly on two more sounding rockets prior to integration on an Air Force satellite. Data from these experiments will test a new technique for measuring global ionospheric electron densities on a real-time basis. The electronic interface links the MUSTANG instrument with the Aydin Vector MMP-600 Series Pulse Code Modulation Encoder in the sounding rocket telemetry section. Analog data from MUSTANG is digitized and buffered in the electronic interface to support asynchronous transfer to telemetry. Digitized MUSTANG data is telemetered to a ground station during rocket flight. This electronic interface circuit was thoroughly tested during payload integration with NASA. Ground Support Equipment (GSE) was extensively revised to support the MUSTANG instrument during lab calibration and launch site testing.

  12. Spectroscopy with an SBIG Spectrograph in an Undergraduate College

    NASA Astrophysics Data System (ADS)

    Sivron, R.

    2002-12-01

    I suggested a project for some undergraduate students in which HD68988, a star with suspected extrasolar planet, was to be viewed with an SBIG spectrograph and ST7 CCD. The main advantage of performing this observation in central Nebraska was the very dark sky here. The main purpose was to test the hypothesis that special spectral signature is associated with such stars. We encountered a major problem: The star was between 8th and 9th magnitude, and the pointing correction software for the 14" telescope malfunctioned. The extended observations needed could not be performed. As a "quick fix" we found the spectrum of three fairly typical stars: Capella, Spica and Betelgeuse. We then analyzed the data using the Microcal Origin software. This ended up being a very useful exersize in learning about detector calibration, detector response, peak finding and analysis, and earth atmospheric spectrum. The results were also used in correcting attitude problem. We offer this as a possible lab project for astronomy winter labs.

  13. The Goddard High Resolution Spectrograph Scientific Support Contract

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1988, Computer Sciences Corporation (CSC) was selected as the Goddard High Resolution Spectrograph (GHRS) Scientific Support Contractor (SSC). This was to have been a few months before the launch of NASA's first Great Observatory, the Hubble Space Telescope (HST). As one of five scientific instruments on HST, the GHRS was designed to obtain spectra in the 1050-3300 A ultraviolet wavelength region with a resolving power, lambda/Delta(lambda) , of up to 100,000 and relative photometric accuracy to 1%. It was built by Ball AeroSpace Systems Group under the guidance of the GHRS Investigation Definition Team (IDT), comprised of 16 scientists from the US and Canada. After launch, the IDT was to perform the initial instrument calibration and execute a broad scientific program during a five-year Guaranteed Time Observation (GTO) period. After a year's delay, the launch of HST occurred in April 1990, and CSC participated in the in-orbit calibration and first four years of GTO observations with the IDT. The HST primary mirror suffered from spherical aberration, which reduced the spatial and spectral resolution of Large Science Aperture (LSA) observations and decreased the throughput of the Small Science Aperture (SSA) by a factor of two. Periodic problems with the Side 1 carrousel electronics and anomalies with the low-voltage power supply finally resulted in a suspension of the use of Side 1 less than two years after launch. At the outset, the GHRS SSC task involved work in four areas: 1) to manage and operate the GHRS Data Analysis Facility (DAF); 2) to support the second Servicing Mission Observatory Verification (SMOV) program, as well as perform system engineering analysis of the GHRS as nesessary; 3) to assist the GHRS IDT with their scientific research programs, particularly the GSFC members of the team, and 4) to provide administrative and logistic support for GHRS public information and educational activities.

  14. European astronomers observe first evaporating planet

    NASA Astrophysics Data System (ADS)

    2003-03-01

    The scorched planet called HD 209458b orbits ‘only’ 7 million kilometres from its yellow Sun-like star. By comparison, Jupiter, the closest gas giant in our Solar System, orbits 780 million kilometres from our Sun. NASA/ESA Hubble Space telescope observations reveal a hot and puffed-up evaporating hydrogen atmosphere surrounding the planet. This huge envelope of hydrogen resembles a comet with a tail trailing behind the planet. The planet circles the parent star in a tight 3.5-day orbit. Earth also has an extended atmosphere of escaping hydrogen gas, but the loss rate is much lower. A mainly European team led by Alfred Vidal-Madjar (Institut d’Astrophysique de Paris, CNRS, France) reports this discovery in the 13 March edition of Nature. "We were astonished to see that the hydrogen atmosphere of this planet extends over 200 000 kilometres," says Vidal-Madjar. Studying extrasolar planets, especially if they are very close to their parent stars, is not easy because the starlight is usually too blinding. The planet was also too close to the star for Hubble to photograph directly in this case. However, astronomers were able to observe the planet indirectly since it blocks light from a small part of the star during transits across the disc of the star, thereby dimming it slightly. Light passing through the atmosphere around the planet is scattered and acquires a signature from the atmosphere. In a similar way, the Sun’s light is reddened as it passes obliquely through the Earth’s atmosphere at sunset. Astronomers used Hubble’s space telescope imaging spectrograph (STIS) to measure how much of the planet's atmosphere filters light from the star. They saw a startling drop in the star's hydrogen emission. A huge, puffed-up atmosphere can best explain this result. What is causing the atmosphere to escape? The planet’s outer atmosphere is extended and heated so much by the nearby star that it starts to escape the planet's gravity. Hydrogen boils off in the

  15. The new 2meter RCC Telescope in the Northern CAucasus (3100m) for Modern Astronomical Research

    NASA Astrophysics Data System (ADS)

    Tarady, V.; Yatskiv, Ya.

    A new 2 meter Ritchey-Chretien-Coude telescope in the Northern Caucasus is expected to be ready for astronomical research in late 1995. The telescope is located on the Terskol peak (near Elbrus) with the altitude of 3100 meter. The low atmospheric water vapour content and the high air transparency in the ultraviolet region allow us to infer that the Terskol peak is one of the best sites in Europe for astronomical ground observation. The mean seeing is about 1 arcsec at the Terskol peak. The main parameters of the optical system are as follows: * equivalent focal length is 16000 mm for the Ritchey-Chretien system and 72000 mm for the Coude system; * diameter of the field free from vignetting is 108' for the Ritchey-Chretien system and 5' for another one; *spot concentration is 80% inside the 0.5" circle. The new telescope will be used in investigating the fundamental problems of the star brightness variability, physics of stars and galaxies, studying the planet and satellite atmosphere dynamics. The precise astrometrical problems can also be solved with this telescope. The telescope will be equiped with the following detectors: -CCD Echelle spectrograph in the Coude focus; - astronomical infrared Fourie spectrometre; -digital panoramic polarimeter; -panoramic spectrophotometer with Fabry-Perot interferometer. This project is realized by the joint efforts of the Main Astronomical Observatory in Kiev (Ukrainian Academy of Sciences) and the International Centre for Astronomical and Medical-Ecological Investigations. Proposals for Scientific observation at the Terskol Observatory are encouraged.

  16. Field Raman Spectrograph for Environmental Analysis

    SciTech Connect

    Sylvia, J.M.; Haas, J.W.; Spencer, K.M.; Carrabba, M.M.; Rauh, R.D.; Forney, R.W.; Johnston, T.M.

    1998-07-01

    The widespread contamination found across the US Department of Energy (DOE) complex has received considerable attention from the government and public alike. A massive site characterization and cleanup effort has been underway for several years and is expected to continue for several decades more. The scope of the cleanup effort ranges from soil excavation and treatment to complete dismantling and decontamination of whole buildings. To its credit, DOE has supported research and development of new technologies to speed up and reduce the cost of this effort. One area in particular has been the development of portable instrumentation that can be used to perform analytical measurements in the field. This approach provides timely data to decision makers and eliminates the expense, delays, and uncertainties of sample preservation, transport, storage, and laboratory analysis. In this program, we have developed and demonstrated in the field a transportable, high performance Raman spectrograph that can be used to detect and identify contaminants in a variety of scenarios. With no moving parts, the spectrograph is rugged and can perform many Raman measurements in situ with flexible fiber optic sampling probes. The instrument operates under computer control and a software package has been developed to collect and process spectral data. A collection of Raman spectra for 200 contaminants of DOE importance has been compiled in a searchable format to assist in the identification of unknown contaminants in the field.

  17. WIYN bench upgrade: a revitalized spectrograph

    NASA Astrophysics Data System (ADS)

    Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.

    2008-07-01

    We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.

  18. Astronomical Limiting Magnitude at Langkawi Observatory

    NASA Astrophysics Data System (ADS)

    Zainuddin, Mohd. Zambri; Loon, Chin Wei; Harun, Saedah

    2010-07-01

    Astronomical limiting magnitude is an indicator for astronomer to conduct astronomical measurement at a particular site. It gives an idea to astronomer of that site what magnitude of celestial object can be measured. Langkawi National Observatory (LNO) is situated at Bukit Malut with latitude 6°18' 25'' North and longitude 99°46' 52'' East in Langkawi Island. Sky brightness measurement has been performed at this site using the standard astronomical technique. The value of the limiting magnitude measured is V = 18.6+/-1.0 magnitude. This will indicate that astronomical measurement at Langkawi observatory can only be done for celestial objects having magnitude less than V = 18.6 magnitudes.

  19. Time-calibrated Milankovitch cycles for the late Permian

    PubMed Central

    Wu, Huaichun; Zhang, Shihong; Hinnov, Linda A.; Jiang, Ganqing; Feng, Qinglai; Li, Haiyan; Yang, Tianshui

    2013-01-01

    An important innovation in the geosciences is the astronomical time scale. The astronomical time scale is based on the Milankovitch-forced stratigraphy that has been calibrated to astronomical models of paleoclimate forcing; it is defined for much of Cenozoic–Mesozoic. For the Palaeozoic era, however, astronomical forcing has not been widely explored because of lack of high-precision geochronology or astronomical modelling. Here we report Milankovitch cycles from late Permian (Lopingian) strata at Meishan and Shangsi, South China, time calibrated by recent high-precision U–Pb dating. The evidence extends empirical knowledge of Earth’s astronomical parameters before 250 million years ago. Observed obliquity and precession terms support a 22-h length-of-day. The reconstructed astronomical time scale indicates a 7.793-million year duration for the Lopingian epoch, when strong 405-kyr cycles constrain astronomical modelling. This is the first significant advance in defining the Palaeozoic astronomical time scale, anchored to absolute time, bridging the Palaeozoic–Mesozoic transition. PMID:24030138

  20. Time-calibrated Milankovitch cycles for the late Permian.

    PubMed

    Wu, Huaichun; Zhang, Shihong; Hinnov, Linda A; Jiang, Ganqing; Feng, Qinglai; Li, Haiyan; Yang, Tianshui

    2013-01-01

    An important innovation in the geosciences is the astronomical time scale. The astronomical time scale is based on the Milankovitch-forced stratigraphy that has been calibrated to astronomical models of paleoclimate forcing; it is defined for much of Cenozoic-Mesozoic. For the Palaeozoic era, however, astronomical forcing has not been widely explored because of lack of high-precision geochronology or astronomical modelling. Here we report Milankovitch cycles from late Permian (Lopingian) strata at Meishan and Shangsi, South China, time calibrated by recent high-precision U-Pb dating. The evidence extends empirical knowledge of Earth's astronomical parameters before 250 million years ago. Observed obliquity and precession terms support a 22-h length-of-day. The reconstructed astronomical time scale indicates a 7.793-million year duration for the Lopingian epoch, when strong 405-kyr cycles constrain astronomical modelling. This is the first significant advance in defining the Palaeozoic astronomical time scale, anchored to absolute time, bridging the Palaeozoic-Mesozoic transition.

  1. LRS2: A New Integral Field Spectrograph for the HET

    NASA Astrophysics Data System (ADS)

    Tuttle, Sarah E.; Hill, Gary J.; Chonis, Taylor S.; Tonnesen, Stephanie

    2016-01-01

    Here we present LRS2 (Low Resolution Spectrograph) and highlight early science opportunities with the newly upgraded Hobby Eberly telescope (HET). LRS2 is a four-channel optical wavelength (370nm - 1micron) spectrograph based on two VIRUS unit spectrographs. This fiber-fed integral field spectrograph covers a 12" x 6" field of view, switched between the two units (one blue, and one red) at R~2000. We highlight design elements, including the fundamental modification to grisms (from VPH gratings in VIRUS) to access the higher resolution. We discuss early science opportunities, including investigating nearby "blue-bulge" spiral galaxies and their anomalous star formation distribution.

  2. The deterministic optical alignment of the HERMES spectrograph

    NASA Astrophysics Data System (ADS)

    Gers, Luke; Staszak, Nicholas

    2014-07-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.

  3. Temperature control system for optical elements in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  4. American Astronomical Society Honors NRAO Scientist

    NASA Astrophysics Data System (ADS)

    2005-01-01

    built in the late 1970s. Work on the package began in 1978 in Charlottesville. Now including nearly a million lines of program code and almost a half-million lines of documentation, AIPS is used at more than 500 sites around the world. The package is a mainstay and a daily tool for most of the world's radio astronomers, and also has been used by scientists in such other fields as fluid-dynamics simulation and medical imaging. Over the years, Greisen and his colleagues at NRAO have revised the AIPS package numerous times and expanded its capabilities as new astronomical and computing hardware was developed. The software has been kept independent of specific computing hardware and operating systems, and so has been successfully used on a wide variety of computing equipment. "We are extremely proud of Eric's work and congratulate him on receiving this award," said NRAO Director Dr. Fred K.Y. Lo. "He has shown extraordinary dedication to making AIPS a valuable and effective tool for the world astronomical community, and this award is well-deserved recognition." The AAS citation reads, "The 2005 Van Biesbroeck Prize is awarded to Dr. Eric Greisen of NRAO for the initiation, development, and maintenance for twenty-five years of the Astronomical Image Processing System (AIPS). Virtually every VLA and VLBA program relies on AIPS for calibration and image reconstruction, and it has been exported to more than 500 sites worldwide. Greisen, as its principal architect and tireless custodian, has provided an invaluable service to astronomy. Moreover, AIPS represented a new paradigm for the processing of massive astronomical datasets, i.e., a comprehensive software package that was rigorously independent of particular operating systems, which supported portability and adaptability to evolving hardware designs. Beyond the call of duty, Greisen has generously responded to individual queries about the code from users at all levels, sometimes in real time at odd hours to support

  5. Moisture effects and control for the UVCS composite structure. [Ultraviolet Coronagraph Spectrograph

    NASA Technical Reports Server (NTRS)

    Austin, James D.

    1992-01-01

    The Ultraviolet Coronagraph Spectrograph (UVCS) is an optical instrument to be flown on the European spacecraft Solar Heliospheric Observatory (SOHO) to the sun-earth L1 point. The stability requirements of the instrument require the moisture content of the pseudoisotropic composite material not to exceed 0.06 percent during alignment and calibration. This paper describes the steps necessary to meet this requirement. These steps include a dynamic moisture content analysis, selection of bake out conditions and moisture controls, verification sampling, and use of witness specimens to monitor the moisture content during the prelaunch life of the structure.

  6. SINFONI Pipeline: Data reduction pipeline for the Very Large Telescope SINFONI spectrograph

    NASA Astrophysics Data System (ADS)

    ESO

    2017-08-01

    The SINFONI pipeline reduces data from the Very Large Telescope's SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument. It can evaluate the detector linearity and generate a corresponding non linear pixel map, create a master dark and a hot-pixel map, a master flat and a map of pixels which have intensities greater than a given threshold. It can also compute the optical distortions and slitlets distances, and perform wavelength calibration, PSF, telluric standard and other science data reduction, and can coadd bad pixel maps, collapse a cube to an image over a given wavelength range, perform cube arithmetics, among other useful tasks.

  7. Astronomical Photography for the Classroom.

    ERIC Educational Resources Information Center

    Hulme, Kenneth S.

    1981-01-01

    Describes class projects involving astronomical photography. Includes a description of how to make an astrocamera or convert a pocket camera into one suitable for astrophotography, film choices, and phenomena to photograph, such as star trails, meteors, the sun, and the moon. (DS)

  8. Astronomical Photography for the Classroom.

    ERIC Educational Resources Information Center

    Hulme, Kenneth S.

    1981-01-01

    Describes class projects involving astronomical photography. Includes a description of how to make an astrocamera or convert a pocket camera into one suitable for astrophotography, film choices, and phenomena to photograph, such as star trails, meteors, the sun, and the moon. (DS)

  9. Astronomical X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Joy, M. K.

    2000-01-01

    Over the past two decades, grazing incidence optics have transformed observational x-ray astronomy into a major scientific discipline at the cutting edge of research in astrophysics and cosmology. This review summarizes the fundamental design principles of grazing incidence optics for astronomical applications, describes the capabilities of the current generation of x-ray telescopes, and explores several avenues of future development.

  10. Astronomical Deities in Ancient Mesoamerica

    NASA Astrophysics Data System (ADS)

    Milbrath, Susan

    The best known astronomical deities in ancient Mesoamerica are the sun, moon, and Venus. The Milky Way was also deified, and its constellations were visualized as celestial animals or locations. The sun and Venus were male deities, but the moon had both male and female aspects. Some of these concepts survive today in Mesoamerican ethnographic accounts referencing different transformations of the moon.

  11. Australian sites of astronomical heritage

    NASA Astrophysics Data System (ADS)

    Stevenson, T.; Lomb, N.

    2015-03-01

    The heritage of astronomy in Australia has proven an effective communication medium. By interpreting science as a social and cultural phenomenon new light is thrown on challenges, such as the dispersal of instruments and problems identifying contemporary astronomy heritage. Astronomers are asked to take note and to consider the communication of astronomy now and in the future through a tangible heritage legacy.

  12. The Astronomical Photographic Data Archive

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Barker, T.; Castelaz, M.

    2010-01-01

    Pisgah Astronomical Research Institute is the home of the Astronomical Photographic Data Archive (APDA), a national effort to preserve, archive, and digitize astronomical photographic plate collections. APDA was formed in 2007 and presently holds more than 100,000 plates and films from more than a dozen observatory collections. While the photographic data pre-dates modern observational data taken with electronic instruments, it is nevertheless of extremely high quality. When one considers 100,000 plates and films in the APDA collection, some with 100's or 1000's of objects per plate, and plates taken over 100 years the value of the data in APDA becomes apparent. In addition to the astronomical photographic data collections, APDA also possesses two high precision glass plate measuring machines, GAMMA I and GAMMA II that were built for NASA and the Space Telescope Science Institute. The measuring machines were used by a team of scientists under the leadership of the late Dr. Barry Lasker to develop the Guide Star Catalog and Digitized Sky Survey that guide and direct the Hubble Space Telescope. We will describe the current set of collections, plans for the measuring machines, and the efforts that have been made to assure preservation of plate collections.

  13. The use of object-oriented techniques and CORBA in astronomical instrumentation control systems

    NASA Astrophysics Data System (ADS)

    Dipper, Nigel A.; Blackburn, Colin

    2004-09-01

    Control software for astronomy matches the ever increasing complexity of new large instrumentation projects. In order to speed the development cycle, object-oriented techniques have been used to generate loosely coupled software objects and larger scale components that can be reused in future projects. Such object-oriented systems provide for short development cycles which can respond to changing requirements and allow for extension. The Unified Modeling Language (UML) has been used for the analysis, design and implementation of this software. A distributed system is supported by the use of an object broker such as CORBA. These techniques are being applied to the development of an instrument control system for the UK spectrograph within FMOS (Fiber-fed Multi-Object Spectrograph). This is a second generation instrument for the Subaru Telescope of the National Astronomical Observatory of Japan.

  14. Design, construction, and implementation of a ground-based solar spectrograph for the National Student Solar Spectrograph Competition

    NASA Astrophysics Data System (ADS)

    Keeler, E.; Moen, D.; Peck, C.; Zimny, C.; Repasky, K.

    2012-10-01

    A solar spectrograph is an instrument that takes incoming sunlight over a specified portion of the sun's emitted electromagnetic spectrum and separates the light into its constituent frequency components, or spectrum. The components are then sent to a detector that measures intensity, which reveals the location of spectral properties of the light such as absorption and emission lines. The National Student Solar Spectrograph Competition (NSSSC) is a Montana Space Grant Consortium sponsored competition where undergraduate student teams from across the country design, build, and implement a ground-based solar spectrograph to perform any solar related task and demonstrate their spectrographs for the competition in May 2012 in Bozeman, MT. Each team is given a 2,000-dollar budget to build their spectrograph, which cannot be exceeded, and all spectrographs must follow regulations in the NSSSC guidelines. This team designed a spectrograph to be capable of imaging the sun across the visible spectrum using spatial filters and a standard photo detector rather than a traditional charge-coupled device due to budget limitations. The spectrograph analyzes the spectrum of small sections of the sun to determine how the spectrum varies across solar features such as the corona, active regions, and quiet regions. In addition to solar imaging, the spectrograph will also analyze atmospheric absorption of the solar spectrum by comparing the measured spectrum to the theoretical spectrum calculated from the blackbody equation.

  15. Precision single mode fibre integral field spectroscopy with the RHEA spectrograph

    NASA Astrophysics Data System (ADS)

    Rains, Adam D.; Ireland, Michael J.; Jovanovic, Nemanja; Feger, Tobias; Bento, Joao; Schwab, Christian; Coutts, David W.; Guyon, Olivier; Arriola, Alexander; Gross, Simon

    2016-08-01

    The RHEA Spectrograph is a single-mode echelle spectrograph designed to be a replicable and cost effective method of undertaking precision radial velocity measurements. Two versions of RHEA currently exist, one located at the Australian National University in Canberra, Australia (450 - 600nm wavelength range), and another located at the Subaru Telescope in Hawaii, USA (600 - 800 nm wavelength range). Both instruments have a novel fibre feed consisting of an integral field unit injecting light into a 2D grid of single mode fibres. This grid of fibres is then reformatted into a 1D array at the input of the spectrograph (consisting of the science fibres and a reference fibre capable of receiving a white-light or xenon reference source for simultaneous calibration). The use of single mode fibres frees RHEA from the issue of modal noise and significantly reduces the size of the optics used. In addition to increasing the overall light throughput of the system, the integral field unit allows for cutting edge science goals to be achieved when operating behind the 8.2m Subaru Telescope and the SCExAO adaptive optics system. These include, but are not limited to: resolved stellar photospheres; resolved protoplanetary disk structures; resolved Mira shocks, dust and winds; and sub-arcsecond companions. We present details and results of early tests of RHEA@Subaru and progress towards the stated science goals.

  16. Latin American astronomers and the International Astronomical Union

    NASA Astrophysics Data System (ADS)

    Torres-Peimbert, S.

    2017-07-01

    Selected aspects of the participation of the Latin American astronomers in the International Astronomical Union are presented: Membership, Governing bodies, IAU meetings, and other activities. The Union was founded in 1919 with 7 initial member states, soon to be followed by Brazil. In 1921 Mexico joined, and in 1928 Argentina also formed part of the Union, while Chile joined in 1947. In 1961 Argentina, Brazil, Chile, Mexico and Venezuela were already member countries. At present (October 2016) 72 countries contribute financially to the Union. The Union lists 12,391 professional astronomers as individual members; of those, 692 astronomers work in Latin America and the Caribbean, from 13 member states (Argentina, Bolivia , Brazil, Chile, Colombia, Costa Rica, Cuba, Honduras, Mexico, Panamá, Perú, Uruguay and Venezuela) as well as from Ecuador and Puerto Rico. This group comprises 5.58% of the total membership, a figure somewhat lower than the fraction of the population in the region, which is 8.6% of the world population. Of the Latin American members, 23.4% are women and 76.6% are men; slightly higher than the whole membership of Union, which is of 16.9%. In the governing bodies it can be mentioned that there have been 2 Presidents of the Union (Jorge Sahade and Silvia Torres-Peimbert), 7 VicePresidents (Guillermo Haro, Jorge Sahade, Manuel Peimbert Claudio Anguita, Silvia Torres-Peimbert, Beatriz Barbuy, and Marta G. Rovira). The IAU meetings held in the region, include 2 General Assemblies (the 1991 XXI GA took place in Buenos Aires, Argentina and the 2009 XXVIII GA, in Rio de Janeiro, Brazil), 15 Regional Meetings (in Argentina, Brazil, Chile, Colombia, Mexico, Venezuela and Uruguay), 29 Symposia (in Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Peru and Mexico), 5 Colloquia (in Argentina and Mexico), 8 International Schools for Young Astronomers (in Argentina, Brazil, Cuba, Honduras and Mexico), and 11 projects sponsored by the Office of Astronomy

  17. Center Finding Algorithm on slit mask point source for IGRINS (Immersion GRating INfrared Spectrograph)

    NASA Astrophysics Data System (ADS)

    Lee, Hye-In; Pak, Soojong; Lee, Jae-Joon; Mace, Gregory N.; Jaffe, Daniel Thomas

    2017-06-01

    We developed an observation control software for the IGRINS (Immersion Grating Infrared Spectrograph) silt-viewing camera module, which points the astronomical target onto the spectroscopy slit and sends tracking feedbacks to the telescope control system (TCS). The point spread function (PSF) image is not following symmetric Gaussian profile. In addition, bright targets are easily saturated and shown as a donut shape. It is not trivial to define and find the center of the asymmetric PSF especially when most of the stellar PSF falls inside the slit. We made a center balancing algorithm (CBA) which derives the expected center position along the slit-width axis by referencing the stray flux ratios of both upper and lower sides of the slit. We compared accuracies of the CBA and those of a two-dimensional Gaussian fitting (2DGA) through simulations in order to evaluate the center finding algorithms. These methods were then verified with observational data. In this poster, we present the results of our tests and suggest a new algorithm for centering targets in the slit image of a spectrograph.

  18. Introducing CUBES: the Cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Bristow, Paul; Barbuy, Beatriz; Macanhan, Vanessa B.; Castilho, Bruno; Dekker, Hans; Delabre, Bernard; Diaz, Marcos; Gneiding, Clemens; Kerber, Florian; Kuntschner, Harald; La Mura, Giovanni; Reiss, Roland; Vernet, J.

    2014-07-01

    CUBES is a high-efficiency, medium-resolution (R ≃ 20, 000) spectrograph dedicated to the "ground based UV" (approximately the wavelength range from 300 to 400nm) destined for the Cassegrain focus of one of ESO's VLT unit telescopes in 2018/19. The CUBES project is a joint venture between ESO and Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) at the Universidade de São Paulo and the Brazilian Laboratório Nacional de Astrofísica (LNA). CUBES will provide access to a wealth of new and relevant information for stellar as well as extra-galactic sources. Principle science cases include the study of heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range and the determination of the Beryllium abundance as well as the study of active galactic nuclei and the inter-galactic medium. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will enable a significant gain in sensitivity over existing ground based medium-high resolution spectrographs enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project, introducing the science cases that drive the design and discussing the design options and technological challenges.

  19. Design and realization of the backup field controllers for LAMOST spectrographs

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Han, Zhongyi; Zeng, Yizhong; Dai, Songxin; Hu, Zhongwen; Zhu, Yongtian; Wang, Lei; Hou, Yonghui

    2012-09-01

    The China-made telescope, LAMOST, consists of 16 Spectrographs to detect stellar spectra via 4000 optical fibers. In each spectroscope, many movable parts work in phase. Those parts are real-time controlled and managed by field controllers based on FPGA. The master control board of controllers currently being used is constructed by Altera's Cyclone II Development Kit. However, now Altera no longer produce such Kits. As the needs for maintenance and improvement, a backup control board is developed, so that once any field controller is broken, another can changed in time to ensure the control system not being interrupted. Using the newer Altera FPGA chip 3C40 as master control chip can minimize the change in the original design frame of the control structure so as to reduce the workload of software and hardware migration. This paper describes the design process of the Spectrographs backup field controller based on Cyclone 3C40 and gives the problems and solutions encountered during migration for controller hardware and software. The improved field controller not only retains the original controller functions, but also can serve for more motors and sensors due to the increase of input and output pins. Besides, no commodity supply limits, which saves expenses. The FPGA-field controller can also be used in other telescopes, astronomical instruments and industrial control systems as well.

  20. Astronomical observatories of the Soviet Union

    NASA Astrophysics Data System (ADS)

    Ponomarev, Dmitrii Nikolaevich

    Various types of astronomical instruments are described, including optical telescopes, radio telescopes, and radiation detectors. Soviet ground-based astronomical observatories are described as well as those aboard satellites and space stations.

  1. Leslie Peltier: The World's Greatest Amateur Astronomer

    NASA Astrophysics Data System (ADS)

    Simonsen, M.

    2014-05-01

    This paper is a brief account of the life of amateur astronomer Leslie C. Peltier, with reflections on how his astronomical accomplishments influenced the author's own involvement in variable star observing.

  2. CFHT MOS/SIS spectrograph performance

    NASA Astrophysics Data System (ADS)

    Le Fevre, O.; Crampton, D.; Felenbok, P.; Monnet, G.

    1994-02-01

    Initial results of laboratory and on-sky tests of the new Canada-France-Hawaii Telescope (CFHT) multi-object spectrograph, metal oxide semiconductor (MOS)/superconducting / insulating / superconducting (SIS), are described. MOS/SIS contains two ways, one of which is primarily intended for imagery and spectroscopy of many tens of objects within a 10 min field, while the other utilizes tip/tilt image stabilization for high spatial resolution imagery and spectroscopy over a 3 min field. Data on image quality, transmission, flexure and stability are presented, as well as a description of the multi-object observing performance. This highly integrated system incorporates yttrium-aluminum garnet (YAG) laser drilling equipment and allows on-line acquisition, aperture mask design and fabrication for multi-slit observations with minimum overhead. A comprehensive software interface provides observers with a user-friendly environment and ensures that all operations can be quickly and efficiently controlled by novice users.

  3. Near ultraviolet spectrograph for balloon platform

    NASA Astrophysics Data System (ADS)

    Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    2015-06-01

    Small and compact scientific payloads may be easily designed constructed and own on high altitude balloons. Despite the fact that large orbital observatories provide accurate observations and statistical studies of remote and/or faint space sources, small telescopes on board balloons or rockets are still attractive because of their low cost and rapid response time. We describe here a near ultraviolet (NUV) spectrograph designed to be own on a high{altitude balloon platform. Our basic optical design is a modified Czerny-Turner system using off the shelf optics. We compare different methods of aberration corrections in such a system. We intend the system to be portable and scalable to different telescopes. The use of reflecting optics reduces the transmission loss in UV. We plan on using an image intensified CMOS sensor operating in photon counting mode as the detector of choice.

  4. Field Raman spectrograph for environmental analysis

    SciTech Connect

    Haas, J.W. III; Forney, R.W.; Carrabba, M.M.; Rauh, R.D.

    1995-12-01

    The enormous cost for chemical analysis at DOE facilities predicates that cost-saving measures be implemented. Many approaches, ranging from increasing laboratory sample throughput by reducing preparation time to the development of field instrumentation, are being explored to meet this need. Because of the presence of radioactive materials at many DOE sites, there is also a need for methods that are safer for site personnel and analysts. This project entails the development of a compact Raman spectrograph for field screening and monitoring of a wide variety of wastes, pollutants, and corrosion products in storage tanks, soils, and ground and surface waters. Analytical advantages of the Raman technique include its ability to produce a unique, spectral fingerprint for each contaminant and its ability to analyze both solids and liquids directly, without the need for isolation or cleanup.

  5. SPECFOCUS: An IRAF task for focusing spectrographs

    NASA Technical Reports Server (NTRS)

    Valdes, F.

    1992-01-01

    An IRAF task for measuring the point-spread function (PSF) along the dispersion and wavelength shifts across the dispersion in two dimensional arc spectra is described. In typical use, a set of spectra are obtained with various spectrograph focusing and alignment adjustments and the PSF information and shift information is derived and presented in tabular and graphical forms. Within each image the spectra may be divided into a number of samples along the dispersion and across the dispersion to investigate variations at different points in the detector at fixed focus settings. With many spectra and many samples interpreting the measurements is challenging. The task provides an interactive graphical interface to display the measurements in a number of interesting ways. The underlying algorithm for measuring the PSF and shifts in the auto/cross-correlation of spectral are samples.

  6. A high resolution ultraviolet Shuttle glow spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1993-01-01

    The High Resolution Shuttle Glow Spectrograph-B (HRSGS-B) is a small payload being developed by the Naval Research Laboratory. It is intended for study of shuttle surface glow in the 180-400 nm near- and middle-ultraviolet wavelength range, with a spectral resolution of 0.2 nm. It will search for, among other possible features, the band systems of excited NO which result from surface-catalyzed combination of N and O. It may also detect O2 Hertzberg bands and N2 Vegard-Kaplan bands resulting from surface recombination. This wavelength range also includes possible N2+ and OH emissions. The HRSGS-B will be housed in a Get Away Special canister, mounted in the shuttle orbiter payload bay, and will observe the glow on the tail of the orbiter.

  7. Fiber feed for the CFHT Gecko spectrograph

    NASA Astrophysics Data System (ADS)

    Baudrand, Jacques; Vitry, Rene

    2000-08-01

    Motivated by a strong concern to keep maintenance work as low as possible the direction of the CFHT had for some times contemplated the possibility to replace the original mirror train f/20 focus feeding their Gecko High Resolution Coude Spectrograph by a more convenient fiber link coupled to the f/8 Cassegrain focus. A decision supporting that idea was ultimately taken two years ago and our group at the OPM was contacted to build such a system according to precise specifications. This telescope facility, baptized CAFÉ for Cassegrain Fiber Environment, has now arrived to near completion and we are able to present here its main characteristics and the technical solutions that were adopted to meet the CFHT requirements and to provide the system with the best performances in terms of robustness and efficiency.

  8. Aries x ray objective grating spectrograph

    NASA Technical Reports Server (NTRS)

    Catura, R. C.

    1991-01-01

    This investigation was initiated in June of 1983. An Aries payload involving a single Wolter 1 telescope was developed and flown under a previous contract and the objective of this work was to add two additional mirrors, nested inside of the then existing mirror and add 12 objective reflection gratings to convert the telescope into a spectrograph. A summary of major milestones in the investigation are given. Results of efforts under this contract prior to 1987 are presented in the form of four reprints of published papers attached to this report. Results of the gamma-ray research are also included in the form of an attached reprint. A summary of other work under the contract since 1987 is given.

  9. Astronomical Heritages: Astronomical Archives and Historic Transits of Venus

    NASA Astrophysics Data System (ADS)

    Sterken, C.; Duerbeck, H. W.

    2005-03-01

    These Proceedings contain a selection of presentations and research papers emanating from meetings of the Astronomical Archives and Transits of Venus Working Groups of Commission 41, and from presentations at the last three IAU General Assemblies. Some additional reports related to the topic of this book have also been added. The first part of the book deals with archives, the second part with facts related to historical transits of Venus - although there is substantial overlap since some archive papers deal with Transits of Venus as well. The compilation deals with many wonderful and even rare sources of information, such as official documents and reports, private letters, astronomical instruments and telescopes, national inventories, photographic plates, etc. A lot of documentation described in this book is available only on national level, and the combination of this material in one single volume looks like a cross-cultural study dealing with art and science, and almost can serve as a travel guide in time and space.

  10. Compact imaging spectrograph for broadband spectral simultaneity.

    PubMed

    Torr, M R; Torr, D G

    1995-12-01

    We report on the design of a small spectrograph that is capable of imaging several thousand angstrom simultaneously at a moderate spectral resolution. The prototype instrument included a number of developmental items that were used to assess their utility in this and other applications. Some we would recommend using again, some we would not. In the configuration that was built and tested, the instantaneous wavelength range was chosen to be 3700-11,700 Å. However, the wavelength range could be selected for a lower wavelength, as low as ~ 1200 Å. The spectral imaging was achieved with an intensified-CCD focal-plane detector. The broad wavelength coverage was achieved with a matrix of four diffraction gratings and a custom-designed photocathode system. The photocathode was specially built to provide a response over the chosen broad wavelength range by use of a single image intensifier. The theoretical spectral resolution of the instrument varied from 12 to 20 Å depending on waveleng th segment. A higher spectral resolution can be selected at the expense of total wavelength coverage. The optical system was designed to be moderately fast (f/6) when considered at the level of each of the four optical subchannels and suitable for use on relatively weak airglow signals. The instrument was designed to be readily portable, weighing 15 kg, with an envelope of 37 cm × 37 cm × 48 cm. The advantages and weaknesses of such an instrument are discussed, and improvements are suggested for specific applications. This study represents a stepping stone in the evolution of electronic spectrographs and leads to later designs that are currently being evaluated.

  11. Fiber Scrambling for High Precision Spectrographs

    NASA Astrophysics Data System (ADS)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  12. VIRUS: a massively replicated IFU spectrograph for HET

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; MacQueen, Phillip J.; Tejada, Carlos; Cobos, Francisco J.; Palunas, Povilas; Gebhardt, Karl; Drory, Niv

    2004-09-01

    We investigate the role of industrial replication in the construction of the next generation of spectrographs for large telescopes. In this paradigm, a simple base spectrograph unit is replicated to provide multiplex advantage, while the engineering costs are amortized over many copies. We argue that this is a cost-effective approach when compared to traditional spectrograph design, where each instrument is essentially a one-off prototype with heavy expenditure on engineering effort. As an example of massive replication, we present the design of, and the science drivers for, the Visible IFU Replicable Ultra-cheap Spectrograph (VIRUS). This instrument is made up of 132 individually small and simple spectrographs, each fed by a fiber integral field unit. The total VIRUS-132 instrument covers ~29 sq. arcminutes per observation, providing integral field spectroscopy from 340 to 570 nm, simultaneously, of 32,604 spatial elements, each 1 sq. arcsecond on the sky. VIRUS-132 will be mounted on the 9.2 m Hobby-Eberly Telescope and fed by a new wide-field corrector with a science field in excess of 16.5 arcminutes diameter. VIRUS represents a new approach to spectrograph design, offering the science multiplex advantage of huge sky coverage for an integral field spectrograph, coupled with the engineering multiplex advantage of >102 spectrographs making up a whole.

  13. A laser-lock concept to reach cm s-1-precision in Doppler experiments with Fabry-Pérot wavelength calibrators

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Banyal, R. K.; Ulbrich, R. G.

    2014-09-01

    State-of-the-art Doppler experiments require wavelength calibration with precision at the cm s-1 level. A low-finesse Fabry-Pérot interferometer (FPI) can provide a wavelength comb with a very large bandwidth as required for astronomical experiments, but unavoidable spectral drifts are difficult to control. Instead of actively controlling the FPI cavity, we propose to passively stabilize the interferometer and track the time-dependent cavity length drift externally using the 87Rb D2 atomic line. A dual-finesse cavity allows drift tracking during observation. In the low-finesse spectral range, the cavity provides a comb transmission spectrum tailored to the astronomical spectrograph. The drift of the cavity length is monitored in the high-finesse range relative to an external standard: a single narrow transmission peak is locked to an external cavity diode laser and compared to an atomic frequency from a Doppler-free transition. Following standard locking schemes, tracking at sub-mm s-1 precision can be achieved. This is several orders of magnitude better than currently planned high-precision Doppler experiments, and it allows freedom for relaxed designs including the use of a single-finesse interferometer under certain conditions. All components for the proposed setup are readily available, rendering this approach particularly interesting for upcoming Doppler experiments. We also show that the large number of interference modes used in an astronomical FPI allows us to unambiguously identify the interference mode of each FPI transmission peak defining its absolute wavelength solution. The accuracy reached in each resonance with the laser concept is then defined by the cavity length that is determined from the one locked peak and by the group velocity dispersion. The latter can vary by several 100 m s-1 over the relevant frequency range and severely limits the accuracy of individual peak locations, although their interference modes are known. A potential way to

  14. Most Efficient Spectrograph to Shoot the Southern Skies

    NASA Astrophysics Data System (ADS)

    2009-05-01

    -shooter, for a total of 350 observing nights, making it the second most requested instrument at the Very Large Telescope in this period. More information ESO's Very Large Telescope (VLT) is the world's most advanced optical instrument. It is an ensemble of four 8.2-metre telescopes located at the Paranal Observatory on an isolated mountain peak in the Atacama Desert in North Chile. The four 8.2-metre telescopes have a total of 12 focal stations where different instruments for imaging and spectroscopic observations are installed and a special station where the light of the four telescopes is combined for interferometric observations. The first VLT instrument was installed in 1998 and has been followed by 12 more in the last 10 years, distributed at the different focal stations. X-shooter is the first of the second generation of VLT instruments and replaces the workhorse-instrument FORS1, which has been successfully used for more than ten years by hundreds of astronomers. X-shooter operates at the Cassegrain focus of the Kueyen telescope (UT2). In response to an ESO Call for Proposals for second generation VLT instrumentation, ESO received three proposals for an intermediate resolution, high efficiency spectrograph. These were eventually merged into a single proposal around the present concept of X-shooter, which was approved for construction in November 2003. The Final Design Review, at which the instrument design is finalised and declared ready for construction, took place in April 2006. The first observations with the instrument at the telescope in its full configuration were on 14 March 2009. X-shooter is a joint project by Denmark, France, Italy, the Netherlands and ESO. The collaborating institutes in Denmark are the Niels Bohr and the DARK Institutes of the University of Copenhagen and the National Space Institute (Technical University of Denmark); in France GEPI at the Observatoire de Paris and APC at the Université D. Diderot, with contributions from the CEA and the

  15. Spectrograph sensitivity analysis: an efficient tool for different design phases

    NASA Astrophysics Data System (ADS)

    Genoni, M.; Riva, M.; Pariani, G.; Aliverti, M.; Moschetti, M.

    2016-08-01

    In this paper we present an efficient tool developed to perform opto-mechanical tolerance and sensitivity analysis both for the preliminary and final design phases of a spectrograph. With this tool it will be possible to evaluate the effect of mechanical perturbation of each single spectrograph optical element in terms of image stability, i.e. the motion of the echellogram on the spectrograph focal plane, and of image quality, i.e. the spot size of the different echellogram wavelengths. We present the MATLAB-Zemax script architecture of the tool. In addition we present the detailed results concerning its application to the sensitivity analysis of the ESPRESSO spectrograph (the Echelle Spectrograph for Rocky Exoplanets and Stable Spectroscopic Observations which will be soon installed on ESO's Very Large Telescope) in the framework of the incoming assembly, alignment and integration phases.

  16. The Planning Process for Multi-Object Spectroscopy with the JWST Near-Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Beck, Tracy L.; Karakla, D. M.; Shyrokov, A.; Pontoppidan, K.; Soderblom, D. R.; Valenti, J. A.; Kassin, S. A.; Gilbert, K.; Blair, W. P.; Muzerolle, J.; Tumlinson, J.; Keyes, C. D.; Pavlovsky, C. M.; LeBlanc, T.

    2014-01-01

    The Near-Infrared Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) will have a powerful multi-object spectroscopy mode using four configurable Micro-Shutter Arrays (MSAs). The contiguous MSA shutters can be opened to form slits on astronomical targets, for simultaneous spectroscopy of up to 100 sources per exposure. The NIRSpec MSA shutters are in a fixed grid pattern, and careful analysis in the observation planning process will be crucial for optimal definition of science exposures. Our goal is to maximize the number of astronomical science sources observed in the fewest number of MSA slit configurations. We are developing algorithms in the NIRSpec MSA Planning Tool (MPT) to improve the quality of planned observations using several common science observing strategies as test use cases. For example, the needs for planning extremely deep exposures on a small number of JWST discovered z > 10 galaxy candidates will differ significantly from the requirements for planning spectral observations on a representative sample of stars from a galactic star cluster catalog. In this poster, we present a high level overview of our plans to develop and optimize the MPT for the JWST NIRSpec multi-object spectroscopy mode.

  17. Astronomical Activities with Disabled People

    NASA Astrophysics Data System (ADS)

    Gil, Amelia Ortiz

    With this contribution we would like to share our experiences in organizing astronomical activities addressed to people with disabilities. The goal is twofold: we would like to invite all those with similar experiences to contribute to the compilation of a document to guide other astronomers who might be interested in carrying out these kind of activities aimed at groups of people with special needs. We also want to persuade public outreach officers that working with disabled people is not as difficult as it may seem at first, as long as they are provided with adequate educational material and guidelines about how to do it. The final goal is to build a repository that can be used by educators and public outreach officers as a guide when working with disabled people, specially during the International Year of Astronomy.

  18. Observatory Sponsoring Astronomical Image Contest

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  19. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald

    2015-01-01

    The path of the total solar eclipse across the United States on August 21, 2017 crosses the Pisgah Astronomical Research Institute (PARI) located in western North Carolina. The partial eclipse begins at about 17:08 UT, followed by the nearly 2 minute total eclipse which begins at about 18:37 UT. The PARI campus includes radio and optical telescopes, as well as earth science instruments that include a seismometer, geomagnetometer, EarthScope Plate Boundary Observatory, time standards, and several weather stations. The instruments stream data to the PARI website and will be available for the eclipse. In anticipation of the 2017 solar eclipse, we present the instruments and infrastructure of the PARI campus. We invite astronomers to explore the use of the PARI campus as a site for their own instruments and/or the use of instruments already located at PARI.

  20. Integrated optics for astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Marques, P. V. S.; Ghasempour, A.; Alexandre, D.; Leite, A. M. P.; Garcia, P. J. V.; Reynaud, F.

    2011-05-01

    Integrated optics is a well established technology that finds its main applications in the fields of optical communication and sensing. However, it is expanding into new areas, and in the last decade application in astronomical interferometry has been explored. In particular, several examples have been demonstrated in the areas of beam control and combination. In this paper, different examples of application integrated optics devices for fabrication of beam combiners for astronomical interferometry is given. For the multiaxial beam combiners, a UV laser direct writing unit is used for mask fabrication. The operation principles of the coaxial combiners fabricated in hybrid sol-gel were validated using an interferometric set-up. These results demonstrate that hybrid sol-gel technology can produce quality devices, opening the possibility of rapid prototyping of new designs and concepts.

  1. Armenian Astronomical Society Annual Activities in 2014

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    A report is given on the achievements of the Armenian astronomy during the last year and on the present activities of the Armenian Astronomical Society (ArAS). ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, annual meetings, Annual Prize for Young Astronomers (Yervant Terzian Prize) and other awards, international relations, presence in international organizations, summer schools, astronomical Olympiads and other events, matters related to astronomical education, astronomical heritage, astronomy outreach and ArAS further projects are discussed. The present meeting, BAO Science Camp, ArAS School lectures are among 2014 events as well.

  2. Armenian Astronomical Society (ArAS) activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    A review on the activities and achievements of Armenian Astronomical Society (ArAS) and Armenian astronomy in general during the last years is given. ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, Annual Meetings, Annual Prize for Young Astronomers (Yervant Terzian Prize) and other awards, international relations, presence in international organizations, local and international summer schools, science camps, astronomical Olympiads and other events, matters related to astronomical education, astronomical heritage, amateur astronomy, astronomy outreach and ArAS further projects are described and discussed.

  3. Ground-based and orbital off-axis aspherized grating imager-spectrographs: ISARD-OMP and OSIRIS-ODIN

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.; Richardson, Eric H.

    1998-07-01

    Progress in Active Optics Methods has led to the invention and production of blazed aspherical gratings. These developments use jointly 'vase form' submasters and a two-stage replication technique. It has been shown that the use of aspherized gratings greatly minimizes the number of optical surfaces. This improves the optical throughput of astronomical spectrographs and has a capability of correcting camera mirror aberrations up to f/1.2. With respect to refractive designs, the full achromaticity in correcting mirror aberrations by constant line spacing reflective gratings allows much broader spectral coverages -- hereafter [(lambda) (lambda) ] approximately equals 2 octaves. In addition, and also due to a full reflective design, such instruments provide quasi- constant spectral dispersions and are distortion free. These latter features increase the accuracy in the data reduction process (sky substraction, etc. ...), and are particularly convenient in the multi-aperture mode. Recent developments in this field are presented with imager-spectrograph ISARD, dedicated to the Cassegrain focus of the 2m Bernard Lyot Telescope at Pic-du-Midi Observatory for faint object studies in the optical domain [320 - 1200 nm], and with spectrograph OSIRIS, to be launched in a ODIN orbital mission in 1998 and built by the Canadian Space Agency for studies in the spectral range [295 - 800 nm].

  4. Cultural heritage of astronomical observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2011-06-01

    We present the results of the ICOMOS international symposium ``Cultural Heritage of Astronomical Observatories (around 1900) - From Classical Astronomy to Modern Astrophysics'' (Oct. 2008). The objective of the symposium was to discuss the relevance of modern observatories to the cultural heritage of humankind and to select partner observatories which, due to the date of their construction or to their architectural or scientific importance are comparable to Hamburg Observatory, as international cooperation partners for a serial trans-national application.

  5. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.

    2009-01-01

    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance

  6. Physical Characteristics of Astronomical Masers

    SciTech Connect

    Elitzur, M.

    1982-10-01

    The radio line emission of interstellar molecules routinely shows deviations from thermal equilibrium which culminate with strong maser radiation in some sources. Like its laboratory counterpart, the maser radiation is amplified through the effect of induced processes in a region where a population inversion exists and displays many of the basic features of laboratory lasers. This review is intended to explain the basic theory of astronomical masers and to survey the theoretical models which were developed for specific sources.

  7. Directory of astronomical data files

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This Directory of Astronomical Data Files was prepared by the Data Task Force of the Interagency Coordination Committee for Astronomy (ICCA) in cooperation with the National Space Science Data Center (NSSDC). The purpose of the Directory is to provide a listing which will enable a user to locate stellar and extragalactic data sources keyed along with sufficient descriptive information to permit him to assess the value of the files for his use as well as the status and availability of the compilations.

  8. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.; Osborne, C. S.; Powers, J.

    1999-12-01

    The Pisgah Astronomical Research Institute (PARI), is a not-for-profit foundation dedicated to providing research, study, and educational access to optical and radio astronomy for a broad cross section of users. Pre-college through post-graduate students have the opportunity to work and learn with full time and visiting astronomers while performing research using a variety of advanced astronomical techniques. Additional access will be provided on a remote basis through the Internet to grades K-12 and the public. Located about 50 km west of Asheville, North Carolina, PARI maintains a radio observatory with two 26-m radio telescopes for the study of radiation from 21 cm through 2 cm, a 17-30 MHz log periodic pair antennae dedicated to the study of Jupiter-Io magnetic field interaction, a 12-m precision surface antenna for the study of radiation from 21 cm through 0.6 cm, a 4.6-m dish for the study of radiation from 21 cm through 3 cm, and an all-sky survey 0.20-m remote controllable optical telescope. Details of the radio telescopes and procedures for using the existing facilities and future plans at PARI will be described.

  9. Conceptual approach to astronomical problems

    NASA Astrophysics Data System (ADS)

    Skvortsov, N. A.; Avvakumova, E. A.; Bryukhov, D. O.; Vovchenko, A. E.; Vol'nova, A. A.; Dluzhnevskaya, O. B.; Kaigorodov, P. V.; Kalinichenko, L. A.; Kniazev, A. Yu.; Kovaleva, D. A.; Malkov, O. Yu.; Pozanenko, A. S.; Stupnikov, S. A.

    2016-01-01

    New technical capabilities have brought about the sweeping growth of the amount of data acquired by the astronomers from observations with different instruments in various parts of the electromagnetic spectrum. We consider conceptual approach to be a promising tool to efficiently deal with these data. It uses problem domain knowledge to formulate the tasks and develop problem-solving algorithms and data analysis methods in terms of domain concepts without reference to particular data sources, and thereby allows solving certain problems in general form. We demonstrate the benefits of conceptual approach by using it to solve problems related to search for secondary photometric standard candidates, determination of galaxy redshifts, creation of a binary and multiple star repository based on inhomogeneous databases, and classification of eclipsing binaries.We formulate and solve these problems over specifications of astronomical knowledge units such as photometric systems, astronomical objects, multiple stars, etc., and define them in terms of the corresponding problem domains independently of the existing data resources.

  10. The Quito Astronomical Instruments Heritage

    NASA Astrophysics Data System (ADS)

    Lopez, Ericsson

    The Quito Astronomical Observatory was build in the 1873s thanks to the generous sponsoring of the president of the Republic of Ecuador Dr. Gabriel García Moreno who desire was to build a long-lasting monument to Ecuadorian science . Thanks to the collaboration of father J. B. Menten one of the leading german astronomer the President' s dream came true. The Observatory with its splendid buildings was in fact equipped with a series of very important instruments such as the 30-cm Mertz refractor a large Molteni meridian instrument and a Bamber of 10 cm. Other instruments were subsequently added in the course of the 20th century. Recently we have performed a detailed inventory of all the historical instruments still preserved at the Observatory. This paper is dedicated to briefly trace the history of the Quito Observatory and describe its most characteristic instruments. Moreover it is presented the work done for preserving this important scientific heritage and discuss some of the typical problems that the researchers the students amateur astronomers and the public find in a still active scientific institution in a developing country.

  11. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  12. Calibration Monitor for Dark Energy Experiments

    SciTech Connect

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  13. The Quest for Astronomical Sources: VOQuest

    NASA Astrophysics Data System (ADS)

    Osuna, P.; Ortiz, I.; Stebe, A.; Salgado, J.; Barbarisi, I.; Arviset, C.

    2007-10-01

    The quest for astronomical objects requires time, effort, and tools of varying degrees of complexity and efficiency. Today the Virtual Observatory is opening the doors to effortless astronomical research. Among other activities, the International Virtual Observatory Alliance is defining standards that will allow seamless interoperation among astronomical archives. These standards define what an astronomical source is, the language to access the details of the source, and how to combine both for effective data acquisition. The ESA-VO VOQuest prototype tool integrates these protocols allowing a user to select astronomical sources from different archives such as catalogs, databases, etc. By making use of the IVOA-endorsed ADQL, Basic SkyNode and Source Data Model standards, this tool allows the astronomer to cross-correlate large amounts of information on astronomical sources with unprecedent ease, helping to make decisions on the nature and identification of the different objects.

  14. An expert system approach to astronomical data analysis

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1987-01-01

    Expert systems technology has much to offer to the problem of astronomical data analysis, where large data volumes and sophisticated analysis goals have caused a variety of interesting problems to arise. The construction of a prototype expert system whose target domain is CCD image calibration, is reported. The prototype is designed to be extensible to different and more complex problems in a straighforward way, and to be largely independent of the details of the specific data analysis system which executes the plan it generates.

  15. First Visiting Astronomers at VLT KUEYEN

    NASA Astrophysics Data System (ADS)

    2000-04-01

    A Deep Look into the Universal Hall of Mirrors Starting in the evening of April 1, 2000, Ghislain Golse and Francisco Castander from the Observatoire Midi-Pyrénées (Toulouse, France) [1] were the first "visiting astronomers" at Paranal to carry out science observations with the second 8.2-m VLT Unit Telescope, KUEYEN . Using the FORS2 multi-mode instrument as a spectrograph, they measured the distances to a number of very remote galaxies, located far out in space behind two clusters of galaxies. Such observations may help to determine the values of cosmological parameters that define the geometry and fate of the Universe. After two nights of observations, the astronomers came away from Paranal with a rich harvest of data and a good feeling. "We are delighted that the telescope performed so well. It is really impressive how far out one can reach with the VLT, compared to the `smaller' 4-meter telescopes with which we previously observed. It opens a new window towards the distant, early Universe. Now we are eager to start reducing and analysing these data!" , Francisco Castander said. Measuring the Geometry of the Universe with Multiple Images in Cluster Lenses The present programme is typical of the fundamental cosmological studies that are now being undertaken with the ESO Very Large Telescope (VLT). Clusters of galaxies are very massive objects. Their gravitational fields intensify ("magnify") and distort the images of galaxies behind them. The magnification factor for the faint background galaxy population seen within a few arcminutes of the centre of a massive cluster at intermediate distance (redshift z ~ 0.2 - 0.4, i.e., corresponding to a look-back time of approx. 2 - 4 billion years) is typically larger than 2, and occasionally much larger. The clusters thus function as gravitational lenses . They may be regarded as "natural telescopes" that help us to see fainter objects further out into space than would otherwise be possible with our own telescopes. In a

  16. WiFeS: the wide field spectrograph

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Waldron, Liam E.; McGregor, Peter; Conroy, Peter; Doolan, Matthew C.; Zhelem, Ross; Bloxham, Gabe; Saunders, Will; Jones, Damien; Pfitzner, Lee

    2004-09-01

    WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent thoughput, precision spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320-1000 nm wavelength region. It is currently under construction at the Research School of Astronomy and Astrophysics of the Australian National University (ANU), and will be mounted on the ANU 2.3m telescope at Siding Spring Observatory. It will provide a 25x31 arc sec field with 0.5 arc sec sampling along each of twenty five 31x1.0 arc sec slitlets. The output format is arranged to match the 4096x4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of "interleaved nod-and-shuffle" will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions modes of 3000 and 7000 will be provided. The full spectral range is covered in a single exposure in the R=3000 mode, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope and atmosphere) that peaks above 30%. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize the scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.

  17. The Interface Region Imaging Spectrograph (IRIS)

    NASA Astrophysics Data System (ADS)

    De Pontieu, B.; Title, A. M.; Lemen, J. R.; Kushner, G. D.; Akin, D. J.; Allard, B.; Berger, T.; Boerner, P.; Cheung, M.; Chou, C.; Drake, J. F.; Duncan, D. W.; Freeland, S.; Heyman, G. F.; Hoffman, C.; Hurlburt, N. E.; Lindgren, R. W.; Mathur, D.; Rehse, R.; Sabolish, D.; Seguin, R.; Schrijver, C. J.; Tarbell, T. D.; Wülser, J.-P.; Wolfson, C. J.; Yanari, C.; Mudge, J.; Nguyen-Phuc, N.; Timmons, R.; van Bezooijen, R.; Weingrod, I.; Brookner, R.; Butcher, G.; Dougherty, B.; Eder, J.; Knagenhjelm, V.; Larsen, S.; Mansir, D.; Phan, L.; Boyle, P.; Cheimets, P. N.; DeLuca, E. E.; Golub, L.; Gates, R.; Hertz, E.; McKillop, S.; Park, S.; Perry, T.; Podgorski, W. A.; Reeves, K.; Saar, S.; Testa, P.; Tian, H.; Weber, M.; Dunn, C.; Eccles, S.; Jaeggli, S. A.; Kankelborg, C. C.; Mashburn, K.; Pust, N.; Springer, L.; Carvalho, R.; Kleint, L.; Marmie, J.; Mazmanian, E.; Pereira, T. M. D.; Sawyer, S.; Strong, J.; Worden, S. P.; Carlsson, M.; Hansteen, V. H.; Leenaarts, J.; Wiesmann, M.; Aloise, J.; Chu, K.-C.; Bush, R. I.; Scherrer, P. H.; Brekke, P.; Martinez-Sykora, J.; Lites, B. W.; McIntosh, S. W.; Uitenbroek, H.; Okamoto, T. J.; Gummin, M. A.; Auker, G.; Jerram, P.; Pool, P.; Waltham, N.

    2014-07-01

    The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33 - 0.4 arcsec spatial resolution, two-second temporal resolution, and 1 km s-1 velocity resolution over a field-of-view of up to 175 arcsec × 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains spectra in passbands from 1332 - 1358 Å, 1389 - 1407 Å, and 2783 - 2834 Å, including bright spectral lines formed in the chromosphere (Mg ii h 2803 Å and Mg ii k 2796 Å) and transition region (C ii 1334/1335 Å and Si iv 1394/1403 Å). Slit-jaw images in four different passbands (C ii 1330, Si iv 1400, Mg ii k 2796, and Mg ii wing 2830 Å) can be taken simultaneously with spectral rasters that sample regions up to 130 arcsec × 175 arcsec at a variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative-MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by IRIS each day and made available for unrestricted use within a few days of the observation.

  18. The New North Georgia Astronomical Observatory.

    NASA Astrophysics Data System (ADS)

    Jones, J. H.; Chapman, E. K.

    1999-12-01

    The mission of NGCSU's observatory over the last 30 years has been to provide a quality environment for student and public viewing and a professional platform for student/faculty research. During the fall of 1997 a large illuminated parking lot was constructed less than 100 feet from the old observatory site. Fortunately, the administration at that time recognized the impact that the lot would have on the observatory's mission and was able to find funds to relocate the Boller & Chivens 16 inch telescope to a new observatory built on school property four miles west of the campus. The new observatory became operational at the beginning of the fall semester 1999. We report here on the outcome of the many unique design features which we tried to incorporate into the building. Features for optimizing student and public viewing such as a "downslope" roll away enclosure and a wide "no steps" observing deck entrance. An ongoing student project to measure and compare photometric calibration coefficients as well as zenith sky brightness and "seeing" parameters with previously determined parameters will evaluate the building features which were designed to enhance the performance of the telescope and its instrumentation. We would especially like to thank university president (retired) Dr. Sherman R. Day for supporting this project, not only financially, but also for supporting the legacy of astronomical education and student research at NGCSU. We also would like to thank the current president, Dr. Nathaniel Hansford, and his administration for continuing that support.

  19. Auroral meridian scanning photometer calibration using Jupiter

    NASA Astrophysics Data System (ADS)

    Jackel, Brian J.; Unick, Craig; Creutzberg, Fokke; Baker, Greg; Davis, Eric; Donovan, Eric F.; Connors, Martin; Wilson, Cody; Little, Jarrett; Greffen, M.; McGuffin, Neil

    2016-10-01

    Observations of astronomical sources provide information that can significantly enhance the utility of auroral data for scientific studies. This report presents results obtained by using Jupiter for field cross calibration of four multispectral auroral meridian scanning photometers during the 2011-2015 Northern Hemisphere winters. Seasonal average optical field-of-view and local orientation estimates are obtained with uncertainties of 0.01 and 0.1°, respectively. Estimates of absolute sensitivity are repeatable to roughly 5 % from one month to the next, while the relative response between different wavelength channels is stable to better than 1 %. Astronomical field calibrations and darkroom calibration differences are on the order of 10 %. Atmospheric variability is the primary source of uncertainty; this may be reduced with complementary data from co-located instruments.

  20. Aberration corrected aspheric grating for far ultraviolet spectrographs - Conventional approach

    NASA Technical Reports Server (NTRS)

    Content, David; Trout, Catherine; Davila, Pam; Wilson, Mark

    1991-01-01

    Two approaches to reducing optical aberrations of concave grating spectrographs have been used, holographically controlling the groove curvature and spacing and reshaping the optical substrate while ruling the grooves conventionally. The latter approach, slightly deforming an ellipsoidal grating blank, can lead to diffraction-limited performance at a single FUV wavelength. When such a grating is used in a slitted Rowland circle spectrograph, the result is an extremely efficient spectrograph with spectral resolving power of about 30,000 and low astigmatism. Optical fabrication technology has advanced to the point where these exotic surface gratings are becoming practical.

  1. Interstellar Medium Absorption Profile Spectrograph (IMAPS)

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1985-01-01

    The design and fabrication of an objective-grating echelle spectrograph to fly on sounding rockets and record spectra of stars from approximately 920 to 1120A with a resolving power lambda/delta lambda = 200,000 is discussed. The scientific purpose of the program is to observe, with ten times better velocity resolution than before, the plentiful absorption lines in this spectral region produced by atoms, ions and molecules in the interstellar medium. In addition, an important technical goal is to develop and flight-quality a new ultraviolet, photon-counting image sensor which has a windowless, opaque photocathode and a CCD bombarded directly by the accelerated photoelectrons. Except for some initial difficulties with the performance of CCDs, the development of the payload instrument is relatively straightforward and our overall design goals are satisfied. The first flight occurred in late 1984, but no data were obtained because of an inrush of air degraded the instrument's vacuum and caused the detector's high voltage to arc. A second flight in early 1985 was a complete success and obtained a spectrum of pi Sco. Data from this mission are currently being reduced; quick-look versions of the spectra indicate that excellent results will be obtained. Currently, the payload is being reconfigured to fly on a Spartan mission in 1988.

  2. The Oxford SWIFT integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Thatte, Niranjan; Tecza, Matthias; Clarke, Fraser; Goodsall, Timothy; Lynn, James; Freeman, David; Davies, Roger L.

    2006-06-01

    We present the design of the Oxford SWIFT integral field spectrograph, a dedicated I and z band instrument (0.65μm micron - 1.0μm micron at R~4000), designed to be used in conjunction with the Palomar laser guide star adaptive optics system (PALAO, and its planned upgrade PALM-3000). It builds on two recent developments (i) the improved ability of second generation adaptive optics systems to correct for atmospheric turbulence at wavelengths less than or equal to 1μm micron, and (ii) the availability of CCD array detectors with high quantum efficiency at very red wavelengths (close to the silicon band edge). Combining these with a state-of-the-art integral field unit design using an all-glass image slicer, SWIFT's design provides very high throughput and low scattered light. SWIFT simultaneously provides spectra of ~4000 spatial elements, arranged in a rectangular field-of-view of 44 × 89 pixels. It has three on-the-fly selectable pixel scales of 0.24", 0.16" and 0.08'. First light is expected in spring 2008.

  3. Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Sugai, Hajime; Tamura, Naoyuki; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio Vital; Barkhouser, Robert H.; Bennett, Charles L.; Bickerton, Steve; Bozier, Alexandre; Braun, David F.; Bui, Khanh; Capocasale, Christopher M.; Carr, Michael A.; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C. Y.; Dawson, Olivia R.; Dekany, Richard G.; Ek, Eric M.; Ellis, Richard S.; English, Robin J.; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D.; Golebiowski, Mirek; Gunn, James E.; Hart, Murdock; Heckman, Timothy M.; Ho, Paul T. P.; Hope, Stephen; Hovland, Larry E.; Hsu, Shu-Fu; Hu, Yen-Shan; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E.; Kempenaar, Jason G.; King, Matthew E.; Fèvre, Olivier Le; Mignant, David Le; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H.; Madec, Fabrice; Mao, Peter; Marrara, Lucas Souza; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J.; de Oliveira, Antonio Cesar; de Oliveira, Claudia Mendes; de Oliveira, Ligia Souza; Orndorff, Joe D.; de Paiva Vilaça, Rodrigo; Partos, Eamon J.; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J.; Riddle, Reed; Santos, Leandro; dos Santos, Jesulino Bispo; Schwochert, Mark A.; Seiffert, Michael D.; Smee, Stephen A.; Smith, Roger M.; Steinkraus, Ronald E.; Sodré, Laerte; Spergel, David N.; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C.; Wyse, Rosie; Yan, Chi-Hung

    2015-07-01

    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 μm to 1.26 μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 μm to 0.89 μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase.

  4. GPI Calibrations

    NASA Astrophysics Data System (ADS)

    Rantakyrö, Fredrik T.

    2017-09-01

    "The Gemini Planet Imager requires a large set of Calibrations. These can be split into two major sets, one set associated with each observation and one set related to biweekly calibrations. The observation set is to optimize the correction of miscroshifts in the IFU spectra and the latter set is for correction of detector and instrument cosmetics."

  5. Astronomical database and VO-tools of Nikolaev Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Mazhaev, A. E.; Protsyuk, Yu. I.

    2010-05-01

    Results of work in 2006-2009 on creation of astronomical databases aiming at development of Nikolaev Virtual Observatory (NVO) are presented in this abstract. Results of observations and theirreduction, which were obtained during the whole history of Nikolaev Astronomical Observatory (NAO), are included in the databases. The databases may be considered as a basis for construction of a data centre. Images of different regions of the celestial sphere have been stored in NAO since 1929. About 8000 photo plates were obtained during observations in the 20th century. Observations with CCD have been started since 1996. Annually, telescopes of NAO, using CCD cameras, create data volume of several tens of gigabytes (GB) in the form of CCD images and up to 100 GB of video records. At the end of 2008, the volume of accumulated data in the form of CCD images was about 300 GB. Problems of data volume growth are common in astronomy, nuclear physics and bioinformatics. Therefore, the astronomical community needs to use archives, databases and distributed grid computing to cope with this problem in astronomy. The International Virtual Observatory Alliance (IVOA) was formed in June 2002 with a mission to "enable the international utilization of astronomical archives..." The NVO was created at the NAO website in 2008, and consists of three main parts. The first part contains 27 astrometric stellar catalogues with short descriptions. The files of catalogues were compiled in the standard VOTable format using eXtensible Markup Language (XML), and they are available for downloading. This is an example of the so-called science-ready product. The VOTable format was developed by the International Virtual Observatory Alliance (IVOA) for exchange of tabular data. A user may download these catalogues and open them using any standalone application that supports standards of the IVOA. There are several directions of development for such applications, for example, search of catalogues and images

  6. Radio and Optical Telescopes for School Students and Professional Astronomers

    NASA Astrophysics Data System (ADS)

    Hosmer, Laura; Langston, G.; Heatherly, S.; Towner, A. P.; Ford, J.; Simon, R. S.; White, S.; O'Neil, K. L.; Haipslip, J.; Reichart, D.

    2013-01-01

    The NRAO 20m telescope is now on-line as a part of UNC's Skynet worldwide telescope network. The NRAO is completing integration of radio astronomy tools with the Skynet web interface. We present the web interface and astronomy projects that allow students and astronomers from all over the country to become Radio Astronomers. The 20 meter radio telescope at NRAO in Green Bank, WV is dedicated to public education and also is part of an experiment in public funding for astronomy. The telescope has a fantastic new web-based interface, with priority queuing, accommodating priority for paying customers and enabling free use of otherwise unused time. This revival included many software and hardware improvements including automatic calibration and improved time integration resulting in improved data processing, and a new ultra high resolution spectrometer. This new spectrometer is optimized for very narrow spectral lines, which will allow astronomers to study complex molecules and very cold regions of space in remarkable detail. In accordance with focusing on broader impacts, many public outreach and high school education activities have been completed with many confirmed future activities. The 20 meter is now a fully automated, powerful tool capable of professional grade results available to anyone in the world. Drop by our poster and try out real-time telescope control!

  7. Glacial cycles and astronomical forcing

    SciTech Connect

    Muller, R.A.; MacDonald, G.J.

    1997-07-11

    Narrow spectral features in ocean sediment records offer strong evidence that the cycles of glaciation were driven by astronomical forces. Two million years ago, the cycles match the 41,000-year period of Earth`s obliquity. This supports the Croll/Milankovitch theory, which attributes the cycles to variations in insolation. But for the past million years, the spectrum is dominated by a single 100,000-year feature and is a poor match to the predictions of insolation models. The spectrum can be accounted for by a theory that derives the cycles of glaciation from variations in the inclination of Earth`s orbital plane.

  8. astroplan: Observation Planning for Astronomers

    NASA Astrophysics Data System (ADS)

    Morris, Brett

    2016-03-01

    Astroplan is an observation planning package for astronomers. It is an astropy-affiliated package which began as a Google Summer of Code project. Astroplan facilitates convenient calculation of common observational quantities, like target altitudes and azimuths, airmasses, and rise/set times. Astroplan also computes when targets are observable given various extensible observing constraints, for example: within a range of airmasses or altitudes, or at a given separation from the Moon. Astroplan is taught in the undergraduate programming for astronomy class, and enables observational Pre- MAP projects at the University of Washington. In the near future, we plan to implement scheduling capabilities in astroplan on top of the constraints framework.

  9. Method for determining astronomic azimuth

    NASA Astrophysics Data System (ADS)

    Evans, Alan G.; Stein, William L.

    1990-09-01

    An improved method is disclosed for fixing position of a land based target site with respect to a reference site in the natural coordinate frame comprising the steps of determining geodetic azimuth between the target site and the reference target using Global Positioning System (GPS) satellites and relative positioning survey techniques; then calculating a relationship using gravity vertical deflections; and then converting the geodetic azimuth to astronomic azimuth. This method has several advantages over conventional methods of targeting, including speed, the ability to work in all weather conditions, and improved accuracy.

  10. Visualizing Astronomical Data with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2014-01-01

    We present methods for using the 3D graphics program Blender in the visualization of astronomical data. The software's forte for animating 3D data lends itself well to use in astronomy. The Blender graphical user interface and Python scripting capabilities can be utilized in the generation of models for data cubes, catalogs, simulations, and surface maps. We review methods for data import, 2D and 3D voxel texture applications, animations, camera movement, and composite renders. Rendering times can be improved by using graphic processing units (GPUs). A number of examples are shown using the software features most applicable to various kinds of data paradigms in astronomy.

  11. How I Became an Astronomer

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    2001-01-01

    Life as an astronomer has taken me to view eclipses of the Sun from the Gaspe' Peninsula to the Pacific Ocean and the China and Coral Seas, and to observe the stars at observatories across the USA and as far south as Chile. I've also enjoyed working with NASA's telescopes in space, including the Hubble Space Telescope and the International Ultraviolet Explorer. It seems funny to reflect that it all began in the Sixth Grade by a fluke - the consequence of a hoax letter whose author I never identified.

  12. Senenmut: An Ancient Egyptian Astronomer

    NASA Astrophysics Data System (ADS)

    Novakovic, B.

    2008-10-01

    The celestial phenomena have always been a source of wonder and interest to people, even as long ago as the ancient Egyptians. While the ancient Egyptians did not know all the things about astronomy that we do now, they had a good understanding of some celestial phenomena. The achievements in astronomy of ancient Egyptians are relatively well known, but we know very little about the people who made these achievements. The goal of this paper is to bring some light on the life of Senenmut, the chief architect and astronomer during the reign of Queen Hatshepsut.

  13. The development of astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Quirrenbach, Andreas

    2009-08-01

    Astronomical interferometry was pioneered by Fizeau and Michelson in the 19th century. In the 1920s, the first stellar diameters were measured. The development of radio interferometry began in the 1950s, and led to the construction of powerful synthesis arrays operating at cm, mm, and sub-mm wavelengths. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milliarcsecond resolution and astrometry with microarcsecond precision have thus become reality.

  14. Artist Concept of MAVEN Imaging Ultraviolet Spectrograph at Work

    NASA Image and Video Library

    2014-11-07

    This artist concept depicts the Imaging Ultraviolet Spectrograph IUVS on NASA MAVEN spacecraft scanning the upper atmosphere of Mars. IUVS uses limb scans to map the chemical makeup and vertical structure across Mars upper atmosphere.

  15. Russian astronomical ephemeris editions and software

    NASA Astrophysics Data System (ADS)

    Glebova, N.; Lukashova, M.; Netsvetaeva, G.; Sveshnikov, M.; Skripnichenko, V.

    2015-08-01

    Institute of Applied Astronomy has published "The Astronomical Yearbook", "The Nautical Astronomical Yearbook", "The Nautical Astronomical Almanac" biennial. Ephemerides are calculated according to resolutions of GA IAU of 2000-2006. The EPM domestic theory of movement of the Solar system bodies is used in Russian astronomical ephemeris editions and software since 2009 according to the recommendations of the conference CTNS-2007. Along with printing the astronomical software are elaborated. "The Personal Astronomical Yearbook" (PersAY) allows the user to solve tasks of calculation of ephemerides for any moment in various time scales, and for any position of the observer on a terrestrial surface. System of the removed access the "Scturman" is developed also intended to solve some the navigating tasks.

  16. The Low Energy Effective Area of the Chandra Low Energy Transmission Grating Spectrograph

    NASA Technical Reports Server (NTRS)

    Pease, D.; Drake, J. J.; Johnson, C. O.; Kashya, V.; Ratzlaff, P. W.; Wargelin, B. J.; Brinkman, A. C.; Kaastra, J. S.; vanderMeer, R.; Paerels, F. B.

    2000-01-01

    The Chandra X-ray Observatory was successfully launched on July 23, 1999, and subsequently began an intensive calibration phase. We present the preliminary results from the in-flight calibration of the low energy response of the High Resolution Camera spectroscopic readout (HRC-S) combined with the Low Energy Transmission Grating (LETG) aboard Chandra. These instruments comprise the Low Energy Transmission Grating Spectrograph (LETGS). For this calibration study, we employ a pure hydrogen non-LTE white dwarf emission model (T = 25000 K and log g = 9.0) for comparison with the Chandra observations of Sirius B. The pre-flight calibration of the LETGS effective area only covered wavelengths shortward of 44 A (E less than 277 eV). Our Sirius B analysis shows that the HRC-S quantum efficiency (QE) model assumed for longer wavelengths leads to an overestimate of the effective area by an average factor of about 1.6. We derive a correction to the low energy HRC-S QE model to match the predicted and observed Sirius B spectra over the wavelength range of 44-185 A. We make an independent test of our results by the comparison of a Chandra LETGS observation of HZ 43 with pure hydrogen model atmosphere predictions and find good agreement.

  17. Apollo 16 far-ultraviolet camera/spectrograph - Earth observations.

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Page, T.

    1972-01-01

    A far-ultraviolet camera/spectrograph experiment was operated on the lunar surface during the Apollo 16 mission. Among the data obtained were images and spectra of the terrestrial atmosphere and geocorona in the wavelength range below 1600 angstroms. These gave the spatial distributions and relative intensities of emissions due to atomic hydrogen, atomic oxygen, molecular nitrogen, and other species - some observed spectrographically for the first time.

  18. X-ray spectrographic determination of cesium and rubidium

    USGS Publications Warehouse

    Axelrod, J.M.; Adler, I.

    1957-01-01

    An x-ray spectrographic method for the determination of rubidium and cesium was developed, using the internal-standard method and a four-channel flat-crystal spectrograph. The sensitivity is within 0.1% for cesia and 0.02% for rubidia; the precision is within 10% of the amount present. Results agree well with those obtained by flame photometry and by radio-activation.

  19. Hubble repair and more wins astronomers' acclaim.

    PubMed

    Travis, J

    1994-01-28

    The repaired Hubble Space Telescope overshadowed everything else at the American Astronomical Society (AAS) Meeting earlier this month in Alexandria, Virginia. The nearly 2000 astronomers who turned out for the society's largest meeting yet provided plenty of "oohs" and "aahs" for every new image. But, in between, some astronomers caught word of a new proposal about how to tell whether the universe is open or closed, more data about mysterious gamma ray bursts, and the crowning of the "Galaxy of the Year."

  20. An integral field spectrograph utilizing mirrorlet arrays

    NASA Astrophysics Data System (ADS)

    Chamberlin, Phillip C.; Gong, Qian

    2016-09-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 mÅ) across a 15 Å spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  1. An Integral Field Spectrograph Utilizing Mirrorlet Arrays

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Gong, Qian

    2016-01-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 m) across a 15 spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  2. LGBT Workplace Issues for Astronomers

    NASA Astrophysics Data System (ADS)

    Kay, Laura E.; Danner, R.; Sellgren, K.; Dixon, V.; GLBTQastro

    2011-01-01

    Federal Equal Employment Opportunity laws and regulations do not provide protection from discrimination on the basis of sexual orientation or gender identity or gender expression. Sexual minority astronomers (including lesbian, gay, bisexual and transgender people; LGBT) can face additional challenges at school and work. Studies show that LGBT students on many campuses report experiences of harassment. Cities, counties, and states may or may not have statutes to protect against such discrimination. There is wide variation in how states and insurance plans handle legal and medical issues for transgender people. Federal law does not acknowledge same-sex partners, including those legally married in the U.S. or in other countries. Immigration rules in the U.S. (and many other, but not all) countries do not recognize same-sex partners for visas, employment, etc. State `defense of marriage act' laws have been used to remove existing domestic partner benefits at some institutions, or benefits can disappear with a change in governor. LGBT astronomers who change schools, institutions, or countries during their career may experience significant differences in their legal, medical, and marital status.

  3. Astronomers in the Chemist's War

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-01-01

    World War II, with radar, rockets, and "atomic" bombs was the physicists' war. And many of us know, or think we know, what our more senior colleagues did during it, with Hubble and Hoffleit at Aberdeen; M. Schwarzschild on active duty in Italy; Bondi, Gold, and Hoyle hunkered down in Dunsfeld, Surrey, talking about radar, and perhaps steady state; Greenstein and Henyey designing all-sky cameras; and many astronomers teaching navigation. World War I was The Chemists' War, featuring poison gases, the need to produce liquid fuels from coal on one side of the English Channel and to replace previously-imported dyesstuffs on the other. The talke will focus on what astronomers did and had done to them between 1914 and 1919, from Freundlich (taken prisoner on an eclipse expedition days after the outbreak of hostilities) to Edwin Hubble, returning from France without ever having quite reached the front lines. Other events bore richer fruit (Hale and the National Research Council), but very few of the stories are happy ones. Most of us have neither first nor second hand memories of The Chemists' War, but I had the pleasure of dining with a former Freundlich student a couple of weeks ago.

  4. The Japanese Astronomical Archives Project

    NASA Astrophysics Data System (ADS)

    Nakamura, T.

    2004-12-01

    Due to recent activities of local libraries and museums in Japan for collecting and cataloguing historical books and documents and their increased efforts to publicize such information via Internet services, we are now in a position to have a much easier and better access to the historical resources preserved than in the past. With this background, we started in 2002 a project under governmental support for four years, to make a general inventory of Japanese archives in astronomy and relating disciplines written or published before 1870. Since in pre-modern Japan astronomical knowledge and books were circulated mainly in hand-written form so that they have been apt to be lost in wars and fires, there are good reasons for us to now compile such an inventory through extensive and systematic surveys of both domestic and overseas sources. In April 2003, we published an inventory book of 250 pages, which is intended to be a basis for our survey, including about 4600 titles collected from known source materials. We expect that by March 2006 the number of titles will be increased by 30-35%. This paper briefly introduces the current status of this project and presents the characteristics and problems of Japanese astronomical archives.

  5. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  6. The League of Astronomers: Outreach

    NASA Astrophysics Data System (ADS)

    Paat, Anthony; Brandel, A.; Schmitz, D.; Sharma, R.; Thomas, N. H.; Trujillo, J.; Laws, C. S.; Astronomers, League of

    2014-01-01

    The University of Washington League of Astronomers (LOA) is an organization comprised of University of Washington (UW) undergraduate students. Our main goal is to share our interest in astronomy with the UW community and with the general public. The LOA hosts star parties on the UW campus and collaborates with the Seattle Astronomical Society (SAS) on larger Seattle-area star parties. At the star parties, we strive to teach our local community about what they can view in our night sky. LOA members share knowledge of how to locate constellations and use a star wheel. The relationship the LOA has with members of SAS increases both the number of events and people we are able to reach. Since the cloudy skies of the Northwest prevent winter star parties, we therefore focus our outreach on the UW Mobile Planetarium, an inflatable dome system utilizing Microsoft’s WorldWide Telescope (WWT) software. The mobile planetarium brings astronomy into the classrooms of schools unable to travel to the UW on-campus planetarium. Members of the LOA volunteer their time towards this project and we make up the majority of the Mobile Planetarium volunteers. Our outreach efforts allow us to connect with the community and enhance our own knowledge of astronomy.

  7. CAB Contribution to HARMONI: The first light spectrograph of the E-ELT

    NASA Astrophysics Data System (ADS)

    Piqueras López, J.; Arribas, S.; Calcines, A.

    2017-03-01

    HARMONI (High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph) is a visible and near-infrared (0.47 to 2.45 μm) integral field spectrograph selected as a first-light instrument for the European Extremely Large Telescope (E-ELT). With four spatial scales (60, 20, 10 and 4 mas) and a wide range of spectral resolving powers (R=3500, 7500, 20000), HARMONI will allow scientists to address many of the E-ELT science cases. The HARMONI Consortium is led by the University of Oxford, and is also formed by the UK Astronomy Technology Centre (UKATC, Edinburgh, UK), Centre de Recherche Astrophysique de Lyon (CRAL), Laboratoire d'Astrophysique de Marseille (LAM), Instituto de Astrofísica de Canarias (IAC, Spain) and the Centro de Astrobiología (CAB INTA-CSIC, Spain). We summarize here the current status of the project, and describe the participation of CAB to design and manufacture two of the instrument sub-systems: the calibration unit and the secondary guiding module. The calibration unit will simulate the optical output of the telescope, and provide the functionality needed to illuminate the focal plane in such a way that the following type of data can be obtained: data aimed at removing the instrumental signature from the raw data and to convert the data into a data product that uses physical units, data required for monitoring the status of the instrument, and data required for calibrating the secondary guiding subsystem. The secondary guiding subsystem basic requirement is to provide knowledge (relative or absolute) of the location of the science focal plane on timescales of a few seconds and longer (up to months), with an accuracy of 2mas or 0.1x the input FWHM (at H/K bands), whichever is greater. The subsystem should achieve this level performance for different observation modes, e.g. no- AO, GLAO and LTAO modes.

  8. Storing Astronomical Information on the Romanian Territory

    NASA Astrophysics Data System (ADS)

    Stavinschi, Magda; Mioc, Vasile

    The Romanian astronomy has a more than 2000-year old tradition which is however too little known abroad. The first known archive of astronomical information is the Dacian sanctuary at Sarmizegetusa Regia very similar to that of Stonehenge. After a gap of more than 1000 years sources of astronomical information became to be recovered. They consist mainly of records of astronomical events seen on the Romanian territory. The most safe places to store these genuine archives were the monasteries. We present a classification of the manners of storing astronomical information along with characteristic examples.

  9. Storing Astronomical Information on the Romanian Territory

    NASA Astrophysics Data System (ADS)

    Stavinschi, M.; Mioc, V.

    2004-12-01

    Romanian astronomy has a more than 2000-year old tradition, which is, however, little known abroad. The first known archive of astronomical information is the Dacian sanctuary at Sarmizegetusa Regia, erected in the first century AD, having similarities with that of Stonehenge. After a gap of more than 1000 years, more sources of astronomical information become available, mainly records of astronomical events. Monasteries were the safest storage places of these genuine archives. We present a classification of the ways of storing astronomical information, along with characteristic examples.

  10. FITSManager: Management of Personal Astronomical Data

    NASA Astrophysics Data System (ADS)

    Cui, Chenzhou; Fan, Dongwei; Zhao, Yongheng; Kembhavi, Ajit; He, Boliang; Cao, Zihuang; Li, Jian; Nandrekar, Deoyani

    2011-07-01

    With the increase of personal storage capacity, it is easy to find hundreds to thousands of FITS files in the personal computer of an astrophysicist. Because Flexible Image Transport System (FITS) is a professional data format initiated by astronomers and used mainly in the small community, data management toolkits for FITS files are very few. Astronomers need a powerful tool to help them manage their local astronomical data. Although Virtual Observatory (VO) is a network oriented astronomical research environment, its applications and related technologies provide useful solutions to enhance the management and utilization of astronomical data hosted in an astronomer's personal computer. FITSManager is such a tool to provide astronomers an efficient management and utilization of their local data, bringing VO to astronomers in a seamless and transparent way. FITSManager provides fruitful functions for FITS file management, like thumbnail, preview, type dependent icons, header keyword indexing and search, collaborated working with other tools and online services, and so on. The development of the FITSManager is an effort to fill the gap between management and analysis of astronomical data.

  11. San Marcos Astronomical Project and Doctoral Prospectus

    NASA Astrophysics Data System (ADS)

    Aguilar, M. L.

    2009-05-01

    The Universidad Nacional Mayor de San Marcos, UNMSM, in Lima, Perú, is the only Peruvian institution working for the peruvian astronomical development as a career since 1970. We are conforming a network with international friend astronomers to invite them as Visiting Lectures to assure the academic level for the future doctoral studies in the UNMSM. The Chancellor of UNMSM has decided that the Astronomical Project is a UNMSM Project, to encourage and advance in this scientific and strategical area, to impulse the modernity of Peru, the major effort will be the building of the San Marcos Astronomical Observatory, with a telescope of 1 meter aperture.

  12. Combined ultraviolet studies of astronomical sources

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Sonderblom, D. R.

    1985-01-01

    Ultraviolet studies of various astronomical entities are reported. Among the specific phenomena examined were supernova remnants, dwarf novae, red giant stars, stellar winds, binary stars, and galaxies.

  13. UkrVO astronomical WEB services

    NASA Astrophysics Data System (ADS)

    Mazhaev, O. E.

    2017-02-01

    Ukraine Virtual Observatory (UkrVO) has been a member of the International Virtual Observatory Alliance (IVOA) since 2011. The virtual observatory (VO) is not a magic solution to all problems of data storing and processing, but it provides certain standards for building infrastructure of astronomical data center. The astronomical databases help data mining and offer to users an easy access to observation metadata, images within celestial sphere and results of image processing. The astronomical web services (AWS) of UkrVO give to users handy tools for data selection from large astronomical catalogues for a relatively small region of interest in the sky. Examples of the AWS usage are showed.

  14. First light with ALES: A 2-5 micron adaptive optics Integral Field Spectrograph for the LBT

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Hinz, Philip; Montoya, Manny; Skrutskie, Michael F.; Leisenring, Jarron; Durney, Oli; Woodward, Charles E.; Wilson, John; Nelson, Matt; Bailey, Vanessa; Defrere, Denis; Stone, Jordan

    2015-09-01

    Integral field spectrographs are an important technology for exoplanet imaging, due to their ability to take spectra in a high-contrast environment, and improve planet detection sensitivity through spectral differential imaging. ALES is the first integral field spectrograph capable of imaging exoplanets from 3-5 μm, and will extend our ability to characterize self-luminous exoplanets into a wavelength range where they peak in brightness. ALES is installed inside LBTI/LMIRcam on the Large Binocular Telescope, taking advantage of existing AO systems, camera optics, and a HAWAII-2RG detector. The new optics that comprise ALES are a Keplerian magnifier, a silicon lenslet array with diffraction suppressing pinholes, a direct vision prism, and calibration optics. All of these components are installed in filter wheels making ALES a completely modular design. ALES saw first light at the LBT in June 2015.

  15. CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with a near-infrared Echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Quirrenbach, A.; Amado, P. J.; Mandel, H.; Caballero, J. A.; Mundt, R.; Ribas, I.; Reiners, A.; Abril, M.; Aceituno, J.; Afonso, C.; Barrado y Navascues, D.; Bean, J. L.; Béjar, V. J. S.; Becerril, S.; Böhm, A.; Cárdenas, M. C.; Claret, A.; Colomé, J.; Costillo, L. P.; Dreizler, S.; Fernández, M.; Francisco, X.; Galadí, D.; Garrido, R.; González Hernández, J. I.; Guàrdia, J.; Guenther, E. W.; Gutiérrez-Soto, F.; Joergens, V.; Hatzes, A. P.; Helmling, J.; Henning, T.; Herrero, E.; Kürster, M.; Laun, W.; Lenzen, R.; Mall, U.; Martin, E. L.; Martín-Ruiz, S.; Mirabet, E.; Montes, D.; Morales, J. C.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Rabaza, O.; Ramón, A.; Rebolo, R.; Reffert, S.; Rodler, F.; Rodríguez, E.; Rodríguez Trinidad, A.; Rohloff, R. R.; Sánchez Carrasco, M. A.; Schmidt, C.; Seifert, W.; Setiawan, J.; Solano, E.; Stahl, O.; Storz, C.; Suárez, J. C.; Thiele, U.; Wagner, K.; Wiedemann, G.; Zapatero Osorio, M. R.; del Burgo, C.; Sánchez-Blanco, E.; Xu, W.

    2010-07-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument to be built for the 3.5m telescope at the Calar Alto Observatory by a consortium of Spanish and German institutions. Conducting a five-year exoplanet survey targeting ~ 300 M stars with the completed instrument is an integral part of the project. The CARMENES instrument consists of two separate spectrographs covering the wavelength range from 0.52 to 1.7 μm at a spectral resolution of R = 85, 000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in a temperature-stabilized environment in vacuum tanks, to enable a 1m/s radial velocity precision employing a simultaneous ThAr calibration.

  16. The GMT-CFA-CARNEGIE-CATOLICA LARGE EARTH FINDER (G-CLEF): A Fiber-fed, Optical Echelle Spectrograph For The Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Szentgyorgyi, Andrew; Furesz, G.; Frebel, A.; Geary, J.; Evans, I.; Norton, T.; Hertz, E.; DePonte Evans, J.; Jordan, A.; Guzman, D.; Epps, H.; Barnes, S.; Crane, J.

    2011-01-01

    The GMT-CfA-Carnegie-Catolica Large Earth Finder (G-CLEF) is a fiber-fed optical echelle spectrograph in concept design study phase for first light at the Giant Magellan Telescope. G-CLEF is designed to be a multipurpose echelle spectrograph that operates in a number of modes so as to enable precision radial velocity (RV) measurements, detailed abundance studies, isotopic abundance measurements and probe the IGM and ISM at high Z. Four resolution modes are implemented with image and pupil slicing. Extremely precise RV will be achieved by vacuum enclosing the spectrograph, with advanced fiber scrambling and state-of-the-art calibrators, especially ultra stabilized etalons and possibly laser frequency combs. The optical design is a asymmetric white pupil design with two camera arms splitting the 350 nm - 950 nm passband into red and blue channels. G-CLEF will have an extremely large, mosaiced echelle grating and volume phase holograph cross dispersers.

  17. Anemometer calibrator

    NASA Technical Reports Server (NTRS)

    Bate, T.; Calkins, D. E.; Price, P.; Veikins, O.

    1971-01-01

    Calibrator generates accurate flow velocities over wide range of gas pressure, temperature, and composition. Both pressure and flow velocity can be maintained within 0.25 percent. Instrument is essentially closed loop hydraulic system containing positive displacement drive.

  18. Ticking Stellar Time Bomb Identified - Astronomers find prime suspect for a Type Ia supernova

    NASA Astrophysics Data System (ADS)

    2009-11-01

    it will eventually become heavy enough to explode as a supernova. Combining the NACO images with data obtained with several other telescopes [5] the astronomers could determine the distance of the system - about 25 000 light-years from the Sun - and its intrinsic brightness - over 10 000 times brighter than the Sun. This implies that the vampire white dwarf in this system has a high mass that is near its fatal limit and is still simultaneously being fed by its companion at a high rate. "Whether V445 Puppis will eventually explode as a supernova, or if the current nova outburst has pre-empted that pathway by ejecting too much matter back into space is still unclear," says Woudt. "But we have here a pretty good suspect for a future Type Ia supernova!" Notes [1] White dwarfs represent the evolutionary end product of stars with initial masses up to a few solar masses. A white dwarf is the burnt-out stellar core that is left behind when a star like the Sun sheds its outer layers towards the end of its active life. It is composed essentially of carbon and oxygen. This process normally also leads to the formation of a surrounding planetary nebula. [2] Adaptive optics is a technique that allows astronomers to obtain an image of an object free from the blurring effect of the atmosphere. See the adaptive optics page at ESO: http://www.eso.org/public/astronomy/technology/adaptive_optics.html [3] See for example http://www.eso.org/~bleibund/papers/EPN/epn.html [4] This Chandrasekhar limit, named after the Indian physicist Subrahmanyan Chandrasekhar, is nearly 1.4 times the mass of the Sun. When a white dwarf reaches a mass above this limit, either by sucking matter from a companion or merging with another white dwarf, it will turn itself into a thermonuclear bomb that will burn carbon and oxygen explosively. [5] The team also used the SOFI instrument on ESO's New Technology Telescope, the IMACS spectrograph on the 6.5-metre Magellan Baade telescope, and the Infrared Survey

  19. Design of the ERIS calibration unit

    NASA Astrophysics Data System (ADS)

    Dolci, Mauro; Valentini, Angelo; Di Rico, Gianluca; Esposito, Simone; Ferruzzi, Debora; Riccardi, Armando; Spanò, Paolo; Antichi, Jacopo

    2016-08-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is a new-generation instrument for the Cassegrain focus of the ESO UT4/VLT, aimed at performing AO-assisted imaging and medium resolution spectroscopy in the 1-5 micron wavelength range. ERIS consists of the 1-5 micron imaging camera NIX, the 1-2.5 micron integral field spectrograph SPIFFIER (a modified version of SPIFFI, currently operating on SINFONI), the AO module and the internal Calibration Unit (ERIS CU). The purpose of this unit is to provide facilities to calibrate the scientific instruments in the 1-2.5 micron and to perform troubleshooting and periodic maintenance tests of the AO module (e.g. NGS and LGS WFS internal calibrations and functionalities, ERIS differential flexures) in the 0.5 - 1 μm range. The ERIS CU must therefore be designed in order to provide, over the full 0.5 - 2.5 μm range, the following capabilities: 1) illumination of both the telescope focal plane and the telescope pupil with a high-degree of uniformity; 2) artificial point-like and extended sources onto the telescope focal plane, with high accuracy in both positioning and FWHM; 3) wavelength calibration; 4) high stability of these characteristics. In this paper the design of the ERIS CU, and the solutions adopted to fulfill all these requirements, is described. The ERIS CU construction is foreseen to start at the end of 2016.

  20. BOOK REVIEW: The Wandering Astronomer

    NASA Astrophysics Data System (ADS)

    Swinbank, Elizabeth

    2000-09-01

    Fans of Patrick Moore will like this book. I enjoyed it more than I expected, having anticipated a collection of personal anecdotes of the type favoured by certain tedious after-dinner speakers. Some of the 41 short items it contains do tend towards that category, but there are also some nuggets which might enliven your physics teaching. For example, did you know that, in a murder trial in 1787, the defendant's belief that the Sun was inhabited was cited as evidence of his insanity? This was despite his views being shared by many astronomers of the day including William Herschel. Or that Clyde Tombaugh had a cat called Pluto after the planet he discovered, which was itself named by an eleven-year-old girl? Another gem concerns a brief flurry, in the early 1990s, over a suspected planet orbiting a pulsar; variations in the arrival time of its radio pulses indicated the presence of an orbiting body. These shifts were later found to arise from an error in a computer program that corrected for the Earth's motion. The programmer had assumed a circular orbit for the Earth whereas it is actually elliptical. The book is clearly intended for amateur astronomers and followers of Patrick Moore's TV programmes. There is plenty of astronomy, with an emphasis on the solar system, but very little astrophysics. The author's metricophobia means that quantities are given in imperial units throughout, with metric equivalents added in brackets (by an editor, I suspect) which can get irritating, particularly as powers-of-ten notation is avoided. It is quite a novelty to see the temperature for hydrogen fusion quoted as 18 000 000 °F (10 000 000 °C). By way of contrast, astronomical terms are used freely - ecliptic, first-magnitude star, and so on. Such terms are defined in a glossary at the end, but attention is not drawn to this and I only stumbled across it by chance. Patrick Moore obviously knows his public, and this book will serve them well. For physics teachers and students

  1. Comet 67P observations with LOTUS: a new near-UV spectrograph for the Liverpool Telescope

    NASA Astrophysics Data System (ADS)

    Marchant, Jon; Jermak, Helen; Steele, Iain; Snodgrass, Colin; Fitzsimmons, Alan; Jones, Geraint

    2015-11-01

    The European Space Agency’s Rosetta spacecraft has been orbiting comet 67P/Churyumov-Gerasimenko (hereinafter “67P”) since August 2014, providing in-situ measurements of the dust, gas and plasma content of the coma within ~100km of the nucleus. Supporting the mission is a world-wide coordinated campaign of simultaneous ground-based observations of 67P (www.rosetta-campaign.net), providing wider context of the outer coma and tail invisible to Rosetta. We can now compare these observations, augmented by "ground truth" from Rosetta, with those of other comets past and future that are only observed from Earth.The robotic Liverpool Telescope (LT) is part of this campaign due to its unique ability to flexibly and autonomously schedule regular observations over entire semesters. Its optical imagery has recently been supplemented by near-UV spectroscopy to observe the UV molecular bands below 4000Å that are of considerable interest to cometary science. The LT's existing spectrographs FRODOSpec and SPRAT cut off at 4000Å, so the Liverpool Telescope Optical-to-UV Spectrograph - LOTUS - was fast-track designed, built and deployed on-sky in just five months. LOTUS contains no moving parts; acquisition is made with the LT's IO:O imaging camera, and different width slits for calibration and science are selected by fine-tuning the telescope's pointing on an innovative "step" design in its single slit.We present here details of the LOTUS spectrograph, and some preliminary results of our ongoing observations of comet 67P.

  2. Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Walther, B. C.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.

    2013-09-01

    We present a description of the Juno ultraviolet spectrograph (Juno-UVS) and results from its in-flight commissioning performed between December 5th and 13th 2011 and its first periodic maintenance between October 10th and 12th 2012. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency's Rosetta spacecraft, NASA's New Horizons spacecraft, and the LAMP instrument aboard NASA's Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a spin stabilized spacecraft. The Juno-UVS scan mirror allows for pointing of the slit approximately +/-30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. The planned 2 rpm spin rate for the primary mission results in integration times per 0.2° spatial resolution element per spin of only ~17 ms. Thus, for calibration purposes, data were retrieved from many spins and then remapped and co-added to build up exposure times on bright stars to measure the effective area, spatial resolution, scan mirror pointing positions, etc. The primary job of Juno-UVS will be to characterize Jupiter's UV auroral emissions and relate them to in-situ particle measurements. The ability to point the slit will make operations more flexible, allowing Juno-UVS to observe the atmospheric footprints of magnetic field lines through which Juno flies, giving a direct connection between energetic particle measurements on the spacecraft and the far-ultraviolet emissions produced by Jupiter's atmosphere in response to those particles.

  3. IAU Public Astronomical Organisations Network

    NASA Astrophysics Data System (ADS)

    Canas, Lina; Cheung, Sze Leung

    2015-08-01

    The Office for Astronomy Outreach has devoted intensive means to create and support a global network of public astronomical organisations around the world. Focused on bringing established and newly formed amateur astronomy organizations together, providing communications channels and platforms for disseminating news to the global community and the sharing of best practices and resources among these associations around the world. In establishing the importance that these organizations have for the dissemination of activities globally and acting as key participants in IAU various campaigns social media has played a key role in keeping this network engaged and connected. Here we discuss the implementation process of maintaining this extensive network, the processing and gathering of information and the interactions between local active members at a national and international level.

  4. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  5. Astronomical Knowledge from Holy Books

    NASA Astrophysics Data System (ADS)

    Farmanyan, Sona V.; Devrikyan, Vardan G.; Mickaelian, Areg M.

    2016-10-01

    We investigate religious myths related to astronomy from different cultures in an attempt to identify common subjects and characteristics. The paper focuses on astronomy in religion. The initial review covers records from Holy books about sky related superstitious beliefs and cosmological understanding. The purpose of this study is to introduce sky related religious and national traditions (particularly based on different calendars; Solar or Lunar). We carried out a comparative study of astronomical issues contained in a number of Holy books. We come to the conclusion that the perception of celestial objects varies from culture to culture, and from religion to religion and preastronomical views had a significant impact on humankind, particularly on religious diversities. We prove that Astronomy is the basis of cultures, and that national identity and mythology and religion were formed due to the special understanding of celestial objects.

  6. An astronomical observatory for Peru

    NASA Astrophysics Data System (ADS)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  7. William Doberck - double star astronomer

    NASA Astrophysics Data System (ADS)

    MacKeown, P. Kevin

    2007-03-01

    We outline the role of astronomy in the career of William Doberck (1852-1941). After taking a PhD in astronomy at the University of Jena in 1873, he accepted a position as superintendent of Markree Observatory in the west of Ireland. There he refurbished the great 13-inch refractor and spent nine years observing mostly double star systems, paying only such attention to meteorological monitoring as was required of his position. In 1883 he became the founding Director of a new observatory in Hong Kong, a post which he held for 24 years. His frustrations in attempting to continue his purely astronomical work, not assuaged by his combative and prickly personality, and in the face of the strictly practical demands of that mercantile society for comprehensive storm forecasting, are described. Finally, his observations in retirement in England, and his overall contribution to astronomy, are summarised.

  8. Ancient Astronomical Monuments of Athens

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Manimanis, V. N.

    2010-07-01

    In this work, four ancient monuments of astronomical significance found in Athens and still kept in the same city in good condition are presented. The first one is the conical sundial on the southern slope of the Acropolis. The second one is the Tower of the Winds and its vertical sundials in the Roman Forum of Athens, a small octagonal marble tower with sundials on all 8 of its sides, plus a water-clock inside the tower. The third monument-instrument is the ancient clepsydra of Athens, one of the findings from the Ancient Agora of Athens, a unique water-clock dated from 400 B.C. Finally, the fourth one is the carved ancient Athenian calendar over the main entrance of the small Byzantine temple of the 8th Century, St. Eleftherios, located to the south of the temple of the Annunciation of Virgin Mary, the modern Cathedral of the city of Athens.

  9. Preparing Colorful Astronomical Images II

    NASA Astrophysics Data System (ADS)

    Levay, Z. G.; Frattare, L. M.

    2002-12-01

    We present additional techniques for using mainstream graphics software (Adobe Photoshop and Illustrator) to produce composite color images and illustrations from astronomical data. These techniques have been used on numerous images from the Hubble Space Telescope to produce photographic, print and web-based products for news, education and public presentation as well as illustrations for technical publication. We expand on a previous paper to present more detail and additional techniques, taking advantage of new or improved features available in the latest software versions. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to work with scaled images, masks, text and graphics in multiple semi-transparent layers and channels.

  10. The Mitchell Spectrograph: Studying Nearby Galaxies with the VIRUS Prototype

    NASA Astrophysics Data System (ADS)

    Blanc, Guillermo A.

    The Mitchell Spectrograph (a.k.a. VIRUS-P) on the 2.7m Harlan J. Smith telescope at McDonald Observatory is currently the largest field of view (FOV) integral field unit (IFU) spectrograph in the world (1.7'x1.7'). It was designed as a prototype for the highly replicable VIRUS spectrograph which consists of a mosaic of IFUs spread over a 16' diameter FOV feeding 150 spectrographs similar to the Mitchell. VIRUS will be deployed on the 9.2 meter Hobby-Eberly Telescope (HET) and will be used to conduct the HET Dark Energy Experiment (HETDEX). Since seeing first light in 2007 the Mitchell Spectrograph has been widely used, among other things, to study nearby galaxies in the local universe where their internal structure and the spatial distribution of different physical parameters can be studied in great detail. These observations have provided important insight into many aspects of the physics behind the formation and evolution of galaxies and have boosted the scientific impact of the 2.7 meter telescope enormously. Here I review the contributions of the Mitchell Spectrograph to the study of nearby galaxies, from the investigation of the spatial distribution of dark matter and the properties of supermassive black holes, to the studies of the process of star formation and the chemical composition of stars and gas in the ISM, which provide important information regarding the formation and evolution of these systems. I highlight the fact that wide field integral field spectrographs on small and medium size telescopes can be powerful cost effective tools to study the astrophysics of galaxies. Finally I briefly discuss the potential of HETDEX for conducting studies on nearby galaxies. The survey parameters make it complimentary and competitive to ongoing and future surveys like SAMI and MANGA.

  11. Astronomical observatory for shuttle. Phase A study

    NASA Technical Reports Server (NTRS)

    Guthals, D. L.

    1973-01-01

    The design, development, and configuration of the astronomical observatory for shuttle are discussed. The characteristics of the one meter telescope in the spaceborne observatory are described. A variety of basic spectroscopic and image recording instruments and detectors which will permit a large variety of astronomical observations are reported. The stDC 37485elines which defined the components of the observatory are outlined.

  12. COMMISSION 5: Documentation and Astronomical Data

    NASA Astrophysics Data System (ADS)

    Genova, Françoise; Norris, Raymond P.; Bessel, M. S.; Dluzhnevskaia, O.; Jenkner, H.; Malkov, O.; Murtagh, F.; Nakajima, K.; Ochsenbein, F.; Pence, W.; Schmitz, M.; Wielen, R.; Zhao, Y. H.

    2007-03-01

    The triennial report of Commission V Documentation and Astronomical Data/Documentation et Données Astronomiques covers 2002-2005 activities, and in particular the activities of the five Working Groups: Working Group Astronomical Data; Working Group Designations; Working Group Libraries; Working Group FITS; Working Group Virtual Observatories; and of Task Force for the Preservation and Digitization of Photographic Plates.

  13. Accessing Astronomical Data over the Internet

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.

    1999-05-01

    Websites of astronomical journals, scientific organizations, databases and individual scientists are listed. A short description of the information that can be obtained from these addresses is included. The websites are mainly for specialists in dynamic astronomy, but may also be of interest to other astronomers.

  14. Conceptual Astronomy Knowledge among Amateur Astronomers

    ERIC Educational Resources Information Center

    Berendsen, Margaret L.

    2005-01-01

    Amateur astronomers regularly serve as informal astronomy educators for their communities. This research inquires into the level of knowledge of basic astronomy concepts among amateur astronomers and examines factors related to amateur astronomy that affect that knowledge. Using the concept questions from the Astronomy Diagnostic Test Version 2,…

  15. Conceptual Astronomy Knowledge among Amateur Astronomers

    ERIC Educational Resources Information Center

    Berendsen, Margaret L.

    2005-01-01

    Amateur astronomers regularly serve as informal astronomy educators for their communities. This research inquires into the level of knowledge of basic astronomy concepts among amateur astronomers and examines factors related to amateur astronomy that affect that knowledge. Using the concept questions from the Astronomy Diagnostic Test Version 2,…

  16. Aristotle University Astronomical Station at Mt. Holomon

    NASA Astrophysics Data System (ADS)

    Avdellidou, C.; Ioannidis, P.; Kouroubatzakis, K.; Nitsos, A.; Vakoulis, J.; Seiradakis, J. H.

    2012-01-01

    The Aristotle University Astronomical Station was established seven years ago in order to fulfill the educational needs of its students. Astronomical observations are undertaken using three fully equipped small telescopes. Some interesting results are presented below, including the study of asteroids and flare stars, the detection of optical emission from supernovae remnants and follow up observations in extra solar planets.

  17. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  18. Astronomical catalog desk reference, 1994 edition

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Astronomical Catalog Desk Reference is designed to aid astronomers in locating machine readable catalogs in the Astronomical Data Center (ADC) archives. The key reference components of this document are as follows: A listing of shortened titles for all catalogs available from the ADC (includes the name of the lead author and year of publication), brief descriptions of over 300 astronomical catalogs, an index of ADC catalog numbers by subject keyword, and an index of ADC catalog numbers by author. The heart of this document is the set of brief descriptions generated by the ADC staff. The 1994 edition of the Astronomical Catalog Desk Reference contains descriptions for over one third of the catalogs in the ADC archives. Readers are encouraged to refer to this section for concise summaries of those catalogs and their contents.

  19. Spectrographic temperature measurement of a high power breakdown arc in a high pressure gas switch.

    PubMed

    Yeckel, Christopher; Curry, Randy

    2011-09-01

    A procedure for obtaining an approximate temperature value of conducting plasma generated during self-break closure of a RIMFIRE gas switch is described. The plasma is in the form of a breakdown arc which conducts approximately 12 kJ of energy in 1 μs. A spectrographic analysis of the trigger-section of the 6-MV RIMFIRE laser triggered gas switch used in Sandia National Laboratory's "Z-Machine" has been made. It is assumed that the breakdown plasma has sufficiently approached local thermodynamic equilibrium allowing a black-body temperature model to be applied. This model allows the plasma temperature and radiated power to be approximated. The gas dielectric used in these tests was pressurized SF(6). The electrode gap is set at 4.59 cm for each test. The electrode material is stainless steel and insulator material is poly(methyl methacrylate). A spectrum range from 220 to 550 nanometers has been observed and calibrated using two spectral irradiance lamps and three spectrograph gratings. The approximate plasma temperature is reported.

  20. Performance and future developments of the RHEA single-mode spectrograph

    NASA Astrophysics Data System (ADS)

    Bento, Joao; Feger, Tobias; Ireland, Michael J.; Rains, Adam; Jovanovic, Nemanja; Coutts, David W.; Schwab, Christian; Arriola, Alexander; Gross, Simon

    2016-08-01

    The Replicable High-resolution Exoplanet and Asteroseismology (RHEA) spectrograph is being developed to serve as a basis for multiple copies across a network of small robotic telescopes. The spectrograph operates at the diffraction-limit by using a single-mode fiber input, resulting in a compact and modal-noise-free unit. The optical design is mainly based on off-the-shelf available components and comprises a near-Littrow configuration with prism cross-disperser. The échelle format covers a wavelength range of 430-650 nm at R=75,000 resolving power. In this paper we briefly summarize the current status of the instrument and present preliminary results from the first on-sky demonstration of the prototype using a fully automated 16" telescope, where we observe stable and semi-variable stars up to V=3.5 magnitude. Future steps to enhance the efficiency and passive stability of RHEA are discussed in detail. For example, we show the concept of using a multi-fiber injection unit, akin to a photonic lantern, which not only enables increased throughput but also offers simultaneous wavelength calibration.

  1. HARMONI: a single-field wide-band integral-field spectrograph for the European ELT

    NASA Astrophysics Data System (ADS)

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Davies, Roger L.; Remillieux, Alban; Bacon, Roland; Lunney, David; Arribas, Santiago; Mediavilla, Evencio; Gago, Fernando; Bezawada, Naidu; Ferruit, Pierre; Fragoso, Ana; Freeman, David; Fuentes, Javier; Fusco, Thierry; Gallie, Angus; Garcia, Adolfo; Goodsall, Timothy; Gracia, Felix; Jarno, Aurelien; Kosmalski, Johan; Lynn, James; McLay, Stuart; Montgomery, David; Pecontal, Arlette; Schnetler, Hermine; Smith, Harry; Sosa, Dario; Battaglia, Giuseppina; Bowles, Neil; Colina, Luis; Emsellem, Eric; Garcia-Perez, Ana; Gladysz, Szymon; Hook, Isobel; Irwin, Patrick; Jarvis, Matt; Kennicutt, Robert; Levan, Andrew; Longmore, Andy; Magorrian, John; McCaughrean, Mark; Origlia, Livia; Rebolo, Rafael; Rigopoulou, Dimitra; Ryan, Sean; Swinbank, Mark; Tanvir, Nial; Tolstoy, Eline; Verma, Aprajita

    2010-07-01

    We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT's core spectroscopic requirement. It is a work-horse instrument, with four different spatial scales, ranging from seeing to diffraction-limited, and spectral resolving powers of 4000, 10000 & 20000 covering the 0.47 to 2.45 μm wavelength range. It is optimally suited to carry out a wide range of observing programs, focusing on detailed, spatially resolved studies of extended objects to unravel their morphology, kinematics and chemical composition, whilst also enabling ultra-sensitive observations of point sources. We present a synopsis of the key science cases motivating the instrument, the top level specifications, a description of the opto-mechanical concept, operation and calibration plan, and image quality and throughput budgets. Issues of expected performance, complementarity and synergies, as well as simulated observations are presented elsewhere in these proceedings[1].

  2. A compact soft X-ray spectrograph combining high efficiency and resolution

    NASA Astrophysics Data System (ADS)

    Fäustlin, R. R.; Zastrau, U.; Toleikis, S.; Uschmann, I.; Förster, E.; Tschentscher, Th

    2010-02-01

    A compact and light weight soft X-ray spectrograph covering 5-35 nm and employing a toroidal mirror and a variable line space reflection grating has been newly developed. Particular emphasis has been placed on achieving a large collection solid angle (1.9 × 10-3 sr) and a high efficiency of the components in order to enable Thomson Scattering plasma diagnostics which has a small total cross section (6.65 × 10-25 cm2). The instrument achieves a signal-to-noise ratio of 5 with a 13.5 nm source which isotropically emits 2.5 × 105 photons. A resolution λ/Δλ = 330 was measured at 21 nm and the dispersion was calibrated. The instrument is housed inside a DN 100 CF ultra high vacuum manipulator (43 × 46 × 47 cm3) which allows positioning relative to the source within ±5 mm and ±50 mm in X,Y and Z direction, respectively. It can be used with or without entrance pinhole and is equipped with a motorized grating, a filter wheel with five filters, and a shutter. Altogether, these features make the spectrograph a versatile instrument which can be employed in a variety of physics applications such as line and bremsstrahlung spectroscopy or Thomson scattering.

  3. The Fiber Multi-object Spectrograph (FMOS) Project: the Anglo-Australian Observatory role

    NASA Astrophysics Data System (ADS)

    Gillingham, Peter R.; Moore, Anna M.; Akiyama, Masayuki; Brzeski, Jurek; Correll, David; Dawson, John; Farrell, Tony J.; Frost, Gabriella; Griesbach, Jason S.; Haynes, Roger; Jones, Damien; Miziarski, Stan; Muller, Rolf; Smedley, Scott; Smith, Greg; Waller, Lew G.; Noakes, Katie; Arridge, Chris

    2003-03-01

    The Fiber Multi-Object Spectrograph (FMOS) project is an Australia-Japan-UK collaboration to design and build a novel 400 fiber positioner feeding two near infrared spectrographs from the prime focus of the Subaru telescope. The project comprises several parts. Those under design and construction at the Anglo-Australian Observatory (AAO) are the piezoelectric actuator driven fiber positioner (Echidna), a wide field (30 arcmin) corrector and a focal plane imager (FPI) used for controlling the positioner and for field acquisition. This paper presents an overview of the AAO share of the FMOS project. It describes the technical infrastructure required to extend the single Echidna "spine" design to a fully functioning multi-fiber instrument, capable of complete field reconfiguration in less than ten minutes. The modular Echidna system is introduced, wherein the field of view is populated by 12 identical rectangular modules, each positioning 40 science fibers and 2 guide fiber bundles. This arrangement allows maintenance by exchanging modules and minimizes the difficulties of construction. The associated electronics hardware, in itself a significant challenge, includes a 23 layer PCB board, able to supply current to each piezoelectric element in the module. The FPI is a dual purpose imaging system translating in two coordinates and is located beneath the assembled modules. The FPI measures the spine positions as well as acquiring sky images for instrument calibration and for field acquisition. An overview of the software is included.

  4. Spectrographic temperature measurement of a high power breakdown arc in a high pressure gas switch

    SciTech Connect

    Yeckel, Christopher; Curry, Randy

    2011-09-15

    A procedure for obtaining an approximate temperature value of conducting plasma generated during self-break closure of a RIMFIRE gas switch is described. The plasma is in the form of a breakdown arc which conducts approximately 12 kJ of energy in 1 {mu}s. A spectrographic analysis of the trigger-section of the 6-MV RIMFIRE laser triggered gas switch used in Sandia National Laboratory's ''Z-Machine'' has been made. It is assumed that the breakdown plasma has sufficiently approached local thermodynamic equilibrium allowing a black-body temperature model to be applied. This model allows the plasma temperature and radiated power to be approximated. The gas dielectric used in these tests was pressurized SF{sub 6}. The electrode gap is set at 4.59 cm for each test. The electrode material is stainless steel and insulator material is poly(methyl methacrylate). A spectrum range from 220 to 550 nanometers has been observed and calibrated using two spectral irradiance lamps and three spectrograph gratings. The approximate plasma temperature is reported.

  5. The infrared imaging spectrograph (IRIS) for TMT: volume phase holographic grating performance testing and discussion

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Meyer, Elliot; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Maire, Jerome; Mieda, Etsuko; Simard, Luc

    2014-07-01

    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% decrease at J-band when 5° deviation from the Bragg angle.

  6. The infrared imaging spectrograph (IRIS) for TMT: reflective ruled diffraction grating performance testing and discussion

    NASA Astrophysics Data System (ADS)

    Meyer, Elliot; Chen, Shaojie; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Simard, Luc; Marie, Jerome; Mieda, Etsuko; Gordon, Jacob

    2014-07-01

    predictions. This work will significantly contribute to the selection of the final grating type and vendor for the IRIS optical system, and are also pertinent to current and future near-infrared astronomical spectrographs.

  7. High resolution spectrograph for the 4MOST facility

    NASA Astrophysics Data System (ADS)

    Mignot, Shan; Amans, Jean-Philippe; Cohen, Mathieu; Horville, David; Jagourel, Pascal

    2012-09-01

    4MOST (4-metre Multi-Object Spectrograph Telescope) is a wide field and high multiplex fibre-fed spectroscopic facility continuously running a public survey on one of ESO's 4-metre telescopes (NTT or VISTA). It is currently undergoing a concept study and comprises a multi-object (300) high resolution (20 000) spectrograph whose purpose is to provide detailed chemical information in two wavelength ranges (395-456.5 nm and 587-673 nm). It will complement the data produced by ESA's space mission Gaia to form an unprecedented galactic-archaeology picture of the Milky Way as the result of the public survey. Building on the developments carried out for the GYES1 instrument on the Canada- France-Hawaii Telescope in 2010, the spectrograph is intended as being athermal and not featuring any motorised parts for high reliability and minimum maintenance, thereby allowing it to operate every night for five years. In addition to the fixed configuration which allows fine-tuning the spectrograph to a precise need, it features a dual-arm architecture with volume-phase holographic gratings to achieve the required dispersion at a maximum efficiency in each channel. By combining high yield time-wise and photon-wise, the spectrograph is expected to deliver more than a million spectra and make the most out of the selected 4-metre telescope.

  8. Theory of Angular Dispersive Imaging Hard X-ray Spectrographs

    SciTech Connect

    Shvyd'ko, Yury

    2015-05-13

    A spectrograph is an optical instrument that disperses photons of different energies into distinct directions and space locations and that images photon spectra on a position-sensitive detector. Spectrographs consist of collimating, angular dispersive, and focusing optical elements. Bragg reflecting crystals arranged in an asymmetric scattering geometry can be used as the dispersing elements in the hard-x-ray regime. A ray-transfer matrix technique is applied to propagate x-rays through the optical elements. Several optical designs of hard-x-ray spectrographs are proposed and their performance is analyzed. Spectrographs with an energy resolution of 0.1 meV and a spectral window of imaging up to a few tens of meVs are shown to be feasible for inelastic x-ray scattering (IXS) spectroscopy applications. In another example, a spectrograph with a 1-meV spectral resolution and 85-meV spectral window of imaging is considered for Cu K-edge resonant IXS.

  9. Calibration Techniques

    NASA Astrophysics Data System (ADS)

    Wurz, Peter; Balogh, Andre; Coffey, Victoria; Dichter, Bronislaw K.; Kasprzak, Wayne T.; Lazarus, Alan J.; Lennartsson, Walter; McFadden, James P.

    Calibration and characterization of particle instruments with supporting flight electronics is necessary for the correct interpretation of the returned data. Generally speaking, the instrument will always return a measurement value (typically in form of a digital number), for example a count rate, for the measurement of an external quantity, which could be an ambient neutral gas density, an ion composition (species measured and amount), or electron density. The returned values are used then to derive parameters associated with the distribution such as temperature, bulk flow speed, differential energy flux and others. With the calibration of the instrument the direct relationship between the external quantity and the returned measurement value has to be established so that the data recorded during flight can be correctly interpreted. While calibration and characterization of an instrument are usually done in ground-based laboratories prior to integration of the instrument in the spacecraft, it can also be done in space.

  10. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set

    NASA Astrophysics Data System (ADS)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.

    2014-08-01

    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance

  11. A Survey of Astronomical Research: A Baseline for Astronomical Development

    NASA Astrophysics Data System (ADS)

    Ribeiro, V. A. R. M.; Russo, P.; Cárdenas-Avendaño, A.

    2013-12-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in "astronomical development" with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.

  12. A SURVEY OF ASTRONOMICAL RESEARCH: A BASELINE FOR ASTRONOMICAL DEVELOPMENT

    SciTech Connect

    Ribeiro, V. A. R. M.; Russo, P.; Cárdenas-Avendaño, A. E-mail: russo@strw.leidenuniv.nl

    2013-12-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.

  13. All-sky brightness monitoring of light pollution with astronomical methods.

    PubMed

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band.

  14. The control unit of the near infrared spectrograph of the Euclid space mission: detailed design

    NASA Astrophysics Data System (ADS)

    Toledo-Moreo, Rafael; Colodro-Conde, Carlos; Gómez-Sáenz-de-Tejada, Jaime; Pérez-Lizán, David; Díaz-García, José Javier; Tubío-Araujo, Óscar; Raichs, Cayetano; Catalán, Jordi; Rebolo-López, Rafael

    2016-07-01

    The Near Infrared Spectrograph and Photometer (NISP) is one of the instruments on board the ESA EUCLID mission. The Universidad Politécnica de Cartagena and Instituto de Astrofísica de Canarias are responsible of the Instrument Control Unit of the NISP (NI-ICU) in the Euclid Consortium. The NI-ICU hardware is developed by CRISA (Airbus Defence and Space), and its main functions are: communication with the S/C and the Data Processing Unit, control of the Filter and Grism Wheels, control of the Calibration Unit and thermal control of the instrument. This paper presents the NI-ICU status of definition and design at the end of the detailed design phase.

  15. A reduction package for cross-dispersed echelle spectrograph data in IDL

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.; Neff, James E.

    1992-12-01

    We have written in IDL a data reduction package that performs reduction and extraction of cross-dispersed echelle spectrograph data. The present package includes a complete set of tools for extracting data from any number of spectral orders with arbitrary tilt and curvature. Essential elements include debiasing and flatfielding of the raw CCD image, removal of scattered light background, either nonoptimal or optimal extraction of data, and wavelength calibration and continuum normalization of the extracted orders. A growing set of support routines permits examination of the frame being processed to provide continuing checks on the statistical properties of the data and on the accuracy of the extraction. We will display some sample reductions and discuss the algorithms used. The inherent simplicity and user-friendliness of the IDL interface make this package a useful tool for spectroscopists. We will provide an email distribution list for those interested in receiving the package, and further documentation will be distributed at the meeting.

  16. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  17. On-sky calibration performance of a monolithic Michelson interferometer filtered source

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Ma, Bo; Powell, Scott; Varosi, Frank; Schofield, Sidney; Grieves, Nolan; Liu, Jian

    2014-07-01

    In the new era of searching for Earth-like planets, new generation radial velocity (RV) high resolution spectrographs requires ~0.1 m/s Doppler calibration accuracy in the visible band and a similar calibration precision in the near infrared. The patented stable monolithic Michelson interferometer filtered source called the Sine source emerges as a very promising calibration device. This Sine source has the potential of covering the practical working wavelengths (~0.38- 2.5 μm) for Doppler measurements with high resolution optical and near infrared high resolution spectrographs at the ground-based telescopes. The single frame calibration precision can reach < 0.1 m/s for the state of the art spectrographs, and it can be easily designed to match the intrinsic sensitivities of future Doppler instruments. The Sine source also has the great practical advantages in compact (portable) size and low cost. Here we report early results from on-sky calibration of a Sine source measured with two state-of-the-art TOU optical high resolution spectrograph (R=100,000, 0.38-0.9 microns) and FIRST near infrared spectrograph (R=50,000, 0.8-1.8 microns) at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The results with the TOU spectrograph monitoring over seven days show that the Sine source has produced ~3 times better calibration precision than the ThAr calibration (RMS = 2.7m/s vs. 7.4m/s) at 0.49-0.62 microns where calibration data have been processed by our preliminary data pipeline and ~1.4 times better than the iodine absorption spectra (RMS=3.6 m/s) at the same wavelength region. As both ThAr and Iodine have reached sub m/s calibration accuracy with existing Doppler instruments (such as HARPS and HIRES), it is likely that the sine source would provide similar improvement once a better data pipeline and an upgraded version of a Sine source are developed. It is totally possible to reach ~0.1 m/s in the optical wavelength region. In addition, this Sine source

  18. Image Calibration

    NASA Technical Reports Server (NTRS)

    Peay, Christopher S.; Palacios, David M.

    2011-01-01

    Calibrate_Image calibrates images obtained from focal plane arrays so that the output image more accurately represents the observed scene. The function takes as input a degraded image along with a flat field image and a dark frame image produced by the focal plane array and outputs a corrected image. The three most prominent sources of image degradation are corrected for: dark current accumulation, gain non-uniformity across the focal plane array, and hot and/or dead pixels in the array. In the corrected output image the dark current is subtracted, the gain variation is equalized, and values for hot and dead pixels are estimated, using bicubic interpolation techniques.

  19. New spectrographs for the VLT and E-ELT suited for the measurement of fundamental constants variability .

    NASA Astrophysics Data System (ADS)

    Molaro, Paolo

    An ideal instrument to probe fundamental constants such as the fine structure constant and the electron-to-proton mass ratio by means of absorption lines in QSOs spectra is a spectrograph which combine high throughput, high resolution and high stability and is compulsorily attached to a telescope with a large photon collecting area. Both the ESPRESSO proposal for the incoherent combined VLT focus and CODEX for the E-ELT keep these recipes and, although they are not optimized for this purpose, they hold the promise to improve the present limits by about two orders of magnitude. Thus either these physical constants are varying within this range or they would likely escape astronomical detection.

  20. Young Galaxy's Magnetism Surprises Astronomers

    NASA Astrophysics Data System (ADS)

    2008-10-01

    Astronomers have made the first direct measurement of the magnetic field in a young, distant galaxy, and the result is a big surprise. Looking at a faraway protogalaxy seen as it was 6.5 billion years ago, the scientists measured a magnetic field at least 10 times stronger than that of our own Milky Way. They had expected just the opposite. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF The scientists made the discovery using the National Science Foundation's ultra-sensitive Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. "This new measurement indicates that magnetic fields may play a more important role in the formation and evolution of galaxies than we have realized," said Arthur Wolfe, of the University of California-San Diego (UCSD). At its great distance, the protogalaxy is seen as it was when the Universe was about half its current age. According to the leading theory, cosmic magnetic fields are generated by the dynamos of rotating galaxies -- a process that would produce stronger fields with the passage of time. In this scenario, the magnetic fields should be weaker in the earlier Universe, not stronger. The new, direct magnetic-field measurement comes on the heels of a July report by Swiss and American astronomers who made indirect measurements that also implied strong magnetic fields in the early Universe. "Our results present a challenge to the dynamo model, but they do not rule it out," Wolfe said. There are other possible explanations for the strong magnetic field seen in the one protogalaxy Wolfe's team studied. "We may be seeing the field close to the central region of a massive galaxy, and we know such fields are stronger toward the centers of nearby galaxies. Also, the field we see may have been amplified by a shock wave caused by the collision of two galaxies," he said. The protogalaxy studied with the GBT, called DLA-3C286, consists of gas with little or no star formation occurring in it. The astronomers suspect that