NASA Astrophysics Data System (ADS)
Song, W. M.; Fan, D. W.; Su, L. Y.; Cui, C. Z.
2017-11-01
Calculating the coordinate parameters recorded in the form of key/value pairs in FITS (Flexible Image Transport System) header is the key to determine FITS images' position in the celestial system. As a result, it has great significance in researching the general process of calculating the coordinate parameters. By combining CCD related parameters of astronomical telescope (such as field, focal length, and celestial coordinates in optical axis, etc.), astronomical images recognition algorithm, and WCS (World Coordinate System) theory, the parameters can be calculated effectively. CCD parameters determine the scope of star catalogue, so that they can be used to build a reference star catalogue by the corresponding celestial region of astronomical images; Star pattern recognition completes the matching between the astronomical image and reference star catalogue, and obtains a table with a certain number of stars between CCD plane coordinates and their celestial coordinates for comparison; According to different projection of the sphere to the plane, WCS can build different transfer functions between these two coordinates, and the astronomical position of image pixels can be determined by the table's data we have worked before. FITS images are used to carry out scientific data transmission and analyze as a kind of mainstream data format, but only to be viewed, edited, and analyzed in the professional astronomy software. It decides the limitation of popular science education in astronomy. The realization of a general image visualization method is significant. FITS is converted to PNG or JPEG images firstly. The coordinate parameters in the FITS header are converted to metadata in the form of AVM (Astronomy Visualization Metadata), and then the metadata is added to the PNG or JPEG header. This method can meet amateur astronomers' general needs of viewing and analyzing astronomical images in the non-astronomical software platform. The overall design flow is realized through the java program and tested by SExtractor, WorldWide Telescope, picture viewer, and other software.
Leveraging Metadata to Create Interactive Images... Today!
NASA Astrophysics Data System (ADS)
Hurt, Robert L.; Squires, G. K.; Llamas, J.; Rosenthal, C.; Brinkworth, C.; Fay, J.
2011-01-01
The image gallery for NASA's Spitzer Space Telescope has been newly rebuilt to fully support the Astronomy Visualization Metadata (AVM) standard to create a new user experience both on the website and in other applications. We encapsulate all the key descriptive information for a public image, including color representations and astronomical and sky coordinates and make it accessible in a user-friendly form on the website, but also embed the same metadata within the image files themselves. Thus, images downloaded from the site will carry with them all their descriptive information. Real-world benefits include display of general metadata when such images are imported into image editing software (e.g. Photoshop) or image catalog software (e.g. iPhoto). More advanced support in Microsoft's WorldWide Telescope can open a tagged image after it has been downloaded and display it in its correct sky position, allowing comparison with observations from other observatories. An increasing number of software developers are implementing AVM support in applications and an online image archive for tagged images is under development at the Spitzer Science Center. Tagging images following the AVM offers ever-increasing benefits to public-friendly imagery in all its standard forms (JPEG, TIFF, PNG). The AVM standard is one part of the Virtual Astronomy Multimedia Project (VAMP); http://www.communicatingastronomy.org
Introducing the Virtual Astronomy Multimedia Project
NASA Astrophysics Data System (ADS)
Wyatt, Ryan; Christensen, L. L.; Gauthier, A.; Hurt, R.
2008-05-01
The goal of the Virtual Astronomy Multimedia Project (VAMP) is to promote and vastly multiply the use of astronomy multimedia resources—from images and illustrations to animations, movies, and podcasts—and enable innovative future exploitation of a wide variety of outreach media by systematically linking resource archives worldwide. High-quality astronomical images, accompanied by rich caption and background information, abound on the web and yet prove notoriously difficult to locate efficiently using existing search tools. The Virtual Astronomy Multimedia Project offers a solution via the Astronomy Visualization Metadata (AVM) standard. Due to roll out in time for IYA2009, VAMP manages the design, implementation, and dissemination of the AVM standard for the education and public outreach astronomical imagery that observatories publish. VAMP will support implementations in World Wide Telescope, Google Sky, Portal to the Universe, and 365 Days of Astronomy, as well as Uniview and DigitalSky software designed specifically for planetariums. The VAMP workshop will introduce the AVM standard and describe its features, highlighting sample image tagging processes using diverse tools—the critical first step in getting media into VAMP. Participants with laptops will have an opportunity to experiment first hand, and workshop organizers will update a web page with system requirements and software options in advance of the conference (see http://virtualastronomy.org/ASP2008/ for links to resources). The workshop will also engage participants in a discussion and review of the innovative AVM image hierarchy taxonomy, which will soon be extended to other types of media.
Visualization of JPEG Metadata
NASA Astrophysics Data System (ADS)
Malik Mohamad, Kamaruddin; Deris, Mustafa Mat
There are a lot of information embedded in JPEG image than just graphics. Visualization of its metadata would benefit digital forensic investigator to view embedded data including corrupted image where no graphics can be displayed in order to assist in evidence collection for cases such as child pornography or steganography. There are already available tools such as metadata readers, editors and extraction tools but mostly focusing on visualizing attribute information of JPEG Exif. However, none have been done to visualize metadata by consolidating markers summary, header structure, Huffman table and quantization table in a single program. In this paper, metadata visualization is done by developing a program that able to summarize all existing markers, header structure, Huffman table and quantization table in JPEG. The result shows that visualization of metadata helps viewing the hidden information within JPEG more easily.
Data to Pictures to Data: Outreach Imaging Software and Metadata
NASA Astrophysics Data System (ADS)
Levay, Z.
2011-07-01
A convergence between astronomy science and digital photography has enabled a steady stream of visually rich imagery from state-of-the-art data. The accessibility of hardware and software has facilitated an explosion of astronomical images for outreach, from space-based observatories, ground-based professional facilities and among the vibrant amateur astrophotography community. Producing imagery from science data involves a combination of custom software to understand FITS data (FITS Liberator), off-the-shelf, industry-standard software to composite multi-wavelength data and edit digital photographs (Adobe Photoshop), and application of photo/image-processing techniques. Some additional effort is needed to close the loop and enable this imagery to be conveniently available for various purposes beyond web and print publication. The metadata paradigms in digital photography are now complying with FITS and science software to carry information such as keyword tags and world coordinates, enabling these images to be usable in more sophisticated, imaginative ways exemplified by Sky in Google Earth and World Wide Telescope.
NASA Astrophysics Data System (ADS)
Craig, N.; Mendez, B. J.; Hanisch, R. J.; Christian, C. A.; Summers, F.; Haisch, B.; Lindblom, J.
2005-05-01
We will describe the development of protocols to make Astronomy press-release quality images from HST and other sources publicly available through compatibility with the National Virtual Observatory (NVO). We will present the designs for a public portal to these resources, based on a robust evaluation of our intended audience. The availability of press-release quality materials via the NVO through a simplified interface will greatly enhance the utility of these materials for the public. Behind any portal to NVO data there is a standard registry and data structures that allow collections of data (such as the press release images) to be located and acquired. We will describe our design of the necessary protocols and metadata being used within the NVO framework for this project. We base our meta-tags on the considerable existing work done in the science community as well as the NASA education community. These refined metadata are applied to new HST press-release images as they are produced and registered with the NVO. We will describe methods for retrofitting pre-existing imagery with the metadata standards. The rich media, 3D navigation and visualization capabilities of the browser created by ManyOne Network Inc. are particularly well suited to the presentation of astronomical information and ever more detailed models of the local neighborhood, the Milky Way, etc. We will discuss the 3D navigation and visualization capabilities of the browser with particular focus on the Milky Way Galaxy. Development of an online encyclopedia to accompany the ManyOne portals as part of the Virtual Cosmos will also be described. Support from NASA's AISR Program is gratefully acknowledged.
Astroinformatics as a New Research Field. UkrVO Astroinformation Resources: Tasks and Prospective
NASA Astrophysics Data System (ADS)
Vavilova, I. B.
The data-oriented astronomy has allowed classifying the Astroinformatics as a new academic research field, which covers various multi-disciplinary applications of the e-Astronomy. Among them are the data modeling, data mining, metadata standards development, data access, digital astronomical databases, image archives and visualization, machine learning, statistics and other computational methods and software for work with astronomical survey and catalogues with their teta- topeta-scale astroinformation resource. In this review we describe briefly the astroinformatics applications and software/services performed for different astronomical tasks in frame of the VIrtual Roentgen and Gamma Observatory (VIRGO) and Ukrainian VirtualObservatory (UkrVO). Among them there are projects based on the archival space-born data of X-ray and gamma space observatories and on the Joint Digitized Archive (JDA) database of astroplate network collections. The UkrVO JDA DR1 deals with the star catalogues (FON, Polar zone, open clusters, GRB star fields) as well as the UkrVO JDA DR2 deals with the Solar System bodies (giant and small planets, satellites, astronomical heritage images).
Enriched Video Semantic Metadata: Authorization, Integration, and Presentation.
ERIC Educational Resources Information Center
Mu, Xiangming; Marchionini, Gary
2003-01-01
Presents an enriched video metadata framework including video authorization using the Video Annotation and Summarization Tool (VAST)-a video metadata authorization system that integrates both semantic and visual metadata-- metadata integration, and user level applications. Results demonstrated that the enriched metadata were seamlessly…
International Metadata Initiatives: Lessons in Bibliographic Control.
ERIC Educational Resources Information Center
Caplan, Priscilla
This paper looks at a subset of metadata schemes, including the Text Encoding Initiative (TEI) header, the Encoded Archival Description (EAD), the Dublin Core Metadata Element Set (DCMES), and the Visual Resources Association (VRA) Core Categories for visual resources. It examines why they developed as they did, major point of difference from…
The Unified Astronomy Thesaurus: Semantic Metadata for Astronomy and Astrophysics
NASA Astrophysics Data System (ADS)
Frey, Katie; Accomazzi, Alberto
2018-05-01
Several controlled vocabularies have been developed and used by the astronomical community, each designed to serve a specific need and a specific group. The Unified Astronomy Thesaurus (UAT) attempts to provide a highly structured controlled vocabulary that will be relevant and useful across the entire discipline, regardless of content or platform. Because classifying articles and data will be the two major functions of the UAT, we examine the UAT in comparison with the Astronomical Subject Keywords used by major publications and the JWST Science Keywords used by STScI’s Astronomer’s Proposal Tool.
Teach Astronomy: An Online Resource for Introductory Astronomy Courses and Informal Learners
NASA Astrophysics Data System (ADS)
Austin, Carmen; Impey, C. D.; Hardegree-Ullman, K.; Patikkal, A.; Ganesan, N.
2013-01-01
Teach Astronomy (www.teachastronomy.com) is a new, free online resource—a teaching tool for non-science major astronomy courses and a reference guide for lifelong learners interested in the subject. Digital content available includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Motivation behind the development of Teach Astronomy includes steep increases in textbook prices, the rapid adoption by students and the public of digital resources, and the modern capabilities of digital technology. Recent additions to Teach Astronomy include: AstroPix images—from some of the most advanced observatories and complete with metadata, mobile device functionality, links to WikiSky where users can see the location of astronomical objects in the sky, and end of chapter textbook review questions. Next in line for development are assignments for classroom use. We present suggestions for utilizing the rich content and features of the web site.
Napolitano, Rebecca; Blyth, Anna; Glisic, Branko
2018-01-16
Visualization of sensor networks, data, and metadata is becoming one of the most pivotal aspects of the structural health monitoring (SHM) process. Without the ability to communicate efficiently and effectively between disparate groups working on a project, an SHM system can be underused, misunderstood, or even abandoned. For this reason, this work seeks to evaluate visualization techniques in the field, identify flaws in current practices, and devise a new method for visualizing and accessing SHM data and metadata in 3D. More precisely, the work presented here reflects a method and digital workflow for integrating SHM sensor networks, data, and metadata into a virtual reality environment by combining spherical imaging and informational modeling. Both intuitive and interactive, this method fosters communication on a project enabling diverse practitioners of SHM to efficiently consult and use the sensor networks, data, and metadata. The method is presented through its implementation on a case study, Streicker Bridge at Princeton University campus. To illustrate the efficiency of the new method, the time and data file size were compared to other potential methods used for visualizing and accessing SHM sensor networks, data, and metadata in 3D. Additionally, feedback from civil engineering students familiar with SHM is used for validation. Recommendations on how different groups working together on an SHM project can create SHM virtual environment and convey data to proper audiences, are also included.
Napolitano, Rebecca; Blyth, Anna; Glisic, Branko
2018-01-01
Visualization of sensor networks, data, and metadata is becoming one of the most pivotal aspects of the structural health monitoring (SHM) process. Without the ability to communicate efficiently and effectively between disparate groups working on a project, an SHM system can be underused, misunderstood, or even abandoned. For this reason, this work seeks to evaluate visualization techniques in the field, identify flaws in current practices, and devise a new method for visualizing and accessing SHM data and metadata in 3D. More precisely, the work presented here reflects a method and digital workflow for integrating SHM sensor networks, data, and metadata into a virtual reality environment by combining spherical imaging and informational modeling. Both intuitive and interactive, this method fosters communication on a project enabling diverse practitioners of SHM to efficiently consult and use the sensor networks, data, and metadata. The method is presented through its implementation on a case study, Streicker Bridge at Princeton University campus. To illustrate the efficiency of the new method, the time and data file size were compared to other potential methods used for visualizing and accessing SHM sensor networks, data, and metadata in 3D. Additionally, feedback from civil engineering students familiar with SHM is used for validation. Recommendations on how different groups working together on an SHM project can create SHM virtual environment and convey data to proper audiences, are also included. PMID:29337877
NASA Astrophysics Data System (ADS)
West, Ruth G.; Margolis, Todd; Prudhomme, Andrew; Schulze, Jürgen P.; Mostafavi, Iman; Lewis, J. P.; Gossmann, Joachim; Singh, Rajvikram
2014-02-01
Scalable Metadata Environments (MDEs) are an artistic approach for designing immersive environments for large scale data exploration in which users interact with data by forming multiscale patterns that they alternatively disrupt and reform. Developed and prototyped as part of an art-science research collaboration, we define an MDE as a 4D virtual environment structured by quantitative and qualitative metadata describing multidimensional data collections. Entire data sets (e.g.10s of millions of records) can be visualized and sonified at multiple scales and at different levels of detail so they can be explored interactively in real-time within MDEs. They are designed to reflect similarities and differences in the underlying data or metadata such that patterns can be visually/aurally sorted in an exploratory fashion by an observer who is not familiar with the details of the mapping from data to visual, auditory or dynamic attributes. While many approaches for visual and auditory data mining exist, MDEs are distinct in that they utilize qualitative and quantitative data and metadata to construct multiple interrelated conceptual coordinate systems. These "regions" function as conceptual lattices for scalable auditory and visual representations within virtual environments computationally driven by multi-GPU CUDA-enabled fluid dyamics systems.
Operational Support for Instrument Stability through ODI-PPA Metadata Visualization and Analysis
NASA Astrophysics Data System (ADS)
Young, M. D.; Hayashi, S.; Gopu, A.; Kotulla, R.; Harbeck, D.; Liu, W.
2015-09-01
Over long time scales, quality assurance metrics taken from calibration and calibrated data products can aid observatory operations in quantifying the performance and stability of the instrument, and identify potential areas of concern or guide troubleshooting and engineering efforts. Such methods traditionally require manual SQL entries, assuming the requisite metadata has even been ingested into a database. With the ODI-PPA system, QA metadata has been harvested and indexed for all data products produced over the life of the instrument. In this paper we will describe how, utilizing the industry standard Highcharts Javascript charting package with a customized AngularJS-driven user interface, we have made the process of visualizing the long-term behavior of these QA metadata simple and easily replicated. Operators can easily craft a custom query using the powerful and flexible ODI-PPA search interface and visualize the associated metadata in a variety of ways. These customized visualizations can be bookmarked, shared, or embedded externally, and will be dynamically updated as new data products enter the system, enabling operators to monitor the long-term health of their instrument with ease.
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Matasci, Naim
2011-03-01
The explosion of online scientific data from experiments, simulations, and observations has given rise to an avalanche of algorithmic, visualization and imaging methods. There has also been enormous growth in the introduction of tools that provide interactive interfaces for exploring these data dynamically. Most systems, however, do not support the realtime exploration of patterns and relationships across tools and do not provide guidance on which colors, colormaps or visual metaphors will be most effective. In this paper, we introduce a general architecture for sharing metadata between applications and a "Metadata Mapper" component that allows the analyst to decide how metadata from one component should be represented in another, guided by perceptual rules. This system is designed to support "brushing [1]," in which highlighting a region of interest in one application automatically highlights corresponding values in another, allowing the scientist to develop insights from multiple sources. Our work builds on the component-based iPlant Cyberinfrastructure [2] and provides a general approach to supporting interactive, exploration across independent visualization and visual analysis components.
Filling the Astronomical Void - A Visual Medium for a Visual Subject
NASA Astrophysics Data System (ADS)
Ryan, J.
1996-12-01
Astronomy is fundamentally a visual subject. The modern science of astronomy has at its foundation the ancient art of observing the sky visually. The visual elements of astronomy are arguably the most important. Every person in the entire world is affected by visually-observed astronomical phenomena such as the seasonal variations in daylight. However, misconceptions abound and the average person cannot recognize the simple signs in the sky that point to the direction, the hour and the season. Educators and astronomy popularizers widely lament that astronomy is not appreciated in our society. Yet, there is a remarkable dearth of popular literature for teaching the visual elements of astronomy. This is what I refer to as *the astronomical void.* Typical works use illustrations sparsely, relying most heavily on text-based descriptions of the visual astronomical phenomena. Such works leave significant inferential gaps to the inexperienced reader, who is unequipped for making astronomical observations. Thus, the astronomical void remains unfilled by much of the currently available literature. I therefore propose the introduction of a visually-oriented medium for teaching the visual elements of Astronomy. To this end, I have prepared a series of astronomy "comic strips" that are intended to fill the astronomical void. By giving the illustrations the central place, the comic strip medium permits the depiction of motion and other sequential activity, thus effectively representing astronomical phenomena. In addition to the practical advantages, the comic strip is a "user friendly" medium that is inviting and entertaining to a reader. At the present time, I am distributing a monthly comic strip entitled *Starman*, which appears in the newsletters of over 120 local astronomy organizations and on the web at http://www.cyberdrive.net/ starman. I hope to eventually publish a series of full-length books and believe that astronomical comic strips will help expand the perimeter of astronomical awareness.
Exploring Metacogntive Visual Literacy Tasks for Teaching Astronomy
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Slater, S.; Dwyer, W.
2010-01-01
Undoubtedly, astronomy is a scientific enterprise which often results in colorful and inspirational images of the cosmos that naturally capture our attention. Students encountering astronomy in the college classroom are often bombarded with images, movies, simulations, conceptual cartoons, graphs, and charts intended to convey the substance and technological advancement inherent in astronomy. For students who self-identify themselves as visual learners, this aspect can make the science of astronomy come alive. For students who naturally attend to visual aesthetics, this aspect can make astronomy seem relevant. In other words, the visual nature that accompanies much of the scientific realm of astronomy has the ability to connect a wide range of students to science, not just those few who have great abilities and inclinations toward the mathematical analysis world. Indeed, this is fortunate for teachers of astronomy, who actively try to find ways to connect and build astronomical understanding with a broad range of student interests, motivations, and abilities. In the context of learning science, metacognition describes students’ self-monitoring, -regulation, and -awareness when thinking about learning. As such, metacognition is one of the foundational pillars supporting what we know about how people learn. Yet, the astronomy teaching and learning community knows very little about how to operationalize and support students’ metacognition in the classroom. In response, the Conceptual Astronomy, Physics and Earth sciences Research (CAPER) Team is developing and pilot-testing metacogntive tasks in the context of astronomy that focus on visual literacy of astronomical phenomena. In the initial versions, students are presented with a scientifically inaccurate narrative supposedly describing visual information, including images and graphical information, and asked to assess and correct the narrative, in the form of peer evaluation. To guide student thinking, students are provided with a scaffolded series of multiple-choice questions highlighting conceptual aspects of the prompt.
2011-05-01
iTunes illustrate the difference between the centralized approach of digital library systems and the distributed approach of container file formats...metadata in a container file format. Apple’s iTunes uses a centralized metadata approach and allows users to maintain song metadata in a single...one iTunes library to another the metadata must be copied separately or reentered in the new library. This demonstrates the utility of storing metadata
NASA Technical Reports Server (NTRS)
Smit, Christine; Hegde, Mahabaleshwara; Strub, Richard; Bryant, Keith; Li, Angela; Petrenko, Maksym
2017-01-01
Giovanni is a data exploration and visualization tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC). It has been around in one form or another for more than 15 years. Giovanni calculates simple statistics and produces 22 different visualizations for more than 1600 geophysical parameters from more than 90 satellite and model products. Giovanni relies on external data format standards to ensure interoperability, including the NetCDF CF Metadata Conventions. Unfortunately, these standards were insufficient to make Giovanni's internal data representation truly simple to use. Finding and working with dimensions can be convoluted with the CF Conventions. Furthermore, the CF Conventions are silent on machine-friendly descriptive metadata such as the parameter's source product and product version. In order to simplify analyzing disparate earth science data parameters in a unified way, we developed Giovanni's internal standard. First, the format standardizes parameter dimensions and variables so they can be easily found. Second, the format adds all the machine-friendly metadata Giovanni needs to present our parameters to users in a consistent and clear manner. At a glance, users can grasp all the pertinent information about parameters both during parameter selection and after visualization.
Trident: scalable compute archives: workflows, visualization, and analysis
NASA Astrophysics Data System (ADS)
Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Kotulla, Ralf; Henschel, Robert; Harbeck, Daniel
2016-08-01
The Astronomy scientific community has embraced Big Data processing challenges, e.g. associated with time-domain astronomy, and come up with a variety of novel and efficient data processing solutions. However, data processing is only a small part of the Big Data challenge. Efficient knowledge discovery and scientific advancement in the Big Data era requires new and equally efficient tools: modern user interfaces for searching, identifying and viewing data online without direct access to the data; tracking of data provenance; searching, plotting and analyzing metadata; interactive visual analysis, especially of (time-dependent) image data; and the ability to execute pipelines on supercomputing and cloud resources with minimal user overhead or expertise even to novice computing users. The Trident project at Indiana University offers a comprehensive web and cloud-based microservice software suite that enables the straight forward deployment of highly customized Scalable Compute Archive (SCA) systems; including extensive visualization and analysis capabilities, with minimal amount of additional coding. Trident seamlessly scales up or down in terms of data volumes and computational needs, and allows feature sets within a web user interface to be quickly adapted to meet individual project requirements. Domain experts only have to provide code or business logic about handling/visualizing their domain's data products and about executing their pipelines and application work flows. Trident's microservices architecture is made up of light-weight services connected by a REST API and/or a message bus; a web interface elements are built using NodeJS, AngularJS, and HighCharts JavaScript libraries among others while backend services are written in NodeJS, PHP/Zend, and Python. The software suite currently consists of (1) a simple work flow execution framework to integrate, deploy, and execute pipelines and applications (2) a progress service to monitor work flows and sub-work flows (3) ImageX, an interactive image visualization service (3) an authentication and authorization service (4) a data service that handles archival, staging and serving of data products, and (5) a notification service that serves statistical collation and reporting needs of various projects. Several other additional components are under development. Trident is an umbrella project, that evolved from the One Degree Imager, Portal, Pipeline, and Archive (ODI-PPA) project which we had initially refactored toward (1) a powerful analysis/visualization portal for Globular Cluster System (GCS) survey data collected by IU researchers, 2) a data search and download portal for the IU Electron Microscopy Center's data (EMC-SCA), 3) a prototype archive for the Ludwig Maximilian University's Wide Field Imager. The new Trident software has been used to deploy (1) a metadata quality control and analytics portal (RADY-SCA) for DICOM formatted medical imaging data produced by the IU Radiology Center, 2) Several prototype work flows for different domains, 3) a snapshot tool within IU's Karst Desktop environment, 4) a limited component-set to serve GIS data within the IU GIS web portal. Trident SCA systems leverage supercomputing and storage resources at Indiana University but can be configured to make use of any cloud/grid resource, from local workstations/servers to (inter)national supercomputing facilities such as XSEDE.
Astronomy for the Blind and Visually Impaired
NASA Astrophysics Data System (ADS)
Kraus, S.
2016-12-01
This article presents a number of ways of communicating astronomy topics, ranging from classical astronomy to modern astrophysics, to the blind and visually impaired. A major aim of these projects is to provide access which goes beyond the use of the tactile sense to improve knowledge transfer for blind and visually impaired students. The models presented here are especially suitable for young people of secondary school age.
Pathogen metadata platform: software for accessing and analyzing pathogen strain information.
Chang, Wenling E; Peterson, Matthew W; Garay, Christopher D; Korves, Tonia
2016-09-15
Pathogen metadata includes information about where and when a pathogen was collected and the type of environment it came from. Along with genomic nucleotide sequence data, this metadata is growing rapidly and becoming a valuable resource not only for research but for biosurveillance and public health. However, current freely available tools for analyzing this data are geared towards bioinformaticians and/or do not provide summaries and visualizations needed to readily interpret results. We designed a platform to easily access and summarize data about pathogen samples. The software includes a PostgreSQL database that captures metadata useful for disease outbreak investigations, and scripts for downloading and parsing data from NCBI BioSample and BioProject into the database. The software provides a user interface to query metadata and obtain standardized results in an exportable, tab-delimited format. To visually summarize results, the user interface provides a 2D histogram for user-selected metadata types and mapping of geolocated entries. The software is built on the LabKey data platform, an open-source data management platform, which enables developers to add functionalities. We demonstrate the use of the software in querying for a pathogen serovar and for genome sequence identifiers. This software enables users to create a local database for pathogen metadata, populate it with data from NCBI, easily query the data, and obtain visual summaries. Some of the components, such as the database, are modular and can be incorporated into other data platforms. The source code is freely available for download at https://github.com/wchangmitre/bioattribution .
The Value of Data and Metadata Standardization for Interoperability in Giovanni
NASA Astrophysics Data System (ADS)
Smit, C.; Hegde, M.; Strub, R. F.; Bryant, K.; Li, A.; Petrenko, M.
2017-12-01
Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/) is a data exploration and visualization tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC). It has been around in one form or another for more than 15 years. Giovanni calculates simple statistics and produces 22 different visualizations for more than 1600 geophysical parameters from more than 90 satellite and model products. Giovanni relies on external data format standards to ensure interoperability, including the NetCDF CF Metadata Conventions. Unfortunately, these standards were insufficient to make Giovanni's internal data representation truly simple to use. Finding and working with dimensions can be convoluted with the CF Conventions. Furthermore, the CF Conventions are silent on machine-friendly descriptive metadata such as the parameter's source product and product version. In order to simplify analyzing disparate earth science data parameters in a unified way, we developed Giovanni's internal standard. First, the format standardizes parameter dimensions and variables so they can be easily found. Second, the format adds all the machine-friendly metadata Giovanni needs to present our parameters to users in a consistent and clear manner. At a glance, users can grasp all the pertinent information about parameters both during parameter selection and after visualization. This poster gives examples of how our metadata and data standards, both external and internal, have both simplified our code base and improved our users' experiences.
AstroCloud, a Cyber-Infrastructure for Astronomy Research: Data Archiving and Quality Control
NASA Astrophysics Data System (ADS)
He, B.; Cui, C.; Fan, D.; Li, C.; Xiao, J.; Yu, C.; Wang, C.; Cao, Z.; Chen, J.; Yi, W.; Li, S.; Mi, L.; Yang, S.
2015-09-01
AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences)1(Cui et al. 2014). To archive the astronomical data in China, we present the implementation of the astronomical data archiving system (ADAS). Data archiving and quality control are the infrastructure for the AstroCloud. Throughout the data of the entire life cycle, data archiving system standardized data, transferring data, logging observational data, archiving ambient data, And storing these data and metadata in database. Quality control covers the whole process and all aspects of data archiving.
The Climate-G testbed: towards a large scale data sharing environment for climate change
NASA Astrophysics Data System (ADS)
Aloisio, G.; Fiore, S.; Denvil, S.; Petitdidier, M.; Fox, P.; Schwichtenberg, H.; Blower, J.; Barbera, R.
2009-04-01
The Climate-G testbed provides an experimental large scale data environment for climate change addressing challenging data and metadata management issues. The main scope of Climate-G is to allow scientists to carry out geographical and cross-institutional climate data discovery, access, visualization and sharing. Climate-G is a multidisciplinary collaboration involving both climate and computer scientists and it currently involves several partners such as: Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Institut Pierre-Simon Laplace (IPSL), Fraunhofer Institut für Algorithmen und Wissenschaftliches Rechnen (SCAI), National Center for Atmospheric Research (NCAR), University of Reading, University of Catania and University of Salento. To perform distributed metadata search and discovery, we adopted a CMCC metadata solution (which provides a high level of scalability, transparency, fault tolerance and autonomy) leveraging both on P2P and grid technologies (GRelC Data Access and Integration Service). Moreover, data are available through OPeNDAP/THREDDS services, Live Access Server as well as the OGC compliant Web Map Service and they can be downloaded, visualized, accessed into the proposed environment through the Climate-G Data Distribution Centre (DDC), the web gateway to the Climate-G digital library. The DDC is a data-grid portal allowing users to easily, securely and transparently perform search/discovery, metadata management, data access, data visualization, etc. Godiva2 (integrated into the DDC) displays 2D maps (and animations) and also exports maps for display on the Google Earth virtual globe. Presently, Climate-G publishes (through the DDC) about 2TB of data related to the ENSEMBLES project (also including distributed replicas of data) as well as to the IPCC AR4. The main results of the proposed work are: wide data access/sharing environment for climate change; P2P/grid metadata approach; production-level Climate-G DDC; high quality tools for data visualization; metadata search/discovery across several countries/institutions; open environment for climate change data sharing.
ESASky: a new Astronomy Multi-Mission Interface
NASA Astrophysics Data System (ADS)
Baines, D.; Merin, B.; Salgado, J.; Giordano, F.; Sarmiento, M.; Lopez Marti, B.; Racero, E.; Gutierrez, R.; De Teodoro, P.; Nieto, S.
2016-06-01
ESA is working on a science-driven discovery portal for all its astronomy missions at ESAC called ESASky. The first public release of this service will be shown, featuring interfaces for sky exploration and for single and multiple targets. It requires no operational knowledge of any of the missions involved. A first public beta release took place in October 2015 and gives users world-wide simplified access to high-level science-ready data products from ESA Astronomy missions plus a number of ESA-produced source catalogues. XMM-Newton data, metadata and products were some of the first to be accessible through ESASky. In the next decade, ESASky aims to include not only ESA missions but also access to data from other space and ground-based astronomy missions and observatories. From a technical point of view, ESASky is a web application that offers all-sky projections of full mission datasets using a new-generation HEALPix projection called HiPS; detailed geometrical footprints to connect all-sky mosaics to individual observations; direct access to the underlying mission-specific science archives and catalogues. The poster will be accompanied by a demo booth at the conference.
Kamel Boulos, Maged N; Roudsari, Abdul V; Carso N, Ewart R
2002-12-01
HealthCyberMap (HCM-http://healthcybermap.semanticweb.org) is a web-based service for healthcare professionals and librarians, patients and the public in general that aims at mapping parts of the health information resources in cyberspace in novel ways to improve their retrieval and navigation. HCM adopts a clinical metadata framework built upon a clinical coding ontology for the semantic indexing, classification and browsing of Internet health information resources. A resource metadata base holds information about selected resources. HCM then uses GIS (Geographic Information Systems) spatialization methods to generate interactive navigational cybermaps from the metadata base. These visual cybermaps are based on familiar medical metaphors. HCM cybermaps can be considered as semantically spatialized, ontology-based browsing views of the underlying resource metadata base. Using a clinical coding scheme as a metric for spatialization ('semantic distance') is unique to HCM and is very much suited for the semantic categorization and navigation of Internet health information resources. Clinical codes ensure reliable and unambiguous topical indexing of these resources. HCM also introduces a useful form of cyberspatial analysis for the detection of topical coverage gaps in the resource metadata base using choropleth (shaded) maps of human body systems.
Using Visual Assessments and Tutorials to Teach Solar System Concepts in Introductory Astronomy
ERIC Educational Resources Information Center
LoPresto, Michael C.
2010-01-01
Visual assessments and tutorials are instruments that rely on student construction and/or examination of pictures and/or diagrams rather than multiple choice and/or short answer questions. Being a very visual subject, astronomy lends itself to assessments and tutorials of this type. What follows is a report on the results of the use of visual…
Creating opportunities in astronomy: Communication for people who are blind or visually impaired
NASA Astrophysics Data System (ADS)
Grice, N.
2008-06-01
Astronomy is such a visually rich field that you may wonder if access is possible for a person who is blind or visually impaired. The good news is that with creative strategies and available resources, students who are blind need not be excluded. Braille text, tactile illustrations, handson models, and descriptive narration can remove many barriers.
Capturing Public Interest in Astronomy through Art and Music
NASA Astrophysics Data System (ADS)
Sharma, M.; Sabraw, J.; Salgado, J. F.; Statler, T.; Summers, F.
2008-11-01
This is a summary of our 90-minute International Year of Astronomy (IYA) symposium workshop about engaging greater public interest in astronomy during the International Year of Astronomy 2009 through art and music. The session focused on: (i) plans for visually interesting and challenging astronomy presentations to connect with an audience at venues such as museums, concert halls, etc that might be apprehensive about science but open to creative experiences; (ii) the nuts-and-bolts of turning creative ideas into exhibits or visualizations; (iii) balancing scientific accuracy with artistic license; and (iv) how scientists, Education and Public Outreach (EPO) professionals, artists, musicians et al. can bridge the ``two cultures''---starting and sustaining multi-disciplinary collaborations, articulating expectations, and building synergy. The presenters shared with the EPO community some of the astronomy-art projects and resources that we have been developing for the IYA through a variety of collaborations. Our portfolios include state-of-the-art astronomy visualizations and tools, music videos and podcasts that highlight stunning images from NASA's Great Observatories; a video suite of astronomical images that can accompany live performances of Holst's The Planets and Mussorgsky's Pictures at an Exhibition; and SCALE, a multicomponent traveling art installation including the largest pastel drawing of the Milky Way.
NASA Astrophysics Data System (ADS)
Bhatia, V. B.
Tradition of astronomy in India goes back to ancient times. Many festivals and rituals are associated with astronomical phenomena. Indian children start learning rudiments of astronomy from primary classes. But primary teachers are not equipped to handle this subject so not much learning actually takes place. The first serious interface with astronomy occurs when children reach class X when they are 15 years old. Till last year astronomy was there in class XII also but it has now been dropped. This is a serious setback for the study of astronomy. In class X astronomy forms part of general science. Since children at this stage are not proficient in physics and mathematics the subject remains descriptive though there are useful activities for children to do. However the teachers are not equipped to handle this subject and there is no help in the form of visual material. So the subject remains neglected. The Indian astronomical community can help by training teachers and providing visual material. It must also urge authorities to reintroduce astronomy in class XII if astronomy is to flourish in India. Moreover India needs to network with developing countries share experiences with them and evolve a strategy that promotes astronomy.
Tactile Sun: Bringing an Invisible Universe to the Visually Impaired
NASA Astrophysics Data System (ADS)
Isidro, G. M.; Pantoja, C. A.
2014-07-01
A tactile model of the Sun has been created as a strategy for communicating astronomy to the blind or visually impaired, and as a useful outreach tool for general audiences. The model design was a collaboration between an education specialist, an astronomy specialist and a sculptor. The tactile Sun has been used at astronomy outreach events in Puerto Rico to make activities more inclusive and to increase public awareness of the needs of those with disabilities.
Planetary Sciences Interoperability at VO Paris Data Centre
NASA Astrophysics Data System (ADS)
Le Sidaner, P.; Aboudarham, J.; Birlan, M.; Briot, D.; Bonnin, X.; Cecconi, B.; Chauvin, C.; Erard, S.; Henry, F.; Lamy, L.; Mancini, M.; Normand, J.; Popescu, F.; Roques, F.; Savalle, R.; Schneider, J.; Shih, A.; Thuillot, W.; Vinatier, S.
2015-10-01
The Astronomy community has been developing interoperability since more than 10 years, by standardizing data access, data formats, and metadata. This international action is led by the International Virtual Observatory Alliance (IVOA). Observatoire de Paris is an active participant in this project. All actions on interoperability, data and service provision are centralized in and managed by VOParis Data Centre (VOPDC). VOPDC is a coordinated project from all scientific departments of Observatoire de Paris..
Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.
Luciani, Timothy Basil; Cherinka, Brian; Oliphant, Daniel; Myers, Sean; Wood-Vasey, W Michael; Labrinidis, Alexandros; Marai, G Elisabeta
2014-07-01
We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. To further facilitate the integration and mining of spatial and non-spatial data, we introduce interactive trend images-compact visual representations for identifying outlier objects and for studying trends within large collections of spatial objects of a given class. In a demonstration, images from three sky surveys (SDSS, FIRST and simulated LSST results) are cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy observations. Trend images are interactively generated from catalog data and used to visually mine astronomy observations of similar type. The front-end of the infrastructure uses the web technologies WebGL and HTML5 to enable cross-platform, web-based functionality. Our approach attains interactive rendering framerates; its power and flexibility enables it to serve the needs of the astronomy community. Evaluation on three case studies, as well as feedback from domain experts emphasize the benefits of this visual approach to the observational astronomy field; and its potential benefits to large scale geospatial visualization in general.
Visualizing and Validating Metadata Traceability within the CDISC Standards.
Hume, Sam; Sarnikar, Surendra; Becnel, Lauren; Bennett, Dorine
2017-01-01
The Food & Drug Administration has begun requiring that electronic submissions of regulated clinical studies utilize the Clinical Data Information Standards Consortium data standards. Within regulated clinical research, traceability is a requirement and indicates that the analysis results can be traced back to the original source data. Current solutions for clinical research data traceability are limited in terms of querying, validation and visualization capabilities. This paper describes (1) the development of metadata models to support computable traceability and traceability visualizations that are compatible with industry data standards for the regulated clinical research domain, (2) adaptation of graph traversal algorithms to make them capable of identifying traceability gaps and validating traceability across the clinical research data lifecycle, and (3) development of a traceability query capability for retrieval and visualization of traceability information.
Visualizing and Validating Metadata Traceability within the CDISC Standards
Hume, Sam; Sarnikar, Surendra; Becnel, Lauren; Bennett, Dorine
2017-01-01
The Food & Drug Administration has begun requiring that electronic submissions of regulated clinical studies utilize the Clinical Data Information Standards Consortium data standards. Within regulated clinical research, traceability is a requirement and indicates that the analysis results can be traced back to the original source data. Current solutions for clinical research data traceability are limited in terms of querying, validation and visualization capabilities. This paper describes (1) the development of metadata models to support computable traceability and traceability visualizations that are compatible with industry data standards for the regulated clinical research domain, (2) adaptation of graph traversal algorithms to make them capable of identifying traceability gaps and validating traceability across the clinical research data lifecycle, and (3) development of a traceability query capability for retrieval and visualization of traceability information. PMID:28815125
Visual Activities for Assessing Non-science Majors’ Understanding in Introductory Astronomy
NASA Astrophysics Data System (ADS)
Loranz, Daniel; Prather, E. E.; Slater, T. F.
2006-12-01
One of the most ardent challenges for astronomy teachers is to deeply and meaningfully assess students’ conceptual and quantitative understanding of astronomy topics. In an effort to uncover students’ actual understanding, members and affiliates of the Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona and Truckee Meadows Community College are creating and field-testing innovative approaches to assessment. Leveraging from the highly successful work on interactive lecture demonstrations from astronomy and physics education research, we are creating a series of conceptually rich questions that are matched to visually captivating and purposefully interactive astronomical animations. These conceptually challenging tasks are being created to span the entire domain of topics in introductory astronomy for non-science majoring undergraduates. When completed, these sorting tasks and vocabulary-in-context activities will be able to be delivered via a drag-and-drop computer interface.
Discovery of Marine Datasets and Geospatial Metadata Visualization
NASA Astrophysics Data System (ADS)
Schwehr, K. D.; Brennan, R. T.; Sellars, J.; Smith, S.
2009-12-01
NOAA's National Geophysical Data Center (NGDC) provides the deep archive of US multibeam sonar hydrographic surveys. NOAA stores the data as Bathymetric Attributed Grids (BAG; http://www.opennavsurf.org/) that are HDF5 formatted files containing gridded bathymetry, gridded uncertainty, and XML metadata. While NGDC provides the deep store and a basic ERSI ArcIMS interface to the data, additional tools need to be created to increase the frequency with which researchers discover hydrographic surveys that might be beneficial for their research. Using Open Source tools, we have created a draft of a Google Earth visualization of NOAA's complete collection of BAG files as of March 2009. Each survey is represented as a bounding box, an optional preview image of the survey data, and a pop up placemark. The placemark contains a brief summary of the metadata and links to directly download of the BAG survey files and the complete metadata file. Each survey is time tagged so that users can search both in space and time for surveys that meet their needs. By creating this visualization, we aim to make the entire process of data discovery, validation of relevance, and download much more efficient for research scientists who may not be familiar with NOAA's hydrographic survey efforts or the BAG format. In the process of creating this demonstration, we have identified a number of improvements that can be made to the hydrographic survey process in order to make the results easier to use especially with respect to metadata generation. With the combination of the NGDC deep archiving infrastructure, a Google Earth virtual globe visualization, and GeoRSS feeds of updates, we hope to increase the utilization of these high-quality gridded bathymetry. This workflow applies equally well to LIDAR topography and bathymetry. Additionally, with proper referencing and geotagging in journal publications, we hope to close the loop and help the community create a true “Geospatial Scholar” infrastructure.
ERIC Educational Resources Information Center
Yair, Yoav; Schur, Yaron; Mintz, Rachel
2003-01-01
Presents a novel approach to teaching astronomy and planetary sciences centered on visual images and simulations of planetary objects. Focuses on the study of the moon and the planet Mars by means of observations, interpretation, and comparison to planet Earth. (Contains 22 references.) (Author/YDS)
The Moon Topography Model as an Astronomy Educational Kit for Visual Impaired Student
NASA Astrophysics Data System (ADS)
Pramudya, Y.; Hikmah, F. N.; Muchlas
2016-08-01
The visual impaired students need science educational kit at the school to assist their learning process in science. However, there are lack of the educational kit especially on the topic of astronomy. To introduce the structure of the moon, the moon topography model has been made in circular shape only shown the near side of the moon. The moon topography module are easy to be made since it was made based on low cost material. The expertise on astronomy and visual impaired media marked the 76.67% and 94% ideal percentage, respectively. The visual impaired students were able to study the moon crater and mare by using the kit and the braille printed learning book. They also showed the improvement in the material understanding skill.
Lee, Taein; Cheng, Chun-Huai; Ficklin, Stephen; Yu, Jing; Humann, Jodi; Main, Dorrie
2017-01-01
Abstract Tripal is an open-source database platform primarily used for development of genomic, genetic and breeding databases. We report here on the release of the Chado Loader, Chado Data Display and Chado Search modules to extend the functionality of the core Tripal modules. These new extension modules provide additional tools for (1) data loading, (2) customized visualization and (3) advanced search functions for supported data types such as organism, marker, QTL/Mendelian Trait Loci, germplasm, map, project, phenotype, genotype and their respective metadata. The Chado Loader module provides data collection templates in Excel with defined metadata and data loaders with front end forms. The Chado Data Display module contains tools to visualize each data type and the metadata which can be used as is or customized as desired. The Chado Search module provides search and download functionality for the supported data types. Also included are the tools to visualize map and species summary. The use of materialized views in the Chado Search module enables better performance as well as flexibility of data modeling in Chado, allowing existing Tripal databases with different metadata types to utilize the module. These Tripal Extension modules are implemented in the Genome Database for Rosaceae (rosaceae.org), CottonGen (cottongen.org), Citrus Genome Database (citrusgenomedb.org), Genome Database for Vaccinium (vaccinium.org) and the Cool Season Food Legume Database (coolseasonfoodlegume.org). Database URL: https://www.citrusgenomedb.org/, https://www.coolseasonfoodlegume.org/, https://www.cottongen.org/, https://www.rosaceae.org/, https://www.vaccinium.org/
XAFS Data Interchange: A single spectrum XAFS data file format.
Ravel, B; Newville, M
We propose a standard data format for the interchange of XAFS data. The XAFS Data Interchange (XDI) standard is meant to encapsulate a single spectrum of XAFS along with relevant metadata. XDI is a text-based format with a simple syntax which clearly delineates metadata from the data table in a way that is easily interpreted both by a computer and by a human. The metadata header is inspired by the format of an electronic mail header, representing metadata names and values as an associative array. The data table is represented as columns of numbers. This format can be imported as is into most existing XAFS data analysis, spreadsheet, or data visualization programs. Along with a specification and a dictionary of metadata types, we provide an application-programming interface written in C and bindings for programming dynamic languages.
XAFS Data Interchange: A single spectrum XAFS data file format
NASA Astrophysics Data System (ADS)
Ravel, B.; Newville, M.
2016-05-01
We propose a standard data format for the interchange of XAFS data. The XAFS Data Interchange (XDI) standard is meant to encapsulate a single spectrum of XAFS along with relevant metadata. XDI is a text-based format with a simple syntax which clearly delineates metadata from the data table in a way that is easily interpreted both by a computer and by a human. The metadata header is inspired by the format of an electronic mail header, representing metadata names and values as an associative array. The data table is represented as columns of numbers. This format can be imported as is into most existing XAFS data analysis, spreadsheet, or data visualization programs. Along with a specification and a dictionary of metadata types, we provide an application-programming interface written in C and bindings for programming dynamic languages.
Capturing Public Interest in Astronomy through Art and Music
NASA Astrophysics Data System (ADS)
Sharma, Mangala; Sabraw, J.; Salgado, J. F.; Statler, T. S.; Summers, F.
2008-05-01
Our 90-minute interactive panel and brainstorming session is about engaging greater public interest in astronomy during IYA 2009 through art and music. This session will focus on: (i) plans for visually interesting and challenging astronomy presentations (examples below) to connect with an audience at venues such as museums, concert halls, etc. that might be apprehensive about science but open to creative experiences (ii) ways to capitalize on interest generated through the arts to inspire lifelong appreciation of astronomy (iii) the nuts-and-bolts of turning creative ideas into exhibits or visualizations (iv) balancing scientific accuracy with artistic license (v) ways to publicize and disseminate programs at the interface of astronomy and the fine arts; and (vi) how scientists, E/PO professionals, artists, musicians et al. can bridge the "two cultures" - starting and sustaining multi-disciplinary collaborations, articulating expectations, and building synergy. The presenters will share with the E/PO community some of the astronomy-art projects and resources that we have been developing for the IYA through a variety of collaborations. Our portfolios include state-of-the-art astronomy visualizations and tools, music videos and podcasts that highlight stunning images from NASA's Great Observatories; a video suite of Solar System images that can accompany live performances of Holst's The Planets; and SCALE: a multicomponent traveling art installation including the largest pastel drawing of the Milky Way.
NASA Astrophysics Data System (ADS)
Paganotti, A.; Reis, C.; Voelzke, M. R.
2017-12-01
This work deals with the use of tactile materials as a pedagogical tool for the teaching of Astronomy, and this material was used in a didactic activity with 44 students of the public elementary school in Minas Gerais. A visually impaired student and another hearing impaired participated, being these the focus of the research. With the tactile visual material elaborated, the objective was to develop themes such as phases of the Moon, eclipses and Solar System. Two questionnaires were applied and revealed an improvement in the concepts related to Astronomy and in the socialization of disabled students with the group after the didactic activity.
Scientific Staff | ast.noao.edu
Emeritus Double stars; stellar rotation; stellar characteristics; publication practices in astronomy Thai formation; infrared astronomy and instrumentation NOAO Associate Director for Kitt Peak National Observatory clumpy media, software development, modeling & SED fitting, big data, HPC in astronomy, visualization
Effective use of metadata in the integration and analysis of multi-dimensional optical data
NASA Astrophysics Data System (ADS)
Pastorello, G. Z.; Gamon, J. A.
2012-12-01
Data discovery and integration relies on adequate metadata. However, creating and maintaining metadata is time consuming and often poorly addressed or avoided altogether, leading to problems in later data analysis and exchange. This is particularly true for research fields in which metadata standards do not yet exist or are under development, or within smaller research groups without enough resources. Vegetation monitoring using in-situ and remote optical sensing is an example of such a domain. In this area, data are inherently multi-dimensional, with spatial, temporal and spectral dimensions usually being well characterized. Other equally important aspects, however, might be inadequately translated into metadata. Examples include equipment specifications and calibrations, field/lab notes and field/lab protocols (e.g., sampling regimen, spectral calibration, atmospheric correction, sensor view angle, illumination angle), data processing choices (e.g., methods for gap filling, filtering and aggregation of data), quality assurance, and documentation of data sources, ownership and licensing. Each of these aspects can be important as metadata for search and discovery, but they can also be used as key data fields in their own right. If each of these aspects is also understood as an "extra dimension," it is possible to take advantage of them to simplify the data acquisition, integration, analysis, visualization and exchange cycle. Simple examples include selecting data sets of interest early in the integration process (e.g., only data collected according to a specific field sampling protocol) or applying appropriate data processing operations to different parts of a data set (e.g., adaptive processing for data collected under different sky conditions). More interesting scenarios involve guided navigation and visualization of data sets based on these extra dimensions, as well as partitioning data sets to highlight relevant subsets to be made available for exchange. The DAX (Data Acquisition to eXchange) Web-based tool uses a flexible metadata representation model and takes advantage of multi-dimensional data structures to translate metadata types into data dimensions, effectively reshaping data sets according to available metadata. With that, metadata is tightly integrated into the acquisition-to-exchange cycle, allowing for more focused exploration of data sets while also increasing the value of, and incentives for, keeping good metadata. The tool is being developed and tested with optical data collected in different settings, including laboratory, field, airborne, and satellite platforms.
ERIC Educational Resources Information Center
Taylor, Roger S.; Grundstrom, Erika D.
2011-01-01
Given that astronomy heavily relies on visual representations it is especially likely for individuals to assume that instructional materials, such as visual representations of the Earth-Moon system (EMS), would be relatively accurate. However, in our research, we found that images in middle-school textbooks and educational webpages were commonly…
Generalizing the extensibility of a dynamic geometry software
NASA Astrophysics Data System (ADS)
Herceg, Đorđe; Radaković, Davorka; Herceg, Dejana
2012-09-01
Plug-and-play visual components in a Dynamic Geometry Software (DGS) enable development of visually attractive, rich and highly interactive dynamic drawings. We are developing SLGeometry, a DGS that contains a custom programming language, a computer algebra system (CAS engine) and a graphics subsystem. The basic extensibility framework on SLGeometry supports dynamic addition of new functions from attribute annotated classes that implement runtime metadata registration in code. We present a general plug-in framework for dynamic importing of arbitrary Silverlight user interface (UI) controls into SLGeometry at runtime. The CAS engine maintains a metadata storage that describes each imported visual component and enables two-way communication between the expressions stored in the engine and the UI controls on the screen.
Increasing the international visibility of research data by a joint metadata schema
NASA Astrophysics Data System (ADS)
Svoboda, Nikolai; Zoarder, Muquit; Gärtner, Philipp; Hoffmann, Carsten; Heinrich, Uwe
2017-04-01
The BonaRes Project ("Soil as a sustainable resource for the bioeconomy") was launched in 2015 to promote sustainable soil management and to avoid fragmentation of efforts (Wollschläger et al., 2016). For this purpose, an IT infrastructure is being developed to upload, manage, store, and provide research data and its associated metadata. The research data provided by the BonaRes data centre are, in principle, not subject to any restrictions on reuse. For all research data considerable standardized metadata are the key enablers for the effective use of these data. Providing proper metadata is often viewed as an extra burden with further work and resources consumed. In our lecture we underline the benefits of structured and interoperable metadata like: accessibility of data, discovery of data, interpretation of data, linking data and several more and we counter these advantages with the effort of time, personnel and further costs. Building on this, we describe the framework of metadata in BonaRes combining the standards of OGC for description, visualization, exchange and discovery of geodata as well as the schema of DataCite for the publication and citation of this research data. This enables the generation of a DOI, a unique identifier that provides a permanent link to the citable research data. By using OGC standards, data and metadata become interoperable with numerous research data provided via INSPIRE. It enables further services like CSW for harvesting WMS for visualization and WFS for downloading. We explain the mandatory fields that result from our approach and we give a general overview about our metadata architecture implementation. Literature: Wollschläger, U; Helming, K.; Heinrich, U.; Bartke, S.; Kögel-Knabner, I.; Russell, D.; Eberhardt, E. & Vogel, H.-J.: The BonaRes Centre - A virtual institute for soil research in the context of a sustainable bio-economy. Geophysical Research Abstracts, Vol. 18, EGU2016-9087, 2016.
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Dyer, Charles R.; Paul, Brian E.
1994-01-01
The VIS-AD data model integrates metadata about the precision of values, including missing data indicators and the way that arrays sample continuous functions, with the data objects of a scientific programming language. The data objects of this data model form a lattice, ordered by the precision with which they approximate mathematical objects. We define a similar lattice of displays and study visualization processes as functions from data lattices to display lattices. Such functions can be applied to visualize data objects of all data types and are thus polymorphic.
The NASA Astrophysics Data System joins the Revolution
NASA Astrophysics Data System (ADS)
Accomazzi, Alberto; Kurtz, Michael J.; Henneken, Edwin; Grant, Carolyn S.; Thompson, Donna M.; Chyla, Roman; Holachek, Alexandra; Sudilovsky, Vladimir; Elliott, Jonathan; Murray, Stephen S.
2015-08-01
Whether or not scholarly publications are going through an evolution or revolution, one comforting certainty remains: the NASA Astrophysics Data System (ADS) is here to help the working astronomer and librarian navigate through the increasingly complex communication environment we find ourselves in. Born as a bibliographic database, today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and physics. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles, enriching its metadata through the extraction of citations and acknowledgments and the ingest of bibliographies and data links maintained by astronomy institutions and data archives. In addition, ADS generates and maintains citation and co-readership networks to support discovery and bibliometric analysis.In this talk I will summarize new and ongoing curation activities and technology developments of the ADS in the face of the ever-changing world of scholarly publishing and the trends in information-sharing behavior of astronomers. Recent curation efforts include the indexing of non-standard scholarly content (such as software packages, IVOA documents and standards, and NASA award proposals); the indexing of additional content (full-text of articles, acknowledgments, affiliations, ORCID ids); and enhanced support for bibliographic groups and data links. Recent technology developments include a new Application Programming Interface which provides access to a variety of ADS microservices, a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming.
Astronomy, Visual Literacy, and Liberal Arts Education
NASA Astrophysics Data System (ADS)
Crider, Anthony
2016-01-01
With the exponentially growing amount of visual content that twenty-first century students will face throughout their lives, teaching them to respond to it with visual and information literacy skills should be a clear priority for liberal arts education. While visual literacy is more commonly covered within humanities curricula, I will argue that because astronomy is inherently a visual science, it is a fertile academic discipline for the teaching and learning of visual literacy. Astronomers, like many scientists, rely on three basic types of visuals to convey information: images, qualitative diagrams, and quantitative plots. In this talk, I will highlight classroom methods that can be used to teach students to "read" and "write" these three separate visuals. Examples of "reading" exercises include questioning the authorship and veracity of images, confronting the distorted scales of many diagrams published in astronomy textbooks, and extracting quantitative information from published plots. Examples of "writing" exercises include capturing astronomical images with smartphones, re-sketching textbook diagrams on whiteboards, and plotting data with Google Motion Charts or iPython notebooks. Students can be further pushed to synthesize these skills with end-of-semester slide presentations that incorporate relevant images, diagrams, and plots rather than relying solely on bulleted lists.
Web mapping system for complex processing and visualization of environmental geospatial datasets
NASA Astrophysics Data System (ADS)
Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor
2016-04-01
Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial metadata, task XML object, and WMS/WFS cartographical services interconnects metadata and GUI tiers. The methods include such procedures as JSON metadata downloading and update, launching and tracking of the calculation task running on the remote servers as well as working with WMS/WFS cartographical services including: obtaining the list of available layers, visualizing layers on the map, exporting layers in graphical (PNG, JPG, GeoTIFF), vector (KML, GML, Shape) and digital (NetCDF) formats. Graphical user interface tier is based on the bundle of JavaScript libraries (OpenLayers, GeoExt and ExtJS) and represents a set of software components implementing web mapping application business logic (complex menus, toolbars, wizards, event handlers, etc.). GUI provides two basic capabilities for the end user: configuring the task XML object functionality and cartographical information visualizing. The web interface developed is similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Web mapping system developed has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical form. The work is supported by SB RAS Basic Program Projects VIII.80.2.1 and IV.38.1.7.
Achieving Sub-Second Search in the CMR
NASA Astrophysics Data System (ADS)
Gilman, J.; Baynes, K.; Pilone, D.; Mitchell, A. E.; Murphy, K. J.
2014-12-01
The Common Metadata Repository (CMR) is the next generation Earth Science Metadata catalog for NASA's Earth Observing data. It joins together the holdings from the EOS Clearing House (ECHO) and the Global Change Master Directory (GCMD), creating a unified, authoritative source for EOSDIS metadata. The CMR allows ingest in many different formats while providing consistent search behavior and retrieval in any supported format. Performance is a critical component of the CMR, ensuring improved data discovery and client interactivity. The CMR delivers sub-second search performance for any of the common query conditions (including spatial) across hundreds of millions of metadata granules. It also allows the addition of new metadata concepts such as visualizations, parameter metadata, and documentation. The CMR's goals presented many challenges. This talk will describe the CMR architecture, design, and innovations that were made to achieve its goals. This includes: * Architectural features like immutability and backpressure. * Data management techniques such as caching and parallel loading that give big performance gains. * Open Source and COTS tools like Elasticsearch search engine. * Adoption of Clojure, a functional programming language for the Java Virtual Machine. * Development of a custom spatial search plugin for Elasticsearch and why it was necessary. * Introduction of a unified model for metadata that maps every supported metadata format to a consistent domain model.
Predicting biomedical metadata in CEDAR: A study of Gene Expression Omnibus (GEO).
Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier
2017-08-01
A crucial and limiting factor in data reuse is the lack of accurate, structured, and complete descriptions of data, known as metadata. Towards improving the quantity and quality of metadata, we propose a novel metadata prediction framework to learn associations from existing metadata that can be used to predict metadata values. We evaluate our framework in the context of experimental metadata from the Gene Expression Omnibus (GEO). We applied four rule mining algorithms to the most common structured metadata elements (sample type, molecular type, platform, label type and organism) from over 1.3million GEO records. We examined the quality of well supported rules from each algorithm and visualized the dependencies among metadata elements. Finally, we evaluated the performance of the algorithms in terms of accuracy, precision, recall, and F-measure. We found that PART is the best algorithm outperforming Apriori, Predictive Apriori, and Decision Table. All algorithms perform significantly better in predicting class values than the majority vote classifier. We found that the performance of the algorithms is related to the dimensionality of the GEO elements. The average performance of all algorithm increases due of the decreasing of dimensionality of the unique values of these elements (2697 platforms, 537 organisms, 454 labels, 9 molecules, and 5 types). Our work suggests that experimental metadata such as present in GEO can be accurately predicted using rule mining algorithms. Our work has implications for both prospective and retrospective augmentation of metadata quality, which are geared towards making data easier to find and reuse. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Space Vision: Making Astronomy Accessible to Visually Impaired Students
NASA Astrophysics Data System (ADS)
Ries, J. G.; Baguio, M. R.; Jurgens, T. D.; Pruett, K. M.
2004-05-01
Astronomy, with good reason, is thought of as a visual science. Spectacular images of deep space objects or other worlds of our solar system inspire public interest in Astronomy. People encounter news about the universe during their daily life. Developing concepts about celestial objects presents an extra challenge of abstraction for people with visual impairments. The Texas Space Grant Consortium with educators at the Texas School for the Blind and Visually Impaired have developed a 2 day workshop to be held in April 2004 to help students with visual impairments understand these concepts. Hands-on activities and experiments will emphasize non-visual senses. For example, students will learn about: - Constellations as historical ways of finding one's way across the sky. - The size and structure of the Solar System by building a scale model on a running track. They will also: - Plan a planetary exploration mission. - Explore wave phenomenon using heat and sound waves. In preparation for the workshop we worked with teens involved in the countywide 4-H Teens Leading with Character (TLC) program to create the tactile materials necessary for the activities. The teens attended solar system education training so they would have the skills necessary to make the tactile displays to be used during the workshop. The results and evaluation of the workshop will be presented at the meeting. Touch the Universe: A NASA Braille Book of Astronomy inspired this workshop, and it is supported by HST Grant HST-ED-90255.01-A.
SAO/NASA ADS at SAO: ADS Abstract Service
Service provides a gateway to the online Astronomy and Physics literature. You can navigate this content filtering options as well as visualizations. Astronomy and Astrophysics Classic Search, an legacy interface which searches the 2,311,600 records currently in the Astronomy database, including 198,834 abstracts
Robertson, Charles E; Harris, J Kirk; Wagner, Brandie D; Granger, David; Browne, Kathy; Tatem, Beth; Feazel, Leah M; Park, Kristin; Pace, Norman R; Frank, Daniel N
2013-12-01
Studies of the human microbiome, and microbial community ecology in general, have blossomed of late and are now a burgeoning source of exciting research findings. Along with the advent of next-generation sequencing platforms, which have dramatically increased the scope of microbiome-related projects, several high-performance sequence analysis pipelines (e.g. QIIME, MOTHUR, VAMPS) are now available to investigators for microbiome analysis. The subject of our manuscript, the graphical user interface-based Explicet software package, fills a previously unmet need for a robust, yet intuitive means of integrating the outputs of the software pipelines with user-specified metadata and then visualizing the combined data.
Web-based visualization of very large scientific astronomy imagery
NASA Astrophysics Data System (ADS)
Bertin, E.; Pillay, R.; Marmo, C.
2015-04-01
Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.
A GeoWall with Physics and Astronomy Applications
NASA Astrophysics Data System (ADS)
Dukes, Phillip; Bruton, Dan
2008-03-01
A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.
Visual Observing Manual | aavso.org
Institute CCD School Videos Student Projects Two Eyes, 3D Variable Star Astronomy H-R Diagram Plotting Student Projects Two Eyes, 3D Variable Star Astronomy H-R Diagram Plotting Activity Reporting Variable
Space Activities for the Visually Impaired
NASA Astrophysics Data System (ADS)
Ries, J. G.; Baguio, M.
2005-12-01
To a visually impaired person celestial objects or concepts of space exploration are likely to be more abstract than to other people, but they encounter news about the universe through their daily life. A partnership between Texas Space Grant Consortium, The University of Texas at Austin, and the Texas School for the Blind and Visually Impaired provided the opportunity to assist visually impaired students increase their understanding of astronomy and space science. The activities helped visually impaired students activity engage in inquiry-based, hands-on astronomy activities. The experiences provided during the educator workshops, adapted instructional classroom activities, and tactile learning aids will be shared in the hopes that others may be able to incorporate these lessons into their regular teaching activities.
A Website for Astronomy Education and Outreach
NASA Astrophysics Data System (ADS)
Impey, C.; Danehy, A.
2017-09-01
Teach Astronomy is a free, open access website designed for formal and informal learners of astronomy. The site features: an online textbook complete with quiz questions and a glossary; over ten thousand images; a curated collection of the astronomy articles in Wikipedia; a complete video lecture course; a video Frequently Asked Questions tool; and other materials provided by content partners. Clustering algorithms and an interactive visual interface allow users to browse related content. This article reviews the features of the website and how it can be used.
ITEMS Project: An online sequence for teaching mathematics and astronomy
NASA Astrophysics Data System (ADS)
Martínez, Bernat; Pérez, Josep
2010-10-01
This work describes an elearning sequence for teaching geometry and astronomy in lower secondary school created inside the ITEMS (Improving Teacher Education in Mathematics and Science) project. It is based on results from the astronomy education research about studentsŠ difficulties in understanding elementary astronomical observations and models. The sequence consists of a set of computer animations embedded in an elearning environment aimed at supporting students in learning about astronomy ideas that require the use of geometrical concepts and visual-spatial reasoning.
Metadata improvements driving new tools and services at a NASA data center
NASA Astrophysics Data System (ADS)
Moroni, D. F.; Hausman, J.; Foti, G.; Armstrong, E. M.
2011-12-01
The NASA Physical Oceanography DAAC (PO.DAAC) is responsible for distributing and maintaining satellite derived oceanographic data from a number of NASA and non-NASA missions for the physical disciplines of ocean winds, sea surface temperature, ocean topography and gravity. Currently its holdings consist of over 600 datasets with a data archive in excess of 200 Terrabytes. The PO.DAAC has recently embarked on a metadata quality and completeness project to migrate, update and improve metadata records for over 300 public datasets. An interactive database management tool has been developed to allow data scientists to enter, update and maintain metadata records. This tool communicates directly with PO.DAAC's Data Management and Archiving System (DMAS), which serves as the new archival and distribution backbone as well as a permanent repository of dataset and granule-level metadata. Although we will briefly discuss the tool, more important ramifications are the ability to now expose, propagate and leverage the metadata in a number of ways. First, the metadata are exposed directly through a faceted and free text search interface directly from drupal-based PO.DAAC web pages allowing for quick browsing and data discovery especially by "drilling" through the various facet levels that organize datasets by time/space resolution, processing level, sensor, measurement type etc. Furthermore, the metadata can now be exposed through web services to produce metadata records in a number of different formats such as FGDC and ISO 19115, or potentially propagated to visualization and subsetting tools, and other discovery interfaces. The fundamental concept is that the metadata forms the essential bridge between the user, and the tool or discovery mechanism for a broad range of ocean earth science data records.
Astronomy Data Visualization with Blender
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2015-08-01
We present innovative methods and techniques for using Blender, a 3D software package, in the visualization of astronomical data. N-body simulations, data cubes, galaxy and stellar catalogs, and planetary surface maps can be rendered in high quality videos for exploratory data analysis. Blender's API is Python based, making it advantageous for use in astronomy with flexible libraries like astroPy. Examples will be exhibited that showcase the features of the software in astronomical visualization paradigms. 2D and 3D voxel texture applications, animations, camera movement, and composite renders are introduced to the astronomer's toolkit and how they mesh with different forms of data.
NASA Astrophysics Data System (ADS)
Keck, N. N.; Macduff, M.; Martin, T.
2017-12-01
The Atmospheric Radiation Measurement's (ARM) Data Management Facility (DMF) plays a critical support role in processing and curating data generated by the Department of Energy's ARM Program. Data are collected near real time from hundreds of observational instruments spread out all over the globe. Data are then ingested hourly to provide time series data in NetCDF (network Common Data Format) and includes standardized metadata. Based on automated processes and a variety of user reviews the data may need to be reprocessed. Final data sets are then stored and accessed by users through the ARM Archive. Over the course of 20 years, a suite of data visualization tools have been developed to facilitate the operational processes to manage and maintain the more than 18,000 real time events, that move 1.3 TB of data each day through the various stages of the DMF's data system. This poster will present the resources and methodology used to capture metadata and the tools that assist in routine data management and discoverability.
BIO::Phylo-phyloinformatic analysis using perl.
Vos, Rutger A; Caravas, Jason; Hartmann, Klaas; Jensen, Mark A; Miller, Chase
2011-02-27
Phyloinformatic analyses involve large amounts of data and metadata of complex structure. Collecting, processing, analyzing, visualizing and summarizing these data and metadata should be done in steps that can be automated and reproduced. This requires flexible, modular toolkits that can represent, manipulate and persist phylogenetic data and metadata as objects with programmable interfaces. This paper presents Bio::Phylo, a Perl5 toolkit for phyloinformatic analysis. It implements classes and methods that are compatible with the well-known BioPerl toolkit, but is independent from it (making it easy to install) and features a richer API and a data model that is better able to manage the complex relationships between different fundamental data and metadata objects in phylogenetics. It supports commonly used file formats for phylogenetic data including the novel NeXML standard, which allows rich annotations of phylogenetic data to be stored and shared. Bio::Phylo can interact with BioPerl, thereby giving access to the file formats that BioPerl supports. Many methods for data simulation, transformation and manipulation, the analysis of tree shape, and tree visualization are provided. Bio::Phylo is composed of 59 richly documented Perl5 modules. It has been deployed successfully on a variety of computer architectures (including various Linux distributions, Mac OS X versions, Windows, Cygwin and UNIX-like systems). It is available as open source (GPL) software from http://search.cpan.org/dist/Bio-Phylo.
BIO::Phylo-phyloinformatic analysis using perl
2011-01-01
Background Phyloinformatic analyses involve large amounts of data and metadata of complex structure. Collecting, processing, analyzing, visualizing and summarizing these data and metadata should be done in steps that can be automated and reproduced. This requires flexible, modular toolkits that can represent, manipulate and persist phylogenetic data and metadata as objects with programmable interfaces. Results This paper presents Bio::Phylo, a Perl5 toolkit for phyloinformatic analysis. It implements classes and methods that are compatible with the well-known BioPerl toolkit, but is independent from it (making it easy to install) and features a richer API and a data model that is better able to manage the complex relationships between different fundamental data and metadata objects in phylogenetics. It supports commonly used file formats for phylogenetic data including the novel NeXML standard, which allows rich annotations of phylogenetic data to be stored and shared. Bio::Phylo can interact with BioPerl, thereby giving access to the file formats that BioPerl supports. Many methods for data simulation, transformation and manipulation, the analysis of tree shape, and tree visualization are provided. Conclusions Bio::Phylo is composed of 59 richly documented Perl5 modules. It has been deployed successfully on a variety of computer architectures (including various Linux distributions, Mac OS X versions, Windows, Cygwin and UNIX-like systems). It is available as open source (GPL) software from http://search.cpan.org/dist/Bio-Phylo PMID:21352572
Astronomical activities with disabled people
NASA Astrophysics Data System (ADS)
Ortiz-Gil, Amelia; Blay, Pere; Gallego Calvente, A. Teresa; Gómez, Miquel; Guirado, José Carlos; Lanzara, Mariana; Martínez Núñez, Silvia
2011-06-01
As we celebrate the International Year of Astronomy, we have been working on four different projects with the goal of making astronomy more accessible to people with special needs. These projects are 1) an astronomy book and web site for blind people, 2) an open source software for people with motor disabilities, 3) a planetarium program for the visually impaired and 4) educational material for intellectually disabled people.
Automatic publishing ISO 19115 metadata with PanMetaDocs using SensorML information
NASA Astrophysics Data System (ADS)
Stender, Vivien; Ulbricht, Damian; Schroeder, Matthias; Klump, Jens
2014-05-01
Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. The contribution by the participating research centers is organized as regional observatories. A challenge for TERENO and its observatories is to integrate all aspects of data management, data workflows, data modeling and visualizations into the design of a monitoring infrastructure. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences (GFZ) in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR (TEreno Online Data repOsitORry). TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes data available through standard web services. Geographic sensor information and services are described using the ISO 19115 metadata schema. TEODOOR accesses the OGC Sensor Web Enablement (SWE) interfaces offered by the regional observatories. In addition to the SWE interface, TERENO Northeast also published data through DataCite. The necessary metadata are created in an automated process by extracting information from the SWE SensorML to create ISO 19115 compliant metadata. The resulting metadata file is stored in the GFZ Potsdam data infrastructure. The publishing workflow for file based research datasets at GFZ Potsdam is based on the eSciDoc infrastructure, using PanMetaDocs (PMD) as the graphical user interface. PMD is a collaborative, metadata based data and information exchange platform [1]. Besides SWE, metadata are also syndicated by PMD through an OAI-PMH interface. In addition, metadata from other observatories, projects or sensors in TERENO can be accessed through the TERENO Northeast data portal. [1] http://meetingorganizer.copernicus.org/EGU2012/EGU2012-7058-2.pdf
No Pixel Left Behind - Peeling Away NASA's Satellite Swaths
NASA Astrophysics Data System (ADS)
Cechini, M. F.; Boller, R. A.; Schmaltz, J. E.; Roberts, J. T.; Alarcon, C.; Huang, T.; McGann, M.; Murphy, K. J.
2014-12-01
Discovery and identification of Earth Science products should not be the majority effort of scientific research. Search aides based on text metadata go to great lengths to simplify this process. However, the process is still cumbersome and requires too much data download and analysis to down select to valid products. The EOSDIS Global Imagery Browse Services (GIBS) is attempting to improve this process by providing "visual metadata" in the form of full-resolution visualizations representing geophysical parameters taken directly fromt he data. Through the use of accompanying interpretive information such as color legends and the natural visual processing of the human eye, researchers are able to search and filter through data products in a more natural and efficient way. The GIBS "visual metadata" products are generated as representations of Level 3 data or as temporal composites of the Level 2 granule- or swath-based data products projected across a geographic or polar region. Such an approach allows for low-latency tiled access to pre-generated imagery products. For many GIBS users, the resulting image suffices for a basic representation of the underlying data. However, composite imagery presents an insurmountable problem: for areas of spatial overlap within the composite, only one observation is visually represented. This is especially problematic in the polar regions where a significant portion of sensed data is "lost." In response to its user community, the GIBS team coordinated with its stakeholders to begin developing an approach to ensure that there is "no pixel left behind." In this presentation we will discuss the use cases and requirements guiding our efforts, considerations regarding standards compliance and interoperability, and near term goals. We will also discuss opportunities to actively engage with the GIBS team on this topic to continually improve our services.
Some historical crossroads between astronomy and visual neuroscience
NASA Astrophysics Data System (ADS)
Berlucchi, G.
The histories of astronomy and visual neuroscience share some important events. Observation of the sky provided early basic information about visual acuity and sensitivity to light and their variations at different retinal locations. Some of the early tests of visual functions were inspired by astronomical knowledge existing since antiquity and possibly since human prehistory. After science became a hallmark of human civilization, astronomy played a crucial part in the discovery of the laws of nature. At the turn of the 19th century, astronomers discovered interindividual variability in detecting the time of stellar transit and tried to measure the so-called personal equation, a supposedly inherent individual bias in making observations, judgements and measurements. Convinced that the reliability of scientific observations depended on the reliability of the observer, they were the first scientists to realize that studying man and human psychophysiology was essential for achieving accuracy and objectivity in astronomy and other sciences alike. There is general consensus that the science of experimental psychology grew out of astronomy and physiology in connection with the development of the reaction time method and the so-called mental chronometry. The crucial role of the observer in astronomical observations appears to have been neglected by astronomers in the second half of the 19th century after Giovanni Schiaparelli described ``canals" on the surface of the planet Mars. Percival Lowell and others thought that these canals had been constructed by a Martian intelligent population in order to distribute water from the polar regions to the equatorial deserts on the planet. Since it has been ascertained that the Mars canals seen by Schiaparelli do not exist, some speculations are offered from a neuroscientific viewpoint as to why he and others were mistaken in their observations of Mars.
NASA Astrophysics Data System (ADS)
Delory, E.; Jirka, S.
2016-02-01
Discovering sensors and observation data is important when enabling the exchange of oceanographic data between observatories and scientists that need the data sets for their work. To better support this discovery process, one task of the European project FixO3 (Fixed-point Open Ocean Observatories) is dealing with the question which elements are needed for developing a better registry for sensors. This has resulted in four items which are addressed by the FixO3 project in cooperation with further European projects such as NeXOS (http://www.nexosproject.eu/). 1.) Metadata description format: To store and retrieve information about sensors and platforms it is necessary to have a common approach how to provide and encode the metadata. For this purpose, the OGC Sensor Model Language (SensorML) 2.0 standard was selected. Especially the opportunity to distinguish between sensor types and instances offers new chances for a more efficient provision and maintenance of sensor metadata. 2.) Conversion of existing metadata into a SensorML 2.0 representation: In order to ensure a sustainable re-use of already provided metadata content (e.g. from ESONET-FixO3 yellow pages), it is important to provide a mechanism which is capable of transforming these already available metadata sets into the new SensorML 2.0 structure. 3.) Metadata editor: To create descriptions of sensors and platforms, it is not possible to expect users to manually edit XML-based description files. Thus, a visual interface is necessary to help during the metadata creation. We will outline a prototype of this editor, building upon the development of the ESONET sensor registry interface. 4.) Sensor Metadata Store: A server is needed that for storing and querying the created sensor descriptions. For this purpose different options exist which will be discussed. In summary, we will present a set of different elements enabling sensor discovery ranging from metadata formats, metadata conversion and editing to metadata storage. Furthermore, the current development status will be demonstrated.
Streamlining Metadata and Data Management for Evolving Digital Libraries
NASA Astrophysics Data System (ADS)
Clark, D.; Miller, S. P.; Peckman, U.; Smith, J.; Aerni, S.; Helly, J.; Sutton, D.; Chase, A.
2003-12-01
What began two years ago as an effort to stabilize the Scripps Institution of Oceanography (SIO) data archives from more than 700 cruises going back 50 years, has now become the operational fully-searchable "SIOExplorer" digital library, complete with thousands of historic photographs, images, maps, full text documents, binary data files, and 3D visualization experiences, totaling nearly 2 terabytes of digital content. Coping with data diversity and complexity has proven to be more challenging than dealing with large volumes of digital data. SIOExplorer has been built with scalability in mind, so that the addition of new data types and entire new collections may be accomplished with ease. It is a federated system, currently interoperating with three independent data-publishing authorities, each responsible for their own quality control, metadata specifications, and content selection. The IT architecture implemented at the San Diego Supercomputer Center (SDSC) streamlines the integration of additional projects in other disciplines with a suite of metadata management and collection building tools for "arbitrary digital objects." Metadata are automatically harvested from data files into domain-specific metadata blocks, and mapped into various specification standards as needed. Metadata can be browsed and objects can be viewed onscreen or downloaded for further analysis, with automatic proprietary-hold request management.
Touch the Invisible Sky: A Multi-Wavelength Braille Book Featuring Tactile NASA Images
NASA Astrophysics Data System (ADS)
Grice, N.; Steel, S.; Daou, D.
2008-06-01
According to the American Foundation for the Blind and the National Federation of the Blind, there are approximately 10 million blind and visually impaired people in the United States. Because astronomy is often visually based, many people assume that it cannot be made accessible. A new astronomy book, Touch the Invisible Sky, makes wavelengths not visible to human eyes, accessible to all audiences through text in print and Braille and with pictures that are touchable and in color.
From Sky to Earth: Data Science Methodology Transfer
NASA Astrophysics Data System (ADS)
Mahabal, Ashish A.; Crichton, Daniel; Djorgovski, S. G.; Law, Emily; Hughes, John S.
2017-06-01
We describe here the parallels in astronomy and earth science datasets, their analyses, and the opportunities for methodology transfer from astroinformatics to geoinformatics. Using example of hydrology, we emphasize how meta-data and ontologies are crucial in such an undertaking. Using the infrastructure being designed for EarthCube - the Virtual Observatory for the earth sciences - we discuss essential steps for better transfer of tools and techniques in the future e.g. domain adaptation. Finally we point out that it is never a one-way process and there is enough for astroinformatics to learn from geoinformatics as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, William
2015-10-19
Cambio opens data files from common gamma radiation detectors, displays a visual representation of it, and allows the user to edit the meta-data, as well as convert the data to a different file format.
The Open Microscopy Environment: open image informatics for the biological sciences
NASA Astrophysics Data System (ADS)
Blackburn, Colin; Allan, Chris; Besson, Sébastien; Burel, Jean-Marie; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gault, David; Gillen, Kenneth; Leigh, Roger; Leo, Simone; Li, Simon; Lindner, Dominik; Linkert, Melissa; Moore, Josh; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Swedlow, Jason R.
2016-07-01
Despite significant advances in biological imaging and analysis, major informatics challenges remain unsolved: file formats are proprietary, storage and analysis facilities are lacking, as are standards for sharing image data and results. While the open FITS file format is ubiquitous in astronomy, astronomical imaging shares many challenges with biological imaging, including the need to share large image sets using secure, cross-platform APIs, and the need for scalable applications for processing and visualization. The Open Microscopy Environment (OME) is an open-source software framework developed to address these challenges. OME tools include: an open data model for multidimensional imaging (OME Data Model); an open file format (OME-TIFF) and library (Bio-Formats) enabling free access to images (5D+) written in more than 145 formats from many imaging domains, including FITS; and a data management server (OMERO). The Java-based OMERO client-server platform comprises an image metadata store, an image repository, visualization and analysis by remote access, allowing sharing and publishing of image data. OMERO provides a means to manage the data through a multi-platform API. OMERO's model-based architecture has enabled its extension into a range of imaging domains, including light and electron microscopy, high content screening, digital pathology and recently into applications using non-image data from clinical and genomic studies. This is made possible using the Bio-Formats library. The current release includes a single mechanism for accessing image data of all types, regardless of original file format, via Java, C/C++ and Python and a variety of applications and environments (e.g. ImageJ, Matlab and R).
A fascinating adventure: astronomical activities for people with disabilities during IYA 2009
NASA Astrophysics Data System (ADS)
Ortiz-Gil, A.; Blay, P.; Gallego Calvente, A. T.; Gómez Collado, M.; Guirado, J. C.; Lanzara, M.; Martínez Núñez, S.
2011-11-01
Here we give a brief outline of the activities developed during the International Year of Astronomy specifically addressed to people with various disabilities, both physical and/or intellectual. Among the different activities that we carried out we wish to highlight the publication of an astronomy book in Braille, astronomy talks for the intellectually disabled, a software for people with motor disabilities, and a planetarium show for the blind and visually impaired
Canvas and cosmos: Visual art techniques applied to astronomy data
NASA Astrophysics Data System (ADS)
English, Jayanne
Bold color images from telescopes act as extraordinary ambassadors for research astronomers because they pique the public’s curiosity. But are they snapshots documenting physical reality? Or are we looking at artistic spacescapes created by digitally manipulating astronomy images? This paper provides a tour of how original black and white data, from all regimes of the electromagnetic spectrum, are converted into the color images gracing popular magazines, numerous websites, and even clothing. The history and method of the technical construction of these images is outlined. However, the paper focuses on introducing the scientific reader to visual literacy (e.g. human perception) and techniques from art (e.g. composition, color theory) since these techniques can produce not only striking but politically powerful public outreach images. When created by research astronomers, the cultures of science and visual art can be balanced and the image can illuminate scientific results sufficiently strongly that the images are also used in research publications. Included are reflections on how they could feedback into astronomy research endeavors and future forms of visualization as well as on the relevance of outreach images to visual art. (See the color online PDF version at http://dx.doi.org/10.1142/S0218271817300105; the figures can be enlarged in PDF viewers.)
Planetary Sciences Literature - Access and Discovery
NASA Astrophysics Data System (ADS)
Henneken, Edwin A.; ADS Team
2017-10-01
The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement NNX16AC86A.
Semantics-based distributed I/O with the ParaMEDIC framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaji, P.; Feng, W.; Lin, H.
2008-01-01
Many large-scale applications simultaneously rely on multiple resources for efficient execution. For example, such applications may require both large compute and storage resources; however, very few supercomputing centers can provide large quantities of both. Thus, data generated at the compute site oftentimes has to be moved to a remote storage site for either storage or visualization and analysis. Clearly, this is not an efficient model, especially when the two sites are distributed over a wide-area network. Thus, we present a framework called 'ParaMEDIC: Parallel Metadata Environment for Distributed I/O and Computing' which uses application-specific semantic information to convert the generatedmore » data to orders-of-magnitude smaller metadata at the compute site, transfer the metadata to the storage site, and re-process the metadata at the storage site to regenerate the output. Specifically, ParaMEDIC trades a small amount of additional computation (in the form of data post-processing) for a potentially significant reduction in data that needs to be transferred in distributed environments.« less
NASA Astrophysics Data System (ADS)
Tufte, Lars; Trieschmann, Olaf; Carreau, Philippe; Hunsaenger, Thomas; Clayton, Peter J. S.; Barjenbruch, Ulrich
2004-02-01
The detection of accidentally or illegal marine oil discharges in the German territorial waters of the North Sea and Baltic Sea is of great importance for combating of oil spills and protection of the marine ecosystem. Therefore the German Federal Ministry of Transport set up an airborne surveillance system consisting of two Dornier DO 228-212 aircrafts equipped with a Side-Looking Airborne Radar (SLAR), a IR/UV sensor, a Microwave Radiometer (MWR) for quantification and a Laser-Flurosensor (LFS) for classification purposes of the oil spills. The flight parameters and the remote sensing data are stored in a database during the flight. A Pollution Observation Log is completed by the operator consisting of information about the detected oil spill (e.g. position, length, width) and several other information about the flight (e.g. name of navigator, name of observer). The objective was to develop an oil spill information system which integrates the described data, metadata and includes visualization and spatial analysis capabilities. The metadata are essential for further statistical analysis in spatial and temporal domains of oil spill occurrences and of the surveillance itself. It should facilitate the communication and distribution of metadata between the administrative bodies and partners of the German oil spill surveillance system. A connection between a GIS and the database allows to use the powerful visualization and spatial analysis functionality of the GIS in conjunction with the oil spill database.
Texture-Based Correspondence Display
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael
2004-01-01
Texture-based correspondence display is a methodology to display corresponding data elements in visual representations of complex multidimensional, multivariate data. Texture is utilized as a persistent medium to contain a visual representation model and as a means to create multiple renditions of data where color is used to identify correspondence. Corresponding data elements are displayed over a variety of visual metaphors in a normal rendering process without adding extraneous linking metadata creation and maintenance. The effectiveness of visual representation for understanding data is extended to the expression of the visual representation model in texture.
Using a Digital Planetarium for Teaching Seasons to Undergraduates
ERIC Educational Resources Information Center
Yu, Ka Chun; Sahami, Kamran; Sahami, Victoria; Sessions, Larry C.
2015-01-01
Computer-generated simulations and visualizations in digital planetariums have the potential to bridge the comprehension gap in astronomy education. Concepts involving three-dimensional spatial relationships can be difficult for the layperson to understand, since much of the traditional teaching materials used in astronomy education remain…
Metadata management for high content screening in OMERO
Li, Simon; Besson, Sébastien; Blackburn, Colin; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gillen, Kenneth; Leigh, Roger; Lindner, Dominik; Linkert, Melissa; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Allan, Chris; Burel, Jean-Marie; Moore, Josh; Swedlow, Jason R.
2016-01-01
High content screening (HCS) experiments create a classic data management challenge—multiple, large sets of heterogeneous structured and unstructured data, that must be integrated and linked to produce a set of “final” results. These different data include images, reagents, protocols, analytic output, and phenotypes, all of which must be stored, linked and made accessible for users, scientists, collaborators and where appropriate the wider community. The OME Consortium has built several open source tools for managing, linking and sharing these different types of data. The OME Data Model is a metadata specification that supports the image data and metadata recorded in HCS experiments. Bio-Formats is a Java library that reads recorded image data and metadata and includes support for several HCS screening systems. OMERO is an enterprise data management application that integrates image data, experimental and analytic metadata and makes them accessible for visualization, mining, sharing and downstream analysis. We discuss how Bio-Formats and OMERO handle these different data types, and how they can be used to integrate, link and share HCS experiments in facilities and public data repositories. OME specifications and software are open source and are available at https://www.openmicroscopy.org. PMID:26476368
Metadata management for high content screening in OMERO.
Li, Simon; Besson, Sébastien; Blackburn, Colin; Carroll, Mark; Ferguson, Richard K; Flynn, Helen; Gillen, Kenneth; Leigh, Roger; Lindner, Dominik; Linkert, Melissa; Moore, William J; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Allan, Chris; Burel, Jean-Marie; Moore, Josh; Swedlow, Jason R
2016-03-01
High content screening (HCS) experiments create a classic data management challenge-multiple, large sets of heterogeneous structured and unstructured data, that must be integrated and linked to produce a set of "final" results. These different data include images, reagents, protocols, analytic output, and phenotypes, all of which must be stored, linked and made accessible for users, scientists, collaborators and where appropriate the wider community. The OME Consortium has built several open source tools for managing, linking and sharing these different types of data. The OME Data Model is a metadata specification that supports the image data and metadata recorded in HCS experiments. Bio-Formats is a Java library that reads recorded image data and metadata and includes support for several HCS screening systems. OMERO is an enterprise data management application that integrates image data, experimental and analytic metadata and makes them accessible for visualization, mining, sharing and downstream analysis. We discuss how Bio-Formats and OMERO handle these different data types, and how they can be used to integrate, link and share HCS experiments in facilities and public data repositories. OME specifications and software are open source and are available at https://www.openmicroscopy.org. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hassan, A. H.; Fluke, C. J.; Barnes, D. G.
2012-09-01
Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, the increases in dataset size and dimensionality will pose serious computational challenges for many current astronomy data analysis and visualization tools. With such data sizes, even simple data analysis tasks (e.g. calculating a histogram or computing data minimum/maximum) may not be achievable without access to a supercomputing facility. To effectively handle such dataset sizes, which exceed today's single machine memory and processing limits, we present a framework that exploits the distributed power of GPUs and many-core CPUs, with a goal of providing data analysis and visualizing tasks as a service for astronomers. By mixing shared and distributed memory architectures, our framework effectively utilizes the underlying hardware infrastructure handling both batched and real-time data analysis and visualization tasks. Offering such functionality as a service in a “software as a service” manner will reduce the total cost of ownership, provide an easy to use tool to the wider astronomical community, and enable a more optimized utilization of the underlying hardware infrastructure.
Harvey, Matthew J; Mason, Nicholas J; McLean, Andrew; Rzepa, Henry S
2015-01-01
We describe three different procedures based on metadata standards for enabling automated retrieval of scientific data from digital repositories utilising the persistent identifier of the dataset with optional specification of the attributes of the data document such as filename or media type. The procedures are demonstrated using the JSmol molecular visualizer as a component of a web page and Avogadro as a stand-alone modelling program. We compare our methods for automated retrieval of data from a standards-compliant data repository with those currently in operation for a selection of existing molecular databases and repositories. Our methods illustrate the importance of adopting a standards-based approach of using metadata declarations to increase access to and discoverability of repository-based data. Graphical abstract.
Boulos, Maged N; Roudsari, Abdul V; Carson, Ewart R
2002-07-01
HealthCyberMap (http://healthcybermap.semanticweb.org/) aims at mapping Internet health information resources in novel ways for enhanced retrieval and navigation. This is achieved by collecting appropriate resource metadata in an unambiguous form that preserves semantics. We modelled a qualified Dublin Core (DC) metadata set ontology with extra elements for resource quality and geographical provenance in Prot g -2000. A metadata collection form helps acquiring resource instance data within Prot g . The DC subject field is populated with UMLS terms directly imported from UMLS Knowledge Source Server using UMLS tab, a Prot g -2000 plug-in. The project is saved in RDFS/RDF. The ontology and associated form serve as a free tool for building and maintaining an RDF medical resource metadata base. The UMLS tab enables browsing and searching for concepts that best describe a resource, and importing them to DC subject fields. The resultant metadata base can be used with a search and inference engine, and have textual and/or visual navigation interface(s) applied to it, to ultimately build a medical Semantic Web portal. Different ways of exploiting Prot g -2000 RDF output are discussed. By making the context and semantics of resources, not merely their raw text and formatting, amenable to computer 'understanding,' we can build a Semantic Web that is more useful to humans than the current Web. This requires proper use of metadata and ontologies. Clinical codes can reliably describe the subjects of medical resources, establish the semantic relationships (as defined by underlying coding scheme) between related resources, and automate their topical categorisation.
Visualization Beyond the Map: The Challenges of Managing Data for Re-Use
NASA Astrophysics Data System (ADS)
Allison, M. D.; Groman, R. C.; Chandler, C. L.; Galvarino, C. R.; Wiebe, P. H.; Glover, D. M.
2012-12-01
The Biological and Chemical Oceanography Data Management Office (BCO-DMO) makes data publicly accessible via both a text-based and a geospatial interface, the latter using the Open Geospatial Consortium (OGC) compliant open-source MapServer software originally from the University of Minnesota. Making data available for reuse by the widest variety of users is one of the overriding goals of BCO-DMO and one of our greatest challenges. The biogeochemical, ecological and physical data we manage are extremely heterogeneous. Although it is not possible to be all things to all people, we are actively working on ways to make the data re-usable by the most people. Looking at data in a different way is one of the underpinnings of data re-use and the easier we can make data accessible, the more the community of users will benefit. We can help the user determine usefulness by providing some specific tools. Sufficiently well-informed metadata can often be enough to determine fitness for purpose, but many times our geospatial interface to the data and metadata is more compelling. Displaying the data visually in as many ways as possible enables the scientist, teacher or manager to decide if the data are useful and then being able to download the data right away with no login required is very attractive. We will present ways of visualizing different kinds of data and discuss using metadata to drive the visualization tools. We will also discuss our attempts to work with data providers to organize their data in ways to make them reusable to the largest audience and to solicit input from data users about the effectiveness of our solutions.
Overview of long-term field experiments in Germany - metadata visualization
NASA Astrophysics Data System (ADS)
Muqit Zoarder, Md Abdul; Heinrich, Uwe; Svoboda, Nikolai; Grosse, Meike; Hierold, Wilfried
2017-04-01
BonaRes ("soil as a sustainable resource for the bioeconomy") is conducting to collect data and metadata of agricultural long-term field experiments (LTFE) of Germany. It is funded by the German Federal Ministry of Education and Research (BMBF) under the umbrella of the National Research Strategy BioEconomy 2030. BonaRes consists of ten interdisciplinary research project consortia and the 'BonaRes - Centre for Soil Research'. BonaRes Data Centre is responsible for collecting all LTFE data and regarding metadata into an enterprise database upon higher level of security and visualization of the data and metadata through data portal. In the frame of the BonaRes project, we are compiling an overview of long-term field experiments in Germany that is based on a literature review, the results of the online survey and direct contacts with LTFE operators. Information about research topic, contact person, website, experiment setup and analyzed parameters are collected. Based on the collected LTFE data, an enterprise geodatabase is developed and a GIS-based web-information system about LTFE in Germany is also settled. Various aspects of the LTFE, like experiment type, land-use type, agricultural category and duration of experiment, are presented in thematic maps. This information system is dynamically linked to the database, which means changes in the data directly affect the presentation. An easy data searching option using LTFE name, -location or -operators and the dynamic layer selection ensure a user-friendly web application. Dispersion and visualization of the overlapping LTFE points on the overview map are also challenging and we make it automatized at very zoom level which is also a consistent part of this application. The application provides both, spatial location and meta-information of LTFEs, which is backed-up by an enterprise geodatabase, GIS server for hosting map services and Java script API for web application development.
The ALIVE Project: Astronomy Learning in Immersive Virtual Environments
NASA Astrophysics Data System (ADS)
Yu, K. C.; Sahami, K.; Denn, G.
2008-06-01
The Astronomy Learning in Immersive Virtual Environments (ALIVE) project seeks to discover learning modes and optimal teaching strategies using immersive virtual environments (VEs). VEs are computer-generated, three-dimensional environments that can be navigated to provide multiple perspectives. Immersive VEs provide the additional benefit of surrounding a viewer with the simulated reality. ALIVE evaluates the incorporation of an interactive, real-time ``virtual universe'' into formal college astronomy education. In the experiment, pre-course, post-course, and curriculum tests will be used to determine the efficacy of immersive visualizations presented in a digital planetarium versus the same visual simulations in the non-immersive setting of a normal classroom, as well as a control case using traditional classroom multimedia. To normalize for inter-instructor variability, each ALIVE instructor will teach at least one of each class in each of the three test groups.
Meet our Neighbours - a tactile experience
NASA Astrophysics Data System (ADS)
Canas, L.; Lobo Correia, A.
2013-09-01
Planetary science is a key field in astronomy that draws lots of attention and that engages large amounts of enthusiasts. On its essence, it is a visual science and the current resources and activities for the inclusion of visually impaired children, although increasing, are still costly and somewhat scarce. Therefore there is a paramount need to develop more low cost resources in order to provide experiences that can reach all, even the more socially deprived communities. "Meet our neighbours!-a tactile experience", plans to promote and provide inclusion activities for visually impaired children and their non-visually impaired peers through the use of astronomy hands-on low cost activities. Is aimed for children from the ages of 6 to 12 years old and produce data set 13 tactile images of the main objects of the Solar System that can be used in schools, science centres and outreach associations. Accessing several common problems through tactile resources, with this project we present ways to successfully provide low cost solutions (avoiding the expensive tactile printing costs), promote inclusion and interactive hands-on activities for visually impaired children and their non-visually impaired peers and create dynamic interactions based on oral knowledge transmission between them. Here we describe the process of implementing such initiative near target communities: establishing a bridge between scientists, children and teachers. The struggles and challenges perceived during the project and the enrichment experience of engaging astronomy with these specific groups, broadening horizons in an overall experience accessible to all.
In Interactive, Web-Based Approach to Metadata Authoring
NASA Technical Reports Server (NTRS)
Pollack, Janine; Wharton, Stephen W. (Technical Monitor)
2001-01-01
NASA's Global Change Master Directory (GCMD) serves a growing number of users by assisting the scientific community in the discovery of and linkage to Earth science data sets and related services. The GCMD holds over 8000 data set descriptions in Directory Interchange Format (DIF) and 200 data service descriptions in Service Entry Resource Format (SERF), encompassing the disciplines of geology, hydrology, oceanography, meteorology, and ecology. Data descriptions also contain geographic coverage information, thus allowing researchers to discover data pertaining to a particular geographic location, as well as subject of interest. The GCMD strives to be the preeminent data locator for world-wide directory level metadata. In this vein, scientists and data providers must have access to intuitive and efficient metadata authoring tools. Existing GCMD tools are not currently attracting. widespread usage. With usage being the prime indicator of utility, it has become apparent that current tools must be improved. As a result, the GCMD has released a new suite of web-based authoring tools that enable a user to create new data and service entries, as well as modify existing data entries. With these tools, a more interactive approach to metadata authoring is taken, as they feature a visual "checklist" of data/service fields that automatically update when a field is completed. In this way, the user can quickly gauge which of the required and optional fields have not been populated. With the release of these tools, the Earth science community will be further assisted in efficiently creating quality data and services metadata. Keywords: metadata, Earth science, metadata authoring tools
NCPP's Use of Standard Metadata to Promote Open and Transparent Climate Modeling
NASA Astrophysics Data System (ADS)
Treshansky, A.; Barsugli, J. J.; Guentchev, G.; Rood, R. B.; DeLuca, C.
2012-12-01
The National Climate Predictions and Projections (NCPP) Platform is developing comprehensive regional and local information about the evolving climate to inform decision making and adaptation planning. This includes both creating and providing tools to create metadata about the models and processes used to create its derived data products. NCPP is using the Common Information Model (CIM), an ontology developed by a broad set of international partners in climate research, as its metadata language. This use of a standard ensures interoperability within the climate community as well as permitting access to the ecosystem of tools and services emerging alongside the CIM. The CIM itself is divided into a general-purpose (UML & XML) schema which structures metadata documents, and a project or community-specific (XML) Controlled Vocabulary (CV) which constraints the content of metadata documents. NCPP has already modified the CIM Schema to accommodate downscaling models, simulations, and experiments. NCPP is currently developing a CV for use by the downscaling community. Incorporating downscaling into the CIM will lead to several benefits: easy access to the existing CIM Documents describing CMIP5 models and simulations that are being downscaled, access to software tools that have been developed in order to search, manipulate, and visualize CIM metadata, and coordination with national and international efforts such as ES-DOC that are working to make climate model descriptions and datasets interoperable. Providing detailed metadata descriptions which include the full provenance of derived data products will contribute to making that data (and, the models and processes which generated that data) more open and transparent to the user community.
Education and public astronomy programs at the Carter Observatory: an overview
NASA Astrophysics Data System (ADS)
Orchiston, W.; Dodd, R. J.
1996-05-01
This paper outlines the extensive range of public programs offered by the Carter Observatory, including 'public nights', new planetarium and audio-visual shows, displays, the Carter Memorial Lectures, the annual 'Astronomical Handbook' and other publications, and a monthtly newspaper column and three monthly radio programs. It also deals with the Observatory's involvement in undergraduate and postgraduate astronomy at Victoria University of Wellington, various adult education training programs, holiday programs, and the recent development of the Education Service in response to the introduction of an Astronomy curriculum into schools throughout New Zealand. Some possible future developments in the public astronomy and education areas are also discussed.
From Earth to the Universe: Image Exhibitions in the International Year of Astronomy 2009
NASA Astrophysics Data System (ADS)
Watzke, M.; Arcand, K. K.; Christensen, L. L.
2008-02-01
The fantastic images of the Universe are largely responsible for the magical appeal that astronomy has for lay people. Indeed, popular images of the cosmos can engage the general public not only in the aesthetics of the visual realm, but also in the science of the knowledge and understanding behind them. The International Year of Astronomy 2009 (IYA2009) is an unprecedented opportunity to present astronomy to the global community. From Earth to the Universe (www.fromearthtotheuniverse.org) endeavours to bring these images to a wider audience in non-traditional venues, such as art museums, public galleries, shopping malls and public gardens.
Archiving of interferometric radio and mm/submm data at the National Radio Astronomy Observatory
NASA Astrophysics Data System (ADS)
Lacy, Mark
2018-06-01
Modern radio interferometers such as ALMA and the VLA are capable of producing ~1TB/day of data for processing into image products of comparable size. Besides the shear volume of data, the products themselves can be complicated and are sometimes hard to map into standard astronomical archive metadata. We also face similar issues to those faced by archives at other wavelengths, namely the role of archives as the basis of reprocessing platforms and facilities, and the validation and ingestion of user-derived products. In this talk I shall discuss the plans of NRAO in these areas over the next decade.
Developing the Use of Visual Representations to Explain Basic Astronomy Phenomena
ERIC Educational Resources Information Center
Galano, Silvia; Colantonio, Arturo; Leccia, Silvio; Marzoli, Irene; Puddu, Emanuella; Testa, Italo
2018-01-01
[This paper is part of the Focused Collection on Astronomy Education Research.] Several decades of research have contributed to our understanding of students' reasoning about astronomical phenomena. Some authors have pointed out the difficulty in reading and interpreting images used in school textbooks as factors that may justify the persistence…
Expanding Access and Usage of NASA Near Real-Time Imagery and Data
NASA Astrophysics Data System (ADS)
Cechini, M.; Murphy, K. J.; Boller, R. A.; Schmaltz, J. E.; Thompson, C. K.; Huang, T.; McGann, J. M.; Ilavajhala, S.; Alarcon, C.; Roberts, J. T.
2013-12-01
In late 2009, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near real-time data products from a variety of Earth Observing System (EOS) instruments. Since that time, NASA's Earth Observing System Data and Information System (EOSDIS) developed the Global Imagery Browse Services (GIBS) to provide highly responsive, scalable, and expandable imagery services that distribute near real-time imagery in an intuitive and geo-referenced format. The GIBS imagery services provide access through standards-based protocols such as the Open Geospatial Consortium (OGC) Web Map Tile Service (WMTS) and standard mapping file formats such as the Keyhole Markup Language (KML). Leveraging these standard mechanisms opens NASA near real-time imagery to a broad landscape of mapping libraries supporting mobile applications. By easily integrating with mobile application development libraries, GIBS makes it possible for NASA imagery to become a reliable and valuable source for end-user applications. Recently, EOSDIS has taken steps to integrate near real-time metadata products into the EOS ClearingHOuse (ECHO) metadata repository. Registration of near real-time metadata allows for near real-time data discovery through ECHO clients. In kind with the near real-time data processing requirements, the ECHO ingest model allows for low-latency metadata insertion and updates. Combining with the ECHO repository, the fast visual access of GIBS imagery can now be linked directly back to the source data file(s). Through the use of discovery standards such as OpenSearch, desktop and mobile applications can connect users to more than just an image. As data services, such as OGC Web Coverage Service, become more prevalent within the EOSDIS system, applications may even be able to connect users from imagery to data values. In addition, the full resolution GIBS imagery provides visual context to other GIS data and tools. The NASA near real-time imagery covers a broad set of Earth science disciplines. By leveraging the ECHO and GIBS services, these data can become a visual context within which other GIS activities are performed. The focus of this presentation is to discuss the GIBS imagery and ECHO metadata services facilitating near real-time discovery and usage. Existing synergies and future possibilities will also be discussed. The NASA Worldview demonstration client will be used to show an existing application combining the ECHO and GIBS services.
XML — an opportunity for
NASA Astrophysics Data System (ADS)
Houlding, Simon W.
2001-08-01
Extensible markup language (XML) is a recently introduced meta-language standard on the Web. It provides the rules for development of metadata (markup) standards for information transfer in specific fields. XML allows development of markup languages that describe what information is rather than how it should be presented. This allows computer applications to process the information in intelligent ways. In contrast hypertext markup language (HTML), which fuelled the initial growth of the Web, is a metadata standard concerned exclusively with presentation of information. Besides its potential for revolutionizing Web activities, XML provides an opportunity for development of meaningful data standards in specific application fields. The rapid endorsement of XML by science, industry and e-commerce has already spawned new metadata standards in such fields as mathematics, chemistry, astronomy, multi-media and Web micro-payments. Development of XML-based data standards in the geosciences would significantly reduce the effort currently wasted on manipulating and reformatting data between different computer platforms and applications and would ensure compatibility with the new generation of Web browsers. This paper explores the evolution, benefits and status of XML and related standards in the more general context of Web activities and uses this as a platform for discussion of its potential for development of data standards in the geosciences. Some of the advantages of XML are illustrated by a simple, browser-compatible demonstration of XML functionality applied to a borehole log dataset. The XML dataset and the associated stylesheet and schema declarations are available for FTP download.
Parekh, Ruchi; Armañanzas, Rubén; Ascoli, Giorgio A
2015-04-01
Digital reconstructions of axonal and dendritic arbors provide a powerful representation of neuronal morphology in formats amenable to quantitative analysis, computational modeling, and data mining. Reconstructed files, however, require adequate metadata to identify the appropriate animal species, developmental stage, brain region, and neuron type. Moreover, experimental details about tissue processing, neurite visualization and microscopic imaging are essential to assess the information content of digital morphologies. Typical morphological reconstructions only partially capture the underlying biological reality. Tracings are often limited to certain domains (e.g., dendrites and not axons), may be incomplete due to tissue sectioning, imperfect staining, and limited imaging resolution, or can disregard aspects irrelevant to their specific scientific focus (such as branch thickness or depth). Gauging these factors is critical in subsequent data reuse and comparison. NeuroMorpho.Org is a central repository of reconstructions from many laboratories and experimental conditions. Here, we introduce substantial additions to the existing metadata annotation aimed to describe the completeness of the reconstructed neurons in NeuroMorpho.Org. These expanded metadata form a suitable basis for effective description of neuromorphological data.
Large-Scale Data Collection Metadata Management at the National Computation Infrastructure
NASA Astrophysics Data System (ADS)
Wang, J.; Evans, B. J. K.; Bastrakova, I.; Ryder, G.; Martin, J.; Duursma, D.; Gohar, K.; Mackey, T.; Paget, M.; Siddeswara, G.
2014-12-01
Data Collection management has become an essential activity at the National Computation Infrastructure (NCI) in Australia. NCI's partners (CSIRO, Bureau of Meteorology, Australian National University, and Geoscience Australia), supported by the Australian Government and Research Data Storage Infrastructure (RDSI), have established a national data resource that is co-located with high-performance computing. This paper addresses the metadata management of these data assets over their lifetime. NCI manages 36 data collections (10+ PB) categorised as earth system sciences, climate and weather model data assets and products, earth and marine observations and products, geosciences, terrestrial ecosystem, water management and hydrology, astronomy, social science and biosciences. The data is largely sourced from NCI partners, the custodians of many of the national scientific records, and major research community organisations. The data is made available in a HPC and data-intensive environment - a ~56000 core supercomputer, virtual labs on a 3000 core cloud system, and data services. By assembling these large national assets, new opportunities have arisen to harmonise the data collections, making a powerful cross-disciplinary resource.To support the overall management, a Data Management Plan (DMP) has been developed to record the workflows, procedures, the key contacts and responsibilities. The DMP has fields that can be exported to the ISO19115 schema and to the collection level catalogue of GeoNetwork. The subset or file level metadata catalogues are linked with the collection level through parent-child relationship definition using UUID. A number of tools have been developed that support interactive metadata management, bulk loading of data, and support for computational workflows or data pipelines. NCI creates persistent identifiers for each of the assets. The data collection is tracked over its lifetime, and the recognition of the data providers, data owners, data generators and data aggregators are updated. A Digital Object Identifier is assigned using the Australian National Data Service (ANDS). Once the data has been quality assured, a DOI is minted and the metadata record updated. NCI's data citation policy establishes the relationship between research outcomes, data providers, and the data.
NASA Astrophysics Data System (ADS)
Ivanov, Kostantin V.
This paper attempts to explain the growth of optical astronomy as a result of more general social and cultural change in European life during the two post-Renaissance centuries. It shows how the introduction of optical instruments into astronomical work was accompanied (and partly conditioned) by a few nonastronomical practices, such as collecting unusual things and their images, producing illusionary effects by means of optical devices, manufacturing pictures that could disturb the common visual perception, etc. The paper draws particular attention to the practices of manipulation with visual images that could help to introduce "illusionary" optical knowledge into making "true" drawings from natural objects, including celestial ones. In this way, the formation of new astronomical language can be understood as closely connected to the explicit formulation of technological instructions and legal rules for making copies from natural objects, as well as the general development of printing production and broadening of the market of printed illustrations. These often not enough co-ordinated practices stipulated the shift of optical astronomy into a significant part of seigniorial culture, where it obtained recognition as an essentially new and elite knowledge, associated with particular technological vigilance. During the transition of European monarchies into the absolutist social order, astronomy, on a level with other court services, assumed a shape of professional occupation supplied with certain monetary salaries, a stable position in official hierarchy, and supreme privileges. This was the way by which astronomy merged with the other natural studies and became one of the publicly recognised scientific disciplines.
The Astronomy Workshop: Scientific Notation and Solar System Visualizer
NASA Astrophysics Data System (ADS)
Deming, Grace; Hamilton, D.; Hayes-Gehrke, M.
2008-09-01
The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive World Wide Web tools that were developed under the direction of Doug Hamilton for use in undergraduate classes and by the general public. The philosophy of the site is to foster student interest in astronomy by exploiting their fascination with computers and the internet. We have expanded the "Scientific Notation” tool from simply converting decimal numbers into and out of scientific notation to adding, subtracting, multiplying, and dividing numbers expressed in scientific notation. Students practice these skills and when confident they may complete a quiz. In addition, there are suggestions on how instructors may use the site to encourage students to practice these basic skills. The Solar System Visualizer animates orbits of planets, moons, and rings to scale. Extrasolar planetary systems are also featured. This research was sponsored by NASA EPO grant NNG06GGF99G.
Solar System Symphony: Combining astronomy with live classical music
NASA Astrophysics Data System (ADS)
Kremer, Kyle; WorldWide Telescope
2017-01-01
Solar System Symphony is an educational outreach show which combines astronomy visualizations and live classical music. As musicians perform excerpts from Holst’s “The Planets” and other orchestral works, visualizations developed using WorldWide Telescope and NASA images and animations are projected on-stage. Between each movement of music, a narrator guides the audience through scientific highlights of the solar system. The content of Solar System Symphony is geared toward a general audience, particularly targeting K-12 students. The hour-long show not only presents a new medium for exposing a broad audience to astronomy, but also provides universities an effective tool for facilitating interdisciplinary collaboration between two divergent fields. The show was premiered at Northwestern University in May 2016 in partnership with Northwestern’s Bienen School of Music and was recently performed at the Colburn Conservatory of Music in November 2016.
NASA Astrophysics Data System (ADS)
Fazliev, A.
2009-04-01
The information and knowledge layers of information-computational system for water spectroscopy are described. Semantic metadata for all the tasks of domain information model that are the basis of the layers have been studied. The principle of semantic metadata determination and mechanisms of the usage during information systematization in molecular spectroscopy has been revealed. The software developed for the work with semantic metadata is described as well. Formation of domain model in the framework of Semantic Web is based on the use of explicit specification of its conceptualization or, in other words, its ontologies. Formation of conceptualization for molecular spectroscopy was described in Refs. 1, 2. In these works two chains of task are selected for zeroth approximation for knowledge domain description. These are direct tasks chain and inverse tasks chain. Solution schemes of these tasks defined approximation of data layer for knowledge domain conceptualization. Spectroscopy tasks solutions properties lead to a step-by-step extension of molecular spectroscopy conceptualization. Information layer of information system corresponds to this extension. An advantage of molecular spectroscopy model designed in a form of tasks chain is actualized in the fact that one can explicitly define data and metadata at each step of solution of these molecular spectroscopy chain tasks. Metadata structure (tasks solutions properties) in knowledge domain also has form of a chain in which input data and metadata of the previous task become metadata of the following tasks. The term metadata is used in its narrow sense: metadata are the properties of spectroscopy tasks solutions. Semantic metadata represented with the help of OWL 3 are formed automatically and they are individuals of classes (A-box). Unification of T-box and A-box is an ontology that can be processed with the help of inference engine. In this work we analyzed the formation of individuals of molecular spectroscopy applied ontologies as well as the software used for their creation by means of OWL DL language. The results of this work are presented in a form of an information layer and a knowledge layer in W@DIS information system 4. 1 FORMATION OF INDIVIDUALS OF WATER SPECTROSCOPY APPLIED ONTOLOGY Applied tasks ontology contains explicit description of input an output data of physical tasks solved in two chains of molecular spectroscopy tasks. Besides physical concepts, related to spectroscopy tasks solutions, an information source, which is a key concept of knowledge domain information model, is also used. Each solution of knowledge domain task is linked to the information source which contains a reference on published task solution, molecule and task solution properties. Each information source allows us to identify a certain knowledge domain task solution contained in the information system. Water spectroscopy applied ontology classes are formed on the basis of molecular spectroscopy concepts taxonomy. They are defined by constrains on properties of the selected conceptualization. Extension of applied ontology in W@DIS information system is actualized according to two scenarios. Individuals (ontology facts or axioms) formation is actualized during the task solution upload in the information system. Ontology user operation that implies molecular spectroscopy taxonomy and individuals is performed solely by the user. For this purpose Protege ontology editor was used. For the formation, processing and visualization of knowledge domain tasks individuals a software was designed and implemented. Method of individual formation determines the sequence of steps of created ontology individuals' generation. Tasks solutions properties (metadata) have qualitative and quantitative values. Qualitative metadata are regarded as metadata describing qualitative side of a task such as solution method or other information that can be explicitly specified by object properties of OWL DL language. Quantitative metadata are metadata that describe quantitative properties of task solution such as minimal and maximal data value or other information that can be explicitly obtained by programmed algorithmic operations. These metadata are related to DatatypeProperty properties of OWL specification language Quantitative metadata can be obtained automatically during data upload into information system. Since ObjectProperty values are objects, processing of qualitative metadata requires logical constraints. In case of the task solved in W@DIS ICS qualitative metadata can be formed automatically (for example in spectral functions calculation task). The used methods of translation of qualitative metadata into quantitative is characterized as roughened representation of knowledge in knowledge domain. The existence of two ways of data obtainment is a key moment in the formation of applied ontology of molecular spectroscopy task. experimental method (metadata for experimental data contain description of equipment, experiment conditions and so on) on the initial stage and inverse task solution on the following stages; calculation method (metadata for calculation data are closely related to the metadata used for the description of physical and mathematical models of molecular spectroscopy) 2 SOFTWARE FOR ONTOLOGY OPERATION Data collection in water spectroscopy information system is organized in a form of workflow that contains such operations as information source creation, entry of bibliographic data on publications, formation of uploaded data schema an so on. Metadata are generated in information source as well. Two methods are used for their formation: automatic metadata generation and manual metadata generation (performed by user). Software implementation of support of actions related to metadata formation is performed by META+ module. Functions of META+ module can be divided into two groups. The first groups contains the functions necessary to software developer while the second one the functions necessary to a user of the information system. META+ module functions necessary to the developer are: 1. creation of taxonomy (T-boxes) of applied ontology classes of knowledge domain tasks; 2. creation of instances of task classes; 3. creation of data schemes of tasks in a form of an XML-pattern and based on XML-syntax. XML-pattern is developed for instances generator and created according to certain rules imposed on software generator implementation. 4. implementation of metadata values calculation algorithms; 5. creation of a request interface and additional knowledge processing function for the solution of these task; 6. unification of the created functions and interfaces into one information system The following sequence is universal for the generation of task classes' individuals that form chains. Special interfaces for user operations management are designed for software developer in META+ module. There are means for qualitative metadata values updating during data reuploading to information source. The list of functions necessary to end user contains: - data sets visualization and editing, taking into account their metadata, e.g.: display of unique number of bands in transitions for a certain data source; - export of OWL/RDF models from information system to the environment in XML-syntax; - visualization of instances of classes of applied ontology tasks on molecular spectroscopy; - import of OWL/RDF models into the information system and their integration with domain vocabulary; - formation of additional knowledge of knowledge domain for the construction of ontological instances of task classes using GTML-formats and their processing; - formation of additional knowledge in knowledge domain for the construction of instances of task classes, using software algorithm for data sets processing; - function of semantic search implementation using an interface that formulates questions in a form of related triplets in order for getting an adequate answer. 3 STRUCTURE OF META+ MODULE META+ software module that provides the above functions contains the following components: - a knowledge base that stores semantic metadata and taxonomies of information system; - software libraries POWL and RAP 5 created by third-party developer and providing access to ontological storage; - function classes and libraries that form the core of the module and perform the tasks of formation, storage and visualization of classes instances; - configuration files and module patterns that allow one to adjust and organize operation of different functional blocks; META+ module also contains scripts and patterns implemented according to the rules of W@DIS information system development environment. - scripts for interaction with environment by means of the software core of information system. These scripts provide organizing web-oriented interactive communication; - patterns for the formation of functionality visualization realized by the scripts Software core of scientific information-computational system W@DIS is created with the help of MVC (Model - View - Controller) design pattern that allows us to separate logic of application from its representation. It realizes the interaction of three logical components, actualizing interactivity with the environment via Web and performing its preprocessing. Functions of «Controller» logical component are realized with the help of scripts designed according to the rules imposed by software core of the information system. Each script represents a definite object-oriented class with obligatory class method of script initiation called "start". Functions of actualization of domain application operation results representation (i.e. "View" component) are sets of HTML-patterns that allow one to visualize the results of domain applications operation with the help of additional constructions processed by software core of the system. Besides the interaction with the software core of the scientific information system this module also deals with configuration files of software core and its database. Such organization of work provides closer integration with software core and deeper and more adequate connection in operating system support. 4 CONCLUSION In this work the problems of semantic metadata creation in information system oriented on information representation in the area of molecular spectroscopy have been discussed. The described method of semantic metadata and functions formation as well as realization and structure of META+ module have been described. Architecture of META+ module is closely related to the existing software of "Molecular spectroscopy" scientific information system. Realization of the module is performed with the use of modern approaches to Web-oriented applications development. It uses the existing applied interfaces. The developed software allows us to: - perform automatic metadata annotation of calculated tasks solutions directly in the information system; - perform automatic annotation of metadata on the solution of tasks on task solution results uploading outside the information system forming an instance of the solved task on the basis of entry data; - use ontological instances of task solution for identification of data in information tasks of viewing, comparison and search solved by information system; - export applied tasks ontologies for the operation with them by external means; - solve the task of semantic search according to the pattern and using question-answer type interface. 5 ACKNOWLEDGEMENT The authors are grateful to RFBR for the financial support of development of distributed information system for molecular spectroscopy. REFERENCES A.D.Bykov, A.Z. Fazliev, N.N.Filippov, A.V. Kozodoev, A.I.Privezentsev, L.N.Sinitsa, M.V.Tonkov and M.Yu.Tretyakov, Distributed information system on atmospheric spectroscopy // Geophysical Research Abstracts, SRef-ID: 1607-7962/gra/EGU2007-A-01906, 2007, v. 9, p. 01906. A.I.Prevezentsev, A.Z. Fazliev Applied task ontology for molecular spectroscopy information resources systematization. The Proceedings of 9th Russian scientific conference "Electronic libraries: advanced methods and technologies, electronic collections" - RCDL'2007, Pereslavl Zalesskii, 2007, part.1, 2007, P.201-210. OWL Web Ontology Language Semantics and Abstract Syntax, W3C Recommendation 10 February 2004, http://www.w3.org/TR/2004/REC-owl-semantics-20040210/ W@DIS information system, http://wadis.saga.iao.ru RAP library, http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/.
The XMM-Newton Science Archive and its integration into ESASky
NASA Astrophysics Data System (ADS)
Loiseau, N.; Baines, D.; Colomo, E.; Giordano, F.; Merín, B.; Racero, E.; Rodríguez, P.; Salgado, J.; Sarmiento, M.
2017-07-01
We describe the variety of functionalities of the XSA (XMM-Newton Science Archive) that allow to search and access the XMM-Newton data and catalogues. The web interface http://nxsa.esac.esa.int/ is very flexible allowing different kinds of searches by a single position or target name, or by a list of targets, with several selecting options (target type, text in the abstract, etc.), and with several display options. The resulting data can be easily broadcast to Virtual Observatory (VO) facilities for a first look analysis, or for cross-matching the results with info from other observatories. Direct access via URL or command line are also possible for scripts usage, or to link XMM-Newton data from other interfaces like Vizier, ADS, etc. The full metadata content of the XSA can be queried through the TAP (Table access Protocol) via ADQL (Astronomical Data Query Language). We present also the roadmap for future improvements of the XSA including the integration of the Upper Limit server, the on-the-fly data analysis, and the interactive visualization of EPIC sources spectra and light curves and RGS spectra, among other advanced features. Within this modern visualization philosophy XSA is also being integrated into ESASky (http://sky.esa.int). ESASky is the science-driven multi-wavelength discovery portal for all the ESA Astronomy Missions (Integral, HST, Herschel, Suzaku, Planck, etc.), and other space and ground telescope data. The system offers progressive multi-resolution all-sky projections of full mission datasets using HiPS, a new generation of HEALPix projections developed by CDS, precise footprints to connect to individual observations, and direct access to science-ready data from the underlying mission specific science archives. XMM-Newton EPIC and OM all-sky HiPS maps, catalogues and links to the observations are available through ESASky.
NASA Astrophysics Data System (ADS)
Leibovici, D. G.; Pourabdollah, A.; Jackson, M.
2011-12-01
Experts and decision-makers use or develop models to monitor global and local changes of the environment. Their activities require the combination of data and processing services in a flow of operations and spatial data computations: a geospatial scientific workflow. The seamless ability to generate, re-use and modify a geospatial scientific workflow is an important requirement but the quality of outcomes is equally much important [1]. Metadata information attached to the data and processes, and particularly their quality, is essential to assess the reliability of the scientific model that represents a workflow [2]. Managing tools, dealing with qualitative and quantitative metadata measures of the quality associated with a workflow, are, therefore, required for the modellers. To ensure interoperability, ISO and OGC standards [3] are to be adopted, allowing for example one to define metadata profiles and to retrieve them via web service interfaces. However these standards need a few extensions when looking at workflows, particularly in the context of geoprocesses metadata. We propose to fill this gap (i) at first through the provision of a metadata profile for the quality of processes, and (ii) through providing a framework, based on XPDL [4], to manage the quality information. Web Processing Services are used to implement a range of metadata analyses on the workflow in order to evaluate and present quality information at different levels of the workflow. This generates the metadata quality, stored in the XPDL file. The focus is (a) on the visual representations of the quality, summarizing the retrieved quality information either from the standardized metadata profiles of the components or from non-standard quality information e.g., Web 2.0 information, and (b) on the estimated qualities of the outputs derived from meta-propagation of uncertainties (a principle that we have introduced [5]). An a priori validation of the future decision-making supported by the outputs of the workflow once run, is then provided using the meta-propagated qualities, obtained without running the workflow [6], together with the visualization pointing out the need to improve the workflow with better data or better processes on the workflow graph itself. [1] Leibovici, DG, Hobona, G Stock, K Jackson, M (2009) Qualifying geospatial workfow models for adaptive controlled validity and accuracy. In: IEEE 17th GeoInformatics, 1-5 [2] Leibovici, DG, Pourabdollah, A (2010a) Workflow Uncertainty using a Metamodel Framework and Metadata for Data and Processes. OGC TC/PC Meetings, September 2010, Toulouse, France [3] OGC (2011) www.opengeospatial.org [4] XPDL (2008) Workflow Process Definition Interface - XML Process Definition Language.Workflow Management Coalition, Document WfMC-TC-1025, 2008 [5] Leibovici, DG Pourabdollah, A Jackson, M (2011) Meta-propagation of Uncertainties for Scientific Workflow Management in Interoperable Spatial Data Infrastructures. In: Proceedings of the European Geosciences Union (EGU2011), April 2011, Austria [6] Pourabdollah, A Leibovici, DG Jackson, M (2011) MetaPunT: an Open Source tool for Meta-Propagation of uncerTainties in Geospatial Processing. In: Proceedings of OSGIS2011, June 2011, Nottingham, UK
The NVO in Day-to-Day Astronomy
NASA Astrophysics Data System (ADS)
McGlynn, T. A.; White, N. E.
2000-12-01
In the discussion following the decadal review's recommendation to establish a National Virtual Observatory (NVO) much attention has been paid to how the NVO could provide unprecedented capabilities to perform complex statistical analyses of the huge datasets now entering the community. It is equally important to recognize how it can also redefine how astronomers conduct smaller scale investigations. The NVO vision includes a federation of current major data providers, providing astronomers with seamless access to data from distributed sites, spanning the entire spectrum. This goes well beyond earlier services, e.g., SkyView, Astrobrowse, NED, .... The NVO's metadata standards, data mining capabilities, and data discovery services will enable all astronomers -- including those without substantial access to physical observatories -- to quickly and effectively use the archival resources of the community. In this paper we describe how the NVO may come to permeate the culture of astronomy in the coming decade. We discuss our experience with forerunners of the NVO including SkyView and Astrobrowse, and we also consider the requirements that the NVO must meet to ensure it achieves its potential for the entire astronomical community.
NASA Astrophysics Data System (ADS)
Accomazzi, Alberto; Kurtz, M. J.; Henneken, E. A.; Grant, C. S.; Thompson, D.; Luker, J.; Chyla, R.; Murray, S. S.
2014-01-01
In the spring of 1993, the Smithsonian/NASA Astrophysics Data System (ADS) first launched its bibliographic search system. It was known then as the ADS Abstract Service, a component of the larger Astrophysics Data System effort which had developed an interoperable data system now seen as a precursor of the Virtual Observatory. As a result of the massive technological and sociological changes in the field of scholarly communication, the ADS is now completing the most ambitious technological upgrade in its twenty-year history. Code-named ADS 2.0, the new system features: an IT platform built on web and digital library standards; a new, extensible, industrial strength search engine; a public API with various access control capabilities; a set of applications supporting search, export, visualization, analysis; a collaborative, open source development model; and enhanced indexing of content which includes the full-text of astronomy and physics publications. The changes in the ADS platform affect all aspects of the system and its operations, including: the process through which data and metadata are harvested, curated and indexed; the interface and paradigm used for searching the database; and the follow-up analysis capabilities available to the users. This poster describes the choices behind the technical overhaul of the system, the technology stack used, and the opportunities which the upgrade is providing us with, namely gains in productivity and enhancements in our system capabilities.
Visualization of semantic relations in geosicences
NASA Astrophysics Data System (ADS)
Ritschel, Bernd; Pfeiffer, Sabine; Mende, Vivien
2010-05-01
The discovery of semantic relations related to the content and context of scientific geophysical and geodetic data and information is a fundamental concept for an integrated scientific approach for the research of multidisciplinary and complex questions of the permanent changing Earth system. Large high-quality and multi-domain geosciences datasets which are qualified by significant and standardized metadata describing the content and especially the context of the data are suitable for the search and discovery of semantic relations. Nowadays such data collections are ingested and provided by many national and international geoscientific data centers, such as e.g. the GFZ ISDC(1). Beside automatic and machine-based algorithm for the discovery of semantic relations, the graphical visualization of such relations are extremely capable for scientist in order to analyze complex datasets and to find sophisticated relations as well as for the public in order to understand the relations within geosciences and between geosciences and societal domains. There are different tools for the visualization of relations, especially in the object-oriented based analysis and development of systems and software. The tool eyePlorer(2) is an awarded program for the visualization of multi-domain semantic relations in the public world of Wikipedia. The data and information for the visualization of keyword based terms and concepts within one domain or topic as well as the relations to other topics are mainly based on wiki content and appropriate structures. eyePlorer's main topics structured and combined in super topics are Health, Species and Life Sciences, Persons and Organisations, Work and Society, Science & Technology as well as Time and Places. Considering the domains or topics of the conceptual model of the GFZ ISDC's data collection, such topics as geosciences-related project, platform, instrument, product type, publication and institution as well as space and time are disjunct and complement sets or subsets or intersections of eyePlorer's topics. The introduction of new topics and the enhancement of the conceptual data model of the eyePlorer as well as the transformation of GFZ ISDC's metadata into a wiki structure or into eyePlorer's internal data format are necessary for the use in eyePlorer for the visualization of geosciences and societal relations based on both, the Wikipedia information collection and the GFZ ISDC metadata. This paper deals with the analysis of eyePlorer's and GFZ ISDC's concepts for the creation of an integrated conceptual model. Furthermore, the transformation model for the conversion of ISDC's metadata into appropriate structures for the use of eyePlorer is described. Finally, the process of semantic visualization of geosciences and societal relations within eyePlorer and using eyePlorer's GUI are illustrated on a climate research related example which is capable to generate knowledge not only for geoscientists but also for the public. (1) GFZ ISDC: GFZ Information System and Data Center, http://isdc.gfz-potsdam.de (2) eyePlorer: http://en.eyeplorer.com/show/
NASA Astrophysics Data System (ADS)
Titov, A. G.; Okladnikov, I. G.; Gordov, E. P.
2017-11-01
The use of large geospatial datasets in climate change studies requires the development of a set of Spatial Data Infrastructure (SDI) elements, including geoprocessing and cartographical visualization web services. This paper presents the architecture of a geospatial OGC web service system as an integral part of a virtual research environment (VRE) general architecture for statistical processing and visualization of meteorological and climatic data. The architecture is a set of interconnected standalone SDI nodes with corresponding data storage systems. Each node runs a specialized software, such as a geoportal, cartographical web services (WMS/WFS), a metadata catalog, and a MySQL database of technical metadata describing geospatial datasets available for the node. It also contains geospatial data processing services (WPS) based on a modular computing backend realizing statistical processing functionality and, thus, providing analysis of large datasets with the results of visualization and export into files of standard formats (XML, binary, etc.). Some cartographical web services have been developed in a system’s prototype to provide capabilities to work with raster and vector geospatial data based on OGC web services. The distributed architecture presented allows easy addition of new nodes, computing and data storage systems, and provides a solid computational infrastructure for regional climate change studies based on modern Web and GIS technologies.
Integrated workflows for spiking neuronal network simulations
Antolík, Ján; Davison, Andrew P.
2013-01-01
The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages. PMID:24368902
Integrated workflows for spiking neuronal network simulations.
Antolík, Ján; Davison, Andrew P
2013-01-01
The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages.
Visualizing Astronomical Data with Blender
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2014-01-01
We present methods for using the 3D graphics program Blender in the visualization of astronomical data. The software's forte for animating 3D data lends itself well to use in astronomy. The Blender graphical user interface and Python scripting capabilities can be utilized in the generation of models for data cubes, catalogs, simulations, and surface maps. We review methods for data import, 2D and 3D voxel texture applications, animations, camera movement, and composite renders. Rendering times can be improved by using graphic processing units (GPUs). A number of examples are shown using the software features most applicable to various kinds of data paradigms in astronomy.
Istoriko-Astronomicheskie Issledovaniya %t Studies in the History of Astronomy
NASA Astrophysics Data System (ADS)
Idlis, G. M.
This collection contains papers covering a wide scope of problems in the history of astronomy, both domestic and worldwide. It includes the following basic subdivisions: Astronomy, cosmology and cosmogony of the 20th century; researches and findings; ancient and medieval astronomy; history of observatories and others. Among the most interesting problems considered in the present issue: the origin of the Earth and the geospheres: a bit of history and the current state of the problem; the Near-Earth Astronomy as an independent astronomical discipline; the problem of visual registration of observations in optical astronomy in the 17th - 18th centuries; evidence of lunar and solar calendars in Russian chronicles; the history of the first observatory of the Moscow University; the history of Pulkovo observatory for the last 50 years; the life and activity of the outstanding Russian astronomer A. A. Belopolsky (for his 150th anniversary); a reconstruction of Philolaus' solar system model; and many others. The book is addressed to professional scientists, astronomy amateurs, pedagogues, and everybody interested in the history of science.
Astronomy and Mathematics Education
NASA Astrophysics Data System (ADS)
Ros, Rosa M.
There are many European countries where Astronomy does not appear as a specific course on the secondary school. In these cases Astronomy content can be introduced by means of other subjects. There are some astronomical topics within the subject of Physics but this talk concerns introducing Astronomy in Mathematics classes. Teaching Astronomy through Mathematics would result in more exposure than through Physics as Mathematics is more prevalent in the curriculum. Generally it is not easy to motivate students in Mathematics but they are motivated to find out more about the universe and Astronomy current events than appears in the media. This situation can be an excellent introduction to several mathematics topics. The teachers in secondary and high school can use this idea in order to present more attractive mathematics courses. In particular some different examples will be offered regarding * Angles and spherical coordinates considering star traces * Logarithms and visual magnitudes * Plane trigonometry related orbital movements * Spherical trigonometry in connection with ecliptic obliquity * Conic curves related to sundial at several latitudes Some students do not enjoy studying Mathematics but they can be attracted by practical situations using Applied Mathematics: Astronomy is always very attractive to teenagers.
Federal Data Repository Research: Recent Developments in Mercury Search System Architecture
NASA Astrophysics Data System (ADS)
Devarakonda, R.
2015-12-01
New data intensive project initiatives needs new generation data system architecture. This presentation will discuss the recent developments in Mercury System [1] including adoption, challenges, and future efforts to handle such data intensive projects. Mercury is a combination of three main tools (i) Data/Metadata registration Tool (Online Metadata Editor): The new Online Metadata Editor (OME) is a web-based tool to help document the scientific data in a well-structured, popular scientific metadata formats. (ii) Search and Visualization Tool: Provides a single portal to information contained in disparate data management systems. It facilitates distributed metadata management, data discovery, and various visuzalization capabilities. (iii) Data Citation Tool: In collaboration with Department of Energy's Oak Ridge National Laboratory (ORNL) Mercury Consortium (funded by NASA, USGS and DOE), established a Digital Object Identifier (DOI) service. Mercury is a open source system, developed and managed at Oak Ridge National Laboratory and is currently being funded by three federal agencies, including NASA, USGS and DOE. It provides access to millions of bio-geo-chemical and ecological data; 30,000 scientists use it each month. Some recent data intensive projects that are using Mercury tool: USGS Science Data Catalog (http://data.usgs.gov/), Next-Generation Ecosystem Experiments (http://ngee-arctic.ornl.gov/), Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/), Oak Ridge National Laboratory - Distributed Active Archive Center (http://daac.ornl.gov), SoilSCAPE (http://mercury.ornl.gov/soilscape). References: [1] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94.
ClipCard: Sharable, Searchable Visual Metadata Summaries on the Cloud to Render Big Data Actionable
NASA Astrophysics Data System (ADS)
Saripalli, P.; Davis, D.; Cunningham, R.
2013-12-01
Research firm IDC estimates that approximately 90 percent of the Enterprise Big Data go un-analyzed, as 'dark data' - an enormous corpus of undiscovered, untagged information residing on data warehouses, servers and Storage Area Networks (SAN). In the geosciences, these data range from unpublished model runs to vast survey data assets to raw sensor data. Many of these are now being collected instantaneously, at a greater volume and in new data formats. Not all of these data can be analyzed, nor processed in real time, and their features may not be well described at the time of collection. These dark data are a serious data management problem for science organizations of all types, especially ones with mandated or required data reporting and compliance requirements. Additionally, data curators and scientists are encouraged to quantify the impact of their data holdings as a way to measure research success. Deriving actionable insights is the foremost goal of Big Data Analytics (BDA), which is especially true with geoscience, given its direct impact on most of the pressing global issues. Clearly, there is a pressing need for innovative approaches to making dark data discoverable, measurable, and actionable. We report on ClipCard, a Cloud-based SaaS analytic platform for instant summarization, quick search, visualization and easy sharing of metadata summaries form the Dark Data at hierarchical levels of detail, thus rendering it 'white', i.e., actionable. We present a use case of the ClipCard platform, a cloud-based application which helps generate (abstracted) visual metadata summaries and meta-analytics for environmental data at hierarchical scales within and across big data containers. These summaries and analyses provide important new tools for managing big data and simplifying collaboration through easy to deploy sharing APIs. The ClipCard application solves a growing data management bottleneck by helping enterprises and large organizations to summarize, search, discover, and share the potential in their unused data and information assets. Using Cloud as the base platform enables wider reach, quick dissemination and easy sharing of the metadata summaries, without actually storing or sharing the original data assets per se.
Astronomy for Everyone: Harvard's Move Toward an All-Inclusive Astronomy Lab and Telescope
NASA Astrophysics Data System (ADS)
Bieryla, Allyson
2016-01-01
Harvard University has a growing astronomy program that offers various courses to the undergraduate concentrators, secondaries and non-majors. Many of the courses involve labs that use the 16-inch DFM Clay Telescope for night-time observations and the heliostat for observing the Sun. The goal is to proactively adapt the lab and telescope facilities to accommodate all students with disabilities. The current focus is converting the labs to accommodate visually impaired students. Using tactile images and sound, the intention is to create an experience equivalent to that of a student with full sight.
GeoSearch: A lightweight broking middleware for geospatial resources discovery
NASA Astrophysics Data System (ADS)
Gui, Z.; Yang, C.; Liu, K.; Xia, J.
2012-12-01
With petabytes of geodata, thousands of geospatial web services available over the Internet, it is critical to support geoscience research and applications by finding the best-fit geospatial resources from the massive and heterogeneous resources. Past decades' developments witnessed the operation of many service components to facilitate geospatial resource management and discovery. However, efficient and accurate geospatial resource discovery is still a big challenge due to the following reasons: 1)The entry barriers (also called "learning curves") hinder the usability of discovery services to end users. Different portals and catalogues always adopt various access protocols, metadata formats and GUI styles to organize, present and publish metadata. It is hard for end users to learn all these technical details and differences. 2)The cost for federating heterogeneous services is high. To provide sufficient resources and facilitate data discovery, many registries adopt periodic harvesting mechanism to retrieve metadata from other federated catalogues. These time-consuming processes lead to network and storage burdens, data redundancy, and also the overhead of maintaining data consistency. 3)The heterogeneous semantics issues in data discovery. Since the keyword matching is still the primary search method in many operational discovery services, the search accuracy (precision and recall) is hard to guarantee. Semantic technologies (such as semantic reasoning and similarity evaluation) offer a solution to solve these issues. However, integrating semantic technologies with existing service is challenging due to the expandability limitations on the service frameworks and metadata templates. 4)The capabilities to help users make final selection are inadequate. Most of the existing search portals lack intuitive and diverse information visualization methods and functions (sort, filter) to present, explore and analyze search results. Furthermore, the presentation of the value-added additional information (such as, service quality and user feedback), which conveys important decision supporting information, is missing. To address these issues, we prototyped a distributed search engine, GeoSearch, based on brokering middleware framework to search, integrate and visualize heterogeneous geospatial resources. Specifically, 1) A lightweight discover broker is developed to conduct distributed search. The broker retrieves metadata records for geospatial resources and additional information from dispersed services (portals and catalogues) and other systems on the fly. 2) A quality monitoring and evaluation broker (i.e., QoS Checker) is developed and integrated to provide quality information for geospatial web services. 3) The semantic assisted search and relevance evaluation functions are implemented by loosely interoperating with ESIP Testbed component. 4) Sophisticated information and data visualization functionalities and tools are assembled to improve user experience and assist resource selection.
Dyslexia Linked to Visual Strengths Useful in Astronomy
NASA Astrophysics Data System (ADS)
Schneps, Matthew H.; Brockmole, J. R.; Rose, L. T.; Pomplun, M.; Sonnert, G.; Greenhill, L. J.
2011-05-01
Dyslexia is a hereditary neurological condition characterized by difficulties in reading, writing, and spelling. The fact that those with dyslexia include many accomplished scientists, including some recognized with a Nobel Prize, has prompted researchers to suggest that the neurology of dyslexia may predispose these individuals to advantages in visually-intensive domains such as science. Here, we report evidence of a link between dyslexia and abilities for visual processing useful in astronomy. First, we show that when images of natural scenes are Gaussian-blurred, so as to remove high-frequency detail (and resemble many astronomical images), college students with dyslexia significantly outperform those who are typical readers in learning the spatial contexts presented. Second, we show that when the threshold ability to detect radio signatures characteristic of black holes is measured in a laboratory simulation, astrophysicists with dyslexia significantly outperform those who are typical readers in this task when the visual periphery is important. In a third experiment, using eye-tracking technologies, we demonstrate that visual strategies significantly correlate with success in the black hole task, but that college students with dyslexia tend not to employ the strategies most likely to lead to success. Collectively, these studies suggest that dyslexia is linked to neurological advantages useful in astronomical careers, but that left to their own devices students with dyslexia may not benefit from these advantages without practice or training. These studies imply that many students who are struggling to read may find successful careers in astronomy or other fields that build on visual advantages linked to their reading disability, but that education and training may be vital in helping these students realize their strengths. This material is based upon work supported by the George E. Burch Fellowship (Smithsonian Institution) and the National Science Foundation under Grants HRD-0726032 and HRD-0930962.
The VIMS Data Explorer: A tool for locating and visualizing hyperspectral data
NASA Astrophysics Data System (ADS)
Pasek, V. D.; Lytle, D. M.; Brown, R. H.
2016-12-01
Since successfully entering Saturn's orbit during Summer 2004 there have been over 300,000 hyperspectral data cubes returned from the visible and infrared mapping spectrometer (VIMS) instrument onboard the Cassini spacecraft. The VIMS Science Investigation is a multidisciplinary effort that uses these hyperspectral data to study a variety of scientific problems, including surface characterizations of the icy satellites and atmospheric analyses of Titan and Saturn. Such investigations may need to identify thousands of exemplary data cubes for analysis and can span many years in scope. Here we describe the VIMS data explorer (VDE) application, currently employed by the VIMS Investigation to search for and visualize data. The VDE application facilitates real-time inspection of the entire VIMS hyperspectral dataset, the construction of in situ maps, and markers to save and recall work. The application relies on two databases to provide comprehensive search capabilities. The first database contains metadata for every cube. These metadata searches are used to identify records based on parameters such as target, observation name, or date taken; they fall short in utility for some investigations. The cube metadata contains no target geometry information. Through the introduction of a post-calibration pixel database, the VDE tool enables users to greatly expand their searching capabilities. Users can select favorable cubes for further processing into 2-D and 3-D interactive maps, aiding in the data interpretation and selection process. The VDE application enables efficient search, visualization, and access to VIMS hyperspectral data. It is simple to use, requiring nothing more than a browser for access. Hyperspectral bands can be individually selected or combined to create real-time color images, a technique commonly employed by hyperspectral researchers to highlight compositional differences.
MultiFacet: A Faceted Interface for Browsing Large Multimedia Collections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael J.; Hampton, Shawn D.; Endert, Alexander
2013-10-31
Faceted browsing is a common technique for exploring collections where the data can be grouped into a number of pre-defined categories, most often generated from textual metadata. Historically, faceted browsing has been applied to a single data type such as text or image data. However, typical collections contain multiple data types, such as information from web pages that contain text, images, and video. Additionally, when browsing a collection of images and video, facets are often created based on the metadata which may be incomplete, inaccurate, or missing altogether instead of the actual visual content contained within those images and video.more » In this work we address these limitations by presenting MultiFacet, a faceted browsing interface that supports multiple data types. MultiFacet constructs facets for images and video in a collection from the visual content using computer vision techniques. These visual facets can then be browsed in conjunction with text facets within a single interface to reveal relationships and phenomena within multimedia collections. Additionally, we present a use case based on real-world data, demonstrating the utility of this approach towards browsing a large multimedia data collection.« less
USDA-ARS?s Scientific Manuscript database
Characterizing population genetic structure across geographic space is a fundamental challenge in population genetics. Multivariate statistical analyses are powerful tools for summarizing genetic variability, but geographic information and accompanying metadata is not always easily integrated into t...
Exploring the Invisible Universe: A Tactile and Braille Exhibit of Astronomical Images
NASA Astrophysics Data System (ADS)
Arcand, K. K.; Watzke, M.; de Pree, C.
2010-06-01
A tactile/Braille exhibit for the visually impaired community in the USA was launched in July 2009. The exhibit is part of the global From Earth to the Universe (FETTU) project, a Cornerstone of the International Year of Astronomy 2009. The science content of the travelling tactile/Braille exhibit includes explanations of our Sun, Eta Carinae, the Crab Nebula, the Whirlpool Galaxy and the electromagnetic spectrum, and was adapted from the tactile/Braille book Touch the Invisible Sky. We present some of the early observations and findings on the tactile/Braille FETTU exhibit. The new exhibit opens a wider door to experiencing and understanding astronomy for the underserved visually impaired population.
Citizen Astronomy in China: An Overview
NASA Astrophysics Data System (ADS)
Ye, Quan-Zhi
2018-01-01
Citizen astronomers have benefited from technological advancements in the recent decades as they fill the scientific gaps left by professional astronomers, in the areas such as time domain observations, visual classification and data mining. Here I present an overview of the current status of citizen astronomy in China. Chinese citizen astronomers have made a visible contribution in the discoveries of new objects; however, comparing to their counterparts in the western world, they appear to be less interested in researches that do not involve making new discovery, such as visual classification, long-term monitoring of objects, and data mining. From a questionnaire survey that aimed to investigate the motivation of Chinese citizen astronomers, we find that this population is predominantly male (92%) who mostly reside in economically developed provinces. A large fraction (69%) of the respondents are students and young professionals younger than the age of 25, which differs significantly from the occupation and age distribution of typical Chinese Internet users as well as the user distribution of large international citizen science projects such as the Galaxy Zoo. This suggests that youth generation in China is more willing to participate citizen astronomy research than average generation. Additionally, we find that interests in astronomy, desire to learn new knowledges, have a fun experience and meet new friends in the community are all important driving factors for Chinese citizen astronomers to participate research. This also differs from their counterparts in western countries. With a large youth population that is interested in astronomy as well as a number of large astronomical facilities that are being planned or built, we believe that citizen astronomy in China has a vast potential. Timely and proper guidance from the professionals will be essential to help citizen astronomers to fulfill this potential.
Data System Architectures: Recent Experiences from Data Intensive Projects
NASA Astrophysics Data System (ADS)
Palanisamy, G.; Frame, M. T.; Boden, T.; Devarakonda, R.; Zolly, L.; Hutchison, V.; Latysh, N.; Krassovski, M.; Killeffer, T.; Hook, L.
2014-12-01
U.S. Federal agencies are frequently trying to address new data intensive projects that require next generation of data system architectures. This presentation will focus on two new such architectures: USGS's Science Data Catalog (SDC) and DOE's Next Generation Ecological Experiments - Arctic Data System. The U.S. Geological Survey (USGS) developed a Science Data Catalog (data.usgs.gov) to include records describing datasets, data collections, and observational or remotely-sensed data. The system was built using service oriented architecture and allows USGS scientists and data providers to create and register their data using either a standards-based metadata creation form or simply to register their already-created metadata records with the USGS SDC Dashboard. This dashboard then compiles the harvested metadata records and sends them to the post processing and indexing service using the JSON format. The post processing service, with the help of various ontologies and other geo-spatial validation services, auto-enhances these harvested metadata records and creates a Lucene index using the Solr enterprise search platform. Ultimately, metadata is made available via the SDC search interface. DOE's Next Generation Ecological Experiments (NGEE) Arctic project deployed a data system that allows scientists to prepare, publish, archive, and distribute data from field collections, lab experiments, sensors, and simulated modal outputs. This architecture includes a metadata registration form, data uploading and sharing tool, a Digital Object Identifier (DOI) tool, a Drupal based content management tool (http://ngee-arctic.ornl.gov), and a data search and access tool based on ORNL's Mercury software (http://mercury.ornl.gov). The team also developed Web-metric tools and a data ingest service to visualize geo-spatial and temporal observations.
The GEOSS Clearinghouse based on the GeoNetwork opensource
NASA Astrophysics Data System (ADS)
Liu, K.; Yang, C.; Wu, H.; Huang, Q.
2010-12-01
The Global Earth Observation System of Systems (GEOSS) is established to support the study of the Earth system in a global community. It provides services for social management, quick response, academic research, and education. The purpose of GEOSS is to achieve comprehensive, coordinated and sustained observations of the Earth system, improve monitoring of the state of the Earth, increase understanding of Earth processes, and enhance prediction of the behavior of the Earth system. In 2009, GEO called for a competition for an official GEOSS clearinghouse to be selected as a source to consolidating catalogs for Earth observations. The Joint Center for Intelligent Spatial Computing at George Mason University worked with USGS to submit a solution based on the open-source platform - GeoNetwork. In the spring of 2010, the solution is selected as the product for GEOSS clearinghouse. The GEOSS Clearinghouse is a common search facility for the Intergovernmental Group on Ea rth Observation (GEO). By providing a list of harvesting functions in Business Logic, GEOSS clearinghouse can collect metadata from distributed catalogs including other GeoNetwork native nodes, webDAV/sitemap/WAF, catalog services for the web (CSW)2.0, GEOSS Component and Service Registry (http://geossregistries.info/), OGC Web Services (WCS, WFS, WMS and WPS), OAI Protocol for Metadata Harvesting 2.0, ArcSDE Server and Local File System. Metadata in GEOSS clearinghouse are managed in a database (MySQL, Postgresql, Oracle, or MckoiDB) and an index of the metadata is maintained through Lucene engine. Thus, EO data, services, and related resources can be discovered and accessed. It supports a variety of geospatial standards including CSW and SRU for search, FGDC and ISO metadata, and WMS related OGC standards for data access and visualization, as linked from the metadata.
Innovation in Astronomy Education
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi
2013-01-01
Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing large astronomical data holdings; Poster abstracts; Part IV. Practical Issues Connected with the Implementation of the 2003 IAU Resolution: Introduction; 33. Stellar evolution for students of Moscow University; 34. Astronomy for everybody: An approach from the CASAO/NAUH view; 35. Toward a new program in astronomy education in secondary schools in Turkey; 36. Universe awareness for young children; 37. Education in Egypt and Egyptian responses to eclipses; 38. Astronomy in the cultural heritage of African societies; 39. Education at the Pierre Auger Observatory: the cinema as a tool in science education; 40. Freshman seminars: interdisciplinary engagements in astronomy; 41. Astronomy for teachers; Poster abstracts; Conclusion.
Innovation in Astronomy Education
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi
2008-07-01
Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing large astronomical data holdings; Poster abstracts; Part IV. Practical Issues Connected with the Implementation of the 2003 IAU Resolution: Introduction; 33. Stellar evolution for students of Moscow University; 34. Astronomy for everybody: An approach from the CASAO/NAUH view; 35. Toward a new program in astronomy education in secondary schools in Turkey; 36. Universe awareness for young children; 37. Education in Egypt and Egyptian responses to eclipses; 38. Astronomy in the cultural heritage of African societies; 39. Education at the Pierre Auger Observatory: the cinema as a tool in science education; 40. Freshman seminars: interdisciplinary engagements in astronomy; 41. Astronomy for teachers; Poster abstracts; Conclusion.
New Tools to Document and Manage Data/Metadata: Example NGEE Arctic and UrbIS
NASA Astrophysics Data System (ADS)
Crow, M. C.; Devarakonda, R.; Hook, L.; Killeffer, T.; Krassovski, M.; Boden, T.; King, A. W.; Wullschleger, S. D.
2016-12-01
Tools used for documenting, archiving, cataloging, and searching data are critical pieces of informatics. This discussion describes tools being used in two different projects at Oak Ridge National Laboratory (ORNL), but at different stages of the data lifecycle. The Metadata Entry and Data Search Tool is being used for the documentation, archival, and data discovery stages for the Next Generation Ecosystem Experiment - Arctic (NGEE Arctic) project while the Urban Information Systems (UrbIS) Data Catalog is being used to support indexing, cataloging, and searching. The NGEE Arctic Online Metadata Entry Tool [1] provides a method by which researchers can upload their data and provide original metadata with each upload. The tool is built upon a Java SPRING framework to parse user input into, and from, XML output. Many aspects of the tool require use of a relational database including encrypted user-login, auto-fill functionality for predefined sites and plots, and file reference storage and sorting. The UrbIS Data Catalog is a data discovery tool supported by the Mercury cataloging framework [2] which aims to compile urban environmental data from around the world into one location, and be searchable via a user-friendly interface. Each data record conveniently displays its title, source, and date range, and features: (1) a button for a quick view of the metadata, (2) a direct link to the data and, for some data sets, (3) a button for visualizing the data. The search box incorporates autocomplete capabilities for search terms and sorted keyword filters are available on the side of the page, including a map for searching by area. References: [1] Devarakonda, Ranjeet, et al. "Use of a metadata documentation and search tool for large data volumes: The NGEE arctic example." Big Data (Big Data), 2015 IEEE International Conference on. IEEE, 2015. [2] Devarakonda, R., Palanisamy, G., Wilson, B. E., & Green, J. M. (2010). Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics, 3(1-2), 87-94.
A Rules-Based Service for Suggesting Visualizations to Analyze Earth Science Phenomena.
NASA Astrophysics Data System (ADS)
Prabhu, A.; Zednik, S.; Fox, P. A.; Ramachandran, R.; Maskey, M.; Shie, C. L.; Shen, S.
2016-12-01
Current Earth Science Information Systems lack support for new or interdisciplinary researchers, who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. We need to evolve the current information systems, to reduce the time required for data preparation, processing and analysis. This can be done by effectively salvaging the "dark" resources in Earth Science. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. In order to effectively use these dark resources, especially for data processing and visualization, we need a combination of domain, data product and processing knowledge, i.e. a knowledge base from which specific data operations can be performed. In this presentation, we describe a semantic, rules based approach to provide i.e. a service to visualize Earth Science phenomena, based on the data variables extracted using the "dark" metadata resources. We use Jena rules to make assertions about compatibility between a phenomena and various visualizations based on multiple factors. We created separate orthogonal rulesets to map each of these factors to the various phenomena. Some of the factors we have considered include measurements, spatial resolution and time intervals. This approach enables easy additions and deletions based on newly obtained domain knowledge or phenomena related information and thus improving the accuracy of the rules service overall.
The broad topic of biomarker research has an often-overlooked component: the documentation and interpretation of the surrounding chemical environment and other meta-data, especially from visualization, analytical, and statistical perspectives (Pleil et al. 2014; Sobus et al. 2011...
Microsoft Repository Version 2 and the Open Information Model.
ERIC Educational Resources Information Center
Bernstein, Philip A.; Bergstraesser, Thomas; Carlson, Jason; Pal, Shankar; Sanders, Paul; Shutt, David
1999-01-01
Describes the programming interface and implementation of the repository engine and the Open Information Model for Microsoft Repository, an object-oriented meta-data management facility that ships in Microsoft Visual Studio and Microsoft SQL Server. Discusses Microsoft's component object model, object manipulation, queries, and information…
NASA Astrophysics Data System (ADS)
Grice, Noreen A.
2008-05-01
In the summer of 2007, nearly two hundred blind and visually impaired high school students participated in a weeklong enrichment program at Johns Hopkins University called the National Federation of the Blind Youth Slam. They spent four days participating in hands-on science and engineering classes and exploring careers previously thought inaccessible to those without sight. The students were separated into "tracks” with each group focusing on a different field. Want to know what happened in the astronomy track? Come by this paper and see examples of accessible astronomy activities, including accessible star parties, from the Youth Slam!
Expanding Access to NCAR's Digital Assets: Towards a Unified Scientific Data Management System
NASA Astrophysics Data System (ADS)
Stott, D.
2016-12-01
In 2014 the National Center for Atmospheric Research (NCAR) Directorate created the Data Stewardship Engineering Team (DSET) to plan and implement the strategic vision of an integrated front door for data discovery and access across the organization, including all laboratories, the library, and UCAR Community Programs. The DSET is focused on improving the quality of users' experiences in finding and using NCAR's digital assets. This effort also supports new policies included in federal mandates, NSF requirements, and journal publication rules. An initial survey with 97 respondents identified 68 persons responsible for more than 3 petabytes of data. An inventory, using the Data Asset Framework produced by the UK Digital Curation Centre as a starting point, identified asset types that included files and metadata, publications, images, and software (visualization, analysis, model codes). User story sessions with representatives from each lab identified and ranked desired features for a unified Scientific Data Management System (SDMS). A process beginning with an organization-wide assessment of metadata by the HDF Group and followed by meetings with labs to identify key documentation concepts, culminated in the development of an NCAR metadata dialect that leverages the DataCite and ISO 19115 standards. The tasks ahead are to build out an SDMS and populate it with rich standardized metadata. Software packages have been prototyped and currently are being tested and reviewed by DSET members. Key challenges for the DSET include technical and non-technical issues. First, the status quo with regard to how assets are managed varies widely across the organization. There are differences in file format standards, technologies, and discipline-specific vocabularies. Metadata diversity is another real challenge. The types of metadata, the standards used, and the capacity to create new metadata varies across the organization. Significant effort is required to develop tools to create new standard metadata across the organization, adapt and integrate current digital assets, and establish consistent data management practices going forward. To be successful, best practices must be infused into daily activities. This poster will highlight the processes, lessons learned, and current status of the DSET effort at NCAR.
Students from Non-Dominant Linguistic Backgrounds Making Sense of Cosmology Visualizations
ERIC Educational Resources Information Center
Buck Bracey, Zoë E.
2017-01-01
This article presents the results of exploratory research with community college students from non-dominant linguistic backgrounds (NDLB) in an introductory astronomy class as they collaborated to reconstruct dynamic cosmology visualizations through drawing. Data included student discourse during the drawing activity, post-activity interviews, and…
The advent of new higher throughput analytical instrumentation has put a strain on interpreting and explaining the results from complex studies. Contemporary human, environmental, and biomonitoring data sets are comprised of tens or hundreds of analytes, multiple repeat measures...
Rapid Response to Decision Making for Complex Issues - How Technologies of Cooperation Can Help
2005-11-01
creating bottom–up taxonomies—called folksonomies —using metadata tools like del.icio.us (in which users create their own tags for bookmarking Web...tools such as RSS, tagging (and the consequent development of folksonomies ), wikis, and group visualization tools all help multiply the individual
Vispubdata.org: A Metadata Collection About IEEE Visualization (VIS) Publications.
Isenberg, Petra; Heimerl, Florian; Koch, Steffen; Isenberg, Tobias; Xu, Panpan; Stolper, Charles D; Sedlmair, Michael; Chen, Jian; Moller, Torsten; Stasko, John
2017-09-01
We have created and made available to all a dataset with information about every paper that has appeared at the IEEE Visualization (VIS) set of conferences: InfoVis, SciVis, VAST, and Vis. The information about each paper includes its title, abstract, authors, and citations to other papers in the conference series, among many other attributes. This article describes the motivation for creating the dataset, as well as our process of coalescing and cleaning the data, and a set of three visualizations we created to facilitate exploration of the data. This data is meant to be useful to the broad data visualization community to help understand the evolution of the field and as an example document collection for text data visualization research.
The Meteor Section of the Visnjan School of Astronomy 1993
NASA Astrophysics Data System (ADS)
Korlevic, K.
In the last five years, the Visnjan Observatory started a new international astronomical summer workshop. Every year, on this educational activity, students have been thought the IMO standards of visual observation. Meteor astronomy was chosen as the leading activity because of its ability to bring people together, and because of the continuous flux of information through the IMO and the journal WGN, in the time when other sources of information were cut off by the war situation. The time of this years's school (August 7-20) covered the exceptional 1993 Perseids maximum. The Visnjan School of Astronomy is also an educational and psychological experiment, and our goal is finding a better means of introducing gifted students to science through astronomy workshops. In that effort we are also trying to increase the number of future meteor observers.
The Cambridge Illustrated History of Astronomy
NASA Astrophysics Data System (ADS)
Hoskin, Michael
Expertly written and lavishly illustrated, The Cambridge Illustrated History of Astronomy offers a unique account of astronomical theory and practice from antiquity to the present day. How did Moslems of the Middle Ages use astronomy to calculate the direction of Mecca from far-flung corners of the Islamic world? Who was the only ancient Greek to suspect that the earth might revolve around the sun? How did Christopher Columbus abuse his knowledge of a lunar eclipse predicted by an astronomical almanac? Packed with anecdotes and intriguing detail, this book describes how we observed the sky and interpreted what we saw at different periods of history; how this influenced our beliefs and mythology; and how great astronomers contributed to what we now know. The result is a lively and highly visual history of astronomy - a compelling read for specialists and non-specialists alike.
GeoViQua: quality-aware geospatial data discovery and evaluation
NASA Astrophysics Data System (ADS)
Bigagli, L.; Papeschi, F.; Mazzetti, P.; Nativi, S.
2012-04-01
GeoViQua (QUAlity aware VIsualization for the Global Earth Observation System of Systems) is a recently started FP7 project aiming at complementing the Global Earth Observation System of Systems (GEOSS) with rigorous data quality specifications and quality-aware capabilities, in order to improve reliability in scientific studies and policy decision-making. GeoViQua main scientific and technical objective is to enhance the GEOSS Common Infrastructure (GCI) providing the user community with innovative quality-aware search and evaluation tools, which will be integrated in the GEO-Portal, as well as made available to other end-user interfaces. To this end, GeoViQua will promote the extension of the current standard metadata for geographic information with accurate and expressive quality indicators, also contributing to the definition of a quality label (GEOLabel). GeoViQua proposed solutions will be assessed in several pilot case studies covering the whole Earth Observation chain, from remote sensing acquisition to data processing, to applications in the main GEOSS Societal Benefit Areas. This work presents the preliminary results of GeoViQua Work Package 4 "Enhanced geo-search tools" (WP4), started in January 2012. Its major anticipated technical innovations are search and evaluation tools that communicate and exploit data quality information from the GCI. In particular, GeoViQua will investigate a graphical search interface featuring a coherent and meaningful aggregation of statistics and metadata summaries (e.g. in the form of tables, charts), thus enabling end users to leverage quality constraints for data discovery and evaluation. Preparatory work on WP4 requirements indicated that users need the "best" data for their purpose, implying a high degree of subjectivity in judgment. This suggests that the GeoViQua system should exploit a combination of provider-generated metadata (objective indicators such as summary statistics), system-generated metadata (contextual/tracking information such as provenance of data and metadata), and user-generated metadata (informal user comments, usage information, rating, etc.). Moreover, metadata should include sufficiently complete access information, to allow rich data visualization and propagation. The following main enabling components are currently identified within WP4: - Quality-aware access services, e.g. a quality-aware extension of the OGC Sensor Observation Service (SOS-Q) specification, to support quality constraints for sensor data publishing and access; - Quality-aware discovery services, namely a quality-aware extension of the OGC Catalog Service for the Web (CSW-Q), to cope with quality constrained search; - Quality-augmentation broker (GeoViQua Broker), to support the linking and combination of the existing GCI metadata with GeoViQua- and user-generated metadata required to support the users in selecting the "best" data for their intended use. We are currently developing prototypes of the above quality-enabled geo-search components, that will be assessed in a sensor-based pilot case study in the next months. In particular, the GeoViQua Broker will be integrated with the EuroGEOSS Broker, to implement CSW-Q and federate (either via distribution or harvesting schemes) quality-aware data sources, GeoViQua will constitute a valuable test-bed for advancing the current best practices and standards in geospatial quality representation and exploitation. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 265178.
Librarians and Scientists: Combining Forces for Better Metrics
NASA Astrophysics Data System (ADS)
Rots, Arnold H.; Winkelman, Sherry
2015-08-01
Traditionally, observatory bibliographies mainly rely on two parameters derived from the carefully compiled lists of publications associated, in a well-defined way, with the observatories contribution to the advancement of science: numbers of articles and numbers of citations - in addition to the bibliographic metadata relating to those articles. The information that can be extracted from metrics based on these parameters is limited. This is a realization that is not just typical to astronomy and astrophysics, but one that is felt across many disciplines.Relating articles with very specific datasets allows us to join those datasets' metadata with the bibliographic metadata which opens a much richer field of information to mine for knowledge concerning the performance, not only of the observatory as a whole, but also its parts: instruments, types of observations, length of observations, etc. We have experimented extensively with such new metrics in the Chandra Data Archive in the Chandra X-ray Center at SAO.The linking of articles with individual datasets requires a level of scientific expertise that is usually not in the, otherwise extensive, skill set of the librarians, but is something that is crucial on the road to more informative bibliographic metrics.This talk is a plea for librarians and research scientists to join forces to make this happen. The added benefit of such a collaboration is a powerful research tool for navigating data and literature through a single interface.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center. It depends critically on the services provided by the ADS, which is funded by NASA Grant NNX12AG54G.
Hardy's stargazers and the astronomy of other minds.
Henchman, A
2008-01-01
This essay argues that Thomas Hardy compares the act of observing another person to the scientific practice of observing the stars in order to reveal structural obstacles to accessing other minds. He draws on astronomy and optics to underscore the discrepancy between the full perception one has of one's own consciousness and the lack of such sensory evidence for the consciousness of others. His scenes of stargazing show such obstacles being temporarily overcome; the stargazer turns away from the thick sensory detail of earthly life and uses minimal visual information as a jumping-off point for the imagination. These visual journeys into space are analogous to those Hardy's readers experience as he wrests them out of their bodies into imaginary landscapes and unfamiliar minds.
3D mapping of existing observing capabilities in the frame of GAIA-CLIM H2020 project
NASA Astrophysics Data System (ADS)
Emanuele, Tramutola; Madonna, Fabio; Marco, Rosoldi; Francesco, Amato
2017-04-01
The aim of the Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring (GAIA-CLIM) project is to improve our ability to use ground-based and sub-orbital observations to characterise satellite observations for a number of atmospheric Essential Climate Variables (ECVs). The key outcomes will be a "Virtual Observatory" (VO) facility of co-locations and their uncertainties and a report on gaps in capabilities or understanding, which shall be used to inform subsequent Horizon 2020 activities. In particular, Work Package 1 (WP1) of the GAIA-CLIM project is devoted to the geographical mapping of existing non-satellite measurement capabilities for a number of ECVs in the atmospheric, oceanic and terrestrial domains. The work carried out within WP1 has allowed to provide the users with an up-to-date geographical identification, at the European and global scales, of current surface-based, balloon-based and oceanic (floats) observing capabilities on an ECV by ECV basis for several parameters which can be obtained using space-based observations from past, present and planned satellite missions. Having alighted on a set of metadata schema to follow, a consistent collection of discovery metadata has been provided into a common structure and will be made available to users through the GAIA-CLIM VO in 2018. Metadata can be interactively visualized through a 3D Graphical User Interface. The metadataset includes 54 plausible networks and 2 aircraft permanent infrastructures for EO Characterisation in the context of GAIA-CLIM currently operating on different spatial domains and measuring different ECVs using one or more measurement techniques. Each classified network has in addition been assessed for suitability against metrological criteria to identifyy those with a level of maturity which enables closure on a comparison with satellite measurements. The metadata GUI is based on Cesium, a virtual globe freeware and open source written in Javascript. It allows users to apply different filters to the data displayed on the globe, selecting data per ECV, network, measurements type and level of maturity. Filtering is operated with a query to GeoServer web application through the WFS interface on a data layer configured on our DB Postgres with PostGIS extension; filters set on the GUI are expressed using ECQL (Extended Common Query Language). The GUI allows to visualize in real-time the current non-satellite observing capabilities along with the satellite platforms measuring the same ECVs. Satellite ground track and footprint of the instruments on board can be also visualized. This work contributes to improve metadata and web map services and to facilitate users' experience in the spatio-temporal analysis of Earth Observation data.
NASA Astrophysics Data System (ADS)
Yen, Y. N.; Weng, K. H.; Huang, H. Y.
2013-07-01
After over 30 years of practise and development, Taiwan's architectural conservation field is moving rapidly into digitalization and its applications. Compared to modern buildings, traditional Chinese architecture has considerably more complex elements and forms. To document and digitize these unique heritages in their conservation lifecycle is a new and important issue. This article takes the caisson ceiling of the Taipei Confucius Temple, octagonal with 333 elements in 8 types, as a case study for digitization practise. The application of metadata representation and 3D modelling are the two key issues to discuss. Both Revit and SketchUp were appliedin this research to compare its effectiveness to metadata representation. Due to limitation of the Revit database, the final 3D models wasbuilt with SketchUp. The research found that, firstly, cultural heritage databasesmustconvey that while many elements are similar in appearance, they are unique in value; although 3D simulations help the general understanding of architectural heritage, software such as Revit and SketchUp, at this stage, could onlybe used tomodel basic visual representations, and is ineffective indocumenting additional critical data ofindividually unique elements. Secondly, when establishing conservation lifecycle information for application in management systems, a full and detailed presentation of the metadata must also be implemented; the existing applications of BIM in managing conservation lifecycles are still insufficient. Results of the research recommends SketchUp as a tool for present modelling needs, and BIM for sharing data between users, but the implementation of metadata representation is of the utmost importance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, Brian W; Brunhart-Lupo, Nicholas J; Gruchalla, Kenny M
This brochure describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, Brian W; Brunhart-Lupo, Nicholas J; Gruchalla, Kenny M
This presentation describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.
Network Access to Visual Information: A Study of Costs and Uses.
ERIC Educational Resources Information Center
Besser, Howard
This paper summarizes a subset of the findings of a study of digital image distribution that focused on the Museum Educational Site Licensing (MESL) project--the first large-scale multi-institutional project to explore digital delivery of art images and accompanying text/metadata from disparate sources. This Mellon Foundation-sponsored study…
[An encounter between medicine and astronomy: migraine visions].
Lardreau, Esther
2011-06-01
Until the second half of the eighteenth century, the very definition of migraine as hemicrania (pain felt in one side of the head) eclipsed symptoms that were then considered as "marginal", although tingling sensations, speech impairment and visual impairment had already been described by Piso and Wepfer. The possibility of a migraine without a headache nevertheless started to be envisaged, inviting one to re-evaluate the status of these phenomena. But, as paradoxical as it may seem, it is in the field of astronomy that some of these phenomena such as visual aberrations were analyzed systematically and acknowledged to be migrainous. Scintillating scotoma is no exception: it was indeed mentioned as early as in the Hippocratic corpus, but until the end of the nineteenth century it was addressed as a separate condition to migraine. We limit our study to the visual aura. Our purpose is to show that the ophthalmic symptoms affecting migraine sufferers were not, by themselves, a medical object--which somehow calls into question the very functioning of science.
Astroaccesible: Bringing the study of the Universe to the visually impaired
NASA Astrophysics Data System (ADS)
Pérez-Montero, E.; García Gómez-Caro, E.; Sánchez Molina, Y.; Ortiz-Gil, A.; López de Lacalle, S.; Tamayo, A.
2017-03-01
Astroaccesible is an outreach project carried out in collaboration with the IAA-CSIC and ONCE to make astronomy more accessible to the visually impaired people so the main source of information is not based on the use of images. The activities of the project started in 2014 and since then it has received financial support from SEA in 2015 and from FECYT in 2016 making possible to extend the activity for many ONCE centres in Spain. The activities include in-person classes using adequate descriptions, high-contrast images for those people with visual remain and touching material representing basic concepts about sizes, scales and distances of astronomical bodies. To maximize the impact of the contents of the project many of the contents, summary of activities, links to resources are available through the web page of the project. This project focused on astronomy is also intended to make the scientific community more sensitive to perform more accessible explanations of their results.
Automated sea floor extraction from underwater video
NASA Astrophysics Data System (ADS)
Kelly, Lauren; Rahmes, Mark; Stiver, James; McCluskey, Mike
2016-05-01
Ocean floor mapping using video is a method to simply and cost-effectively record large areas of the seafloor. Obtaining visual and elevation models has noteworthy applications in search and recovery missions. Hazards to navigation are abundant and pose a significant threat to the safety, effectiveness, and speed of naval operations and commercial vessels. This project's objective was to develop a workflow to automatically extract metadata from marine video and create image optical and elevation surface mosaics. Three developments made this possible. First, optical character recognition (OCR) by means of two-dimensional correlation, using a known character set, allowed for the capture of metadata from image files. Second, exploiting the image metadata (i.e., latitude, longitude, heading, camera angle, and depth readings) allowed for the determination of location and orientation of the image frame in mosaic. Image registration improved the accuracy of mosaicking. Finally, overlapping data allowed us to determine height information. A disparity map was created using the parallax from overlapping viewpoints of a given area and the relative height data was utilized to create a three-dimensional, textured elevation map.
A VBA Desktop Database for Proposal Processing at National Optical Astronomy Observatories
NASA Astrophysics Data System (ADS)
Brown, Christa L.
National Optical Astronomy Observatories (NOAO) has developed a relational Microsoft Windows desktop database using Microsoft Access and the Microsoft Office programming language, Visual Basic for Applications (VBA). The database is used to track data relating to observing proposals from original receipt through the review process, scheduling, observing, and final statistical reporting. The database has automated proposal processing and distribution of information. It allows NOAO to collect and archive data so as to query and analyze information about our science programs in new ways.
Mercury: An Example of Effective Software Reuse for Metadata Management, Data Discovery and Access
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce E.
2008-12-01
Mercury is a federated metadata harvesting, data discovery and access tool based on both open source packages and custom developed software. Though originally developed for NASA, the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury supports the reuse of metadata by enabling searching across a range of metadata specification and standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115. Mercury provides a single portal to information contained in distributed data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. One of the major goals of the recent redesign of Mercury was to improve the software reusability across the 12 projects which currently fund the continuing development of Mercury. These projects span a range of land, atmosphere, and ocean ecological communities and have a number of common needs for metadata searches, but they also have a number of needs specific to one or a few projects. To balance these common and project-specific needs, Mercury's architecture has three major reusable components; a harvester engine, an indexing system and a user interface component. The harvester engine is responsible for harvesting metadata records from various distributed servers around the USA and around the world. The harvester software was packaged in such a way that all the Mercury projects will use the same harvester scripts but each project will be driven by a set of project specific configuration files. The harvested files are structured metadata records that are indexed against the search library API consistently, so that it can render various search capabilities such as simple, fielded, spatial and temporal. This backend component is supported by a very flexible, easy to use Graphical User Interface which is driven by cascading style sheets, which make it even simpler for reusable design implementation. The new Mercury system is based on a Service Oriented Architecture and effectively reuses components for various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. The software also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets, integrated shopping cart to order datasets from various data centers (ORNL DAAC, NSIDC) and integrated visualization tools. Other features include: Filtering and dynamic sorting of search results, book- markable search results, save, retrieve, and modify search criteria.
Mercury: An Example of Effective Software Reuse for Metadata Management, Data Discovery and Access
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet
2008-01-01
Mercury is a federated metadata harvesting, data discovery and access tool based on both open source packages and custom developed software. Though originally developed for NASA, the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury supports the reuse of metadata by enabling searching across a range of metadata specification and standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115. Mercury provides a single portal to information contained in distributed data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfacesmore » then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. One of the major goals of the recent redesign of Mercury was to improve the software reusability across the 12 projects which currently fund the continuing development of Mercury. These projects span a range of land, atmosphere, and ocean ecological communities and have a number of common needs for metadata searches, but they also have a number of needs specific to one or a few projects. To balance these common and project-specific needs, Mercury's architecture has three major reusable components; a harvester engine, an indexing system and a user interface component. The harvester engine is responsible for harvesting metadata records from various distributed servers around the USA and around the world. The harvester software was packaged in such a way that all the Mercury projects will use the same harvester scripts but each project will be driven by a set of project specific configuration files. The harvested files are structured metadata records that are indexed against the search library API consistently, so that it can render various search capabilities such as simple, fielded, spatial and temporal. This backend component is supported by a very flexible, easy to use Graphical User Interface which is driven by cascading style sheets, which make it even simpler for reusable design implementation. The new Mercury system is based on a Service Oriented Architecture and effectively reuses components for various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. The software also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets, integrated shopping cart to order datasets from various data centers (ORNL DAAC, NSIDC) and integrated visualization tools. Other features include: Filtering and dynamic sorting of search results, book- markable search results, save, retrieve, and modify search criteria.« less
NASA Astrophysics Data System (ADS)
Hamilton, D. P.; Asbury, M. L.
1999-12-01
The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed and maintained at the University of Maryland for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: Animated Orbits of Planets and Moons: The orbits of the nine planets and 63 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Scale of the Universe: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Scientific Notation: Students are interactively guided through conversions between scientific notation and regular numbers. Orbital Simulations: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. Astronomy Workshop Bulletin Board: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by NSF.
NASA Astrophysics Data System (ADS)
Hamilton, D. P.; Asbury, M. L.
2000-05-01
The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed and maintained at the University of Maryland for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: ANIMATED ORBITS OF PLANETS AND MOONS: The orbits of the nine planets and 63 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. SOLAR SYSTEM COLLISIONS: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). SCALE OF THE UNIVERSE: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. SCIENTIFIC NOTATION: Students are interactively guided through conversions between scientific notation and regular numbers. ORBITAL SIMULATIONS: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. ASTRONOMY WORKSHOP BULLETIN BOARD: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by NSF.
NASA Astrophysics Data System (ADS)
Hamilton, D. P.; Asbury, M. L.
1999-09-01
The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed and maintained at the University of Maryland for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: Animated Orbits of Planets and Moons: The orbits of the nine planets and 63 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Scale of the Universe: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Scientific Notation: Students are interactively guided through conversions between scientific notation and regular numbers. Orbital Simulations: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. Astronomy Workshop Bulletin Board: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by NSF.
An Online Astronomy Course VS. A Interactive Classroom
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Bailey, Janelle M.; Jaeggli, Sarah A.; Jones, Lauren V.; Lee, Ariane C.
Contemporary science education reforms emphasize building instruction around students’ pre-instructional beliefs fostering a learning environment where students interact with information and phenomena and providing students with frequent feedback to help them monitor their own learning. Recently personal computers and the Internet have given students access to scientific data sets and visualization tools that only professional scientists could use a few years before. With these things in mind we designed a hypermedia learning experience for introductory astronomy (Astronomy Online) that matches Internet technology with how people learn. Astronomy Online was used as the sole delivery system for courses offered during the Fall 2002 semester. The courses are run online. In one manifestation the course was delivered to middle and secondary school teachers spread across the globe. In another version the course was delivered to college undergraduate non-science majors where the only class meetings were a single orientation session and three on-campus exams. We compare these with on-campus courses that use highly interactive teaching techniques by studying common examination questions the Astronomy Diagnostic Test an attitude survey and interviews with students
ODISEES: A New Paradigm in Data Access
NASA Astrophysics Data System (ADS)
Huffer, E.; Little, M. M.; Kusterer, J.
2013-12-01
As part of its ongoing efforts to improve access to data, the Atmospheric Science Data Center has developed a high-precision Earth Science domain ontology (the 'ES Ontology') implemented in a graph database ('the Semantic Metadata Repository') that is used to store detailed, semantically-enhanced, parameter-level metadata for ASDC data products. The ES Ontology provides the semantic infrastructure needed to drive the ASDC's Ontology-Driven Interactive Search Environment for Earth Science ('ODISEES'), a data discovery and access tool, and will support additional data services such as analytics and visualization. The ES ontology is designed on the premise that naming conventions alone are not adequate to provide the information needed by prospective data consumers to assess the suitability of a given dataset for their research requirements; nor are current metadata conventions adequate to support seamless machine-to-machine interactions between file servers and end-user applications. Data consumers need information not only about what two data elements have in common, but also about how they are different. End-user applications need consistent, detailed metadata to support real-time data interoperability. The ES ontology is a highly precise, bottom-up, queriable model of the Earth Science domain that focuses on critical details about the measurable phenomena, instrument techniques, data processing methods, and data file structures. Earth Science parameters are described in detail in the ES Ontology and mapped to the corresponding variables that occur in ASDC datasets. Variables are in turn mapped to well-annotated representations of the datasets that they occur in, the instrument(s) used to create them, the instrument platforms, the processing methods, etc., creating a linked-data structure that allows both human and machine users to access a wealth of information critical to understanding and manipulating the data. The mappings are recorded in the Semantic Metadata Repository as RDF-triples. An off-the-shelf Ontology Development Environment and a custom Metadata Conversion Tool comprise a human-machine/machine-machine hybrid tool that partially automates the creation of metadata as RDF-triples by interfacing with existing metadata repositories and providing a user interface that solicits input from a human user, when needed. RDF-triples are pushed to the Ontology Development Environment, where a reasoning engine executes a series of inference rules whose antecedent conditions can be satisfied by the initial set of RDF-triples, thereby generating the additional detailed metadata that is missing in existing repositories. A SPARQL Endpoint, a web-based query service and a Graphical User Interface allow prospective data consumers - even those with no familiarity with NASA data products - to search the metadata repository to find and order data products that meet their exact specifications. A web-based API will provide an interface for machine-to-machine transactions.
NASA Astrophysics Data System (ADS)
Boldrini, Enrico; Schaap, Dick M. A.; Nativi, Stefano
2013-04-01
SeaDataNet implements a distributed pan-European infrastructure for Ocean and Marine Data Management whose nodes are maintained by 40 national oceanographic and marine data centers from 35 countries riparian to all European seas. A unique portal makes possible distributed discovery, visualization and access of the available sea data across all the member nodes. Geographic metadata play an important role in such an infrastructure, enabling an efficient documentation and discovery of the resources of interest. In particular: - Common Data Index (CDI) metadata describe the sea datasets, including identification information (e.g. product title, interested area), evaluation information (e.g. data resolution, constraints) and distribution information (e.g. download endpoint, download protocol); - Cruise Summary Reports (CSR) metadata describe cruises and field experiments at sea, including identification information (e.g. cruise title, name of the ship), acquisition information (e.g. utilized instruments, number of samples taken) In the context of the second phase of SeaDataNet (SeaDataNet 2 EU FP7 project, grant agreement 283607, started on October 1st, 2011 for a duration of 4 years) a major target is the setting, adoption and promotion of common international standards, to the benefit of outreach and interoperability with the international initiatives and communities (e.g. OGC, INSPIRE, GEOSS, …). A standardization effort conducted by CNR with the support of MARIS, IFREMER, STFC, BODC and ENEA has led to the creation of a ISO 19115 metadata profile of CDI and its XML encoding based on ISO 19139. The CDI profile is now in its stable version and it's being implemented and adopted by the SeaDataNet community tools and software. The effort has then continued to produce an ISO based metadata model and its XML encoding also for CSR. The metadata elements included in the CSR profile belong to different models: - ISO 19115: E.g. cruise identification information, including title and area of interest; metadata responsible party information - ISO 19115-2: E.g. acquisition information, including date of sampling, instruments used - SeaDataNet: E.g. SeaDataNet community specific, including EDMO and EDMERP code lists Two main guidelines have been followed in the metadata model drafting: - All the obligations and constraints required by both the ISO standards and INSPIRE directive had to be satisfied. These include the presence of specific elements with given cardinality (e.g. mandatory metadata date stamp, mandatory lineage information) - All the content information of legacy CSR format had to be supported by the new metadata model. An XML encoding of the CSR profile has been defined as well. Based on the ISO 19139 XML schema and constraints, it adds the new elements specific of the SeaDataNet community. The associated Schematron rules are used to enforce constraints not enforceable just with the Schema and to validate elements content against the SeaDataNet code lists vocabularies.
Mercury: Reusable software application for Metadata Management, Data Discovery and Access
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce E.
2009-12-01
Mercury is a federated metadata harvesting, data discovery and access tool based on both open source packages and custom developed software. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury is itself a reusable toolset for metadata, with current use in 12 different projects. Mercury also supports the reuse of metadata by enabling searching across a range of metadata specification and standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115. Mercury provides a single portal to information contained in distributed data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. One of the major goals of the recent redesign of Mercury was to improve the software reusability across the projects which currently fund the continuing development of Mercury. These projects span a range of land, atmosphere, and ocean ecological communities and have a number of common needs for metadata searches, but they also have a number of needs specific to one or a few projects To balance these common and project-specific needs, Mercury’s architecture includes three major reusable components; a harvester engine, an indexing system and a user interface component. The harvester engine is responsible for harvesting metadata records from various distributed servers around the USA and around the world. The harvester software was packaged in such a way that all the Mercury projects will use the same harvester scripts but each project will be driven by a set of configuration files. The harvested files are then passed to the Indexing system, where each of the fields in these structured metadata records are indexed properly, so that the query engine can perform simple, keyword, spatial and temporal searches across these metadata sources. The search user interface software has two API categories; a common core API which is used by all the Mercury user interfaces for querying the index and a customized API for project specific user interfaces. For our work in producing a reusable, portable, robust, feature-rich application, Mercury received a 2008 NASA Earth Science Data Systems Software Reuse Working Group Peer-Recognition Software Reuse Award. The new Mercury system is based on a Service Oriented Architecture and effectively reuses components for various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. The software also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets, integrated shopping cart to order datasets from various data centers (ORNL DAAC, NSIDC) and integrated visualization tools. Other features include: Filtering and dynamic sorting of search results, book-markable search results, save, retrieve, and modify search criteria.
Explorative visual analytics on interval-based genomic data and their metadata.
Jalili, Vahid; Matteucci, Matteo; Masseroli, Marco; Ceri, Stefano
2017-12-04
With the wide-spreading of public repositories of NGS processed data, the availability of user-friendly and effective tools for data exploration, analysis and visualization is becoming very relevant. These tools enable interactive analytics, an exploratory approach for the seamless "sense-making" of data through on-the-fly integration of analysis and visualization phases, suggested not only for evaluating processing results, but also for designing and adapting NGS data analysis pipelines. This paper presents abstractions for supporting the early analysis of NGS processed data and their implementation in an associated tool, named GenoMetric Space Explorer (GeMSE). This tool serves the needs of the GenoMetric Query Language, an innovative cloud-based system for computing complex queries over heterogeneous processed data. It can also be used starting from any text files in standard BED, BroadPeak, NarrowPeak, GTF, or general tab-delimited format, containing numerical features of genomic regions; metadata can be provided as text files in tab-delimited attribute-value format. GeMSE allows interactive analytics, consisting of on-the-fly cycling among steps of data exploration, analysis and visualization that help biologists and bioinformaticians in making sense of heterogeneous genomic datasets. By means of an explorative interaction support, users can trace past activities and quickly recover their results, seamlessly going backward and forward in the analysis steps and comparative visualizations of heatmaps. GeMSE effective application and practical usefulness is demonstrated through significant use cases of biological interest. GeMSE is available at http://www.bioinformatics.deib.polimi.it/GeMSE/ , and its source code is available at https://github.com/Genometric/GeMSE under GPLv3 open-source license.
The Constellations of the Zodiac: Astronomy for Low Vision and Blind People
NASA Astrophysics Data System (ADS)
Garcia, B.; Cicero, A.; Farrando, M.; Bruno, P.
2006-08-01
One thinks, in general, there exist areas of the knowledge to which it is not possible to be acceded if one of the senses is diminished. Nevertheless, the reality is far from this false concept: it is not necessary to hear to compose music, nor to see to come near to the starred sky. This book has the purpose to introduce to the readers with visual difficulties the amazing world of astronomy, by means of the transmission of basic concepts of positional astronomy (cardinal points, Earth movements, apparent movement of the celestial sphere), with special emphasis in: movement of precession, the concept of stellar magnitude, its representation in celestial charts, and relation to mythology. On the other hand, the figures associated with the 13 constellations in the region of the plane of the ecliptic are described. The texts and the images are displayed in two formats: for visually diminished people, one worked on the basis of the original engravings of the Uranographia by Hevelius (1690). These were adapted and simplified for their better understanding, and a recommended font size. For blind people, we use tactile feature for the figures and Braille for the text.
Leveraging Conceptual Frameworks to Improve Students' Mental Organization of Astronomy Understanding
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Lee, K. M.
2006-06-01
Many different types of schematic diagrams are useful in helping students organize and internalize their developing understanding in introductory astronomy courses. These include Venn Diagrams, Flowcharts, Concept Maps, among others, which illustrate the relationships between astronomical objects and dynamic concepts. These conceptual framework diagrams have been incorporated into the NSF-funded ClassAction project. ClassAction is a collection of electronic materials designed to enhance the metacognitive skills of college and university introductory astronomy survey students by promoting interactive engagement and providing rapid feedback in a highly visual setting. The main effort is targeted at creating dynamic think-pair-share questions supported by simulations, animations, and visualizations to be projected in the lecture classroom. The infrastructure allows instructors to recast these questions into alternative forms based on their own pedagogical preferences and feedback from the class. The recourses can be easily selected from a FLASH computer database and are accompanied by outlines, graphics, and numerous simulations which the instructor can use to provide student feedback and, when necessary, remediation. ClassAction materials are publicly available online at URL: http://astro.unl.edu and is funded by NSF Grant #0404988.
Astronomy in the United States: Workforce Development and Public Engagement
NASA Astrophysics Data System (ADS)
Impey, Chris
2012-08-01
Astronomy workforce development and public engagement in the United States are described. The number of professional astronomers has grown by about a third in the past 25 years, to about 4000. Only one in four are faculty in an academic setting; the rest work in a wide range of public and private research institutes. PhD production has remained steady at about 200 per year. Women account for roughly half of BSc degrees and a third of PhD degrees, but their participation declines to about 10% at the level of full professor. Minorities are underrepresented by a substantial factor at all levels of the profession. In terms of public engagement, astronomy has unique advantages associated with its visual appeal and the large and active amateur astronomy community. The are 1400 public planetaria in the US, with another 110 in schools and universities. Astronomers have made good use of new media such as blogs and podcasts and social networks, but the biggest impact has been in the area of citizen science, where people with no technical background contribute directly to a research project by, for example, classifying galaxies. The International Year of Astronomy and the remarkable success of the Galileoscope have inspired large numbers of people to appreciate astronomy, contributing indirectly to the professional vitality of the field.
Astronomy: On the Bleeding Edge of Scholarly Infrastructure
NASA Astrophysics Data System (ADS)
Borgman, Christine; Sands, A.; Wynholds, L. A.
2013-01-01
The infrastructure for scholarship has moved online, making data, articles, papers, journals, catalogs, and other scholarly resources nodes in a deeply interconnected network. Astronomy has led the way on several fronts, developing tools such as ADS to provide unified access to astronomical publications and reaching agreement on a common data file formats such as FITS. Astronomy also was among the first fields to establish open access to substantial amounts of observational data. We report on the first three years of a long-term research project to study knowledge infrastructures in astronomy, funded by the NSF and the Alfred P. Sloan Foundation. Early findings indicate that the availability and use of networked technologies for integrating scholarly resources varies widely within astronomy. Substantial differences arise in the management of data between ground-based and space-based missions and between subfields of astronomy, for example. While large databases such as SDSS and MAST are essential resources for many researchers, much pointed, ground-based observational data exist only on local servers, with minimal curation. Some astronomy data are easily discoverable and usable, but many are not. International coordination activities such as IVOA and distributed access to high-level data products servers such as SIMBAD and NED are enabling further integration of published data. Astronomers are tackling yet more challenges in new forms of publishing data, algorithms, visualizations, and in assuring interoperability with parallel infrastructure efforts in related fields. New issues include data citation, attribution, and provenance. Substantial concerns remain for the long term discoverability, accessibility, usability, and curation of astronomy data and other scholarly resources. The presentation will outline these challenges, how they are being addressed by astronomy and related fields, and identify concerns and accomplishments expressed by the astronomers we have interviewed and observed.
Multimillion Atom Simulations and Visualization of Hypervelocity Impact Damage and Oxidation
2004-01-01
MULTIMILLION ATOM SIMULATIONS AND VISUALIZATION OF HYPERVELOCITY IMPACT DAMAGE AND OXIDATION Priya Vashishta*, Rajiv K. Kalia, and Aiichiro Nakano...number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 00 DEC 2004 N/A 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multimillion Atom Simulations And...Collaboratory for Advanced Computing and Simulations Department of Materials Science & Engineering, Department of Physics & Astronomy, Department of
GeoCrystal: graphic-interactive access to geodata archives
NASA Astrophysics Data System (ADS)
Goebel, Stefan; Haist, Joerg; Jasnoch, Uwe
2002-03-01
Recently there is spent a lot of effort to establish information systems and global infrastructures enabling both data suppliers and users to describe (-> eCommerce, metadata) as well as to find appropriate data. Examples for this are metadata information systems, online-shops or portals for geodata. The main disadvantages of existing approaches are insufficient methods and mechanisms leading users to (e.g. spatial) data archives. This affects aspects concerning usability and personalization in general as well as visual feedback techniques in the different steps of the information retrieval process. Several approaches aim at the improvement of graphical user interfaces by using intuitive metaphors, but only some of them offer 3D interfaces in the form of information landscapes or geographic result scenes in the context of information systems for geodata. This paper presents GeoCrystal, which basic idea is to adopt Venn diagrams to compose complex queries and to visualize search results in a 3D information and navigation space for geodata. These concepts are enhanced with spatial metaphors and 3D information landscapes (library for geodata) wherein users can specify searches for appropriate geodata and are enabled to graphic-interactively communicate with search results (book metaphor).
Scientific Visualization of Radio Astronomy Data using Gesture Interaction
NASA Astrophysics Data System (ADS)
Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.
2015-09-01
MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.
Earthdata Search: How Usability Drives Innovation To Enable A Broad User Base
NASA Astrophysics Data System (ADS)
Reese, M.; Siarto, J.; Lynnes, C.; Shum, D.
2017-12-01
Earthdata Search (https://search.earthdata.nasa.gov) is a modern web application allowing users to search, discover, visualize, refine, and access NASA Earth Observation data using a wide array of service offerings. Its goal is to ease the technical burden on data users by providing a high-quality application that makes it simple to interact with NASA Earth observation data, freeing them to spend more effort on innovative endeavors. This talk would detail how we put end users first in our design and development process, focusing on usability and letting usability needs drive requirements for the underlying technology. Just a few examples of how this plays out practically, Earthdata Search teams with a lightning fast metadata repository, allowing it to be an extremely responsive UI that updates as the user changes criteria not only at the dataset level, but also at the file level. This results in a better exploration experience as the time penalty is greatly reduced. Also, since Earthdata Search uses metadata from over 35,000 datasets that are managed by different data providers, metadata standards, quality and consistency will vary. We found that this was negatively impacting users' search and exploration experience. We have resolved this problem with the introduction of "humanizers", which is a community-driven process to both "smooth out" metadata values and provide non-jargonistic representations of some content within the Earthdata Search UI. This is helpful for both the experience data scientist and our users that are brand new to the discipline.
Evolution of Web Services in EOSDIS: Search and Order Metadata Registry (ECHO)
NASA Technical Reports Server (NTRS)
Mitchell, Andrew; Ramapriyan, Hampapuram; Lowe, Dawn
2009-01-01
During 2005 through 2008, NASA defined and implemented a major evolutionary change in it Earth Observing system Data and Information System (EOSDIS) to modernize its capabilities. This implementation was based on a vision for 2015 developed during 2005. The EOSDIS 2015 Vision emphasizes increased end-to-end data system efficiency and operability; increased data usability; improved support for end users; and decreased operations costs. One key feature of the Evolution plan was achieving higher operational maturity (ingest, reconciliation, search and order, performance, error handling) for the NASA s Earth Observing System Clearinghouse (ECHO). The ECHO system is an operational metadata registry through which the scientific community can easily discover and exchange NASA's Earth science data and services. ECHO contains metadata for 2,726 data collections comprising over 87 million individual data granules and 34 million browse images, consisting of NASA s EOSDIS Data Centers and the United States Geological Survey's Landsat Project holdings. ECHO is a middleware component based on a Service Oriented Architecture (SOA). The system is comprised of a set of infrastructure services that enable the fundamental SOA functions: publish, discover, and access Earth science resources. It also provides additional services such as user management, data access control, and order management. The ECHO system has a data registry and a services registry. The data registry enables organizations to publish EOS and other Earth-science related data holdings to a common metadata model. These holdings are described through metadata in terms of datasets (types of data) and granules (specific data items of those types). ECHO also supports browse images, which provide a visual representation of the data. The published metadata can be mapped to and from existing standards (e.g., FGDC, ISO 19115). With ECHO, users can find the metadata stored in the data registry and then access the data either directly online or through a brokered order to the data archive organization. ECHO stores metadata from a variety of science disciplines and domains, including Climate Variability and Change, Carbon Cycle and Ecosystems, Earth Surface and Interior, Atmospheric Composition, Weather, and Water and Energy Cycle. ECHO also has a services registry for community-developed search services and data services. ECHO provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources (data, service and clients). In their native state, these data, service and client resources are not necessarily targeted for use beyond their original mission. However, with the proper interoperability mechanisms, users of these resources can expand their value, by accessing, combining and applying them in unforeseen ways.
NASA Astrophysics Data System (ADS)
Blower, Jon; Lawrence, Bryan; Kershaw, Philip; Nagni, Maurizio
2014-05-01
The research process can be thought of as an iterative activity, initiated based on prior domain knowledge, as well on a number of external inputs, and producing a range of outputs including datasets, studies and peer reviewed publications. These outputs may describe the problem under study, the methodology used, the results obtained, etc. In any new publication, the author may cite or comment other papers or datasets in order to support their research hypothesis. However, as their work progresses, the researcher may draw from many other latent channels of information. These could include for example, a private conversation following a lecture or during a social dinner; an opinion expressed concerning some significant event such as an earthquake or for example a satellite failure. In addition, other sources of information of grey literature are important public such as informal papers such as the arxiv deposit, reports and studies. The climate science community is not an exception to this pattern; the CHARMe project, funded under the European FP7 framework, is developing an online system for collecting and sharing user feedback on climate datasets. This is to help users judge how suitable such climate data are for an intended application. The user feedback could be comments about assessments, citations, or provenance of the dataset, or other information such as descriptions of uncertainty or data quality. We define this as a distinct category of metadata called Commentary or C-metadata. We link C-metadata with target climate datasets using a Linked Data approach via the Open Annotation data model. In the context of Linked Data, C-metadata plays the role of a resource which, depending on its nature, may be accessed as simple text or as more structured content. The project is implementing a range of software tools to create, search or visualize C-metadata including a JavaScript plugin enabling this functionality to be integrated in situ with data provider portals. Since commentary metadata may originate from a range of sources, moderation of this information will become a crucial issue. If the project is successful, expert human moderation (analogous to peer-review) will become impracticable as annotation numbers increase, and some combination of algorithmic and crowd-sourced evaluation of commentary metadata will be necessary. To that end, future work will need to extend work under development to enable access control and checking of inputs, to deal with scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Dustin Yewell
Echo™ is a MATLAB-based software package designed for robust and scalable analysis of complex data workflows. An alternative to tedious, error-prone conventional processes, Echo is based on three transformative principles for data analysis: self-describing data, name-based indexing, and dynamic resource allocation. The software takes an object-oriented approach to data analysis, intimately connecting measurement data with associated metadata. Echo operations in an analysis workflow automatically track and merge metadata and computation parameters to provide a complete history of the process used to generate final results, while automated figure and report generation tools eliminate the potential to mislabel those results. History reportingmore » and visualization methods provide straightforward auditability of analysis processes. Furthermore, name-based indexing on metadata greatly improves code readability for analyst collaboration and reduces opportunities for errors to occur. Echo efficiently manages large data sets using a framework that seamlessly allocates resources such that only the necessary computations to produce a given result are executed. Echo provides a versatile and extensible framework, allowing advanced users to add their own tools and data classes tailored to their own specific needs. Applying these transformative principles and powerful features, Echo greatly improves analyst efficiency and quality of results in many application areas.« less
Dynamic publication model for neurophysiology databases.
Gardner, D; Abato, M; Knuth, K H; DeBellis, R; Erde, S M
2001-08-29
We have implemented a pair of database projects, one serving cortical electrophysiology and the other invertebrate neurones and recordings. The design for each combines aspects of two proven schemes for information interchange. The journal article metaphor determined the type, scope, organization and quantity of data to comprise each submission. Sequence databases encouraged intuitive tools for data viewing, capture, and direct submission by authors. Neurophysiology required transcending these models with new datatypes. Time-series, histogram and bivariate datatypes, including illustration-like wrappers, were selected by their utility to the community of investigators. As interpretation of neurophysiological recordings depends on context supplied by metadata attributes, searches are via visual interfaces to sets of controlled-vocabulary metadata trees. Neurones, for example, can be specified by metadata describing functional and anatomical characteristics. Permanence is advanced by data model and data formats largely independent of contemporary technology or implementation, including Java and the XML standard. All user tools, including dynamic data viewers that serve as a virtual oscilloscope, are Java-based, free, multiplatform, and distributed by our application servers to any contemporary networked computer. Copyright is retained by submitters; viewer displays are dynamic and do not violate copyright of related journal figures. Panels of neurophysiologists view and test schemas and tools, enhancing community support.
Exploring Cultural Heritage Resources in a 3d Collaborative Environment
NASA Astrophysics Data System (ADS)
Respaldiza, A.; Wachowicz, M.; Vázquez Hoehne, A.
2012-06-01
Cultural heritage is a complex and diverse concept, which brings together a wide domain of information. Resources linked to a cultural heritage site may consist of physical artefacts, books, works of art, pictures, historical maps, aerial photographs, archaeological surveys and 3D models. Moreover, all these resources are listed and described by a set of a variety of metadata specifications that allow their online search and consultation on the most basic characteristics of them. Some examples include Norma ISO 19115, Dublin Core, AAT, CDWA, CCO, DACS, MARC, MoReq, MODS, MuseumDat, TGN, SPECTRUM, VRA Core and Z39.50. Gateways are in place to fit in these metadata standards into those used in a SDI (ISO 19115 or INSPIRE), but substantial work still remains to be done for the complete incorporation of cultural heritage information. Therefore, the aim of this paper is to demonstrate how the complexity of cultural heritage resources can be dealt with by a visual exploration of their metadata within a 3D collaborative environment. The 3D collaborative environments are promising tools that represent the new frontier of our capacity of learning, understanding, communicating and transmitting culture.
HTML5 PivotViewer: high-throughput visualization and querying of image data on the web.
Taylor, Stephen; Noble, Roger
2014-09-15
Visualization and analysis of large numbers of biological images has generated a bottle neck in research. We present HTML5 PivotViewer, a novel, open source, platform-independent viewer making use of the latest web technologies that allows seamless access to images and associated metadata for each image. This provides a powerful method to allow end users to mine their data. Documentation, examples and links to the software are available from http://www.cbrg.ox.ac.uk/data/pivotviewer/. The software is licensed under GPLv2. © The Author 2014. Published by Oxford University Press.
Art in Science Promoting Interest in Research and Exploration (ASPIRE)
NASA Astrophysics Data System (ADS)
Fillingim, M.; Zevin, D.; Thrall, L.; Croft, S.; Raftery, C.; Shackelford, R.
2015-11-01
Led by U.C. Berkeley's Center for Science Education at the Space Sciences Laboratory in partnership with U.C. Berkeley Astronomy, the Lawrence Hall of Science, and the YMCA of the Central Bay Area, Art in Science Promoting Interest in Research and Exploration (ASPIRE) is a NASA EPOESS-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. ASPIRE's aim is to motivate more diverse young people (especially African Americans) to learn about Science, Technology, Engineering, and Mathematics (STEM) topics and careers, via 1) Intensive summer workshops; 2) Drop-in after school workshops; 3) Astronomy visualization-focused outreach programming at public venues including a series of free star parties where the students help run the events; and 5) A website and a number of social networking strategies that highlight our youth's artwork.
A Research Agenda and Vision for Data Science
NASA Astrophysics Data System (ADS)
Mattmann, C. A.
2014-12-01
Big Data has emerged as a first-class citizen in the research community spanning disciplines in the domain sciences - Astronomy is pushing velocity with new ground-based instruments such as the Square Kilometre Array (SKA) and its unprecedented data rates (700 TB/sec!); Earth-science is pushing the boundaries of volume with increasing experiments in the international Intergovernmental Panel on Climate Change (IPCC) and climate modeling and remote sensing communities increasing the size of the total archives into the Exabytes scale; airborne missions from NASA such as the JPL Airborne Snow Observatory (ASO) is increasing both its velocity and decreasing the overall turnaround time required to receive products and to make them available to water managers and decision makers. Proteomics and the computational biology community are sequencing genomes and providing near real time answers to clinicians, researchers, and ultimately to patients, helping to process and understand and create diagnoses. Data complexity is on the rise, and the norm is no longer 100s of metadata attributes, but thousands to hundreds of thousands, including complex interrelationships between data and metadata and knowledge. I published a vision for data science in Nature 2013 that encapsulates four thrust areas and foci that I believe the computer science, Big Data, and data science communities need to attack over the next decade to make fundamental progress in the data volume, velocity and complexity challenges arising from the domain sciences such as those described above. These areas include: (1) rapid and unobtrusive algorithm integration; (2) intelligent and automatic data movement; (3) automated and rapid extraction text, metadata and language from heterogeneous file formats; and (4) participation and people power via open source communities. In this talk I will revisit these four areas and describe current progress; future work and challenges ahead as we move forward in this exciting age of Data Science.
Using Virtual Astronomical Observatory Tools for Astronomy 101
NASA Astrophysics Data System (ADS)
Mighell, Kenneth J.; Garmany, K.; Larson, K.; Eastwood, K. D.
2009-01-01
The Virtual Observatory provides several tools that are useful for educators. With these tools, instructors can easily provide real data to students in an environment that engages student curiosity and builds student understanding. In this poster we demonstrate how the tools Aladin and TOPCAT can be used to enhance astronomy education. The Aladin Sky Atlas is a Virtual Observatory portal from the CDS that displays images, superimposes catalogs, and provides interactive access to data. For illustration, we show an exercise for non-science majors in a college-level astronomy course that introduces students to the HR diagram of star clusters. After launching the pre-loaded Aladin applet, students select their own stars, connecting visual cues of brightness and color to the conceptual meaning behind a quantitative HR diagram. TOPCAT can be linked with Aladin on the desktop to let students analyze their data, perform calculations, and create professional-quality graphs. The basic exercise can be easily expanded to address other learning objectives and provides a launching point for students to access, visualize, and explore multi-wavelength data as they continue in astronomy. As a second example, we show an exercise that uses TOPCAT to do three-dimensional plotting of the positions of open and globular cluster to illustrate galactic structure. Detailed information is available at the following website: http://www.noao.edu/staff/mighell/nvoss2008/ . This research was done at the 2008 U.S. National Virtual Observatory Summer School which was held in Santa Fe, New Mexico on September 3 - 11, 2008 and was sponsored by the National Science Foundation.
Global projects and Astronomy awareness activities in Nepal
NASA Astrophysics Data System (ADS)
Gautam, Suman
2015-08-01
Modern astronomy is a crowning achievement of human civilization which inspires teenagers to choose career in science and technology and is a stable of adult education. It is a unique and cost effective tool for furthering sustainable global development because of its technological, scientific and cultural dimensions which allow us to reach with the large portion of the community interact with children and inspire with our wonderful cosmos.Using astronomy to stimulate quality and inspiring education for disadvantaged children is an important goal of Nepal Astronomical Society (NASO) since its inception. NASO is carrying out various awareness activities on its own and in collaboration with national and international organizations like Central Department of Physics Tribhuvan University (TU), International astronomical Union (IAU), Department of Physics Prithvi Narayan Campus Pokhara, Nepal academy of science and technology (NAST), Global Hands on Universe (GHOU), EU- UNAWE and Pokhara Astronomical Society (PAS) to disseminate those activities for the school children and teachers in Nepal. Our experiences working with kids, students, teachers and public in the field of universe Awareness Activities for the school children to minimize the abstruse concept of astronomy through some practical approach and the project like Astronomy for the visually impaired students, Galileo Teacher Training program and International School for young astronomers (ISYA) outskirts will be explained which is believed to play vital role in promoting astronomy and space science activities in Nepal.
NASA Astrophysics Data System (ADS)
Ramien, Natalie; Loebman, S. R.; Player, V.; Larson, A.; Torcolini, N. B.; Traverse, A.
2011-01-01
Currently astronomy learning is heavily geared towards visual aids; however, roughly 10 million people in North America are sight impaired. Every student should have access to meaningful astronomy curriculum; an understanding of astronomy is an expectation of national and state science learning requirements. Over the last ten years, Noreen Grice has developed Braille and large print astronomy text books aimed at sight impaired learners. We build upon Grice's written work and present here a five day lesson plan that integrates 2D reading with 3D activities. Through this curriculum, students develop an intuitive understanding of astronomical distance, size, composition and lifetimes. We present five distinct lesson modules that can be taught individually or in a sequential form: the planets, our sun, stars, stellar evolution and galaxies. We have tested these modules on sight impaired students and report the results here. Overall, we find the work presented here lends itself equally well to a week long science camp geared toward middle school sight impaired taught by astronomers or as supplemental material integrated into a regular classroom science curriculum. This work was made possible by a 2007 Simple Effective Education and Dissemination (SEED) Grant For Astronomy Researchers, Astronomical Society of the Pacific through funds provided by the Planck Mission, Jet Propulsion Laboratory, California Institute of Technology.
Scalable Data Mining and Archiving for the Square Kilometre Array
NASA Astrophysics Data System (ADS)
Jones, D. L.; Mattmann, C. A.; Hart, A. F.; Lazio, J.; Bennett, T.; Wagstaff, K. L.; Thompson, D. R.; Preston, R.
2011-12-01
As the technologies for remote observation improve, the rapid increase in the frequency and fidelity of those observations translates into an avalanche of data that is already beginning to eclipse the resources, both human and technical, of the institutions and facilities charged with managing the information. Common data management tasks like cataloging both data itself and contextual meta-data, creating and maintaining scalable permanent archive, and making data available on-demand for research present significant software engineering challenges when considered at the scales of modern multi-national scientific enterprises such as the upcoming Square Kilometre Array project. The NASA Jet Propulsion Laboratory (JPL), leveraging internal research and technology development funding, has begun to explore ways to address the data archiving and distribution challenges with a number of parallel activities involving collaborations with the EVLA and ALMA teams at the National Radio Astronomy Observatory (NRAO), and members of the Square Kilometre Array South Africa team. To date, we have leveraged the Apache OODT Process Control System framework and its catalog and archive service components that provide file management, workflow management, resource management as core web services. A client crawler framework ingests upstream data (e.g., EVLA raw directory output), identifies its MIME type and automatically extracts relevant metadata including temporal bounds, and job-relevant/processing information. A remote content acquisition (pushpull) service is responsible for staging remote content and handing it off to the crawler framework. A science algorithm wrapper (called CAS-PGE) wraps underlying code including CASApy programs for the EVLA, such as Continuum Imaging and Spectral Line Cube generation, executes the algorithm, and ingests its output (along with relevant extracted metadata). In addition to processing, the Process Control System has been leveraged to provide data curation and automatic ingestion for the MeerKAT/KAT-7 precursor instrument in South Africa, helping to catalog and archive correlator and sensor output from KAT-7, and to make the information available for downstream science analysis. These efforts, supported by the increasing availability of high-quality open source software, represent a concerted effort to seek a cost-conscious methodology for maintaining the integrity of observational data from the upstream instrument to the archive, and at the same time ensuring that the data, with its richly annotated catalog of meta-data, remains a viable resource for research into the future.
Hellenic Amateur Astronomy Association's activities: Preliminary results on Perseids 2010
NASA Astrophysics Data System (ADS)
Maravelias, G.
2011-01-01
Preliminary results on the Perseids 2010 are presented. Visual and video observations were obtained by the author and a first reduction of the visual data shows that a maximum of ZHR ~120 was reached during the night 12-13 of August 2010. Moreover, a video setup was tested (DMK camera and UFO Capture v2) and the results show that, under some limitations, valuable data can be obtained.
Authentic Astronomical Discovery in Planetariums: Data-Driven Immersive Lectures
NASA Astrophysics Data System (ADS)
Wyatt, Ryan Jason
2018-01-01
Planetariums are akin to “branch offices” for astronomy in major cities and other locations around the globe. With immersive, fulldome video technology, modern digital planetariums offer the opportunity to integrate authentic astronomical data into both pre-recorded shows and live lectures. At the California Academy of Sciences Morrison Planetarium, we host the monthly Benjamin Dean Astronomy Lecture Series, which features researchers describing their cutting-edge work to well-informed lay audiences. The Academy’s visualization studio and engineering teams work with researchers to visualize their data in both pre-rendered and real-time formats, and these visualizations are integrated into a variety of programs—including lectures! The assets are then made available to any other planetariums with similar software to support their programming. A lecturer can thus give the same immersive presentation to audiences in a variety of planetariums. The Academy has also collaborated with Chicago’s Adler Planetarium to bring Kavli Fulldome Lecture Series to San Francisco, and the two theaters have also linked together in live “domecasts” to share real-time content with audiences in both cities. These lecture series and other, similar projects suggest a bright future for astronomers to bring their research to the public in an immersive and visually compelling format.
The new Andean Regional Office of Astronomy for Development (ROAD)
NASA Astrophysics Data System (ADS)
Char, Farid; Forero-Romero, Jaime
2015-08-01
The Andean Regional Office of Astronomy for Development (ROAD) is a new effort in South America to serve several goals in astronomical development. Six countries (Bolivia, Colombia, Chile, Ecuador, Perú and Venezuela) will work together, representing a common language block in the Andean region and focusing on develop strategies to strengthen the professional research, education and popularization of astronomy. Our current Working Structure comprises a ROAD Coordinator and Coordinators per Task Force, as well as Organizing Committees, Collaborators and Volunteers.The participating institutions of this new ROAD have been involved in many projects involving each of the current OAD’s Task Forces: research, schools and children and public, exploring educational activities/material to be shared among the Andean countries, standardizing the knowledge and creating inspirational experiences. We expect to generate many efforts in order to bring a more homogeneous activity in each Andean country, taking into account the special role of Chile in global astronomy, due to its great conditions for astronomy and the involvement of many professional observatories, universities and astronomy institutions.Our current (and upcoming) most relevant activities includes: Andean Schools on Astronomy, Andean Graduate Program and Massive Open Online Courses (TF1); Virtual Training Sessions and Teaching material for the visually impaired students; Annual TF2 meeting to gather all the collaborators (TF2); Development for planetariums and Communicating Astronomy with the Public (TF3). The Andean region, in the other hand, will also be involved in at least two important events: the CAP Meeting in May 2016 and the XV LARIM in October 2016 (both in Colombia); and Chile will bid to host the XXXI IAU GA in 2021, with the aim of show the great advances in astronomical development from the Andean region and South America.
Cosmic Noise: The Pioneers of Early Radio Astronomy and Their Discoveries
NASA Astrophysics Data System (ADS)
Sullivan, Woodruff T., III
2012-01-01
Extraterrestrial radio waves (the galactic background), often referred to as "cosmic noise", were first detected accidentally by Karl Jansky at a frequency of 20 MHz in 1932, with significant followup by Grote Reber. Yet after World War II it was England and Australia that dominated the field. An entirely different sky from that of visual astronomy was revealed by the discoveries of solar noise, "radio stars” (discrete sources such as Cas A, Tau A, Cyg A, Cen A and Vir A), galactic noise, lunar and meteor radar experiments, the detection of the 21 cm hydrogen line, and eventually optical identifications such as the Crab Nebula and M87. Key players included wartime radar experts such as Stanley Hey (the British Army's Operational Research Group), Martin Ryle (Cambridge University), Bernard Lovell (Jodrell Bank) and Joe Pawsey (Radiophysics Lab, Sydney). Younger leaders also emerged such as Graham Smith, Tony Hewish, John Davies, "Chris" Christiansen, Bernie Mills, Paul Wild, and John Bolton. Some optical astronomers (Jan Oort, Henk van de Hulst, Jesse Greenstein, Rudolph Minkowski, and Walter Baade) were also extremely supportive. By the end of the postwar decade, radio astronomy was firmly established within the gamut of astronomy, although very few of its practitioners had been trained as astronomers. I will also trace the technical and social aspects of this wholly new type of astronomy, with special attention on military and national influences. I argue that radio astronomy represents one of the key developments in twentieth century astronomy not only because of its own discoveries, but also its pathfinding for the further opening the electromagnetic spectrum. This study is based on exhaustive archival research and over one hundred interviews with pioneering radio astronomers. Full details are available in the book "Cosmic Noise: A History of Early Radio Astronomy" (Cambridge Univ. Pr.).
Introducing the ‘Science Myths Revealed’ Misconception Video Series
NASA Astrophysics Data System (ADS)
Eisenhamer, Bonnie; Villard, R.; Estacion, M.; Hassan, J.; Ryer, H.
2012-05-01
A misconception is a preconceived and inaccurate view of how the world works. There are many common science misconceptions held by students and the public alike about various topics in astronomy - including but not limited to galaxies, black holes, light and color, and the solar system. It is critical to identify and address misconceptions because they can stand in the way of new learning and impeded one’s ability to apply science principals meaningfully to everyday life. In response, the News and Education teams at the Space Telescope Science Institute worked in collaboration with a consultant to develop the “Science Myths Revealed” misconception video series. The purpose of this video series is to present common astronomy misconceptions in a brief and visually engaging manner while also presenting and reinforcing the truth of the universe and celestial phenomena within it. Viewers can the watch the videos to get more information about specific astronomy misconceptions as well as the facts to dispel them. Visual cues and demonstrations provide viewers with a more concrete representation of what are often abstract and misunderstood concepts - making the videos ideal as both engagement and instructional tools. Three videos in the series have been produced and are currently being field-tested within the education community.
NASA Astrophysics Data System (ADS)
Silva, J. N.; Voelzke, M. R.; Araújo, M. S. T.
2018-03-01
Although Astronomy is part of everyday life of the people, peculiarities are little-known for an observer on the equator, as residents in Macapá-AP, located at Latitude Zero. So, this work aims to support physics teaching focusing on the correct diffusion of some physical phenomena which have an intrinsic relationship with Astronomy from the sight of an observer at latitude zero, highlighting the celestial sphere visualization and emphasizing which constellations are visible during an earth year, being proposed the elaboration of a planisphere to this latitude. It's also discussed about the Solstices and, more specifically, about the Equinoxes and their particularities for an observer in latitude zero. The offered approach can help teachers of Physics and Science who work in regular education schools to explore these important astronomical phenomena.
Amazing Space: Explanations, Investigations, & 3D Visualizations
NASA Astrophysics Data System (ADS)
Summers, Frank
2011-05-01
The Amazing Space website is STScI's online resource for communicating Hubble discoveries and other astronomical wonders to students and teachers everywhere. Our team has developed a broad suite of materials, readings, activities, and visuals that are not only engaging and exciting, but also standards-based and fully supported so that they can be easily used within state and national curricula. These products include stunning imagery, grade-level readings, trading card games, online interactives, and scientific visualizations. We are currently exploring the potential use of stereo 3D in astronomy education.
Identifying the Functional Requirements for an Arizona Astronomy Data Hub (AADH)
NASA Astrophysics Data System (ADS)
Stahlman, G.; Heidorn, P. B.
2015-12-01
Astronomy data represent a curation challenge for information managers, as well as for astronomers. Extracting knowledge from these heterogeneous and complex datasets is particularly complicated and requires both interdisciplinary and domain expertise to accomplish true curation, with an overall goal of facilitating reproducible science through discoverability and persistence. A group of researchers and professional staff at the University of Arizona held several meetings during the spring of 2015 about astronomy data and the role of the university in curation of that data. The group decided that it was critical to obtain a broader consensus on the needs of the community. With assistance from a Start for Success grant provided by the University of Arizona Office of Research and Discovery and funding from the American Astronomical Society (AAS), a workshop was held in early July 2015, with 28 participants plus 4 organizers in attendance. Representing University researchers as well as astronomical facilities and a scholarly society, the group verified that indeed there is a problem with the long-term curation of some astronomical data not associated with major facilities, and that a repository or "data hub" with the correct functionality could facilitate research and the preservation and use of astronomy data. The workshop members also identified a set of next steps, including the identification of possible data and metadata to be included in the Hub. The participants further helped to identify additional information that must be gathered before construction of the AADH could begin, including identifying significant datasets that do not currently have sufficient preservation and dissemination infrastructure, as well as some data associated with journal publications and the broader context of the data beyond that directly published in the journals. Workshop participants recommended that a set of grant proposal should be developed that ensures community buy-in and participation. The project should be developed in an agile, incremental manner that will allow consistent community growth from the early stages of the project, building on existing iPlant infrastructure (www.iplantcollaborative.org) initially developed for the biology community.
NASA Astrophysics Data System (ADS)
Moore, R.; Faerman, M.; Minster, J.; Day, S. M.; Ely, G.
2003-12-01
A community digital library provides support for ingestion, organization, description, preservation, and access of digital entities. The technologies that traditionally provide these capabilities are digital libraries (ingestion, organization, description), persistent archives (preservation) and data grids (access). We present a design for the SCEC community digital library that incorporates aspects of all three systems. Multiple groups have created integrated environments that sustain large-scale scientific data collections. By examining these projects, the following stages of implementation can be identified: \\begin{itemize} Definition of semantic terms to associate with relevant information. This includes definition of uniform content descriptors to describe physical quantities relevant to the scientific discipline, and creation of concept spaces to define how the uniform content descriptors are logically related. Organization of digital entities into logical collections that make it simple to browse and manage related material. Definition of services that are used to access and manipulate material in the collection. Creation of a preservation environment for the long-term management of the collection. Each community is faced with heterogeneity that is introduced when data is distributed across multiple sites, or when multiple sets of collection semantics are used, and or when multiple scientific sub-disciplines are federated. We will present the relevant standards that simplify the implementation of the SCEC community library, the resource requirements for different types of data sets that drive the implementation, and the digital library processes that the SCEC community library will support. The SCEC community library can be viewed as the set of processing steps that are required to build the appropriate SCEC reference data sets (SCEC approved encoding format, SCEC approved descriptive metadata, SCEC approved collection organization, and SCEC managed storage location). Each digital entity that is ingested into the SCEC community library is processed and validated for conformance to SCEC standards. These steps generate provenance, descriptive, administrative, structural, and behavioral metadata. Using data grid technology, the descriptive metadata can be registered onto a logical name space that is controlled and managed by the SCEC digital library. A version of the SCEC community digital library is being implemented in the Storage Resource Broker. The SRB system provides almost all the features enumerated above. The peer-to-peer federation of metadata catalogs is planned for release in September, 2003. The SRB system is in production use in multiple projects, from high-energy physics, to astronomy, to earth systems science, to bio-informatics. The SCEC community library will be based on the definition of standard metadata attributes, the creation of logical collections within the SRB, the creation of access services, and the demonstration of a preservation environment. The use of the SRB for the SCEC digital library will sustain the expected collection size and collection capabilities.
ERIC Educational Resources Information Center
Kurtz, Michael J.; Eichorn, Guenther; Accomazzi, Alberto; Grant, Carolyn S.; Demleitner, Markus; Murray, Stephen S.; Jones, Michael L. W.; Gay, Geri K.; Rieger, Robert H.; Millman, David; Bruggemann-Klein, Anne; Klein, Rolf; Landgraf, Britta; Wang, James Ze; Li, Jia; Chan, Desmond; Wiederhold, Gio; Pitti, Daniel V.
1999-01-01
Includes six articles that discuss a digital library for astronomy; comparing evaluations of digital collection efforts; cross-organizational access management of Web-based resources; searching scientific bibliographic databases based on content-based relations between documents; semantics-sensitive retrieval for digital picture libraries; and…
Astronomy and Rock Art Studies
NASA Astrophysics Data System (ADS)
Murray, William Breen
Rock art is often used as evidence for the earliest phases of prehistoric celestial knowledge and sky observation. Like the sky, rock art is a global phenomenon and it is also one of the earliest manifestations of human cognitive awareness. Similarities in iconography and visual context may provide evidence of sky-watching activity, and in some cases, ethnographic analogies, ethnohistoric documentation, and surviving archaeological evidence may confirm that these activities were related to rock art production. Nevertheless, the problem of random matches makes proofs of intentional relation more complicated. Probabilities are measured differently in archaeology and astronomy and can sometimes lead to ambiguous or contradictory conclusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin; Pedone, Jr., James M.
A cluster file system is provided having a plurality of distributed metadata servers with shared access to one or more shared low latency persistent key-value metadata stores. A metadata server comprises an abstract storage interface comprising a software interface module that communicates with at least one shared persistent key-value metadata store providing a key-value interface for persistent storage of key-value metadata. The software interface module provides the key-value metadata to the at least one shared persistent key-value metadata store in a key-value format. The shared persistent key-value metadata store is accessed by a plurality of metadata servers. A metadata requestmore » can be processed by a given metadata server independently of other metadata servers in the cluster file system. A distributed metadata storage environment is also disclosed that comprises a plurality of metadata servers having an abstract storage interface to at least one shared persistent key-value metadata store.« less
Constructing Flexible, Configurable, ETL Pipelines for the Analysis of "Big Data" with Apache OODT
NASA Astrophysics Data System (ADS)
Hart, A. F.; Mattmann, C. A.; Ramirez, P.; Verma, R.; Zimdars, P. A.; Park, S.; Estrada, A.; Sumarlidason, A.; Gil, Y.; Ratnakar, V.; Krum, D.; Phan, T.; Meena, A.
2013-12-01
A plethora of open source technologies for manipulating, transforming, querying, and visualizing 'big data' have blossomed and matured in the last few years, driven in large part by recognition of the tremendous value that can be derived by leveraging data mining and visualization techniques on large data sets. One facet of many of these tools is that input data must often be prepared into a particular format (e.g.: JSON, CSV), or loaded into a particular storage technology (e.g.: HDFS) before analysis can take place. This process, commonly known as Extract-Transform-Load, or ETL, often involves multiple well-defined steps that must be executed in a particular order, and the approach taken for a particular data set is generally sensitive to the quantity and quality of the input data, as well as the structure and complexity of the desired output. When working with very large, heterogeneous, unstructured or semi-structured data sets, automating the ETL process and monitoring its progress becomes increasingly important. Apache Object Oriented Data Technology (OODT) provides a suite of complementary data management components called the Process Control System (PCS) that can be connected together to form flexible ETL pipelines as well as browser-based user interfaces for monitoring and control of ongoing operations. The lightweight, metadata driven middleware layer can be wrapped around custom ETL workflow steps, which themselves can be implemented in any language. Once configured, it facilitates communication between workflow steps and supports execution of ETL pipelines across a distributed cluster of compute resources. As participants in a DARPA-funded effort to develop open source tools for large-scale data analysis, we utilized Apache OODT to rapidly construct custom ETL pipelines for a variety of very large data sets to prepare them for analysis and visualization applications. We feel that OODT, which is free and open source software available through the Apache Software Foundation, is particularly well suited to developing and managing arbitrary large-scale ETL processes both for the simplicity and flexibility of its wrapper framework, as well as the detailed provenance information it exposes throughout the process. Our experience using OODT to manage processing of large-scale data sets in domains as diverse as radio astronomy, life sciences, and social network analysis demonstrates the flexibility of the framework, and the range of potential applications to a broad array of big data ETL challenges.
Art as a Vehicle for Nuclear Astrophysics
NASA Astrophysics Data System (ADS)
Kilburn, Micha
2013-04-01
One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.
NASA Astrophysics Data System (ADS)
Moore, J.; Serreze, M. C.; Middleton, D.; Ramamurthy, M. K.; Yarmey, L.
2013-12-01
The NSF funds the Advanced Cooperative Arctic Data and Information System (ACADIS), url: (http://www.aoncadis.org/). It serves the growing and increasingly diverse data management needs of NSF's arctic research community. The ACADIS investigator team combines experienced data managers, curators and software engineers from the NSIDC, UCAR and NCAR. ACADIS fosters scientific synthesis and discovery by providing a secure long-term data archive to NSF investigators. The system provides discovery and access to arctic related data from this and other archives. This paper updates the technical components of ACADIS, the implementation of best practices, the value of ACADIS to the community and the major challenges facing this archive for the future in handling the diverse data coming from NSF Arctic investigators. ACADIS provides sustainable data management, data stewardship services and leadership for the NSF Arctic research community through open data sharing, adherence to best practices and standards, capitalizing on appropriate evolving technologies, community support and engagement. ACADIS leverages other pertinent projects, capitalizing on appropriate emerging technologies and participating in emerging cyberinfrastructure initiatives. The key elements of ACADIS user services to the NSF Arctic community include: data and metadata upload; support for datasets with special requirements; metadata and documentation generation; interoperability and initiatives with other archives; and science support to investigators and the community. Providing a self-service data publishing platform requiring minimal curation oversight while maintaining rich metadata for discovery, access and preservation is challenging. Implementing metadata standards are a first step towards consistent content. The ACADIS Gateway and ADE offer users choices for data discovery and access with the clear objective of increasing discovery and use of all Arctic data especially for analysis activities. Metadata is at the core of ACADIS activities, from capturing metadata at the point of data submission to ensuring interoperability , providing data citations, and supporting data discovery. ACADIS metadata efforts include: 1) Evolution of the ACADIS metadata profile to increase flexibility in search; 2) Documentation guidelines; and 3) Metadata standardization efforts. A major activity is now underway to ensure consistency in the metadata profile across all archived datasets. ACADIS is embarking on a critical activity to create Digital Object Identifiers (DOI) for all its holdings. The data services offered by ACADIS focus on meeting the needs of the data providers, providing dynamic search capabilities to peruse the ACADIS and related cyrospheric data repositories, efficient data download and some special services including dataset reformatting and visualization. The service is built around of the following key technical elements: The ACADIS Gateway housed at NCAR has been developed to support NSF Arctic data coming from AON and now broadly across PLR/ARC and related archives: The Arctic Data Explorer (ADE) developed at NSIDC is an integral service of ACADIS bringing the rich archive from NSIDC together with catalogs from ACADIS and international partners in Arctic research: and Rosetta and the Digital Object Identifier (DOI) generation scheme are tools available to the community to help publish and utilize datasets in integration and synthesis and publication.
Teaching the Thrill of Discovery: Student Exploration of the Large-Scale Structures of the Universe
NASA Astrophysics Data System (ADS)
Juneau, Stephanie; Dey, Arjun; Walker, Constance E.; NOAO Data Lab
2018-01-01
In collaboration with the Teen Astronomy Cafes program, the NOAO Data Lab is developing online Jupyter Notebooks as a free and publicly accessible tool for students and teachers. Each interactive activity teaches students simultaneously about coding and astronomy with a focus on large datasets. Therefore, students learn state-of-the-art techniques at the cross-section between astronomy and data science. During the activity entitled “Our Vast Universe”, students use real spectroscopic data to measure the distance to galaxies before moving on to a catalog with distances to over 100,000 galaxies. Exploring this dataset gives students an appreciation of the large number of galaxies in the universe (2 trillion!), and leads them to discover how galaxies are located in large and impressive filamentary structures. During the Teen Astronomy Cafes program, the notebook is supplemented with visual material conducive to discussion, and hands-on activities involving cubes representing model universes. These steps contribute to build the students’ physical intuition and give them a better grasp of the concepts before using software and coding. At the end of the activity, students have made their own measurements, and have experienced scientific research directly. More information is available online for the Teen Astronomy Cafes (teensciencecafe.org/cafes) and the NOAO Data Lab (datalab.noao.edu).
3D Virtual Reality for Teaching Astronomy
NASA Astrophysics Data System (ADS)
Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.
2012-01-01
We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.
Finding Atmospheric Composition (AC) Metadata
NASA Technical Reports Server (NTRS)
Strub, Richard F..; Falke, Stefan; Fiakowski, Ed; Kempler, Steve; Lynnes, Chris; Goussev, Oleg
2015-01-01
The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not all) Earth science atmospheric composition data providers store a reference to their data at GCMD.
Automated Atmospheric Composition Dataset Level Metadata Discovery. Difficulties and Surprises
NASA Astrophysics Data System (ADS)
Strub, R. F.; Falke, S. R.; Kempler, S.; Fialkowski, E.; Goussev, O.; Lynnes, C.
2015-12-01
The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System - CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not all) Earth science atmospheric composition data providers store a reference to their data at GCMD.
NASA Astrophysics Data System (ADS)
Vines, Aleksander; Hansen, Morten W.; Korosov, Anton
2017-04-01
Existing infrastructure international and Norwegian projects, e.g., NorDataNet, NMDC and NORMAP, provide open data access through the OPeNDAP protocol following the conventions for CF (Climate and Forecast) metadata, designed to promote the processing and sharing of files created with the NetCDF application programming interface (API). This approach is now also being implemented in the Norwegian Sentinel Data Hub (satellittdata.no) to provide satellite EO data to the user community. Simultaneously with providing simplified and unified data access, these projects also seek to use and establish common standards for use and discovery metadata. This then allows development of standardized tools for data search and (subset) streaming over the internet to perform actual scientific analysis. A combinnation of software tools, which we call a Scientific Platform as a Service (SPaaS), will take advantage of these opportunities to harmonize and streamline the search, retrieval and analysis of integrated satellite and auxiliary observations of the oceans in a seamless system. The SPaaS is a cloud solution for integration of analysis tools with scientific datasets via an API. The core part of the SPaaS is a distributed metadata catalog to store granular metadata describing the structure, location and content of available satellite, model, and in situ datasets. The analysis tools include software for visualization (also online), interactive in-depth analysis, and server-based processing chains. The API conveys search requests between system nodes (i.e., interactive and server tools) and provides easy access to the metadata catalog, data repositories, and the tools. The SPaaS components are integrated in virtual machines, of which provisioning and deployment are automatized using existing state-of-the-art open-source tools (e.g., Vagrant, Ansible, Docker). The open-source code for scientific tools and virtual machine configurations is under version control at https://github.com/nansencenter/, and is coupled to an online continuous integration system (e.g., Travis CI).
Report on the Global Data Assembly Center (GDAC) to the 12th GHRSST Science Team Meeting
NASA Technical Reports Server (NTRS)
Armstrong, Edward M.; Bingham, Andrew; Vazquez, Jorge; Thompson, Charles; Huang, Thomas; Finch, Chris
2011-01-01
In 2010/2011 the Global Data Assembly Center (GDAC) at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) continued its role as the primary clearinghouse and access node for operational Group for High Resolution Sea Surface Temperature (GHRSST) datastreams, as well as its collaborative role with the NOAA Long Term Stewardship and Reanalysis Facility (LTSRF) for archiving. Here we report on our data management activities and infrastructure improvements since the last science team meeting in June 2010.These include the implementation of all GHRSST datastreams in the new PO.DAAC Data Management and Archive System (DMAS) for more reliable and timely data access. GHRSST dataset metadata are now stored in a new database that has made the maintenance and quality improvement of metadata fields more straightforward. A content management system for a revised suite of PO.DAAC web pages allows dynamic access to a subset of these metadata fields for enhanced dataset description as well as discovery through a faceted search mechanism from the perspective of the user. From the discovery and metadata standpoint the GDAC has also implemented the NASA version of the OpenSearch protocol for searching for GHRSST granules and developed a web service to generate ISO 19115-2 compliant metadata records. Furthermore, the GDAC has continued to implement a new suite of tools and services for GHRSST datastreams including a Level 2 subsetter known as Dataminer, a revised POET Level 3/4 subsetter and visualization tool, a Google Earth interface to selected daily global Level 2 and Level 4 data, and experimented with a THREDDS catalog of GHRSST data collections. Finally we will summarize the expanding user and data statistics, and other metrics that we have collected over the last year demonstrating the broad user community and applications that the GHRSST project continues to serve via the GDAC distribution mechanisms. This report also serves by extension to summarize the activities of the GHRSST Data Assembly and Systems Technical Advisory Group (DAS-TAG).
Data Management in the Euclid Science Archive System
NASA Astrophysics Data System (ADS)
de Teodoro, P.; Nieto, S.; Altieri, B.
2017-06-01
Euclid is the ESA M2 mission and a milestone in the understanding of the geometry of the Universe. In total Euclid will produce up to 26 PB per year of observations. The Science Archive Systems (SAS) belongs to the Euclid Archive System (EAS) that sits in the core of the Euclid Science Ground Segment (SGS). The SAS is being built at the ESAC Science Data Centre (ESDC), which is responsible for the development and operations of the scientific archives for the Astronomy, Planetary and Heliophysics missions of ESA. The SAS is focused on the needs of the scientific community and is intended to provide access to the most valuable scientific metadata from the Euclid mission. In this paper we describe the architectural design of the system, implementation progress and the main challenges from the data management point of view in the building of the SAS.
NASA Astrophysics Data System (ADS)
Nagaraj, M. N.; Manjunath, M.; Savanur, K. P.; Sheshadri, G.
2010-10-01
With the introduction of information technology (IT) and its applications, libraries have started looking for ways to promote their institutes' research output. At the Raman Research Institute (RRI), we have showcased research output such as research papers, newspaper clippings, annual reports, technical reports, and the entire collection of C.V. Raman through the RRI digital repository, using DSpace. Recently, we have added doctoral dissertations to the repository and have made them accessible with the author's permission. In this paper, we describe the challenges and problems encountered in this project. The various stages including policy decisions, the scanning process, getting permissions, metadata standards and other related issues are described. We conclude by making a plea to other institutions also to make their theses available open-access so that this valuable information resource is accessible to all.
Building a Smart Portal for Astronomy
NASA Astrophysics Data System (ADS)
Derriere, S.; Boch, T.
2011-07-01
The development of a portal for accessing astronomical resources is not an easy task. The ever-increasing complexity of the data products can result in very complex user interfaces, requiring a lot of effort and learning from the user in order to perform searches. This is often a design choice, where the user must explicitly set many constraints, while the portal search logic remains simple. We investigated a different approach, where the query interface is kept as simple as possible (ideally, a simple text field, like for Google search), and the search logic is made much more complex to interpret the query in a relevant manner. We will present the implications of this approach in terms of interpretation and categorization of the query parameters (related to astronomical vocabularies), translation (mapping) of these concepts into the portal components metadata, identification of query schemes and use cases matching the input parameters, and delivery of query results to the user.
Karst database development in Minnesota: Design and data assembly
Gao, Y.; Alexander, E.C.; Tipping, R.G.
2005-01-01
The Karst Feature Database (KFD) of Minnesota is a relational GIS-based Database Management System (DBMS). Previous karst feature datasets used inconsistent attributes to describe karst features in different areas of Minnesota. Existing metadata were modified and standardized to represent a comprehensive metadata for all the karst features in Minnesota. Microsoft Access 2000 and ArcView 3.2 were used to develop this working database. Existing county and sub-county karst feature datasets have been assembled into the KFD, which is capable of visualizing and analyzing the entire data set. By November 17 2002, 11,682 karst features were stored in the KFD of Minnesota. Data tables are stored in a Microsoft Access 2000 DBMS and linked to corresponding ArcView applications. The current KFD of Minnesota has been moved from a Windows NT server to a Windows 2000 Citrix server accessible to researchers and planners through networked interfaces. ?? Springer-Verlag 2005.
NASA Astrophysics Data System (ADS)
Palmeri, J.
2016-01-01
For much of the twentieth century, the astronomer and longtime director of the Harvard College Observatory, Harlow Shapley (1885-1972), embodied the public face of astronomy. From the 1920s through the 1960s he introduced millions to the wonders of the night sky. His compelling vision of humanity's place in the universe and moving message about cosmic connections inspired many who had never looked through a telescope, visited a planetarium, or taken an astronomy class. He encouraged readers and audiences to learn more about astronomy and other sciences. Over the course of a long career, Shapley not only bolstered the image of astronomy, but also the role of the astronomer as a public intellectual and spokesperson for science. Shapley's early years on the newspaper beat honed his storytelling, and he then put these skills to use as a promoter and fundraiser for astronomy and science at Harvard. He used a variety of means to convey his message beyond the observatory, including radio talks, lectures, magazine articles, television appearances, and popular books. He also narrated an award-winning animated film based on one of his most widely read books, Of Stars and Men. Through words, voice, and visuals, Shapley offered the world an eloquent perspective on the cosmos and a timely message about the significance of science for society. In this paper I focus on how Shapley conveyed the meaning and value of astronomical inquiry, and I explore audience reception of the messages and images he used to popularize astronomy.
Life After Press: The Role of the Picture Library in Communicating Astronomy to the Public
NASA Astrophysics Data System (ADS)
Evans, G. S.
2005-12-01
Science communication is increasingly led by the image, providing opportunities for 'visual' disciplines such as astronomy to receive greater public exposure. In consequence, there is a huge demand for good and exciting images within the publishing media. The picture library is a conduit linking image makers of all kinds to image buyers of all kinds. The image maker benefits from the exposure of their pictures to the people who want to use them, with minimal time investment, and with the safeguards of effective rights management. The image buyer benefits from a wide choice of images available from a single point of contact, stored in a database that offers a choice between subject-based and conceptual searches. By forming this link between astronomer, professional or amateur, and the publishing media, the picture library helps to make the wonders of astronomy visible to a wider public audience.
Visible Languages for Program Visualization
1986-02-01
Comments 38 The Presentation of Program Metadata 39 The Spatial Composition of Comments 41 The Typography of Punctuation 42 Typographic Encodings... Typography of Program Punctuation 6. In this example the "" appears in 10 point regular Helvetica type, and thus uses the same typographic parameters as...Results. Conclusions Chapter 4 Graphic Design of C Source Code and Comments Section 4 3 1 he Typography of Punctuation Page 41 l ft. Section
NASA Astrophysics Data System (ADS)
Aleman, A.; Olsen, L. M.; Ritz, S.; Stevens, T.; Morahan, M.; Grebas, S. K.
2011-12-01
NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide.The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs.Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information.In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries.By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways.This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data.
New GES DISC Services Shortening the Path in Science Data Discovery
NASA Technical Reports Server (NTRS)
Li, Angela; Shie, Chung-Lin; Petrenko, Maksym; Hegde, Mahabaleshwa; Teng, William; Liu, Zhong; Bryant, Keith; Shen, Suhung; Hearty, Thomas; Wei, Jennifer;
2017-01-01
The Current GES DISC available services only allow user to select variables from a single dataset at a time and too many variables from a dataset are displayed, choice is hard. At American Geophysical Union (AGU) 2016 Fall Meeting, Goddard Earth Sciences Data Information Services Center (GES DISC) unveiled a new service: Datalist. A Datalist is a collection of predefined or user-defined data variables from one or more archived datasets. Our science support team curated predefined datalist and provided value to the user community. Imagine some novice user wants to study hurricane and typed in hurricane in the search box. The first item in the search result is GES DISC provided Hurricane Datalist. It contains scientists recommended variables from multiple datasets like TRMM, GPM, MERRA, etc. Datalist uses the same architecture as that of our new website, which also provides one-stop shopping for data, metadata, citation, documentation, visualization and other available services.We implemented Datalist with new GES DISC web architecture, one single web page that unified all user interfaces. From that webpage, users can find data by either type in keyword, or browse by category. It also provides user with a sophisticated integrated data and services package, including metadata, citation, documentation, visualization, and data-specific services, all available from one-stop shopping.
Visual interface for space and terrestrial analysis
NASA Technical Reports Server (NTRS)
Dombrowski, Edmund G.; Williams, Jason R.; George, Arthur A.; Heckathorn, Harry M.; Snyder, William A.
1995-01-01
The management of large geophysical and celestial data bases is now, more than ever, the most critical path to timely data analysis. With today's large volume data sets from multiple satellite missions, analysts face the task of defining useful data bases from which data and metadata (information about data) can be extracted readily in a meaningful way. Visualization, following an object-oriented design, is a fundamental method of organizing and handling data. Humans, by nature, easily accept pictorial representations of data. Therefore graphically oriented user interfaces are appealing, as long as they remain simple to produce and use. The Visual Interface for Space and Terrestrial Analysis (VISTA) system, currently under development at the Naval Research Laboratory's Backgrounds Data Center (BDC), has been designed with these goals in mind. Its graphical user interface (GUI) allows the user to perform queries, visualization, and analysis of atmospheric and celestial backgrounds data.
Log-less metadata management on metadata server for parallel file systems.
Liao, Jianwei; Xiao, Guoqiang; Peng, Xiaoning
2014-01-01
This paper presents a novel metadata management mechanism on the metadata server (MDS) for parallel and distributed file systems. In this technique, the client file system backs up the sent metadata requests, which have been handled by the metadata server, so that the MDS does not need to log metadata changes to nonvolatile storage for achieving highly available metadata service, as well as better performance improvement in metadata processing. As the client file system backs up certain sent metadata requests in its memory, the overhead for handling these backup requests is much smaller than that brought by the metadata server, while it adopts logging or journaling to yield highly available metadata service. The experimental results show that this newly proposed mechanism can significantly improve the speed of metadata processing and render a better I/O data throughput, in contrast to conventional metadata management schemes, that is, logging or journaling on MDS. Besides, a complete metadata recovery can be achieved by replaying the backup logs cached by all involved clients, when the metadata server has crashed or gone into nonoperational state exceptionally.
Log-Less Metadata Management on Metadata Server for Parallel File Systems
Xiao, Guoqiang; Peng, Xiaoning
2014-01-01
This paper presents a novel metadata management mechanism on the metadata server (MDS) for parallel and distributed file systems. In this technique, the client file system backs up the sent metadata requests, which have been handled by the metadata server, so that the MDS does not need to log metadata changes to nonvolatile storage for achieving highly available metadata service, as well as better performance improvement in metadata processing. As the client file system backs up certain sent metadata requests in its memory, the overhead for handling these backup requests is much smaller than that brought by the metadata server, while it adopts logging or journaling to yield highly available metadata service. The experimental results show that this newly proposed mechanism can significantly improve the speed of metadata processing and render a better I/O data throughput, in contrast to conventional metadata management schemes, that is, logging or journaling on MDS. Besides, a complete metadata recovery can be achieved by replaying the backup logs cached by all involved clients, when the metadata server has crashed or gone into nonoperational state exceptionally. PMID:24892093
3D Printing Meets Astrophysics: A New Way to Visualize and Communicate Science
NASA Astrophysics Data System (ADS)
Madura, Thomas Ignatius; Steffen, Wolfgang; Clementel, Nicola; Gull, Theodore R.
2015-08-01
3D printing has the potential to improve the astronomy community’s ability to visualize, understand, interpret, and communicate important scientific results. I summarize recent efforts to use 3D printing to understand in detail the 3D structure of a complex astrophysical system, the supermassive binary star Eta Carinae and its surrounding bipolar ‘Homunculus’ nebula. Using mapping observations of molecular hydrogen line emission obtained with the ESO Very Large Telescope, we obtained a full 3D model of the Homunculus, allowing us to 3D print, for the first time, a detailed replica of a nebula (Steffen et al. 2014, MNRAS, 442, 3316). I also present 3D prints of output from supercomputer simulations of the colliding stellar winds in the highly eccentric binary located near the center of the Homunculus (Madura et al. 2015, arXiv:1503.00716). These 3D prints, the first of their kind, reveal previously unknown ‘finger-like’ structures at orbital phases shortly after periastron (when the two stars are closest to each other) that protrude outward from the spiral wind-wind collision region. The results of both efforts have received significant media attention in recent months, including two NASA press releases (http://www.nasa.gov/content/goddard/astronomers-bring-the-third-dimension-to-a-doomed-stars-outburst/ and http://www.nasa.gov/content/goddard/nasa-observatories-take-an-unprecedented-look-into-superstar-eta-carinae/), demonstrating the potential of using 3D printing for astronomy outreach and education. Perhaps more importantly, 3D printing makes it possible to bring the wonders of astronomy to new, often neglected, audiences, i.e. the blind and visually impaired.
Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E.; Ellisman, Mark; Grethe, Jeffrey; Wooley, John
2011-01-01
The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data. PMID:21045053
Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E; Ellisman, Mark; Grethe, Jeffrey; Wooley, John
2011-01-01
The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data.
Making Astronomy and Space Science Accessible to the Blind and Visually Impaired
NASA Astrophysics Data System (ADS)
Beck-Winchatz, B.; Hoette, V.; Grice, N.
2003-12-01
One of the biggest obstacles blind and visually impaired people face in science is the ubiquity of important graphical information, which is generally not made available in alternate formats accessible to them. Funded by NASA's Initiative to Develop Education through Astronomy and Space Science (IDEAS), we have recently formed a team of scientists and educators from universities, the SOFIA NASA mission, a science museum, an observatory, and schools for the blind. Our goal is to develop and test Braille/tactile space science activities that actively engage students from elementary grades through introductory college-level in space science. We will discuss effective strategies and low-cost technologies that can be used to make graphical information accessible. We will also demonstrate examples, such a thermal expansion graphics created from telescope images of the Moon and other celestial objects, a tactile planisphere, three-dimensional models of near-Earth asteroids and tactile diagrams of their orbits, and an infrared detector activity.
International cooperation and amateur meteor work
NASA Astrophysics Data System (ADS)
Roggemans, P.
Today, the existing framework for international cooperation among amateur meteor workers offers numerous advantages. However, this is a rather recent situation. Meteor astronomy, although popular among amateurs, was the very last topic within astronomy to benefit from a truly international approach. Anyone attempting long term studies of, for instance, meteor stream structures will be confronted with the systematic lack of usable observations due to the absence of any standards in observing, recording and reporting, any archiving or publishing policy. Visual meteor observations represent the overall majority of amateur efforts, while photographic and radio observing were developed only in recent decades as technological specialties of rather few meteor observing teams.
Visual Astronomy; A guide to understanding the night sky
NASA Astrophysics Data System (ADS)
Photinos, Panos
2015-03-01
This book introduces the basics of observational astronomy. It explains the essentials of time and coordinate systems, and their use in basic observations of the night sky. The fundamental concepts and terminology are introduced in simple language making very little use of equations and math. Examples illustrate how to select the relevant information from widely accessible resources, and how to use the information to determine what is visible and when it is visible from the reader's particular location. Particular attention is paid to the dependence of the appearance and motion on the observer's location, by extending the discussion to include various latitudes in both North and South hemispheres.
Expressive map design: OGC SLD/SE++ extension for expressive map styles
NASA Astrophysics Data System (ADS)
Christophe, Sidonie; Duménieu, Bertrand; Masse, Antoine; Hoarau, Charlotte; Ory, Jérémie; Brédif, Mathieu; Lecordix, François; Mellado, Nicolas; Turbet, Jérémie; Loi, Hugo; Hurtut, Thomas; Vanderhaeghe, David; Vergne, Romain; Thollot, Joëlle
2018-05-01
In the context of custom map design, handling more artistic and expressive tools has been identified as a carto-graphic need, in order to design stylized and expressive maps. Based on previous works on style formalization, an approach for specifying the map style has been proposed and experimented for particular use cases. A first step deals with the analysis of inspiration sources, in order to extract `what does make the style of the source', i.e. the salient visual characteristics to be automatically reproduced (textures, spatial arrangements, linear stylization, etc.). In a second step, in order to mimic and generate those visual characteristics, existing and innovative rendering techniques have been implemented in our GIS engine, thus extending the capabilities to generate expressive renderings. Therefore, an extension of the existing cartographic pipeline has been proposed based on the following aspects: 1- extension of the symbolization specifications OGC SLD/SE in order to provide a formalism to specify and reference expressive rendering methods; 2- separate the specification of each rendering method and its parameterization, as metadata. The main contribution has been described in (Christophe et al. 2016). In this paper, we focus firstly on the extension of the cartographic pipeline (SLD++ and metadata) and secondly on map design capabilities which have been experimented on various topographic styles: old cartographic styles (Cassini), artistic styles (watercolor, impressionism, Japanese print), hybrid topographic styles (ortho-imagery & vector data) and finally abstract and photo-realist styles for the geovisualization of costal area. The genericity and interoperability of our approach are promising and have already been tested for 3D visualization.
2011-01-01
Background Improvements in the techniques for metabolomics analyses and growing interest in metabolomic approaches are resulting in the generation of increasing numbers of metabolomic profiles. Platforms are required for profile management, as a function of experimental design, and for metabolite identification, to facilitate the mining of the corresponding data. Various databases have been created, including organism-specific knowledgebases and analytical technique-specific spectral databases. However, there is currently no platform meeting the requirements for both profile management and metabolite identification for nuclear magnetic resonance (NMR) experiments. Description MeRy-B, the first platform for plant 1H-NMR metabolomic profiles, is designed (i) to provide a knowledgebase of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata, (ii) for queries and visualization of the data, (iii) to discriminate between profiles with spectrum visualization tools and statistical analysis, (iv) to facilitate compound identification. It contains lists of plant metabolites and unknown compounds, with information about experimental conditions, the factors studied and metabolite concentrations for several plant species, compiled from more than one thousand annotated NMR profiles for various organs or tissues. Conclusion MeRy-B manages all the data generated by NMR-based plant metabolomics experiments, from description of the biological source to identification of the metabolites and determinations of their concentrations. It is the first database allowing the display and overlay of NMR metabolomic profiles selected through queries on data or metadata. MeRy-B is available from http://www.cbib.u-bordeaux2.fr/MERYB/index.php. PMID:21668943
2015-06-09
anomaly detection , which is generally considered part of high level information fusion (HLIF) involving temporal-geospatial data as well as meta-data... Anomaly detection in the Maritime defence and security domain typically focusses on trying to identify vessels that are behaving in an unusual...manner compared with lawful vessels operating in the area – an applied case of target detection among distractors. Anomaly detection is a complex problem
Metadata for Web Resources: How Metadata Works on the Web.
ERIC Educational Resources Information Center
Dillon, Martin
This paper discusses bibliographic control of knowledge resources on the World Wide Web. The first section sets the context of the inquiry. The second section covers the following topics related to metadata: (1) definitions of metadata, including metadata as tags and as descriptors; (2) metadata on the Web, including general metadata systems,…
Metadata Dictionary Database: A Proposed Tool for Academic Library Metadata Management
ERIC Educational Resources Information Center
Southwick, Silvia B.; Lampert, Cory
2011-01-01
This article proposes a metadata dictionary (MDD) be used as a tool for metadata management. The MDD is a repository of critical data necessary for managing metadata to create "shareable" digital collections. An operational definition of metadata management is provided. The authors explore activities involved in metadata management in…
Fast and Accurate Metadata Authoring Using Ontology-Based Recommendations.
Martínez-Romero, Marcos; O'Connor, Martin J; Shankar, Ravi D; Panahiazar, Maryam; Willrett, Debra; Egyedi, Attila L; Gevaert, Olivier; Graybeal, John; Musen, Mark A
2017-01-01
In biomedicine, high-quality metadata are crucial for finding experimental datasets, for understanding how experiments were performed, and for reproducing those experiments. Despite the recent focus on metadata, the quality of metadata available in public repositories continues to be extremely poor. A key difficulty is that the typical metadata acquisition process is time-consuming and error prone, with weak or nonexistent support for linking metadata to ontologies. There is a pressing need for methods and tools to speed up the metadata acquisition process and to increase the quality of metadata that are entered. In this paper, we describe a methodology and set of associated tools that we developed to address this challenge. A core component of this approach is a value recommendation framework that uses analysis of previously entered metadata and ontology-based metadata specifications to help users rapidly and accurately enter their metadata. We performed an initial evaluation of this approach using metadata from a public metadata repository.
Fast and Accurate Metadata Authoring Using Ontology-Based Recommendations
Martínez-Romero, Marcos; O’Connor, Martin J.; Shankar, Ravi D.; Panahiazar, Maryam; Willrett, Debra; Egyedi, Attila L.; Gevaert, Olivier; Graybeal, John; Musen, Mark A.
2017-01-01
In biomedicine, high-quality metadata are crucial for finding experimental datasets, for understanding how experiments were performed, and for reproducing those experiments. Despite the recent focus on metadata, the quality of metadata available in public repositories continues to be extremely poor. A key difficulty is that the typical metadata acquisition process is time-consuming and error prone, with weak or nonexistent support for linking metadata to ontologies. There is a pressing need for methods and tools to speed up the metadata acquisition process and to increase the quality of metadata that are entered. In this paper, we describe a methodology and set of associated tools that we developed to address this challenge. A core component of this approach is a value recommendation framework that uses analysis of previously entered metadata and ontology-based metadata specifications to help users rapidly and accurately enter their metadata. We performed an initial evaluation of this approach using metadata from a public metadata repository. PMID:29854196
“Big Data” Teen Astronomy Cafes at NOAO
NASA Astrophysics Data System (ADS)
Pompea, Stephen; Walker, Constance E.
2018-01-01
The National Optical Astronomy Observatory has designed and implemented a prototype educational program designed to test and understand best practices with high school students to promote an understanding of modern astronomy research with its emphasis on large data sets, data tools, and visualization tools. This program, designed to cultivate the interest of talented youth in astronomy, is based on a teen science café model developed at Los Alamos as the Café Scientifique New Mexico. In our program, we provide a free, fun way for teens to explore current research topics in astronomy on Saturday mornings at the NOAO headquarters. The program encourages stimulating conversations with astronomers in an informal and relaxed setting, with free food of course. The café is organized through a leadership team of local high school students and recruits students from all parts of the greater Tucson area. The high school students who attend have the opportunity to interact with expert astronomers working with large astronomical data sets on topics such as killer asteroids, the birth and death of stars, colliding galaxies, the structure of the universe, gravitational waves, gravitational lensing, dark energy, and dark matter. The students also have the opportunity to explore astronomical data sets and data tools using computers provided by the program. The program may serve as a model for educational outreach for the 40+ institutions involved in the LSST.
linkedISA: semantic representation of ISA-Tab experimental metadata.
González-Beltrán, Alejandra; Maguire, Eamonn; Sansone, Susanna-Assunta; Rocca-Serra, Philippe
2014-01-01
Reporting and sharing experimental metadata- such as the experimental design, characteristics of the samples, and procedures applied, along with the analysis results, in a standardised manner ensures that datasets are comprehensible and, in principle, reproducible, comparable and reusable. Furthermore, sharing datasets in formats designed for consumption by humans and machines will also maximize their use. The Investigation/Study/Assay (ISA) open source metadata tracking framework facilitates standards-compliant collection, curation, visualization, storage and sharing of datasets, leveraging on other platforms to enable analysis and publication. The ISA software suite includes several components used in increasingly diverse set of life science and biomedical domains; it is underpinned by a general-purpose format, ISA-Tab, and conversions exist into formats required by public repositories. While ISA-Tab works well mainly as a human readable format, we have also implemented a linked data approach to semantically define the ISA-Tab syntax. We present a semantic web representation of the ISA-Tab syntax that complements ISA-Tab's syntactic interoperability with semantic interoperability. We introduce the linkedISA conversion tool from ISA-Tab to the Resource Description Framework (RDF), supporting mappings from the ISA syntax to multiple community-defined, open ontologies and capitalising on user-provided ontology annotations in the experimental metadata. We describe insights of the implementation and how annotations can be expanded driven by the metadata. We applied the conversion tool as part of Bio-GraphIIn, a web-based application supporting integration of the semantically-rich experimental descriptions. Designed in a user-friendly manner, the Bio-GraphIIn interface hides most of the complexities to the users, exposing a familiar tabular view of the experimental description to allow seamless interaction with the RDF representation, and visualising descriptors to drive the query over the semantic representation of the experimental design. In addition, we defined queries over the linkedISA RDF representation and demonstrated its use over the linkedISA conversion of datasets from Nature' Scientific Data online publication. Our linked data approach has allowed us to: 1) make the ISA-Tab semantics explicit and machine-processable, 2) exploit the existing ontology-based annotations in the ISA-Tab experimental descriptions, 3) augment the ISA-Tab syntax with new descriptive elements, 4) visualise and query elements related to the experimental design. Reasoning over ISA-Tab metadata and associated data will facilitate data integration and knowledge discovery.
NASA Technical Reports Server (NTRS)
Olsen, Lola M.
2006-01-01
The capabilities of the International Directory Network's (IDN) version MD9.5, along with a new version of the metadata authoring tool, "docBUILDER", will be presented during the Technology and Services Subgroup session of the Working Group on Information Systems and Services (WGISS). Feedback provided through the international community has proven instrumental in positively influencing the direction of the IDN s development. The international community was instrumental in encouraging support for using the IS0 international character set that is now available through the directory. Supporting metadata descriptions in additional languages encourages extended use of the IDN. Temporal and spatial attributes often prove pivotal in the search for data. Prior to the new software release, the IDN s geospatial and temporal searches suffered from browser incompatibilities and often resulted in unreliable performance for users attempting to initiate a spatial search using a map based on aging Java applet technology. The IDN now offers an integrated Google map and date search that replaces that technology. In addition, one of the most defining characteristics in the search for data relates to the temporal and spatial resolution of the data. The ability to refine the search for data sets meeting defined resolution requirements is now possible. Data set authors are encouraged to indicate the precise resolution values for their data sets and subsequently bin these into one of the pre-selected resolution ranges. New metadata authoring tools have been well received. In response to requests for a standalone metadata authoring tool, a new shareable software package called "docBUILDER solo" will soon be released to the public. This tool permits researchers to document their data during experiments and observational periods in the field. interoperability has been enhanced through the use of the Open Archives Initiative s (OAI) Protocol for Metadata Harvesting (PMH). Harvesting of XML content through OAI-MPH has been successfully tested with several organizations. The protocol appears to be a prime candidate for sharing metadata throughout the international community. Data services for visualizing and analyzing data have become valuable assets in facilitating the use of data. Data providers are offering many of their data-related services through the directory. The IDN plans to develop a service-based architecture to further promote the use of web services. During the IDN Task Team session, ideas for further enhancements will be discussed.
Harvesting NASA's Common Metadata Repository (CMR)
NASA Technical Reports Server (NTRS)
Shum, Dana; Durbin, Chris; Norton, James; Mitchell, Andrew
2017-01-01
As part of NASA's Earth Observing System Data and Information System (EOSDIS), the Common Metadata Repository (CMR) stores metadata for over 30,000 datasets from both NASA and international providers along with over 300M granules. This metadata enables sub-second discovery and facilitates data access. While the CMR offers a robust temporal, spatial and keyword search functionality to the general public and international community, it is sometimes more desirable for international partners to harvest the CMR metadata and merge the CMR metadata into a partner's existing metadata repository. This poster will focus on best practices to follow when harvesting CMR metadata to ensure that any changes made to the CMR can also be updated in a partner's own repository. Additionally, since each partner has distinct metadata formats they are able to consume, the best practices will also include guidance on retrieving the metadata in the desired metadata format using CMR's Unified Metadata Model translation software.
Harvesting NASA's Common Metadata Repository
NASA Astrophysics Data System (ADS)
Shum, D.; Mitchell, A. E.; Durbin, C.; Norton, J.
2017-12-01
As part of NASA's Earth Observing System Data and Information System (EOSDIS), the Common Metadata Repository (CMR) stores metadata for over 30,000 datasets from both NASA and international providers along with over 300M granules. This metadata enables sub-second discovery and facilitates data access. While the CMR offers a robust temporal, spatial and keyword search functionality to the general public and international community, it is sometimes more desirable for international partners to harvest the CMR metadata and merge the CMR metadata into a partner's existing metadata repository. This poster will focus on best practices to follow when harvesting CMR metadata to ensure that any changes made to the CMR can also be updated in a partner's own repository. Additionally, since each partner has distinct metadata formats they are able to consume, the best practices will also include guidance on retrieving the metadata in the desired metadata format using CMR's Unified Metadata Model translation software.
NASA Astrophysics Data System (ADS)
Pilone, D.; Gilman, J.; Baynes, K.; Shum, D.
2015-12-01
This talk introduces a new NASA Earth Observing System Data and Information System (EOSDIS) capability to automatically generate and maintain derived, Virtual Product information allowing DAACs and Data Providers to create tailored and more discoverable variations of their products. After this talk the audience will be aware of the new EOSDIS Virtual Product capability, applications of it, and how to take advantage of it. Much of the data made available in the EOSDIS are organized for generation and archival rather than for discovery and use. The EOSDIS Common Metadata Repository (CMR) is launching a new capability providing automated generation and maintenance of user-oriented Virtual Product information. DAACs can easily surface variations on established data products tailored to specific uses cases and users, leveraging DAAC exposed services such as custom ordering or access services like OPeNDAP for on-demand product generation and distribution. Virtual Data Products enjoy support for spatial and temporal information, keyword discovery, association with imagery, and are fully discoverable by tools such as NASA Earthdata Search, Worldview, and Reverb. Virtual Product generation has applicability across many use cases: - Describing derived products such as Surface Kinetic Temperature information (AST_08) from source products (ASTER L1A) - Providing streamlined access to data products (e.g. AIRS) containing many (>800) data variables covering an enormous variety of physical measurements - Attaching additional EOSDIS offerings such as Visual Metadata, external services, and documentation metadata - Publishing alternate formats for a product (e.g. netCDF for HDF products) with the actual conversion happening on request - Publishing granules to be modified by on-the-fly services, like GES-DISC's Data Quality Screening Service - Publishing "bundled" products where granules from one product correspond to granules from one or more other related products
A Virtual Tour of the Radio Astronomy Process
NASA Astrophysics Data System (ADS)
Conrad, S. B.; Finley, D. G.; Claussen, M. J.; Ulvestad, J. S.
2000-12-01
In the summer of 2000, two teachers working on a Masters of Science Teaching Degree at New Mexico Tech and participating in the Research Experience for Teachers (RET) program sponsored by the National Science Foundation, spent eight weeks as interns researching and working on projects at the National Radio Astronomy Observatory (NRAO) which will directly benefit students in their classrooms and also impact other science educators. One of the products of the interships is a set of web pages for NRAO's web page educational section. The purpose of these web pages is to familiarize students, teachers, and other people with the process that a radio astronomer goes through to do radio astronomy science. A virtual web tour was created of this process. This required interviewing radio astronomers and other professionals involved with this process at the NRAO (e.g. engineers, data analysts, and operations people), and synthesizing the interviews into a descriptive, visual-based set of web pages. These pages do meet the National as well as New Mexico Standards and Benchmarks for Science Education. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.
User Centered, Application Independent Visualization of National Airspace Data
NASA Technical Reports Server (NTRS)
Murphy, James R.; Hinton, Susan E.
2011-01-01
This paper describes an application independent software tool, IV4D, built to visualize animated and still 3D National Airspace System (NAS) data specifically for aeronautics engineers who research aggregate, as well as single, flight efficiencies and behavior. IV4D was origin ally developed in a joint effort between the National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (A FRL) to support the visualization of air traffic data from the Airspa ce Concept Evaluation System (ACES) simulation program. The three mai n challenges tackled by IV4D developers were: 1) determining how to d istill multiple NASA data formats into a few minimal dataset types; 2 ) creating an environment, consisting of a user interface, heuristic algorithms, and retained metadata, that facilitates easy setup and fa st visualization; and 3) maximizing the user?s ability to utilize the extended range of visualization available with AFRL?s existing 3D te chnologies. IV4D is currently being used by air traffic management re searchers at NASA?s Ames and Langley Research Centers to support data visualizations.
Data System for HS3 Airborne Field Campaign
NASA Astrophysics Data System (ADS)
Maskey, M.; Mceniry, M.; Berendes, T.; Bugbee, K.; Conover, H.; Ramachandran, R.
2014-12-01
Hurricane and Severe Storm Sentinel (HS3) is a NASA airborne field campaign aimed at better understanding the physical processes that control hurricane intensity change. HS3 will help answer questions related to the roles of environmental conditions and internal storm structures to storm intensification. Due to the nature of the questions that HS3 mission is addressing, it involves a variety of in-situ, satellite observations, airborne data, meteorological analyses, and simulation data. This variety of datasets presents numerous data management challenges for HS3. The methods used for airborne data management differ greatly from the methods used for space-borne data. In particular, metadata extraction, spatial and temporal indexing, and the large number of instruments and subsequent variables are a few of the data management challenges unique to airborne missions. A robust data system is required to successfully help HS3 scientist achieve their mission goals. Furthermore, the data system also needs to provide for data management that assists in broader use of HS3 data to enable future research activities. The Global Hydrology Resource Center (GHRC) is considering all these needs and designing a data system for HS3. Experience with past airborne field campaign puts GHRC in a good position to address HS3 needs. However, the scale of this mission along with science requirements separates HS3 from previous field campaigns. The HS3 data system will include automated services for geo-location, metadata extraction, discovery, and distribution for all HS3 data. To answer the science questions, the data system will include a visual data exploration tool that is fully integrated into the data catalog. The tool will allow visually augmenting airborne data with analyses and simulations. Satellite data will provide contextual information during such data explorations. All HS3 tools will be supported by an enterprise service architecture that will allow scaling, easy integration of new tools and existing services, and integration of new ESDIS metadata and security guidelines.
NASA Astrophysics Data System (ADS)
Palanisamy, G.; Krassovski, M.; Devarakonda, R.; Santhana Vannan, S.
2012-12-01
The current climate debate is highlighting the importance of free, open, and authoritative sources of high quality climate data that are available for peer review and for collaborative purposes. It is increasingly important to allow various organizations around the world to share climate data in an open manner, and to enable them to perform dynamic processing of climate data. This advanced access to data can be enabled via Web-based services, using common "community agreed" standards without having to change their internal structure used to describe the data. The modern scientific community has become diverse and increasingly complex in nature. To meet the demands of such diverse user community, the modern data supplier has to provide data and other related information through searchable, data and process oriented tool. This can be accomplished by setting up on-line, Web-based system with a relational database as a back end. The following common features of the web data access/search systems will be outlined in the proposed presentation: - A flexible data discovery - Data in commonly used format (e.g., CSV, NetCDF) - Preparing metadata in standard formats (FGDC, ISO19115, EML, DIF etc.) - Data subseting capabilities and ability to narrow down to individual data elements - Standards based data access protocols and mechanisms (SOAP, REST, OpenDAP, OGC etc.) - Integration of services across different data systems (discovery to access, visualizations and subseting) This presentation will also include specific examples of integration of various data systems that are developed by Oak Ridge National Laboratory's - Climate Change Science Institute, their ability to communicate between each other to enable better data interoperability and data integration. References: [1] Devarakonda, Ranjeet, and Harold Shanafield. "Drupal: Collaborative framework for science research." Collaboration Technologies and Systems (CTS), 2011 International Conference on. IEEE, 2011. [2]Devarakonda, R., Shrestha, B., Palanisamy, G., Hook, L. A., Killeffer, T. S., Boden, T. A., ... & Lazer, K. (2014). THE NEW ONLINE METADATA EDITOR FOR GENERATING STRUCTURED METADATA. Oak Ridge National Laboratory (ORNL).
Misirli, Goksel; Cavaliere, Matteo; Waites, William; Pocock, Matthew; Madsen, Curtis; Gilfellon, Owen; Honorato-Zimmer, Ricardo; Zuliani, Paolo; Danos, Vincent; Wipat, Anil
2016-03-15
Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. The annotation ontology for rule-based models can be found at http://purl.org/rbm/rbmo The krdf tool and associated executable examples are available at http://purl.org/rbm/rbmo/krdf anil.wipat@newcastle.ac.uk or vdanos@inf.ed.ac.uk. © The Author 2015. Published by Oxford University Press.
The Pan-STARRS1 Survey Data Release
NASA Astrophysics Data System (ADS)
Chambers, Kenneth C.; Pan-STARRS Team
2017-01-01
The first Pan-STARRS1 Science Mission is complete and an initial Data Release 1, or DR1, including a database of measured attributes, stacked images, and metadata of the 3PI Survey, will be available from the STScI MAST archive. This release will contain all stationary objects with mean and stack photometry registered on the GAIA astrometric frame.The characteristics of the Pan-STARRS1 Surveys will be presented, including image quality, depth, cadence, and coverage. Measured attributes include PSF model magnitudes, aperture magnitudes, Kron Magnitudes, radial moments, Petrosian magnitudes, DeVaucoulers, Exponential, and Sersic magnitudes for extended objects. Images include total intensity, variance, and masks.An overview of both DR1 and the second data release DR2, to follow in the spring of 2017, will be presented. DR2 will add all time domain data and individual warped images. We will also report on the status of the Pan-STARRS2 Observatory and ongoing science with Pan-STARRS. The science from the PS1 surveys has included results in many t fields of astronomy from Near Earth Objects to cosmology.The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope Science Institute; the National Aeronautics and Space Administration under Grants No. NNX08AR22G, NNX12AR65G, NNX14AM74G issued through the Planetary Science Division of the NASA Science Mission Directorate; the National Science Foundation under Grant No. AST-1238877; the University of Maryland; the Eotvos Lorand University; and the Los Alamos National Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Andrew; Haass, Michael; Rintoul, Mark Daniel
GazeAppraise advances the state of the art of gaze pattern analysis using methods that simultaneously analyze spatial and temporal characteristics of gaze patterns. GazeAppraise enables novel research in visual perception and cognition; for example, using shape features as distinguishing elements to assess individual differences in visual search strategy. Given a set of point-to-point gaze sequences, hereafter referred to as scanpaths, the method constructs multiple descriptive features for each scanpath. Once the scanpath features have been calculated, they are used to form a multidimensional vector representing each scanpath and cluster analysis is performed on the set of vectors from all scanpaths.more » An additional benefit of this method is the identification of causal or correlated characteristics of the stimuli, subjects, and visual task through statistical analysis of descriptive metadata distributions within and across clusters.« less
ResistoMap-online visualization of human gut microbiota antibiotic resistome.
Yarygin, Konstantin S; Kovarsky, Boris A; Bibikova, Tatyana S; Melnikov, Damir S; Tyakht, Alexander V; Alexeev, Dmitry G
2017-07-15
We created ResistoMap—a Web-based interactive visualization of the presence of genetic determinants conferring resistance to antibiotics, biocides and heavy metals in human gut microbiota. ResistoMap displays the data on more than 1500 published gut metagenomes of world populations including both healthy subjects and patients. Multiparameter display filters allow visual assessment of the associations between the meta-data and proportions of resistome. The geographic map navigation layer allows to state hypotheses regarding the global trends of antibiotic resistance and correlates the gut resistome variations with the national clinical guidelines on antibiotics application. ResistoMap was implemented using AngularJS, CoffeeScript, D3.js and TopoJSON. The tool is publicly available at http://resistomap.rcpcm.org. yarygin@phystech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
HTML5 PivotViewer: high-throughput visualization and querying of image data on the web
Taylor, Stephen; Noble, Roger
2014-01-01
Motivation: Visualization and analysis of large numbers of biological images has generated a bottle neck in research. We present HTML5 PivotViewer, a novel, open source, platform-independent viewer making use of the latest web technologies that allows seamless access to images and associated metadata for each image. This provides a powerful method to allow end users to mine their data. Availability and implementation: Documentation, examples and links to the software are available from http://www.cbrg.ox.ac.uk/data/pivotviewer/. The software is licensed under GPLv2. Contact: stephen.taylor@imm.ox.ac.uk and roger@coritsu.com PMID:24849578
Nature's Notebook 2010: Data & participant summary
Crimmins, Theresa M.; Rosemartin, Alyssa H.; Marsh, R. Lee; Denny, Ellen G.; Enquist, Carolyn A.F.; Weltzin, Jake F.
2011-01-01
Data submitted by Nature’s Notebook participants show patterns that follow latitude and elevation. Multiple years of observations now allow for year‐to‐year comparisons within and across species. As such, these data should be useful to a variety of stakeholders interested in the spatial and temporal patterns of plant and animal activity on a national scale; through time, these data should also empower scientists, resource managers, and the public in decision‐making and adapting to variable and changing climates and environments. Data submitted toNature’s Notebook and supporting metadata are available for download at www.usanpn.org/results/data. Additionally, data visualization tools are available online at www.usanpn.org/results/visualizations.
Simplified Metadata Curation via the Metadata Management Tool
NASA Astrophysics Data System (ADS)
Shum, D.; Pilone, D.
2015-12-01
The Metadata Management Tool (MMT) is the newest capability developed as part of NASA Earth Observing System Data and Information System's (EOSDIS) efforts to simplify metadata creation and improve metadata quality. The MMT was developed via an agile methodology, taking into account inputs from GCMD's science coordinators and other end-users. In its initial release, the MMT uses the Unified Metadata Model for Collections (UMM-C) to allow metadata providers to easily create and update collection records in the ISO-19115 format. Through a simplified UI experience, metadata curators can create and edit collections without full knowledge of the NASA Best Practices implementation of ISO-19115 format, while still generating compliant metadata. More experienced users are also able to access raw metadata to build more complex records as needed. In future releases, the MMT will build upon recent work done in the community to assess metadata quality and compliance with a variety of standards through application of metadata rubrics. The tool will provide users with clear guidance as to how to easily change their metadata in order to improve their quality and compliance. Through these features, the MMT allows data providers to create and maintain compliant and high quality metadata in a short amount of time.
Immersive Planetarium Visualizations for Teaching Solar System Moon Concepts to Undergraduates
ERIC Educational Resources Information Center
Yu, Ka Chun; Sahami, Kamran; Denn, Grant; Sahami, Victoria; Sessions, Larry C.
2016-01-01
Digital video fulldome has long been heralded as a revolutionary educational technology; yet the discipline-based astronomy education research literature showing planetarium effectiveness has been sparse. In order to help understand to what extent immersion impacts learning and the effect of the "narrative journey" model of presentation,…
Assessing Metadata Quality of a Federally Sponsored Health Data Repository.
Marc, David T; Beattie, James; Herasevich, Vitaly; Gatewood, Laël; Zhang, Rui
2016-01-01
The U.S. Federal Government developed HealthData.gov to disseminate healthcare datasets to the public. Metadata is provided for each datasets and is the sole source of information to find and retrieve data. This study employed automated quality assessments of the HealthData.gov metadata published from 2012 to 2014 to measure completeness, accuracy, and consistency of applying standards. The results demonstrated that metadata published in earlier years had lower completeness, accuracy, and consistency. Also, metadata that underwent modifications following their original creation were of higher quality. HealthData.gov did not uniformly apply Dublin Core Metadata Initiative to the metadata, which is a widely accepted metadata standard. These findings suggested that the HealthData.gov metadata suffered from quality issues, particularly related to information that wasn't frequently updated. The results supported the need for policies to standardize metadata and contributed to the development of automated measures of metadata quality.
Assessing Metadata Quality of a Federally Sponsored Health Data Repository
Marc, David T.; Beattie, James; Herasevich, Vitaly; Gatewood, Laël; Zhang, Rui
2016-01-01
The U.S. Federal Government developed HealthData.gov to disseminate healthcare datasets to the public. Metadata is provided for each datasets and is the sole source of information to find and retrieve data. This study employed automated quality assessments of the HealthData.gov metadata published from 2012 to 2014 to measure completeness, accuracy, and consistency of applying standards. The results demonstrated that metadata published in earlier years had lower completeness, accuracy, and consistency. Also, metadata that underwent modifications following their original creation were of higher quality. HealthData.gov did not uniformly apply Dublin Core Metadata Initiative to the metadata, which is a widely accepted metadata standard. These findings suggested that the HealthData.gov metadata suffered from quality issues, particularly related to information that wasn’t frequently updated. The results supported the need for policies to standardize metadata and contributed to the development of automated measures of metadata quality. PMID:28269883
Astronomical Data and Information Visualization
NASA Astrophysics Data System (ADS)
Goodman, Alyssa A.
2010-01-01
As the size and complexity of data sets increases, the need to "see" them more clearly increases as well. In the past, many scientists saw "fancy" data and information visualization as necessary for "outreach," but not for research. In this talk, I wlll demonstrate, using specific examples, why more and more scientists--not just astronomers--are coming to rely upon the development of new visualization strategies not just to present their data, but to understand it. Principal examples will be drawn from the "Astronomical Medicine" project at Harvard's Initiative in Innovative Computing, and from the "Seamless Astronomy" effort, which is co-sponsored by the VAO (NASA/NSF) and Microsoft Research.
Data publication and sharing using the SciDrive service
NASA Astrophysics Data System (ADS)
Mishin, Dmitry; Medvedev, D.; Szalay, A. S.; Plante, R. L.
2014-01-01
Despite the last years progress in scientific data storage, still remains the problem of public data storage and sharing system for relatively small scientific datasets. These are collections forming the “long tail” of power log datasets distribution. The aggregated size of the long tail data is comparable to the size of all data collections from large archives, and the value of data is significant. The SciDrive project's main goal is providing the scientific community with a place to reliably and freely store such data and provide access to it to broad scientific community. The primary target audience of the project is astoromy community, and it will be extended to other fields. We're aiming to create a simple way of publishing a dataset, which can be then shared with other people. Data owner controls the permissions to modify and access the data and can assign a group of users or open the access to everyone. The data contained in the dataset will be automaticaly recognized by a background process. Known data formats will be extracted according to the user's settings. Currently tabular data can be automatically extracted to the user's MyDB table where user can make SQL queries to the dataset and merge it with other public CasJobs resources. Other data formats can be processed using a set of plugins that upload the data or metadata to user-defined side services. The current implementation targets some of the data formats commonly used by the astronomy communities, including FITS, ASCII and Excel tables, TIFF images, and YT simulations data archives. Along with generic metadata, format-specific metadata is also processed. For example, basic information about celestial objects is extracted from FITS files and TIFF images, if present. A 100TB implementation has just been put into production at Johns Hopkins University. The system features public data storage REST service supporting VOSpace 2.0 and Dropbox protocols, HTML5 web portal, command-line client and Java standalone client to synchronize a local folder with the remote storage. We use VAO SSO (Single Sign On) service from NCSA for users authentication that provides free registration for everyone.
Partnerships To Mine Unexploited Sources of Metadata.
ERIC Educational Resources Information Center
Reynolds, Regina Romano
This paper discusses the metadata created for other purposes as a potential source of bibliographic data. The first section addresses collecting metadata by means of templates, including the Nordic Metadata Project's Dublin Core Metadata Template. The second section considers potential partnerships for re-purposing metadata for bibliographic use,…
2009-06-01
capabilities: web-based, relational/multi-dimensional, client/server, and metadata (data about data) inclusion (pp. 39-40). Text mining, on the other...and Organizational Systems ( CASOS ) (Carley, 2005). Although AutoMap can be used to conduct text-mining, it was utilized only for its visualization...provides insight into how the GMCOI is using the terms, and where there might be redundant terms and need for de -confliction and standardization
Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L
2016-01-04
The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Technical Reports Server (NTRS)
Aleman, Alicia; Olsen, Lola; Ritz, Scott; Morahan, Michael; Cepero, Laurel; Stevens, Tyler
2011-01-01
NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide. The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs. Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information. In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries. By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways. This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data. http://gcmd.nasa.gov/
Interoperable web applications for sharing data and products of the International DORIS Service
NASA Astrophysics Data System (ADS)
Soudarin, L.; Ferrage, P.
2017-12-01
The International DORIS Service (IDS) was created in 2003 under the umbrella of the International Association of Geodesy (IAG) to foster scientific research related to the French satellite tracking system DORIS and to deliver scientific products, mostly related to the International Earth rotation and Reference systems Service (IERS). Since its start, the organization has continuously evolved, leading to additional and improved operational products from an expanded set of DORIS Analysis Centers. In addition, IDS has developed services for sharing data and products with the users. Metadata and interoperable web applications are proposed to explore, visualize and download the key products such as the position time series of the geodetic points materialized at the ground tracking stations. The Global Geodetic Observing System (GGOS) encourages the IAG Services to develop such interoperable facilities on their website. The objective for GGOS is to set up an interoperable portal through which the data and products produced by the IAG Services can be served to the user community. We present the web applications proposed by IDS to visualize time series of geodetic observables or to get information about the tracking ground stations and the tracked satellites. We discuss the future plans for IDS to meet the recommendations of GGOS. The presentation also addresses the needs for the IAG Services to adopt common metadata thesaurus to describe data and products, and interoperability standards to share them.
A Window to the World: Lessons Learned from NASA's Collaborative Metadata Curation Effort
NASA Astrophysics Data System (ADS)
Bugbee, K.; Dixon, V.; Baynes, K.; Shum, D.; le Roux, J.; Ramachandran, R.
2017-12-01
Well written descriptive metadata adds value to data by making data easier to discover as well as increases the use of data by providing the context or appropriateness of use. While many data centers acknowledge the importance of correct, consistent and complete metadata, allocating resources to curate existing metadata is often difficult. To lower resource costs, many data centers seek guidance on best practices for curating metadata but struggle to identify those recommendations. In order to assist data centers in curating metadata and to also develop best practices for creating and maintaining metadata, NASA has formed a collaborative effort to improve the Earth Observing System Data and Information System (EOSDIS) metadata in the Common Metadata Repository (CMR). This effort has taken significant steps in building consensus around metadata curation best practices. However, this effort has also revealed gaps in EOSDIS enterprise policies and procedures within the core metadata curation task. This presentation will explore the mechanisms used for building consensus on metadata curation, the gaps identified in policies and procedures, the lessons learned from collaborating with both the data centers and metadata curation teams, and the proposed next steps for the future.
NASA Astrophysics Data System (ADS)
Efstathiou, Nectarios; Skitsas, Michael; Psaroudakis, Chrysostomos; Koutras, Nikolaos
2017-09-01
Nowadays, video surveillance cameras are used for the protection and monitoring of a huge number of facilities worldwide. An important element in such surveillance systems is the use of aerial video streams originating from onboard sensors located on Unmanned Aerial Vehicles (UAVs). Video surveillance using UAVs represent a vast amount of video to be transmitted, stored, analyzed and visualized in a real-time way. As a result, the introduction and development of systems able to handle huge amount of data become a necessity. In this paper, a new approach for the collection, transmission and storage of aerial videos and metadata is introduced. The objective of this work is twofold. First, the integration of the appropriate equipment in order to capture and transmit real-time video including metadata (i.e. position coordinates, target) from the UAV to the ground and, second, the utilization of the ADITESS Versatile Media Content Management System (VMCMS-GE) for storing of the video stream and the appropriate metadata. Beyond the storage, VMCMS-GE provides other efficient management capabilities such as searching and processing of videos, along with video transcoding. For the evaluation and demonstration of the proposed framework we execute a use case where the surveillance of critical infrastructure and the detection of suspicious activities is performed. Collected video Transcodingis subject of this evaluation as well.
The ADS All Sky Survey: footprints of astronomy literature, in the sky
NASA Astrophysics Data System (ADS)
Pepe, Alberto; Goodman, A. A.; Muench, A. A.; Seamless Astronomy Group at the CfA
2014-01-01
The ADS All-Sky Survey (ADSASS) aims to transform the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a literature resource for astronomers, into a data resource. The ADS is not a data repository per se, but it implicitly contains valuable holdings of astronomical data, in the form of images, tables and object references contained within articles. The objective of the ADSASS effort is to extract these data and make them discoverable and available through existing data viewers. In this talk, the ADSASS viewer - http://adsass.org/ - will be presented: a sky heatmap of astronomy articles based on the celestial objects they reference. The ADSASS viewer is as an innovative research and visual search tool for it allows users to explore astronomical literature based on celestial location, rather than keyword string. The ADSASS is a NASA-funded initiative carried out by the Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics.
Public Outreach Guerilla Style: Just Add Science to Existing Events
NASA Astrophysics Data System (ADS)
Gelderman, Richard
2016-01-01
We report on a campaign to use the visual appeal of astronomy as a gateway drug to inject public outreach into settings where people aren't expecting an encounter with science. Our inspiration came from the team at guerillascience.org, who have earned a reputation for creating, at sites around the world, "experiences and events that are unexpected, thought-provoking, but, above all, that delight and entertain." Our goal is to insert astronomy into existing festivals of music, culture, and art; county and state fairs; sporting events; and local farmer's markets. With volunteers and near-zero budgets, we have been able to meaningfully engage with audience members who would never willingly attend an event advertised as science related. By purposefully relating astronomy to the non-science aspects of the event that caused the audience members to attend, new learning experiences are created that alter the often negative pre-conceived notions about science that many of them held before our encounter.
NASA Astrophysics Data System (ADS)
Tenn, Joseph S.
2007-12-01
In 2007 the Astronomical Society of the Pacific awarded the 100th Catherine Wolfe Bruce gold medal for lifetime contributions to astronomy. The first medalist, Simon Newcomb in 1898, was a celestial mechanician who supervised the computations of orbits and compilation of almanacs, while the second, Arthur Auwers in 1899, observed visually and compiled catalogs of stellar positions and motions. In contrast the last two medalists, Martin Harwit in 2007 and Frank Low in 2006, are pioneers of infrared astronomy from airplanes and satellites. In between have come theoretical and experimental physicists, mathematicians, and radio astronomers, but the majority of medalists have been optical observers, celestial mechanicians (in the early years) and theoretical astrophysicists. Although astronomers are usually honored with the medal twenty to sixty years after their best work is done, we are starting to see more practitioners of the new astronomies, but to date there have been few representatives of the large teams that now dominate astronomical research. I will present an overview of the medalists and how their fields, styles and demographic characteristics have changed.
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2012-05-01
The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe the tools most relevant for the Professional Dynamical Astronomer. Solar Systems Visualizer: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. Orbital Integrators: Determine the orbital evolution of your initial conditions for a number of different scenarios including motions subject to general central forces, the classic three-body problem, and satellites of planets and exoplanets. Zero velocity curves are calculated and automatically included on relevant plots. Orbital Elements: Convert quickly and easily between state vectors and orbital elements with Changing the Elements. Use other routines to visualize your three-dimensional orbit and to convert between the different commonly used sets of orbital elements including the true, mean, and eccentric anomalies. Solar System Calculators: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed.
NASA Astrophysics Data System (ADS)
Beasley, Jeremiah; Fahlberg, Tim; Hoette, Vivian L.; Mekeel, Tina; Meredith, Kate; Williamson, Kathryn; Hoette, B. Charles; Skynet Robotic Telescope Network, University of North Carolina
2016-01-01
Skynet Junior Scholars is an ambitious program that aims to:--Develop online tools that enable middle school and high school aged youth to use robotic optical and radio telescopes to do astronomy--Create an inquiry-based curriculum that promotes critical thinking and scientific habits of mind--Proactively incorporate Principles of Universal Design in all SJS development tasks to ensure access by blind/low vision and deaf/hard of hearing youth--Prepare 180 adult youth leaders from diverse backgrounds including 4-H leaders, museum educators, amateur astronomers and teachers to facilitate SJS activities in a variety of settings.In this paper we describe the work of staff and volunteers at the Wisconsin School for the Blind and Visually Impaired who have implemented SJS activities in school and camp environments, as well as ways in which they have empowered their students to take on leadership roles. Students from the Wisconsin School for the Blind and Visually Impaired planned and co-hosted a Magic of Astronomy (Harry Potter Themed) star party that incorporated topics learned as part of the SJS program; filters, exposure time, locating objects in the sky, as well as, how to make an image request from the Skynet network. Their experiences in successfully doing active astronomy will provide insight into how anyone can engage everyone in programs like Skynet Junior Scholars.Skynet Junior Scholars is supported by the National Science Foundation under Grant Numbers 1223687, 1223235 and 1223345.
Evaluating and Evolving Metadata in Multiple Dialects
NASA Astrophysics Data System (ADS)
Kozimor, J.; Habermann, T.; Powers, L. A.; Gordon, S.
2016-12-01
Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways. This situation has led to the development of metadata repositories that can ingest and output metadata in multiple dialects. As an operational example, the NASA Common Metadata Repository (CMR) includes three different metadata dialects (DIF, ECHO, and ISO 19115-2). These systems raise a new question for metadata providers: if I have a choice of metadata dialects, which should I use and how do I make that decision? We have developed a collection of metadata evaluation tools that can be used to evaluate metadata records in many dialects for completeness with respect to recommendations from many organizations and communities. We have applied these tools to over 8000 collection and granule metadata records in four different dialects. This large collection of identical content in multiple dialects enables us to address questions about metadata and dialect evolution and to answer those questions quantitatively. We will describe those tools and results from evaluating the NASA CMR metadata collection.
Integration of upper air data in the MeteoSwiss Data Warehouse
NASA Astrophysics Data System (ADS)
Musa, M.; Haeberli, Ch.; Ruffieux, D.
2010-09-01
Over the last 10 years MeteoSwiss established a Data Warehouse in order to get one single, integrated data platform for all kinds of meteorological and climatological data. In the MeteoSwiss Data Warehouse data and metadata are hold in a metadata driven relational database. To reach this goal, we started with the integration of the actual and historical data from our surface stations in a first step, including routines for aggregation and calculation and the implementation of enhanced Quality Control tools. In 2008 we started with the integration of actual and historical upper air data like soundings (PTU, Wind and Ozone), any kind of profilers like wind profiler or radiometer, profiles calculated from numerical weather models and AMDAR data in the Data Warehouse. The dataset includes also high resolution sounding data from the station Payerne and TEMP data from 20 European stations since 1942. A critical point was to work out a concept for the general architecture which could deal with all different types of data. While integrating the data itself all metadata of the aerological station Payerne was transferred and imported in the central metadata repository of the Data Warehouse. The implementation of the real time and daily QC tools as well as the routines for aggregation and calculation were realized in an analog way as for the surface data. The Quality Control tools include plausibility tests like limit tests, consistency tests in the same level and vertical consistency tests. From the beginning it was the aim to support the MeteoSwiss integration strategy which deals with all aspects of integration like various observing technologies and platforms, observing systems outside MeteoSwiss and the data and metadata itself. This kind of integration comprises all aspects of "Enterprise Data Integration". After the integration, the historical as well as the actual upper air data are now available for the climatologists and meteorologists with standardized access for data retrieving and visualization. We are convinced making these data accessible for the scientist is a good contribution to a better understanding of high resolution climatology.
Sally Ride EarthKAM - Automated Image Geo-Referencing Using Google Earth Web Plug-In
NASA Technical Reports Server (NTRS)
Andres, Paul M.; Lazar, Dennis K.; Thames, Robert Q.
2013-01-01
Sally Ride EarthKAM is an educational program funded by NASA that aims to provide the public the ability to picture Earth from the perspective of the International Space Station (ISS). A computer-controlled camera is mounted on the ISS in a nadir-pointing window; however, timing limitations in the system cause inaccurate positional metadata. Manually correcting images within an orbit allows the positional metadata to be improved using mathematical regressions. The manual correction process is time-consuming and thus, unfeasible for a large number of images. The standard Google Earth program allows for the importing of KML (keyhole markup language) files that previously were created. These KML file-based overlays could then be manually manipulated as image overlays, saved, and then uploaded to the project server where they are parsed and the metadata in the database is updated. The new interface eliminates the need to save, download, open, re-save, and upload the KML files. Everything is processed on the Web, and all manipulations go directly into the database. Administrators also have the control to discard any single correction that was made and validate a correction. This program streamlines a process that previously required several critical steps and was probably too complex for the average user to complete successfully. The new process is theoretically simple enough for members of the public to make use of and contribute to the success of the Sally Ride EarthKAM project. Using the Google Earth Web plug-in, EarthKAM images, and associated metadata, this software allows users to interactively manipulate an EarthKAM image overlay, and update and improve the associated metadata. The Web interface uses the Google Earth JavaScript API along with PHP-PostgreSQL to present the user the same interface capabilities without leaving the Web. The simpler graphical user interface will allow the public to participate directly and meaningfully with EarthKAM. The use of similar techniques is being investigated to place ground-based observations in a Google Mars environment, allowing the MSL (Mars Science Laboratory) Science Team a means to visualize the rover and its environment.
NASA Astrophysics Data System (ADS)
Lin, Po-Chuan; Chen, Bo-Wei; Chang, Hangbae
2016-07-01
This study presents a human-centric technique for social video expansion based on semantic processing and graph analysis. The objective is to increase metadata of an online video and to explore related information, thereby facilitating user browsing activities. To analyze the semantic meaning of a video, shots and scenes are firstly extracted from the video on the server side. Subsequently, this study uses annotations along with ConceptNet to establish the underlying framework. Detailed metadata, including visual objects and audio events among the predefined categories, are indexed by using the proposed method. Furthermore, relevant online media associated with each category are also analyzed to enrich the existing content. With the above-mentioned information, users can easily browse and search the content according to the link analysis and its complementary knowledge. Experiments on a video dataset are conducted for evaluation. The results show that our system can achieve satisfactory performance, thereby demonstrating the feasibility of the proposed idea.
Exploring neighborhoods in the metagenome universe.
Aßhauer, Kathrin P; Klingenberg, Heiner; Lingner, Thomas; Meinicke, Peter
2014-07-14
The variety of metagenomes in current databases provides a rapidly growing source of information for comparative studies. However, the quantity and quality of supplementary metadata is still lagging behind. It is therefore important to be able to identify related metagenomes by means of the available sequence data alone. We have studied efficient sequence-based methods for large-scale identification of similar metagenomes within a database retrieval context. In a broad comparison of different profiling methods we found that vector-based distance measures are well-suitable for the detection of metagenomic neighbors. Our evaluation on more than 1700 publicly available metagenomes indicates that for a query metagenome from a particular habitat on average nine out of ten nearest neighbors represent the same habitat category independent of the utilized profiling method or distance measure. While for well-defined labels a neighborhood accuracy of 100% can be achieved, in general the neighbor detection is severely affected by a natural overlap of manually annotated categories. In addition, we present results of a novel visualization method that is able to reflect the similarity of metagenomes in a 2D scatter plot. The visualization method shows a similarly high accuracy in the reduced space as compared with the high-dimensional profile space. Our study suggests that for inspection of metagenome neighborhoods the profiling methods and distance measures can be chosen to provide a convenient interpretation of results in terms of the underlying features. Furthermore, supplementary metadata of metagenome samples in the future needs to comply with readily available ontologies for fine-grained and standardized annotation. To make profile-based k-nearest-neighbor search and the 2D-visualization of the metagenome universe available to the research community, we included the proposed methods in our CoMet-Universe server for comparative metagenome analysis.
Exploring Neighborhoods in the Metagenome Universe
Aßhauer, Kathrin P.; Klingenberg, Heiner; Lingner, Thomas; Meinicke, Peter
2014-01-01
The variety of metagenomes in current databases provides a rapidly growing source of information for comparative studies. However, the quantity and quality of supplementary metadata is still lagging behind. It is therefore important to be able to identify related metagenomes by means of the available sequence data alone. We have studied efficient sequence-based methods for large-scale identification of similar metagenomes within a database retrieval context. In a broad comparison of different profiling methods we found that vector-based distance measures are well-suitable for the detection of metagenomic neighbors. Our evaluation on more than 1700 publicly available metagenomes indicates that for a query metagenome from a particular habitat on average nine out of ten nearest neighbors represent the same habitat category independent of the utilized profiling method or distance measure. While for well-defined labels a neighborhood accuracy of 100% can be achieved, in general the neighbor detection is severely affected by a natural overlap of manually annotated categories. In addition, we present results of a novel visualization method that is able to reflect the similarity of metagenomes in a 2D scatter plot. The visualization method shows a similarly high accuracy in the reduced space as compared with the high-dimensional profile space. Our study suggests that for inspection of metagenome neighborhoods the profiling methods and distance measures can be chosen to provide a convenient interpretation of results in terms of the underlying features. Furthermore, supplementary metadata of metagenome samples in the future needs to comply with readily available ontologies for fine-grained and standardized annotation. To make profile-based k-nearest-neighbor search and the 2D-visualization of the metagenome universe available to the research community, we included the proposed methods in our CoMet-Universe server for comparative metagenome analysis. PMID:25026170
Earth Science Datacasting v2.0
NASA Technical Reports Server (NTRS)
Bingham, Andrew W.; Deen, Robert G.; Hussey, Kevin J.; Stough, Timothy M.; McCleese, Sean W.; Toole, Nicholas T.
2012-01-01
The Datacasting software, which consists of a server and a client, has been developed as part of the Earth Science (ES) Datacasting project. The goal of ES Datacasting is to provide scientists the ability to automatically and continuously download Earth science data that meets a precise, predefined need, and then to instantaneously visualize it on a local computer. This is achieved by applying the concept of podcasting to deliver science data over the Internet using RSS (Really Simple Syndication) XML feeds. By extending the RSS specification, scientists can filter a feed and only download the files that are required for a particular application (for example, only files that contain information about a particular event, such as a hurricane or flood). The extension also provides the ability for the client to understand the format of the data and visualize the information locally. The server part enables a data provider to create and serve basic Datacasting (RSS-based) feeds. The user can subscribe to any number of feeds, view the information related to each item contained within a feed (including browse pre-made images), manually download files associated with items, and place these files in a local store. The client-server architecture enables users to: a) Subscribe and interpret multiple Datacasting feeds (same look and feel as a typical mail client), b) Maintain a list of all items within each feed, c) Enable filtering on the lists based on different metadata attributes contained within the feed (list will reference only data files of interest), d) Visualize the reference data and associated metadata, e) Download files referenced within the list, and f) Automatically download files as new items become available.
MyGeoHub: A Collaborative Geospatial Research and Education Platform
NASA Astrophysics Data System (ADS)
Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.
2017-12-01
Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.
SATORI: a system for ontology-guided visual exploration of biomedical data repositories.
Lekschas, Fritz; Gehlenborg, Nils
2018-04-01
The ever-increasing number of biomedical datasets provides tremendous opportunities for re-use but current data repositories provide limited means of exploration apart from text-based search. Ontological metadata annotations provide context by semantically relating datasets. Visualizing this rich network of relationships can improve the explorability of large data repositories and help researchers find datasets of interest. We developed SATORI-an integrative search and visual exploration interface for the exploration of biomedical data repositories. The design is informed by a requirements analysis through a series of semi-structured interviews. We evaluated the implementation of SATORI in a field study on a real-world data collection. SATORI enables researchers to seamlessly search, browse and semantically query data repositories via two visualizations that are highly interconnected with a powerful search interface. SATORI is an open-source web application, which is freely available at http://satori.refinery-platform.org and integrated into the Refinery Platform. nils@hms.harvard.edu. Supplementary data are available at Bioinformatics online.
Visualization of Multi-mission Astronomical Data with ESASky
NASA Astrophysics Data System (ADS)
Baines, Deborah; Giordano, Fabrizio; Racero, Elena; Salgado, Jesús; López Martí, Belén; Merín, Bruno; Sarmiento, María-Henar; Gutiérrez, Raúl; Ortiz de Landaluce, Iñaki; León, Ignacio; de Teodoro, Pilar; González, Juan; Nieto, Sara; Segovia, Juan Carlos; Pollock, Andy; Rosa, Michael; Arviset, Christophe; Lennon, Daniel; O'Mullane, William; de Marchi, Guido
2017-02-01
ESASky is a science-driven discovery portal to explore the multi-wavelength sky and visualize and access multiple astronomical archive holdings. The tool is a web application that requires no prior knowledge of any of the missions involved and gives users world-wide simplified access to the highest-level science data products from multiple astronomical space-based astronomy missions plus a number of ESA source catalogs. The first public release of ESASky features interfaces for the visualization of the sky in multiple wavelengths, the visualization of query results summaries, and the visualization of observations and catalog sources for single and multiple targets. This paper describes these features within ESASky, developed to address use cases from the scientific community. The decisions regarding the visualization of large amounts of data and the technologies used were made to maximize the responsiveness of the application and to keep the tool as useful and intuitive as possible.
EOS ODL Metadata On-line Viewer
NASA Astrophysics Data System (ADS)
Yang, J.; Rabi, M.; Bane, B.; Ullman, R.
2002-12-01
We have recently developed and deployed an EOS ODL metadata on-line viewer. The EOS ODL metadata viewer is a web server that takes: 1) an EOS metadata file in Object Description Language (ODL), 2) parameters, such as which metadata to view and what style of display to use, and returns an HTML or XML document displaying the requested metadata in the requested style. This tool is developed to address widespread complaints by science community that the EOS Data and Information System (EOSDIS) metadata files in ODL are difficult to read by allowing users to upload and view an ODL metadata file in different styles using a web browser. Users have the selection to view all the metadata or part of the metadata, such as Collection metadata, Granule metadata, or Unsupported Metadata. Choices of display styles include 1) Web: a mouseable display with tabs and turn-down menus, 2) Outline: Formatted and colored text, suitable for printing, 3) Generic: Simple indented text, a direct representation of the underlying ODL metadata, and 4) None: No stylesheet is applied and the XML generated by the converter is returned directly. Not all display styles are implemented for all the metadata choices. For example, Web style is only implemented for Collection and Granule metadata groups with known attribute fields, but not for Unsupported, Other, and All metadata. The overall strategy of the ODL viewer is to transform an ODL metadata file to a viewable HTML in two steps. The first step is to convert the ODL metadata file to an XML using a Java-based parser/translator called ODL2XML. The second step is to transform the XML to an HTML using stylesheets. Both operations are done on the server side. This allows a lot of flexibility in the final result, and is very portable cross-platform. Perl CGI behind the Apache web server is used to run the Java ODL2XML, and then run the results through an XSLT processor. The EOS ODL viewer can be accessed from either a PC or a Mac using Internet Explorer 5.0+ or Netscape 4.7+.
ISO 19115 Experiences in NASA's Earth Observing System (EOS) ClearingHOuse (ECHO)
NASA Astrophysics Data System (ADS)
Cechini, M. F.; Mitchell, A.
2011-12-01
Metadata is an important entity in the process of cataloging, discovering, and describing earth science data. As science research and the gathered data increases in complexity, so does the complexity and importance of descriptive metadata. To meet these growing needs, the metadata models required utilize richer and more mature metadata attributes. Categorizing, standardizing, and promulgating these metadata models to a politically, geographically, and scientifically diverse community is a difficult process. An integral component of metadata management within NASA's Earth Observing System Data and Information System (EOSDIS) is the Earth Observing System (EOS) ClearingHOuse (ECHO). ECHO is the core metadata repository for the EOSDIS data centers providing a centralized mechanism for metadata and data discovery and retrieval. ECHO has undertaken an internal restructuring to meet the changing needs of scientists, the consistent advancement in technology, and the advent of new standards such as ISO 19115. These improvements were based on the following tenets for data discovery and retrieval: + There exists a set of 'core' metadata fields recommended for data discovery. + There exists a set of users who will require the entire metadata record for advanced analysis. + There exists a set of users who will require a 'core' set metadata fields for discovery only. + There will never be a cessation of new formats or a total retirement of all old formats. + Users should be presented metadata in a consistent format of their choosing. In order to address the previously listed items, ECHO's new metadata processing paradigm utilizes the following approach: + Identify a cross-format set of 'core' metadata fields necessary for discovery. + Implement format-specific indexers to extract the 'core' metadata fields into an optimized query capability. + Archive the original metadata in its entirety for presentation to users requiring the full record. + Provide on-demand translation of 'core' metadata to any supported result format. Lessons learned by the ECHO team while implementing its new metadata approach to support usage of the ISO 19115 standard will be presented. These lessons learned highlight some discovered strengths and weaknesses in the ISO 19115 standard as it is introduced to an existing metadata processing system.
NASA Astrophysics Data System (ADS)
Maravelakis, Emmanouel; Konstantaras, Antonios; Axaridou, Anastasia; Chrysakis, Ioannis; Xinogalos, Michalis
2014-05-01
This research investigates the application of new system for 3D documentation of land degradation and its effect [1,2] on areas of cultural heritage via complete 3D data acquisition, 3D modeling and metadata recording using terrestrial laser scanners (TLS) [3,4,5]. As land degradation progresses through time it is important to be able to map and exactly replicate with great precision the entire 3D shape of the physical objects of interest, such as landslides, ground erosion, river boundaries, mad accumulation, etc. [1,2] TLS enables the extraction and recording of a very large number of points in space with great precision and without the need for any physical contact with the object of interest. Field specialists can then examine the produced models and comment on them both on the overall object of interest and on specific features of it by inserting annotations on certain parts of the model [6]. This process could be proven to be very cost effective as it can be repeated as often as necessary and produce a well catalogued documentation of the progress of land degradation at particular areas. The problem with repeating TLS models lies on the various types of hardware equipment and software systems that might be used for the extraction of point clouds, and the different people that might be called to analyze the findings. These often result in a large volume of interim and final products with little if no standardization, multiple different metadata and vague documentation [7], which makes metadata recordings [8] crucial both for one scientist to be able to follow upon the work of the other as well as being able to repeat the same work when deemed necessary. This makes the need for a repository tool proposed by the authors essential in order to record all work that is done in every TLS scanning, and makes the technology accessible to scientists of various different fields [9,10], eg. geologists, physicists, topographers, remote sensing engineers, archaeologists etc. allowing them to interchange their knowledge, findings and observations at different time frames. Results outline the successful application of the above systems in certain Greek areas of important cultural heritage [3,11] were significant efforts are being made for their preservation through time. Acknowledgement The authors wish to thank the General Secretariat for Research and Technology of Ministry of Education and Religious Affairs, Culture and Sports in Greece for their financial support via program Cooperation: Partnership of Production and Research Institutions in Small and Medium Scale Projects, Project Title: "3D-SYSTEK - Development of a novel system for 3D Documentation, Promotion and Exploitation of Cultural Heritage Monuments via 3D data acquisition, 3D modeling and metadata recording". Keywords spatial data, land degradation monitoring, 3D modeling and visualization, terrestrial laser scanning, documentation and metadata repository, protection of cultural heritage References [1] Shalaby, A., and Tateishi, R.: Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the northwestern coastal zone of egypt. Applied Geography, 27(1), 28-41, (2007) [2] Poesen, J. W. A., and Hooke, J. M.: Erosion, flooding and channel management in mediterranean environments of southern europe. Progress in Physical Geography, 21(2), 157-199, (1997) [3] Maravelakis, E., Bilalis, N., Mantzorou, I., Konstantaras, A., Antoniadis, A.: 3D modeling of the oldest olive tree of the world. IJCER 2(2), 340-347 (2012) [4] Manferdini, A.M., Remondino, F.: Reality-Based 3D Modeling, Segmentation and Web- Based Visualization. In: Ioannides, M., Fellner, D., Georgopoulos, A., Hadjimitsis, D.G. (eds.) EuroMed 2010. LNCS, vol. 6436, pp. 110-124. Springer, Heidelberg (2010) [5] Tapete, D., Casagli, N., Luzi, G., Fanti, R., Gigli, G., Leva, D.: Integrating radar and laserbased remote sensing techniques for monitoring structural deformation of archaeological monuments. Journal of Archaeological Science 40, 176-189 (2012) [6] Sinclair, P., Addis, M., Choi, F., Doerr, M., Lewis, P., Martinez, K.: The Use of CRM Core in Multimedia Annotation. In: First International Workshop on Semantic Web Annotations for Multimedia (2006) [7] Zhiming, Z., et al.: Scientific workflow management: between generality and applicability. In: Proc. the 5th International Conference on Quality Software, Melbourne, Australia, pp. 19-20 (2005) [8] Infrastructure for Spatial Information in Europe. INSPIRE Architecture and Standards Position Paper (2002) [9] Doerr, M., Kritsotaki, A.: Documenting events in metadata. In: The e-volution of Information Communication Technology in Cultural Heritage, pp. 56-61 (2006) [10] Maravelakis, E., Konstantaras, A., Kritsotaki, A., Angelakis, D. and Xinogalos, M.: Analysing User Needs for a Unified 3D Metadata Recording and Exploitation of Cultural Heritage Monuments System, Advances in Visual Computing, Lecture Notes in Computer Science Volume 8034, pp 138-147, (2013) [11] Maravelakis, E., Andrianakis, M., Psarakis, K., Bolanakis, N., Tzatzanis, G., Bilalis, N., Antoniadis, A.: Lessons Learned from Cultural Heritage Digitisation Projects in Crete. In: Proceedings of the 14th International Conference on Virtual Systems and Multimedia, pp. 152-156 (2008)
Willoughby, Cerys; Bird, Colin L; Coles, Simon J; Frey, Jeremy G
2014-12-22
The drive toward more transparency in research, the growing willingness to make data openly available, and the reuse of data to maximize the return on research investment all increase the importance of being able to find information and make links to the underlying data. The use of metadata in Electronic Laboratory Notebooks (ELNs) to curate experiment data is an essential ingredient for facilitating discovery. The University of Southampton has developed a Web browser-based ELN that enables users to add their own metadata to notebook entries. A survey of these notebooks was completed to assess user behavior and patterns of metadata usage within ELNs, while user perceptions and expectations were gathered through interviews and user-testing activities within the community. The findings indicate that while some groups are comfortable with metadata and are able to design a metadata structure that works effectively, many users are making little attempts to use it, thereby endangering their ability to recover data in the future. A survey of patterns of metadata use in these notebooks, together with feedback from the user community, indicated that while a few groups are comfortable with metadata and are able to design a metadata structure that works effectively, many users adopt a "minimum required" approach to metadata. To investigate whether the patterns of metadata use in LabTrove were unusual, a series of surveys were undertaken to investigate metadata usage in a variety of platforms supporting user-defined metadata. These surveys also provided the opportunity to investigate whether interface designs in these other environments might inform strategies for encouraging metadata creation and more effective use of metadata in LabTrove.
ASDC Collaborations and Processes to Ensure Quality Metadata and Consistent Data Availability
NASA Astrophysics Data System (ADS)
Trapasso, T. J.
2017-12-01
With the introduction of new tools, faster computing, and less expensive storage, increased volumes of data are expected to be managed with existing or fewer resources. Metadata management is becoming a heightened challenge from the increase in data volume, resulting in more metadata records needed to be curated for each product. To address metadata availability and completeness, NASA ESDIS has taken significant strides with the creation of the United Metadata Model (UMM) and Common Metadata Repository (CMR). These UMM helps address hurdles experienced by the increasing number of metadata dialects and the CMR provides a primary repository for metadata so that required metadata fields can be served through a growing number of tools and services. However, metadata quality remains an issue as metadata is not always inherent to the end-user. In response to these challenges, the NASA Atmospheric Science Data Center (ASDC) created the Collaboratory for quAlity Metadata Preservation (CAMP) and defined the Product Lifecycle Process (PLP) to work congruently. CAMP is unique in that it provides science team members a UI to directly supply metadata that is complete, compliant, and accurate for their data products. This replaces back-and-forth communication that often results in misinterpreted metadata. Upon review by ASDC staff, metadata is submitted to CMR for broader distribution through Earthdata. Further, approval of science team metadata in CAMP automatically triggers the ASDC PLP workflow to ensure appropriate services are applied throughout the product lifecycle. This presentation will review the design elements of CAMP and PLP as well as demonstrate interfaces to each. It will show the benefits that CAMP and PLP provide to the ASDC that could potentially benefit additional NASA Earth Science Data and Information System (ESDIS) Distributed Active Archive Centers (DAACs).
Metadata squared: enhancing its usability for volunteered geographic information and the GeoWeb
Poore, Barbara S.; Wolf, Eric B.; Sui, Daniel Z.; Elwood, Sarah; Goodchild, Michael F.
2013-01-01
The Internet has brought many changes to the way geographic information is created and shared. One aspect that has not changed is metadata. Static spatial data quality descriptions were standardized in the mid-1990s and cannot accommodate the current climate of data creation where nonexperts are using mobile phones and other location-based devices on a continuous basis to contribute data to Internet mapping platforms. The usability of standard geospatial metadata is being questioned by academics and neogeographers alike. This chapter analyzes current discussions of metadata to demonstrate how the media shift that is occurring has affected requirements for metadata. Two case studies of metadata use are presented—online sharing of environmental information through a regional spatial data infrastructure in the early 2000s, and new types of metadata that are being used today in OpenStreetMap, a map of the world created entirely by volunteers. Changes in metadata requirements are examined for usability, the ease with which metadata supports coproduction of data by communities of users, how metadata enhances findability, and how the relationship between metadata and data has changed. We argue that traditional metadata associated with spatial data infrastructures is inadequate and suggest several research avenues to make this type of metadata more interactive and effective in the GeoWeb.
Evolutions in Metadata Quality
NASA Astrophysics Data System (ADS)
Gilman, J.
2016-12-01
Metadata Quality is one of the chief drivers of discovery and use of NASA EOSDIS (Earth Observing System Data and Information System) data. Issues with metadata such as lack of completeness, inconsistency, and use of legacy terms directly hinder data use. As the central metadata repository for NASA Earth Science data, the Common Metadata Repository (CMR) has a responsibility to its users to ensure the quality of CMR search results. This talk will cover how we encourage metadata authors to improve the metadata through the use of integrated rubrics of metadata quality and outreach efforts. In addition we'll demonstrate Humanizers, a technique for dealing with the symptoms of metadata issues. Humanizers allow CMR administrators to identify specific metadata issues that are fixed at runtime when the data is indexed. An example Humanizer is the aliasing of processing level "Level 1" to "1" to improve consistency across collections. The CMR currently indexes 35K collections and 300M granules.
NASA Astrophysics Data System (ADS)
Cavaglia, Marco; Hendry, M.; Ingram, D.; Milde, S.; Pandian, S. R.; Reitze, D.; Riles, K.; Schutz, B.; Stuver, A. L.; Summerscales, T.; Ugolini, D.; Thacker, J.; Vallisneri, M.; Zermeno, A.
2008-05-01
The nascent field of gravitational wave astronomy offers many opportunities for effective and inspirational astronomy outreach. Gravitational waves, the `ripples in spacetime' predicted by Einstein's general theory of relativity, are produced by some of the most energetic and dramatic phenomena in the cosmos, including black holes, neutron stars and supernovae - and their discovery should help to address a number of fundamental questions in physics, from the evolution of stars and galaxies to the origin of dark energy and the nature of spacetime itself. Moreover, the cutting-edge technology developed to search for gravitational waves is pushing back the frontiers of many fields, from lasers and materials science to high performance computing, and thus provides a powerful showcase for the attractions and challenges of a career in science and engineering. For several years a worldwide network of ground-based laser interferometric gravitational wave detectors, built and run by the LIGO Scientific Collaboration, has been fully operational. These detectors are already among the most sensitive scientific instruments on the planet but in the next few years their sensitivity will achieve further significant improvement. Those developments promise to open an exciting new window on the Universe, heralding the arrival of gravitational wave astronomy as a revolutionary, new observational field. In this poster we describe the extensive program of public outreach activities already undertaken by the LIGO Scientific Collaboration, and a number of special events which we are planning for IYA2009. These activities include: * programs at Science Centers and Observatory Visitor Centers * programs on gravitational wave astronomy for the classroom, across the K-12 spectrum * interdisciplinary events linking gravitational wave astronomy to music and the visual arts * research experiences for schools and citizens through the highly successful `Einstein@Home' program.
Data Fusion and Visualization with the OpenEarth Framework (OEF)
NASA Astrophysics Data System (ADS)
Nadeau, D. R.; Baru, C.; Fouch, M. J.; Crosby, C. J.
2010-12-01
Data fusion is an increasingly important problem to solve as we strive to integrate data from multiple sources and build better models of the complex processes operating at the Earth’s surface and its interior. These data are often large, multi-dimensional, and subject to differing conventions for file formats, data structures, coordinate spaces, units of measure, and metadata organization. When visualized, these data require differing, and often conflicting, conventions for visual representations, dimensionality, icons, color schemes, labeling, and interaction. These issues make the visualization of fused Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data fusion and visualization suite of software being developed at the Supercomputer Center at the University of California, San Diego. Funded by the NSF, the project is leveraging virtual globe technology from NASA’s WorldWind to create interactive 3D visualization tools that combine layered data from a variety of sources to create a holistic view of features at, above, and beneath the Earth’s surface. The OEF architecture is cross-platform, multi-threaded, modular, and based upon Java. The OEF’s modular approach yields a collection of compatible mix-and-match components for assembling custom applications. Available modules support file format handling, web service communications, data management, data filtering, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats. Each one imports data into a general-purpose data representation that supports multidimensional grids, topography, points, lines, polygons, images, and more. From there these data then may be manipulated, merged, filtered, reprojected, and visualized. Visualization features support conventional and new visualization techniques for looking at topography, tomography, maps, and feature geometry. 3D grid data such as seismic tomography may be sliced by multiple oriented cutting planes and isosurfaced to create 3D skins that trace feature boundaries within the data. Topography may be overlaid with satellite imagery along with data such as gravity and magnetics measurements. Multiple data sets may be visualized simultaneously using overlapping layers and a common 3D+time coordinate space. Data management within the OEF handles and hides the quirks of differing file formats, web protocols, storage structures, coordinate spaces, and metadata representations. Derived data are computed automatically to support interaction and visualization while the original data is left unchanged in its original form. Data is cached for better memory and network efficiency, and all visualization is accelerated by 3D graphics hardware found on today’s computers. The OpenEarth Framework project is currently prototyping the software for use in the visualization, and integration of continental scale geophysical data being produced by EarthScope-related research in the Western US. The OEF is providing researchers with new ways to display and interrogate their data and is anticipated to be a valuable tool for future EarthScope-related research.
Metadata Means Communication: The Challenges of Producing Useful Metadata
NASA Astrophysics Data System (ADS)
Edwards, P. N.; Batcheller, A. L.
2010-12-01
Metadata are increasingly perceived as an important component of data sharing systems. For instance, metadata accompanying atmospheric model output may indicate the grid size, grid type, and parameter settings used in the model configuration. We conducted a case study of a data portal in the atmospheric sciences using in-depth interviews, document review, and observation. OUr analysis revealed a number of challenges in producing useful metadata. First, creating and managing metadata required considerable effort and expertise, yet responsibility for these tasks was ill-defined and diffused among many individuals, leading to errors, failure to capture metadata, and uncertainty about the quality of the primary data. Second, metadata ended up stored in many different forms and software tools, making it hard to manage versions and transfer between formats. Third, the exact meanings of metadata categories remained unsettled and misunderstood even among a small community of domain experts -- an effect we expect to be exacerbated when scientists from other disciplines wish to use these data. In practice, we found that metadata problems due to these obstacles are often overcome through informal, personal communication, such as conversations or email. We conclude that metadata serve to communicate the context of data production from the people who produce data to those who wish to use it. Thus while formal metadata systems are often public, critical elements of metadata (those embodied in informal communication) may never be recorded. Therefore, efforts to increase data sharing should include ways to facilitate inter-investigator communication. Instead of tackling metadata challenges only on the formal level, we can improve data usability for broader communities by better supporting metadata communication.
VAMPS: a website for visualization and analysis of microbial population structures.
Huse, Susan M; Mark Welch, David B; Voorhis, Andy; Shipunova, Anna; Morrison, Hilary G; Eren, A Murat; Sogin, Mitchell L
2014-02-05
The advent of next-generation DNA sequencing platforms has revolutionized molecular microbial ecology by making the detailed analysis of complex communities over time and space a tractable research pursuit for small research groups. However, the ability to generate 10⁵-10⁸ reads with relative ease brings with it many downstream complications. Beyond the computational resources and skills needed to process and analyze data, it is difficult to compare datasets in an intuitive and interactive manner that leads to hypothesis generation and testing. We developed the free web service VAMPS (Visualization and Analysis of Microbial Population Structures, http://vamps.mbl.edu) to address these challenges and to facilitate research by individuals or collaborating groups working on projects with large-scale sequencing data. Users can upload marker gene sequences and associated metadata; reads are quality filtered and assigned to both taxonomic structures and to taxonomy-independent clusters. A simple point-and-click interface allows users to select for analysis any combination of their own or their collaborators' private data and data from public projects, filter these by their choice of taxonomic and/or abundance criteria, and then explore these data using a wide range of analytic methods and visualizations. Each result is extensively hyperlinked to other analysis and visualization options, promoting data exploration and leading to a greater understanding of data relationships. VAMPS allows researchers using marker gene sequence data to analyze the diversity of microbial communities and the relationships between communities, to explore these analyses in an intuitive visual context, and to download data, results, and images for publication. VAMPS obviates the need for individual research groups to make the considerable investment in computational infrastructure and bioinformatic support otherwise necessary to process, analyze, and interpret massive amounts of next-generation sequence data. Any web-capable device can be used to upload, process, explore, and extract data and results from VAMPS. VAMPS encourages researchers to share sequence and metadata, and fosters collaboration between researchers of disparate biomes who recognize common patterns in shared data.
Visual analytics for semantic queries of TerraSAR-X image content
NASA Astrophysics Data System (ADS)
Espinoza-Molina, Daniela; Alonso, Kevin; Datcu, Mihai
2015-10-01
With the continuous image product acquisition of satellite missions, the size of the image archives is considerably increasing every day as well as the variety and complexity of their content, surpassing the end-user capacity to analyse and exploit them. Advances in the image retrieval field have contributed to the development of tools for interactive exploration and extraction of the images from huge archives using different parameters like metadata, key-words, and basic image descriptors. Even though we count on more powerful tools for automated image retrieval and data analysis, we still face the problem of understanding and analyzing the results. Thus, a systematic computational analysis of these results is required in order to provide to the end-user a summary of the archive content in comprehensible terms. In this context, visual analytics combines automated analysis with interactive visualizations analysis techniques for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Moreover, currently several researches are focused on associating the content of the images with semantic definitions for describing the data in a format to be easily understood by the end-user. In this paper, we present our approach for computing visual analytics and semantically querying the TerraSAR-X archive. Our approach is mainly composed of four steps: 1) the generation of a data model that explains the information contained in a TerraSAR-X product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback, and 4) querying the image archive using semantic descriptors as query parameters and computing the statistical analysis of the query results. The experimental results shows that with the help of visual analytics and semantic definitions we are able to explain the image content using semantic terms and the relations between them answering questions such as what is the percentage of urban area in a region? or what is the distribution of water bodies in a city?
Inheritance rules for Hierarchical Metadata Based on ISO 19115
NASA Astrophysics Data System (ADS)
Zabala, A.; Masó, J.; Pons, X.
2012-04-01
Mainly, ISO19115 has been used to describe metadata for datasets and services. Furthermore, ISO19115 standard (as well as the new draft ISO19115-1) includes a conceptual model that allows to describe metadata at different levels of granularity structured in hierarchical levels, both in aggregated resources such as particularly series, datasets, and also in more disaggregated resources such as types of entities (feature type), types of attributes (attribute type), entities (feature instances) and attributes (attribute instances). In theory, to apply a complete metadata structure to all hierarchical levels of metadata, from the whole series to an individual feature attributes, is possible, but to store all metadata at all levels is completely impractical. An inheritance mechanism is needed to store each metadata and quality information at the optimum hierarchical level and to allow an ease and efficient documentation of metadata in both an Earth observation scenario such as a multi-satellite mission multiband imagery, as well as in a complex vector topographical map that includes several feature types separated in layers (e.g. administrative limits, contour lines, edification polygons, road lines, etc). Moreover, and due to the traditional split of maps in tiles due to map handling at detailed scales or due to the satellite characteristics, each of the previous thematic layers (e.g. 1:5000 roads for a country) or band (Landsat-5 TM cover of the Earth) are tiled on several parts (sheets or scenes respectively). According to hierarchy in ISO 19115, the definition of general metadata can be supplemented by spatially specific metadata that, when required, either inherits or overrides the general case (G.1.3). Annex H of this standard states that only metadata exceptions are defined at lower levels, so it is not necessary to generate the full registry of metadata for each level but to link particular values to the general value that they inherit. Conceptually the metadata registry is complete for each metadata hierarchical level, but at the implementation level most of the metadata elements are not stored at both levels but only at more generic one. This communication defines a metadata system that covers 4 levels, describes which metadata has to support series-layer inheritance and in which way, and how hierarchical levels are defined and stored. Metadata elements are classified according to the type of inheritance between products, series, tiles and the datasets. It explains the metadata elements classification and exemplifies it using core metadata elements. The communication also presents a metadata viewer and edition tool that uses the described model to propagate metadata elements and to show to the user a complete set of metadata for each level in a transparent way. This tool is integrated in the MiraMon GIS software.
The role of metadata in managing large environmental science datasets. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melton, R.B.; DeVaney, D.M.; French, J. C.
1995-06-01
The purpose of this workshop was to bring together computer science researchers and environmental sciences data management practitioners to consider the role of metadata in managing large environmental sciences datasets. The objectives included: establishing a common definition of metadata; identifying categories of metadata; defining problems in managing metadata; and defining problems related to linking metadata with primary data.
ERIC Educational Resources Information Center
Lee, Hyunju; Schneider, Stephen E.
2015-01-01
Many topics in introductory astronomy at the college or high-school level rely implicitly on using astronomical photographs and visual data in class. However, students bring many preconceptions to their understanding of these materials that ultimately lead to misconceptions, and the research about students' interpretation of astronomical images…
ERIC Educational Resources Information Center
Lee, Hyunju; Schneider, Stephen E.
2015-01-01
Many topics in introductory astronomy at the college or high-school level rely implicitly on using astronomical photographs and visual data in class. However, students bring many preconceptions to their understanding of these materials that ultimately lead to misconceptions, and research about students' interpretation of astronomical images has…
Google Sky: A Digital View of the Night Sky
NASA Astrophysics Data System (ADS)
Connolly, A. Scranton, R.; Ornduff, T.
2008-11-01
From its inception Astronomy has been a visual science, from careful observations of the sky using the naked eye, to the use of telescopes and photographs to map the distribution of stars and galaxies, to the current era of digital cameras that can image the sky over many decades of the electromagnetic spectrum. Sky in Google Earth (http://earth.google.com) and Google Sky (http://www.google.com/sky) continue this tradition, providing an intuitive visual interface to some of the largest astronomical imaging surveys of the sky. Streaming multi-color imagery, catalogs, time domain data, as well as annotating interesting astronomical sources and events with placemarks, podcasts and videos, Sky provides a panchromatic view of the universe accessible to anyone with a computer. Beyond a simple exploration of the sky Google Sky enables users to create and share content with others around the world. With an open interface available on Linux, Mac OS X and Windows, and translations of the content into over 20 different languages we present Sky as the embodiment of a virtual telescope for discovery and sharing the excitement of astronomy and science as a whole.
Gutman, David A.; Dunn, William D.; Cobb, Jake; Stoner, Richard M.; Kalpathy-Cramer, Jayashree; Erickson, Bradley
2014-01-01
Advances in web technologies now allow direct visualization of imaging data sets without necessitating the download of large file sets or the installation of software. This allows centralization of file storage and facilitates image review and analysis. XNATView is a light framework recently developed in our lab to visualize DICOM images stored in The Extensible Neuroimaging Archive Toolkit (XNAT). It consists of a PyXNAT-based framework to wrap around the REST application programming interface (API) and query the data in XNAT. XNATView was developed to simplify quality assurance, help organize imaging data, and facilitate data sharing for intra- and inter-laboratory collaborations. Its zero-footprint design allows the user to connect to XNAT from a web browser, navigate through projects, experiments, and subjects, and view DICOM images with accompanying metadata all within a single viewing instance. PMID:24904399
GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality
NASA Astrophysics Data System (ADS)
Lush, Victoria; Nüst, Daniel; Bastin, Lucy; Masó, Joan; Lumsden, Jo
2014-05-01
We present demonstrations of the GEO label Web services and their integration into a prototype extension of the GEOSS portal (http://scgeoviqua.sapienzaconsulting.com/web/guest/geo_home), the GMU portal (http://gis.csiss.gmu.edu/GADMFS/) and a GeoNetwork catalog application (http://uncertdata.aston.ac.uk:8080/geonetwork/srv/eng/main.home). The GEO label is designed to communicate, and facilitate interrogation of, geospatial quality information with a view to supporting efficient and effective dataset selection on the basis of quality, trustworthiness and fitness for use. The GEO label which we propose was developed and evaluated according to a user-centred design (UCD) approach in order to maximise the likelihood of user acceptance once deployed. The resulting label is dynamically generated from producer metadata in ISO or FDGC format, and incorporates user feedback on dataset usage, ratings and discovered issues, in order to supply a highly informative summary of metadata completeness and quality. The label was easily incorporated into a community portal as part of the GEO Architecture Implementation Programme (AIP-6) and has been successfully integrated into a prototype extension of the GEOSS portal, as well as the popular metadata catalog and editor, GeoNetwork. The design of the GEO label was based on 4 user studies conducted to: (1) elicit initial user requirements; (2) investigate initial user views on the concept of a GEO label and its potential role; (3) evaluate prototype label visualizations; and (4) evaluate and validate physical GEO label prototypes. The results of these studies indicated that users and producers support the concept of a label with drill-down interrogation facility, combining eight geospatial data informational aspects, namely: producer profile, producer comments, lineage information, standards compliance, quality information, user feedback, expert reviews, and citations information. These are delivered as eight facets of a wheel-like label, which are coloured according to metadata availability and are clickable to allow a user to engage with the original metadata and explore specific aspects in more detail. To support this graphical representation and allow for wider deployment architectures we have implemented two Web services, a PHP and a Java implementation, that generate GEO label representations by combining producer metadata (from standard catalogues or other published locations) with structured user feedback. Both services accept encoded URLs of publicly available metadata documents or metadata XML files as HTTP POST and GET requests and apply XPath and XSLT mappings to transform producer and feedback XML documents into clickable SVG GEO label representations. The label and services are underpinned by two XML-based quality models. The first is a producer model that extends ISO 19115 and 19157 to allow fuller citation of reference data, presentation of pixel- and dataset- level statistical quality information, and encoding of 'traceability' information on the lineage of an actual quality assessment. The second is a user quality model (realised as a feedback server and client) which allows reporting and query of ratings, usage reports, citations, comments and other domain knowledge. Both services are Open Source and are available on GitHub at https://github.com/lushv/geolabel-service and https://github.com/52North/GEO-label-java. The functionality of these services can be tested using our GEO label generation demos, available online at http://www.geolabel.net/demo.html and http://geoviqua.dev.52north.org/glbservice/index.jsf.
Building Format-Agnostic Metadata Repositories
NASA Astrophysics Data System (ADS)
Cechini, M.; Pilone, D.
2010-12-01
This presentation will discuss the problems that surround persisting and discovering metadata in multiple formats; a set of tenets that must be addressed in a solution; and NASA’s Earth Observing System (EOS) ClearingHOuse’s (ECHO) proposed approach. In order to facilitate cross-discipline data analysis, Earth Scientists will potentially interact with more than one data source. The most common data discovery paradigm relies on services and/or applications facilitating the discovery and presentation of metadata. What may not be common are the formats in which the metadata are formatted. As the number of sources and datasets utilized for research increases, it becomes more likely that a researcher will encounter conflicting metadata formats. Metadata repositories, such as the EOS ClearingHOuse (ECHO), along with data centers, must identify ways to address this issue. In order to define the solution to this problem, the following tenets are identified: - There exists a set of ‘core’ metadata fields recommended for data discovery. - There exists a set of users who will require the entire metadata record for advanced analysis. - There exists a set of users who will require a ‘core’ set of metadata fields for discovery only. - There will never be a cessation of new formats or a total retirement of all old formats. - Users should be presented metadata in a consistent format. ECHO has undertaken an effort to transform its metadata ingest and discovery services in order to support the growing set of metadata formats. In order to address the previously listed items, ECHO’s new metadata processing paradigm utilizes the following approach: - Identify a cross-format set of ‘core’ metadata fields necessary for discovery. - Implement format-specific indexers to extract the ‘core’ metadata fields into an optimized query capability. - Archive the original metadata in its entirety for presentation to users requiring the full record. - Provide on-demand translation of ‘core’ metadata to any supported result format. With this identified approach, the Earth Scientist is provided with a consistent data representation as they interact with a variety of datasets that utilize multiple metadata formats. They are then able to focus their efforts on the more critical research activities which they are undertaking.
Gesture Analysis for Astronomy Presentation Software
NASA Astrophysics Data System (ADS)
Robinson, Marc A.
Astronomy presentation software in a planetarium setting provides a visually stimulating way to introduce varied scientific concepts, including computer science concepts, to a wide audience. However, the underlying computational complexity and opportunities for discussion are often overshadowed by the brilliance of the presentation itself. To bring this discussion back out into the open, a method needs to be developed to make the computer science applications more visible. This thesis introduces the GAAPS system, which endeavors to implement free-hand gesture-based control of astronomy presentation software, with the goal of providing that talking point to begin the discussion of computer science concepts in a planetarium setting. The GAAPS system incorporates gesture capture and analysis in a unique environment presenting unique challenges, and introduces a novel algorithm called a Bounding Box Tree to create and select features for this particular gesture data. This thesis also analyzes several different machine learning techniques to determine a well-suited technique for the classification of this particular data set, with an artificial neural network being chosen as the implemented algorithm. The results of this work will allow for the desired introduction of computer science discussion into the specific setting used, as well as provide for future work pertaining to gesture recognition with astronomy presentation software.
SPOCS: software for predicting and visualizing orthology/paralogy relationships among genomes.
Curtis, Darren S; Phillips, Aaron R; Callister, Stephen J; Conlan, Sean; McCue, Lee Ann
2013-10-15
At the rate that prokaryotic genomes can now be generated, comparative genomics studies require a flexible method for quickly and accurately predicting orthologs among the rapidly changing set of genomes available. SPOCS implements a graph-based ortholog prediction method to generate a simple tab-delimited table of orthologs and in addition, html files that provide a visualization of the predicted ortholog/paralog relationships to which gene/protein expression metadata may be overlaid. A SPOCS web application is freely available at http://cbb.pnnl.gov/portal/tools/spocs.html. Source code for Linux systems is also freely available under an open source license at http://cbb.pnnl.gov/portal/software/spocs.html; the Boost C++ libraries and BLAST are required.
Making Metadata Better with CMR and MMT
NASA Technical Reports Server (NTRS)
Gilman, Jason Arthur; Shum, Dana
2016-01-01
Ensuring complete, consistent and high quality metadata is a challenge for metadata providers and curators. The CMR and MMT systems provide providers and curators options to build in metadata quality from the start and also assess and improve the quality of already existing metadata.
NASA's Big Earth Data Initiative Accomplishments
NASA Technical Reports Server (NTRS)
Klene, Stephan A.; Pauli, Elisheva; Pressley, Natalie N.; Cechini, Matthew F.; McInerney, Mark
2017-01-01
The goal of NASA's effort for BEDI is to improve the usability, discoverability, and accessibility of Earth Observation data in support of societal benefit areas. Accomplishments: In support of BEDI goals, datasets have been entered into Common Metadata Repository(CMR), made available via the Open-source Project for a Network Data Access Protocol (OPeNDAP), have a Digital Object Identifier (DOI) registered for the dataset, and to support fast visualization many layers have been added in to the Global Imagery Browse Services (GIBS).
NASA's Big Earth Data Initiative Accomplishments
NASA Astrophysics Data System (ADS)
Klene, S. A.; Pauli, E.; Pressley, N. N.; Cechini, M. F.; McInerney, M.
2017-12-01
The goal of NASA's effort for BEDI is to improve the usability, discoverability, and accessibility of Earth Observation data in support of societal benefit areas. Accomplishments: In support of BEDI goals, datasets have been entered into Common Metadata Repository(CMR), made available via the Open-source Project for a Network Data Access Protocol (OPeNDAP), have a Digital Object Identifier (DOI) registered for the dataset, and to support fast visualization many layers have been added in to the Global Imagery Browse Service(GIBS)
ASDC Advances in the Utilization of Microservices and Hybrid Cloud Environments
NASA Astrophysics Data System (ADS)
Baskin, W. E.; Herbert, A.; Mazaika, A.; Walter, J.
2017-12-01
The Atmospheric Science Data Center (ASDC) is transitioning many of its software tools and applications to standalone microservices deployable in a hybrid cloud, offering benefits such as scalability and efficient environment management. This presentation features several projects the ASDC staff have implemented leveraging the OpenShift Container Application Platform and OpenStack Hybrid Cloud Environment focusing on key tools and techniques applied to: Earth Science data processing Spatial-Temporal metadata generation, validation, repair, and curation Archived Data discovery, visualization, and access
Treemap Visualization for Space Situational Awareness
2015-10-18
virtually any display like a table with textual metadata, a hyperlink to a web page, or another treemap. Animation can be used to “explode” the tile to...release; distribution unlimited. 88ABW Cleared 07/30/2015; 88ABW-2015-3828. In Fig. 7 shown below, we have chosen to select “Size By Radar Cross...Section ( RCS )”. We’re still looking at the same Unclassified Space Catalog scenario, but we’ve simply chosen a different “Size by” option, and the view
ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses
Stokes, Todd H; Torrance, JT; Li, Henry; Wang, May D
2008-01-01
Background A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the "curse-of-dimension" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create "intelligent" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources. Results To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers (Semantic Agents) such as Google to further enhance data discovery. Conclusions Microarray data and meta information in ArrayWiki are distributed and visualized using a novel and compact data storage format, BioPNG. Also, they are open to the research community for curation, modification, and contribution. By making a small investment of time to learn the syntax and structure common to all sites running MediaWiki software, domain scientists and practioners can all contribute to make better use of microarray technologies in research and medical practices. ArrayWiki is available at . PMID:18541053
Toward a Data Scalable Solution for Facilitating Discovery of Science Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jesse R.; Castellana, Vito G.; Morari, Alessandro
Science is increasingly motivated by the need to process larger quantities of data. It is facing severe challenges in data collection, management, and processing, so much so that the computational demands of “data scaling” are competing with, and in many fields surpassing, the traditional objective of decreasing processing time. Example domains with large datasets include astronomy, biology, genomics, climate/weather, and material sciences. This paper presents a real-world use case in which we wish to answer queries pro- vided by domain scientists in order to facilitate discovery of relevant science resources. The problem is that the metadata for these science resourcesmore » is very large and is growing quickly, rapidly increasing the need for a data scaling solution. We propose a system – SGEM – designed for answering graph-based queries over large datasets on cluster architectures, and we re- port performance results for queries on the current RDESC dataset of nearly 1.4 billion triples, and on the well-known BSBM SPARQL query benchmark.« less
Evolution in Metadata Quality: Common Metadata Repository's Role in NASA Curation Efforts
NASA Technical Reports Server (NTRS)
Gilman, Jason; Shum, Dana; Baynes, Katie
2016-01-01
Metadata Quality is one of the chief drivers of discovery and use of NASA EOSDIS (Earth Observing System Data and Information System) data. Issues with metadata such as lack of completeness, inconsistency, and use of legacy terms directly hinder data use. As the central metadata repository for NASA Earth Science data, the Common Metadata Repository (CMR) has a responsibility to its users to ensure the quality of CMR search results. This poster covers how we use humanizers, a technique for dealing with the symptoms of metadata issues, as well as our plans for future metadata validation enhancements. The CMR currently indexes 35K collections and 300M granules.
Patridge, Jeff; Namulanda, Gonza
2008-01-01
The Environmental Public Health Tracking (EPHT) Network provides an opportunity to bring together diverse environmental and health effects data by integrating}?> local, state, and national databases of environmental hazards, environmental exposures, and health effects. To help users locate data on the EPHT Network, the network will utilize descriptive metadata that provide critical information as to the purpose, location, content, and source of these data. Since 2003, the Centers for Disease Control and Prevention's EPHT Metadata Subgroup has been working to initiate the creation and use of descriptive metadata. Efforts undertaken by the group include the adoption of a metadata standard, creation of an EPHT-specific metadata profile, development of an open-source metadata creation tool, and promotion of the creation of descriptive metadata by changing the perception of metadata in the public health culture.
Metadata: Standards for Retrieving WWW Documents (and Other Digitized and Non-Digitized Resources)
NASA Astrophysics Data System (ADS)
Rusch-Feja, Diann
The use of metadata for indexing digitized and non-digitized resources for resource discovery in a networked environment is being increasingly implemented all over the world. Greater precision is achieved using metadata than relying on universal search engines and furthermore, meta-data can be used as filtering mechanisms for search results. An overview of various metadata sets is given, followed by a more focussed presentation of Dublin Core Metadata including examples of sub-elements and qualifiers. Especially the use of the Dublin Core Relation element provides connections between the metadata of various related electronic resources, as well as the metadata for physical, non-digitized resources. This facilitates more comprehensive search results without losing precision and brings together different genres of information which would otherwise be only searchable in separate databases. Furthermore, the advantages of Dublin Core Metadata in comparison with library cataloging and the use of universal search engines are discussed briefly, followed by a listing of types of implementation of Dublin Core Metadata.
Obuch, Raymond C.; Carlino, Jennifer; Zhang, Lin; Blythe, Jonathan; Dietrich, Christopher; Hawkinson, Christine
2018-04-12
The Department of the Interior (DOI) is a Federal agency with over 90,000 employees across 10 bureaus and 8 agency offices. Its primary mission is to protect and manage the Nation’s natural resources and cultural heritage; provide scientific and other information about those resources; and honor its trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated island communities. Data and information are critical in day-to-day operational decision making and scientific research. DOI is committed to creating, documenting, managing, and sharing high-quality data and metadata in and across its various programs that support its mission. Documenting data through metadata is essential in realizing the value of data as an enterprise asset. The completeness, consistency, and timeliness of metadata affect users’ ability to search for and discover the most relevant data for the intended purpose; and facilitates the interoperability and usability of these data among DOI bureaus and offices. Fully documented metadata describe data usability, quality, accuracy, provenance, and meaning.Across DOI, there are different maturity levels and phases of information and metadata management implementations. The Department has organized a committee consisting of bureau-level points-of-contacts to collaborate on the development of more consistent, standardized, and more effective metadata management practices and guidance to support this shared mission and the information needs of the Department. DOI’s metadata implementation plans establish key roles and responsibilities associated with metadata management processes, procedures, and a series of actions defined in three major metadata implementation phases including: (1) Getting started—Planning Phase, (2) Implementing and Maintaining Operational Metadata Management Phase, and (3) the Next Steps towards Improving Metadata Management Phase. DOI’s phased approach for metadata management addresses some of the major data and metadata management challenges that exist across the diverse missions of the bureaus and offices. All employees who create, modify, or use data are involved with data and metadata management. Identifying, establishing, and formalizing the roles and responsibilities associated with metadata management are key to institutionalizing a framework of best practices, methodologies, processes, and common approaches throughout all levels of the organization; these are the foundation for effective data resource management. For executives and managers, metadata management strengthens their overarching views of data assets, holdings, and data interoperability; and clarifies how metadata management can help accelerate the compliance of multiple policy mandates. For employees, data stewards, and data professionals, formalized metadata management will help with the consistency of definitions, and approaches addressing data discoverability, data quality, and data lineage. In addition to data professionals and others associated with information technology; data stewards and program subject matter experts take on important metadata management roles and responsibilities as data flow through their respective business and science-related workflows. The responsibilities of establishing, practicing, and governing the actions associated with their specific metadata management roles are critical to successful metadata implementation.
Making Interoperability Easier with the NASA Metadata Management Tool
NASA Astrophysics Data System (ADS)
Shum, D.; Reese, M.; Pilone, D.; Mitchell, A. E.
2016-12-01
ISO 19115 has enabled interoperability amongst tools, yet many users find it hard to build ISO metadata for their collections because it can be large and overly flexible for their needs. The Metadata Management Tool (MMT), part of NASA's Earth Observing System Data and Information System (EOSDIS), offers users a modern, easy to use browser based tool to develop ISO compliant metadata. Through a simplified UI experience, metadata curators can create and edit collections without any understanding of the complex ISO-19115 format, while still generating compliant metadata. The MMT is also able to assess the completeness of collection level metadata by evaluating it against a variety of metadata standards. The tool provides users with clear guidance as to how to change their metadata in order to improve their quality and compliance. It is based on NASA's Unified Metadata Model for Collections (UMM-C) which is a simpler metadata model which can be cleanly mapped to ISO 19115. This allows metadata authors and curators to meet ISO compliance requirements faster and more accurately. The MMT and UMM-C have been developed in an agile fashion, with recurring end user tests and reviews to continually refine the tool, the model and the ISO mappings. This process is allowing for continual improvement and evolution to meet the community's needs.
A Visual Galaxy Classification Interface and its Classroom Application
NASA Astrophysics Data System (ADS)
Kautsch, Stefan J.; Phung, Chau; VanHilst, Michael; Castro, Victor H
2014-06-01
Galaxy morphology is an important topic in modern astronomy to understand questions concerning the evolution and formation of galaxies and their dark matter content. In order to engage students in exploring galaxy morphology, we developed a web-based, graphical interface that allows students to visually classify galaxy images according to various morphological types. The website is designed with HTML5, JavaScript, PHP, and a MySQL database. The classification interface provides hands-on research experience and training for students and interested clients, and allows them to contribute to studies of galaxy morphology. We present the first results of a pilot study and compare the visually classified types using our interface with that from automated classification routines.
A Planetarium Inside Your Office: Virtual Reality in the Dome Production Pipeline
NASA Astrophysics Data System (ADS)
Summers, Frank
2018-01-01
Producing astronomy visualization sequences for a planetarium without ready access to a dome is a distorted geometric challenge. Fortunately, one can now use virtual reality (VR) to simulate a dome environment without ever leaving one's office chair. The VR dome experience has proven to be a more than suitable pre-visualization method that requires only modest amounts of processing beyond the standard production pipeline. It also provides a crucial testbed for identifying, testing, and fixing the visual constraints and artifacts that arise in a spherical presentation environment. Topics adreesed here will include rendering, geometric projection, movie encoding, software playback, and hardware setup for a virtual dome using VR headsets.
New concepts for building vocabulary for cell image ontologies.
Plant, Anne L; Elliott, John T; Bhat, Talapady N
2011-12-21
There are significant challenges associated with the building of ontologies for cell biology experiments including the large numbers of terms and their synonyms. These challenges make it difficult to simultaneously query data from multiple experiments or ontologies. If vocabulary terms were consistently used and reused across and within ontologies, queries would be possible through shared terms. One approach to achieving this is to strictly control the terms used in ontologies in the form of a pre-defined schema, but this approach limits the individual researcher's ability to create new terms when needed to describe new experiments. Here, we propose the use of a limited number of highly reusable common root terms, and rules for an experimentalist to locally expand terms by adding more specific terms under more general root terms to form specific new vocabulary hierarchies that can be used to build ontologies. We illustrate the application of the method to build vocabularies and a prototype database for cell images that uses a visual data-tree of terms to facilitate sophisticated queries based on a experimental parameters. We demonstrate how the terminology might be extended by adding new vocabulary terms into the hierarchy of terms in an evolving process. In this approach, image data and metadata are handled separately, so we also describe a robust file-naming scheme to unambiguously identify image and other files associated with each metadata value. The prototype database http://sbd.nist.gov/ consists of more than 2000 images of cells and benchmark materials, and 163 metadata terms that describe experimental details, including many details about cell culture and handling. Image files of interest can be retrieved, and their data can be compared, by choosing one or more relevant metadata values as search terms. Metadata values for any dataset can be compared with corresponding values of another dataset through logical operations. Organizing metadata for cell imaging experiments under a framework of rules that include highly reused root terms will facilitate the addition of new terms into a vocabulary hierarchy and encourage the reuse of terms. These vocabulary hierarchies can be converted into XML schema or RDF graphs for displaying and querying, but this is not necessary for using it to annotate cell images. Vocabulary data trees from multiple experiments or laboratories can be aligned at the root terms to facilitate query development. This approach of developing vocabularies is compatible with the major advances in database technology and could be used for building the Semantic Web.
New concepts for building vocabulary for cell image ontologies
2011-01-01
Background There are significant challenges associated with the building of ontologies for cell biology experiments including the large numbers of terms and their synonyms. These challenges make it difficult to simultaneously query data from multiple experiments or ontologies. If vocabulary terms were consistently used and reused across and within ontologies, queries would be possible through shared terms. One approach to achieving this is to strictly control the terms used in ontologies in the form of a pre-defined schema, but this approach limits the individual researcher's ability to create new terms when needed to describe new experiments. Results Here, we propose the use of a limited number of highly reusable common root terms, and rules for an experimentalist to locally expand terms by adding more specific terms under more general root terms to form specific new vocabulary hierarchies that can be used to build ontologies. We illustrate the application of the method to build vocabularies and a prototype database for cell images that uses a visual data-tree of terms to facilitate sophisticated queries based on a experimental parameters. We demonstrate how the terminology might be extended by adding new vocabulary terms into the hierarchy of terms in an evolving process. In this approach, image data and metadata are handled separately, so we also describe a robust file-naming scheme to unambiguously identify image and other files associated with each metadata value. The prototype database http://sbd.nist.gov/ consists of more than 2000 images of cells and benchmark materials, and 163 metadata terms that describe experimental details, including many details about cell culture and handling. Image files of interest can be retrieved, and their data can be compared, by choosing one or more relevant metadata values as search terms. Metadata values for any dataset can be compared with corresponding values of another dataset through logical operations. Conclusions Organizing metadata for cell imaging experiments under a framework of rules that include highly reused root terms will facilitate the addition of new terms into a vocabulary hierarchy and encourage the reuse of terms. These vocabulary hierarchies can be converted into XML schema or RDF graphs for displaying and querying, but this is not necessary for using it to annotate cell images. Vocabulary data trees from multiple experiments or laboratories can be aligned at the root terms to facilitate query development. This approach of developing vocabularies is compatible with the major advances in database technology and could be used for building the Semantic Web. PMID:22188658
Computer Animations as Astronomy Educational Tool: Immanuel Kant and the Island Universes Hypothesis
NASA Astrophysics Data System (ADS)
Mijic, M.; Park, D.; Zumaeta, J.; Simonian, V.; Levitin, S.; Sullivan, A.; Kang, E. Y. E.; Longson, T.
2008-11-01
Development of astronomy is based on well defined, watershed moments when an individual or a group of individuals make a discovery or a measurement that expand, and sometimes dramatically improve our knowledge of the Universe. The purpose of the Scientific Visualization project at Cal State Los Angeles is to bring these moments to life with the use of computer animations, the medium of the 21st century that appeals to the generations which grew up in Internet age. Our first story describes Immanuel Kant's remarkable the Island Universes hypothesis. Using elementary principles of then new Newtonian mechanics, Kant made bold and ultimately correct interpretation of the Milky Way and the objects that we now call galaxies.
Computer Animations as Astronomy Educational Tool: Immanuel Kant and The Island Universes Hypothesis
NASA Astrophysics Data System (ADS)
Mijic, Milan; Park, D.; Zumaeta, J.; Dong, H.; Simonian, V.; Levitin, S.; Sullivan, A.; Kang, E. Y. E.; Longson, T.; State LA SciVi Project, Cal
2008-05-01
Development of astronomy is based on well defined, watershed moments when an individual or a group of individuals make a discovery or a measurement that expand, and sometimes dramatically improve our knowledge of the Universe. The purpose of the Scientific Visualization project at Cal State LA is to bring these moments to life with the use of computer animations, the medium of the 21st century that appeals to the generations which grew up in Internet age. Our first story describes Immanuel Kant's remarkable the Island Universes hypothesis. Using elementary principles of then new Newtonian mechanics, Kant made bold and ultimately correct interpretation of the Milky Way and the objects that we now call galaxies
GraphMeta: Managing HPC Rich Metadata in Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Dong; Chen, Yong; Carns, Philip
High-performance computing (HPC) systems face increasingly critical metadata management challenges, especially in the approaching exascale era. These challenges arise not only from exploding metadata volumes, but also from increasingly diverse metadata, which contains data provenance and arbitrary user-defined attributes in addition to traditional POSIX metadata. This ‘rich’ metadata is becoming critical to supporting advanced data management functionality such as data auditing and validation. In our prior work, we identified a graph-based model as a promising solution to uniformly manage HPC rich metadata due to its flexibility and generality. However, at the same time, graph-based HPC rich metadata anagement also introducesmore » significant challenges to the underlying infrastructure. In this study, we first identify the challenges on the underlying infrastructure to support scalable, high-performance rich metadata management. Based on that, we introduce GraphMeta, a graphbased engine designed for this use case. It achieves performance scalability by introducing a new graph partitioning algorithm and a write-optimal storage engine. We evaluate GraphMeta under both synthetic and real HPC metadata workloads, compare it with other approaches, and demonstrate its advantages in terms of efficiency and usability for rich metadata management in HPC systems.« less
Metabolonote: A Wiki-Based Database for Managing Hierarchical Metadata of Metabolome Analyses
Ara, Takeshi; Enomoto, Mitsuo; Arita, Masanori; Ikeda, Chiaki; Kera, Kota; Yamada, Manabu; Nishioka, Takaaki; Ikeda, Tasuku; Nihei, Yoshito; Shibata, Daisuke; Kanaya, Shigehiko; Sakurai, Nozomu
2015-01-01
Metabolomics – technology for comprehensive detection of small molecules in an organism – lags behind the other “omics” in terms of publication and dissemination of experimental data. Among the reasons for this are difficulty precisely recording information about complicated analytical experiments (metadata), existence of various databases with their own metadata descriptions, and low reusability of the published data, resulting in submitters (the researchers who generate the data) being insufficiently motivated. To tackle these issues, we developed Metabolonote, a Semantic MediaWiki-based database designed specifically for managing metabolomic metadata. We also defined a metadata and data description format, called “Togo Metabolome Data” (TogoMD), with an ID system that is required for unique access to each level of the tree-structured metadata such as study purpose, sample, analytical method, and data analysis. Separation of the management of metadata from that of data and permission to attach related information to the metadata provide advantages for submitters, readers, and database developers. The metadata are enriched with information such as links to comparable data, thereby functioning as a hub of related data resources. They also enhance not only readers’ understanding and use of data but also submitters’ motivation to publish the data. The metadata are computationally shared among other systems via APIs, which facilitate the construction of novel databases by database developers. A permission system that allows publication of immature metadata and feedback from readers also helps submitters to improve their metadata. Hence, this aspect of Metabolonote, as a metadata preparation tool, is complementary to high-quality and persistent data repositories such as MetaboLights. A total of 808 metadata for analyzed data obtained from 35 biological species are published currently. Metabolonote and related tools are available free of cost at http://metabolonote.kazusa.or.jp/. PMID:25905099
Metabolonote: a wiki-based database for managing hierarchical metadata of metabolome analyses.
Ara, Takeshi; Enomoto, Mitsuo; Arita, Masanori; Ikeda, Chiaki; Kera, Kota; Yamada, Manabu; Nishioka, Takaaki; Ikeda, Tasuku; Nihei, Yoshito; Shibata, Daisuke; Kanaya, Shigehiko; Sakurai, Nozomu
2015-01-01
Metabolomics - technology for comprehensive detection of small molecules in an organism - lags behind the other "omics" in terms of publication and dissemination of experimental data. Among the reasons for this are difficulty precisely recording information about complicated analytical experiments (metadata), existence of various databases with their own metadata descriptions, and low reusability of the published data, resulting in submitters (the researchers who generate the data) being insufficiently motivated. To tackle these issues, we developed Metabolonote, a Semantic MediaWiki-based database designed specifically for managing metabolomic metadata. We also defined a metadata and data description format, called "Togo Metabolome Data" (TogoMD), with an ID system that is required for unique access to each level of the tree-structured metadata such as study purpose, sample, analytical method, and data analysis. Separation of the management of metadata from that of data and permission to attach related information to the metadata provide advantages for submitters, readers, and database developers. The metadata are enriched with information such as links to comparable data, thereby functioning as a hub of related data resources. They also enhance not only readers' understanding and use of data but also submitters' motivation to publish the data. The metadata are computationally shared among other systems via APIs, which facilitate the construction of novel databases by database developers. A permission system that allows publication of immature metadata and feedback from readers also helps submitters to improve their metadata. Hence, this aspect of Metabolonote, as a metadata preparation tool, is complementary to high-quality and persistent data repositories such as MetaboLights. A total of 808 metadata for analyzed data obtained from 35 biological species are published currently. Metabolonote and related tools are available free of cost at http://metabolonote.kazusa.or.jp/.
"Einstein's Playground": An Interactive Planetarium Show on Special Relativity
ERIC Educational Resources Information Center
Sherin, Zachary; Tan, Philip; Fairweather, Heather; Kortemeyer, Gerd
2017-01-01
The understanding of many aspects of astronomy is closely linked with relativity and the finite speed of light, yet relativity is generally not discussed in great detail during planetarium shows for the general public. One reason may be the difficulty to visualize these phenomena in a way that is appropriate for planetariums; another may be their…
ERIC Educational Resources Information Center
Brown, Daniel
2013-01-01
Visualizing the three-dimensional distribution of stars within a constellation is highly challenging for both students and educators, but when carried out in an interactive collaborative way, it can create an ideal environment to explore common misconceptions about size and scale within astronomy. We present how the common tabletop activities…
Astronomy and Sodium Lighting,
1984-02-01
55 REFERENCES...........................................................57 - ix - FIGURES 1. Wavelength response of the human...34 9. Retail Prices for the Specified Energy Consumption and Demand of Electricity in Selected Cities, February 1982, 0 1981 (Cents per Kilowatt Hour...555 nm and operate at approximately 2700 0K. In Fig. 1, we show the spectrum of a typical incandescent lamp, together with the human visual response
Patterns in the Sky: Ways to Make the Most of Planetarium Field Trips for First-Grade Students
ERIC Educational Resources Information Center
Petrie, Kaylan
2015-01-01
Earth and space science deserve the same level of inclusion in early childhood curriculum as the other science disciplines, and research shows that the sooner children are introduced to concepts like those presented in planetarium programs, the stronger their lifelong interest in science will be. Much astronomy visualization outside of…
Robert E. Keane
2006-01-01
The Metadata (MD) table in the FIREMON database is used to record any information about the sampling strategy or data collected using the FIREMON sampling procedures. The MD method records metadata pertaining to a group of FIREMON plots, such as all plots in a specific FIREMON project. FIREMON plots are linked to metadata using a unique metadata identifier that is...
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2013-05-01
Abstract (2,250 Maximum Characters): The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe the tools most relevant for the Professional Dynamical Astronomer. Solar Systems Visualizer: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. Orbital Integrators: Determine the orbital evolution of your initial conditions for a number of different scenarios including motions subject to general central forces, the classic three-body problem, and satellites of planets and exoplanets. Zero velocity curves are calculated and automatically included on relevant plots. Orbital Elements: Convert quickly and easily between state vectors and orbital elements with Changing the Elements. Use other routines to visualize your three-dimensional orbit and to convert between the different commonly used sets of orbital elements including the true, mean, and eccentric anomalies. Solar System Calculators: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed.
Learning from FITS: Limitations in use in modern astronomical research
NASA Astrophysics Data System (ADS)
Thomas, B.; Jenness, T.; Economou, F.; Greenfield, P.; Hirst, P.; Berry, D. S.; Bray, E.; Gray, N.; Muna, D.; Turner, J.; de Val-Borro, M.; Santander-Vela, J.; Shupe, D.; Good, J.; Berriman, G. B.; Kitaeff, S.; Fay, J.; Laurino, O.; Alexov, A.; Landry, W.; Masters, J.; Brazier, A.; Schaaf, R.; Edwards, K.; Redman, R. O.; Marsh, T. R.; Streicher, O.; Norris, P.; Pascual, S.; Davie, M.; Droettboom, M.; Robitaille, T.; Campana, R.; Hagen, A.; Hartogh, P.; Klaes, D.; Craig, M. W.; Homeier, D.
2015-09-01
The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists and the public to exchange astronomical information easily. The FITS standard, however, is showing its age. Developed in the late 1970s, the FITS authors made a number of implementation choices that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not anticipate the challenges which we are facing today in astronomical computing. Difficulties we now face include, but are not limited to, addressing the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets, and capturing significantly more complex metadata and data relationships. There are members of the community today who find some or all of these limitations unworkable, and have decided to move ahead with storing data in other formats. If this fragmentation continues, we risk abandoning the advantages of broad interoperability, and ready archivability, that the FITS format provides for astronomy. In this paper we detail some selected important problems which exist within the FITS standard today. These problems may provide insight into deeper underlying issues which reside in the format and we provide a discussion of some lessons learned. It is not our intention here to prescribe specific remedies to these issues; rather, it is to call attention of the FITS and greater astronomical computing communities to these problems in the hope that it will spur action to address them.
Evaluating the Interdisciplinary Discoverability of Data
NASA Astrophysics Data System (ADS)
Gordon, S.; Habermann, T.
2017-12-01
Documentation needs are similar across communities. Communities tend to agree on many of the basic concepts necessary for discovery. Shared concepts such as a title or a description of the data exist in most metadata dialects. Many dialects have been designed and recommendations implemented to create metadata valuable for data discovery. These implementations can create barriers to discovering the right data. How can we ensure that the documentation we curate will be discoverable and understandable by researchers outside of our own disciplines and organizations? Since communities tend to use and understand many of the same documentation concepts, the barriers to interdisciplinary discovery are caused by the differences in the implementation. Thus tools and methods designed for the conceptual layer that evaluate records for documentation concepts, regardless of the dialect, can be effective in identifying opportunities for improvement and providing guidance. The Metadata Evaluation Web Service combined with a Jupyter Notebook interface allows a user to gather insight about a collection of records with respect to different communities' conceptual recommendations. It accomplishes this via data visualizations and provides links to implementation specific guidance on the ESIP Wiki for each recommendation applied to the collection. By utilizing these curation tools as part of an iterative process the data's impact can be increased by making it discoverable to a greater scientific and research community. Due to the conceptual focus of the methods and tools used, they can be utilized by any community or organization regardless of their documentation dialect or tools.
Documentation Resources on the ESIP Wiki
NASA Technical Reports Server (NTRS)
Habermann, Ted; Kozimor, John; Gordon, Sean
2017-01-01
The ESIP community includes data providers and users that communicate with one another through datasets and metadata that describe them. Improving this communication depends on consistent high-quality metadata. The ESIP Documentation Cluster and the wiki play an important central role in facilitating this communication. We will describe and demonstrate sections of the wiki that provide information about metadata concept definitions, metadata recommendation, metadata dialects, and guidance pages. We will also describe and demonstrate the ISO Explorer, a tool that the community is developing to help metadata creators.
The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data
NASA Astrophysics Data System (ADS)
Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris
2010-05-01
Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as seismic tomography may be sliced by multiple oriented cutting planes and isosurfaced to create 3D skins that trace feature boundaries within the data. Topography may be overlaid with satellite imagery, maps, and data such as gravity and magnetics measurements. Multiple data sets may be visualized simultaneously using overlapping layers within a common 3D coordinate space. Data management within the OEF handles and hides the inevitable quirks of differing file formats, web protocols, storage structures, coordinate spaces, and metadata representations. Heuristics are used to extract necessary metadata used to guide data and visual operations. Derived data representations are computed to better support fluid interaction and visualization while the original data is left unchanged in its original form. Data is cached for better memory and network efficiency, and all visualization makes use of 3D graphics hardware support found on today's computers. The OpenEarth Framework project is currently prototyping the software for use in the visualization, and integration of continental scale geophysical data being produced by EarthScope-related research in the Western US. The OEF is providing researchers with new ways to display and interrogate their data and is anticipated to be a valuable tool for future EarthScope-related research.
Jiang, Guoqian; Evans, Julie; Endle, Cory M; Solbrig, Harold R; Chute, Christopher G
2016-01-01
The Biomedical Research Integrated Domain Group (BRIDG) model is a formal domain analysis model for protocol-driven biomedical research, and serves as a semantic foundation for application and message development in the standards developing organizations (SDOs). The increasing sophistication and complexity of the BRIDG model requires new approaches to the management and utilization of the underlying semantics to harmonize domain-specific standards. The objective of this study is to develop and evaluate a Semantic Web-based approach that integrates the BRIDG model with ISO 21090 data types to generate domain-specific templates to support clinical study metadata standards development. We developed a template generation and visualization system based on an open source Resource Description Framework (RDF) store backend, a SmartGWT-based web user interface, and a "mind map" based tool for the visualization of generated domain-specific templates. We also developed a RESTful Web Service informed by the Clinical Information Modeling Initiative (CIMI) reference model for access to the generated domain-specific templates. A preliminary usability study is performed and all reviewers (n = 3) had very positive responses for the evaluation questions in terms of the usability and the capability of meeting the system requirements (with the average score of 4.6). Semantic Web technologies provide a scalable infrastructure and have great potential to enable computable semantic interoperability of models in the intersection of health care and clinical research.
Ismail, Mahmoud; Philbin, James
2015-04-01
The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies' metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata.
Transforming Dermatologic Imaging for the Digital Era: Metadata and Standards.
Caffery, Liam J; Clunie, David; Curiel-Lewandrowski, Clara; Malvehy, Josep; Soyer, H Peter; Halpern, Allan C
2018-01-17
Imaging is increasingly being used in dermatology for documentation, diagnosis, and management of cutaneous disease. The lack of standards for dermatologic imaging is an impediment to clinical uptake. Standardization can occur in image acquisition, terminology, interoperability, and metadata. This paper presents the International Skin Imaging Collaboration position on standardization of metadata for dermatologic imaging. Metadata is essential to ensure that dermatologic images are properly managed and interpreted. There are two standards-based approaches to recording and storing metadata in dermatologic imaging. The first uses standard consumer image file formats, and the second is the file format and metadata model developed for the Digital Imaging and Communication in Medicine (DICOM) standard. DICOM would appear to provide an advantage over using consumer image file formats for metadata as it includes all the patient, study, and technical metadata necessary to use images clinically. Whereas, consumer image file formats only include technical metadata and need to be used in conjunction with another actor-for example, an electronic medical record-to supply the patient and study metadata. The use of DICOM may have some ancillary benefits in dermatologic imaging including leveraging DICOM network and workflow services, interoperability of images and metadata, leveraging existing enterprise imaging infrastructure, greater patient safety, and better compliance to legislative requirements for image retention.
Ismail, Mahmoud; Philbin, James
2015-01-01
Abstract. The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies’ metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata. PMID:26158117
ISO, FGDC, DIF and Dublin Core - Making Sense of Metadata Standards for Earth Science Data
NASA Astrophysics Data System (ADS)
Jones, P. R.; Ritchey, N. A.; Peng, G.; Toner, V. A.; Brown, H.
2014-12-01
Metadata standards provide common definitions of metadata fields for information exchange across user communities. Despite the broad adoption of metadata standards for Earth science data, there are still heterogeneous and incompatible representations of information due to differences between the many standards in use and how each standard is applied. Federal agencies are required to manage and publish metadata in different metadata standards and formats for various data catalogs. In 2014, the NOAA National Climatic data Center (NCDC) managed metadata for its scientific datasets in ISO 19115-2 in XML, GCMD Directory Interchange Format (DIF) in XML, DataCite Schema in XML, Dublin Core in XML, and Data Catalog Vocabulary (DCAT) in JSON, with more standards and profiles of standards planned. Of these standards, the ISO 19115-series metadata is the most complete and feature-rich, and for this reason it is used by NCDC as the source for the other metadata standards. We will discuss the capabilities of metadata standards and how these standards are being implemented to document datasets. Successful implementations include developing translations and displays using XSLTs, creating links to related data and resources, documenting dataset lineage, and establishing best practices. Benefits, gaps, and challenges will be highlighted with suggestions for improved approaches to metadata storage and maintenance.
GenomeD3Plot: a library for rich, interactive visualizations of genomic data in web applications.
Laird, Matthew R; Langille, Morgan G I; Brinkman, Fiona S L
2015-10-15
A simple static image of genomes and associated metadata is very limiting, as researchers expect rich, interactive tools similar to the web applications found in the post-Web 2.0 world. GenomeD3Plot is a light weight visualization library written in javascript using the D3 library. GenomeD3Plot provides a rich API to allow the rapid visualization of complex genomic data using a convenient standards based JSON configuration file. When integrated into existing web services GenomeD3Plot allows researchers to interact with data, dynamically alter the view, or even resize or reposition the visualization in their browser window. In addition GenomeD3Plot has built in functionality to export any resulting genome visualization in PNG or SVG format for easy inclusion in manuscripts or presentations. GenomeD3Plot is being utilized in the recently released Islandviewer 3 (www.pathogenomics.sfu.ca/islandviewer/) to visualize predicted genomic islands with other genome annotation data. However, its features enable it to be more widely applicable for dynamic visualization of genomic data in general. GenomeD3Plot is licensed under the GNU-GPL v3 at https://github.com/brinkmanlab/GenomeD3Plot/. brinkman@sfu.ca. © The Author 2015. Published by Oxford University Press.
Kinesthetic Astronomy: Significant Upgrades to the Sky Time Lesson that Support Student Learning
NASA Astrophysics Data System (ADS)
Morrow, C. A.; Zawaski, M.
2004-12-01
This paper will report on a significant upgrade to the first in a series of innovative, experiential lessons we call Kinesthetic Astronomy. The Sky Time lesson reconnects students with the astronomical meaning of the day, year, and seasons. Like all Kinesthetic Astronomy lessons, it teaches basic astronomical concepts through choreographed bodily movements and positions that provide educational sensory experiences. They are intended for sixth graders up through adult learners in both formal and informal educational settings. They emphasize astronomical concepts and phenomenon that people can readily encounter in their "everyday" lives such as time, seasons, and sky motions of the Sun, Moon, stars, and planets. Kinesthetic Astronomy lesson plans are fully aligned with national science education standards, both in content and instructional practice. Our lessons offer a complete learning cycle with written assessment opportunities now embedded throughout the lesson. We have substantially strengthened the written assessment options for the Sky Time lesson to help students translate their kinesthetic and visual learning into the verbal-linguistic and mathematical-logical realms of expression. Field testing with non-science undergraduates, middle school science teachers and students, Junior Girl Scouts, museum education staff, and outdoor educators has been providing evidence that Kinesthetic Astronomy techniques allow learners to achieve a good grasp of concepts that are much more difficult to learn in more conventional ways such as via textbooks or even computer animation. Field testing of the Sky Time lesson has also led us to significant changes from the previous version to support student learning. We will report on the nature of these changes.
NASA Astrophysics Data System (ADS)
Hernández, B. E.; Bugbee, K.; le Roux, J.; Beaty, T.; Hansen, M.; Staton, P.; Sisco, A. W.
2017-12-01
Earth observation (EO) data collected as part of NASA's Earth Observing System Data and Information System (EOSDIS) is now searchable via the Common Metadata Repository (CMR). The Analysis and Review of CMR (ARC) Team at Marshall Space Flight Center has been tasked with reviewing all NASA metadata records in the CMR ( 7,000 records). Each collection level record and constituent granule level metadata are reviewed for both completeness as well as compliance with the CMR's set of metadata standards, as specified in the Unified Metadata Model (UMM). NASA's Distributed Active Archive Centers (DAACs) have been harmonizing priority metadata records within the context of the inter-agency federal Big Earth Data Initiative (BEDI), which seeks to improve the discoverability, accessibility, and usability of EO data. Thus, the first phase of this project constitutes reviewing BEDI metadata records, while the second phase will constitute reviewing the remaining non-BEDI records in CMR. This presentation will discuss the ARC team's findings in terms of the overall quality of BEDI records across all DAACs as well as compliance with UMM standards. For instance, only a fifth of the collection-level metadata fields needed correction, compared to a quarter of the granule-level fields. It should be noted that the degree to which DAACs' metadata did not comply with the UMM standards may reflect multiple factors, such as recent changes in the UMM standards, and the utilization of different metadata formats (e.g. DIF 10, ECHO 10, ISO 19115-1) across the DAACs. Insights, constructive criticism, and lessons learned from this metadata review process will be contributed from both ORNL and SEDAC. Further inquiry along such lines may lead to insights which may improve the metadata curation process moving forward. In terms of the broader implications for metadata compliance with the UMM standards, this research has shown that a large proportion of the prioritized collections have already been made compliant, although the process of improving metadata quality is ongoing and iterative. Further research is also warranted into whether or not the gains in metadata quality are also driving gains in data use.
Forum Guide to Metadata: The Meaning behind Education Data. NFES 2009-805
ERIC Educational Resources Information Center
National Forum on Education Statistics, 2009
2009-01-01
The purpose of this guide is to empower people to more effectively use data as information. To accomplish this, the publication explains what metadata are; why metadata are critical to the development of sound education data systems; what components comprise a metadata system; what value metadata bring to data management and use; and how to…
ERIC Educational Resources Information Center
Yang, Le
2016-01-01
This study analyzed digital item metadata and keywords from Internet search engines to learn what metadata elements actually facilitate discovery of digital collections through Internet keyword searching and how significantly each metadata element affects the discovery of items in a digital repository. The study found that keywords from Internet…
McMahon, Christiana; Denaxas, Spiros
2016-01-01
Metadata are critical in epidemiological and public health research. However, a lack of biomedical metadata quality frameworks and limited awareness of the implications of poor quality metadata renders data analyses problematic. In this study, we created and evaluated a novel framework to assess metadata quality of epidemiological and public health research datasets. We performed a literature review and surveyed stakeholders to enhance our understanding of biomedical metadata quality assessment. The review identified 11 studies and nine quality dimensions; none of which were specifically aimed at biomedical metadata. 96 individuals completed the survey; of those who submitted data, most only assessed metadata quality sometimes, and eight did not at all. Our framework has four sections: a) general information; b) tools and technologies; c) usability; and d) management and curation. We evaluated the framework using three test cases and sought expert feedback. The framework can assess biomedical metadata quality systematically and robustly. PMID:27570670
McMahon, Christiana; Denaxas, Spiros
2016-01-01
Metadata are critical in epidemiological and public health research. However, a lack of biomedical metadata quality frameworks and limited awareness of the implications of poor quality metadata renders data analyses problematic. In this study, we created and evaluated a novel framework to assess metadata quality of epidemiological and public health research datasets. We performed a literature review and surveyed stakeholders to enhance our understanding of biomedical metadata quality assessment. The review identified 11 studies and nine quality dimensions; none of which were specifically aimed at biomedical metadata. 96 individuals completed the survey; of those who submitted data, most only assessed metadata quality sometimes, and eight did not at all. Our framework has four sections: a) general information; b) tools and technologies; c) usability; and d) management and curation. We evaluated the framework using three test cases and sought expert feedback. The framework can assess biomedical metadata quality systematically and robustly.
The DataBridge: A System For Optimizing The Use Of Dark Data From The Long Tail Of Science
NASA Astrophysics Data System (ADS)
Lander, H.; Rajasekar, A.
2015-12-01
The DataBridge is a National Science Foundation funded collaborative project (OCI-1247652, OCI-1247602, OCI-1247663) designed to assist in the discovery of dark data sets from the long tail of science. The DataBridge aims to to build queryable communities of datasets using sociometric network analysis. This approach is being tested to evaluate the ability to leverage various forms of metadata to facilitate discovery of new knowledge. Each dataset in the Databridge has an associated name space used as a first level partitioning. In addition to testing known algorithms for SNA community building, the DataBridge project has built a message-based platform that allows users to provide their own algorithms for each of the stages in the community building process. The stages are: Signature Generation (SG): An SG algorithm creates a metadata signature for a dataset. Signature algorithms might use text metadata provided by the dataset creator or derive metadata. Relevance Algorithm (RA): An RA compares a pair of datasets and produces a similarity value between 0 and 1 for the two datasets. Sociometric Network Analysis (SNA): The SNA will operate on a similarity matrix produced by an RA to partition all of the datasets in the name space into a set of clusters. These clusters represent communities of closely related datasets. The DataBridge also includes a web application that produces a visual representation of the clustering. Future work includes a more complete application that will allow different types of searching of the network of datasets. The DataBridge approach is relevant to geoscience research and informatics. In this presentation we will outline the project, illustrate the deployment of the approach, and discuss other potential applications and next steps for the research such as applying this approach to models. In addition we will explore the relevance of DataBridge to other geoscience projects such as various EarthCube Building Blocks and DIBBS projects.
Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics
NASA Astrophysics Data System (ADS)
Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.
2015-12-01
Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in NetCDF format has been implemented and will be demonstrated at AGU.
NASA Astrophysics Data System (ADS)
Agarwal, D.; Varadharajan, C.; Cholia, S.; Snavely, C.; Hendrix, V.; Gunter, D.; Riley, W. J.; Jones, M.; Budden, A. E.; Vieglais, D.
2017-12-01
The ESS-DIVE archive is a new U.S. Department of Energy (DOE) data archive designed to provide long-term stewardship and use of data from observational, experimental, and modeling activities in the earth and environmental sciences. The ESS-DIVE infrastructure is constructed with the long-term vision of enabling broad access to and usage of the DOE sponsored data stored in the archive. It is designed as a scalable framework that incentivizes data providers to contribute well-structured, high-quality data to the archive and that enables the user community to easily build data processing, synthesis, and analysis capabilities using those data. The key innovations in our design include: (1) application of user-experience research methods to understand the needs of users and data contributors; (2) support for early data archiving during project data QA/QC and before public release; (3) focus on implementation of data standards in collaboration with the community; (4) support for community built tools for data search, interpretation, analysis, and visualization tools; (5) data fusion database to support search of the data extracted from packages submitted and data available in partner data systems such as the Earth System Grid Federation (ESGF) and DataONE; and (6) support for archiving of data packages that are not to be released to the public. ESS-DIVE data contributors will be able to archive and version their data and metadata, obtain data DOIs, search for and access ESS data and metadata via web and programmatic portals, and provide data and metadata in standardized forms. The ESS-DIVE archive and catalog will be federated with other existing catalogs, allowing cross-catalog metadata search and data exchange with existing systems, including DataONE's Metacat search. ESS-DIVE is operated by a multidisciplinary team from Berkeley Lab, the National Center for Ecological Analysis and Synthesis (NCEAS), and DataONE. The primarily data copies are hosted at DOE's NERSC supercomputing facility with replicas at DataONE nodes.
CMO: Cruise Metadata Organizer for JAMSTEC Research Cruises
NASA Astrophysics Data System (ADS)
Fukuda, K.; Saito, H.; Hanafusa, Y.; Vanroosebeke, A.; Kitayama, T.
2011-12-01
JAMSTEC's Data Research Center for Marine-Earth Sciences manages and distributes a wide variety of observational data and samples obtained from JAMSTEC research vessels and deep sea submersibles. Generally, metadata are essential to identify data and samples were obtained. In JAMSTEC, cruise metadata include cruise information such as cruise ID, name of vessel, research theme, and diving information such as dive number, name of submersible and position of diving point. They are submitted by chief scientists of research cruises in the Microsoft Excel° spreadsheet format, and registered into a data management database to confirm receipt of observational data files, cruise summaries, and cruise reports. The cruise metadata are also published via "JAMSTEC Data Site for Research Cruises" within two months after end of cruise. Furthermore, these metadata are distributed with observational data, images and samples via several data and sample distribution websites after a publication moratorium period. However, there are two operational issues in the metadata publishing process. One is that duplication efforts and asynchronous metadata across multiple distribution websites due to manual metadata entry into individual websites by administrators. The other is that differential data types or representation of metadata in each website. To solve those problems, we have developed a cruise metadata organizer (CMO) which allows cruise metadata to be connected from the data management database to several distribution websites. CMO is comprised of three components: an Extensible Markup Language (XML) database, an Enterprise Application Integration (EAI) software, and a web-based interface. The XML database is used because of its flexibility for any change of metadata. Daily differential uptake of metadata from the data management database to the XML database is automatically processed via the EAI software. Some metadata are entered into the XML database using the web-based interface by a metadata editor in CMO as needed. Then daily differential uptake of metadata from the XML database to databases in several distribution websites is automatically processed using a convertor defined by the EAI software. Currently, CMO is available for three distribution websites: "Deep Sea Floor Rock Sample Database GANSEKI", "Marine Biological Sample Database", and "JAMSTEC E-library of Deep-sea Images". CMO is planned to provide "JAMSTEC Data Site for Research Cruises" with metadata in the future.
Towards Data Value-Level Metadata for Clinical Studies.
Zozus, Meredith Nahm; Bonner, Joseph
2017-01-01
While several standards for metadata describing clinical studies exist, comprehensive metadata to support traceability of data from clinical studies has not been articulated. We examine uses of metadata in clinical studies. We examine and enumerate seven sources of data value-level metadata in clinical studies inclusive of research designs across the spectrum of the National Institutes of Health definition of clinical research. The sources of metadata inform categorization in terms of metadata describing the origin of a data value, the definition of a data value, and operations to which the data value was subjected. The latter is further categorized into information about changes to a data value, movement of a data value, retrieval of a data value, and data quality checks, constraints or assessments to which the data value was subjected. The implications of tracking and managing data value-level metadata are explored.
Managing Complex Change in Clinical Study Metadata
Brandt, Cynthia A.; Gadagkar, Rohit; Rodriguez, Cesar; Nadkarni, Prakash M.
2004-01-01
In highly functional metadata-driven software, the interrelationships within the metadata become complex, and maintenance becomes challenging. We describe an approach to metadata management that uses a knowledge-base subschema to store centralized information about metadata dependencies and use cases involving specific types of metadata modification. Our system borrows ideas from production-rule systems in that some of this information is a high-level specification that is interpreted and executed dynamically by a middleware engine. Our approach is implemented in TrialDB, a generic clinical study data management system. We review approaches that have been used for metadata management in other contexts and describe the features, capabilities, and limitations of our system. PMID:15187070
NASA Astrophysics Data System (ADS)
Lugmayr, Artur R.; Mailaparampil, Anurag; Tico, Florina; Kalli, Seppo; Creutzburg, Reiner
2003-01-01
Digital television (digiTV) is an additional multimedia environment, where metadata is one key element for the description of arbitrary content. This implies adequate structures for content description, which is provided by XML metadata schemes (e.g. MPEG-7, MPEG-21). Content and metadata management is the task of a multimedia repository, from which digiTV clients - equipped with an Internet connection - can access rich additional multimedia types over an "All-HTTP" protocol layer. Within this research work, we focus on conceptual design issues of a metadata repository for the storage of metadata, accessible from the feedback channel of a local set-top box. Our concept describes the whole heterogeneous life-cycle chain of XML metadata from the service provider to the digiTV equipment, device independent representation of content, accessing and querying the metadata repository, management of metadata related to digiTV, and interconnection of basic system components (http front-end, relational database system, and servlet container). We present our conceptual test configuration of a metadata repository that is aimed at a real-world deployment, done within the scope of the future interaction (fiTV) project at the Digital Media Institute (DMI) Tampere (www.futureinteraction.tv).
Metazen – metadata capture for metagenomes
2014-01-01
Background As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. Unfortunately, these tools are not specifically designed for metagenomic surveys; in particular, they lack the appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Results Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Conclusions Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility. PMID:25780508
Metazen - metadata capture for metagenomes.
Bischof, Jared; Harrison, Travis; Paczian, Tobias; Glass, Elizabeth; Wilke, Andreas; Meyer, Folker
2014-01-01
As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. Unfortunately, these tools are not specifically designed for metagenomic surveys; in particular, they lack the appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility.
Improving Access to NASA Earth Science Data through Collaborative Metadata Curation
NASA Astrophysics Data System (ADS)
Sisco, A. W.; Bugbee, K.; Shum, D.; Baynes, K.; Dixon, V.; Ramachandran, R.
2017-12-01
The NASA-developed Common Metadata Repository (CMR) is a high-performance metadata system that currently catalogs over 375 million Earth science metadata records. It serves as the authoritative metadata management system of NASA's Earth Observing System Data and Information System (EOSDIS), enabling NASA Earth science data to be discovered and accessed by a worldwide user community. The size of the EOSDIS data archive is steadily increasing, and the ability to manage and query this archive depends on the input of high quality metadata to the CMR. Metadata that does not provide adequate descriptive information diminishes the CMR's ability to effectively find and serve data to users. To address this issue, an innovative and collaborative review process is underway to systematically improve the completeness, consistency, and accuracy of metadata for approximately 7,000 data sets archived by NASA's twelve EOSDIS data centers, or Distributed Active Archive Centers (DAACs). The process involves automated and manual metadata assessment of both collection and granule records by a team of Earth science data specialists at NASA Marshall Space Flight Center. The team communicates results to DAAC personnel, who then make revisions and reingest improved metadata into the CMR. Implementation of this process relies on a network of interdisciplinary collaborators leveraging a variety of communication platforms and long-range planning strategies. Curating metadata at this scale and resolving metadata issues through community consensus improves the CMR's ability to serve current and future users and also introduces best practices for stewarding the next generation of Earth Observing System data. This presentation will detail the metadata curation process, its outcomes thus far, and also share the status of ongoing curation activities.
NASA Technical Reports Server (NTRS)
Shum, Dana; Bugbee, Kaylin
2017-01-01
This talk explains the ongoing metadata curation activities in the Common Metadata Repository. It explores tools that exist today which are useful for building quality metadata and also opens up the floor for discussions on other potentially useful tools.
Distributed Visualization Project
NASA Technical Reports Server (NTRS)
Craig, Douglas; Conroy, Michael; Kickbusch, Tracey; Mazone, Rebecca
2016-01-01
Distributed Visualization allows anyone, anywhere to see any simulation at any time. Development focuses on algorithms, software, data formats, data systems and processes to enable sharing simulation-based information across temporal and spatial boundaries without requiring stakeholders to possess highly-specialized and very expensive display systems. It also introduces abstraction between the native and shared data, which allows teams to share results without giving away proprietary or sensitive data. The initial implementation of this capability is the Distributed Observer Network (DON) version 3.1. DON 3.1 is available for public release in the NASA Software Store (https://software.nasa.gov/software/KSC-13775) and works with version 3.0 of the Model Process Control specification (an XML Simulation Data Representation and Communication Language) to display complex graphical information and associated Meta-Data.
NASA Astrophysics Data System (ADS)
Troyan, D.
2016-12-01
The Atmospheric Radiation Measurement (ARM) program has been collecting data from instruments in diverse climate regions for nearly twenty-five years. These data are made available to all interested parties at no cost via specially designed tools found on the ARM website (www.arm.gov). Metadata is created and applied to the various datastreams to facilitate information retrieval using the ARM website, the ARM Data Discovery Tool, and data quality reporting tools. Over the last year, the Metadata Manager - a relatively new position within the ARM program - created two documents that summarize the state of ARM metadata processes: ARM Metadata Workflow, and ARM Metadata Standards. These documents serve as guides to the creation and management of ARM metadata. With many of ARM's data functions spread around the Department of Energy national laboratory complex and with many of the original architects of the metadata structure no longer working for ARM, there is increased importance on using these documents to resolve issues from data flow bottlenecks and inaccurate metadata to improving data discovery and organizing web pages. This presentation will provide some examples from the workflow and standards documents. The examples will illustrate the complexity of the ARM metadata processes and the efficiency by which the metadata team works towards achieving the goal of providing access to data collected under the auspices of the ARM program.
Efficient processing of MPEG-21 metadata in the binary domain
NASA Astrophysics Data System (ADS)
Timmerer, Christian; Frank, Thomas; Hellwagner, Hermann; Heuer, Jörg; Hutter, Andreas
2005-10-01
XML-based metadata is widely adopted across the different communities and plenty of commercial and open source tools for processing and transforming are available on the market. However, all of these tools have one thing in common: they operate on plain text encoded metadata which may become a burden in constrained and streaming environments, i.e., when metadata needs to be processed together with multimedia content on the fly. In this paper we present an efficient approach for transforming such kind of metadata which are encoded using MPEG's Binary Format for Metadata (BiM) without additional en-/decoding overheads, i.e., within the binary domain. Therefore, we have developed an event-based push parser for BiM encoded metadata which transforms the metadata by a limited set of processing instructions - based on traditional XML transformation techniques - operating on bit patterns instead of cost-intensive string comparisons.
A model for enhancing Internet medical document retrieval with "medical core metadata".
Malet, G; Munoz, F; Appleyard, R; Hersh, W
1999-01-01
Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and MEDLINE-type content descriptions. The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines.
Virtual Reality Astronomy Education Using AAS WorldWide Telescope and Oculus Rift
NASA Astrophysics Data System (ADS)
Weigel, A. David; Moraitis, Christina D.
2017-01-01
The Boyd E. Christenberry Planetarium at Samford University (Birmingham, AL) offers family friendly, live, and interactive planetarium presentations that educate the public on topics from astronomy basics to current cutting edge astronomical discoveries. With limited funding, it is not possible to provide state of the art planetarium hardware for these community audiences. In a society in which many people, even young children, have access to high resolution smart phones and highly realistic video games, it is important to leverage cutting-edge technology to intrigue young and old minds alike. We use an Oculus Rift virtual reality headset running AAS WorldWide Telescope software to visualize 3D data in a fully immersive environment. We create interactive experiences and videos to highlight astronomical concepts and also to communicate the beauty of our universe. The ease of portability enables us to set up at Virtual Reality (VR) experience at various events, festivals, and even in classrooms to provide a community outreach that a fixed planetarium cannot. This VR experience adds the “wow” factor that encourages children and adults to engage in our various planetarium events to learn more about astronomy and continue to explore the final frontier of space. These VR experiences encourages our college students to participate in our astronomy education resulting in increased interest in STEM fields, particularly physics and math.
NASA Astrophysics Data System (ADS)
Hamilton, D. P.; Malayeri, M. L.; Pahlevan, K. M. A.; Jacobson, W. C.
2004-05-01
The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses, classes for undergraduate majors, and High Schools. Here we briefly describe a few of the more popular tools. The Life of the Sun (New!): The history of the Sun is animated as a movie, showing students how the size and color of our star has evolved and will evolve in time. Animated Orbits of Planets and Moons: The orbital motions of planets, moons, asteroids, and comets are animated at their correct relative speeds in accurate to-scale drawings. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country of impact (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Astronomical Distances: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Funding for the Astronomy Workshop is provided by NSF.
NASA Astrophysics Data System (ADS)
Hamilton, D. P.
2005-05-01
The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses, classes for undergraduate majors, and High Schools. Here we briefly describe a few of the more popular tools. The Life of the Sun (New!): The history of the Sun is animated as a movie, showing students how the size and color of our star has evolved and will evolve in time. Animated Orbits of Planets and Moons: The orbital motions of planets, moons, asteroids, and comets are animated at their correct relative speeds in accurate to-scale drawings. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country of impact (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Astronomical Distances: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Funding for the Astronomy Workshop is provided by a NASA EPO grant.
Developing Cyberinfrastructure Tools and Services for Metadata Quality Evaluation
NASA Astrophysics Data System (ADS)
Mecum, B.; Gordon, S.; Habermann, T.; Jones, M. B.; Leinfelder, B.; Powers, L. A.; Slaughter, P.
2016-12-01
Metadata and data quality are at the core of reusable and reproducible science. While great progress has been made over the years, much of the metadata collected only addresses data discovery, covering concepts such as titles and keywords. Improving metadata beyond the discoverability plateau means documenting detailed concepts within the data such as sampling protocols, instrumentation used, and variables measured. Given that metadata commonly do not describe their data at this level, how might we improve the state of things? Giving scientists and data managers easy to use tools to evaluate metadata quality that utilize community-driven recommendations is the key to producing high-quality metadata. To achieve this goal, we created a set of cyberinfrastructure tools and services that integrate with existing metadata and data curation workflows which can be used to improve metadata and data quality across the sciences. These tools work across metadata dialects (e.g., ISO19115, FGDC, EML, etc.) and can be used to assess aspects of quality beyond what is internal to the metadata such as the congruence between the metadata and the data it describes. The system makes use of a user-friendly mechanism for expressing a suite of checks as code in popular data science programming languages such as Python and R. This reduces the burden on scientists and data managers to learn yet another language. We demonstrated these services and tools in three ways. First, we evaluated a large corpus of datasets in the DataONE federation of data repositories against a metadata recommendation modeled after existing recommendations such as the LTER best practices and the Attribute Convention for Dataset Discovery (ACDD). Second, we showed how this service can be used to display metadata and data quality information to data producers during the data submission and metadata creation process, and to data consumers through data catalog search and access tools. Third, we showed how the centrally deployed DataONE quality service can achieve major efficiency gains by allowing member repositories to customize and use recommendations that fit their specific needs without having to create de novo infrastructure at their site.
The New Online Metadata Editor for Generating Structured Metadata
NASA Astrophysics Data System (ADS)
Devarakonda, R.; Shrestha, B.; Palanisamy, G.; Hook, L.; Killeffer, T.; Boden, T.; Cook, R. B.; Zolly, L.; Hutchison, V.; Frame, M. T.; Cialella, A. T.; Lazer, K.
2014-12-01
Nobody is better suited to "describe" data than the scientist who created it. This "description" about a data is called Metadata. In general terms, Metadata represents the who, what, when, where, why and how of the dataset. eXtensible Markup Language (XML) is the preferred output format for metadata, as it makes it portable and, more importantly, suitable for system discoverability. The newly developed ORNL Metadata Editor (OME) is a Web-based tool that allows users to create and maintain XML files containing key information, or metadata, about the research. Metadata include information about the specific projects, parameters, time periods, and locations associated with the data. Such information helps put the research findings in context. In addition, the metadata produced using OME will allow other researchers to find these data via Metadata clearinghouses like Mercury [1] [2]. Researchers simply use the ORNL Metadata Editor to enter relevant metadata into a Web-based form. How is OME helping Big Data Centers like ORNL DAAC? The ORNL DAAC is one of NASA's Earth Observing System Data and Information System (EOSDIS) data centers managed by the ESDIS Project. The ORNL DAAC archives data produced by NASA's Terrestrial Ecology Program. The DAAC provides data and information relevant to biogeochemical dynamics, ecological data, and environmental processes, critical for understanding the dynamics relating to the biological components of the Earth's environment. Typically data produced, archived and analyzed is at a scale of multiple petabytes, which makes the discoverability of the data very challenging. Without proper metadata associated with the data, it is difficult to find the data you are looking for and equally difficult to use and understand the data. OME will allow data centers like the ORNL DAAC to produce meaningful, high quality, standards-based, descriptive information about their data products in-turn helping with the data discoverability and interoperability.References:[1] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94. [2] Wilson, Bruce E., et al. "Mercury Toolset for Spatiotemporal Metadata." NASA Technical Reports Server (NTRS) (2010).
Ignizio, Drew A.; O'Donnell, Michael S.; Talbert, Colin B.
2014-01-01
Creating compliant metadata for scientific data products is mandated for all federal Geographic Information Systems professionals and is a best practice for members of the geospatial data community. However, the complexity of the The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata, the limited availability of easy-to-use tools, and recent changes in the ESRI software environment continue to make metadata creation a challenge. Staff at the U.S. Geological Survey Fort Collins Science Center have developed a Python toolbox for ESRI ArcDesktop to facilitate a semi-automated workflow to create and update metadata records in ESRI’s 10.x software. The U.S. Geological Survey Metadata Wizard tool automatically populates several metadata elements: the spatial reference, spatial extent, geospatial presentation format, vector feature count or raster column/row count, native system/processing environment, and the metadata creation date. Once the software auto-populates these elements, users can easily add attribute definitions and other relevant information in a simple Graphical User Interface. The tool, which offers a simple design free of esoteric metadata language, has the potential to save many government and non-government organizations a significant amount of time and costs by facilitating the development of The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata compliant metadata for ESRI software users. A working version of the tool is now available for ESRI ArcDesktop, version 10.0, 10.1, and 10.2 (downloadable at http:/www.sciencebase.gov/metadatawizard).
NASA Astrophysics Data System (ADS)
Richard, S. M.
2011-12-01
The USGIN project has drafted and is using a specification for use of ISO 19115/19/39 metadata, recommendations for simple metadata content, and a proposal for a URI scheme to identify resources using resolvable http URI's(see http://lab.usgin.org/usgin-profiles). The principal target use case is a catalog in which resources can be registered and described by data providers for discovery by users. We are currently using the ESRI Geoportal (Open Source), with configuration files for the USGIN profile. The metadata offered by the catalog must provide sufficient content to guide search engines to locate requested resources, to describe the resource content, provenance, and quality so users can determine if the resource will serve for intended usage, and finally to enable human users and sofware clients to obtain or access the resource. In order to achieve an operational federated catalog system, provisions in the ISO specification must be restricted and usage clarified to reduce the heterogeneity of 'standard' metadata and service implementations such that a single client can search against different catalogs, and the metadata returned by catalogs can be parsed reliably to locate required information. Usage of the complex ISO 19139 XML schema allows for a great deal of structured metadata content, but the heterogenity in approaches to content encoding has hampered development of sophisticated client software that can take advantage of the rich metadata; the lack of such clients in turn reduces motivation for metadata producers to produce content-rich metadata. If the only significant use of the detailed, structured metadata is to format into text for people to read, then the detailed information could be put in free text elements and be just as useful. In order for complex metadata encoding and content to be useful, there must be clear and unambiguous conventions on the encoding that are utilized by the community that wishes to take advantage of advanced metadata content. The use cases for the detailed content must be well understood, and the degree of metadata complexity should be determined by requirements for those use cases. The ISO standard provides sufficient flexibility that relatively simple metadata records can be created that will serve for text-indexed search/discovery, resource evaluation by a user reading text content from the metadata, and access to the resource via http, ftp, or well-known service protocols (e.g. Thredds; OGC WMS, WFS, WCS).
Using Firefly Tools to Enhance Archive Web Pages
NASA Astrophysics Data System (ADS)
Roby, W.; Wu, X.; Ly, L.; Goldina, T.
2013-10-01
Astronomy web developers are looking for fast and powerful HTML 5/AJAX tools to enhance their web archives. We are exploring ways to make this easier for the developer. How could you have a full FITS visualizer or a Web 2.0 table that supports paging, sorting, and filtering in your web page in 10 minutes? Can it be done without even installing any software or maintaining a server? Firefly is a powerful, configurable system for building web-based user interfaces to access astronomy science archives. It has been in production for the past three years. Recently, we have made some of the advanced components available through very simple JavaScript calls. This allows a web developer, without any significant knowledge of Firefly, to have FITS visualizers, advanced table display, and spectrum plots on their web pages with minimal learning curve. Because we use cross-site JSONP, installing a server is not necessary. Web sites that use these tools can be created in minutes. Firefly was created in IRSA, the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). We are using Firefly to serve many projects including Spitzer, Planck, WISE, PTF, LSST and others.
Immersive 3D Visualization of Astronomical Data
NASA Astrophysics Data System (ADS)
Schaaff, A.; Berthier, J.; Da Rocha, J.; Deparis, N.; Derriere, S.; Gaultier, P.; Houpin, R.; Normand, J.; Ocvirk, P.
2015-09-01
The immersive-3D visualization, or Virtual Reality in our study, was previously dedicated to specific uses (research, flight simulators, etc.) The investment in infrastructure and its cost was reserved to large laboratories or companies. Lately we saw the development of immersive-3D masks intended for wide distribution, for example the Oculus Rift and the Sony Morpheus projects. The usual reaction is to say that these tools are primarily intended for games since it is easy to imagine a player in a virtual environment and the added value to conventional 2D screens. Yet it is likely that there are many applications in the professional field if these tools are becoming common. Introducing this technology into existing applications or new developments makes sense only if interest is properly evaluated. The use in Astronomy is clear for education, it is easy to imagine mobile and light planetariums or to reproduce poorly accessible environments (e.g., large instruments). In contrast, in the field of professional astronomy the use is probably less obvious and it requires to conduct studies to determine the most appropriate ones and to assess the contributions compared to the other display modes.
NASA Astrophysics Data System (ADS)
Grice, Noreen A.; Mutchler, M.
2010-01-01
Astronomy was once considered a science restricted to fully sighted participants. But in the past two decades, accessible books with large print/Braille and touchable pictures have brought astronomy and space science to the hands and mind's eye of students, regardless of their visual ability. A new universally-designed tactile image featuring the Hubble mosaic of the Carina Nebula is being presented at this conference. The original dataset was obtained with Hubble's Advanced Camera for Surveys (ACS) hydrogen-alpha filter in 2005. It became an instant icon after being infused with additional color information from ground-based CTIO data, and released as Hubble's 17th anniversary image. Our tactile Carina Nebula promotes multi-mode learning about the entire life-cycle of stars, which is dramatically illustrated in this Hubble mosaic. When combined with descriptive text in print and Braille, the visual and tactile components seamlessly reach both sighted and blind populations. Specific touchable features of the tactile image identify the shapes and orientations of objects in the Carina Nebula that include star-forming regions, jets, pillars, dark and light globules, star clusters, shocks/bubbles, the Keyhole Nebula, and stellar death (Eta Carinae). Visit our poster paper to touch the Carina Nebula!
Unobtrusive integration of data management with fMRI analysis.
Poliakov, Andrew V; Hertzenberg, Xenia; Moore, Eider B; Corina, David P; Ojemann, George A; Brinkley, James F
2007-01-01
This note describes a software utility, called X-batch which addresses two pressing issues typically faced by functional magnetic resonance imaging (fMRI) neuroimaging laboratories (1) analysis automation and (2) data management. The first issue is addressed by providing a simple batch mode processing tool for the popular SPM software package (http://www.fil.ion. ucl.ac.uk/spm/; Welcome Department of Imaging Neuroscience, London, UK). The second is addressed by transparently recording metadata describing all aspects of the batch job (e.g., subject demographics, analysis parameters, locations and names of created files, date and time of analysis, and so on). These metadata are recorded as instances of an extended version of the Protégé-based Experiment Lab Book ontology created by the Dartmouth fMRI Data Center. The resulting instantiated ontology provides a detailed record of all fMRI analyses performed, and as such can be part of larger systems for neuroimaging data management, sharing, and visualization. The X-batch system is in use in our own fMRI research, and is available for download at http://X-batch.sourceforge.net/.
Improving Scientific Metadata Interoperability And Data Discoverability using OAI-PMH
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James M.; Wilson, Bruce E.
2010-12-01
While general-purpose search engines (such as Google or Bing) are useful for finding many things on the Internet, they are often of limited usefulness for locating Earth Science data relevant (for example) to a specific spatiotemporal extent. By contrast, tools that search repositories of structured metadata can locate relevant datasets with fairly high precision, but the search is limited to that particular repository. Federated searches (such as Z39.50) have been used, but can be slow and the comprehensiveness can be limited by downtime in any search partner. An alternative approach to improve comprehensiveness is for a repository to harvest metadata from other repositories, possibly with limits based on subject matter or access permissions. Searches through harvested metadata can be extremely responsive, and the search tool can be customized with semantic augmentation appropriate to the community of practice being served. However, there are a number of different protocols for harvesting metadata, with some challenges for ensuring that updates are propagated and for collaborations with repositories using differing metadata standards. The Open Archive Initiative Protocol for Metadata Handling (OAI-PMH) is a standard that is seeing increased use as a means for exchanging structured metadata. OAI-PMH implementations must support Dublin Core as a metadata standard, with other metadata formats as optional. We have developed tools which enable our structured search tool (Mercury; http://mercury.ornl.gov) to consume metadata from OAI-PMH services in any of the metadata formats we support (Dublin Core, Darwin Core, FCDC CSDGM, GCMD DIF, EML, and ISO 19115/19137). We are also making ORNL DAAC metadata available through OAI-PMH for other metadata tools to utilize, such as the NASA Global Change Master Directory, GCMD). This paper describes Mercury capabilities with multiple metadata formats, in general, and, more specifically, the results of our OAI-PMH implementations and the lessons learned. References: [1] R. Devarakonda, G. Palanisamy, B.E. Wilson, and J.M. Green, "Mercury: reusable metadata management data discovery and access system", Earth Science Informatics, vol. 3, no. 1, pp. 87-94, May 2010. [2] R. Devarakonda, G. Palanisamy, J.M. Green, B.E. Wilson, "Data sharing and retrieval using OAI-PMH", Earth Science Informatics DOI: 10.1007/s12145-010-0073-0, (2010). [3] Devarakonda, R.; Palanisamy, G.; Green, J.; Wilson, B. E. "Mercury: An Example of Effective Software Reuse for Metadata Management Data Discovery and Access", Eos Trans. AGU, 89(53), Fall Meet. Suppl., IN11A-1019 (2008).
The Cluster Science Archive: from Time Period to Physics Based Search
NASA Astrophysics Data System (ADS)
Masson, A.; Escoubet, C. P.; Laakso, H. E.; Perry, C. H.
2015-12-01
Since 2000, the Cluster spacecraft relay the most detailed information on how the solar wind affects our geospace in three dimensions. Science output from Cluster is a leap forward in our knowledge of space plasma physics: the science behind space weather. It has been key in improving the modeling of the magnetosphere and understanding its various physical processes. Cluster data have enabled the publication of more than 2000 refereed papers and counting. This substantial scientific return is often attributed to the online availability of the Cluster data archive, now called the Cluster Science Archive (CSA). It is being developed by the ESAC Science Data Center (ESDC) team and maintained alongside other science ESA archives at ESAC (ESA Space Astronomy Center, Madrid, Spain). CSA is a public archive, which contains the entire set of Cluster high-resolution data, and other related products in a standard format and with a complete set of metadata. Since May 2015, it also contains data from the CNSA/ESA Double Star mission (2003-2008), a mission operated in conjunction with Cluster. The total amount of data format now exceeds 100 TB. Accessing CSA requires to be registered to enable user profiles and CSA accounts more than 1,500 users. CSA provides unique tools for visualizing its data including - on-demand particle distribution functions visualization - fast data browsing with more than 15TB of pre-generated plots - inventory plots It also offers command line capabilities (e.g. data access via Matlab or IDL softwares, data streaming). Despite its reliability, users can only request data for a specific time period while scientists often focus on specific regions or data signatures. For these reasons, a data-mining tool is being developed to do just that. It offers an interface to select data based not only on a time period but on various criteria including: key physical parameters, regions of space and spacecraft constellation geometry. The output of this tool is a list of time periods that fits the criteria imposed by the user. Such a list enables to download any bunch of datasets for all these time periods in one go. We propose to present the state of development of this tool and interact with the scientific community to better fit its needs.
Earthdata Search: Scaling, Assessing and Improving Relevancy
NASA Technical Reports Server (NTRS)
Reese, Mark
2016-01-01
NASA's Earthdata Search (https:search.earthdata.nasa.gov) application allows users to search, discover, visualize, and access NASA and international interagency data about the Earth. As a client to NASA's Common Metadata Repository (CMR), its catalog of data collections grew 700 in late 2015. This massive expansion brought improved search and discovery to the forefront of the client's usability needs. During this talk, we will give a brief overview of the application, the challenges that arose during this period of growth, the metrics-driven way we addressed them, and the latest outcomes.
Targeted exploration and analysis of large cross-platform human transcriptomic compendia
Zhu, Qian; Wong, Aaron K; Krishnan, Arjun; Aure, Miriam R; Tadych, Alicja; Zhang, Ran; Corney, David C; Greene, Casey S; Bongo, Lars A; Kristensen, Vessela N; Charikar, Moses; Li, Kai; Troyanskaya, Olga G.
2016-01-01
We present SEEK (http://seek.princeton.edu), a query-based search engine across very large transcriptomic data collections, including thousands of human data sets from almost 50 microarray and next-generation sequencing platforms. SEEK uses a novel query-level cross-validation-based algorithm to automatically prioritize data sets relevant to the query and a robust search approach to identify query-coregulated genes, pathways, and processes. SEEK provides cross-platform handling, multi-gene query search, iterative metadata-based search refinement, and extensive visualization-based analysis options. PMID:25581801
An Approach to Information Management for AIR7000 with Metadata and Ontologies
2009-10-01
metadata. We then propose an approach based on Semantic Technologies including the Resource Description Framework (RDF) and Upper Ontologies, for the...mandating specific metadata schemas can result in interoperability problems. For example, many standards within the ADO mandate the use of XML for metadata...such problems, we propose an archi- tecture in which different metadata schemes can inter operate. By using RDF (Resource Description Framework ) as a
Making Interoperability Easier with NASA's Metadata Management Tool (MMT)
NASA Technical Reports Server (NTRS)
Shum, Dana; Reese, Mark; Pilone, Dan; Baynes, Katie
2016-01-01
While the ISO-19115 collection level metadata format meets many users' needs for interoperable metadata, it can be cumbersome to create it correctly. Through the MMT's simple UI experience, metadata curators can create and edit collections which are compliant with ISO-19115 without full knowledge of the NASA Best Practices implementation of ISO-19115 format. Users are guided through the metadata creation process through a forms-based editor, complete with field information, validation hints and picklists. Once a record is completed, users can download the metadata in any of the supported formats with just 2 clicks.
Predicting structured metadata from unstructured metadata.
Posch, Lisa; Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier
2016-01-01
Enormous amounts of biomedical data have been and are being produced by investigators all over the world. However, one crucial and limiting factor in data reuse is accurate, structured and complete description of the data or data about the data-defined as metadata. We propose a framework to predict structured metadata terms from unstructured metadata for improving quality and quantity of metadata, using the Gene Expression Omnibus (GEO) microarray database. Our framework consists of classifiers trained using term frequency-inverse document frequency (TF-IDF) features and a second approach based on topics modeled using a Latent Dirichlet Allocation model (LDA) to reduce the dimensionality of the unstructured data. Our results on the GEO database show that structured metadata terms can be the most accurately predicted using the TF-IDF approach followed by LDA both outperforming the majority vote baseline. While some accuracy is lost by the dimensionality reduction of LDA, the difference is small for elements with few possible values, and there is a large improvement over the majority classifier baseline. Overall this is a promising approach for metadata prediction that is likely to be applicable to other datasets and has implications for researchers interested in biomedical metadata curation and metadata prediction. © The Author(s) 2016. Published by Oxford University Press.
Metazen – metadata capture for metagenomes
Bischof, Jared; Harrison, Travis; Paczian, Tobias; ...
2014-12-08
Background: As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. These tools are not specifically designed for metagenomic surveys; in particular, they lack themore » appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Results: Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Conclusion: Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility.« less
Metazen – metadata capture for metagenomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, Jared; Harrison, Travis; Paczian, Tobias
Background: As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. These tools are not specifically designed for metagenomic surveys; in particular, they lack themore » appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Results: Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Conclusion: Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility.« less
Predicting structured metadata from unstructured metadata
Posch, Lisa; Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier
2016-01-01
Enormous amounts of biomedical data have been and are being produced by investigators all over the world. However, one crucial and limiting factor in data reuse is accurate, structured and complete description of the data or data about the data—defined as metadata. We propose a framework to predict structured metadata terms from unstructured metadata for improving quality and quantity of metadata, using the Gene Expression Omnibus (GEO) microarray database. Our framework consists of classifiers trained using term frequency-inverse document frequency (TF-IDF) features and a second approach based on topics modeled using a Latent Dirichlet Allocation model (LDA) to reduce the dimensionality of the unstructured data. Our results on the GEO database show that structured metadata terms can be the most accurately predicted using the TF-IDF approach followed by LDA both outperforming the majority vote baseline. While some accuracy is lost by the dimensionality reduction of LDA, the difference is small for elements with few possible values, and there is a large improvement over the majority classifier baseline. Overall this is a promising approach for metadata prediction that is likely to be applicable to other datasets and has implications for researchers interested in biomedical metadata curation and metadata prediction. Database URL: http://www.yeastgenome.org/ PMID:28637268
NASA Astrophysics Data System (ADS)
Benedict, K. K.; Scott, S.
2013-12-01
While there has been a convergence towards a limited number of standards for representing knowledge (metadata) about geospatial (and other) data objects and collections, there exist a variety of community conventions around the specific use of those standards and within specific data discovery and access systems. This combination of limited (but multiple) standards and conventions creates a challenge for system developers that aspire to participate in multiple data infrastrucutres, each of which may use a different combination of standards and conventions. While Extensible Markup Language (XML) is a shared standard for encoding most metadata, traditional direct XML transformations (XSLT) from one standard to another often result in an imperfect transfer of information due to incomplete mapping from one standard's content model to another. This paper presents the work at the University of New Mexico's Earth Data Analysis Center (EDAC) in which a unified data and metadata management system has been developed in support of the storage, discovery and access of heterogeneous data products. This system, the Geographic Storage, Transformation and Retrieval Engine (GSTORE) platform has adopted a polyglot database model in which a combination of relational and document-based databases are used to store both data and metadata, with some metadata stored in a custom XML schema designed as a superset of the requirements for multiple target metadata standards: ISO 19115-2/19139/19110/19119, FGCD CSDGM (both with and without remote sensing extensions) and Dublin Core. Metadata stored within this schema is complemented by additional service, format and publisher information that is dynamically "injected" into produced metadata documents when they are requested from the system. While mapping from the underlying common metadata schema is relatively straightforward, the generation of valid metadata within each target standard is necessary but not sufficient for integration into multiple data infrastructures, as has been demonstrated through EDAC's testing and deployment of metadata into multiple external systems: Data.Gov, the GEOSS Registry, the DataONE network, the DSpace based institutional repository at UNM and semantic mediation systems developed as part of the NASA ACCESS ELSeWEB project. Each of these systems requires valid metadata as a first step, but to make most effective use of the delivered metadata each also has a set of conventions that are specific to the system. This presentation will provide an overview of the underlying metadata management model, the processes and web services that have been developed to automatically generate metadata in a variety of standard formats and highlight some of the specific modifications made to the output metadata content to support the different conventions used by the multiple metadata integration endpoints.
Results from the Pan-STARRS1 Sky Surveys
NASA Astrophysics Data System (ADS)
Chambers, Kenneth C.; PS1 Science Consortium
2015-01-01
Results from the Pan-STARRS1 Sky Surveys spanning the field of astronomy from Near Earth Objects to Cosmology will be presented.Scientific highlights from the PS1 Sky Surveys include: the photometric and astrometric reference catalog with unprecedented size, accuracy, and dynamic range discovery of 1200 NEO's, 120 PHAs, 60 comets; discovery of rotational break up as the origin of catastrophic disruption of solar system bodies; first free floating planet PSO 318-22 and other ultra-cool objects; first 3-dimensional map of dust in the Milky Way; new distances to molecular clouds; new stellar streams in the Milky Way and new globular clusters; new satellite galaxies of M31; eclipsing binaries in M31 - an important step for the distance ladder; micro-lensing events and other variables in M31: super-luminous and under-luminous stellar explosions; first clear tidal disruption of star by supermassive black hole; many new high redshift quasars; and a new determination of the dark energy equation of state from SnIa photometry.The nearly 4 year Pan-STARRS1 Science Mission has now completed. The reprocessing of the entire data set is underway. The Public Release of the entire image, catalog and metadata set of the PS1 Sky Surveys is scheduled for April 1, 2015 from the STScI MAST archive. It is expected that a great many more scientific results will come with community access to the data set.The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope Science Institute; NASA Grant No. NNX08AR22G; the National Science Foundation under Grant No. AST-1238877; the University of Maryland; the Eotvos Lorand University; and the Los Alamos National Laboratory.
Teaching radio astrophysics the hand-on way
NASA Astrophysics Data System (ADS)
Joshi, Bhal Chandra
Astronomy and space sciences have always been instrumental in attracting young students to physical sciences. While the lectures/demonstrations and exhibitions pertaining to space sci-ences capture the imagination of young students, these alone are not sufficient to induce them to join scientific research. In countries like India, where a large number of students take to physical sciences for under-graduate education, complex sociological factors are key issues in translating this large body of students to potential researchers. While lectures and exhibition lead to an increase in scientific awareness for these students, these do not give a feel for scien-tific research and bridge the gap between high school/college science education and high end research. In this context, a hands-on approach to astronomy education, in science research environments or closely connected to scientific institutions, offers a promising alternative. This approach has been used in optical astronomy, where inexpensive small telescopes are available, often coupling a vast network of amateur astronomy clubs to leading astronomy institutes. The non-visual and relatively more technical nature of radio astronomy has limited a similar approach in past for connecting students to space sciences using radio waveband. The tech-nological explosion in communication industry and radio connectivity in the last decade along with an expansion in engineering education makes this possible now using a hands-on approach in teaching radio astrophysics. In this presentation, the sociological factors affecting the student choice are discussed followed by a review of the efforts to bridge the above mentioned gap by various groups in the world in the last decade with a view to enumerate the best practices in a hands-on approach. A program using this approach at National Center for Radio Astrophysics is described, where the students are exposed to simple hands-on radio astronomy experiments such as spectral line observations of neutral hydrogen from Milky Way and solar flux moni-toring. Such experiments are also useful to familiarize the students with astronomy jargon, which many times becomes an impediment in connecting them with research. This program also aims to develop low cost radio telescopes with involvement of engineering students and the presentation aims at sharing the experience in this program. Future possibilities bridging the gap between the research institutions, such as ours, and the student population at large are also discussed.
Why can't I manage my digital images like MP3s? The evolution and intent of multimedia metadata
NASA Astrophysics Data System (ADS)
Goodrum, Abby; Howison, James
2005-01-01
This paper considers the deceptively simple question: Why can't digital images be managed in the simple and effective manner in which digital music files are managed? We make the case that the answer is different treatments of metadata in different domains with different goals. A central difference between the two formats stems from the fact that digital music metadata lookup services are collaborative and automate the movement from a digital file to the appropriate metadata, while image metadata services do not. To understand why this difference exists we examine the divergent evolution of metadata standards for digital music and digital images and observed that the processes differ in interesting ways according to their intent. Specifically music metadata was developed primarily for personal file management and community resource sharing, while the focus of image metadata has largely been on information retrieval. We argue that lessons from MP3 metadata can assist individuals facing their growing personal image management challenges. Our focus therefore is not on metadata for cultural heritage institutions or the publishing industry, it is limited to the personal libraries growing on our hard-drives. This bottom-up approach to file management combined with p2p distribution radically altered the music landscape. Might such an approach have a similar impact on image publishing? This paper outlines plans for improving the personal management of digital images-doing image metadata and file management the MP3 way-and considers the likelihood of success.
Why can't I manage my digital images like MP3s? The evolution and intent of multimedia metadata
NASA Astrophysics Data System (ADS)
Goodrum, Abby; Howison, James
2004-12-01
This paper considers the deceptively simple question: Why can"t digital images be managed in the simple and effective manner in which digital music files are managed? We make the case that the answer is different treatments of metadata in different domains with different goals. A central difference between the two formats stems from the fact that digital music metadata lookup services are collaborative and automate the movement from a digital file to the appropriate metadata, while image metadata services do not. To understand why this difference exists we examine the divergent evolution of metadata standards for digital music and digital images and observed that the processes differ in interesting ways according to their intent. Specifically music metadata was developed primarily for personal file management and community resource sharing, while the focus of image metadata has largely been on information retrieval. We argue that lessons from MP3 metadata can assist individuals facing their growing personal image management challenges. Our focus therefore is not on metadata for cultural heritage institutions or the publishing industry, it is limited to the personal libraries growing on our hard-drives. This bottom-up approach to file management combined with p2p distribution radically altered the music landscape. Might such an approach have a similar impact on image publishing? This paper outlines plans for improving the personal management of digital images-doing image metadata and file management the MP3 way-and considers the likelihood of success.
The Role of Metadata Standards in EOSDIS Search and Retrieval Applications
NASA Technical Reports Server (NTRS)
Pfister, Robin
1999-01-01
Metadata standards play a critical role in data search and retrieval systems. Metadata tie software to data so the data can be processed, stored, searched, retrieved and distributed. Without metadata these actions are not possible. The process of populating metadata to describe science data is an important service to the end user community so that a user who is unfamiliar with the data, can easily find and learn about a particular dataset before an order decision is made. Once a good set of standards are in place, the accuracy with which data search can be performed depends on the degree to which metadata standards are adhered during product definition. NASA's Earth Observing System Data and Information System (EOSDIS) provides examples of how metadata standards are used in data search and retrieval.
openPDS: protecting the privacy of metadata through SafeAnswers.
de Montjoye, Yves-Alexandre; Shmueli, Erez; Wang, Samuel S; Pentland, Alex Sandy
2014-01-01
The rise of smartphones and web services made possible the large-scale collection of personal metadata. Information about individuals' location, phone call logs, or web-searches, is collected and used intensively by organizations and big data researchers. Metadata has however yet to realize its full potential. Privacy and legal concerns, as well as the lack of technical solutions for personal metadata management is preventing metadata from being shared and reconciled under the control of the individual. This lack of access and control is furthermore fueling growing concerns, as it prevents individuals from understanding and managing the risks associated with the collection and use of their data. Our contribution is two-fold: (1) we describe openPDS, a personal metadata management framework that allows individuals to collect, store, and give fine-grained access to their metadata to third parties. It has been implemented in two field studies; (2) we introduce and analyze SafeAnswers, a new and practical way of protecting the privacy of metadata at an individual level. SafeAnswers turns a hard anonymization problem into a more tractable security one. It allows services to ask questions whose answers are calculated against the metadata instead of trying to anonymize individuals' metadata. The dimensionality of the data shared with the services is reduced from high-dimensional metadata to low-dimensional answers that are less likely to be re-identifiable and to contain sensitive information. These answers can then be directly shared individually or in aggregate. openPDS and SafeAnswers provide a new way of dynamically protecting personal metadata, thereby supporting the creation of smart data-driven services and data science research.
openPDS: Protecting the Privacy of Metadata through SafeAnswers
de Montjoye, Yves-Alexandre; Shmueli, Erez; Wang, Samuel S.; Pentland, Alex Sandy
2014-01-01
The rise of smartphones and web services made possible the large-scale collection of personal metadata. Information about individuals' location, phone call logs, or web-searches, is collected and used intensively by organizations and big data researchers. Metadata has however yet to realize its full potential. Privacy and legal concerns, as well as the lack of technical solutions for personal metadata management is preventing metadata from being shared and reconciled under the control of the individual. This lack of access and control is furthermore fueling growing concerns, as it prevents individuals from understanding and managing the risks associated with the collection and use of their data. Our contribution is two-fold: (1) we describe openPDS, a personal metadata management framework that allows individuals to collect, store, and give fine-grained access to their metadata to third parties. It has been implemented in two field studies; (2) we introduce and analyze SafeAnswers, a new and practical way of protecting the privacy of metadata at an individual level. SafeAnswers turns a hard anonymization problem into a more tractable security one. It allows services to ask questions whose answers are calculated against the metadata instead of trying to anonymize individuals' metadata. The dimensionality of the data shared with the services is reduced from high-dimensional metadata to low-dimensional answers that are less likely to be re-identifiable and to contain sensitive information. These answers can then be directly shared individually or in aggregate. openPDS and SafeAnswers provide a new way of dynamically protecting personal metadata, thereby supporting the creation of smart data-driven services and data science research. PMID:25007320
Progress in defining a standard for file-level metadata
NASA Technical Reports Server (NTRS)
Williams, Joel; Kobler, Ben
1996-01-01
In the following narrative, metadata required to locate a file on tape or collection of tapes will be referred to as file-level metadata. This paper discribes the rationale for and the history of the effort to define a standard for this metadata.
Achieving interoperability for metadata registries using comparative object modeling.
Park, Yu Rang; Kim, Ju Han
2010-01-01
Achieving data interoperability between organizations relies upon agreed meaning and representation (metadata) of data. For managing and registering metadata, many organizations have built metadata registries (MDRs) in various domains based on international standard for MDR framework, ISO/IEC 11179. Following this trend, two pubic MDRs in biomedical domain have been created, United States Health Information Knowledgebase (USHIK) and cancer Data Standards Registry and Repository (caDSR), from U.S. Department of Health & Human Services and National Cancer Institute (NCI), respectively. Most MDRs are implemented with indiscriminate extending for satisfying organization-specific needs and solving semantic and structural limitation of ISO/IEC 11179. As a result it is difficult to address interoperability among multiple MDRs. In this paper, we propose an integrated metadata object model for achieving interoperability among multiple MDRs. To evaluate this model, we developed an XML Schema Definition (XSD)-based metadata exchange format. We created an XSD-based metadata exporter, supporting both the integrated metadata object model and organization-specific MDR formats.
Request queues for interactive clients in a shared file system of a parallel computing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin
Interactive requests are processed from users of log-in nodes. A metadata server node is provided for use in a file system shared by one or more interactive nodes and one or more batch nodes. The interactive nodes comprise interactive clients to execute interactive tasks and the batch nodes execute batch jobs for one or more batch clients. The metadata server node comprises a virtual machine monitor; an interactive client proxy to store metadata requests from the interactive clients in an interactive client queue; a batch client proxy to store metadata requests from the batch clients in a batch client queue;more » and a metadata server to store the metadata requests from the interactive client queue and the batch client queue in a metadata queue based on an allocation of resources by the virtual machine monitor. The metadata requests can be prioritized, for example, based on one or more of a predefined policy and predefined rules.« less
Implementing RDA Data Citation Recommendations: Case Study in South Africa
NASA Astrophysics Data System (ADS)
Hugo, Wim
2016-04-01
SAEON operates a shared research data infrastructure for its own data sets and for clients and end users in the Earth and Environmental Sciences domain. SAEON has a license to issue Digital Object Identifiers via DataCite on behalf of third parties, and have recently concluded development work to make a universal data deposit, description, and DOI minting facility available. This facility will be used to develop a number of end user gateways, including DataCite South Africa (in collaboration with National Research Foundation and addressing all grant-funded research in the country), DIRISA (Data-intensive Research Infrastructure for South Africa - in collaboration with Meraka Institute and Department of Science and Technology), and SASDI (South African Spatial Data Infrastructure). The RDA recently published Data Citation Recommendations [1], and this was used as a basis for specification of Digital Object Identifier implementation, raising two significant challenges: 1. Synchronisation of frequently harvested meta-data sets where version management practice did not align with the RDA recommendations, and 2. Handling sub-sets of and queries on large, continuously updated data sets. In the first case, we have developed a set of tests that determine the logical course of action when discrepancies are found during synchronization, and we have incorporated these into meta-data harvester configurations. Additionally, we have developed a state diagram and attendant workflow for meta-data that includes problem states emanating from DOI management, reporting services for data depositors, and feedback to end users in respect of synchronisation issues. In the second case, in the absence of firm guidelines from DataCite, we are seeking community consensus and feedback on an approach that caches all queries performed and subsets derived from data, and provide these with anchor-style extensions linked to the dataset's original DOI. This allows extended DOIs to resolve to a meta-data page on which the cached data set is available as an anchored download link.All cached datasets are provided with checksum values to verify the contents against such copies as may exist. The paper reviews recent service-driven portal interface developments, both services and graphical user interfaces, including wizard-style, configurable applications for meta-data management and DOI minting, discovery, download, visualization, and reporting. It showcases examples of the two permanent identifier problem areas and how these were addressed. The paper concludes with contributions to open research questions, including (1) determining optimal meta-data granularity and (2) proposing an implementation guideline for extended DOIs. [1] A. Rauber, D. van Uytvanck, A. Asmi, S. Pröll, "Data Citation Recommendations", November 2015, RDA. https://rd-alliance.org/group/data-citation-wg/outcomes/data-citation-recommendation.htm
NASA Astrophysics Data System (ADS)
Vinci, Matteo; Lipizer, Marina; Giorgetti, Alessandra
2016-04-01
The European Marine Observation and Data Network (EMODnet) initiative has the following purposes: to assemble marine metadata, data and products, to make these fragmented resources more easily available to public and private users and to provide quality-assured, standardised and harmonised marine data. EMODnet Chemistry was launched by DG MARE in 2009 to support the Marine Strategy Framework Directive (MSFD) requirements for the assessment of eutrophication and contaminants, following INSPIRE Directive rules. The aim is twofold: the first task is to make available and reusable the big amount of fragmented and inaccessible data, hosted in the European research institutes and environmental agencies. The second objective is to develop visualization services useful for the tasks of the MSFD. The technical set-up is based on the principle of adopting and adapting the SeaDataNet infrastructure for ocean and marine data which are managed by National Oceanographic Data Centers and relies on a distributed network of data centers. Data centers contribute to data harvesting and enrichment with the relevant metadata. Data are processed into interoperable formats (using agreed standards ISO XML, ODV) with the use of common vocabularies and standardized quality control procedures .Data quality control is a key issue when merging heterogeneous data coming from different sources and a data validation loop has been agreed within EMODnet Chemistry community and is routinely performed. After data quality control done by the regional coordinators of the EU marine basins (Atlantic, Baltic, North, Mediterranean and Black Sea), validated regional datasets are used to develop data products useful for the requirements of the MSFD. EMODnet Chemistry provides interpolated seasonal maps of nutrients and services for the visualization of time series and profiles of several chemical parameters. All visualization services are developed following OGC standards as WMS and WPS. In order to test new strategies for data storage, reanalysis and to upgrade the infrastructure performances, EMODnet Chemistry has chosen the Cloud environment offered by Cineca (the Consortium of Italian Universities and research institutes) where both regional aggregated datasets and analysis and visualization services are hosted. Finally, beside the delivery of data and the visualization products, the results of the data harvesting provide a useful tool to identify data gaps where the future monitoring efforts should be focused.
Virtual Observatories, Data Mining, and Astroinformatics
NASA Astrophysics Data System (ADS)
Borne, Kirk
The historical, current, and future trends in knowledge discovery from data in astronomy are presented here. The story begins with a brief history of data gathering and data organization. A description of the development ofnew information science technologies for astronomical discovery is then presented. Among these are e-Science and the virtual observatory, with its data discovery, access, display, and integration protocols; astroinformatics and data mining for exploratory data analysis, information extraction, and knowledge discovery from distributed data collections; new sky surveys' databases, including rich multivariate observational parameter sets for large numbers of objects; and the emerging discipline of data-oriented astronomical research, called astroinformatics. Astroinformatics is described as the fourth paradigm of astronomical research, following the three traditional research methodologies: observation, theory, and computation/modeling. Astroinformatics research areas include machine learning, data mining, visualization, statistics, semantic science, and scientific data management.Each of these areas is now an active research discipline, with significantscience-enabling applications in astronomy. Research challenges and sample research scenarios are presented in these areas, in addition to sample algorithms for data-oriented research. These information science technologies enable scientific knowledge discovery from the increasingly large and complex data collections in astronomy. The education and training of the modern astronomy student must consequently include skill development in these areas, whose practitioners have traditionally been limited to applied mathematicians, computer scientists, and statisticians. Modern astronomical researchers must cross these traditional discipline boundaries, thereby borrowing the best of breed methodologies from multiple disciplines. In the era of large sky surveys and numerous large telescopes, the potential for astronomical discovery is equally large, and so the data-oriented research methods, algorithms, and techniques that are presented here will enable the greatest discovery potential from the ever-growing data and information resources in astronomy.
Making metadata usable in a multi-national research setting.
Ellul, Claire; Foord, Joanna; Mooney, John
2013-11-01
SECOA (Solutions for Environmental Contrasts in Coastal Areas) is a multi-national research project examining the effects of human mobility on urban settlements in fragile coastal environments. This paper describes the setting up of a SECOA metadata repository for non-specialist researchers such as environmental scientists and tourism experts. Conflicting usability requirements of two groups - metadata creators and metadata users - are identified along with associated limitations of current metadata standards. A description is given of a configurable metadata system designed to grow as the project evolves. This work is of relevance for similar projects such as INSPIRE. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
JPL Big Data Technologies for Radio Astronomy
NASA Astrophysics Data System (ADS)
Jones, Dayton L.; D'Addario, L. R.; De Jong, E. M.; Mattmann, C. A.; Rebbapragada, U. D.; Thompson, D. R.; Wagstaff, K.
2014-04-01
During the past three years the Jet Propulsion Laboratory has been working on several technologies to deal with big data challenges facing next-generation radio arrays, among other applications. This program has focused on the following four areas: 1) We are investigating high-level ASIC architectures that reduce power consumption for cross-correlation of data from large interferometer arrays by one to two orders of magnitude. The cost of operations for the Square Kilometre Array (SKA), which may be dominated by the cost of power for data processing, is a serious concern. A large improvement in correlator power efficiency could have a major positive impact. 2) Data-adaptive algorithms (machine learning) for real-time detection and classification of fast transient signals in high volume data streams are being developed and demonstrated. Studies of the dynamic universe, particularly searches for fast (<< 1 second) transient events, require that data be analyzed rapidly and with robust RFI rejection. JPL, in collaboration with the International Center for Radio Astronomy Research in Australia, has developed a fast transient search system for eventual deployment on ASKAP. In addition, a real-time transient detection experiment is now running continuously and commensally on NRAO's Very Long Baseline Array. 3) Scalable frameworks for data archiving, mining, and distribution are being applied to radio astronomy. A set of powerful open-source Object Oriented Data Technology (OODT) tools is now available through Apache. OODT was developed at JPL for Earth science data archives, but it is proving to be useful for radio astronomy, planetary science, health care, Earth climate, and other large-scale archives. 4) We are creating automated, event-driven data visualization tools that can be used to extract information from a wide range of complex data sets. Visualization of complex data can be improved through algorithms that detect events or features of interest and autonomously generate images or video to display those features. This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Yatagai, A. I.; Iyemori, T.; Ritschel, B.; Koyama, Y.; Hori, T.; Abe, S.; Tanaka, Y.; Shinbori, A.; Umemura, N.; Sato, Y.; Yagi, M.; Ueno, S.; Hashiguchi, N. O.; Kaneda, N.; Belehaki, A.; Hapgood, M. A.
2013-12-01
The IUGONET is a Japanese program to build a metadata database for ground-based observations of the upper atmosphere [1]. The project began in 2009 with five Japanese institutions which archive data observed by radars, magnetometers, photometers, radio telescopes and helioscopes, and so on, at various altitudes from the Earth's surface to the Sun. Systems have been developed to allow searching of the above described metadata. We have been updating the system and adding new and updated metadata. The IUGONET development team adopted the SPASE metadata model [2] to describe the upper atmosphere data. This model is used as the common metadata format by the virtual observatories for solar-terrestrial physics. It includes metadata referring to each data file (called a 'Granule'), which enable a search for data files as well as data sets. Further details are described in [2] and [3]. Currently, three additional Japanese institutions are being incorporated in IUGONET. Furthermore, metadata of observations of the troposphere, taken at the observatories of the middle and upper atmosphere radar at Shigaraki and the Meteor radar in Indonesia, have been incorporated. These additions will contribute to efficient interdisciplinary scientific research. In the beginning of 2013, the registration of the 'Observatory' and 'Instrument' metadata was completed, which makes it easy to overview of the metadata database. The number of registered metadata as of the end of July, totalled 8.8 million, including 793 observatories and 878 instruments. It is important to promote interoperability and/or metadata exchange between the database development groups. A memorandum of agreement has been signed with the European Near-Earth Space Data Infrastructure for e-Science (ESPAS) project, which has similar objectives to IUGONET with regard to a framework for formal collaboration. Furthermore, observations by satellites and the International Space Station are being incorporated with a view for making/linking metadata databases. The development of effective data systems will contribute to the progress of scientific research on solar terrestrial physics, climate and the geophysical environment. Any kind of cooperation, metadata input and feedback, especially for linkage of the databases, is welcomed. References 1. Hayashi, H. et al., Inter-university Upper Atmosphere Global Observation Network (IUGONET), Data Sci. J., 12, WDS179-184, 2013. 2. King, T. et al., SPASE 2.0: A standard data model for space physics. Earth Sci. Inform. 3, 67-73, 2010, doi:10.1007/s12145-010-0053-4. 3. Hori, T., et al., Development of IUGONET metadata format and metadata management system. J. Space Sci. Info. Jpn., 105-111, 2012. (in Japanese)
Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals
NASA Astrophysics Data System (ADS)
Zamyadi, A.; Pouliot, J.; Bédard, Y.
2013-09-01
Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial Data Infrastructure (CGDI) metadata which is an implementation of North American Profile of ISO-19115. The comparison analyzes the two metadata against three simulated scenarios about discovering needed 3D geo-spatial datasets. Considering specific metadata about 3D geospatial models, the proposed metadata-set has six additional classes on geometric dimension, level of detail, geometric modeling, topology, and appearance information. In addition classes on data acquisition, preparation, and modeling, and physical availability have been specialized for 3D geospatial models.
Collaborative Metadata Curation in Support of NASA Earth Science Data Stewardship
NASA Technical Reports Server (NTRS)
Sisco, Adam W.; Bugbee, Kaylin; le Roux, Jeanne; Staton, Patrick; Freitag, Brian; Dixon, Valerie
2018-01-01
Growing collection of NASA Earth science data is archived and distributed by EOSDIS’s 12 Distributed Active Archive Centers (DAACs). Each collection and granule is described by a metadata record housed in the Common Metadata Repository (CMR). Multiple metadata standards are in use, and core elements of each are mapped to and from a common model – the Unified Metadata Model (UMM). Work done by the Analysis and Review of CMR (ARC) Team.
Mitogenome metadata: current trends and proposed standards.
Strohm, Jeff H T; Gwiazdowski, Rodger A; Hanner, Robert
2016-09-01
Mitogenome metadata are descriptive terms about the sequence, and its specimen description that allow both to be digitally discoverable and interoperable. Here, we review a sampling of mitogenome metadata published in the journal Mitochondrial DNA between 2005 and 2014. Specifically, we have focused on a subset of metadata fields that are available for GenBank records, and specified by the Genomics Standards Consortium (GSC) and other biodiversity metadata standards; and we assessed their presence across three main categories: collection, biological and taxonomic information. To do this we reviewed 146 mitogenome manuscripts, and their associated GenBank records, and scored them for 13 metadata fields. We also explored the potential for mitogenome misidentification using their sequence diversity, and taxonomic metadata on the Barcode of Life Datasystems (BOLD). For this, we focused on all Lepidoptera and Perciformes mitogenomes included in the review, along with additional mitogenome sequence data mined from Genbank. Overall, we found that none of 146 mitogenome projects provided all the metadata we looked for; and only 17 projects provided at least one category of metadata across the three main categories. Comparisons using mtDNA sequences from BOLD, suggest that some mitogenomes may be misidentified. Lastly, we appreciate the research potential of mitogenomes announced through this journal; and we conclude with a suggestion of 13 metadata fields, available on GenBank, that if provided in a mitogenomes's GenBank record, would increase their research value.
Design and implementation of a fault-tolerant and dynamic metadata database for clinical trials
NASA Astrophysics Data System (ADS)
Lee, J.; Zhou, Z.; Talini, E.; Documet, J.; Liu, B.
2007-03-01
In recent imaging-based clinical trials, quantitative image analysis (QIA) and computer-aided diagnosis (CAD) methods are increasing in productivity due to higher resolution imaging capabilities. A radiology core doing clinical trials have been analyzing more treatment methods and there is a growing quantity of metadata that need to be stored and managed. These radiology centers are also collaborating with many off-site imaging field sites and need a way to communicate metadata between one another in a secure infrastructure. Our solution is to implement a data storage grid with a fault-tolerant and dynamic metadata database design to unify metadata from different clinical trial experiments and field sites. Although metadata from images follow the DICOM standard, clinical trials also produce metadata specific to regions-of-interest and quantitative image analysis. We have implemented a data access and integration (DAI) server layer where multiple field sites can access multiple metadata databases in the data grid through a single web-based grid service. The centralization of metadata database management simplifies the task of adding new databases into the grid and also decreases the risk of configuration errors seen in peer-to-peer grids. In this paper, we address the design and implementation of a data grid metadata storage that has fault-tolerance and dynamic integration for imaging-based clinical trials.
Metadata and Service at the GFZ ISDC Portal
NASA Astrophysics Data System (ADS)
Ritschel, B.
2008-05-01
The online service portal of the GFZ Potsdam Information System and Data Center (ISDC) is an access point for all manner of geoscientific geodata, its corresponding metadata, scientific documentation and software tools. At present almost 2000 national and international users and user groups have the opportunity to request Earth science data from a portfolio of 275 different products types and more than 20 Million single data files with an added volume of approximately 12 TByte. The majority of the data and information, the portal currently offers to the public, are global geomonitoring products such as satellite orbit and Earth gravity field data as well as geomagnetic and atmospheric data for the exploration. These products for Earths changing system are provided via state-of-the art retrieval techniques. The data product catalog system behind these techniques is based on the extensive usage of standardized metadata, which are describing the different geoscientific product types and data products in an uniform way. Where as all ISDC product types are specified by NASA's Directory Interchange Format (DIF), Version 9.0 Parent XML DIF metadata files, the individual data files are described by extended DIF metadata documents. Depending on the beginning of the scientific project, one part of data files are described by extended DIF, Version 6 metadata documents and the other part are specified by data Child XML DIF metadata documents. Both, the product type dependent parent DIF metadata documents and the data file dependent child DIF metadata documents are derived from a base-DIF.xsd xml schema file. The ISDC metadata philosophy defines a geoscientific product as a package consisting of mostly one or sometimes more than one data file plus one extended DIF metadata file. Because NASA's DIF metadata standard has been developed in order to specify a collection of data only, the extension of the DIF standard consists of new and specific attributes, which are necessary for an explicit identification of single data files and the set-up of a comprehensive Earth science data catalog. The huge ISDC data catalog is realized by product type dependent tables filled with data file related metadata, which have relations to corresponding metadata tables. The product type describing parent DIF XML metadata documents are stored and managed in ORACLE's XML storage structures. In order to improve the interoperability of the ISDC service portal, the existing proprietary catalog system will be extended by an ISO 19115 based web catalog service. In addition to this development there is ISDC related concerning semantic network of different kind of metadata resources, like different kind of standardized and not-standardized metadata documents and literature as well as Web 2.0 user generated information derived from tagging activities and social navigation data.
Mercury Toolset for Spatiotemporal Metadata
NASA Technical Reports Server (NTRS)
Wilson, Bruce E.; Palanisamy, Giri; Devarakonda, Ranjeet; Rhyne, B. Timothy; Lindsley, Chris; Green, James
2010-01-01
Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily) harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.
Mercury Toolset for Spatiotemporal Metadata
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce; Rhyne, B. Timothy; Lindsley, Chris
2010-06-01
Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily)harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.
Metadata Realities for Cyberinfrastructure: Data Authors as Metadata Creators
ERIC Educational Resources Information Center
Mayernik, Matthew Stephen
2011-01-01
As digital data creation technologies become more prevalent, data and metadata management are necessary to make data available, usable, sharable, and storable. Researchers in many scientific settings, however, have little experience or expertise in data and metadata management. In this dissertation, I explore the everyday data and metadata…
NetCDF4/HDF5 and Linked Data in the Real World - Enriching Geoscientific Metadata without Bloat
NASA Astrophysics Data System (ADS)
Ip, Alex; Car, Nicholas; Druken, Kelsey; Poudjom-Djomani, Yvette; Butcher, Stirling; Evans, Ben; Wyborn, Lesley
2017-04-01
NetCDF4 has become the dominant generic format for many forms of geoscientific data, leveraging (and constraining) the versatile HDF5 container format, while providing metadata conventions for interoperability. However, the encapsulation of detailed metadata within each file can lead to metadata "bloat", and difficulty in maintaining consistency where metadata is replicated to multiple locations. Complex conceptual relationships are also difficult to represent in simple key-value netCDF metadata. Linked Data provides a practical mechanism to address these issues by associating the netCDF files and their internal variables with complex metadata stored in Semantic Web vocabularies and ontologies, while complying with and complementing existing metadata conventions. One of the stated objectives of the netCDF4/HDF5 formats is that they should be self-describing: containing metadata sufficient for cataloguing and using the data. However, this objective can be regarded as only partially-met where details of conventions and definitions are maintained externally to the data files. For example, one of the most widely used netCDF community standards, the Climate and Forecasting (CF) Metadata Convention, maintains standard vocabularies for a broad range of disciplines across the geosciences, but this metadata is currently neither readily discoverable nor machine-readable. We have previously implemented useful Linked Data and netCDF tooling (ncskos) that associates netCDF files, and individual variables within those files, with concepts in vocabularies formulated using the Simple Knowledge Organization System (SKOS) ontology. NetCDF files contain Uniform Resource Identifier (URI) links to terms represented as SKOS Concepts, rather than plain-text representations of those terms, so we can use simple, standardised web queries to collect and use rich metadata for the terms from any Linked Data-presented SKOS vocabulary. Geoscience Australia (GA) manages a large volume of diverse geoscientific data, much of which is being translated from proprietary formats to netCDF at NCI Australia. This data is made available through the NCI National Environmental Research Data Interoperability Platform (NERDIP) for programmatic access and interdisciplinary analysis. The netCDF files contain both scientific data variables (e.g. gravity, magnetic or radiometric values), but also domain-specific operational values (e.g. specific instrument parameters) best described fully in formal vocabularies. Our ncskos codebase provides access to multiple stores of detailed external metadata in a standardised fashion. Geophysical datasets are generated from a "survey" event, and GA maintains corporate databases of all surveys and their associated metadata. It is impractical to replicate the full source survey metadata into each netCDF dataset so, instead, we link the netCDF files to survey metadata using public Linked Data URIs. These URIs link to Survey class objects which we model as a subclass of Activity objects as defined by the PROV Ontology, and we provide URI resolution for them via a custom Linked Data API which draws current survey metadata from GA's in-house databases. We have demonstrated that Linked Data is a practical way to associate netCDF data with detailed, external metadata. This allows us to ensure that catalogued metadata is kept consistent with metadata points-of-truth, and we can infer complex conceptual relationships not possible with netCDF key-value attributes alone.
CytometryML binary data standards
NASA Astrophysics Data System (ADS)
Leif, Robert C.
2005-03-01
CytometryML is a proposed new Analytical Cytology (Cytomics) data standard, which is based on a common set of XML schemas for encoding flow cytometry and digital microscopy text based data types (metadata). CytometryML schemas reference both DICOM (Digital Imaging and Communications in Medicine) codes and FCS keywords. Flow Cytometry Standard (FCS) list-mode has been mapped to the DICOM Waveform Information Object. The separation of the large binary data objects (list mode and image data) from the XML description of the metadata permits the metadata to be directly displayed, analyzed, and reported with standard commercial software packages; the direct use of XML languages; and direct interfacing with clinical information systems. The separation of the binary data into its own files simplifies parsing because all extraneous header data has been eliminated. The storage of images as two-dimensional arrays without any extraneous data, such as in the Adobe Photoshop RAW format, facilitates the development by scientists of their own analysis and visualization software. Adobe Photoshop provided the display infrastructure and the translation facility to interconvert between the image data from commercial formats and RAW format. Similarly, the storage and parsing of list mode binary data type with a group of parameters that are specified at compilation time is straight forward. However when the user is permitted at run-time to select a subset of the parameters and/or specify results of mathematical manipulations, the development of special software was required. The use of CytometryML will permit investigators to be able to create their own interoperable data analysis software and to employ commercially available software to disseminate their data.
Ku, Ho Suk; Kim, Sungho; Kim, HyeHyeon; Chung, Hee-Joon; Park, Yu Rang; Kim, Ju Han
2014-04-01
Health Avatar Beans was for the management of chronic kidney disease and end-stage renal disease (ESRD). This article is about the DialysisNet system in Health Avatar Beans for the seamless management of ESRD based on the personal health record. For hemodialysis data modeling, we identified common data elements for hemodialysis information (CDEHI). We used ASTM continuity of care record (CCR) and ISO/IEC 11179 for the compliance method with a standard model for the CDEHI. According to the contents of the ASTM CCR, we mapped the CDHEI to the contents and created the metadata from that. It was transformed and parsed into the database and verified according to the ASTM CCR/XML schema definition (XSD). DialysisNet was created as an iPad application. The contents of the CDEHI were categorized for effective management. For the evaluation of information transfer, we used CarePlatform, which was developed for data access. The metadata of CDEHI in DialysisNet was exchanged by the CarePlatform with semantic interoperability. The CDEHI was separated into a content list for individual patient data, a contents list for hemodialysis center data, consultation and transfer form, and clinical decision support data. After matching to the CCR, the CDEHI was transformed to metadata, and it was transformed to XML and proven according to the ASTM CCR/XSD. DialysisNet has specific consideration of visualization, graphics, images, statistics, and database. We created the DialysisNet application, which can integrate and manage data sources for hemodialysis information based on CCR standards.
Seqcrawler: biological data indexing and browsing platform.
Sallou, Olivier; Bretaudeau, Anthony; Roult, Aurelien
2012-07-24
Seqcrawler takes its roots in software like SRS or Lucegene. It provides an indexing platform to ease the search of data and meta-data in biological banks and it can scale to face the current flow of data. While many biological bank search tools are available on the Internet, mainly provided by large organizations to search their data, there is a lack of free and open source solutions to browse one's own set of data with a flexible query system and able to scale from a single computer to a cloud system. A personal index platform will help labs and bioinformaticians to search their meta-data but also to build a larger information system with custom subsets of data. The software is scalable from a single computer to a cloud-based infrastructure. It has been successfully tested in a private cloud with 3 index shards (pieces of index) hosting ~400 millions of sequence information (whole GenBank, UniProt, PDB and others) for a total size of 600 GB in a fault tolerant architecture (high-availability). It has also been successfully integrated with software to add extra meta-data from blast results to enhance users' result analysis. Seqcrawler provides a complete open source search and store solution for labs or platforms needing to manage large amount of data/meta-data with a flexible and customizable web interface. All components (search engine, visualization and data storage), though independent, share a common and coherent data system that can be queried with a simple HTTP interface. The solution scales easily and can also provide a high availability infrastructure.
Hierarchical video summarization based on context clustering
NASA Astrophysics Data System (ADS)
Tseng, Belle L.; Smith, John R.
2003-11-01
A personalized video summary is dynamically generated in our video personalization and summarization system based on user preference and usage environment. The three-tier personalization system adopts the server-middleware-client architecture in order to maintain, select, adapt, and deliver rich media content to the user. The server stores the content sources along with their corresponding MPEG-7 metadata descriptions. In this paper, the metadata includes visual semantic annotations and automatic speech transcriptions. Our personalization and summarization engine in the middleware selects the optimal set of desired video segments by matching shot annotations and sentence transcripts with user preferences. Besides finding the desired contents, the objective is to present a coherent summary. There are diverse methods for creating summaries, and we focus on the challenges of generating a hierarchical video summary based on context information. In our summarization algorithm, three inputs are used to generate the hierarchical video summary output. These inputs are (1) MPEG-7 metadata descriptions of the contents in the server, (2) user preference and usage environment declarations from the user client, and (3) context information including MPEG-7 controlled term list and classification scheme. In a video sequence, descriptions and relevance scores are assigned to each shot. Based on these shot descriptions, context clustering is performed to collect consecutively similar shots to correspond to hierarchical scene representations. The context clustering is based on the available context information, and may be derived from domain knowledge or rules engines. Finally, the selection of structured video segments to generate the hierarchical summary efficiently balances between scene representation and shot selection.
Carbone, Ignazio; White, James B; Miadlikowska, Jolanta; Arnold, A Elizabeth; Miller, Mark A; Kauff, Frank; U'Ren, Jana M; May, Georgiana; Lutzoni, François
2017-04-15
High-quality phylogenetic placement of sequence data has the potential to greatly accelerate studies of the diversity, systematics, ecology and functional biology of diverse groups. We developed the Tree-Based Alignment Selector (T-BAS) toolkit to allow evolutionary placement and visualization of diverse DNA sequences representing unknown taxa within a robust phylogenetic context, and to permit the downloading of highly curated, single- and multi-locus alignments for specific clades. In its initial form, T-BAS v1.0 uses a core phylogeny of 979 taxa (including 23 outgroup taxa, as well as 61 orders, 175 families and 496 genera) representing all 13 classes of largest subphylum of Fungi-Pezizomycotina (Ascomycota)-based on sequence alignments for six loci (nr5.8S, nrLSU, nrSSU, mtSSU, RPB1, RPB2 ). T-BAS v1.0 has three main uses: (i) Users may download alignments and voucher tables for members of the Pezizomycotina directly from the reference tree, facilitating systematics studies of focal clades. (ii) Users may upload sequence files with reads representing unknown taxa and place these on the phylogeny using either BLAST or phylogeny-based approaches, and then use the displayed tree to select reference taxa to include when downloading alignments. The placement of unknowns can be performed for large numbers of Sanger sequences obtained from fungal cultures and for alignable, short reads of environmental amplicons. (iii) User-customizable metadata can be visualized on the tree. T-BAS Version 1.0 is available online at http://tbas.hpc.ncsu.edu . Registration is required to access the CIPRES Science Gateway and NSF XSEDE's large computational resources. icarbon@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
High-throughput neuroimaging-genetics computational infrastructure
Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Hobel, Sam; Vespa, Paul; Woo Moon, Seok; Van Horn, John D.; Franco, Joseph; Toga, Arthur W.
2014-01-01
Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining, and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate, and disseminate novel scientific methods, computational resources, and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval, and aggregation. Computational processing involves the necessary software, hardware, and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and meta-data. Data mining refers to the process of automatically extracting data features, characteristics and associations, which are not readily visible by human exploration of the raw dataset. Result interpretation includes scientific visualization, community validation of findings and reproducible findings. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging (LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. In addition, the institute provides a large number of software tools for image and shape analysis, mathematical modeling, genomic sequence processing, and scientific visualization. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer, and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize diverse suites of software tools and web-services. These pipeline workflows are represented as portable XML objects which transfer the execution instructions and user specifications from the client user machine to remote pipeline servers for distributed computing. Using Alzheimer's and Parkinson's data, we provide several examples of translational applications using this infrastructure1. PMID:24795619
NASA Astrophysics Data System (ADS)
Carey, C. L.
2011-06-01
The following paper undertakes an iconographic analysis of Robert Rauschenberg's large scale print, Autobiography (1967). The artist's interest in astronomy and astrology, visual metaphors aligning the body with the cosmos, and the cartographic representation of self are discussed. Autobiography is placed in cultural and historical context with other works by the artist, elaborated as a personal narrative-an alternative to traditional self portraiture.
The Origin of Chondrules and Chondrites
NASA Astrophysics Data System (ADS)
Sears, Derek W. G.
2005-01-01
Drawing on research from the various scientific disciplines involved, this text summarizes the origin and history of chondrules and chondrites. Including citations to every published paper on the topic, it forms a comprehensive bibliography of the latest research. In addition, extensive illustrations provide a clear visual representation of the scientific theories. The text will be a valuable reference for graduate students and researchers in planetary science, geology and astronomy.
Content Metadata Standards for Marine Science: A Case Study
Riall, Rebecca L.; Marincioni, Fausto; Lightsom, Frances L.
2004-01-01
The U.S. Geological Survey developed a content metadata standard to meet the demands of organizing electronic resources in the marine sciences for a broad, heterogeneous audience. These metadata standards are used by the Marine Realms Information Bank project, a Web-based public distributed library of marine science from academic institutions and government agencies. The development and deployment of this metadata standard serve as a model, complete with lessons about mistakes, for the creation of similarly specialized metadata standards for digital libraries.
NASA Astrophysics Data System (ADS)
Schiavottiello, N.
2009-08-01
The study and practice of archaeo-astronomy comprehend disciplines such as archaeology, positional astronomy, history and the studies of locals mythology as well as technical survey theory and practice. The research often start with an archaeological survey in order to record possible structural orientation of a particular monument towards specific cardinal directions. In a second stage theories about the visible orientations and possible alignments of a specific structure or part of a structure are drawn; often achieved with the use of some in house tools. These tools sometimes remain too ``esoteric'' and not always user friendly, especially if later they would have to be used for education purposes. Moreover they are borrowed from tools used in other disciplines such us astronomical, image processing and architectural software, thus resulting in a complicate process of trying to merge data that should instead be born in the same environment at the first place. Virtual realities have long entered our daily life in research, education and entertainment; those can represent natural models because of their 3D nature of representing data. However on an visual interpretation level what they often represent are displaced models of the reality, whatever viewed on personal computers or with ``immersive'' techniques. These can result very useful at a research stage or in order to show concepts that requires specific point of view, however they often struggle to explore all our senses to the mere detriment of our vision. A possible solution could be achieved by simply visiting the studied site, however when visiting a particular place it is hard to visualize in one simple application environment, all previously pursued analysis. This is necessary in order to discover the meaning of a specific structure and to propose new theories. Augmented reality in this sense could bridge the gap that exist when looking at this particular problem. This can be achieved with the creation of a visual tool that will serve archaeo-astronomers and modern cosmologists as an aid deployed on site during their research stage, and for the final dissemination of their results to the non-specialist audience.
NASA Astrophysics Data System (ADS)
Gurvits, L. I.; Frey, S.; Rawlings, S.
Three quarters of the century has passed since the synergy between scientific discovery and technological advances enabled Karl Jansky to open a new window on the Universe, marking the birth of radio astronomy. Since then, radio astronomy has become one of the major tools for studying the Universe. Radio galaxies with their enormously energetic clouds of relativistic electrons and cosmic jets that extend up to millions of light years into space, a broad variety of atoms and molecules, from neutral hydrogen to complex organic conglomerates, cosmic microwave masers, the cosmic microwave background radiation, quasars, pulsars, gravitational lenses and extra-solar planetary systems were all discovered in radio domain. Radio telescopes have also been used to measure the relativistic bending of electromagnetic waves which pass near the limb of the Sun, to establish the existence of gravitational radiation and measure continental drift. The progress of radio astronomy is driven by the needs of fundamental science and is based on the state-of-the-art developments in technology. Since its first steps, radio astronomy has made huge progress, resulting in the improvement of sensitivity by many orders of magnitude and approaching micro-arcsecond angular resolution. This progress will continue in the XXI century with the advent of new radio astronomy facilities on the ground (LOFAR, ALMA, SKA) and in space (Planck, next generation space VLBI systems). In this book, the current state of radio astronomy is framed by several retrospective reviews and introductions to the next generation facilities. Views at radio astronomy from other domains, optical astronomy and high energy astrophysics, are also presented. Advances of modern radio astronomy were in the focus of the symposium “Radio Astronomy at 70: from Karl Jansky to microjansky”, which was held under the auspices of the annual Joint European National Astronomy Meeting (JENAM) in Budapest, Hungary, 27-30 August 2003. More than 30 contributed papers from that symposium have been published recently in Baltic Astronomy (2005, Vol. 14, No. 3). This book contains a set of invited review presentations given at the symposium. They cover a range of scientific topics in extragalactic and galactic radio astronomy studies as well as recent developments in radio astronomy techniques aimed at the next generation radio astronomy facilities. On behalf of the organisers and participants of the symposium, we express our gratitude to the sponsors of the event and this publication: the European Astronomical Society, Hungarian Academy of Sciences, Eötvös Loránd University, Konkoly Observatory, Eötvös Loránd Physical Society, Netherlands Foundation for Research in Astronomy (ASTRON), Joint Institute for VLBI in Europe, Hungarian Scientific Research Fund, EC FP5 Infrastructure Cooperation Network RadioNET and EC FP6 Integrated Infrastructure Initiative RadioNet. We are grateful to the members of the Scientific Organising Committee of the Symposium. Ken Kellermann made very useful remarks on several papers. Ellen Bouton and Pat Smiley helped to include in this book several photos from the AUI-NRAO archive. Mark Bentum designed the cover picture of the book, visual components for which were kindly supplied by W.A. Baan, M.F. Bietenholz, R. Boomsma, R. Braun, N. Bartel, M.A. Garrett, J.M. van der Hulst, H.R. Klockner, NASA/WMAP Science Team, T.A. Oosterloo, M.P. Rupen, R. Sancisi, B. Stappers, R.G. Strom, D.A. Thilker, and R.A.M. Walterbos. Most of all, we are grateful to all the authors of this book for their efforts in the increasingly old-fashioned art of writing papers for a real “paper” publication as opposed to putting powerpoint files on a web site. We do hope that their nice work will be appreciated by the readers. Leonid Gurvits, Dwingeloo, The Netherlands Sándor Frey, Budapest, Hungary Steve Rawlings, Oxford, UK
RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays
Stanislaus, Romesh; Carey, Mark; Deus, Helena F; Coombes, Kevin; Hennessy, Bryan T; Mills, Gordon B; Almeida, Jonas S
2008-01-01
Background Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis. PMID:19102773
Development of climate data storage and processing model
NASA Astrophysics Data System (ADS)
Okladnikov, I. G.; Gordov, E. P.; Titov, A. G.
2016-11-01
We present a storage and processing model for climate datasets elaborated in the framework of a virtual research environment (VRE) for climate and environmental monitoring and analysis of the impact of climate change on the socio-economic processes on local and regional scales. The model is based on a «shared nothings» distributed computing architecture and assumes using a computing network where each computing node is independent and selfsufficient. Each node holds a dedicated software for the processing and visualization of geospatial data providing programming interfaces to communicate with the other nodes. The nodes are interconnected by a local network or the Internet and exchange data and control instructions via SSH connections and web services. Geospatial data is represented by collections of netCDF files stored in a hierarchy of directories in the framework of a file system. To speed up data reading and processing, three approaches are proposed: a precalculation of intermediate products, a distribution of data across multiple storage systems (with or without redundancy), and caching and reuse of the previously obtained products. For a fast search and retrieval of the required data, according to the data storage and processing model, a metadata database is developed. It contains descriptions of the space-time features of the datasets available for processing, their locations, as well as descriptions and run options of the software components for data analysis and visualization. The model and the metadata database together will provide a reliable technological basis for development of a high- performance virtual research environment for climatic and environmental monitoring.
Heidelberger, Philip; Steinmacher-Burow, Burkhard
2015-01-06
According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.
WGISS-45 International Directory Network (IDN) Report
NASA Technical Reports Server (NTRS)
Morahan, Michael
2018-01-01
The objective of this presentation is to provide IDN (International Directory Network) updates on features and activities to the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS) and provider community. The following topics will be will be discussed during the presentation: Transition of Providers DIF-9 (Directory Interchange Format-9) to DIF-10 Metadata Records in the Common Metadata Repository (CMR); GCMD (Global Change Master Directory) Keyword Update; DIF-10 and UMM-C (Unified Metadata Model-Collections) Schema Changes; Metadata Validation of Provider Metadata; docBUILDER for Submitting IDN Metadata to the CMR (i.e. Registration); and Mapping WGClimate Essential Climate Variable (ECV) Inventory to IDN Records.
Explorative Analyses of Nursing Research Data.
Kim, Hyeoneui; Jang, Imho; Quach, Jimmy; Richardson, Alex; Kim, Jaemin; Choi, Jeeyae
2016-10-26
As a first step of pursuing the vision of "big data science in nursing," we described the characteristics of nursing research data reported in 194 published nursing studies. We also explored how completely the Version 1 metadata specification of biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) represents these metadata. The metadata items of the nursing studies were all related to one or more of the bioCADDIE metadata entities. However, values of many metadata items of the nursing studies were not sufficiently represented through the bioCADDIE metadata. This was partly due to the differences in the scope of the content that the bioCADDIE metadata are designed to represent. The 194 nursing studies reported a total of 1,181 unique data items, the majority of which take non-numeric values. This indicates the importance of data standardization to enable the integrative analyses of these data to support big data science in nursing. © The Author(s) 2016.
A Model for Enhancing Internet Medical Document Retrieval with “Medical Core Metadata”
Malet, Gary; Munoz, Felix; Appleyard, Richard; Hersh, William
1999-01-01
Objective: Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. Design: The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and Medline-type content descriptions. Results: The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. Conclusions: The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines. PMID:10094069
MPEG-7: standard metadata for multimedia content
NASA Astrophysics Data System (ADS)
Chang, Wo
2005-08-01
The eXtensible Markup Language (XML) metadata technology of describing media contents has emerged as a dominant mode of making media searchable both for human and machine consumptions. To realize this premise, many online Web applications are pushing this concept to its fullest potential. However, a good metadata model does require a robust standardization effort so that the metadata content and its structure can reach its maximum usage between various applications. An effective media content description technology should also use standard metadata structures especially when dealing with various multimedia contents. A new metadata technology called MPEG-7 content description has merged from the ISO MPEG standards body with the charter of defining standard metadata to describe audiovisual content. This paper will give an overview of MPEG-7 technology and what impact it can bring forth to the next generation of multimedia indexing and retrieval applications.
NASA's Earth Observing System Data and Information System - Many Mechanisms for On-Going Evolution
NASA Astrophysics Data System (ADS)
Ramapriyan, H. K.
2012-12-01
NASA's Earth Observing System Data and Information System has been serving a broad user community since August 1994. As a long-lived multi-mission system serving multiple scientific disciplines and a diverse user community, EOSDIS has been evolving continuously. It has had and continues to have many forms of community input to help with this evolution. Early in its history, it had inputs from the EOSDIS Advisory Panel, benefited from the reviews by various external committees and evolved into the present distributed architecture with discipline-based Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems and a cross-DAAC search and data access capability. EOSDIS evolution has been helped by advances in computer technology, moving from an initially planned supercomputing environment to SGI workstations to Linux Clusters for computation and from near-line archives of robotic silos with tape cassettes to RAID-disk-based on-line archives for storage. The network capacities have increased steadily over the years making delivery of data on media almost obsolete. The advances in information systems technologies have been having an even greater impact on the evolution of EOSDIS. In the early days, the advent of the World Wide Web came as a game-changer in the operation of EOSDIS. The metadata model developed for the EOSDIS Core System for representing metadata from EOS standard data products has had an influence on the Federal Geographic Data Committee's metadata content standard and the ISO metadata standards. The influence works both ways. As ISO 19115 metadata standard has developed in recent years, EOSDIS is reviewing its metadata to ensure compliance with the standard. Improvements have been made in the cross-DAAC search and access of data using the centralized metadata clearing house (EOS Clearing House - ECHO) and the client Reverb. Given the diversity of the Earth science disciplines served by the DAACs, the DAACs have developed a number of software tools tailored to their respective user communities. Web services play an important part in improved access to data products including some basic analysis and visualization capabilities. A coherent view into all capabilities available from EOSDIS is evolving through the "Coherent Web" effort. Data are being made available in near real-time for scientific research as well as time-critical applications. On-going community inputs for infusion for maintaining vitality of EOSDIS come from technology developments by NASA-sponsored community data system programs - Advancing Collaborative Connections for Earth System Science (ACCESS), Making Earth System Data Records for Use in Research Environments (MEaSUREs) and Applied Information System Technology (AIST), as well as participation in Earth Science Data System Working Groups, the Earth Science Information Partners Federation and other interagency/international activities. An important source of community needs is the annual American Customer Satisfaction Index survey of EOSDIS users. Some of the key areas in which improvements are required and incremental progress is being made are: ease of discovery and access; cross-organizational interoperability; data inter-use; ease of collaboration; ease of citation of datasets; preservation of provenance and context and making them conveniently available to users.
Tools for proactive collection and use of quality metadata in GEOSS
NASA Astrophysics Data System (ADS)
Bastin, L.; Thum, S.; Maso, J.; Yang, K. X.; Nüst, D.; Van den Broek, M.; Lush, V.; Papeschi, F.; Riverola, A.
2012-12-01
The GEOSS Common Infrastructure allows interactive evaluation and selection of Earth Observation datasets by the scientific community and decision makers, but the data quality information needed to assess fitness for use is often patchy and hard to visualise when comparing candidate datasets. In a number of studies over the past decade, users repeatedly identified the same types of gaps in quality metadata, specifying the need for enhancements such as peer and expert review, better traceability and provenance information, information on citations and usage of a dataset, warning about problems identified with a dataset and potential workarounds, and 'soft knowledge' from data producers (e.g. recommendations for use which are not easily encoded using the existing standards). Despite clear identification of these issues in a number of recommendations, the gaps persist in practice and are highlighted once more in our own, more recent, surveys. This continuing deficit may well be the result of a historic paucity of tools to support the easy documentation and continual review of dataset quality. However, more recent developments in tools and standards, as well as more general technological advances, present the opportunity for a community of scientific users to adopt a more proactive attitude by commenting on their uses of data, and for that feedback to be federated with more traditional and static forms of metadata, allowing a user to more accurately assess the suitability of a dataset for their own specific context and reliability thresholds. The EU FP7 GeoViQua project aims to develop this opportunity by adding data quality representations to the existing search and visualisation functionalities of the Geo Portal. Subsequently we will help to close the gap by providing tools to easily create quality information, and to permit user-friendly exploration of that information as the ultimate incentive for improved data quality documentation. Quality information is derived from producer metadata, from the data themselves, from validation of in-situ sensor data, from provenance information and from user feedback, and will be aggregated to produce clear and useful summaries of quality, including a GEO Label. GeoViQua's conceptual quality information models for users and producers are specifically described and illustrated in this presentation. These models (which have been encoded as XML schemas and can be accessed at http://schemas.geoviqua.org/) are designed to satisfy the identified user needs while remaining consistent with current standards such as ISO 19115 and advanced drafts such as ISO 19157. The resulting components being developed for the GEO Portal are designed to lower the entry barrier to users who wish to help to generate and explore rich and useful metadata. This metadata will include reviews, comments and ratings, reports of usage in specific domains and specification of datasets used for benchmarking, as well as rich quantitative information encoded in more traditional data quality elements such as thematic correctness and positional accuracy. The value of the enriched metadata will also be enhanced by graphical tools for visualizing spatially distributed uncertainties. We demonstrate practical example applications in selected environmental application domains.
Quality Assurance for Digital Learning Object Repositories: Issues for the Metadata Creation Process
ERIC Educational Resources Information Center
Currier, Sarah; Barton, Jane; O'Beirne, Ronan; Ryan, Ben
2004-01-01
Metadata enables users to find the resources they require, therefore it is an important component of any digital learning object repository. Much work has already been done within the learning technology community to assure metadata quality, focused on the development of metadata standards, specifications and vocabularies and their implementation…
A Model for the Creation of Human-Generated Metadata within Communities
ERIC Educational Resources Information Center
Brasher, Andrew; McAndrew, Patrick
2005-01-01
This paper considers situations for which detailed metadata descriptions of learning resources are necessary, and focuses on human generation of such metadata. It describes a model which facilitates human production of good quality metadata by the development and use of structured vocabularies. Using examples, this model is applied to single and…
Enhancing SCORM Metadata for Assessment Authoring in E-Learning
ERIC Educational Resources Information Center
Chang, Wen-Chih; Hsu, Hui-Huang; Smith, Timothy K.; Wang, Chun-Chia
2004-01-01
With the rapid development of distance learning and the XML technology, metadata play an important role in e-Learning. Nowadays, many distance learning standards, such as SCORM, AICC CMI, IEEE LTSC LOM and IMS, use metadata to tag learning materials. However, most metadata models are used to define learning materials and test problems. Few…
Development of Health Information Search Engine Based on Metadata and Ontology
Song, Tae-Min; Jin, Dal-Lae
2014-01-01
Objectives The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Methods Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. Results A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Conclusions Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers. PMID:24872907
Development of health information search engine based on metadata and ontology.
Song, Tae-Min; Park, Hyeoun-Ae; Jin, Dal-Lae
2014-04-01
The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers.
NASA Astrophysics Data System (ADS)
Hardy, D.; Janée, G.; Gallagher, J.; Frew, J.; Cornillon, P.
2006-12-01
The OPeNDAP Data Access Protocol (DAP) is a community standard for sharing scientific data across the Internet. Data providers using DAP have adopted a variety of metadata conventions to improve data utility, such as COARDS (1995) and CF (2003). Our results show, however, that metadata do not follow these conventions in practice. We collected metadata from over a hundred DAP servers, tens of thousands of data objects, and hundreds of collections. We found that a minority claim to adhere to a metadata convention, and a small percentage accurately adhere to their stated convention. We present descriptive statistics of our survey and highlight common traits such as well-populated attributes. Our empirical results indicate that unified search services cannot rely solely on metadata conventions. Although we encourage all providers to adopt a small subset of the CF convention for discovery purposes, we have no evidence to suggest that improved conventions would simplify the fundamental problem of heterogeneity. Large-scale discovery services must find methods for integrating incompatible metadata.
Buttarazzi, Davide; Pandolfo, Giuseppe; Porzio, Giovanni C
2018-05-21
The box-and-whiskers plot is an extraordinary graphical tool that provides a quick visual summary of an observed distribution. In spite of its many extensions, a really suitable boxplot to display circular data is not yet available. Thanks to its simplicity and strong visual impact, such a tool would be especially useful in all fields where circular measures arise: biometrics, astronomy, environmetrics, Earth sciences, to cite just a few. For this reason, in line with Tukey's original idea, a Tukey-like circular boxplot is introduced. Several simulated and real datasets arising in biology are used to illustrate the proposed graphical tool. © 2018, The International Biometric Society.
Astronomy Legacy Project - Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald
2016-01-01
Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).
A metadata template for ocean acidification data
NASA Astrophysics Data System (ADS)
Jiang, L.
2014-12-01
Metadata is structured information that describes, explains, and locates an information resource (e.g., data). It is often coarsely described as data about data, and documents information such as what was measured, by whom, when, where, and how it was sampled, analyzed, with what instruments. Metadata is inherent to ensure the survivability and accessibility of the data into the future. With the rapid expansion of biological response ocean acidification (OA) studies, the lack of a common metadata template to document such type of data has become a significant gap for ocean acidification data management efforts. In this paper, we present a metadata template that can be applied to a broad spectrum of OA studies, including those studying the biological responses of organisms on ocean acidification. The "variable metadata section", which includes the variable name, observation type, whether the variable is a manipulation condition or response variable, and the biological subject on which the variable is studied, forms the core of this metadata template. Additional metadata elements, such as principal investigators, temporal and spatial coverage, platforms for the sampling, data citation are essential components to complete the template. We explain the structure of the template, and define many metadata elements that may be unfamiliar to researchers. For that reason, this paper can serve as a user's manual for the template.
Grist : grid-based data mining for astronomy
NASA Technical Reports Server (NTRS)
Jacob, Joseph C.; Katz, Daniel S.; Miller, Craig D.; Walia, Harshpreet; Williams, Roy; Djorgovski, S. George; Graham, Matthew J.; Mahabal, Ashish; Babu, Jogesh; Berk, Daniel E. Vanden;
2004-01-01
The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the 'hyperatlas' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.
Grist: Grid-based Data Mining for Astronomy
NASA Astrophysics Data System (ADS)
Jacob, J. C.; Katz, D. S.; Miller, C. D.; Walia, H.; Williams, R. D.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Babu, G. J.; vanden Berk, D. E.; Nichol, R.
2005-12-01
The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the ``hyperatlas'' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.
Annual solar motion and spy satellites
NASA Astrophysics Data System (ADS)
Jensen, Margaret; Larson, S. L.
2014-01-01
A topic often taught in introductory astronomy courses is the changing position of the Sun in the sky as a function of time of day and season. The relevance and importance of this motion is explained in the context of seasons and the impact it has on human activities such as agriculture. The geometry of the observed motion in the sky is usually reduced to graphical representations and visualizations that can be difficult to render and grasp. Sometimes students are asked to observe the Sun’s changing motion and record their data, but this is a long-term project requiring several months to complete. This poster outlines an activity for introductory astronomy students that takes a modern approach to this topic, namely determining the Sun’s location in the sky on a given date through the analysis of satellite photography of the Earth.
A Shared Infrastructure for Federated Search Across Distributed Scientific Metadata Catalogs
NASA Astrophysics Data System (ADS)
Reed, S. A.; Truslove, I.; Billingsley, B. W.; Grauch, A.; Harper, D.; Kovarik, J.; Lopez, L.; Liu, M.; Brandt, M.
2013-12-01
The vast amount of science metadata can be overwhelming and highly complex. Comprehensive analysis and sharing of metadata is difficult since institutions often publish to their own repositories. There are many disjoint standards used for publishing scientific data, making it difficult to discover and share information from different sources. Services that publish metadata catalogs often have different protocols, formats, and semantics. The research community is limited by the exclusivity of separate metadata catalogs and thus it is desirable to have federated search interfaces capable of unified search queries across multiple sources. Aggregation of metadata catalogs also enables users to critique metadata more rigorously. With these motivations in mind, the National Snow and Ice Data Center (NSIDC) and Advanced Cooperative Arctic Data and Information Service (ACADIS) implemented two search interfaces for the community. Both the NSIDC Search and ACADIS Arctic Data Explorer (ADE) use a common infrastructure which keeps maintenance costs low. The search clients are designed to make OpenSearch requests against Solr, an Open Source search platform. Solr applies indexes to specific fields of the metadata which in this instance optimizes queries containing keywords, spatial bounds and temporal ranges. NSIDC metadata is reused by both search interfaces but the ADE also brokers additional sources. Users can quickly find relevant metadata with minimal effort and ultimately lowers costs for research. This presentation will highlight the reuse of data and code between NSIDC and ACADIS, discuss challenges and milestones for each project, and will identify creation and use of Open Source libraries.
Data services providing by the Ukrainian NODC (MHI NASU)
NASA Astrophysics Data System (ADS)
Eremeev, V.; Godin, E.; Khaliulin, A.; Ingerov, A.; Zhuk, E.
2009-04-01
At modern stage of the World Ocean study information support of investigation based on ad-vanced computer technologies becomes of particular importance. These abstracts are devoted to presentation of several data services developed in the Ukrainian NODC on the base of the Ma-rine Environmental and Information Technologies Department of MHI NASU. The Data Quality Control Service Using experience of international collaboration in the field of data collection and quality check we have developed the quality control (QC) software providing both preliminary(automatic) and expert(manual) data quality check procedures. The current version of the QC software works for the Mediterranean and Black seas and includes the climatic arrays for hydrological and few hydrochemical parameters based on such products as MEDAR/MEDATLAS II, Physical Oceanography of the Black Sea and Climatic Atlas of Oxygen and Hydrogen Sulfide in the Black sea. The data quality check procedure includes metadata control and hydrological and hydrochemical data control. Metadata control provides checking of duplicate cruises and pro-files, date and chronology, ship velocity, station location, sea depth and observation depth. Data QC procedure includes climatic (or range for parameters with small number of observations) data QC, density inversion check for hydrological data and searching for spikes. Using of cli-matic fields and profiles prepared by regional oceanography experts leads to more reliable results of data quality check procedure. The Data Access Services The Ukrainian NODC provides two products for data access - on-line software and data access module for the MHI NASU local net. This software allows select-ing data on rectangle area, on date, on months, on cruises. The result of query is metadata which are presented in the table and the visual presentation of stations on the map. It is possible to see both metadata and data. For this purpose it is necessary to select station in the table of metadata or on the map. There is also an opportunity to export data in ODV format. The product is avail-able on http://www.ocean.nodc.org.ua/DataAccess.php The local net version provides access to the oceanological database of the MHI NASU. The cur-rent version allows selecting data by spatial and temporal limits, depth, values of parameters, quality flags and works for the Mediterranean and Black seas. It provides visualization of meta-data and data, statistics of data selection, data export into several data formats. The Operational Data Management Services The collaborators of the MHI Experimental Branch developed a system of obtaining information on water pressure and temperature, as well as on atmospheric pressure. Sea level observations are also conducted. The obtained data are transferred online. The interface for operation data access was developed. It allows to select parameters (sea level, water temperature, atmospheric pressure, wind and wa-ter pressure) and time interval to see parameter graphics. The product is available on http://www.ocean.nodc.org.ua/Katsively.php . The Climatic products The current version of the Climatic Atlas includes maps on such pa-rameters as temperature, salinity, density, heat storage, dynamic heights, upper boundary of hy-drogen sulfide and lower boundary of oxygen for the Black sea basin. Maps for temperature, sa-linity, density were calculated on 19 standard depths and averaged monthly for depths 0 - 300 m and annually for lower depth values. The climatic maps of upper boundary of hydrogen sulfide and lower boundary of oxygen were averaged by decades from 20 till 90 of the XX century and by seasons. Two versions of climatic atlas viewer - on-line and desktop for presentation of the climatic maps were developed. They provide similar functions of selection and viewing maps by parameter, month and depth and saving maps in various formats. On-line version of atlas is available on http://www.ocean.nodc.org.ua/Main_Atlas.php .
A standard for measuring metadata quality in spectral libraries
NASA Astrophysics Data System (ADS)
Rasaiah, B.; Jones, S. D.; Bellman, C.
2013-12-01
A standard for measuring metadata quality in spectral libraries Barbara Rasaiah, Simon Jones, Chris Bellman RMIT University Melbourne, Australia barbara.rasaiah@rmit.edu.au, simon.jones@rmit.edu.au, chris.bellman@rmit.edu.au ABSTRACT There is an urgent need within the international remote sensing community to establish a metadata standard for field spectroscopy that ensures high quality, interoperable metadata sets that can be archived and shared efficiently within Earth observation data sharing systems. Metadata are an important component in the cataloguing and analysis of in situ spectroscopy datasets because of their central role in identifying and quantifying the quality and reliability of spectral data and the products derived from them. This paper presents approaches to measuring metadata completeness and quality in spectral libraries to determine reliability, interoperability, and re-useability of a dataset. Explored are quality parameters that meet the unique requirements of in situ spectroscopy datasets, across many campaigns. Examined are the challenges presented by ensuring that data creators, owners, and data users ensure a high level of data integrity throughout the lifecycle of a dataset. Issues such as field measurement methods, instrument calibration, and data representativeness are investigated. The proposed metadata standard incorporates expert recommendations that include metadata protocols critical to all campaigns, and those that are restricted to campaigns for specific target measurements. The implication of semantics and syntax for a robust and flexible metadata standard are also considered. Approaches towards an operational and logistically viable implementation of a quality standard are discussed. This paper also proposes a way forward for adapting and enhancing current geospatial metadata standards to the unique requirements of field spectroscopy metadata quality. [0430] BIOGEOSCIENCES / Computational methods and data processing [0480] BIOGEOSCIENCES / Remote sensing [1904] INFORMATICS / Community standards [1912] INFORMATICS / Data management, preservation, rescue [1926] INFORMATICS / Geospatial [1930] INFORMATICS / Data and information governance [1946] INFORMATICS / Metadata [1952] INFORMATICS / Modeling [1976] INFORMATICS / Software tools and services [9810] GENERAL OR MISCELLANEOUS / New fields
Metadata Design in the New PDS4 Standards - Something for Everybody
NASA Astrophysics Data System (ADS)
Raugh, Anne C.; Hughes, John S.
2015-11-01
The Planetary Data System (PDS) archives, supports, and distributes data of diverse targets, from diverse sources, to diverse users. One of the core problems addressed by the PDS4 data standard redesign was that of metadata - how to accommodate the increasingly sophisticated demands of search interfaces, analytical software, and observational documentation into label standards without imposing limits and constraints that would impinge on the quality or quantity of metadata that any particular observer or team could supply. And yet, as an archive, PDS must have detailed documentation for the metadata in the labels it supports, or the institutional knowledge encoded into those attributes will be lost - putting the data at risk.The PDS4 metadata solution is based on a three-step approach. First, it is built on two key ISO standards: ISO 11179 "Information Technology - Metadata Registries", which provides a common framework and vocabulary for defining metadata attributes; and ISO 14721 "Space Data and Information Transfer Systems - Open Archival Information System (OAIS) Reference Model", which provides the framework for the information architecture that enforces the object-oriented paradigm for metadata modeling. Second, PDS has defined a hierarchical system that allows it to divide its metadata universe into namespaces ("data dictionaries", conceptually), and more importantly to delegate stewardship for a single namespace to a local authority. This means that a mission can develop its own data model with a high degree of autonomy and effectively extend the PDS model to accommodate its own metadata needs within the common ISO 11179 framework. Finally, within a single namespace - even the core PDS namespace - existing metadata structures can be extended and new structures added to the model as new needs are identifiedThis poster illustrates the PDS4 approach to metadata management and highlights the expected return on the development investment for PDS, users and data preparers.
The Interactive Planetarium: Student-led Investigations of Naked-Eye Astronomy and Planetary Motion
NASA Astrophysics Data System (ADS)
Rice, Emily L.; McCrady, N.
2007-12-01
We have developed a set of interactive, learner-centered planetarium lab activities for the introductory astronomy course for non-majors at UCLA. A planetarium is ideal for the visualization of the celestial sphere as a 2D projection in 3D space and for the direct spatial simulation of geometric relationships. These concepts are fundamental to content areas frequently covered in introductory courses but are notoriously difficult for non-specialists. Opportunities for engaging students in actively learning content and process skills are limited in the traditional "sky show” approach typically employed in a planetarium setting. The novel aspect of our activities is that they actively engage students in learning: students make predictions, design observational tests, and direct the motion of the planetarium sky in order to evaluate their hypotheses. We have also developed complementary, kinesthetic lab activities that take place outside the planetarium with overlapping content and process goals. Several hundred schools, colleges, and universities across the country have immediate access to a planetarium as a classroom, and our method represents a novel way to use the planetarium as interactive lab equipment in college-level introductory astronomy courses.
Stereoscopic Movies for Teaching and Learning of Astronomy
NASA Astrophysics Data System (ADS)
Hayashi, Mitsuru; Kato, Tsunehiko N.; Takeda, Takaaaki; Kokubo, Eiichiro; Miura, Hitoshi; Takahei, Toshiyuki; Miyama, Shoken M.; Kaifu, Norio
To attract the interest of the public in astronomy we visualize data obtained through simulations by using super computers and observations by using state-of -the-art facilities for example the SUBARU Telescope in the virtual reality system. The system is composed of three soft screens. We use two PC's two DLP projectors with circular polarization filters and one mirror for each screen to realize stereoscopic projection. By wearing glasses of circular polarization filters we can experience immersiveness in the system. Six PC's are connected by using optical fiber cable(1Gbps). Especially we developed the software for synchronization and realized stereoscopic movies(15-30 frames per second). In addition to teaching and learning of astronomy we also utilize the system above for public relations and science itself in NAO Mitaka. The system can provide scientists with the point of view we cannot realize on the earth. We are planning to improve the contents easier for the public to understand and distribute the contents to museums and educational institutions through networks for example Super SINET(the internet backbone connects institutes at 10Gbps) in 2003 in addition to monthly exhibition in NAOMitaka
Using Observational Journals in an Introductory Astronomy Course
NASA Astrophysics Data System (ADS)
Sadler, P.
2000-05-01
The might of science is in its power to predict. Yet, students rarely are exposed to anything but others' stories concerning how nature behaves. Students do not experience the frustration and elation that discovery brings. For ten years, our introductory astronomy course has used observational journals as a key component in the learning process. Every night, as the planets, stars, and moon dance by, astronomy students use the opportunity to collect and analyze their own data describing heavenly motions. For most, finding the patterns in original data provides an opportunity to fashion and test their own predictive models for the first time in their lives. Such efforts provide an alternative to lecture and laboratory for mastering key scientific concepts and modifying student misconceptions. Students have learned how to represent visual information through a variety of graphs, built and improved their own measurement instruments, and drawn on artistic and writing skills. We will examine the steps required to make observational journals a productive learning activity: careful recordkeeping, classroom discussion, instructor feedback, and reflective writing. I will show examples of how students' work progress through increasing levels of cognitive sophistication that match well with learning theories.
Improving Metadata Compliance for Earth Science Data Records
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Chang, O.; Foster, D.
2014-12-01
One of the recurring challenges of creating earth science data records is to ensure a consistent level of metadata compliance at the granule level where important details of contents, provenance, producer, and data references are necessary to obtain a sufficient level of understanding. These details are important not just for individual data consumers but also for autonomous software systems. Two of the most popular metadata standards at the granule level are the Climate and Forecast (CF) Metadata Conventions and the Attribute Conventions for Dataset Discovery (ACDD). Many data producers have implemented one or both of these models including the Group for High Resolution Sea Surface Temperature (GHRSST) for their global SST products and the Ocean Biology Processing Group for NASA ocean color and SST products. While both the CF and ACDD models contain various level of metadata richness, the actual "required" attributes are quite small in number. Metadata at the granule level becomes much more useful when recommended or optional attributes are implemented that document spatial and temporal ranges, lineage and provenance, sources, keywords, and references etc. In this presentation we report on a new open source tool to check the compliance of netCDF and HDF5 granules to the CF and ACCD metadata models. The tool, written in Python, was originally implemented to support metadata compliance for netCDF records as part of the NOAA's Integrated Ocean Observing System. It outputs standardized scoring for metadata compliance for both CF and ACDD, produces an objective summary weight, and can be implemented for remote records via OPeNDAP calls. Originally a command-line tool, we have extended it to provide a user-friendly web interface. Reports on metadata testing are grouped in hierarchies that make it easier to track flaws and inconsistencies in the record. We have also extended it to support explicit metadata structures and semantic syntax for the GHRSST project that can be easily adapted to other satellite missions as well. Overall, we hope this tool will provide the community with a useful mechanism to improve metadata quality and consistency at the granule level by providing objective scoring and assessment, as well as encourage data producers to improve metadata quality and quantity.
NASA Astrophysics Data System (ADS)
Prasad, U.; Rahabi, A.
2001-05-01
The following utilities developed for HDF-EOS format data dump are of special use for Earth science data for NASA's Earth Observation System (EOS). This poster demonstrates their use and application. The first four tools take HDF-EOS data files as input. HDF-EOS Metadata Dumper - metadmp Metadata dumper extracts metadata from EOS data granules. It operates by simply copying blocks of metadata from the file to the standard output. It does not process the metadata in any way. Since all metadata in EOS granules is encoded in the Object Description Language (ODL), the output of metadmp will be in the form of complete ODL statements. EOS data granules may contain up to three different sets of metadata (Core, Archive, and Structural Metadata). HDF-EOS Contents Dumper - heosls Heosls dumper displays the contents of HDF-EOS files. This utility provides detailed information on the POINT, SWATH, and GRID data sets. in the files. For example: it will list, the Geo-location fields, Data fields and objects. HDF-EOS ASCII Dumper - asciidmp The ASCII dump utility extracts fields from EOS data granules into plain ASCII text. The output from asciidmp should be easily human readable. With minor editing, asciidmp's output can be made ingestible by any application with ASCII import capabilities. HDF-EOS Binary Dumper - bindmp The binary dumper utility dumps HDF-EOS objects in binary format. This is useful for feeding the output of it into existing program, which does not understand HDF, for example: custom software and COTS products. HDF-EOS User Friendly Metadata - UFM The UFM utility tool is useful for viewing ECS metadata. UFM takes an EOSDIS ODL metadata file and produces an HTML report of the metadata for display using a web browser. HDF-EOS METCHECK - METCHECK METCHECK can be invoked from either Unix or Dos environment with a set of command line options that a user might use to direct the tool inputs and output . METCHECK validates the inventory metadata in (.met file) using The Descriptor file (.desc) as the reference. The tool takes (.desc), and (.met) an ODL file as inputs, and generates a simple output file contains the results of the checking process.
The XML Metadata Editor of GFZ Data Services
NASA Astrophysics Data System (ADS)
Ulbricht, Damian; Elger, Kirsten; Tesei, Telemaco; Trippanera, Daniele
2017-04-01
Following the FAIR data principles, research data should be Findable, Accessible, Interoperable and Reuseable. Publishing data under these principles requires to assign persistent identifiers to the data and to generate rich machine-actionable metadata. To increase the interoperability, metadata should include shared vocabularies and crosslink the newly published (meta)data and related material. However, structured metadata formats tend to be complex and are not intended to be generated by individual scientists. Software solutions are needed that support scientists in providing metadata describing their data. To facilitate data publication activities of 'GFZ Data Services', we programmed an XML metadata editor that assists scientists to create metadata in different schemata popular in the earth sciences (ISO19115, DIF, DataCite), while being at the same time usable by and understandable for scientists. Emphasis is placed on removing barriers, in particular the editor is publicly available on the internet without registration [1] and the scientists are not requested to provide information that may be generated automatically (e.g. the URL of a specific licence or the contact information of the metadata distributor). Metadata are stored in browser cookies and a copy can be saved to the local hard disk. To improve usability, form fields are translated into the scientific language, e.g. 'creators' of the DataCite schema are called 'authors'. To assist filling in the form, we make use of drop down menus for small vocabulary lists and offer a search facility for large thesauri. Explanations to form fields and definitions of vocabulary terms are provided in pop-up windows and a full documentation is available for download via the help menu. In addition, multiple geospatial references can be entered via an interactive mapping tool, which helps to minimize problems with different conventions to provide latitudes and longitudes. Currently, we are extending the metadata editor to be reused to generate metadata for data discovery and contextual metadata developed by the 'Multi-scale Laboratories' Thematic Core Service of the European Plate Observing System (EPOS-IP). The Editor will be used to build a common repository of a large variety of geological and geophysical datasets produced by multidisciplinary laboratories throughout Europe, thus contributing to a significant step toward the integration and accessibility of earth science data. This presentation will introduce the metadata editor and show the adjustments made for EPOS-IP. [1] http://dataservices.gfz-potsdam.de/panmetaworks/metaedit
Evolving Metadata in NASA Earth Science Data Systems
NASA Astrophysics Data System (ADS)
Mitchell, A.; Cechini, M. F.; Walter, J.
2011-12-01
NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of NASA's effort to continually evolve its data systems led ECHO to enhancing the method in which it receives inventory metadata from the data centers to allow for multiple metadata formats including ISO 19115. ECHO's metadata model will also be mapped to the NASA-specific convention for ingesting science metadata into the ECHO system. As NASA's new Earth Science missions and data centers are migrating to the ISO 19115 standards, EOSDIS is developing metadata management resources to assist in the reading, writing and parsing ISO 19115 compliant metadata. To foster interoperability with other agencies and international partners, NASA is working to ensure that a common ISO 19115 convention is developed, enhancing data sharing capabilities and other data analysis initiatives. NASA is also investigating the use of ISO 19115 standards to encode data quality, lineage and provenance with stored values. A common metadata standard across NASA's Earth Science data systems promotes interoperability, enhances data utilization and removes levels of uncertainty found in data products.
NASA Astrophysics Data System (ADS)
Okaya, D.; Deelman, E.; Maechling, P.; Wong-Barnum, M.; Jordan, T. H.; Meyers, D.
2007-12-01
Large scientific collaborations, such as the SCEC Petascale Cyberfacility for Physics-based Seismic Hazard Analysis (PetaSHA) Project, involve interactions between many scientists who exchange ideas and research results. These groups must organize, manage, and make accessible their community materials of observational data, derivative (research) results, computational products, and community software. The integration of scientific workflows as a paradigm to solve complex computations provides advantages of efficiency, reliability, repeatability, choices, and ease of use. The underlying resource needed for a scientific workflow to function and create discoverable and exchangeable products is the construction, tracking, and preservation of metadata. In the scientific workflow environment there is a two-tier structure of metadata. Workflow-level metadata and provenance describe operational steps, identity of resources, execution status, and product locations and names. Domain-level metadata essentially define the scientific meaning of data, codes and products. To a large degree the metadata at these two levels are separate. However, between these two levels is a subset of metadata produced at one level but is needed by the other. This crossover metadata suggests that some commonality in metadata handling is needed. SCEC researchers are collaborating with computer scientists at SDSC, the USC Information Sciences Institute, and Carnegie Mellon Univ. in order to perform earthquake science using high-performance computational resources. A primary objective of the "PetaSHA" collaboration is to perform physics-based estimations of strong ground motion associated with real and hypothetical earthquakes located within Southern California. Construction of 3D earth models, earthquake representations, and numerical simulation of seismic waves are key components of these estimations. Scientific workflows are used to orchestrate the sequences of scientific tasks and to access distributed computational facilities such as the NSF TeraGrid. Different types of metadata are produced and captured within the scientific workflows. One workflow within PetaSHA ("Earthworks") performs a linear sequence of tasks with workflow and seismological metadata preserved. Downstream scientific codes ingest these metadata produced by upstream codes. The seismological metadata uses attribute-value pairing in plain text; an identified need is to use more advanced handling methods. Another workflow system within PetaSHA ("Cybershake") involves several complex workflows in order to perform statistical analysis of ground shaking due to thousands of hypothetical but plausible earthquakes. Metadata management has been challenging due to its construction around a number of legacy scientific codes. We describe difficulties arising in the scientific workflow due to the lack of this metadata and suggest corrective steps, which in some cases include the cultural shift of domain science programmers coding for metadata.
Accessible Universe: Making Astronomy Accessible to All in the Regular Elementary Classroom
NASA Astrophysics Data System (ADS)
Grady, C. A.; Farley, N.; Avery, F.; Zamboni, E.; Clark, B.; Geiger, N.; de Angelis, M.; Woodgate, B.
2002-05-01
Astronomy is one of the most publicly accessible of the sciences, with a steady stream of new discoveries, and wide public interest. The study of exo-planetary systems is a natural extension of studies of the Solar System at the elementary and middle-school level. Such space-related topics are some of the most popular science curriculum areas at the elementary level and can serve as a springboard to other sciences, mathematics, and technology for typical student learners. Not all students are typical: 10 percent of American students are identified as having disabilities which impact their education sufficiently that they receive special education services; various estimates suggest that an additional 10 percent may have milder impairments. Most frequently these students are placed in comprehensive (mixed-ability) classrooms. Budgetary limitations for most school systems have meant that for the bulk of these children, usually those with comparatively mild learning impairments affecting their ability to access text materials and in some cases to make effective use of visual materials, individualized accommodations in the science curriculum have not been readily available. Our team, consisting of an astronomer, regular education teachers, and special educators has been piloting a suite of curriculum materials, modified activities, including use of assistive technology, age- appropriate astronomy web resources, and instructional strategies which can more effectively teach astronomy to children with disabilities in the regular education grade 3-5 classroom. This study was supported by a grant HST-EO-8474 from the STScI and funded by NASA.
NASA Astrophysics Data System (ADS)
Buck, Z.
2013-04-01
As we turn more and more to high-end computing to understand the Universe at cosmological scales, visualizations of simulations will take on a vital role as perceptual and cognitive tools. In collaboration with the Adler Planetarium and University of California High-Performance AstroComputing Center (UC-HiPACC), I am interested in better understanding the use of visualizations to mediate astronomy learning across formal and informal settings. The aspect of my research that I present here uses quantitative methods to investigate how learners are relying on color to interpret dark matter in a cosmology visualization. The concept of dark matter is vital to our current understanding of the Universe, and yet we do not know how to effectively present dark matter visually to support learning. I employ an alternative treatment post-test only experimental design, in which members of an equivalent sample are randomly assigned to one of three treatment groups, followed by treatment and a post-test. Results indicate significant correlation (p < .05) between the color of dark matter in the visualization and survey responses, implying that aesthetic variations like color can have a profound effect on audience interpretation of a cosmology visualization.
Evaluating the privacy properties of telephone metadata.
Mayer, Jonathan; Mutchler, Patrick; Mitchell, John C
2016-05-17
Since 2013, a stream of disclosures has prompted reconsideration of surveillance law and policy. One of the most controversial principles, both in the United States and abroad, is that communications metadata receives substantially less protection than communications content. Several nations currently collect telephone metadata in bulk, including on their own citizens. In this paper, we attempt to shed light on the privacy properties of telephone metadata. Using a crowdsourcing methodology, we demonstrate that telephone metadata is densely interconnected, can trivially be reidentified, and can be used to draw sensitive inferences.
Studies of Big Data metadata segmentation between relational and non-relational databases
NASA Astrophysics Data System (ADS)
Golosova, M. V.; Grigorieva, M. A.; Klimentov, A. A.; Ryabinkin, E. A.; Dimitrov, G.; Potekhin, M.
2015-12-01
In recent years the concepts of Big Data became well established in IT. Systems managing large data volumes produce metadata that describe data and workflows. These metadata are used to obtain information about current system state and for statistical and trend analysis of the processes these systems drive. Over the time the amount of the stored metadata can grow dramatically. In this article we present our studies to demonstrate how metadata storage scalability and performance can be improved by using hybrid RDBMS/NoSQL architecture.
Evaluating the privacy properties of telephone metadata
Mayer, Jonathan; Mutchler, Patrick; Mitchell, John C.
2016-01-01
Since 2013, a stream of disclosures has prompted reconsideration of surveillance law and policy. One of the most controversial principles, both in the United States and abroad, is that communications metadata receives substantially less protection than communications content. Several nations currently collect telephone metadata in bulk, including on their own citizens. In this paper, we attempt to shed light on the privacy properties of telephone metadata. Using a crowdsourcing methodology, we demonstrate that telephone metadata is densely interconnected, can trivially be reidentified, and can be used to draw sensitive inferences. PMID:27185922
Incorporating ISO Metadata Using HDF Product Designer
NASA Technical Reports Server (NTRS)
Jelenak, Aleksandar; Kozimor, John; Habermann, Ted
2016-01-01
The need to store in HDF5 files increasing amounts of metadata of various complexity is greatly overcoming the capabilities of the Earth science metadata conventions currently in use. Data producers until now did not have much choice but to come up with ad hoc solutions to this challenge. Such solutions, in turn, pose a wide range of issues for data managers, distributors, and, ultimately, data users. The HDF Group is experimenting on a novel approach of using ISO 19115 metadata objects as a catch-all container for all the metadata that cannot be fitted into the current Earth science data conventions. This presentation will showcase how the HDF Product Designer software can be utilized to help data producers include various ISO metadata objects in their products.
Viewing and Editing Earth Science Metadata MOBE: Metadata Object Browser and Editor in Java
NASA Astrophysics Data System (ADS)
Chase, A.; Helly, J.
2002-12-01
Metadata is an important, yet often neglected aspect of successful archival efforts. However, to generate robust, useful metadata is often a time consuming and tedious task. We have been approaching this problem from two directions: first by automating metadata creation, pulling from known sources of data, and in addition, what this (paper/poster?) details, developing friendly software for human interaction with the metadata. MOBE and COBE(Metadata Object Browser and Editor, and Canonical Object Browser and Editor respectively), are Java applications for editing and viewing metadata and digital objects. MOBE has already been designed and deployed, currently being integrated into other areas of the SIOExplorer project. COBE is in the design and development stage, being created with the same considerations in mind as those for MOBE. Metadata creation, viewing, data object creation, and data object viewing, when taken on a small scale are all relatively simple tasks. Computer science however, has an infamous reputation for transforming the simple into complex. As a system scales upwards to become more robust, new features arise and additional functionality is added to the software being written to manage the system. The software that emerges from such an evolution, though powerful, is often complex and difficult to use. With MOBE the focus is on a tool that does a small number of tasks very well. The result has been an application that enables users to manipulate metadata in an intuitive and effective way. This allows for a tool that serves its purpose without introducing additional cognitive load onto the user, an end goal we continue to pursue.
Managing biomedical image metadata for search and retrieval of similar images.
Korenblum, Daniel; Rubin, Daniel; Napel, Sandy; Rodriguez, Cesar; Beaulieu, Chris
2011-08-01
Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations ("semantic" metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to (1) address the problem of managing biomedical image metadata and (2) facilitate the retrieval of similar images using semantic feature metadata. Our approach allows radiologists, researchers, and students to take advantage of the vast and growing repositories of medical image data by explicitly linking images to their associated metadata in a relational database that is globally accessible through a Web application. BIMM receives input in the form of standard-based metadata files using Web service and parses and stores the metadata in a relational database allowing efficient data query and maintenance capabilities. Upon querying BIMM for images, 2D regions of interest (ROIs) stored as metadata are automatically rendered onto preview images included in search results. The system's "match observations" function retrieves images with similar ROIs based on specific semantic features describing imaging observation characteristics (IOCs). We demonstrate that the system, using IOCs alone, can accurately retrieve images with diagnoses matching the query images, and we evaluate its performance on a set of annotated liver lesion images. BIMM has several potential applications, e.g., computer-aided detection and diagnosis, content-based image retrieval, automating medical analysis protocols, and gathering population statistics like disease prevalences. The system provides a framework for decision support systems, potentially improving their diagnostic accuracy and selection of appropriate therapies.
Misra, Dharitri; Chen, Siyuan; Thoma, George R
2009-01-01
One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques.At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts.In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system.
The Metadata Cloud: The Last Piece of a Distributed Data System Model
NASA Astrophysics Data System (ADS)
King, T. A.; Cecconi, B.; Hughes, J. S.; Walker, R. J.; Roberts, D.; Thieman, J. R.; Joy, S. P.; Mafi, J. N.; Gangloff, M.
2012-12-01
Distributed data systems have existed ever since systems were networked together. Over the years the model for distributed data systems have evolved from basic file transfer to client-server to multi-tiered to grid and finally to cloud based systems. Initially metadata was tightly coupled to the data either by embedding the metadata in the same file containing the data or by co-locating the metadata in commonly named files. As the sources of data multiplied, data volumes have increased and services have specialized to improve efficiency; a cloud system model has emerged. In a cloud system computing and storage are provided as services with accessibility emphasized over physical location. Computation and data clouds are common implementations. Effectively using the data and computation capabilities requires metadata. When metadata is stored separately from the data; a metadata cloud is formed. With a metadata cloud information and knowledge about data resources can migrate efficiently from system to system, enabling services and allowing the data to remain efficiently stored until used. This is especially important with "Big Data" where movement of the data is limited by bandwidth. We examine how the metadata cloud completes a general distributed data system model, how standards play a role and relate this to the existing types of cloud computing. We also look at the major science data systems in existence and compare each to the generalized cloud system model.
ERIC Educational Resources Information Center
Mulrooney, Timothy J.
2009-01-01
A Geographic Information System (GIS) serves as the tangible and intangible means by which spatially related phenomena can be created, analyzed and rendered. GIS metadata serves as the formal framework to catalog information about a GIS data set. Metadata is independent of the encoded spatial and attribute information. GIS metadata is a subset of…
Integrating XQuery-Enabled SCORM XML Metadata Repositories into an RDF-Based E-Learning P2P Network
ERIC Educational Resources Information Center
Qu, Changtao; Nejdl, Wolfgang
2004-01-01
Edutella is an RDF-based E-Learning P2P network that is aimed to accommodate heterogeneous learning resource metadata repositories in a P2P manner and further facilitate the exchange of metadata between these repositories based on RDF. Whereas Edutella provides RDF metadata repositories with a quite natural integration approach, XML metadata…
Raising orphans from a metadata morass: A researcher's guide to re-use of public 'omics data.
Bhandary, Priyanka; Seetharam, Arun S; Arendsee, Zebulun W; Hur, Manhoi; Wurtele, Eve Syrkin
2018-02-01
More than 15 petabases of raw RNAseq data is now accessible through public repositories. Acquisition of other 'omics data types is expanding, though most lack a centralized archival repository. Data-reuse provides tremendous opportunity to extract new knowledge from existing experiments, and offers a unique opportunity for robust, multi-'omics analyses by merging metadata (information about experimental design, biological samples, protocols) and data from multiple experiments. We illustrate how predictive research can be accelerated by meta-analysis with a study of orphan (species-specific) genes. Computational predictions are critical to infer orphan function because their coding sequences provide very few clues. The metadata in public databases is often confusing; a test case with Zea mays mRNA seq data reveals a high proportion of missing, misleading or incomplete metadata. This metadata morass significantly diminishes the insight that can be extracted from these data. We provide tips for data submitters and users, including specific recommendations to improve metadata quality by more use of controlled vocabulary and by metadata reviews. Finally, we advocate for a unified, straightforward metadata submission and retrieval system. Copyright © 2017 Elsevier B.V. All rights reserved.
Science friction: data, metadata, and collaboration.
Edwards, Paul N; Mayernik, Matthew S; Batcheller, Archer L; Bowker, Geoffrey C; Borgman, Christine L
2011-10-01
When scientists from two or more disciplines work together on related problems, they often face what we call 'science friction'. As science becomes more data-driven, collaborative, and interdisciplinary, demand increases for interoperability among data, tools, and services. Metadata--usually viewed simply as 'data about data', describing objects such as books, journal articles, or datasets--serve key roles in interoperability. Yet we find that metadata may be a source of friction between scientific collaborators, impeding data sharing. We propose an alternative view of metadata, focusing on its role in an ephemeral process of scientific communication, rather than as an enduring outcome or product. We report examples of highly useful, yet ad hoc, incomplete, loosely structured, and mutable, descriptions of data found in our ethnographic studies of several large projects in the environmental sciences. Based on this evidence, we argue that while metadata products can be powerful resources, usually they must be supplemented with metadata processes. Metadata-as-process suggests the very large role of the ad hoc, the incomplete, and the unfinished in everyday scientific work.
Recipes for Semantic Web Dog Food — The ESWC and ISWC Metadata Projects
NASA Astrophysics Data System (ADS)
Möller, Knud; Heath, Tom; Handschuh, Siegfried; Domingue, John
Semantic Web conferences such as ESWC and ISWC offer prime opportunities to test and showcase semantic technologies. Conference metadata about people, papers and talks is diverse in nature and neither too small to be uninteresting or too big to be unmanageable. Many metadata-related challenges that may arise in the Semantic Web at large are also present here. Metadata must be generated from sources which are often unstructured and hard to process, and may originate from many different players, therefore suitable workflows must be established. Moreover, the generated metadata must use appropriate formats and vocabularies, and be served in a way that is consistent with the principles of linked data. This paper reports on the metadata efforts from ESWC and ISWC, identifies specific issues and barriers encountered during the projects, and discusses how these were approached. Recommendations are made as to how these may be addressed in the future, and we discuss how these solutions may generalize to metadata production for the Semantic Web at large.
Perspective: Interactive material property databases through aggregation of literature data
NASA Astrophysics Data System (ADS)
Seshadri, Ram; Sparks, Taylor D.
2016-05-01
Searchable, interactive, databases of material properties, particularly those relating to functional materials (magnetics, thermoelectrics, photovoltaics, etc.) are curiously missing from discussions of machine-learning and other data-driven methods for advancing new materials discovery. Here we discuss the manual aggregation of experimental data from the published literature for the creation of interactive databases that allow the original experimental data as well additional metadata to be visualized in an interactive manner. The databases described involve materials for thermoelectric energy conversion, and for the electrodes of Li-ion batteries. The data can be subject to machine-learning, accelerating the discovery of new materials.
NASA Astrophysics Data System (ADS)
Gordov, Evgeny; Okladnikov, Igor; Titov, Alexander
2017-04-01
For comprehensive usage of large geospatial meteorological and climate datasets it is necessary to create a distributed software infrastructure based on the spatial data infrastructure (SDI) approach. Currently, it is generally accepted that the development of client applications as integrated elements of such infrastructure should be based on the usage of modern web and GIS technologies. The paper describes the Web GIS for complex processing and visualization of geospatial (mainly in NetCDF and PostGIS formats) datasets as an integral part of the dedicated Virtual Research Environment for comprehensive study of ongoing and possible future climate change, and analysis of their implications, providing full information and computing support for the study of economic, political and social consequences of global climate change at the global and regional levels. The Web GIS consists of two basic software parts: 1. Server-side part representing PHP applications of the SDI geoportal and realizing the functionality of interaction with computational core backend, WMS/WFS/WPS cartographical services, as well as implementing an open API for browser-based client software. Being the secondary one, this part provides a limited set of procedures accessible via standard HTTP interface. 2. Front-end part representing Web GIS client developed according to a "single page application" technology based on JavaScript libraries OpenLayers (http://openlayers.org/), ExtJS (https://www.sencha.com/products/extjs), GeoExt (http://geoext.org/). It implements application business logic and provides intuitive user interface similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Boundless/OpenGeo architecture was used as a basis for Web-GIS client development. According to general INSPIRE requirements to data visualization Web GIS provides such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. The specialized Web GIS client contains three basic tires: • Tier of NetCDF metadata in JSON format • Middleware tier of JavaScript objects implementing methods to work with: o NetCDF metadata o XML file of selected calculations configuration (XML task) o WMS/WFS/WPS cartographical services • Graphical user interface tier representing JavaScript objects realizing general application business logic Web-GIS developed provides computational processing services launching to support solving tasks in the area of environmental monitoring, as well as presenting calculation results in the form of WMS/WFS cartographical layers in raster (PNG, JPG, GeoTIFF), vector (KML, GML, Shape), and binary (NetCDF) formats. It has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical formats. The work is supported by the Russian Science Foundation grant No 16-19-10257.
Metadata or data about data describes the content, quality, condition, and other characteristics of data. Geospatial metadata are critical to data discovery and serves as the fuel for the Geospatial One-Stop data portal.
Publication of sensor data in the long-term environmental sub-observatory TERENO Northeast
NASA Astrophysics Data System (ADS)
Stender, Vivien; Ulbricht, Damian; Klump, Jens
2017-04-01
Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR (TEreno Online Data repOsitORry). TEODOOR bundles the data provided by the different web services of the single observatories and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes data available through standard web services. TEODOOR accesses the OGC Sensor Web Enablement (SWE) interfaces offered by the regional observatories. In addition to the SWE interface, TERENO Northeast also publishes time series of environmental sensor data through the DOI registration service at GFZ Potsdam. This service uses the DataCite infrastructure to make research data citable and is able to keep and disseminate metadata popular to the geosciences [1]. The metadata required by DataCite are created in an automated process by extracting information from the SWE SensorML metadata. The GFZ data management tool kit panMetaDocs is used to manage and archive file based datasets and to register Digital Object Identifiers (DOI) for published data. In this presentation we will report on current advances in publication of time series data from environmental sensor networks. [1]http://doidb.wdc-terra.org/oaip/oai?verb=ListRecords&metadataPrefix=iso19139&set=DOIDB.TERENO
Use of a metadata documentation and search tool for large data volumes: The NGEE arctic example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Hook, Leslie A; Killeffer, Terri S
The Online Metadata Editor (OME) is a web-based tool to help document scientific data in a well-structured, popular scientific metadata format. In this paper, we will discuss the newest tool that Oak Ridge National Laboratory (ORNL) has developed to generate, edit, and manage metadata and how it is helping data-intensive science centers and projects, such as the U.S. Department of Energy s Next Generation Ecosystem Experiments (NGEE) in the Arctic to prepare metadata and make their big data produce big science and lead to new discoveries.
Creating preservation metadata from XML-metadata profiles
NASA Astrophysics Data System (ADS)
Ulbricht, Damian; Bertelmann, Roland; Gebauer, Petra; Hasler, Tim; Klump, Jens; Kirchner, Ingo; Peters-Kottig, Wolfgang; Mettig, Nora; Rusch, Beate
2014-05-01
Registration of dataset DOIs at DataCite makes research data citable and comes with the obligation to keep data accessible in the future. In addition, many universities and research institutions measure data that is unique and not repeatable like the data produced by an observational network and they want to keep these data for future generations. In consequence, such data should be ingested in preservation systems, that automatically care for file format changes. Open source preservation software that is developed along the definitions of the ISO OAIS reference model is available but during ingest of data and metadata there are still problems to be solved. File format validation is difficult, because format validators are not only remarkably slow - due to variety in file formats different validators return conflicting identification profiles for identical data. These conflicts are hard to resolve. Preservation systems have a deficit in the support of custom metadata. Furthermore, data producers are sometimes not aware that quality metadata is a key issue for the re-use of data. In the project EWIG an university institute and a research institute work together with Zuse-Institute Berlin, that is acting as an infrastructure facility, to generate exemplary workflows for research data into OAIS compliant archives with emphasis on the geosciences. The Institute for Meteorology provides timeseries data from an urban monitoring network whereas GFZ Potsdam delivers file based data from research projects. To identify problems in existing preservation workflows the technical work is complemented by interviews with data practitioners. Policies for handling data and metadata are developed. Furthermore, university teaching material is created to raise the future scientists awareness of research data management. As a testbed for ingest workflows the digital preservation system Archivematica [1] is used. During the ingest process metadata is generated that is compliant to the Metadata Encoding and Transmission Standard (METS). To find datasets in future portals and to make use of this data in own scientific work, proper selection of discovery metadata and application metadata is very important. Some XML-metadata profiles are not suitable for preservation, because version changes are very fast and make it nearly impossible to automate the migration. For other XML-metadata profiles schema definitions are changed after publication of the profile or the schema definitions become inaccessible, which might cause problems during validation of the metadata inside the preservation system [2]. Some metadata profiles are not used widely enough and might not even exist in the future. Eventually, discovery and application metadata have to be embedded into the mdWrap-subtree of the METS-XML. [1] http://www.archivematica.org [2] http://dx.doi.org/10.2218/ijdc.v7i1.215
NASA Astrophysics Data System (ADS)
Oggioni, Alessandro; Tagliolato, Paolo; Fugazza, Cristiano; Bastianini, Mauro; Pavesi, Fabio; Pepe, Monica; Menegon, Stefano; Basoni, Anna; Carrara, Paola
2015-04-01
Sensor observation systems for environmental data have become increasingly important in the last years. The EGU's Informatics in Oceanography and Ocean Science track stressed the importance of management tools and solutions for marine infrastructures. We think that full interoperability among sensor systems is still an open issue and that the solution to this involves providing appropriate metadata. Several open source applications implement the SWE specification and, particularly, the Sensor Observation Services (SOS) standard. These applications allow for the exchange of data and metadata in XML format between computer systems. However, there is a lack of metadata editing tools supporting end users in this activity. Generally speaking, it is hard for users to provide sensor metadata in the SensorML format without dedicated tools. In particular, such a tool should ease metadata editing by providing, for standard sensors, all the invariant information to be included in sensor metadata, thus allowing the user to concentrate on the metadata items that are related to the specific deployment. RITMARE, the Italian flagship project on marine research, envisages a subproject, SP7, for the set-up of the project's spatial data infrastructure. SP7 developed EDI, a general purpose, template-driven metadata editor that is composed of a backend web service and an HTML5/javascript client. EDI can be customized for managing the creation of generic metadata encoded as XML. Once tailored to a specific metadata format, EDI presents the users a web form with advanced auto completion and validation capabilities. In the case of sensor metadata (SensorML versions 1.0.1 and 2.0), the EDI client is instructed to send an "insert sensor" request to an SOS endpoint in order to save the metadata in an SOS server. In the first phase of project RITMARE, EDI has been used to simplify the creation from scratch of SensorML metadata by the involved researchers and data managers. An interesting by-product of this ongoing work is currently constituting an archive of predefined sensor descriptions. This information is being collected in order to further ease metadata creation in the next phase of the project. Users will be able to choose among a number of sensor and sensor platform prototypes: These will be specific instances on which it will be possible to define, in a bottom-up approach, "sensor profiles". We report on the outcome of this activity.
Scientific Workflows + Provenance = Better (Meta-)Data Management
NASA Astrophysics Data System (ADS)
Ludaescher, B.; Cuevas-Vicenttín, V.; Missier, P.; Dey, S.; Kianmajd, P.; Wei, Y.; Koop, D.; Chirigati, F.; Altintas, I.; Belhajjame, K.; Bowers, S.
2013-12-01
The origin and processing history of an artifact is known as its provenance. Data provenance is an important form of metadata that explains how a particular data product came about, e.g., how and when it was derived in a computational process, which parameter settings and input data were used, etc. Provenance information provides transparency and helps to explain and interpret data products. Other common uses and applications of provenance include quality control, data curation, result debugging, and more generally, 'reproducible science'. Scientific workflow systems (e.g. Kepler, Taverna, VisTrails, and others) provide controlled environments for developing computational pipelines with built-in provenance support. Workflow results can then be explained in terms of workflow steps, parameter settings, input data, etc. using provenance that is automatically captured by the system. Scientific workflows themselves provide a user-friendly abstraction of the computational process and are thus a form of ('prospective') provenance in their own right. The full potential of provenance information is realized when combining workflow-level information (prospective provenance) with trace-level information (retrospective provenance). To this end, the DataONE Provenance Working Group (ProvWG) has developed an extension of the W3C PROV standard, called D-PROV. Whereas PROV provides a 'least common denominator' for exchanging and integrating provenance information, D-PROV adds new 'observables' that described workflow-level information (e.g., the functional steps in a pipeline), as well as workflow-specific trace-level information ( timestamps for each workflow step executed, the inputs and outputs used, etc.) Using examples, we will demonstrate how the combination of prospective and retrospective provenance provides added value in managing scientific data. The DataONE ProvWG is also developing tools based on D-PROV that allow scientists to get more mileage from provenance metadata. DataONE is a federation of member nodes that store data and metadata for discovery and access. By enriching metadata with provenance information, search and reuse of data is enhanced, and the 'social life' of data (being the product of many workflow runs, different people, etc.) is revealed. We are currently prototyping a provenance repository (PBase) to demonstrate what can be achieved with advanced provenance queries. The ProvExplorer and ProPub tools support advanced ad-hoc querying and visualization of provenance as well as customized provenance publications (e.g., to address privacy issues, or to focus provenance to relevant details). In a parallel line of work, we are exploring ways to add provenance support to widely-used scripting platforms (e.g. R and Python) and then expose that information via D-PROV.
Publishing NASA Metadata as Linked Open Data for Semantic Mashups
NASA Astrophysics Data System (ADS)
Wilson, Brian; Manipon, Gerald; Hua, Hook
2014-05-01
Data providers are now publishing more metadata in more interoperable forms, e.g. Atom or RSS 'casts', as Linked Open Data (LOD), or as ISO Metadata records. A major effort on the part of the NASA's Earth Science Data and Information System (ESDIS) project is the aggregation of metadata that enables greater data interoperability among scientific data sets regardless of source or application. Both the Earth Observing System (EOS) ClearingHOuse (ECHO) and the Global Change Master Directory (GCMD) repositories contain metadata records for NASA (and other) datasets and provided services. These records contain typical fields for each dataset (or software service) such as the source, creation date, cognizant institution, related access URL's, and domain and variable keywords to enable discovery. Under a NASA ACCESS grant, we demonstrated how to publish the ECHO and GCMD dataset and services metadata as LOD in the RDF format. Both sets of metadata are now queryable at SPARQL endpoints and available for integration into "semantic mashups" in the browser. It is straightforward to reformat sets of XML metadata, including ISO, into simple RDF and then later refine and improve the RDF predicates by reusing known namespaces such as Dublin core, georss, etc. All scientific metadata should be part of the LOD world. In addition, we developed an "instant" drill-down and browse interface that provides faceted navigation so that the user can discover and explore the 25,000 datasets and 3000 services. The available facets and the free-text search box appear in the left panel, and the instantly updated results for the dataset search appear in the right panel. The user can constrain the value of a metadata facet simply by clicking on a word (or phrase) in the "word cloud" of values for each facet. The display section for each dataset includes the important metadata fields, a full description of the dataset, potentially some related URL's, and a "search" button that points to an OpenSearch GUI that is pre-configured to search for granules within the dataset. We will present our experiences with converting NASA metadata into LOD, discuss the challenges, illustrate some of the enabled mashups, and demonstrate the latest version of the "instant browse" interface for navigating multiple metadata collections.
Use and Evaluation of 3D GeoWall Visualizations in Undergraduate Space Science Classes
NASA Astrophysics Data System (ADS)
Turner, N. E.; Hamed, K. M.; Lopez, R. E.; Mitchell, E. J.; Gray, C. L.; Corralez, D. S.; Robinson, C. A.; Soderlund, K. M.
2005-12-01
One persistent difficulty many astronomy students face is the lack of 3- dimensional mental model of the systems being studied, in particular the Sun-Earth-Moon system. Students without such a mental model can have a very hard time conceptualizing the geometric relationships that cause, for example, the cycle of lunar phases or the pattern of seasons. The GeoWall is a recently developed and affordable projection mechanism for three-dimensional stereo visualization which is becoming a popular tool in classrooms and research labs for use in geology classes, but as yet very little work has been done involving the GeoWall for astronomy classes. We present results from a large study involving over 1000 students of varied backgrounds: some students were tested at the University of Texas at El Paso, a large public university on the US-Mexico border and other students were from the Florida Institute of Technology, a small, private, technical school in Melbourne Florida. We wrote a lecture tutorial-style lab to go along with a GeoWall 3D visual of the Earth-Moon system and tested the students before and after with several diagnostics. Students were given pre and post tests using the Lunar Phase Concept Inventory (LPCI) as well as a separate evaluation written specifically for this project. We found the lab useful for both populations of students, but not equally effective for all. We discuss reactions from the students and their improvement, as well as whether the students are able to correctly assess the usefullness of the project for their own learning.
The PDS4 Metadata Management System
NASA Astrophysics Data System (ADS)
Raugh, A. C.; Hughes, J. S.
2018-04-01
We present the key features of the Planetary Data System (PDS) PDS4 Information Model as an extendable metadata management system for planetary metadata related to data structure, analysis/interpretation, and provenance.
WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions
Karr, Jonathan R.; Phillips, Nolan C.; Covert, Markus W.
2014-01-01
Mechanistic ‘whole-cell’ models are needed to develop a complete understanding of cell physiology. However, extracting biological insights from whole-cell models requires running and analyzing large numbers of simulations. We developed WholeCellSimDB, a database for organizing whole-cell simulations. WholeCellSimDB was designed to enable researchers to search simulation metadata to identify simulations for further analysis, and quickly slice and aggregate simulation results data. In addition, WholeCellSimDB enables users to share simulations with the broader research community. The database uses a hybrid relational/hierarchical data format architecture to efficiently store and retrieve both simulation setup metadata and results data. WholeCellSimDB provides a graphical Web-based interface to search, browse, plot and export simulations; a JavaScript Object Notation (JSON) Web service to retrieve data for Web-based visualizations; a command-line interface to deposit simulations; and a Python API to retrieve data for advanced analysis. Overall, we believe WholeCellSimDB will help researchers use whole-cell models to advance basic biological science and bioengineering. Database URL: http://www.wholecellsimdb.org Source code repository URL: http://github.com/CovertLab/WholeCellSimDB PMID:25231498
On-line interactive virtual experiments on nanoscience
NASA Astrophysics Data System (ADS)
Kadar, Manuella; Ileana, Ioan; Hutanu, Constantin
2009-01-01
This paper is an overview on the next generation web which allows students to experience virtual experiments on nano science, physics devices, processes and processing equipment. Virtual reality is used to support a real university lab in which a student can experiment real lab sessions. The web material is presented in an intuitive and highly visual 3D form that is accessible to a diverse group of students. Such type of laboratory provides opportunities for professional and practical education for a wide range of users. The expensive equipment and apparatuses that build the experimental stage in a particular standard laboratory is used to create virtual educational research laboratories. Students learn how to prepare the apparatuses and facilities for the experiment. The online experiments metadata schema is the format for describing online experiments, much like the schema behind a library catalogue used to describe the books in a library. As an online experiment is a special kind of learning object, one specifies its schema as an extension to an established metadata schema for learning objects. The content of the courses, metainformation as well as readings and user data are saved on the server in a database as XML objects.
Making Temporal Search More Central in Spatial Data Infrastructures
NASA Astrophysics Data System (ADS)
Corti, P.; Lewis, B.
2017-10-01
A temporally enabled Spatial Data Infrastructure (SDI) is a framework of geospatial data, metadata, users, and tools intended to provide an efficient and flexible way to use spatial information which includes the historical dimension. One of the key software components of an SDI is the catalogue service which is needed to discover, query, and manage the metadata. A search engine is a software system capable of supporting fast and reliable search, which may use any means necessary to get users to the resources they need quickly and efficiently. These techniques may include features such as full text search, natural language processing, weighted results, temporal search based on enrichment, visualization of patterns in distributions of results in time and space using temporal and spatial faceting, and many others. In this paper we will focus on the temporal aspects of search which include temporal enrichment using a time miner - a software engine able to search for date components within a larger block of text, the storage of time ranges in the search engine, handling historical dates, and the use of temporal histograms in the user interface to display the temporal distribution of search results.
Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers.
Sochat, Vanessa V; Prybol, Cameron J; Kurtzer, Gregory M
2017-01-01
Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub's primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers.
Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers
Prybol, Cameron J.; Kurtzer, Gregory M.
2017-01-01
Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub’s primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers. PMID:29186161
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Richard, S. M.; Valentine, D. W., Jr.; Grethe, J. S.; Hsu, L.; Malik, T.; Bermudez, L. E.; Gupta, A.; Lehnert, K. A.; Whitenack, T.; Ozyurt, I. B.; Condit, C.; Calderon, R.; Musil, L.
2014-12-01
EarthCube is envisioned as a cyberinfrastructure that fosters new, transformational geoscience by enabling sharing, understanding and scientifically-sound and efficient re-use of formerly unconnected data resources, software, models, repositories, and computational power. Its purpose is to enable science enterprise and workforce development via an extensible and adaptable collaboration and resource integration framework. A key component of this vision is development of comprehensive inventories supporting resource discovery and re-use across geoscience domains. The goal of the EarthCube CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability) project is to create a methodology and assemble a large inventory of high-quality information resources with standard metadata descriptions and traceable provenance. The inventory is compiled from metadata catalogs maintained by geoscience data facilities, as well as from user contributions. The latter mechanism relies on community resource viewers: online applications that support update and curation of metadata records. Once harvested into CINERGI, metadata records from domain catalogs and community resource viewers are loaded into a staging database implemented in MongoDB, and validated for compliance with ISO 19139 metadata schema. Several types of metadata defects detected by the validation engine are automatically corrected with help of several information extractors or flagged for manual curation. The metadata harvesting, validation and processing components generate provenance statements using W3C PROV notation, which are stored in a Neo4J database. Thus curated metadata, along with the provenance information, is re-published and accessed programmatically and via a CINERGI online application. This presentation focuses on the role of resource inventories in a scalable and adaptable information infrastructure, and on the CINERGI metadata pipeline and its implementation challenges. Key project components are described at the project's website (http://workspace.earthcube.org/cinergi), which also provides access to the initial resource inventory, the inventory metadata model, metadata entry forms and a collection of the community resource viewers.
Oceans 2.0: a Data Management Infrastructure as a Platform
NASA Astrophysics Data System (ADS)
Pirenne, B.; Guillemot, E.
2012-04-01
Oceans 2.0: a Data Management Infrastructure as a Platform Benoît Pirenne, Associate Director, IT, NEPTUNE Canada Eric Guillemot, Manager, Software Development, NEPTUNE Canada The Data Management and Archiving System (DMAS) serving the needs of a number of undersea observing networks such as VENUS and NEPTUNE Canada was conceived from the beginning as a Service-Oriented Infrastructure. Its core functional elements (data acquisition, transport, archiving, retrieval and processing) can interact with the outside world using Web Services. Those Web Services can be exploited by a variety of higher level applications. Over the years, DMAS has developed Oceans 2.0: an environment where these techniques are implemented. The environment thereby becomes a platform in that it allows for easy addition of new and advanced features that build upon the tools at the core of the system. The applications that have been developed include: data search and retrieval, including options such as data product generation, data decimation or averaging, etc. dynamic infrastructure description (search all observatory metadata) and visualization data visualization, including dynamic scalar data plots, integrated fast video segment search and viewing Building upon these basic applications are new concepts, coming from the Web 2.0 world that DMAS has added: They allow people equipped only with a web browser to collaborate and contribute their findings or work results to the wider community. Examples include: addition of metadata tags to any part of the infrastructure or to any data item (annotations) ability to edit and execute, share and distribute Matlab code on-line, from a simple web browser, with specific calls within the code to access data ability to interactively and graphically build pipeline processing jobs that can be executed on the cloud web-based, interactive instrument control tools that allow users to truly share the use of the instruments and communicate with each other and last but not least: a public tool in the form of a game, that crowd-sources the inventory of the underwater video archive content, thereby adding tremendous amounts of metadata Beyond those tools that represent the functionality presently available to users, a number of the Web Services dedicated to data access are being exposed for anyone to use. This allows not only for ad hoc data access by individuals who need non-interactive access, but will foster the development of new applications in a variety of areas.
Hancock, David; Wilson, Michael; Velarde, Giles; Morrison, Norman; Hayes, Andrew; Hulme, Helen; Wood, A Joseph; Nashar, Karim; Kell, Douglas B; Brass, Andy
2005-11-03
maxdLoad2 is a relational database schema and Java application for microarray experimental annotation and storage. It is compliant with all standards for microarray meta-data capture; including the specification of what data should be recorded, extensive use of standard ontologies and support for data exchange formats. The output from maxdLoad2 is of a form acceptable for submission to the ArrayExpress microarray repository at the European Bioinformatics Institute. maxdBrowse is a PHP web-application that makes contents of maxdLoad2 databases accessible via web-browser, the command-line and web-service environments. It thus acts as both a dissemination and data-mining tool. maxdLoad2 presents an easy-to-use interface to an underlying relational database and provides a full complement of facilities for browsing, searching and editing. There is a tree-based visualization of data connectivity and the ability to explore the links between any pair of data elements, irrespective of how many intermediate links lie between them. Its principle novel features are: the flexibility of the meta-data that can be captured, the tools provided for importing data from spreadsheets and other tabular representations, the tools provided for the automatic creation of structured documents, the ability to browse and access the data via web and web-services interfaces. Within maxdLoad2 it is very straightforward to customise the meta-data that is being captured or change the definitions of the meta-data. These meta-data definitions are stored within the database itself allowing client software to connect properly to a modified database without having to be specially configured. The meta-data definitions (configuration file) can also be centralized allowing changes made in response to revisions of standards or terminologies to be propagated to clients without user intervention.maxdBrowse is hosted on a web-server and presents multiple interfaces to the contents of maxd databases. maxdBrowse emulates many of the browse and search features available in the maxdLoad2 application via a web-browser. This allows users who are not familiar with maxdLoad2 to browse and export microarray data from the database for their own analysis. The same browse and search features are also available via command-line and SOAP server interfaces. This both enables scripting of data export for use embedded in data repositories and analysis environments, and allows access to the maxd databases via web-service architectures. maxdLoad2 http://www.bioinf.man.ac.uk/microarray/maxd/ and maxdBrowse http://dbk.ch.umist.ac.uk/maxdBrowse are portable and compatible with all common operating systems and major database servers. They provide a powerful, flexible package for annotation of microarray experiments and a convenient dissemination environment. They are available for download and open sourced under the Artistic License.
EPA Metadata Style Guide Keywords and EPA Organization Names
The following keywords and EPA organization names listed below, along with EPA’s Metadata Style Guide, are intended to provide suggestions and guidance to assist with the standardization of metadata records.
Interpreting the ASTM 'content standard for digital geospatial metadata'
Nebert, Douglas D.
1996-01-01
ASTM and the Federal Geographic Data Committee have developed a content standard for spatial metadata to facilitate documentation, discovery, and retrieval of digital spatial data using vendor-independent terminology. Spatial metadata elements are identifiable quality and content characteristics of a data set that can be tied to a geographic location or area. Several Office of Management and Budget Circulars and initiatives have been issued that specify improved cataloguing of and accessibility to federal data holdings. An Executive Order further requires the use of the metadata content standard to document digital spatial data sets. Collection and reporting of spatial metadata for field investigations performed for the federal government is an anticipated requirement. This paper provides an overview of the draft spatial metadata content standard and a description of how the standard could be applied to investigations collecting spatially-referenced field data.
Misra, Dharitri; Chen, Siyuan; Thoma, George R.
2010-01-01
One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques. At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts. In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system. PMID:21179386
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrell, William C.; Birkel, Garrett W.; Forrer, Mark
Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDDmore » and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.« less
High-fidelity data embedding for image annotation.
He, Shan; Kirovski, Darko; Wu, Min
2009-02-01
High fidelity is a demanding requirement for data hiding, especially for images with artistic or medical value. This correspondence proposes a high-fidelity image watermarking for annotation with robustness to moderate distortion. To achieve the high fidelity of the embedded image, we introduce a visual perception model that aims at quantifying the local tolerance to noise for arbitrary imagery. Based on this model, we embed two kinds of watermarks: a pilot watermark that indicates the existence of the watermark and an information watermark that conveys a payload of several dozen bits. The objective is to embed 32 bits of metadata into a single image in such a way that it is robust to JPEG compression and cropping. We demonstrate the effectiveness of the visual model and the application of the proposed annotation technology using a database of challenging photographic and medical images that contain a large amount of smooth regions.
Ertürk, Korhan Levent; Şengül, Gökhan
2012-01-01
We developed 3D simulation software of human organs/tissues; we developed a database to store the related data, a data management system to manage the created data, and a metadata system for the management of data. This approach provides two benefits: first of all the developed system does not require to keep the patient's/subject's medical images on the system, providing less memory usage. Besides the system also provides 3D simulation and modification options, which will help clinicians to use necessary tools for visualization and modification operations. The developed system is tested in a case study, in which a 3D human brain model is created and simulated from 2D MRI images of a human brain, and we extended the 3D model to include the spreading cortical depression (SCD) wave front, which is an electrical phoneme that is believed to cause the migraine. PMID:23258956
ATLAS Eventlndex monitoring system using the Kibana analytics and visualization platform
NASA Astrophysics Data System (ADS)
Barberis, D.; Cárdenas Zárate, S. E.; Favareto, A.; Fernandez Casani, A.; Gallas, E. J.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Hrivnac, J.; Malon, D.; Prokoshin, F.; Salt, J.; Sanchez, J.; Toebbicke, R.; Yuan, R.; ATLAS Collaboration
2016-10-01
The ATLAS EventIndex is a data catalogue system that stores event-related metadata for all (real and simulated) ATLAS events, on all processing stages. As it consists of different components that depend on other applications (such as distributed storage, and different sources of information) we need to monitor the conditions of many heterogeneous subsystems, to make sure everything is working correctly. This paper describes how we gather information about the EventIndex components and related subsystems: the Producer-Consumer architecture for data collection, health parameters from the servers that run EventIndex components, EventIndex web interface status, and the Hadoop infrastructure that stores EventIndex data. This information is collected, processed, and then displayed using CERN service monitoring software based on the Kibana analytic and visualization package, provided by CERN IT Department. EventIndex monitoring is used both by the EventIndex team and ATLAS Distributed Computing shifts crew.
Morrell, William C.; Birkel, Garrett W.; Forrer, Mark; ...
2017-08-21
Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDDmore » and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.« less
CFD Data Sets on the WWW for Education and Testing
NASA Technical Reports Server (NTRS)
Globus, Al; Lasinski, T. A. (Technical Monitor)
1995-01-01
The Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center has begun the development of a Computational Fluid Dynamics (CFD) data set archive on the World Wide Web (WWW) at URL http://www.nas.nasa.gov/NAS/DataSets/. Data sets are integrated with related information such as research papers, metadata, visualizations, etc. In this paper, four classes of users are identified and discussed: students, visualization developers, CFD practitioners, and management. Bandwidth and security issues are briefly reviewed and the status of the archive as of May 1995 is examined. Routine network distribution of data sets is likely to have profound implications for the conduct of science. The exact nature of these changes is subject to speculation, but the ability for anyone to examine the data, in addition to the investigator's analysis, may well play an important role in the future.
Interactive access and management for four-dimensional environmental data sets using McIDAS
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Tripoli, Gregory J.
1995-01-01
This grant has fundamentally changed the way that meteorologists look at the output of their atmospheric models, through the development and wide distribution of the Vis5D system. The Vis5D system is also gaining acceptance among oceanographers and atmospheric chemists. Vis5D gives these scientists an interactive three-dimensional movie of their very large data sets that they can use to understand physical mechanisms and to trace problems to their sources. This grant has also helped to define the future direction of scientific visualization through the development of the VisAD system and its lattice data model. The VisAD system can be used to interactively steer and visualize scientific computations. A key element of this capability is the flexibility of the system's data model to adapt to a wide variety of scientific data, including the integration of several forms of scientific metadata.
Automatic textual annotation of video news based on semantic visual object extraction
NASA Astrophysics Data System (ADS)
Boujemaa, Nozha; Fleuret, Francois; Gouet, Valerie; Sahbi, Hichem
2003-12-01
In this paper, we present our work for automatic generation of textual metadata based on visual content analysis of video news. We present two methods for semantic object detection and recognition from a cross modal image-text thesaurus. These thesaurus represent a supervised association between models and semantic labels. This paper is concerned with two semantic objects: faces and Tv logos. In the first part, we present our work for efficient face detection and recogniton with automatic name generation. This method allows us also to suggest the textual annotation of shots close-up estimation. On the other hand, we were interested to automatically detect and recognize different Tv logos present on incoming different news from different Tv Channels. This work was done jointly with the French Tv Channel TF1 within the "MediaWorks" project that consists on an hybrid text-image indexing and retrieval plateform for video news.
Morrell, William C; Birkel, Garrett W; Forrer, Mark; Lopez, Teresa; Backman, Tyler W H; Dussault, Michael; Petzold, Christopher J; Baidoo, Edward E K; Costello, Zak; Ando, David; Alonso-Gutierrez, Jorge; George, Kevin W; Mukhopadhyay, Aindrila; Vaino, Ian; Keasling, Jay D; Adams, Paul D; Hillson, Nathan J; Garcia Martin, Hector
2017-12-15
Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDD and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.
Quantifying the link between art and property prices in urban neighbourhoods
Seresinhe, Chanuki Illushka
2016-01-01
Is there an association between art and changes in the economic conditions of urban neighbourhoods? While the popular media and policymakers commonly believe this to be the case, quantitative evidence remains lacking. Here, we use metadata of geotagged photographs uploaded to the popular image-sharing platform Flickr to quantify the presence of art in London neighbourhoods. We estimate the presence of art in neighbourhoods by determining the proportion of Flickr photographs which have the word ‘art’ attached. We compare this with the relative gain in residential property prices for each Inner London neighbourhood. We find that neighbourhoods which have a higher proportion of ‘art’ photographs also have greater relative gains in property prices. Our findings demonstrate how online data can be used to quantify aspects of the visual environment at scale and reveal new connections between the visual environment and crucial socio-economic measurements. PMID:27152228
Quantifying the link between art and property prices in urban neighbourhoods.
Seresinhe, Chanuki Illushka; Preis, Tobias; Moat, Helen Susannah
2016-04-01
Is there an association between art and changes in the economic conditions of urban neighbourhoods? While the popular media and policymakers commonly believe this to be the case, quantitative evidence remains lacking. Here, we use metadata of geotagged photographs uploaded to the popular image-sharing platform Flickr to quantify the presence of art in London neighbourhoods. We estimate the presence of art in neighbourhoods by determining the proportion of Flickr photographs which have the word 'art' attached. We compare this with the relative gain in residential property prices for each Inner London neighbourhood. We find that neighbourhoods which have a higher proportion of 'art' photographs also have greater relative gains in property prices. Our findings demonstrate how online data can be used to quantify aspects of the visual environment at scale and reveal new connections between the visual environment and crucial socio-economic measurements.
Astronomy and Existentialism in Albert Camus' ``The Adulterous Woman''
NASA Astrophysics Data System (ADS)
Garwood, D.
2013-04-01
Camus' short story “An Adulterous Woman” from his collection Exile and the Kingdom narrates the experience of Janine, wife of a French Algerian cloth-trader, who accompanies her husband on a business trip to the Saharan interior at mid-20th century. The desert landscape and its weather play an integral role in the plot. Blending realism and fantasy that borders on science fiction, the narrator characterizes the sky as an animate cosmological energy whose virility is masked by sunlight during the day. Released after sundown and portrayed as a liberator at the climax of the story, the shaman-like night sky descends upon Janine as a shower of stars that leaves her with an existential sense of self. This paper explores themes of astronomy and existentialism that Camus develops through Janine's “adultery” with a cosmological force, supplemented by visual imagery related to the aesthetic and scientific cultural contexts of the story and Camus' era.