NASA Astrophysics Data System (ADS)
Louedec, Karim
2015-01-01
Astroparticle physics and cosmology allow us to scan the universe through multiple messengers. It is the combination of these probes that improves our understanding of the universe, both in its composition and its dynamics. Unlike other areas in science, research in astroparticle physics has a real originality in detection techniques, in infrastructure locations, and in the observed physical phenomenon that is not created directly by humans. It is these features that make the minimisation of statistical and systematic errors a perpetual challenge. In all these projects, the environment is turned into a detector medium or a target. The atmosphere is probably the environment component the most common in astroparticle physics and requires a continuous monitoring of its properties to minimise as much as possible the systematic uncertainties associated. This paper introduces the different atmospheric effects to take into account in astroparticle physics measurements and provides a non-exhaustive list of techniques and instruments to monitor the different elements composing the atmosphere. A discussion on the close link between astroparticle physics and Earth sciences ends this paper.
Astroparticle physics with solar neutrinos
NAKAHATA, Masayuki
2011-01-01
Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758
Astroparticle physics with solar neutrinos.
Nakahata, Masayuki
2011-01-01
Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the "solar neutrino problem". Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. (Communicated by Toshimitsu Yamazaki, M.J.A.).
Astroparticle physics at the Eastern Colombia region
NASA Astrophysics Data System (ADS)
Asorey, Hernán; Núñez, Luis A.
2015-12-01
We present the emerging panorama of Astroparticle Physics at the Eastern Colombia region, and describe several ongoing projects, most of them related to the Latin American Giant Observatory (LAGO) Project. This research work is carried out at the Grupo de Investigaciones en Relatividad y Gravitacin of Universidad Industrial de Santander.
Status and perspectives of neutrino physics at present and future experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagliarone, Carmine Elvezio, E-mail: pagliarone@unicas.it, E-mail: carmine.pagliarone@lngs.infn.it; Laboratori Nazionali del Gran Sasso
2016-03-25
Neutrino Physics and Dark Matter searches play a crucial role in nowadays Particle and Astroparticle Physics. The present review paper will describe general properties of neutrinos and neutrino mass phenomenology (Dirac and Majorana masses). Space will be dedicated to the experimental attempts to answer the question of the neutrino mass hierarchy. We will give, then, a short review of the results of part of the experiments that have been running so far. We will also shortly summarize future experiments that plan to explore this very wide scientific area.
Physics at the e⁺e⁻ linear collider
Moortgat-Picka, G.; Kronfeld, A. S.
2015-08-14
A comprehensive review of physics at an e⁺e⁻ linear collider in the energy range of √s = 92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.
LHCf: A LHC detector for astroparticle physics
D'Alessandro, R.; Adriani, O.; Bonechi, L.; ...
2007-03-01
A number of extremely high energy cosmic ray events have been ob- served by various collaborations. The existence of such events, above the Greisen-Zatsepin-Kuzmin (GZK) cut-off has to be explained by a top-down scenario involving exotic physics. Yet the results reported depend heavily on Monte Carlo procedures. The LHCf experiment will provide important data to calibrate the codes used in air shower simulations.
On the contributions of astroparticle physics to cosmology
NASA Astrophysics Data System (ADS)
Falkenburg, Brigitte
2014-05-01
Studying astroparticle physics sheds new light on scientific explanation and on the ways in which cosmology is empirically underdetermined or not. Astroparticle physics extends the empirical domain of cosmology from purely astronomical data to "multi-messenger astrophysics", i.e., measurements of all kinds of cosmic rays including very high energetic gamma rays, neutrinos, and charged particles. My paper investigates the ways in which these measurements contribute to cosmology and compares them with philosophical views about scientific explanation, the relation between theory and data, and scientific realism. The "standard models" of cosmology and particle physics lack of unified foundations. Both are "piecemeal physics" in Cartwright's sense, but contrary to her metaphysics of a "dappled world" the work in both fields of research aims at unification. Cosmology proceeds "top-down", from models to data and from large scale to small-scale structures of the universe. Astroparticle physics proceeds "bottom-up", from data taking to models and from subatomic particles to large-scale structures of the universe. In order to reconstruct the causal stories of cosmic rays and the nature of their sources, several pragmatic unifying strategies are employed. Standard views about scientific explanation and scientific realism do not cope with these "bottom-up" strategies and the way in which they contribute to cosmology. In addition it has to be noted that the shift to "multi-messenger astrophysics" transforms the relation between cosmological theory and astrophysical data in a mutually holistic way.
2017 Topical Workshop on Electronics for Particle Physics
NASA Astrophysics Data System (ADS)
2017-09-01
The workshop will cover all aspects of electronics for particle physics experiments, and accelerator instrumentation of general interest to users. LHC experiments (and their operational experience) will remain a focus of the meeting but a strong emphasis on R&D for future experimentation will be maintained, such as SLHC, CLIC, ILC, neutrino facilities as well as other particle and astroparticle physics experiments. The purpose of the workshop is: To present results and original concepts for electronic research and development relevant to experiments as well as accelerator and beam instrumentation at future facilities; To review the status of electronics for the LHC experiments; To identify and encourage common efforts for the development of electronics; To promote information exchange and collaboration in the relevant engineering and physics communities.
A fresh approach to forecasting in astroparticle physics and dark matter searches
NASA Astrophysics Data System (ADS)
Edwards, Thomas D. P.; Weniger, Christoph
2018-02-01
We present a toolbox of new techniques and concepts for the efficient forecasting of experimental sensitivities. These are applicable to a large range of scenarios in (astro-)particle physics, and based on the Fisher information formalism. Fisher information provides an answer to the question 'what is the maximum extractable information from a given observation?'. It is a common tool for the forecasting of experimental sensitivities in many branches of science, but rarely used in astroparticle physics or searches for particle dark matter. After briefly reviewing the Fisher information matrix of general Poisson likelihoods, we propose very compact expressions for estimating expected exclusion and discovery limits ('equivalent counts method'). We demonstrate by comparison with Monte Carlo results that they remain surprisingly accurate even deep in the Poisson regime. We show how correlated background systematics can be efficiently accounted for by a treatment based on Gaussian random fields. Finally, we introduce the novel concept of Fisher information flux. It can be thought of as a generalization of the commonly used signal-to-noise ratio, while accounting for the non-local properties and saturation effects of background and instrumental uncertainties. It is a powerful and flexible tool ready to be used as core concept for informed strategy development in astroparticle physics and searches for particle dark matter.
Physics at the [Formula: see text] linear collider.
Moortgat-Pick, G; Baer, H; Battaglia, M; Belanger, G; Fujii, K; Kalinowski, J; Heinemeyer, S; Kiyo, Y; Olive, K; Simon, F; Uwer, P; Wackeroth, D; Zerwas, P M; Arbey, A; Asano, M; Bagger, J; Bechtle, P; Bharucha, A; Brau, J; Brümmer, F; Choi, S Y; Denner, A; Desch, K; Dittmaier, S; Ellwanger, U; Englert, C; Freitas, A; Ginzburg, I; Godfrey, S; Greiner, N; Grojean, C; Grünewald, M; Heisig, J; Höcker, A; Kanemura, S; Kawagoe, K; Kogler, R; Krawczyk, M; Kronfeld, A S; Kroseberg, J; Liebler, S; List, J; Mahmoudi, F; Mambrini, Y; Matsumoto, S; Mnich, J; Mönig, K; Mühlleitner, M M; Pöschl, R; Porod, W; Porto, S; Rolbiecki, K; Schmitt, M; Serpico, P; Stanitzki, M; Stål, O; Stefaniak, T; Stöckinger, D; Weiglein, G; Wilson, G W; Zeune, L; Moortgat, F; Xella, S; Bagger, J; Brau, J; Ellis, J; Kawagoe, K; Komamiya, S; Kronfeld, A S; Mnich, J; Peskin, M; Schlatter, D; Wagner, A; Yamamoto, H
A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.
Radon assay and purification techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simgen, Hardy
Radon is a source of background in many astroparticle physics experiments searching for rare low energy events. In this paper an overview about radon in the field is given including radon detection techniques, radon sources and material screening with respect to radon emanation. Finally, also the problem of long-lived radioactive {sup 222}Rn-daughters and the question of gas purification from radon is addressed.
Radon assay and purification techniques
NASA Astrophysics Data System (ADS)
Simgen, Hardy
2013-08-01
Radon is a source of background in many astroparticle physics experiments searching for rare low energy events. In this paper an overview about radon in the field is given including radon detection techniques, radon sources and material screening with respect to radon emanation. Finally, also the problem of long-lived radioactive 222Rn-daughters and the question of gas purification from radon is addressed.
Water purification in Borexino
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giammarchi, M.; Balata, M.; Ioannucci, L.
Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.
Data Management challenges in Astronomy and Astroparticle Physics
NASA Astrophysics Data System (ADS)
Lamanna, Giovanni
2015-12-01
Astronomy and Astroparticle Physics domains are experiencing a deluge of data with the next generation of facilities prioritised in the European Strategy Forum on Research Infrastructures (ESFRI), such as SKA, CTA, KM3Net and with other world-class projects, namely LSST, EUCLID, EGO, etc. The new ASTERICS-H2020 project brings together the concerned scientific communities in Europe to work together to find common solutions to their Big Data challenges, their interoperability, and their data access. The presentation will highlight these new challenges and the work being undertaken also in cooperation with e-infrastructures in Europe.
The Intermediate Neutrino Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, C.; Alonso, J. R.; Ankowski, A. M.
2017-04-03
The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topicsmore » on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.« less
NASA Astrophysics Data System (ADS)
Rubbia, André
2009-06-01
The current focus of the CERN program is the Large Hadron Collider (LHC), however, CERN is engaged in long baseline neutrino physics with the CNGS project and supports T2K as recognized CERN RE13, and for good reasons: a number of observed phenomena in high-energy physics and cosmology lack their resolution within the Standard Model of particle physics; these puzzles include the origin of neutrino masses, CP-violation in the leptonic sector, and baryon asymmetry of the Universe. They will only partially be addressed at LHC. A positive measurement of sin2 2θ13 > 0.01 would certainly give a tremendous boost to neutrino physics by opening the possibility to study CP violation in the lepton sector and the determination of the neutrino mass hierarchy with upgraded conventional super-beams. These experiments (so called 'Phase II') require, in addition to an upgraded beam power, next generation very massive neutrino detectors with excellent energy resolution and high detection efficiency in a wide neutrino energy range, to cover 1st and 2nd oscillation maxima, and excellent particle identification and p0 background suppression. Two generations of large water Cherenkov detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely successful. And there are good reasons to consider a third generation water Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande for both non-accelerator (proton decay, supernovae,...) and accelerator-based physics. On the other hand, a very massive underground liquid Argon detector of about 100 kton could represent a credible alternative for the precision measurements of 'Phase II' and aim at significantly new results in neutrino astroparticle and non-accelerator-based particle physics (e.g. proton decay).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Charles D.; Cline, David B.; Byers, N.
Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.« less
2012-11-01
Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics and SLAC National Accelerator...Laboratory, Stanford University, Stanford, CA 94305, USA; echarles@slac.stanford.edu 3 Department of Physics, Center for Cosmology and Astro-Particle Physics
Investigations in γ-Ray Astrophysics and Astroparticle Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krennrich, Frank
This report describes the status of data analysis efforts, results and publications of research grant DE-SC0009917. The research is focused on TeV gamma-ray studies of astrophysical sources and related particle physics questions.
NASA Astrophysics Data System (ADS)
Autiero, D.; Äystö, J.; Badertscher, A.; Bezrukov, L.; Bouchez, J.; Bueno, A.; Busto, J.; Campagne, J.-E.; Cavata, Ch; Chaussard, L.; de Bellefon, A.; Déclais, Y.; Dumarchez, J.; Ebert, J.; Enqvist, T.; Ereditato, A.; von Feilitzsch, F.; Fileviez Perez, P.; Göger-Neff, M.; Gninenko, S.; Gruber, W.; Hagner, C.; Hess, M.; Hochmuth, K. A.; Kisiel, J.; Knecht, L.; Kreslo, I.; Kudryavtsev, V. A.; Kuusiniemi, P.; Lachenmaier, T.; Laffranchi, M.; Lefievre, B.; Lightfoot, P. K.; Lindner, M.; Maalampi, J.; Maltoni, M.; Marchionni, A.; Marrodán Undagoitia, T.; Marteau, J.; Meregaglia, A.; Messina, M.; Mezzetto, M.; Mirizzi, A.; Mosca, L.; Moser, U.; Müller, A.; Natterer, G.; Oberauer, L.; Otiougova, P.; Patzak, T.; Peltoniemi, J.; Potzel, W.; Pistillo, C.; Raffelt, G. G.; Rondio, E.; Roos, M.; Rossi, B.; Rubbia, A.; Savvinov, N.; Schwetz, T.; Sobczyk, J.; Spooner, N. J. C.; Stefan, D.; Tonazzo, A.; Trzaska, W.; Ulbricht, J.; Volpe, C.; Winter, J.; Wurm, M.; Zalewska, A.; Zimmermann, R.
2007-11-01
This document reports on a series of experimental and theoretical studies conducted to assess the astro-particle physics potential of three future large scale particle detectors proposed in Europe as next generation underground observatories. The proposed apparatuses employ three different and, to some extent, complementary detection techniques: GLACIER (liquid argon TPC), LENA (liquid scintillator) and MEMPHYS (water Cherenkov), based on the use of large mass of liquids as active detection media. The results of these studies are presented along with a critical discussion of the performance attainable by the three proposed approaches coupled to existing or planned underground laboratories, in relation to open and outstanding physics issues such as the search for matter instability, the detection of astrophysical neutrinos and geo-neutrinos and to the possible use of these detectors in future high intensity neutrino beams.
Juan Carlos D'Olivo: A portrait
NASA Astrophysics Data System (ADS)
Aguilar-Arévalo, Alexis A.
2013-06-01
This report attempts to give a brief bibliographical sketch of the academic life of Juan Carlos D'Olivo, researcher and teacher at the Instituto de Ciencias Nucleares of UNAM, devoted to advancing the fields of High Energy Physics and Astroparticle Physics in Mexico and Latin America.
Astroparticle physics and cosmology.
Mitton, Simon
2006-05-20
Astroparticle physics is an interdisciplinary field that explores the connections between the physics of elementary particles and the large-scale properties of the universe. Particle physicists have developed a standard model to describe the properties of matter in the quantum world. This model explains the bewildering array of particles in terms of constructs made from two or three quarks. Quarks, leptons, and three of the fundamental forces of physics are the main components of this standard model. Cosmologists have also developed a standard model to describe the bulk properties of the universe. In this new framework, ordinary matter, such as stars and galaxies, makes up only around 4% of the material universe. The bulk of the universe is dark matter (roughly 23%) and dark energy (about 73%). This dark energy drives an acceleration that means that the expanding universe will grow ever larger. String theory, in which the universe has several invisible dimensions, might offer an opportunity to unite the quantum description of the particle world with the gravitational properties of the large-scale universe.
The LHCf experiment at the LHC: Physics Goals and Status
NASA Astrophysics Data System (ADS)
Tricomi, A.; Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Faus, A.; Fukui, K.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Macina, D.; Mase, T.; Masuda, K.; Matsubara, Y.; Menjo, H.; Mizuishi, M.; Muraki, Y.; Papini, P.; Perrot, A. L.; Ricciarini, S.; Sako, T.; Shimizu, Y.; Taki, K.; Tamura, T.; Torii, S.; Turner, W. C.; Velasco, J.; Viciani, A.; Yoshida, K.
2009-12-01
The LHCf experiment is the smallest of the six experiments installed at the Large Hadron Collider (LHC). While the general purpose detectors have been mainly designed to answer the open questions of Elementary Particle Physics, LHCf has been designed as a fully devoted Astroparticle experiment at the LHC. Indeed, thanks to the excellent performances of its double arm calorimeters, LHCf will be able to measure the flux of neutral particles produced in p-p collisions at LHC in the very forward region, thus providing an invaluable help in the calibration of air-shower Monte Carlo codes currently used for modeling cosmic rays interactions in the Earth atmosphere. Depending on the LHC machine schedule, LHCf will take data in an energy range from 900 GeV up to 14 TeV in the centre of mass system (equivalent to 10 eV in the laboratory frame), thus covering one of the most interesting and debated region of the Cosmic Ray spectrum, the region around and beyond the "knee".
Recent Developments at the Accelerator Laboratory in Jyvaeskylae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trzaska, Wladyslaw Henryk
Recent developments at the Accelerator Laboratory in Jyvaeskylae are described. In addition to the existing K = 130 a new cyclotron has been added. It is capable of producing of high current proton and deuteron beams at 30 and 15 MeV correspondingly. It should be fully operational in 2010. A new development in Jyvaeskylae is the growing commitment to astroparticle physics. Jyvaeskylae took the main scientific responsibility for a new cosmic-ray experiment EMMA and has joined the LAGUNA project working on the design of the next generation of very large volume detectors for underground observatories.
New Worlds in Astroparticle Physics: Proceedings of the Fifth International Workshop
NASA Astrophysics Data System (ADS)
Mourão, Ana M.; Pimenta, Mário; Potting, Robertus; Sá, Paulo M.
Preface -- Group photo -- pt. 1. Overviews in astroparticle physics. An overview of the status of work on ultra high energy cosmic rays / A. A. Watson. Gravitational waves from compact sources / K. D. Kokkotas and N. Stergioulas. Neutrino physics and astrophysics / E. Fernandez. Black holes and fundamental physics / J. P. S. Lemos -- pt. 2. Contributions. Cosmic ray physics. Phenomenology of cosmic ray air showers / M. T. Dova. First results from the MAGIC experiment / A. de Angelis. How to select UHECR in EUSO - the trigger system / P. Assis. Pressure and temperature dependence of the primary scintillation in air / M. Fraga ... [et al.]. Overview of the GLAST physics / N. Giglietto ... [et al.]. Velocity and charge reconstruction with the AMS/RICH detector / L. Arruda ... [et al.]. Isotope separation with the RICH detector of the AMS experiment / L. Arruda ... [et al.]. Gravitational waves and compact sources. Gravitational radiation from 3D collapse to rotating black holes / L. Baiotti ... [et al.]. The role of differential rotation in the evolution of the r-mode instability / P. M. Sá and B. Tomé. Analytical r-mode solution with gravitational radiation reaction force / Ó. J. C. Dias and P. M. Sá. Space radiation: effects and monitoring. Particles from the sun / D. Maia. Simulations of space radiation monitors / B. Tomé. GEANT4 detector simulations: radiation interaction simulations for the high-energy astrophysics experiments EUSO and AMS / P. Goncalves. Software for radiological risk assessment in space missions / A. Trindade, P. Rodrigues. Neutrino physics. Results from K2K / S. Andringa. SNO: salt phase results and NCD phase status / J. Maneira. The ICARUS experiment / S. Navas-Concha. Cosmological parameters measurements. High redshift supernova surveys / S. Fabbro. SNFactory: nearby supernova factory / P. Antilogus. A polarized galactic emission mapping experiment at 5-10 GHz / D. Barbosa ... [et al.]. Galaxy clusters as probes of dark energy / P. T. P. Viana. Black hole physics. Acoustic black holes / V. Cardoso. Superradiant instabilities in black hole systems / Á. J. C. Dias ... [et al.]. Microscopic black hole detection in UHECR: the double bang signature / M. Paulos. Generalized uncertainty principle and holography / F. Scardiali and R. Casadio. Testing covariant entropy bounds / S. Gao and J. P. S. Lemos. Dark matter and dark energy. Dark energy - dark matter unification: generalized Chaplygin gas model / O. Bertolami. Cosmology and spacetime symmetries / R. Lehnert. Scalar field models: from the pioneer anomaly to astrophysical constraints / J. Páramos. Braneworlds, conformal fields and dark energy / R. Neves. Sun and stars as cosmological tools: probing supersymmetric dark matter / I. Lopes. ZEPLIN III: xenon detector for WIMP searches / H. Araújo. Dark matter detectability with Čerenkov telescopes -- List of participants.
NASA Astrophysics Data System (ADS)
Paling, Sean; Sadler, Stephen
2015-05-01
The deep underground laboratories of the world are no longer the scientific realm of astroparticle physics alone. From Mars rovers to muon tomography, and from radioactive dating to astrobiology, Sean Paling and Stephen Sadler describe the renaissance in the science taking place far beneath our feet.
KamLAND's precision neutrino oscillation measurements
Decowski, M. P.
2016-04-13
The KamLAND experiment started operation in the Spring of 2002 and is operational to this day. The experiment observes signals from electron antineutrinos from distant nuclear reactors. The program, spanning more than a decade, allowed the determination of LMA-MSW as the solution to the solar neutrino transformation results (under the assumption of CPT invariance) and the measurement of various neutrino oscillation parameters. In particular, the solar mass-splitting Δm 2 21 was determined to high precision. Besides the study of neutrino oscillation, KamLAND started the investigation of geologically produced antineutrinos (geo- ν¯ e). As a result, the collaboration also reported onmore » a variety of other topics related to particle and astroparticle physics.« less
Reconstruction software of the silicon tracker of DAMPE mission
NASA Astrophysics Data System (ADS)
Tykhonov, A.; Gallo, V.; Wu, X.; Zimmer, S.
2017-10-01
DAMPE is a satellite-borne experiment aimed to probe astroparticle physics in the GeV-TeV energy range. The Silicon tracker (STK) is one of the key components of DAMPE, which allows the reconstruction of trajectories (tracks) of detected particles. The non-negligible amount of material in the tracker poses a challenge to its reconstruction and alignment. In this paper we describe methods to address this challenge. We present the track reconstruction algorithm and give insight into the alignment algorithm. We also present our CAD-to-GDML converter, an in-house tool for implementing detector geometry in the software from the CAD drawings of the detector.
Development of an Electromagnetic Microscope for Eddy Current Evaluation of Materials
1991-08-01
headed a laboratory investigating cryogenic detectors for astro-particle physics applications including the search for dark matter candidates and weakly...and L. Stodolsky, Studies of single superconducting grains for a neutrino and dark matter detector, Nucl. Inst. and Meth. A287, 583, 1990. Frank, M
PREFACE: 7th International Symposium on Large TPCs for Low-Energy Rare Event Detection
NASA Astrophysics Data System (ADS)
Colas, P.; Giomataris, I.; Irastorza, I.; Patzak, Th
2015-11-01
The seventh "International Symposium on Large TPCs for Low-Energy Rare Event Detection", took place in Paris between the 15th and 17th of December 2014 at the Institute of Astroparticle Physics (APC) campus - Paris Diderot University. As usual the conference was organized during the week before Christmas, which seems to be convenient for most of the people and occurs every two years with almost 120 participants attending. Many people contributed to the success of the conference, but the organizers would particularly like to thank the management of APC for providing the nice Buffon auditorium and infrastructure. We also acknowledge the valuable support of DSM-Irfu and the University of Zaragoza. The scientific program consisted of plenary sessions including the following topics with theoretical and experimental lectures: • Low energy neutrino physics • Neutrinoless double beta decay process • Dark matter searches • Axion and especially solar axion searches • Space experiments and gamma-ray polarimetry • New detector R&D and future experiments
Programming (Tips) for Physicists & Engineers
Ozcan, Erkcan
2018-02-19
Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.
Programming (Tips) for Physicists & Engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Erkcan
2010-07-13
Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.
KCDC — The KASCADE Cosmic-ray Data Centre
NASA Astrophysics Data System (ADS)
Haungs, A.; Blumer, J.; Fuchs, B.; Kang, D.; Schoo, S.; Wochele, D.; Wochele, J.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K. H.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Zabierowski, J.
2015-08-01
KCDC, the ‘KASCADE Cosmic-ray Data Centre’, is a web portal, where data of astroparticle physics experiments will be made available for the interested public. The KASCADE experiment, financed by public money, was a large-area detector for the measurement of high-energy cosmic rays via the detection of air showers. KASCADE and its extension KASCADE-Grande stopped finally the active data acquisition of all its components including the radio EAS experiment LOPES end of 2012 after more than 20 years of data taking. In a first release, with KCDC we provide to the public the measured and reconstructed parameters of more than 160 million air showers. In addition, KCDC provides the conceptional design, how the data can be treated and processed so that they are also usable outside the community of experts in the research field. Detailed educational examples make a use also possible for high-school students and early stage researchers.
NASA Astrophysics Data System (ADS)
Acín, V.; Bird, I.; Boccali, T.; Cancio, G.; Collier, I. P.; Corney, D.; Delaunay, B.; Delfino, M.; dell'Agnello, L.; Flix, J.; Fuhrmann, P.; Gasthuber, M.; Gülzow, V.; Heiss, A.; Lamanna, G.; Macchi, P.-E.; Maggi, M.; Matthews, B.; Neissner, C.; Nief, J.-Y.; Porto, M. C.; Sansum, A.; Schulz, M.; Shiers, J.
2015-12-01
Several scientific fields, including Astrophysics, Astroparticle Physics, Cosmology, Nuclear and Particle Physics, and Research with Photons, are estimating that by the 2020 decade they will require data handling systems with data volumes approaching the Zettabyte distributed amongst as many as 1018 individually addressable data objects (Zettabyte-Exascale systems). It may be convenient or necessary to deploy such systems using multiple physical sites. This paper describes the findings of a working group composed of experts from several
Gas mixture studies for streamer operated Resistive Plate Chambers
NASA Astrophysics Data System (ADS)
Paoloni, A.; Longhin, A.; Mengucci, A.; Pupilli, F.; Ventura, M.
2016-06-01
Resistive Plate Chambers operated in streamer mode are interesting detectors in neutrino and astro-particle physics applications (like OPERA and ARGO experiments). Such experiments are typically characterized by large area apparatuses with no stringent requirements on detector aging and rate capabilities. In this paper, results of cosmic ray tests performed on a RPC prototype using different gas mixtures are presented, the principal aim being the optimization of the TetraFluoroPropene concentration in Argon-based mixtures. The introduction of TetraFluoroPropene, besides its low Global Warming Power, is helpful because it simplifies safety requirements allowing to remove also isobutane from the mixture. Results obtained with mixtures containing SF6, CF4, CO2, N2 and He are also shown, presented both in terms of detectors properties (efficiency, multiple-streamer probability and time resolution) and in terms of streamer characteristics.
Cosmic ray astroparticle physics: current status and future perspectives
NASA Astrophysics Data System (ADS)
Donato, Fiorenza
2017-02-01
The data we are receiving from galactic cosmic rays are reaching an unprecedented precision, over very wide energy ranges. Nevertheless, many problems are still open, while new ones seem to appear when data happen to be redundant. We will discuss some paths to possible progress in the theoretical modeling and experimental exploration of the galactic cosmic radiation.
100 Years Werner Heisenberg: Works and Impact
NASA Astrophysics Data System (ADS)
Papenfuß, Dietrich; Lüst, Dieter; Schleich, Wolfgang P.
2003-09-01
Over 40 renowned scientists from all around the world discuss the work and influence of Werner Heisenberg. The papers result from the symposium held by the Alexander von Humboldt-Stiftung on the occasion of the 100th anniversary of Heisenberg's birth, one of the most important physicists of the 20th century and cofounder of modern-day quantum mechanics. Taking atomic and laser physics as their starting point, the scientists illustrate the impact of Heisenberg's theories on astroparticle physics, high-energy physics and string theory right up to processing quantum information.
Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 9)
None
2018-06-27
"Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.
Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 5)
None
2018-06-27
"Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.
Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 6)
None
2018-06-28
"Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.
EEE - Extreme Energy Events: an astroparticle physics experiment in Italian High Schools
NASA Astrophysics Data System (ADS)
Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferrarov, A.; Forster, R.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Maggiora, A.; Maron, G.; Mazziotta, M. N.; Miozzi, S.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rodriguez Rodriguez, A.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Taiuti, M.; Terreni, G.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.
2016-05-01
The Extreme Energy Events project (EEE) is aimed to study Extensive Air Showers (EAS) from primary cosmic rays of more than 1018 eV energy detecting the ground secondary muon component using an array of telescopes with high spatial and time resolution. The second goal of the EEE project is to involve High School teachers and students in this advanced research work and to initiate them in scientific culture: to reach both purposes the telescopes are located inside High School buildings and the detector construction, assembling and monitoring - together with data taking and analysis - are done by researchers from scientific institutions in close collaboration with them. At present there are 42 telescopes in just as many High Schools scattered all over Italy, islands included, plus two at CERN and three in INFN units. We report here some preliminary physics results from the first two common data taking periods together with the outreach impact of the project.
Identifying WIMP dark matter from particle and astroparticle data
NASA Astrophysics Data System (ADS)
Bertone, Gianfranco; Bozorgnia, Nassim; Kim, Jong Soo; Liem, Sebastian; McCabe, Christopher; Otten, Sydney; Ruiz de Austri, Roberto
2018-03-01
One of the most promising strategies to identify the nature of dark matter consists in the search for new particles at accelerators and with so-called direct detection experiments. Working within the framework of simplified models, and making use of machine learning tools to speed up statistical inference, we address the question of what we can learn about dark matter from a detection at the LHC and a forthcoming direct detection experiment. We show that with a combination of accelerator and direct detection data, it is possible to identify newly discovered particles as dark matter, by reconstructing their relic density assuming they are weakly interacting massive particles (WIMPs) thermally produced in the early Universe, and demonstrating that it is consistent with the measured dark matter abundance. An inconsistency between these two quantities would instead point either towards additional physics in the dark sector, or towards a non-standard cosmology, with a thermal history substantially different from that of the standard cosmological model.
From Waves to Particle Tracks and Quantum Probabilities
NASA Astrophysics Data System (ADS)
Falkenburg, Brigitte
Here, the measurement methods for identifying massive charged particles are investigated. They have been used from early cosmic ray studies up to the present day. Laws such as the classical Lorentz force and Einstein's relativistic kinematics were established before the rise of quantum mechanics. Later, it became crucial to measure the energy loss of charged particles in matter. In 1930, Bethe developed a semi-classical model based on the quantum mechanics of scattering. In the early 1930s, he and others calculated the passage of charged particles through matter including pair creation and bremsstrahlung. Due to missing trust in quantum electrodynamics, however, only semi-empirical methods were employed in order to estimate the mass and charge from the features of particle tracks. In 1932, Anderson inserted a lead plate into the cloud chamber in order to determine the flight direction and charge of the `positive electron'. In the 1940s, nuclear emulsions helped to resolve puzzles about particle identification and quantum electrodynamics. Later, the measurement theory was extended in a cumulative process by adding conservation laws for dynamic properties, probabilistic quantum formulas for resonances, scattering cross sections, etc. The measurement method was taken over from cosmic ray studies to the era of particle accelerators, and finally taken back from there to astroparticle physics. The measurement methods remained the same, but in the transition from particle to astroparticle physics the focus of interest shifted. Indeed, the experimental methods of both fields explore the grounds of `new physics' in complementary ways.
Beam Tests of the Balloon-Borne ATIC Experiment
NASA Technical Reports Server (NTRS)
Ganel, O.; Adams, J. H., Jr.; Ahn, E. J.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Chang, J.; Ellison, S.; Fazely, A.; Gould, R.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurement from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide crucial hints about some of the most fundamental questions in astroparticle physics today. ATTIC'S design centers on an 18 radiation length (X(sub Omnicron)) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75 lambda(sub int) graphite target. In September 1999 the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator, within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000 - January 2001, ATIC flew on the first of a series of long duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam-tests, including energy resolutions for electrons and protons at several beam energies from 100 GeV to 375 GeV, as well as signal linearity and collection efficiency estimates. We show how these results compare with expectations based on simulations, and their expected impacts on mission performance.
2006-03-01
the diameter. This equation is given by Sulak et. al. [1979] as: Eq 3 2 2 sin 8 o p EK cP C r d x ≅ x ’ Where sinLx π θ λ ⎛ ⎞= ⎜ ⎟ ⎝ ⎠ , L is...and others, "Sensitivity of an Underwater Acoustic Array to Ultra-High Energy Neutrinos", Astroparticle Physics, n.17, 2002. Sulak , L., Armstrong
Driving from Chicago to Buenos Aires: instrumentation courses during a road trip across the Americas
NASA Astrophysics Data System (ADS)
Izraelevitch, Federico
2017-01-01
The Escaramujo Project (www.escaramujo.net) was a series of hands-on laboratory courses on High Energy Physics and Astroparticle Instrumentation, in eight Latinamerican Institutions. The Physicist Federico Izraelevitch traveled on a van with his wife and dogs from Chicago to Buenos Aires teaching these courses. During these sessions, groups of advanced undergraduate and graduate students built a modern cosmic ray detector based on plastic scintillators and SiPMs, specifically designed for this project. With the detector as a common thread, they were able to understand the designing principles and the underlying Physics involved, build the device, start it up, characterize it, acquire data and analyze it, in the way of real particle Physics experiment. After the five-days courses, a functional detector remained at each institution to train future students and to support and enable local research activities. About a hundred talented and highly motivated students were reached out with the initiative. Besides the aims to awaken vocations in science, technology and engineering, The Escaramujo Project was an effort to strengthen the integration of academic institutions in Latin America within the international scientific community.
Liquid argon scintillation read-out with silicon devices
NASA Astrophysics Data System (ADS)
Canci, N.; Cattadori, C.; D'Incecco, M.; Lehnert, B.; Machado, A. A.; Riboldi, S.; Sablone, D.; Segreto, E.; Vignoli, C.
2013-10-01
Silicon photosensors represent a viable alternative to standard photomultipliers in fields such as communications and medical imaging. We explored the interesting possibility of using these sensors in combination with liquid argon (LAr) for astroparticle physics applications such as neutrino, dark matter and double beta decay experiments. In fact, silicon photosensors have detection efficiencies comparable with those of the highest performance PMTs and can be manufactured with high level of radiopurity. In particular within the on-going R&D activity of the SILENT project (Low background and low noise techniques for double beta decay physics funded by ASPERA) a large area SiPM (Silicon PhotoMultiplier - Hamamatsu S11828-3344M - 1.7 cm2 area) has been installed in a LAr scintillation chamber of 0.5 liters volume together with a cryogenic photomultiplier tube (Hamamatsu R11065) used as a reference. The liquid argon chamber has been exposed to many gamma sources of different energies and single photoelectron response and light yield for the SiPM and PMT have been measured and compared. In this contribution the results of the tests, and the ongoing R&D to optimize the SiPM for cryogenic and for ultralow background applications, are reported, as well as the possible application in the GERDA experiment on Double Beta Decay Searches of 76Ge.
Muon lifetime measurement in Chiapas and the Escaramujo project
Sanchez, Luis Rodolfo Perez; Izraelevitch, Federico
2017-07-05
Escaramujo is a project with the goal of promote scientific development and integration regarding science for Latin America. It consists of a series of Laboratories and Workshops for High Energy Physics, astroparticle and instrumentation, given by Federico Izraelevitch. Escaramujo has been conduced at several institutions in Latin America. In this work, the moun mean lifetime measurements performed during the workshop held in Chiapas are presented. Furthermore, the results are compared with the corresponding value reported by the Particle Data Group (PDG).
Muon lifetime measurement in Chiapas and the Escaramujo project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Luis Rodolfo Perez; Izraelevitch, Federico
Escaramujo is a project with the goal of promote scientific development and integration regarding science for Latin America. It consists of a series of Laboratories and Workshops for High Energy Physics, astroparticle and instrumentation, given by Federico Izraelevitch. Escaramujo has been conduced at several institutions in Latin America. In this work, the moun mean lifetime measurements performed during the workshop held in Chiapas are presented. Furthermore, the results are compared with the corresponding value reported by the Particle Data Group (PDG).
European Physical Society Conference on High Energy Physics
NASA Astrophysics Data System (ADS)
The European Physical Society Conference on High Energy Physics, organized by the High Energy and Particle Physics Division of the European Physical Society, is a major international conference that reviews biennially since 1971 the state of our knowledge of the fundamental constituents of matter and their interactions. The latest conferences in this series were held in Stockholm, Grenoble, Krakow, Manchester, Lisbon, and Aachen. Jointly organized by the Institute of High Energy Physics of the Austrian Academy of Sciences, the University of Vienna, the Vienna University of Technology, and the Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, the 23rd edition of this conference took place in Vienna, Austria. Among the topics covered were Accelerators, Astroparticle Physics, Cosmology and Gravitation, Detector R&D and Data Handling, Education and Outreach, Flavour Physics and Fundamental Symmetries, Heavy Ion Physics, Higgs and New Physics, Neutrino Physics, Non-Perturbative Field Theory and String Theory, QCD and Hadronic Physics, as well as Top and Electroweak Physics.
Supersymmetry, Supergravity, and Unification
NASA Astrophysics Data System (ADS)
Nath, Pran
2016-12-01
Dedication; Preface; 1. A brief history of unification; 2. Gravitation; 3. Non-abelian gauge theory; 4. Spontaneous breaking of global and local symmetries; 5. The Standard Model; 6. Anomalies; 7. Effective Lagrangians; 8. Supersymmetry; 9. Grand unification; 10. MSSM Lagrangian; 11. N = 1 supergravity; 12. Coupling of supergravity with matter and gauge fields; 13. Supergravity grand unification; 14. Phenomenology of supergravity grand unification; 15. CP violation in supergravity unified theories; 16. Proton stability in supergravity unified theories; 17. Cosmology, astroparticle physics and SUGRA unification; 18. Extended supergravities and supergravities from superstrings; 19. Specialized topics; 20. The future of unification; 21. Appendices; 22. Notations, conventions, and formulae; 23. Physical constants; 24. List of books and reviews for further reading; Index.
A Web-Based Development Environment for Collaborative Data Analysis
NASA Astrophysics Data System (ADS)
Erdmann, M.; Fischer, R.; Glaser, C.; Klingebiel, D.; Komm, M.; Müller, G.; Rieger, M.; Steggemann, J.; Urban, M.; Winchen, T.
2014-06-01
Visual Physics Analysis (VISPA) is a web-based development environment addressing high energy and astroparticle physics. It covers the entire analysis spectrum from the design and validation phase to the execution of analyses and the visualization of results. VISPA provides a graphical steering of the analysis flow, which consists of self-written, re-usable Python and C++ modules for more demanding tasks. All common operating systems are supported since a standard internet browser is the only software requirement for users. Even access via mobile and touch-compatible devices is possible. In this contribution, we present the most recent developments of our web application concerning technical, state-of-the-art approaches as well as practical experiences. One of the key features is the use of workspaces, i.e. user-configurable connections to remote machines supplying resources and local file access. Thereby, workspaces enable the management of data, computing resources (e.g. remote clusters or computing grids), and additional software either centralized or individually. We further report on the results of an application with more than 100 third-year students using VISPA for their regular particle physics exercises during the winter term 2012/13. Besides the ambition to support and simplify the development cycle of physics analyses, new use cases such as fast, location-independent status queries, the validation of results, and the ability to share analyses within worldwide collaborations with a single click become conceivable.
"Lomonosov" Satellite—Space Observatory to Study Extreme Phenomena in Space
NASA Astrophysics Data System (ADS)
Sadovnichii, V. A.; Panasyuk, M. I.; Amelyushkin, A. M.; Bogomolov, V. V.; Benghin, V. V.; Garipov, G. K.; Kalegaev, V. V.; Klimov, P. A.; Khrenov, B. A.; Petrov, V. L.; Sharakin, S. A.; Shirokov, A. V.; Svertilov, S. I.; Zotov, M. Y.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Lee, J.; Jeong, S.; Kim, M. B.; Jeong, H. M.; Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Runov, A.; Turner, D.; Strangeway, R. J.; Caron, R.; Biktemerova, S.; Grinyuk, A.; Lavrova, M.; Tkachev, L.; Tkachenko, A.; Martinez, O.; Salazar, H.; Ponce, E.
2017-11-01
The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organizations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-Zatsepin-Kuzmin (GZK) cutoff; Ultraviolet (UV) transient luminous events in the upper atmosphere; Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments.
Multi-Messenger Astronomy and Dark Matter
NASA Astrophysics Data System (ADS)
Bergström, Lars
This chapter presents the elaborated lecture notes on Multi-Messenger Astronomy and Dark Matter given by Lars Bergström at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". One of the main problems of astrophysics and astro-particle physics is that the nature of dark matter remains unsolved. There are basically three complementary approaches to try to solve this problem. One is the detection of new particles with accelerators, the second is the observation of various types of messengers from radio waves to gamma-ray photons and neutrinos, and the third is the use of ingenious experiments for direct detection of dark matter particles. After giving an introduction to the particle universe, the author discusses the relic density of particles, basic cross sections for neutrinos and gamma-rays, supersymmetric dark matter, detection methods for neutralino dark matter, particular dark matter candidates, the status of dark matter detection, a detailled calculation on an hypothetical "Saas-Fee Wimp", primordial black holes, and gravitational waves.
Towards a muon radiography of the Puy de Dôme
NASA Astrophysics Data System (ADS)
Cârloganu, C.; Niess, V.; Béné, S.; Busato, E.; Dupieux, P.; Fehr, F.; Gay, P.; Miallier, D.; Vulpescu, B.; Boivin, P.; Combaret, C.; Labazuy, P.; Laktineh, I.; Lénat, J.-F.; Mirabito, L.; Portal, A.
2013-02-01
High-energy (above a few hundred GeV) atmospheric muons are a natural probe for geophysical studies. They can travel through kilometres of rock allowing for a radiography of the density distribution within large structures, like mountains or volcanoes. A collaboration between volcanologists, astroparticle and particle physicists, Tomuvol was formed in 2009 to study tomographic muon imaging of volcanoes with high-resolution, large-scale tracking detectors. We report on two campaigns of measurements at the flank of the Puy de Dôme using glass resistive plate chambers (GRPCs) developed for particle physics, within the CALICE collaboration.
Towards a muon radiography of the Puy de Dôme
NASA Astrophysics Data System (ADS)
Cârloganu, C.; Niess, V.; Béné, S.; Busato, E.; Dupieux, P.; Fehr, F.; Gay, P.; Miallier, D.; Vulpescu, B.; Boivin, P.; Combaret, C.; Labazuy, P.; Laktineh, I.; Lénat, J.-F.; Mirabito, L.; Portal, A.
2012-09-01
High energy (above 100 GeV) atmospheric muons are a natural probe for geophysical studies. They can travel through kilometres of rock allowing for a radiography of the density distribution within large structures, like mountains or volcanoes. A collaboration between volcanologists, astroparticle and particle physicists, TOMUVOL, was formed in 2009 to study tomographic muon imaging of volcanoes with high resolution, large scale tracking detectors. We report on two campaigns of measurements at the flank of the Puy de Dôme using Glass Resistive Plate Chambers (GRPCs) developed for Particle Physics, within the CALICE collaboration.
None
2017-12-09
Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.
NASA Astrophysics Data System (ADS)
The Workshop continues a series of workshops started by the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) in 1985 and conceived with the purpose of presenting topics of current interest and providing a stimulating environment for scientific discussion on new developments in theoretical and experimental high energy physics and physical programs for future colliders. Traditionally the list of workshop attendees includes a great number of active young scientists and students from Russia and other countries. This year the Workshop is organized jointly by the SINP MSU and the SPbSU and it will take place in the holiday hotel "Baltiets" situated in a picturesque place of the Karelian Isthmus on the shore of the Gulf of Finland in the suburb of the second largest Russian city Saint Petersburg. Scientific program, the main topics to be covered are: * Higgs searches and other experimental results from the LHC and the Tevatron; impact of the Higgs-like boson observed * Physics prospects at Linear Colliders and super B-factories * Extensions of the Standard Model and their phenomenological consequences at the LHC and Linear Colliders * Higher order corrections and resummations for collider phenomenology * Automatic calculations and Monte Carlo simulations in high energy physics * LHC/LC and astroparticle/cosmology connections * Modern nuclear physics and relativistic nucleous-nucleous collisions * Detectors for future experiments in high energy physics The Workshop will include plenary and two parallel afternoon sessions. The plenary sessions will consist of invited lectures. The afternoon sessions will include original talks. Further details are given at http://qfthep.sinp.msu.ru
Cryogenic readout techniques for germanium detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benato, G.; Cattadori, C.; Di Vacri, A.
High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN -more » Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)« less
NASA Astrophysics Data System (ADS)
Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Myers, I.; Minamino, M.; Miyata, K.; Murano, Y.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Sonley, T. J.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.
2013-08-01
We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment, we describe the data analysis and event reconstruction procedures. Since the aperture of the experiment must be calculated by Monte Carlo simulation, we describe this calculation and the comparisons of simulated and real data used to verify the validity of the aperture calculation. Finally, we present the energy spectrum calculated from the merged monocular data sets of the two FADC-based detectors, and also the combination of this merged spectrum with an independent, previously published monocular spectrum measurement performed by Telescope Array's third fluorescence detector [T. Abu-Zayyad et al., The energy spectrum of Telescope Array's middle drum detector and the direct comparison to the high resolution fly's eye experiment, Astroparticle Physics 39 (2012) 109-119, http://dx.doi.org/10.1016/j.astropartphys.2012.05.012, Available from:
Real Time Conference 2016 Overview
NASA Astrophysics Data System (ADS)
Luchetta, Adriano
2017-06-01
This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.
NASA Astrophysics Data System (ADS)
Klimentov, A.; De, K.; Jha, S.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Wells, J.; Wenaus, T.
2016-10-01
The.LHC, operating at CERN, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than grid can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility. Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full pro duction for the ATLAS since September 2015. We will present our current accomplishments with running PanDA at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.
The Escaramujo Project: Instrumentation Courses During a Road Trip Across the Americas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izraelevitch, Federico
The Escaramujo Project was a series of eight hands-on laboratory courses on High Energy Physics and Astroparticle Instrumentation, in Latinamerican Institutions. The Physicist Federico Izraelevitch traveled on a van with his wife and dogs from Chicago to Buenos Aires teaching the courses. The sessions took place at Institutions in Mexico, Guatemala, Costa Rica, Colombia, Ecuador, Peru and Bolivia at an advanced undergraduate and graduate level. During these workshops, each group built a modern cosmic ray detector based on plastic scintillator and silicon photomultipliers, designed specifically for this project. After the courses, a functional detector remained at each institution to bemore » used by the faculty to facilitate the training of future students and to support and enable local research activities. The five-days workshops covered topics such as elementary particle and cosmic ray Physics, radiation detection and instrumentation, low-level light sensing with solid state devices, front-end analog electronics and object-oriented data analysis (C++ and ROOT). Throughout this initiative, about a hundred of talented and highly motivated young students were reached. With the detector as a common thread, they were able to understand the designing principles and the underlying Physics involved in it, build the device, start it up, characterize it, take data and analyze it, mimicking the stages of a real elementary particle Physics experiment. Besides the aims to awaken vocations in science, technology and engineering, The Escaramujo Project was an effort to strengthen the integration of Latinamerican academic institutions into the international scientific community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-06-02
Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st.more » Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covi, Laura; Hasenkamp, J.
2010-06-02
Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology. Extra dimensions; Electroweak symmetry breaking; LHC and Tevatron Physics; Collider physics; Flavor & neutrinos physics Astroparticle & cosmology; Gravity & holography; BStrongly coupled physics & CFT. Registration: registration will be open until May 1st.more » Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by; the Marie Curie Initial Training Network UNILHC PITN-GA-2009-23792; the ERC Advanced Grant "MassTeV" 226371; and the CERN-TH unit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murayama, Hitoshi
2010-06-02
Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: SupersymmetrySupergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registrationmore » fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by; the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, the ERC Advanced Grant "MassTeV" 226371, and the CERN-TH unit.« less
Critical thinking in physics education
NASA Astrophysics Data System (ADS)
Sadidi, Farahnaz
2016-07-01
We agree that training the next generation of leaders of the society, who have the ability to think critically and form a better judgment is an important goal. It is a long-standing concern of Educators and a long-term desire of teachers to establish a method in order to teach to think critically. To this end, many questions arise on three central aspects: the definition, the evaluation and the design of the course: What is Critical Thinking? How can we define Critical Thinking? How can we evaluate Critical Thinking? Therefore, we want to implement Critical Thinking in physics education. How can we teach for Critical Thinking in physics? What should the course syllabus and materials be? We present examples from classical physics and give perspectives for astro-particle physics. The main aim of this paper is to answer the questions and provide teachers with the opportunity to change their classroom to an active one, in which students are encouraged to ask questions and learn to reach a good judgment. Key words: Critical Thinking, evaluation, judgment, design of the course.
Integration of Panda Workload Management System with supercomputers
NASA Astrophysics Data System (ADS)
De, K.; Jha, S.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Nilsson, P.; Novikov, A.; Oleynik, D.; Panitkin, S.; Poyda, A.; Read, K. F.; Ryabinkin, E.; Teslyuk, A.; Velikhov, V.; Wells, J. C.; Wenaus, T.
2016-09-01
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), Supercomputer at the National Research Center "Kurchatov Institute", IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run singlethreaded workloads in parallel on Titan's multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms. We will present our current accomplishments in running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facility's infrastructure for High Energy and Nuclear Physics, as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.
Advances in Multi-Pixel Photon Counter technology: First characterization results
NASA Astrophysics Data System (ADS)
Bonanno, G.; Marano, D.; Romeo, G.; Garozzo, S.; Grillo, A.; Timpanaro, M. C.; Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G.
2016-01-01
Due to the recent advances in silicon photomultiplier technology, new types of Silicon Photomultiplier (SiPM), also named Multi-Pixel Photon Counter (MPPC) detectors have become recently available, demonstrating superior performance in terms of their most important electrical and optical parameters. This paper presents the latest characterization results of the novel Low Cross-Talk (LCT) MPPC families from Hamamatsu, where a noticeable fill-factor enhancement and cross-talk reduction is achieved. In addition, the newly adopted resin coating has been proven to yield improved photon detection capabilities in the 280-320 nm spectral range, making the new LCT MPPCs particularly suitable for emerging applications like Cherenkov Telescope Array, and Astroparticle Physics.
A multipurpose computing center with distributed resources
NASA Astrophysics Data System (ADS)
Chudoba, J.; Adam, M.; Adamová, D.; Kouba, T.; Mikula, A.; Říkal, V.; Švec, J.; Uhlířová, J.; Vokáč, P.; Svatoš, M.
2017-10-01
The Computing Center of the Institute of Physics (CC IoP) of the Czech Academy of Sciences serves a broad spectrum of users with various computing needs. It runs WLCG Tier-2 center for the ALICE and the ATLAS experiments; the same group of services is used by astroparticle physics projects the Pierre Auger Observatory (PAO) and the Cherenkov Telescope Array (CTA). OSG stack is installed for the NOvA experiment. Other groups of users use directly local batch system. Storage capacity is distributed to several locations. DPM servers used by the ATLAS and the PAO are all in the same server room, but several xrootd servers for the ALICE experiment are operated in the Nuclear Physics Institute in Řež, about 10 km away. The storage capacity for the ATLAS and the PAO is extended by resources of the CESNET - the Czech National Grid Initiative representative. Those resources are in Plzen and Jihlava, more than 100 km away from the CC IoP. Both distant sites use a hierarchical storage solution based on disks and tapes. They installed one common dCache instance, which is published in the CC IoP BDII. ATLAS users can use these resources using the standard ATLAS tools in the same way as the local storage without noticing this geographical distribution. Computing clusters LUNA and EXMAG dedicated to users mostly from the Solid State Physics departments offer resources for parallel computing. They are part of the Czech NGI infrastructure MetaCentrum with distributed batch system based on torque with a custom scheduler. Clusters are installed remotely by the MetaCentrum team and a local contact helps only when needed. Users from IoP have exclusive access only to a part of these two clusters and take advantage of higher priorities on the rest (1500 cores in total), which can also be used by any user of the MetaCentrum. IoP researchers can also use distant resources located in several towns of the Czech Republic with a capacity of more than 12000 cores in total.
Preliminary status of the CALET observations
NASA Astrophysics Data System (ADS)
Torii, Shoji
2016-07-01
The CALorimetric Electron Telescope (CALET) space experiment, which has been developed by Japan in collaboration with Italy and the United States, is a high-energy astroparticle physics mission to be installed on the International Space Station (ISS). The primary goals of the CALET mission include investigating possible nearby sources of high energy electrons, studying the details of galactic particle propagation and searching for dark matter signatures. During a two- year mission, extendable to five years, the CALET experiment will measure the flux of cosmic-ray electrons (including positrons) to 20 TeV, gamma-rays to 10 TeV and nuclei with Z=1 to 40 up to several 100 TeV. The instrument consists of two layers of segmented plastic scintillators for the cosmic-ray charge identification (CHD), a 3 radiation length thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 radiation length thick lead-tungstate calorimeter (TASC). CALET has sufficient depth, imaging capabilities and excellent energy resolution to allow for a clear separation between hadrons and electrons and between charged particles and gamma rays. The instrument was launched on Aug. 19, 2015 to the ISS with HTV-5 (H-II Transfer Vehicle 5) and was successfully berthed to the Japanese Experiment Module- Exposure Facility (JEM-EF) . After a functional check-out phase until the beginning of October, it started an initial operation phase which was completed on Nov. 17, whence it began its standard operation phase. This paper will review the preliminary status of the CALET.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, K; Jha, S; Klimentov, A
2016-01-01
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), MIRA supercomputer at Argonne Leadership Computing Facilities (ALCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava and others). Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full production for the ATLAS experiment since September 2015. We will present our current accomplishments with running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.« less
NECTAr: New electronics for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Vorobiov, S.; Bolmont, J.; Corona, P.; Delagnes, E.; Feinstein, F.; Gascón, D.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Sanuy, A.; Toussenel, F.; Vincent, P.
2011-05-01
The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few μs readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.
PeV IceCube signals and Dark Matter relic abundance in modified cosmologies
NASA Astrophysics Data System (ADS)
Lambiase, G.; Mohanty, S.; Stabile, An.
2018-04-01
The discovery by the IceCube experiment of a high-energy astrophysical neutrino flux with energies of the order of PeV, has opened new scenarios in astroparticles physics. A possibility to explain this phenomenon is to consider the minimal models of Dark Matter (DM) decay, the 4-dimensional operator ˜ y_{α χ }\\overline{{L_{L_{α }}}} H χ , which is also able to generate the correct abundance of DM in the Universe. Assuming that the cosmological background evolves according to the standard cosmological model, it follows that the rate of DM decay Γ _χ ˜ |y_{α χ }|^2 needed to get the correct DM relic abundance (Γ _χ ˜ 10^{-58}) differs by many orders of magnitude with respect that one needed to explain the IceCube data (Γ _χ ˜ 10^{-25}), making the four-dimensional operator unsuitable. In this paper we show that assuming that the early Universe evolution is governed by a modified cosmology, the discrepancy between the two the DM decay rates can be reconciled, and both the IceCube neutrino rate and relic density can be explained in a minimal model.
The Cosmic Microwave Background Radiation and its Polarization
NASA Astrophysics Data System (ADS)
Wollack, Edward
2016-03-01
The cosmic microwave background (CMB) radiation and its faint polarization have provided a unique means to constrain the physical state of the early Universe. Continued advances in instrumentation, observation, and analysis have revealed polarized radiation signatures associated with gravitational lensing and have heightened the prospects for using precision polarimetry to experimentally confront the inflationary paradigm. Characterization of this relic radiation field has the power to constrain or reveal the detailed properties of astroparticle species and long wave gravitational radiation. On going and planned CMB polarization efforts from the ground, balloon, and space borne platforms will be briefly surveyed. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be summarized. NASA PCOS mini-symposium (invited IPSIG talk).
Ultra-high energy cosmic rays from white dwarf pulsars and the Hillas criterion
NASA Astrophysics Data System (ADS)
Lobato, Ronaldo V.; Coelho, Jaziel G.; Malheiro, M.
2017-06-01
The origins of ultra-high-energy cosmic rays (E ≳ 1019 eV) are a mystery and still under debate in astroparticle physics. In recent years some efforts were made to understand their nature. In this contribution we consider the possibility of Some Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) beeing white dwarf pulsars, and show that these sources can achieve large electromagnetic potentials on their surface that accelerate particle almost at the speed of light, with energies E ~ 1020-21 eV. The sources SGRs/AXPs considered as highly magnetized white dwarfs are well described in the Hillas diagram, lying close to the AR Sorpii and AE Aquarii which are understood as white dwarf pulsars.
Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Anzhong
This final report describes the activities of the Baylor University Gravity, Cosmology and Astroparticle Physics (GCAP) group on the project: Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics, during the time, August 15, 2010 - August 14, 2014. We are grateful for the financial support provided by the U.S. Department of Energy for this research, which leads to our exceptional success. We are very proud to say that we have achieved all the goals set up in our project and made significant contributions to the understanding of the field. In particular, with this DOE support, we have published 38 articlesmore » in the prestigious national/international journals, which have already received about 1000 citations so far.« less
The CosmicWatch Desktop Muon Detector: a self-contained, pocket sized particle detector
NASA Astrophysics Data System (ADS)
Axani, S. N.; Frankiewicz, K.; Conrad, J. M.
2018-03-01
The CosmicWatch Desktop Muon Detector is a self-contained, hand-held cosmic ray muon detector that is valuable for astro/particle physics research applications and outreach. The material cost of each detector is under 100 and it takes a novice student approximately four hours to build their first detector. The detectors are powered via a USB connection and the data can either be recorded directly to a computer or to a microSD card. Arduino- and Python-based software is provided to operate the detector and an online application to plot the data in real-time. In this paper, we describe the various design features, evaluate the performance, and illustrate the detectors capabilities by providing several example measurements.
NASA Astrophysics Data System (ADS)
Gendre, B.; Giommi, P.
2010-12-01
The ASI Science Data Center (ASDC, www.asdc.asi.it), a facility of the Italian Space Agency (ASI) is a multi-mission science operations, data processing and data archiving center that provides support to several scientific space missions. At the moment the ASDC has significant responsibilities for a number of high-energy astronomy/astroparticle satellites (e.g. Swift, AGILE, Fermi, NuSTAR and AMS) and supports at different level other missions like, Herschel and Planck. The ASDC was established in 2000 based on the experience built with the management of the BeppoSAX Science Data Center. It is located at the ESA site of ESRIN in Frascati, near Rome (Italy).
A model to forecast data centre infrastructure costs.
NASA Astrophysics Data System (ADS)
Vernet, R.
2015-12-01
The computing needs in the HEP community are increasing steadily, but the current funding situation in many countries is tight. As a consequence experiments, data centres, and funding agencies have to rationalize resource usage and expenditures. CC-IN2P3 (Lyon, France) provides computing resources to many experiments including LHC, and is a major partner for astroparticle projects like LSST, CTA or Euclid. The financial cost to accommodate all these experiments is substantial and has to be planned well in advance for funding and strategic reasons. In that perspective, leveraging infrastructure expenses, electric power cost and hardware performance observed in our site over the last years, we have built a model that integrates these data and provides estimates of the investments that would be required to cater to the experiments for the mid-term future. We present how our model is built and the expenditure forecast it produces, taking into account the experiment roadmaps. We also examine the resource growth predicted by our model over the next years assuming a flat-budget scenario.
INTEGRATION OF PANDA WORKLOAD MANAGEMENT SYSTEM WITH SUPERCOMPUTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, K; Jha, S; Maeno, T
Abstract The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the funda- mental nature of matter and the basic forces that shape our universe, and were recently credited for the dis- covery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Datamore » Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data cen- ters are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Com- puting Facility (OLCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single- threaded workloads in parallel on Titan s multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms. We will present our current accom- plishments in running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facility s infrastructure for High Energy and Nuclear Physics, as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.« less
The Vacuum Silicon Photomultiplier Tube (VSiPMT): A new version of a hybrid photon detector
NASA Astrophysics Data System (ADS)
Russo, Stefano; Barbarino, Giancarlo; de Asmundis, Riccardo; De Rosa, Gianfranca
2010-11-01
The future astroparticle experiments will study both energetic phenomena and extremely rare events from astrophysical sources. Since most of these families of experiments are carried out by using scintillation phenomena, Cherenkov or fluorescence radiation, the development of photosensitive detectors seems to be the right way to increase the experimental sensitivity. Therefore we propose an innovative design for a modern, high gain, silicon-based Vacuum Silicon Photomultiplier Tube (VSiPMT), which combines three fully established and well-understood technologies: the manufacture of hemispherical vacuum tubes with the possibility of very large active areas, the photocathode glass deposition and the novel Geiger-mode avalanche silicon photodiode (G-APD) for which a mass production is today available. This new design, based on G-APD as the electron multiplier, allows overcoming the limits of a classical PMT dynode chain.
Roadmap for the international, accelerator-based neutrino programme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, J.; de Gouvêa, A.; Duchesneau, D.
In line with its terms of reference the ICFA Neutrino Panel has developed a roadmap for the international, accelerator-based neutrino programme. A "roadmap discussion document" was presented in May 2016 taking into account the peer-group-consultation described in the Panel's initial report. The "roadmap discussion document" was used to solicit feedback from the neutrino community---and more broadly, the particle- and astroparticle-physics communities---and the various stakeholders in the programme. The roadmap, the conclusions and recommendations presented in this document take into account the comments received following the publication of the roadmap discussion document. With its roadmap the Panel documents the approved objectivesmore » and milestones of the experiments that are presently in operation or under construction. Approval, construction and exploitation milestones are presented for experiments that are being considered for approval. The timetable proposed by the proponents is presented for experiments that are not yet being considered formally for approval. Based on this information, the evolution of the precision with which the critical parameters governinger the neutrino are known has been evaluated. Branch or decision points have been identified based on the anticipated evolution in precision. The branch or decision points have in turn been used to identify desirable timelines for the neutrino-nucleus cross section and hadro-production measurements that are required to maximise the integrated scientific output of the programme. The branch points have also been used to identify the timeline for the R&D required to take the programme beyond the horizon of the next generation of experiments. The theory and phenomenology programme, including nuclear theory, required to ensure that maximum benefit is derived from the experimental programme is also discussed.« less
GAMBIT: the global and modular beyond-the-standard-model inference tool
NASA Astrophysics Data System (ADS)
Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian
2017-11-01
We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present first GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.
NASA Astrophysics Data System (ADS)
Rich, Grayson Currie
The COHERENT Collaboration has produced the first-ever observation, with a significance of 6.7sigma, of a process consistent with coherent, elastic neutrino-nucleus scattering (CEnuNS) as first predicted and described by D.Z. Freedman in 1974. Physics of the CEnuNS process are presented along with its relationship to future measurements in the arenas of nuclear physics, fundamental particle physics, and astroparticle physics, where the newly-observed interaction presents a viable tool for investigations into numerous outstanding questions about the nature of the universe. To enable the CEnuNS observation with a 14.6-kg CsI[Na] detector, new measurements of the response of CsI[Na] to low-energy nuclear recoils, which is the only mechanism by which CEnuNS is detectable, were carried out at Triangle Universities Nuclear Laboratory; these measurements are detailed and an effective nuclear-recoil quenching factor of 8.78 +/- 1.66% is established for CsI[Na] in the recoil-energy range of 5-30 keV, based on new and literature data. Following separate analyses of the CEnuNS-search data by groups at the University of Chicago and the Moscow Engineering and Physics Institute, information from simulations, calculations, and ancillary measurements were used to inform statistical analyses of the collected data. Based on input from the Chicago analysis, the number of CEnuNS events expected from the Standard Model is 173 +/- 48; interpretation as a simple counting experiment finds 136 +/- 31 CEnuNS counts in the data, while a two-dimensional, profile likelihood fit yields 134 +/- 22 CEnuNS counts. Details of the simulations, calculations, and supporting measurements are discussed, in addition to the statistical procedures. Finally, potential improvements to the CsI[Na]-based CEnuNS measurement are presented along with future possibilities for COHERENT Collaboration, including new CEnuNS detectors and measurement of the neutrino-induced neutron spallation process.
LAGUNA DESIGN STUDY, Underground infrastructures and engineering
NASA Astrophysics Data System (ADS)
Nuijten, Guido Alexander
2011-07-01
The European Commission has awarded the LAGUNA project a grant of 1.7 million euro for a Design Study from the seventh framework program of research and technology development (FP7-INFRASTRUCTURES - 2007-1) in 2008. The purpose of this two year work is to study the feasibility of the considered experiments and prepare a conceptual design of the required underground infrastructure. It is due to deliver a report that allows the funding agencies to decide on the realization of the experiment and to select the site and the technology. The result of this work is the first step towards fulfilling the goals of LAGUNA. The work will continue with EU funding to study the possibilities more thoroughly. The LAGUNA project is included in the future plans prepared by European funding organizations. (Astroparticle physics in Europe). It is recommended that a new large European infrastructure is put forward, as a future international multi-purpose facility for improved studies on proton decay and low-energy neutrinos from astrophysical origin. The three detection techniques being studied for such large detectors in Europe, Water-Cherenkov (like MEMPHYS), liquid scintillator (like LENA) and liquid argon (like GLACIER), are evaluated in the context of a common design study which should also address the underground infrastructure and the possibility of an eventual detection of future accelerator neutrino beams. The design study is also to take into account worldwide efforts and converge, on a time scale of 2010, to a common proposal.
Detectability of galactic supernova neutrinos coherently scattered on xenon nuclei in XMASS
NASA Astrophysics Data System (ADS)
Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakagawa, K.; Nakahata, M.; Norita, T.; Ogawa, H.; Sekiya, H.; Takachio, O.; Takeda, A.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Tasaka, S.; Liu, J.; Martens, K.; Suzuki, Y.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Onishi, Y.; Takeuchi, Y.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Itow, Y.; Kegasa, R.; Kobayashi, K.; Masuda, K.; Takiya, H.; Uchida, H.; Nishijima, K.; Fujii, K.; Murayama, I.; Nakamura, S.; Xmass Collaboration
2017-03-01
The coherent elastic neutrino-nucleus scattering (CEvNS) plays a crucial role at the final evolution of stars. The detection of it would be of importance in astroparticle physics. Among all available neutrino sources, galactic supernovae give the highest neutrino flux in the MeV range. Among all liquid xenon dark matter experiments, XMASS has the largest sensitive volume and light yield. The possibility to detect galactic supernova via the CEvNS-process on xenon nuclei in the current XMASS detector was investigated. The total number of events integrated in about 18 s after the explosion of a supernova 10 kpc away from the Earth was expected to be from 3.5 to 21.1, depending on the supernova model used to predict the neutrino flux, while the number of background events in the same time window was measured to be negligible. All lead to very high possibility to detect CEvNS experimentally for the first time utilizing the combination of galactic supernovae and the XMASS detector. In case of a supernova explosion as close as Betelgeuse, the total observable events can be more than ∼ 104, making it possible to distinguish different supernova models by examining the evolution of neutrino event rate in XMASS.
NASA Astrophysics Data System (ADS)
Bottino, Alessandro; Coccia, Eugenio; Morales, Julio; Puimedónv, Jorge
2006-04-01
The ninth meeting of the TAUP Workshop Series, TAUP 2005, was organized by the University of Zaragoza and Laboratorio Subterráneo de Canfranc, jointly with the Laboratori Nazionali del Gran Sasso of the Italian Institute of Nuclear Physics (INFN). It was dedicated to the memory of professor Angel Morales, co-founder of the TAUP Series and a central figure in the scientific shaping and organization of the TAUP conferences since their inception in 1989. He and his group of collaborators laid, twenty years ago, the foundations of underground physics in Spain. To have TAUP 2005 hosted by the University of Zaragoza was a tangible way of honouring his memory. The Conference was concluded by a visit to the new installations of the Canfranc Laboratory, where a memorial ceremony was held in honour of Angel Morales, the driving force for the creation of that Laboratory. In TAUP 2005 all the various aspects of Astroparticle Physics have been covered, from Cosmology and Dark Constituents, to Gravitational Waves, to Neutrino Physics and Astrophysics, to High Energy Astrophysics, to Cosmic Rays and Gamma-Rays Astronomy. New and important scientific results were presented and debated in the plenary review talks and in a very large number of contributions in topical parallel sessions. As editors of these proceedings, we hope that this volume, which contains most of the talks and contributions presented at TAUP 2005, will provide a detailed state-of-the-art account of the various facets of Astroparticle Physics. We thank all the invited speakers and contributors who made this possible. Full coverage of the transparencies presented at the conference can be found on the website http://www.unizar.es/taup2005. At TAUP 2005 a memorial lecture was delivered by Art McDonald to commemorate John Bahcall, who passed away prematurely in August 2005. In this talk, his figure, as a pioneer and leader in the fields of Neutrino Physics, Astronomy and Astrophysics and as a man of great personal qualities, was illustrated. The TAUP Steering Committee recalls with deep gratitude that John Bahcall served continuously as a member of the TAUP International Advisory Committee and that he gave an inspired and brilliant conclusive talk at TAUP 2003 in Seattle. Our astroparticle community will miss him greatly. The TAUP 2005 Organizing Committee thanks Ministerio de Educación y Ciencia, Gobierno de Aragón, Zaragoza University, INFN, IUPAP, PaNAGIC and Ibercaja for sponsoring the Conference, and the Rector and Vice-Rector of the Zaragoza University for their hospitality in the magnificent Paraninfo Palace, where the meeting was held. We wish to thank Venya Berezinsky, José Bernabéu and José Angel Villar for their invaluable contribution in the scientific shaping of the conference and in the preparation of the present volume. Very special thanks are due to Ms Mercedes Fatás and Ms Franca Masciulli, our workshop secretaries, for their continuous and excellent work in the organization of the conference, and to Ms Leopolda Benazzato for her invaluable assistance during the conference. We also gratefully thank the technical staff: Cristina Gil, Francisco Javier Mena and Alfonso Ortiz de Solórzano for their invaluable help. As announced at the end of the conference, TAUP 2007 will be held in Sendai, Japan, hosted by the Tohoku University with the chairs of Professors Atsuto Suzuki and Kunio Inoue. COMMITTEES TAUP STEERING COMMITTEE F. T. Avignone, U. South Carolina B. Barish, CALTECH E. Bellotti, U. Milano/INFN J. Bernabéu, U. Valenciav A. Bottino (chair), U. Torino/INFN V. de Alfaro, U. Torino/INFN T. Kajita, ICRR Tokyo C. W. Kim, JHU Baltimore/KIAS Seoul E. Lorenz U. München V. Matveev, INR Moscow J. Morales, U. Zaragoza D. Sinclair, U. Carleton TAUP 2005 INTERNATIONAL ADVISORY COMMITTEE J. J. Aubert, CNRS Marseille J. Bahcall, U. Princeton M. Baldo-Ceolin, U. Padova/INFN L. Bergström, U. Stockholm R. Bernabei, U. Roma Tor Vergata/INFN A. Bettini, U. Padova/INFN S. Bilenky, JINR Dubna/ICTP Trieste D. O. Caldwell, U.C. Santa Barbara J. Cronin, U. Chicago A. Dar, Technion Haifa G. Domogatsky, INR Moscow H. Ejiri, U. Osaka J. Ellis, CERN E. Fernández, IFAE Barcelona E. Fiorini, U. Milano/INFN G. Fogli, U. Bari/INFN M. Fukushima, ICCR Tokyo T. Gaisser, U. Delaware G. Gelmini, UCLA A. Giazotto, INFN, Pisa F. Halzen, U. Wisconsin W. Haxton, U. Washington E. Iarocci, U. Roma/INFN T. Kirsten, MPI Heidelberg L. Maiani, U. Roma/INFN A. McDonald, Queen's U. L. Mosca, Saclay/LSM Frejus E. Peterson, U. Minneapolis/Soudan R. Petronzio, INFN/U. Roma Tor Vergata G. Raffelt, MPI München R. Rebolo, IAC Tenerife L. Resvanis, U. Athens P. Salati, U. Savoie/LAPTH Annecy A. Smirnov, ICTP Trieste N. Spooner, U. Sheffield S. Ting, MIT/CERN M. S. Turner, FNAL/U. Chicago J.W.F. Valle, IFIC Valencia D. Vignaud, CdF Paris F. von Feilitzsch, T.U. München G. Zatsepin, INR Moscow TAUP 2005 ORGANIZING COMMITTEE V.S. Berezinsky, INFN/LNGS J. Bernabéu, U. Valencia A. Bottino, U. Torino/INFN E. Coccia (co-chair), INFN/LNGS/U. Roma Tor Vergata J. Morales (co-chair), U. Zaragoza J. Puimed¢n (scientific secretary), U. Zaragoza J. A. Villar, U. Zaragoza
Extended fusion yield integral using pathway idea in case of Shock-compressed heated plasma
NASA Astrophysics Data System (ADS)
Kumar, Dilip; Haubold, Hans
The extended non-resonant thermonuclear reaction rate probability integral obtained in Haubold and Kumar [Haubold, H.J. and Kumar, D.: 2008, Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions, Astroparticle Physics, 29, 70-76] is used to evaluate the fusion energy by itegrating it over temperature. The closed form representation of the extended reaction rate integral via Meijer's G-function is expressed as a solution of a homogeneous differential equation. A physical model of Guderley[Guderley G. :1942, Starke kugelige und zylindrische Verdichtungsstsse in der Nhe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung, 19, 302] has been considered for the laser driven hydrodynamical process in a compressed fusion plasma and heated strong spherical shock wave. The fusion yield integral obtained in the paper is compared with the standard fusion yield ob-tained by Haubold and John [Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 5, 399-411]. The pathway parameter used in this paper is given an interpretation in terms of moments.
Computational modelling of cosmic rays in the neighbourhood of the Sun
NASA Astrophysics Data System (ADS)
Potgieter, M. S.; Strauss, R. D.
2017-10-01
The heliosphere is defned as the plasmatic inuence sphere of the Sun and stretches far beyond the solar system. Cosmic rays, as charged particles with energy between about 1 MeV and millions of GeV, arriving from our own Galaxy and beyond, penetrate the heliosphere and encounter the solar wind and embedded magnetic feld so that when observed they contain useful information about the basic features of the heliosphere. In order to interpret these observations, obtained on and near the Earth and farther away by several space missions, and to gain understanding of the underlying physics, called heliophysics, we need to simulate the heliosphere and the acceleration, propagation and transport of these astroparticles with numerical models. These types of models vary from magnetohydrodynamic based approaches for simulating the heliosphere to using standard fnite-difference numerical schemes to solve transport-type partial differential equations with varying complexity. A large number of these models have been developed locally to do internationally competitive research and have become as such an important training tool for human capacity development in computational physics in South Africa. How these models are applied to various aspects of heliospheric space physics, with illustrative examples, is discussed in this overview.
NASA Astrophysics Data System (ADS)
Csörgő, Tamás Hegyi, Sándor Kittel, Wolfram
The Table of Contents for the book is as follows: * Preface * QCD IN MULTIPARTICLE PRODUCTION * QCD and multiparticle production - The status of the perturbative cascade * Test of QCD predictions for multiparticle production at LEP * Multijet final states in e+e- annihilation * Tests of QCD in two photon physics at LEP * Interplay between perturbative and non-perturbative QCD in three-jet events * QCD and hadronic final states at the LHC * Transverse energy and minijets in high energy collisions * Multiparticle production at RHIC and LHC: A classical point of view * High energy interaction with the nucleus in the perturbative QCD with Nc → ∞ * DIFFRACTIVE PRODUCTION AND SMALL-x * Introduction to low-x physics and diffraction * Low-x physics at HERA * Diffractive structure functions at the Tevatron * What is the experimental evidence for the BFKL Pomeron? * Self-organized criticality in gluon systems and its consequences * Scale anomaly and dipole scattering in QCD * Pomeron and AdS/CFT correspondence for QCD * INTERPLAY BETWEEN SOFT AND HARD PHENOMENA * Inclusive jet cross sections and BFKL dynamics searches in dijet cross sections * Soft and hard interactions in p bar{p} Collisions at √ s = 1800 and 630 GeV * Recent results on particle production from OPAL * New results on αs and optimized scales * Preliminary results of the standard model Higgs boson search at LEP 2 in 2000 * Ways to go between hard and soft QCD * Alternative scenarios for fragmentation of a gluonic Lund String * A simultaneous measurement of the QCD colour charges and the strong coupling from LEP multijet data * Branching processes and Koenigs function * Soft and hard QCD dynamics in J/ψ hadroproduction * HADRONIC FINAL STATES IN 1+1, 1+h AND h+h REACTIONS * Universality in hadron production in electron-positron, lepton-hadron and hadron-hadron reactions * Search for gluonic mesons in gluon jets * Vector-to-pseudoscalar and meson-to-baryon ratios in hadronic Z decays at LEP * Polarization and spin alignment in multihadronic Z0 decays * Jet physics at HERA * Final state studies at HERA * A gauge-invariant subtraction technique for non-inclusive observables in QCD * Baryon transport in dual models and the possibility of a backward peak in diffraction * ASTROPARTICLE PHYSICS * Cosmic rays in the energy range of the knee - Recent results from KASCADE * Imaging atmospheric Čerenkov telescopes: Techniques and results * Extensive air shower simulations with CORSIKA and the influence of high-energy hadronic interaction models * Future directions in astroparticle physics and the AUGER experiment * p+A COLLISIONS * pp and pA collisions at CERN SPS * Charmonium attenuation and the quark-gluon plasma * Gluon depletion and J/ψ suppression in pA collisions * CORRELATIONS AND FLUCTUATIONS - EXPERIMENT * Experimental correlation analysis: Foundations and practice * Intermittency and correlations at LEP and at HERA * Moments of the charged-particle multiplicity distribution in Z decays at LEP * On the scale of visible jets in high energy electron-positron collisions * HBT in relativistic heavy ion collisions * Comparison of the pion emission function in hadron-hadron and heavy ion collisions * Multiparticle correlations at LEP1 * Inter-W Bose-Einstein correlations ellipse ... or not? * Colour reconnection at LEP2 * CORRELATIONS AND FLUCTUATIONS - THEORY * Correlations and fluctuations - introduction * Coherence and incoherence in Bose-Einstein correlations * Bose-Einstein correlations in cascade processes and non-extensive statistics * A systematic approach to anomalous phenomena at high energies * Reconstruction of hadronization stage in Pb+Pb collisions at 158A GeV/c * Status of ring-like correlations and wavelets * Fluctuation probes of quark deconfinement * PQCD structure and hadronization in jets and heavy-ion collisions * Net-baryon fluctuations at the QCD critical point * Fractional Fokker-Planck equation in time variable and oscillation of cumulant moments * QCD and multiplicity scaling * RELATIVISTIC HEAVY ION COLLISIONS - EXPERIMENT * Introduction to multiparticle dynamics at RHIC * First results from the STAR experiment at RHIC * Preliminary results from the PHENIX experiment at RHIC * Forward energy and multiplicity in Au-Au reactions at √ {s_{nn} } = 130{text{GeV}} * Results from the PHOBOS experiment on Au+Au collisions at RHIC * Strangeness production in Pb-Pb collisions at the CERN SPS: Results from the WA97 experiment * Direct photon production in 158A GeV 208Pb+208Pb collisions * Search for critical phenomena in Pb+Pb collisions * Recent NA49 results on Pb+Pb collisions at CERN SPS * J/ψ suppression in Pb+Pb collisions at CERN SPS * RELATIVISTIC HEAVY ION COLLISIONS - THEORY * Hyperon ratios at RHIC and the coalescence predictions at mid-rapidity * Dynamics of nuclear collisions and the dependence of the onset of anomalous J/ψ suppression on nucleon numbers of colliding nuclei * Multi-boson effects in Bose-Einstein interferometry * The source of the "third flow component" * Collective flow and multiparticle azimuthal correlations * Microscopic strangeness enhancement mechanisms at the SPS * Jet quenching at finite opacity and its application at RHIC energy * Particle rapidity density and collective phenomena in heavy ion collisions * Elliptic flow from an on-shell parton cascade * Dilepton production in ultrarelativistic heavy ion collisions * Coulomb and core/halo corrections to Bose-Einstein n-particle correlations * CP VIOLATION IN MULTIPARTICLE DYNAMICS * New results from NA48 experiment on neutral kaon rare decays * Measurement of direct CP violation by the NA48 experiment at CERN * Aspects of parity, CP, and time reversal violation in hot QCD * Decay of parity odd bubbles * Parity and time reversal studies at RHIC * Constraining CP-violating TGCS and measuring W-polarization at OPAL * Buckyballs of QCD: Gluon junction networks * List of participants
The XXth International Workshop High Energy Physics and Quantum Field Theory
NASA Astrophysics Data System (ADS)
The Workshop continues a series of workshops started by the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) in 1985 and conceived with the purpose of presenting topics of current interest and providing a stimulating environment for scientific discussion on new developments in theoretical and experimental high energy physics and physical programs for future colliders. Traditionally the list of workshop attendees includes a great number of active young scientists and students from Russia and other countries. This year Workshop is organized jointly by the SINP MSU and the Southern Federal University (SFedU) and will take place in the holiday hotel "Luchezarniy" (Effulgent) situated on the Black Sea shore in a picturesque natural park in the suburb of the largest Russian resort city Sochi - the host city of the XXII Olympic Winter Games to be held in 2014. The main topics to be covered are: Experimental results from the LHC. Tevatron summary: the status of the Standard Model and the boundaries on BSM physics. Future physics at Linear Colliders and super B-factories. Extensions of the Standard Model and their phenomenological consequences at the LHC and Linear Colliders: SUSY extensions of the Standard Model; particle interactions in space-time with extra dimensions; strings, quantum groups and new ideas from modern algebra and geometry. Higher order corrections and resummations for collider phenomenology. Automatic calculations of Feynman diagrams and Monte Carlo simulations. LHC/LC and astroparticle/cosmology connections. Modern nuclear physics and relativistic nucleous-nucleous collisions.
Morciano, Patrizia; Cipressa, Francesca; Porrazzo, Antonella; Esposito, Giuseppe; Tabocchini, Maria Antonella; Cenci, Giovanni
2018-06-04
Deep underground laboratories (DULs) were originally created to host particle, astroparticle or nuclear physics experiments requiring a low-background environment with vastly reduced levels of cosmic-ray particle interference. More recently, the range of science projects requiring an underground experiment site has greatly expanded, thus leading to the recognition of DULs as truly multidisciplinary science sites that host important studies in several fields, including geology, geophysics, climate and environmental sciences, technology/instrumentation development and biology. So far, underground biology experiments are ongoing or planned in a few of the currently operating DULs. Among these DULs is the Gran Sasso National Laboratory (LNGS), where the majority of radiobiological data have been collected. Here we provide a summary of the current scenario of DULs around the world, as well as the specific features of the LNGS and a summary of the results we obtained so far, together with other findings collected in different underground laboratories. In particular, we focus on the recent results from our studies of Drosophila melanogaster, which provide the first evidence of the influence of the radiation environment on life span, fertility and response to genotoxic stress at the organism level. Given the increasing interest in this field and the establishment of new projects, it is possible that in the near future more DULs will serve as sites of radiobiology experiments, thus providing further relevant biological information at extremely low-dose-rate radiation. Underground experiments can be nicely complemented with above-ground studies at increasing dose rate. A systematic study performed in different exposure scenarios provides a potential opportunity to address important radiation protection questions, such as the dose/dose-rate relationship for cancer and non-cancer risk, the possible existence of dose/dose-rate threshold(s) for different biological systems and/or end points and the possible role of radiation quality in triggering the biological response.
Touch the sky with your hands: a special Planetarium for blind, deaf, and motor disabled
NASA Astrophysics Data System (ADS)
García, Beatriz; Maya, Javier; Mancilla, Alexis; Álvarez, Silvina Pérez; Videla, Mariela; Yelós, Diana; Cancio, Angel
2015-03-01
The Planetarium for the blind, deaf, and motor disabled is part of the program on Astronomy and Inclusion of the Argentina Pierre Auger Foundation (FOPAA) and the Institute in Technologies and Detection of Astroparticles-Mendoza (ITeDAM).
CALET on the ISS: a high energy astroparticle physics experiment
NASA Astrophysics Data System (ADS)
Marrocchesi, Pier Simone;
2016-05-01
CALET is a space mission of the Japanese Aerospace Agency (JAXA) in collaboration with the Italian Space Agency (ASI) and NASA. The CALET instrument (CALorimetric Electron Telescope) is planned for a long exposure on the JEM-EF, an external platform of the Japanese Experiment Module KIBO, aboard the International Space Station (ISS). The main science objectives include high precision measurements of the inclusive electron (+positron) spectrum below 1 TeV and the exploration of the energy region above 1 TeV, where the shape of the high end of the spectrum might reveal the presence of nearby sources of acceleration. With an excellent energy resolution and low background contamination CALET will search for possible spectral signatures of dark matter with both electrons and gamma rays. It will also measure the high energy spectra and relative abundance of cosmic nuclei from proton to iron and detect trans-iron elements up to Z ~ 40. With a large exposure and high energy resolution, CALET will be able to verify and complement the observations of CREAM, PAMELA and AMS-02 on a possible deviation from a pure power-law of proton and He spectra in the region of a few hundred GeV and to extend the study to the multi-TeV region. CALET will also contribute to clarify the present experimental picture on the energy dependence of the boron/carbon ratio, below and above 1 TeV/n, thereby providing valuable information on cosmic-ray propagation in the galaxy. Gamma-ray transients will be studied with a dedicated Gamma-ray Burst Monitor (GBM).
Detecting dark matter in the Milky Way with cosmic and gamma radiation
NASA Astrophysics Data System (ADS)
Carlson, Eric C.
Over the last decade, experiments in high-energy astroparticle physics have reached unprecedented precision and sensitivity which span the electromagnetic and cosmic-ray spectra. These advances have opened a new window onto the universe for which little was previously known. Such dramatic increases in sensitivity lead naturally to claims of excess emission, which call for either revised astrophysical models or the existence of exotic new sources such as particle dark matter. Here we stand firmly with Occam, sharpening his razor by (i) developing new techniques for discriminating astrophysical signatures from those of dark matter, and (ii) by developing detailed foreground models which can explain excess signals and shed light on the underlying astrophysical processes at hand. We concentrate most directly on observations of Galactic gamma and cosmic rays, factoring the discussion into three related parts which each contain significant advancements from our cumulative works. In Part I we introduce concepts which are fundamental to the Indirect Detection of particle dark matter, including motivations, targets, experiments, production of Standard Model particles, and a variety of statistical techniques. In Part II we introduce basic and advanced modelling techniques for propagation of cosmic-rays through the Galaxy and describe astrophysical gamma-ray production, as well as presenting state-of-the-art propagation models of the Milky Way.Finally, in Part III, we employ these models and techniques in order to study several indirect detection signals, including the Fermi GeV excess at the Galactic center, the Fermi 135 GeV line, the 3.5 keV line, and the WMAP-Planck haze.
Very-high energy gamma-ray astronomy. A 23-year success story in high-energy astroparticle physics
NASA Astrophysics Data System (ADS)
Lorenz, E.; Wagner, R.
2012-08-01
Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.
NASA Astrophysics Data System (ADS)
Johnson, Daniel; Huerta, E. A.; Haas, Roland
2018-01-01
Numerical simulations of Einstein’s field equations provide unique insights into the physics of compact objects moving at relativistic speeds, and which are driven by strong gravitational interactions. Numerical relativity has played a key role to firmly establish gravitational wave astrophysics as a new field of research, and it is now paving the way to establish whether gravitational wave radiation emitted from compact binary mergers is accompanied by electromagnetic and astro-particle counterparts. As numerical relativity continues to blend in with routine gravitational wave data analyses to validate the discovery of gravitational wave events, it is essential to develop open source tools to streamline these studies. Motivated by our own experience as users and developers of the open source, community software, the Einstein Toolkit, we present an open source, Python package that is ideally suited to monitor and post-process the data products of numerical relativity simulations, and compute the gravitational wave strain at future null infinity in high performance environments. We showcase the application of this new package to post-process a large numerical relativity catalog and extract higher-order waveform modes from numerical relativity simulations of eccentric binary black hole mergers and neutron star mergers. This new software fills a critical void in the arsenal of tools provided by the Einstein Toolkit consortium to the numerical relativity community.
Study on 3-inch Hamamatsu photomultipliers
NASA Astrophysics Data System (ADS)
Giordano, Valentina; Aiello, Sebastiano; Leonora, Emanuele
2016-07-01
Several kinds of photomultipliers are widely used in astroparticle physics detectors to measure Cherenkov light in media like water or ice. In neutrino telescopes the key element of the detector is the optical module, which consists of one or more photodetectors inside a transparent pressure-resistant glass sphere. It serves as mechanical protection while ensuring good light transmission. The KM3NeT collaboration has developed an innovative design of an optical module composed by 31 photomultipliers (PMTs) of 3-inch diameter housed in a 17-inch glass shpere. The performance of the telescope is largely dependent on the presence on noise pulses present on the anode of the photomultipliers. A study was conducted of noise pulses of Hamamatsu 3-inch diameter photomultipliers measuring time and charge distributions of dark pulses, pre-pulses, delayed pulses and after-pulses, focusing in particular on analysis on multiple afterpulses. Effects of the Earth's magnetic field on 3-inch PMTs were also studied.
Building and testing models with extended Higgs sectors
NASA Astrophysics Data System (ADS)
Ivanov, Igor P.
2017-07-01
Models with non-minimal Higgs sectors represent a mainstream direction in theoretical exploration of physics opportunities beyond the Standard Model. Extended scalar sectors help alleviate difficulties of the Standard Model and lead to a rich spectrum of characteristic collider signatures and astroparticle consequences. In this review, we introduce the reader to the world of extended Higgs sectors. Not pretending to exhaustively cover the entire body of literature, we walk through a selection of the most popular examples: the two- and multi-Higgs-doublet models, as well as singlet and triplet extensions. We will show how one typically builds models with extended Higgs sectors, describe the main goals and the challenges which arise on the way, and mention some methods to overcome them. We will also describe how such models can be tested, what are the key observables one focuses on, and illustrate the general strategy with a subjective selection of results.
FOREWORD: Topics in Astroparticle and Underground Physics (TAUP 2009)
NASA Astrophysics Data System (ADS)
Coccia, Eugenio; Pandola, Luciano; Fornengo, Nicolao; Aloisio, Roberto
2010-01-01
The eleventh meeting of the TAUP Workshop series, TAUP 2009, was held in Rome on 1-5 July 2009, organized by the INFN Gran Sasso National Laboratory (LNGS). The workshop venue was originally L'Aquila. The earthquake of 6 April changed our plans. The earthquake killed about 300 people, wounded about 15,000, made homeless about 60,000 and destroyed a large part of the built environment, as well as essential infrastructures. The LNGS buildings were not seriously affected by the event, and the underground site not at all. But after the event most of the LNGS staff were homeless and the local hotels were damaged. So we were forced to move the Workshop to Rome, and found a good venue in the Angelicum, the Pontifical University of Saint Thomas Aquinas, in the very center of Rome. This University, founded in 1580, has its historical roots in the medieval House of Studies of the Dominican Order in Rome, and we think that all the TAUP participants enjoyed the spiritual atmosphere which emanated from the ancient walls of the building and the cloister. All the various aspects of our interdisciplinary field of research at the intersection of Particle Physics, Astrophysics and Cosmology, named Astroparticle Physics, have been covered: Dark Components of the Universe, Gravitational Waves, Neutrino Physics and Astrophysics, High Energy Astrophysics, Cosmic Rays and Gamma-Rays Astronomy. Exciting scientific results were presented and the main issues of the field debated in the plenary and parallel sessions. The program also included a Session on Outreach and Education, with contributions from major Laboratories, Experimental Collaborations and International Organizations. Unhappily, the sad news from Zaragoza of the passing of our dear colleague and friend Julio Morales, to whom these Proceedings are dedicated, marked the last day of the Workshop. On behalf of the Organizing Committee of TAUP 2009, we thank all the Speakers and Conveners, who made possible a detailed vision of the field, and the members of the International Advisory Committee and of the TAUP Steering Committee for assistance and advice on the scientific program. The support received by IUPAP and by the National Institute for Nuclear Physics (INFN) is gratefully acknowledged. Eugenio Coccia Luciano Pandola Nicolao Fornengo Roberto Aloisio A personal special thank you to my fellow organizers, to the Secretariat and to the LNGS staff. They worked successfully for TAUP 2009 in a difficult moment for our Laboratory, and even more, for several of them, in a difficult moment of their lives. Eugenio Coccia Chairman of the TAUP 2009 Organizing Committee TAUP 2009 has been conducted in accordance with IUPAP principles as stated in the ICSU-Document 'Universality of Science' (sixth edition, 1989) regarding the free circulation of scientists for international purposes. In particular, no bona fide scientist have been excluded from participation on the grounds of national origin, nationality, or political considerations unrelated to science.
Evolution of the ATLAS PanDA workload management system for exascale computational science
NASA Astrophysics Data System (ADS)
Maeno, T.; De, K.; Klimentov, A.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.; Yu, D.; Atlas Collaboration
2014-06-01
An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of other data intensive scientific applications. Alpha-Magnetic Spectrometer [4], an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid [5], an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. In this paper, a description of the new program of work to develop a generic version of PanDA will be given, as well as the progress in extending PanDA's capabilities to support supercomputers and clouds and to leverage intelligent networking. PanDA has demonstrated at a very large scale the value of automated dynamic brokering of diverse workloads across distributed computing resources. The next generation of PanDA will allow other data-intensive sciences and a wider exascale community employing a variety of computing platforms to benefit from ATLAS' experience and proven tools.
Recent results and performance of the multi-gap resistive plate chambers network for the EEE Project
NASA Astrophysics Data System (ADS)
Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D`Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Licciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeusky, R.
2016-11-01
The Extreme Energy Events (EEE) Project is devoted to the study of Extensive Atmospheric Showers through a network of muon telescopes, installed in High Schools, with the further aim of introducing young students to particle and astroparticle physics. Each telescope is a tracking detector composed of three Multi-gap Resistive Plate Chambers (MRPC) with an active area of 1.60 × 0.80 m2. Their characteristics are similar to the ones built for the Time Of Flight array of the ALICE Experimentat LHC . The EEE Project started with a few pilot towns, where the telescopes have been taking data since 2008, and it has been constantly extended, reaching at present more than 50 MRPCs telescopes. They are spread across Italy with two additional stations at CERN, covering an area of around 3 × 105 km2, with a total surface area for all the MRPCs of 190 m2. A comprehensive description of the MRPCs network is reported here: efficiency, time and spatial resolution measured using cosmic rays hitting the telescopes. The most recent results on the detector and physics performance from a series of coordinated data acquisition periods are also presented.
35th International Conference of High Energy Physics
NASA Astrophysics Data System (ADS)
The French particle physics community is particularly proud to have been selected to host the 35th ICHEP conference in 2010 in Paris. This conference is the focal point of all our field since more than fifty years and is the reference event where all important results in particle physics cosmology and astroparticles are presented and discussed. This alone suffices to make this event very important. But in 2010, a coincidence of exceptional events will make this conference even more attractive! What is then so special about ICHEP 2010 conference? It will be the first ICHEP conference where physics results obtained at the LHC will be presented! New results about the elusive Higgs boson, or signals of physics beyond the standard model might therefore be announced at this conference! Major discoveries in other domains such as gravitational waves, neutrino telescopes, neutrino oscillations, dark matter or in the flavour sector are also possible, just to name a few. In addition , 2010 will be an important date to shape up the future of our field. Several major projects will present the status of their Conceptual or Engineering Design Reports during the conference. The International Linear Collider (ILC) Global Design Effort team will present the report corresponding to the end of their Technical Design Phase 1. The Compact Linear Collider (CLIC) will also report on its Conceptual Design Report. Other major projects such as Super B factories will also be presented. These reports together with LHC physics results will form the basis for key political decisions needed to be taken in the years to come. In summary, there can be no doubt that Paris is the place to be in summer 2010 for anyone interested in High Energy Physics and we will make every effort to make your stay as interesting and enjoyable as possible.
Space-atmospheric interactions of energetic cosmic rays
NASA Astrophysics Data System (ADS)
Isar, Paula Gina
2015-02-01
Ultra-high energy cosmic rays are the most energetic particles in the Universe of which origin still remain a mystery since a century from their descovery. They are unique messengers coming from far beyond our Milky Way Galaxy, which provides insights into the fundamental matter, energy, space and time. As subatomic particles flying through space to nearly light speed, the ultra-high energy cosmic rays are so rare that they strike the Earth's atmosphere at a rate of up to only one particle per square kilometer per year or century. While the atmosphere is used as a giant calorimeter where cosmic rays induced air showers are initiated and the medium through which Cherenkov or fluorescence light or radio waves propagate, all cosmic ray measurements (performed either from space or ground) rely on an accurate atmospheric monitoring and understanding of atmospheric effects. The interdisciplinary link between Astroparticle Physics and Atmospheric Environment through the ultra-high energy comic rays space - atmospheric interactions, based on the present ground- and future space-based cosmic ray observatories, will be presented.
Observation of high-energy gamma-rays with the AMS-02 electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
Morescalchi, L.
2017-05-01
The Alpha Magnetic Spectrometer (AMS-02) is a multipurpose astroparticle physics detector installed on the International Space Station (ISS). Since more than 5 years it is measuring with an unprecedented accuracy flux and composition of primary cosmic rays, searching for primordial anti-matter and probing the nature of dark matter. Despite the fact that AMS-02 has been primarily designed as a charged-particle spectrometer, it can also perform precision observations of γ -rays from a few GeV to beyond one TeV. The key sub-detector used for the photon identification is a lead-scintillating fibers sampling calorimeter (ECAL). Its high granularity allows to reconstruct the direction of the incoming photon with a resolution better than 1 degree. The 3D shower image reconstructed by the calorimeter together with the absence of hits along the reconstructed photon direction allow to reach a very good signal over background ratio. This experimental technique offers the unusual possibility to reconstruct a sky map of the very high-energy photon sources.
The CERN disposal of the FELIX project proposal: some comments on and justification for it.
NASA Astrophysics Data System (ADS)
Bhattacharyya, S.; Roy, D.
1998-12-01
The authors seriously questioned and still continue to question the overemphasised "prospects" in the past of the so-called FELIX project in the domain of ultrahigh-energy astroparticle physics and the optimism that was nurtured around it. This was and is somewhat irrational because there is so far no dearth in the accumulated data for the testing of the models for particle production. But that up to now we failed to build up a really and concretely standard theory of particle production is due to our poverty in outlook and philosophy. The authors picked up and pointed out the very basic down-to-earth observables which even in the available energy range would really suffice to judge the merits and successes of any of the models. That the spirit of FELIX-like proposals might resurrect with just some other name even after the present (and temporary?) setback of the FELIX project remains the point of concern to the authors.
Astroparticle Physics: Detectors for Cosmic Rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar, Humberto; Villasenor, Luis
2006-09-25
We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection ofmore » extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.« less
An integrated solution for remote data access
NASA Astrophysics Data System (ADS)
Sapunenko, Vladimir; D'Urso, Domenico; dell'Agnello, Luca; Vagnoni, Vincenzo; Duranti, Matteo
2015-12-01
Data management constitutes one of the major challenges that a geographically- distributed e-Infrastructure has to face, especially when remote data access is involved. We discuss an integrated solution which enables transparent and efficient access to on-line and near-line data through high latency networks. The solution is based on the joint use of the General Parallel File System (GPFS) and of the Tivoli Storage Manager (TSM). Both products, developed by IBM, are well known and extensively used in the HEP computing community. Owing to a new feature introduced in GPFS 3.5, so-called Active File Management (AFM), the definition of a single, geographically-distributed namespace, characterised by automated data flow management between different locations, becomes possible. As a practical example, we present the implementation of AFM-based remote data access between two data centres located in Bologna and Rome, demonstrating the validity of the solution for the use case of the AMS experiment, an astro-particle experiment supported by the INFN CNAF data centre with the large disk space requirements (more than 1.5 PB).
NASA Astrophysics Data System (ADS)
Inoue, Kunio; Suzuki, Atsuto; Mitsui, Tadao
2008-07-01
The tenth meeting of the TAUP Workshop Series, TAUP 2007, was organized by the Research Center for Neutrino Science, Tohoku University. In TAUP 2007 all the various aspects of Astroparticle Physics have been covered, from Cosmology and Dark Constituents, to Gravitational Waves, to Neutrino Physics and Astrophysics, to High Energy Astrophysics, to Cosmic Rays and Gamma-Rays Astronomy. New and important scientific results were presented and debated in the plenary review talks and in a very large number of contributions in topical parallel sessions. As editors of these proceedings, we hope that this volume, which contains most of the talks and contributions presented at TAUP 2007, will provide a detailed state-of-the-art account of the various facets of Astroparticle Physics. We thank all the invited speakers, conveners, and contributors who made this possible. Full coverage of the transparencies presented at the conference can be found on the website http://www.awa.tohoku.ac.jp/taup2007. The TAUP 2007 Organizing Committee thanks IUPAP/PaNAGIC, Sendai Tourism and Convention Bureau, COE program: Exploring New Science by Bridging Particle-Matter Hierarchy, SEIKO EG&G, and REPIC corporation for sponsoring the Conference, and Sendai Civic Auditorium, where the meeting was held, for their hospitality. We wish to thank Alessandro Bottino, Junpei Shirai, Fumihiko Suekane, David Sinclair, Takaaki Kajita, Takeo Moroi, Masaki Mori, Masahiro Kawasaki, Yoshihito Gando, Sei Yoshida, Kyoko Tamae, Sanshiro Enomoto, Alexandre Kozlov, Yasuhiro Kishimoto, Itaru Shimizu, Kengo Nakamura, Haruo Ikeda, and Kyo Nakajima for their invaluable contribution in the scientific shaping of the conference and in the preparation of the present volume. The Organizing Committee is grateful to the members of the International Advisory Committee and of the TAUP Steering Committee for assistance and advice on the scientific program. Very special thanks are due to Ms Rika Bizen, Mr Fujio Miura, Ms Akemi Otsuka, and Ms Yuri Endo, our workshop secretaries, for their continuous and excellent work in the organization of the conference, and to Ms Chiyo Itoh, and Ms Machiko Mizutani, for their invaluable assistance during the conference. We also gratefully thank the technical staff: Tomoaki Takayama, Hiromitsu Hanada, Takashi Nakajima, for their invaluable help. As announced at the end of the conference, TAUP 2009 will be held in Gran Sasso, Italy, hosted by the Istituto Nazionale di Fisica Nucleare (INFN) with the chair of Professor Eugenio Coccia. Kunio Inoue, Atsuto Suzuki and Tadao Mitsui COMMITTEES TAUP Steering Committee F T Avignone U South Carolina B C Barish CALTECH E Bellotti U Milano/INFN J Bernabéu U Valencia A Bottino (chair) U Torino/INFN V de Alfaro U Torino/INFN T Kajita ICRR U Tokyo C W Kim Johns Hopkins Univ /KIAS E Lorenz U München V Matveev INR Moskow J Morales U Zaragoza D Sinclair U Carleton M Spiro IN2P3 TAUP 2007 International Advisory Committee J J Aubert CNRS Marseille M Baldo-Ceolin U Padova/INFN V Berezinsky INFN-LNGS/INR L Bergström U Stockholm R Bernabei U Roma Tor Vergata/INFN A Bettini U Padova/INFN S Bilenky JINR Dubna D O Caldwell U C Santa Barbara E Coccia INFN-LNGS/U Roma Tor Vergata J Cronin U Chicago A Dar Technion Haifa G Domogatsky INR Moscow H Ejiri U Osaka J Ellis CERN E Fernández IFAE Barcelona E Fiorini U Milano/INFN G Fogli U Bari/INFN T Gaisser U Delaware G Gelmini UCLA G Gerbier CEA Saclay F Halzen U Wisconsin W Haxton U Washington T Kirsten MPI Heidelberg L Maiani U Roma/INFN A McDonald Queen's U K Nakamura KEK E Peterson U Minneapolis R Petronzio INFN/U Roma Tor Vergata G Raffelt MPI München R Rebolo IAC Tenerife L Resvanis U Athens P Salati U Savoie/LAPTH Annecy A Smirnov ICTP Trieste N Spooner U Sheffield S Ting MIT/CERN Y Totsuka U Tokyo M S Turner FNAL/U Chicago J W F Valle IFIC Valencia D Vignaud APC Paris F von Feilitzsch T U München G Zatsepin INR Moscow TAUP 2007 Organizing Committee A Bottino U Torino/INFN D Sinclair U Carleton T Kajita ICRR, U Tokyo A Suzuki (co-chair) KEK/Tohoku U K Inoue (co-chair) RCNS, Tohoku U J Shirai RCNS, Tohoku U F Suekane RCNS, Tohoku U T Mitsui (scientific secretary) RCNS, Tohoku U T Moroi Tohoku U M Mori ICRR, U Tokyo M Kawasaki ICRR, U Tokyo
Dark matter and baryogenesis in the Fermi-bounce curvaton mechanism
NASA Astrophysics Data System (ADS)
Addazi, Andrea; Alexander, Stephon; Cai, Yi-Fu; Marcianò, Antonino
2018-05-01
We elaborate on a toy model of matter bounce, in which the matter content is constituted by two fermion species endowed with four fermion interaction terms. We describe the curvaton mechanism that is thus generated, and then argue that one of the two fermionic species may realize baryogenesis, while the other (lighter) one is compatible with constraints on extra hot dark matter particles. The work of AA was partially supported during this collaboration by the MIUR research grant Theoretical Astroparticle Physics PRIN 2012CPPYP7 and by SdC Progetto speciale Multiasse La Società della Conoscenza in Abruzzo PO FSE Abruzzo 2007-2013. The work of YFC is supported in part by the Chinese National Youth Thousand Talents Program (KJ2030220006), by the USTC start-up funding (KY2030000049), by the NSFC (11421303, 11653002), and by the Fund for Fostering Talents in Basic Science of the NSFC (J1310021). AM wishes to acknowledge support by the Shanghai Municipality, through the grant No. KBH1512299, and by Fudan University, through the grant No. JJH1512105
Ultrahigh Energy Neutrinos at the Pierre Auger Observatory
Abreu, P.; Aglietta, M.; Ahlers, M.; ...
2013-01-01
The observation of ultrahigh energy neutrinos (UHE ν s) has become a priority in experimental astroparticle physics. UHE ν s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν ) or in the Earth crust (Earth-skimming ν ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversedmore » a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE ν s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE ν s in the EeV range and above.« less
NASA Astrophysics Data System (ADS)
Stelian, Carmen; Velázquez, Matias; Veber, Philippe; Ahmine, Abdelmounaim; Sand, Jean-Baptiste; Buşe, Gabriel; Cabane, Hugues; Duffar, Thierry
2018-06-01
Lithium molybdate Li2MoO4 (LMO) crystals of mass ranging between 350 and 500 g are excellent candidates to build heat-scintillation cryogenic bolometers likely to be used for the detection of rare events in astroparticle physics. In this work, numerical modeling is applied in order to investigate the Czochralski growth of Li2MoO4 crystals in an inductive furnace. The numerical model was validated by comparing the numerical predictions of the crystal-melt interface shape to experimental visualization of the growth interface. Modeling was performed for two different Czochralski furnaces that use inductive heating. The simulation of the first furnace, which was used to grow Li2MoO4 crystals of 3-4 cm in diameter, reveals non-optimal heat transfer conditions for obtaining good quality crystals. The second furnace, which will be used to grow crystals of 5 cm in diameter, was numerically optimized in order to reduce the temperature gradients in the crystal and to avoid fast crystallization of the bath at the later stages of the growth process.
A digital FDIRC prototype for isotopic identification in astroparticle physics
NASA Astrophysics Data System (ADS)
Suh, J. E.; Marrocchesi, P. S.; Bigongiari, G.; Brogi, P.; Collazuol, G.; Sulaj, A.
2017-12-01
Experimental results obtained with a prototype of a Focused Internal Reflection Cherenkov, equipped with 16 high-granularity arrays of NUV-SiPM and tested at CERN SPS in March 2015, are discussed. The detector was exposed to relativistic ions of 13, 19 and 30 GeV/amu obtained from fragmentation of a primary Ar beam. The FDIRC included a single Fused Silica radiator bar optically connected to a cylindrical mirror and an imaging focal plane of dimensions ∼4 cm×∼3 cm, covered with a total of 1024 SiPM photosensors. It was operated in photon counting mode thanks to the excellent performance of the SiPM arrays. The complete simulation of the detector was extended to the case of a planar device with multiple bars covering a sensitive area of the order of 1 m2. MC simulation is performed to evaluate its expected mass resolution for the identification of cosmic isotopes of astrophysical interest as 9Be and 10Be at energies of several GeV/amu with the goal to extend the energy reach of the present available data.
PREFACE: 4th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE2014)
NASA Astrophysics Data System (ADS)
Di Domenico, Antonio; Mavromatos, Nick E.; Mitsou, Vasiliki A.; Skliros, Dimitri P.
2015-07-01
The DISCRETE 2014: Fourth Symposium in the Physics of Discrete Symmetries took place at King's College London, Strand Campus, London WC2R 2LS, from Tuesday, December 2 2014 till Saturday, December 6 2014. This is the fourth Edition of the DISCRETE conference series, which is a biannual event, having been held previously in Valencia (Discrete'08), Rome (Discrete2010) and Lisbon (Discrete2012). The topics covered at the DISCRETE series of conferences are: T, C, P, CP symmetries; accidental symmetries (B, L conservation); CPT symmetry, decoherence and entangled states, Lorentz symmetry breaking (phenomenology and current bounds); neutrino mass and mixing; implications for cosmology and astroparticle physics, dark matter searches; experimental prospects at LHC, new facilities. In DISCRETE 2014 we have also introduced two new topics: cosmological aspects of non-commutative space-times as well as PT symmetric Hamiltonians (non-Hermitian but with real eigenvalues), a topic that has wide applications in particle physics and beyond. The conference was opened by the King's College London Vice Principal on Research and Innovation, Mr Chris Mottershead, followed by a welcome address by the Chair of DISCRETE 2014 (Professor Nick E. Mavromatos). After these introductory talks, the scientific programme of the DISCRETE 2014 symposium started. Following the tradition of DISCRETE series of conferences, the talks (138 in total) were divided into plenary-review talks (25), invited research talks (50) and shorter presentations (63) — selected by the conveners of each session in consultation with the organisers — from the submitted abstracts. We have been fortunate to have very high-quality, thought stimulating and interesting talks at all levels, which, together with the discussions among the participants, made the conference quite enjoyable. There were 152 registered participants for the event.
Anatomy of a lava dome using muon radiography and electrical resistivity tomography
NASA Astrophysics Data System (ADS)
Lenat, J.
2011-12-01
For the TOMUVOL Collaboration Previous works (e.g. Tanaka et al., 2008) have demonstrated the capacity of muon radiography techniques to image the internal structure of volcanoes. The method is based on the attenuation of the flux of high energy atmospheric muons through a volcanic edifice, which is measured by a muon telescope installed at some distance from the volcano. The telescope is composed of three parallel matrices of detectors in order to record the angle of incidence of the muons. The aperture of the telescope and its resolution are determined by the distance between the matrices, their surface and their segmentation. TOMUVOL is a project, involving astroparticle and particle physicists and volcanologists, aimed at developing muon tomography of volcanoes. The ultimate goal is to construct autonomous, portable, remote controlled muon telescopes to study and monitor active volcanoes. A first experiment has been carried out on a large, 11000-year-old, trachytic dome, the Puy de Dôme, located in the French Central Massif. The telescope system is derived from particle physics experiments. The sensors are glass resistive plate chambers. The telescope has two 1 m2 and one 1/6 m2 planes. It is located 2 km away from the summit of Puy de Dôme (elevation 1465 m), at 868 m in elevation, Signals have been accumulated during several months. A high resolution LiDAR digital terrain model has been used in computing a density model of the dome, averaged along the path of the muons through the dome. In parallel, an electrical resistivity section of the dome has been obtained using a long (2.2 km) line of electrodes. The internal structure of the dome is thus described with two physical parameters (density and resistivity). This allows us to analyse jointly the results of the two types of measurements. At the time of writing, a new muon radiography campaign is being carried out from a different viewpoint. This is the first step towards a tomographic image of the volcano's internal structure. Reference: Tanaka, H. K. M., T. Nakano, S. Takahashi, J. Yoshida, M. Takeo, J. Oikawa, T. Ohminato, Y. Aoki, E. Koyama, H. Tsuji, H. Ohshima, T. Maekawa, H. Watanabe, and K. Niwa, Radiographic imaging below a volcanic crater floor with cosmic-ray muons, Am. J. Sci., 308, 843-850, 2008.
NASA Astrophysics Data System (ADS)
Zen Vasconcellos, César; Coelho, Helio T.; Hess, Peter Otto
Walter Greiner (29 October 1935 - 6 October 2016) was a German theoretical physicist. His scientific research interests include the thematic areas of atomic physics, heavy ion physics, nuclear physics, elementary particle physics (particularly quantum electrodynamics and quantum chromodynamics). He is most known in Germany for his series of books in theoretical physics, but he is also well known around the world. Greiner was born on October 29, 1935, in Neuenbau, Sonnenberg, Germany. He studied physics at the University of Frankfurt (Goethe University in Frankfurt Am Main), receiving in this institution a BSci in physics and a Master’s degree in 1960 with a thesis on plasma-reactors, and a PhD in 1961 at the University of Freiburg under Hans Marshal, with a thesis on the nuclear polarization in μ-mesic atoms. During the period of 1962 to 1964 he was assistant professor at the University of Maryland, followed by a position as research associate at the University of Freiburg, in 1964. Starting in 1965, he became a full professor at the Institute for Theoretical Physics at Goethe University until 2003. Greiner has been a visiting professor to many universities and laboratories, including Florida State University, the University of Virginia, the University of California, the University of Melbourne, Vanderbilt University, Yale University, Oak Ridge National Laboratory and Los Alamos National Laboratory. In 2003, with Wolf Singer, he was the founding Director of the Frankfurt Institute for Advanced Studies (FIAS), and gave lectures and seminars in elementary particle physics. He died on October 6, 2016 at the age of 80. Walter Greiner was an excellent teacher, researcher, friend. And he was a great supporter of the series of events known by the acronyms IWARA - International Workshop on Astronomy and Relativistic Astrophysics, STARS - Caribbean Symposium on Cosmology, Gravitation, Nuclear and Astroparticle Physics, and SMFNS - International Symposium on Strong Electromagnetic Fields and Neutron Stars. Walter Greiner left us. But his memory will remain always alive among us who have had the privilege of knowing him and enjoy his wisdom and joy of living.
NASA Astrophysics Data System (ADS)
Antonelli, L. A.; INAF MAGIC Collaboration
The next decade can be considered the "golden age" of the Gamma Ray Astronomy with the two satellites for Gamma Ray Astronomy (AGILE and GLAST) in orbit. Therefore, thanks to many other X-ray experiments already in orbit (e.g. Swift, Chandra, NewtonXMM, etc.) it will be possible to image the Universe for the first time all over the electromagnetic spectrum almost contemporarily. The new generations of ground-based very high gamma-ray instruments are ready to extend the observed band also to the very high frequencies. Scientists from the Italian National Institute for Astrophysics (INAF) are involved in many, both space- and ground- based gamma ray experiments, and recently such an involvement has been largely improved in the field of the Imaging Atmospheric Cherenkov Telescopes (IACT). INAF is now member of the MAGIC collaboration and is participating to the realization of the second MAGIC telescope. MAGIC, as well other IACT experiments, is not operated as an observatory so a proper guest observer program does not exist. A consortium of European scientists (including INAF scientists) is thus now thinking to the design of a new research infrastructure: the Cherenkov Telescope Array (CTA). CTA is conceived to provide 10 times the sensitivity of current instruments, combined with increased flexibility and increased coverage from some 10 GeV to some 100 TeV. CTA will be operated as an observatory to serve a wider community of astronomer and astroparticle physicists.
Development of stable Grid service at the next generation system of KEKCC
NASA Astrophysics Data System (ADS)
Nakamura, T.; Iwai, G.; Matsunaga, H.; Murakami, K.; Sasaki, T.; Suzuki, S.; Takase, W.
2017-10-01
A lot of experiments in the field of accelerator based science are actively running at High Energy Accelerator Research Organization (KEK) by using SuperKEKB and J-PARC accelerator in Japan. In these days at KEK, the computing demand from the various experiments for the data processing, analysis, and MC simulation is monotonically increasing. It is not only for the case with high-energy experiments, the computing requirement from the hadron and neutrino experiments and some projects of astro-particle physics is also rapidly increasing due to the very high precision measurement. Under this situation, several projects, Belle II, T2K, ILC and KAGRA experiments supported by KEK are going to utilize Grid computing infrastructure as the main computing resource. The Grid system and services in KEK, which is already in production, are upgraded for the further stable operation at the same time of whole scale hardware replacement of KEK Central Computer System (KEKCC). The next generation system of KEKCC starts the operation from the beginning of September 2016. The basic Grid services e.g. BDII, VOMS, LFC, CREAM computing element and StoRM storage element are made by the more robust hardware configuration. Since the raw data transfer is one of the most important tasks for the KEKCC, two redundant GridFTP servers are adapted to the StoRM service instances with 40 Gbps network bandwidth on the LHCONE routing. These are dedicated to the Belle II raw data transfer to the other sites apart from the servers for the data transfer usage of the other VOs. Additionally, we prepare the redundant configuration for the database oriented services like LFC and AMGA by using LifeKeeper. The LFC servers are made by two read/write servers and two read-only servers for the Belle II experiment, and all of them have an individual database for the purpose of load balancing. The FTS3 service is newly deployed as a service for the Belle II data distribution. The service of CVMFS stratum-0 is started for the Belle II software repository, and stratum-1 service is prepared for the other VOs. In this way, there are a lot of upgrade for the real production service of Grid infrastructure at KEK Computing Research Center. In this paper, we would like to introduce the detailed configuration of the hardware for Grid instance, and several mechanisms to construct the robust Grid system in the next generation system of KEKCC.
Radio Astronomy on and Around the Moon
NASA Astrophysics Data System (ADS)
Falcke, Heino; Klein Wolt, Mark; Ping, Jinsong; Chen, Linjie
2018-06-01
The exploration of remote places on other planets has now become a major goal in current space flight scenarios. On the other hand, astronomers have always sought the most remote and isolated sites to place their observatories and to make their most precise and most breath taking discoveries. Especially for radio astronomy, lunar exploration offers a complete new window to the universe. The polar region and the far-side of the moon are acknowledged as unique locations for a low-frequency radio telescope providing scientific data at wavelengths that cannot be obtained from the Earth nor from single satellites. Scientific areas to be covered range from radio surveys, to solar-system studies, exo-planet detection, and astroparticle physics. The key science area, however, is the detection and measurement of cosmological 21 cm hydrogen emission from the still unexplored dark ages of the universe. Developing a lunar radio facility can happen in steps and may involve small satellites, rover-based radio antennas, of free- flying constellations around the moon. A first such step could be the Netherlands-Chinese Long Wavelength Explorer (NCLE), which is supposed to be launched in 2018 as part of the ChangE’4 mission to the moon-earth L2 point.
Neutrino diagnostics of ultrahigh energy cosmic ray protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlers, Markus; Sarkar, Subir; Anchordoqui, Luis A.
2009-04-15
The energy at which cosmic rays from extra-galactic sources begin to dominate over those from galactic sources is an important open question in astroparticle physics. A natural candidate is the energy at the 'ankle' in the approximately power-law energy spectrum which is indicative of a crossover from a falling galactic component to a flatter extra-galactic component. The transition can occur without such flattening but this requires some degree of conspiracy of the spectral shapes and normalizations of the two components. Nevertheless, it has been argued that extra-galactic sources of cosmic ray protons that undergo interactions on the CMB can reproducemore » the energy spectrum below the ankle if the crossover energy is as low as the 'second knee' in the spectrum. This low crossover model is constrained by direct measurements by the Pierre Auger Observatory, which indicate a heavier composition at these energies. We demonstrate that upper limits on the cosmic diffuse neutrino flux provide a complementary constraint on the proton fraction in ultra-high energy extra-galactic cosmic rays and forthcoming data from IceCube will provide a definitive test of this model.« less
NASA Astrophysics Data System (ADS)
Qiao, Yun; Liang, Kun; Chen, Wen-Fei; Han, De-Jun
2013-10-01
The detection of low-level light is a key technology in various experimental scientific studies. As a photon detector, the silicon photomultiplier (SiPM) has gradually become an alternative to the photomultiplier tube (PMT) in many applications in high-energy physics, astroparticle physics, and medical imaging because of its high photon detection efficiency (PDE), good resolution for single-photon detection, insensitivity to magnetic field, low operating voltage, compactness, and low cost. However, primarily because of the geometric fill factor, the PDE of most SiPMs is not very high; in particular, for those SiPMs with a high density of micro cells, the effective area is small, and the bandwidth of the light response is narrow. As a building block of the SiPM, the concept of the backside-illuminated avalanche drift detector (ADD) was first proposed by the Max Planck Institute of Germany eight years ago; the ADD is promising to have high PDE over the full energy range of optical photons, even ultraviolet light and X-ray light, and because the avalanche multiplication region is very small, the ADD is beneficial for the fabrication of large-area SiPMs. However, because of difficulties in design and fabrication, no significant progress had been made, and the concept had not yet been verified. In this paper, preliminary results in the design, fabrication, and performance of a backside-illuminated ADD are reported; the difficulties in and limitations to the backside-illuminated ADD are analyzed.
High intensity neutrino oscillation facilities in Europe
Edgecock, T. R.; Caretta, O.; Davenne, T.; ...
2013-02-20
The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ + and μ – beams in a storage ring. The far detector in thismore » case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. Furthermore, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.« less
Recent Developments in Neutrino Science: A Whole Lot About Almost Nothing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, E B
2005-08-22
Results from Super-K, SNO, and KamLAND provide strong evidence that neutrinos undergo flavor-changing oscillations and therefore have non-zero mass. The {nu}-disappearance observations by KamLAND, assuming CPT conservation, point to matter enhanced (MSW) oscillations with large mixing angles as the solution to the solar neutrino problem--a result consistent with the MSW parameters recently defined by these experiments. This requires that the observed neutrino flavors (e, {mu}, and tau) are not mass eigenstates, but are linear combinations of the mass eigenstates of the neutrino. However, such oscillation experiments can only determine the differences in the masses of the neutrinos, not the absolutemore » scale of neutrino mass. What can be inferred from these experiments is that at least one species of neutrino has a mass greater than 55 meV. In fact, the WMAP observations of large-scale structure point to a sum-neutrino mass of {approx} 0.7 eV (roughly 0.25 eV/species assuming democracy between the flavors). Furthermore, there is still the important issue of whether the neutrino and anti-neutrino are distinct particles (i.e. Dirac type) or not (Majorana type). The only way to answer both of these questions is through neutrinoless double beta decay (DBD) experiments. CUORE (Cryogenic Underground Observatory for Rare Events) is a proposed next generation experiment designed to search for the neutrinoless DBD of {sup 130}Te using a bolometric technique. The source/detector will be composed of 988 5 x 5 x 5-cm single crystals of TeO{sub 2} all housed in a common dilution refrigerator and operated at a temperature of 8-10 mK. The total mass of {sup 130}Te contained in CUORE will be approximately 203 kg. Attached to each crystal will be one or more neutron-transmutation doped (NTD) germanium thermistors that will measure the small temperature rise produced in a crystal when radiation is absorbed. A schematic illustration of the CUORE detector is shown in Figure 1. Details about the TeO{sub 2} cryogenic detector are contained in a NIM A paper and the physics potential of CUORE is described in a recent article in Astroparticle Physics. A complete description of the CUORE project is also available online. The estimated sensitivity of CUORE illustrated in Figure 2 is sufficient to cover essentially all of the so-called inverted mass hierarchy region deduced from the oscillation experiments. There are several compelling reasons to study {sup 130}Te DBD. The {beta}{beta} decay of {sup 130}Te has been observed in geo-chemical experiments. Thus, a direct laboratory measurement of the 2{nu} {beta}{beta} decay rate will provide an excellent calibration for 0{nu}-DBD. Second, because of its large decay energy and large expected nuclear matrix element, the half-life of {sup 130}Te is predicted to be shorter than that of a number of other candidate isotopes. Third, based on the sensitivity needed to reach the mass scales inferred from the above-mentioned oscillation experiments, the {sup 130}Te experiment can be done utilizing the natural abundance of {sup 130}Te (34%), without the time and expense of obtaining separated isotopes. Of all the proposed next generation DBD experiments, only CUORE can reach the needed sensitivity without isotopic enrichment.« less
Density imaging of volcanos with atmospheric muons
NASA Astrophysics Data System (ADS)
Fehr, Felix; Tomuvol Collaboration
2012-07-01
Their long range in matter renders high-energy atmospheric muons a unique probe for geophysical explorations, permitting the cartography of density distributions which can reveal spatial and possibly also temporal variations in extended geological structures. A Collaboration between volcanologists and (astro-)particle physicists, TOMUVOL, was formed in 2009 to study tomographic muon imaging of volcanos with high-resolution tracking detectors. Here we discuss preparatory work towards muon tomography as well as the first flux measurements taken at the Puy de Dôme, an inactive lava dome volcano in the Massif Central.
The second-phase development of the China JinPing underground laboratory
Li, Jianmin; Ji, Xiangdong; Haxton, Wick; ...
2015-03-24
During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000 m³, which can be compared to the existing CJPL-I volume of ~ 4,000 m³. One design configuration has eight additional hall spaces, each over 60 m long and approximately 12 m in width, with overburdens of about 2.4 km of rock, oriented parallel to and away from the main water transport and auto traffic tunnels. There are additional possibilities for furthermore » expansions at a nearby second bypass tunnel and along the entrance and exit branches of both bypass tunnels, potentially leading to an expanded CJPL comparable in size to Gran Sasso. Concurrent with the excavation activities, planning is underway for dark matter and other rare-event detectors, as well as for geophysics/engineering and other coupled multi-disciplinary sensors. In the town meeting on 8 September, 2013 at Asilomar, CA, associated with the 13 th International Conference on Topics in Astroparticle and Underground Physics (TAUP), presentations and panel discussions addressed plans for one-ton expansions of the current CJPL germanium detector array of the China Darkmatter EXperiment (CDEX) collaboration and of the duel-phase xenon detector of the Panda-X collaboration, as well as possible new detector initiatives for dark matter studies, low-energy solar neutrino detection, neutrinoless double beta searches, and geoneutrinos. JinPing was also discussed as a site for a low-energy nuclear astrophysics accelerator. Geophysics/engineering opportunities include acoustic and micro-seismic monitoring of rock bursts during and after excavation, coupled-process in situ measurements, local, regional, and global monitoring of seismically induced radon emission, and electromagnetic signals. Additional ideas and projects will likely be developed in the next few years, driven by China’s domestic needs and by international experiments requiring access to very great depths.« less
Low-background germanium radioassay for the MAJORANA Collaboration
NASA Astrophysics Data System (ADS)
Trimble, James E., Jr.
The focus of the MAJORANA COLLABORATION is the search for nuclear neutrinoless double beta decay. If discovered, this process would prove that the neutrino is its own anti-particle, or a M AJORANA particle. Being constructed at the Sanford Underground Research Facility, the MAJORANA DEMONSTRATOR aims to show that a background rate of 3 counts per region of interest (ROI) per tonne per year in the 4 keV ROI surrounding the 2039-keV Q-value energy of 76Ge is achievable and to demonstrate the technological feasibility of building a tonne-scale Ge-based experiment. Because of the rare nature of this process, detectors in the system must be isolated from ionizing radiation backgrounds as much as possible. This involved building the system with materials containing very low levels of naturally- occurring and anthropogenic radioactive isotopes at a deep underground site. In order to measure the levels of radioactive contamination in some components, the Majorana Demonstrator uses a low background counting facility managed by the Experimental Nuclear and Astroparticle Physics (ENAP) group at UNC. The UNC low background counting (LBC) facility is located at the Kimballton Underground Research Facility (KURF) located in Ripplemead, VA. The facility was used for a neutron activation analysis of samples of polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) tubing intended for use in the Demonstrator. Calculated initial activity limits (90% C.L.) of 238U and 232Th in the 0.002-in PTFE samples were 7.6 ppt and 5.1 ppt, respectively. The same limits in the FEP tubing sample were 150 ppt and 45 ppt, respectively. The UNC LBC was also used to gamma-assay a modified stainless steel flange to be used as a vacuum feedthrough. Trace activities of both 238U and 232Th were found in the sample, but all were orders of magnitude below the acceptable threshold for the Majorana experiment. Also discussed is a proposed next generation ultra-low background system designed to utilize technology designed for the Majorana Demonstrator. Fi- nally, a discussion is presented on the design and construction of an azimuthal scanner used by the Majorana collaboration.
Goddard's Astrophysics Science Divsion Annual Report 2014
NASA Technical Reports Server (NTRS)
Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)
2015-01-01
The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS) Explorer mission, in collaboration with MIT (Ricker, PI); the Soft X-ray Spectrometer (SXS) for the Astro-H mission in collaboration with JAXA, and the James Webb Space Telescope (JWST). The Wide-Field Infrared Survey Telescope (WFIRST), the highest ranked mission in the 2010 decadal survey, is in a pre-phase A study, and we are supplying study scientists for that mission.
Radio detection of cosmic-ray air showers and high-energy neutrinos
NASA Astrophysics Data System (ADS)
Schröder, Frank G.
2017-03-01
In the last fifteen years radio detection made it back to the list of promising techniques for extensive air showers, firstly, due to the installation and successful operation of digital radio experiments and, secondly, due to the quantitative understanding of the radio emission from atmospheric particle cascades. The radio technique has an energy threshold of about 100 PeV, which coincides with the energy at which a transition from the highest-energy galactic sources to the even more energetic extragalactic cosmic rays is assumed. Thus, radio detectors are particularly useful to study the highest-energy galactic particles and ultra-high-energy extragalactic particles of all types. Recent measurements by various antenna arrays like LOPES, CODALEMA, AERA, LOFAR, Tunka-Rex, and others have shown that radio measurements can compete in precision with other established techniques, in particular for the arrival direction, the energy, and the position of the shower maximum, which is one of the best estimators for the composition of the primary cosmic rays. The scientific potential of the radio technique seems to be maximum in combination with particle detectors, because this combination of complementary detectors can significantly increase the total accuracy for air-shower measurements. This increase in accuracy is crucial for a better separation of different primary particles, like gamma-ray photons, neutrinos, or different types of nuclei, because showers initiated by these particles differ in average depth of the shower maximum and in the ratio between the amplitude of the radio signal and the number of muons. In addition to air-shower measurements, the radio technique can be used to measure particle cascades in dense media, which is a promising technique for detection of ultra-high-energy neutrinos. Several pioneering experiments like ARA, ARIANNA, and ANITA are currently searching for the radio emission by neutrino-induced particle cascades in ice. In the next years these two sub-fields of radio detection of cascades in air and in dense media will likely merge, because several future projects aim at the simultaneous detection of both, high-energy cosmic-rays and neutrinos. SKA will search for neutrino and cosmic-ray initiated cascades in the lunar regolith and simultaneously provide unprecedented detail for air-shower measurements. Moreover, detectors with huge exposure like GRAND, SWORD or EVA are being considered to study the highest energy cosmic rays and neutrinos. This review provides an introduction to the physics of radio emission by particle cascades, an overview on the various experiments and their instrumental properties, and a summary of methods for reconstructing the most important air-shower properties from radio measurements. Finally, potential applications of the radio technique in high-energy astroparticle physics are discussed.
IceCube events and decaying dark matter: hints and constraints
NASA Astrophysics Data System (ADS)
Esmaili, Arman; Kang, Sin Kyu; Dario Serpico, Pasquale
2014-12-01
In the light of the new IceCube data on the (yet unidentified) astrophysical neutrino flux in the PeV and sub-PeV range, we present an update on the status of decaying dark matter interpretation of the events. In particular, we develop further the angular distribution analysis and discuss the perspectives for diagnostics. By performing various statistical tests (maximum likelihood, Kolmogorov-Smirnov and Anderson-Darling tests) we conclude that currently the data show a mild preference (below the two sigma level) for the angular distribution expected from dark matter decay vs. the isotropic distribution foreseen for a conventional astrophysical flux of extragalactic origin. Also, we briefly develop some general considerations on heavy dark matter model building and on the compatibility of the expected energy spectrum of decay products with the IceCube data, as well as with existing bounds from gamma-rays. Alternatively, assuming that the IceCube data originate from conventional astrophysical sources, we derive bounds on both decaying and annihilating dark matter for various final states. The lower limits on heavy dark matter lifetime improve by up to an order of magnitude with respect to existing constraints, definitively making these events—even if astrophysical in origin—an important tool for astroparticle physics studies.
NASA Astrophysics Data System (ADS)
Irastorza, Igor G.; Scholberg, Kate; Colas, Paul; Giomataris, Ioannis
2011-08-01
The Fifth International Symposium on large TPCs for low-energy rare-event detection was held at the auditorium of the Astroparticle and Cosmology (APC) Laboratory in Paris, on 14-17 December 2010. As for all previous meetings, always held in Paris in 2008, 2006, 2004 and 2002, it brought together a significant community of physicists involved in rare event searches and/or development of time projection chambers (TPCs). As a novelty this year, the meeting was extended with two half-day sessions on Supernova physics. These proceedings also include the contributions corresponding to the supernova sessions. The purpose of the meeting was to present and discuss the status of current experiments or projects involving the use of TPCs to search for rare events, like low-energy neutrinos, double beta decay, dark matter or axion experiments, as well as to discuss new results and ideas in the framework of the last developments of Micro Pattern Gaseous Detectors (MPGD), and how these are being - or could be - applied to these searches. As in previous meetings in this series, the format included an informal program with some recent highlighted results, rather than exhaustive reviews, with time for discussion and interaction. The symposium, the fifth of the series, is becoming consolidated as a regular meeting place for the synergic interplay between the fields of rare events and TPC development. The meeting started with a moving tribute by Ioannis Giomataris to the memory of George Charpak, who recently passed away. We then moved on to the usual topics like the status of some low-energy neutrino physics and double beta decay experiments, dark matter experiments with directional detectors, axion searches, or development results. A relevant subject this time was the electroluminescence in Xe TPCs, covered by several speakers. Every time the conference program is enriched with original slightly off-topic contributions that trigger the curiosity and stimulate further thought. As mentioned before, this time we enjoyed a number of contributions on supernova physics, both theoretical and experimental. This volume contains the proceedings of the conference. The articles correspond to 31 of the talks given in the conference and they all represent high quality work in the above mentioned fields. The successful organization of the Symposium was made possible thanks to the contribution of the members of the Organizing Committee and International Advisory Committee. We want to thank in particular D Nygren and D Sinclair for their help with the program, as well as to all the session chairmen, J Zinn-Justin, J L Vuilleumier, J Busto, D Atti'e, G Chardin, N Spooner, D Vignaud, I Giomataris, K Scholberg, H T Wong, W Fulgione and D Sinclair, for their contribution to the smooth running of the workshop. The symposium was free of fees, which was made possible thanks to the financial support from CEA/IRFU, CNRS/IN2P3, University of Zaragoza, European Research Council (through grant ERC-2009-StG-240054) and ETH-Zurich, that are all gratefully acknowledged. Finally we want to thank the speakers for the high quality of their talks and all participants for coming to Paris and actively contributing to the meeting.
NASA Astrophysics Data System (ADS)
Bertone, Gianfranco; Calore, Francesca; Caron, Sascha; Ruiz, Roberto; Kim, Jong Soo; Trotta, Roberto; Weniger, Christoph
2016-04-01
We present a new global fit of the 19-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-19) that complies with all the latest experimental results from dark matter indirect, direct and accelerator dark matter searches. We show that the model provides a satisfactory explanation of the excess of gamma rays from the Galactic centre observed by the Fermi Large Area Telescope, assuming that it is produced by the annihilation of neutralinos in the Milky Way halo. We identify two regions that pass all the constraints: the first corresponds to neutralinos with a mass 0~ 80-10 GeV annihilating into WW with a branching ratio of 95%; the second to heavier neutralinos, with mass 0~ 180-20 GeV annihilating into bar tt with a branching ratio of 87%. We show that neutralinos compatible with the Galactic centre GeV excess will soon be within the reach of LHC run-II—notably through searches for charginos and neutralinos, squarks and light smuons—and of Xenon1T, thanks to its unprecedented sensitivity to spin-dependent cross-section off neutrons.
PREFACE: XIV Mexican Workshop on Particles and Fields
NASA Astrophysics Data System (ADS)
Delepine, D.; Napsuciale, M.; Ibarguen, H. S.
2015-11-01
The Mexican Workshop on Particles and Fields (MWPF) is a biennial meeting organized by the Division of Particles and Fields of the Mexican Physical Society designed to gather specialists in different areas of high energy physics to discuss the latest developments in the field. The fourteenth edition of this meeting was held from November 25 to 29, 2013, at the colonial city of Oaxaca de Juárez, Oaxaca, Mexico. The XIV Mexican Workshop on Particles and Fields consisted of invited lectures, discussion and poster sessions. Experimental and theoretical developments were presented by distinguished physicists, addressing the most recent results in the field. The invited review talks included topics on collider physics, neutrino physics, physics beyond the Standard Model, flavor and hadronic physics, astroparticle physics, dark matter physics and effective theories, among others. The highlight topic of the conference was the presentation of the most resent results from the most popular high energy experiments in the world. The discovery of a particle consistent with the long-sought Higgs boson, considered one of the most important discoveries of the 21st century, was fully addressed by José Benítez and Kirill Prokofiev from CERN. The overview of the results of ALICE on the first run of the LHC was extensivly covered by Antonio Ortiz, from Lund University, and Daniel Tapia, from Universití Paris-Sud. The prospects and status of the new Belle II experiment were presented by Yoshi Sakai from KEK. The plans and projects of Tevatron on the new era of accelerators were explained by Gene Fisk from FERMILAB. Eric Vázquez from SNOLAB presented a wonderful explanation about the Dark Matter detection and the most resent results about the searches for it. The largest high energy cosmic rays detector, the Pierre Auger, was presented by Luis Villasñnor from University of Michoacán. On Friday 29th of November, we had an excursion to the archeological site of Mitla and to Santa María del Tule. Mitla is a pre-Hispanic site, located 25 miles to the south of the city of Oaxaca, founded around 100 years a.c. by the native Zapotecos. Mitla had its golden age between 950-1500 a.c., after the dawn of the city of Monte Albán. It was the main city and center of the Zapotecos society in the Oaxaca central valley. Santa Mará del Tule is a nice town located 7 miles to the south of Oaxaca, famous for the so called ''Árbol del Tule''. This is an ancient tree belonging to the family commonly known as Ahuehuete or Sabino and whose scientific name is Taxodium mucronatum. It is more than 2000 years old and has a trunk with a circumference bigger than 45 meters. The workshop and these Proceedings would have not been possible without the efforts of many institutions: Consejo Nacional de Ciencia y Tecnología (CONACyT) through the Red Nacional de Física de Altas Energías and individual research projects, Universidad de Guanajuato, Universidad Nacional Autónoma de México, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Universidad Michoacana de San Nicolás de Hidalgo and Benemérita Universidad Autónoma de Puebla. We thank all these institutions for their support. Especially, we we wish to thank Universidad de Guanajuato for the financial support via PIFI for the publication of these proceedings. We thank all the speakers for making this a timely and informative workshop. Thanks are due to all who encourage the discussions and stimulate the flow of information during the question and the discussion sessions.
Astroparticle and neutrino oscillation research with KM3NeT
NASA Astrophysics Data System (ADS)
Kulikovskiy, V.
2017-05-01
Two next generation underwater neutrino telescopes are under construction in the Mediterranean sea by the KM3NeT Collaboration. The first, ORCA, optimised for atmospheric neutrinos detection will be capable to determine the neutrino mass hierarchy with >3{σ} after three years of operation, i.e. as early as 2023. The second, ARCA, is optimised for high energy neutrino astronomy. Its location allows for surveying most of the Galactic Plane, including the Galactic Centre and the most promising source candidates. The neutrino diffuse emission flux measured by the IceCube Collaboration can be observed with 5{σ} in less than one year.
On Integral Upper Limits Assuming Power-law Spectra and the Sensitivity in High-energy Astronomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahnen, Max L., E-mail: m.knoetig@gmail.com
The high-energy non-thermal universe is dominated by power-law-like spectra. Therefore, results in high-energy astronomy are often reported as parameters of power-law fits, or, in the case of a non-detection, as an upper limit assuming the underlying unseen spectrum behaves as a power law. In this paper, I demonstrate a simple and powerful one-to-one relation of the integral upper limit in the two-dimensional power-law parameter space into the spectrum parameter space and use this method to unravel the so-far convoluted question of the sensitivity of astroparticle telescopes.
PREFACE: International Conference on Topics in Astroparticle and Underground Physics (TAUP 2011)
NASA Astrophysics Data System (ADS)
Oberauer, Lothar; Raffelt, Georg; Wagner, Robert
2012-07-01
The 12th edition of the International Conference on Topics in Astroparticle and Underground Physics (TAUP 2011) was held 5-9 September 2011 in Munich (and for the first time in Germany). It was organized by the Max Planck Institute for Physics (MPP), the Technical University Munich (TUM) and the Cluster of Excellence 'Origin and Structure of the Universe'. The conference was held in the 'Künstlerhaus', a traditional downtown location for artistic festivities. The meeting attracted 317 participants (61 of which were women) from 29 countries, see figure below. The topics covered by the meeting were Cosmology and particle physics, Dark matter and its detection, Neutrino physics and astrophysics, Gravitational waves and High-energy astrophysics and cosmic rays, and the various interfaces between these areas. The scientific sessions consisted of five mornings of plenary talks, four afternoons of parallel sessions, and an evening poster session. The co-founder of the conference series, Alessandro Bottino, has decided to retire from the position of chairman of the TAUP Steering Committee after the completion of TAUP 2011. On behalf of all followers of this series, we thank him for having started these inspiring events and his many years of dedicated service. We thank all speakers, conveners and participants as well as the members of the organizing, steering and international advisory committee for making this a successful and memorable meeting. Lothar Oberauer, Georg Raffelt, Robert Wagner Proceedings editors Figure Committees International Advisory Committee G AntonUniversity of Erlangen E AprileColumbia University M Baldo-CeolinUniversity of Padova R BattistonUniversity of Perugia & INFN L BergströmUniversity Stockholm R BernabeiUniversity of Rome 'Tor Vergata' A BettiniLSC Canfranc P BinetruyAPC Paris J BlümerKarlsruhe Institute of Technology B CabreraStanford University A CaldwellMax Planck Institute for Physics M ChenQueens University E CocciaUniversity of Rome 'Tor Vergata' K DanzmannMax Planck Institute for Gravitational Physics S DodelsonFermilab G DomogatskyINR Moscow E FioriniUniversità di Milano Bicocca & INFN K FreeseUniversity of Michigan M FukugitaICRR Tokyo T GaisserUniversity of Delaware G GerbierCEA Saclay F HalzenUniversity of Wisconsin W HaxtonLNBL & UC Berkeley J HoughGlasgow University E KomatsuUniversity of Texas E KatsavounidisMassachusetts Institute of Technology M LindnerMax Planck Institute for Nuclear Physics K LeskoLBNL & UC Berkeley A McDonaldQueens University & SNO Laboratory H MurayamaIPMU Tokyo & UC Berkeley A OlintoUniversity of Chicago L ResvanisUniversity of Athens A RubbiaETH Zurich S SarkarUniversity of Oxford A SmirnovICTP Trieste N SmithSNO Laboratory C SpieringDESY Zeuthen N SpoonerUniversity of Sheffield Y SuzukiICRR Tokyo M TeshimaMax Planck Institute for Physics J W F ValleIFIC & University of Valencia L VotanoLNGS E WaxmanWeizmann Institute J WilkersonUniversity of North Carolina TAUP Steering Committee F T AvignoneUniversity of South Carolina B C BarishCaltech E BellottiUniversity of Milan Bicoccia & INFN J BernabeuUniversity of Valencia A BottinoUniversity of Turin & INFN (chair) N FornengoUniversity of Turin & INFN T KajitaICRR Tokyo C W KimJohns Hopkins University & KIAS V MatveevINR Moscow G RaffeltMax Planck Institute for Physics D SinclairUniversity of Carleton M SpiroCEA Saclay Parallel Session Conveners Dark Matter - Candidates and Searches J-C LanfranchiTechnische Universität München T Marrodán UndagoitiaUniversity of Zurich T BringmannUniversität Hamburg Cosmology J WellerLudwig-Maximilians-Universität München S HannestadUniversity of Aarhus Double Beta Decay, Neutrino Mass M HirschIFIC/CSIC - University of Valencia A GiulianiCNRS Orsay Neutrino Oscillations T LachenmaierUniversität Tübingen F SuekaneTohoku University Low-Energy Neutrinos (Geo, Solar, Supernova) A DigheTIFR Mumbai M ChenQueen's University M WurmUniversität Hamburg Gravitational Waves E CocciaUniversity of Rome Tor Vergata and INFN S MarkaColumbia University Astrophysical Messengers (Neutrinos, Gamma-Rays, Cosmic Rays) R M WagnerMax-Planck-Institut für Physik M KachelriessUniversity of Trondheim M KowalskiUniversity of Bonn Organizing Committee N FornengoTorino University and INFN B MajorovitsMax-Planck-Institut für Physik L OberauerTechnische Universität M ü nchen (co-chair) G RaffeltMax-Planck-Institut für Physik (co-chair) S RodríguezMax-Planck-Institut für Physik (conference secretary) S SchönertTechnische Universität München D SinclairSNO Laboratory & Carleton University R M WagnerMax-Planck-Institut für Physik (scientific secretary) B WankerlExcellence Cluster 'Origin and Structure of the Universe' M WurmTechnische Universität München S ZollingerMax-Planck-Institut für Physik Conference photograph
2012 Aspen Winter Conferences on High Energy and Astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, John; Olivier, Dore; Fox, Patrick
Aspen Center for Physics Project Summary DE-SC0007313 Budget Period: 1/1/2012 to 12/31/2012 The Hunt for New Particles, from the Alps to the Plains to the Rockies The 2012 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 11 to February 17, 2012. Sixty-seven participants from nine countries, and several universities and national labs attended the workshop titled, The Hunt for New Particles, from the Alps to the Plains to the Rockies. There were 53 formal talks, and a considerable number of informal discussions held during the week. The weeks events included a publicmore » lecture-Hunting the Dark Universe given by Neal Weiner from New York University) and attended by 237 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists conducted by Spencer Chang (University of Oregon), Matthew Reece (Harvard University) and Julia Shelton (Yale University) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by John Campbell (Fermilab), Patrick Fox (Fermilab), Ivan Furic (University of Florida), Eva Halkiadakis (Rutgers University) and Daniel Whiteson (University of California Irvine). Additional information is available at http://indico.cern.ch/conferenceDisplay.py?confId=143360. Inflationary Theory and its Confrontation with Data in the Planck Era The 2012 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was Inflationary Theory and its Confrontation with Data in the Planck Era. It was held from January 30 to February 4, 2012. The 62 participants came from 7 countries and attended 43 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Shamit Kachru of Stanford University gave a public lecture titled The Small (and Large) Scale Structure of Space-Time.There were 237 members of the general public in attendance. Before the lecture, 65 people attended the physics cafe to discuss the current topic with Matthew Kleban (New York University) and Chao-Lin Kuo (Stanford University). This workshop was organized by Olivier Dore (Jet Propulsion Lab), Fabian Schmidt (Caltech), Leonardo Senatore (Stanford University), and Kendrick Smith (Princeton University).« less
Particle Physics on the Eve of Lhc
NASA Astrophysics Data System (ADS)
Studenikin, Alexander I.
2009-01-01
Fundamentals of particle physics. The quantum number of color, colored quarks and dynamic models of Hadrons composed of quasifree quarks / V. Matveev, A. Tavkhelidze. Discovery of the color degree of freedom in particle physics: a personal perspective / O. W. Greenberg. The evolution of the concepts of energy, momentum, and mass from Newton and Lomonosov to Einstein and Feynman / L. Okun -- Physics at accelerators and studies in SM and beyond. Search for new physics at LHC (CMS) / N. Krasnikov. Measuring the Higgs Boson(s) at ATLAS / C. Kourkoumelis. Beyond the standard model physics reach of the ATLAS experiment / G. Unel. The status of the International Linear Collider / B. Foster. Review of results of the electron-proton collider HERA / V. Chekelian. Recent results from the Tevatron on CKM matrix elements from Bs oscillations and single top production, and studies of CP violation in Bs Decays / J. P. Fernández. Direct observation of the strange b Barion [symbol] / L. Vertogradov. Search for new physics in rare B Decays at LHCb / V. Egorychev. CKM angle measurements at LHCb / S. Barsuk. Collider searches for extra spatial dimensions and black holes / G. Landsberg -- Neutrino Physics. Results of the MiniBooNE neutrino oscillation experiment / Z. Djurcic. MINOS results and prospects / J. P. Ochoa-Ricoux. The new result of the neutrino magnetic moment measurement in the GEMMA experiment / A. G. Beda ... [et al.]. The Baikal neutrino experiment: status, selected physics results, and perspectives / V. Aynutdinov ... [et al.]. Neutrino telescopes in the deep sea / V. Flaminio. Double beta decay: present status / A. S. Barabash. Beta-beams / C. Volpe. T2K experiment / K. Sakashita. Non-standard neutrino physics probed by Tokai-to-Kamioka-Korea two-detector complex / N. Cipriano Ribeiro ... [et al.]. Sterile neutrinos: from cosmology to the LHC / F. Vannucci. From Cuoricino to Cuore towards the inverted hierarchy region / C. Nones. The MARE experiment: calorimetric approach to the direct measurement of the neutrino mass / E. Andreotti. Electron angular correlation in neutrinoless double beta decay and new physics / A. Ali, A. Borisov, D. Zhuridov. Neutrino energy quantization in rotating medium / A. Grigoriev, A. Studenikin. Neutrino propagation in dense magnetized matter / E. V. Arbuzova, A. E. Lobanov, E. M. Murchikova. Plasma induced neutrino spin flip via the neutrino magnetic moment / A. Kuznetsov, N. Mikheev -- Astroparticle physics and cosmology. International Russian-Italian mission "RIM-PAMELA" / A. M. Galper .. [et al.]. Dark Matter searches with AMS-02 experiment / A. Malinin. Investigating the dark halo / R. Bernabei ... [et al.]. Search for rare processes at Gran Sasso / P. Belli ... [et al.]. Anisotropy of Dark Matter annihilation and remnants of Dark Matter clumps in the galaxy / V. Berezinsky, V. Dokuchaev, Yu. Eroshenko. Current observational constraints on inflationary models / E. Mikheeva. Phase transitions in dense quark matter in a constant curvature gravitational field / D. Ebert, V. Ch. Zhukovsky, A. V. Tyukov. Construction of exact solutions in two-fields models / S. Yu. Vernov. Quantum systems bound by gravity / M. L. Fil'chenkov, S. V. Kopylov, Y. P. Laptev -- CP violation and rare decays. Some puzzles of rare B-Decays / A. B. Kaidalov. Measurements of CP violation in b decays and CKM parameters / J. Chauveau. Evidence for D[symbol] mixing at BaBar / M. V. Purohit. Search for direct CP violation in charged kaon decays from NA48/2 experiment / S. Balev. [symbol] scattering lengths from measurements of K[symbol] and K± -> [symbol] decays at NA48/2 / D. Madigozhin. Rare kaon and hyperon decays in NA48 experiment / N. Molokanova. THE K+ -> [symbol]+vv¯ experiment at CERN / Yu. Potrebenikov. Recent KLOE results / B. Di Micco.Decay constants and masses of heavy-light mesons in field correlator method / A. M. Badalian. Bilinear R-parity violation in rare meson decays / A. Ali, A. V. Borisov, M. V. Sidorova. Final state interaction in K -> 2[symbol] decay / E. Shabalin -- Hadron physics. Collective effects in central heavy-ion collisions / G. I. Lykasov ... [et al.]. Stringy phenomena in Yang-Mills plasma / V. I. Zakharov. Lattice results on gluon and ghost propagators in Landau gauge / I. L. Bogolubsky ... [et al.]. [symbol] and [symbol] excited states in field correlator method / I. Narodetskii, A. Veselov. Theory of quark-gluon plasma and phase transition / E. V. Komarov, Yu. A. Simonov. Chiral symmetry breaking and the Lorentz nature of confinement / A. V. Nefediev. Structure function moments of proton and neutron / M. Osipenko. Higgs decay to bb: different approaches to resummation of QCD effects / A. L. Kataev, V. T. Kim. A novel integral representation for the Adler function and its behavior at low energies / A. V. Nesterenko. QCD test of z-scaling for [symbol]-meson production in pp collisions at high energies / M. Tokarev, T. Dedovich. Quark mixing in the standard model and the space rotations / G. Dattoli, K. Zhukovsky. Analytic approach to constructing effective theory of strong interactions and its application to pion-nucleon scattering / A. N. Safronov -- New developments in quantum field theory. On the origin of families and their mass matrices with the approach unifying spin and charges, prediction for new families / N. S. Mankoc Borstnik. Z[symbol] electric strings and center vortices in SU(2) lattice gauge theory / M. I. Polikarpov, P. V. Buividovich. Upper bound on the lightest neutralino mass in the minimal non-minimal supersymmetric standard model / S. Hesselbach ... [et al.]. Application of higher derivative regularization to calculation of quantum corrections in N=l supersymmetric theories / K. Stepanyantz. Nonperturbative quantum relativistic effects in the confinement mechanism for particles in a deep potential well / K. A. Sveshnikov, M. V. Ulybyshev. Khalfin's theorem and neutral mesons subsystem / K. Urbanowski. Effective lagrangians and field theory on a lattice / O. V. Pavlovsky. String-like electrostatic interaction from QED with infinite magnetic field / A. E. Shabad, V. V. Usov. QFT systems with 2D spatial defects / I. V. Fialkovsky, V. N. Markov, Yu. M. Pismak. Bound state problems and radiative effects in extended electrodynamics with Lorentz violation / I. E. Frolov, O. G. Kharlanov, V. Ch. Zhukovsky. Particles with low binding energy in a strong stationary magnetic field / E. V. Arbuzova, G. A. Kravtsova, V. N. Rodionov. Triangle anomaly and radiatively induced Lorentz and CPT violation in electrodynamics / A. E. Lobanov, A. P. Venediktov. The comparative analysis of the angular distribution of synchrotron radiation for a spinless particle in classic and quantum theories / V. G. Bagrov, A. N. Burimova, A. A. Gusev. Problem of the spin light identification / V. A. Bordovitsyn, V. V. Telushkin. Simulation the nuclear interaction / T. F. Kamalov. Unstable leptons and (u - e - [symbol])-universality / O. Kosmachev. Generalized Dirac equation describing the quark structure of nucleons / A. Rabinowitch. Unique geometrization of material and electromagnetic wave fields / O. Olkhov -- Problems of intelligentsia. The conscience of the intelligentsia / J. K. Bleimaier.
Obituary: David L. Band (1957-2009)
NASA Astrophysics Data System (ADS)
Cominsky, Lynn
2011-12-01
David L. Band, of Potomac Maryland, died on March 16, 2009 succumbing to a long battle with spinal cord cancer. His death at the age of 52 came as a shock to his many friends and colleagues in the physics and astronomy community. Band showed an early interest and exceptional aptitude for physics, leading to his acceptance at the Massachusetts Institute of Technology as an undergraduate student in 1975. After graduating from MIT with an undergraduate degree in Physics, Band continued as a graduate student in Physics at Harvard University. His emerging interest in Astrophysics led him to the Astronomy Department at the Harvard Smithsonian Center for Astrophysics (CfA), where he did his dissertation work with Jonathan Grindlay. His dissertation (1985) entitled "Non-thermal Radiation Mechanisms and Processes in SS433 and Active Galactic Nuclei" was "pioneering work on the physics of jets arising from black holes and models for their emission, including self-absorption, which previewed much to come, and even David's own later work on Gamma-ray Bursts," according to Grindlay who remained a personal friend and colleague of Band's. Following graduate school, Band held postdoctoral positions at the Lawrence Livermore Laboratory, the University of California at Berkeley and the Center for Astronomy and Space Sciences at the University of California San Diego where he worked on the BATSE experiment that was part of the Compton Gamma Ray Observatory (CGRO), launched in 1991. BATSE had as its main objective the study of cosmic gamma-ray bursts (GRBs) and made significant advances in this area of research. Band became a world-renowned figure in the emerging field of GRB studies. He is best known for his widely-used analytic form of gamma-ray burst spectra known as the "Band Function." After the CGRO mission ended, Band moved to the Los Alamos National Laboratory where he worked mainly on classified research but continued to work on GRB energetics and spectra. When NASA planned two new follow-up missions to CGRO, the Swift and Fermi observatories, Band seized an opportunity in 2001 to join the staff of the Fermi Science Support Center at the NASA Goddard Space Flight Center in Greenbelt Maryland. He was hired as the lead scientist for user support functions and to help to define and implement planning for the 2008 launch of the Fermi spacecraft. He brought a high level of energy and enthusiasm to the job, becoming in many ways the heart and soul of that organization. Neil Gehrels, the Goddard Astroparticle Physics Division Director and a Fermi deputy project scientist notes that "David was the perfect person for community support, with this outgoing personality and deep knowledge of astrophysics." Band also became an important member of the Fermi science team; despite his failing health, he actively contributed to the first Fermi gamma-ray burst publication as well as making important contributions to the burst detection and data analysis techniques. Additionally, Band was known as a great communicator and mentor. He supervised a PhD student at UCSD who has subsequently been appointed to a faculty position. At Goddard, Band was an integral part of the weekly scientific discussion groups within the gamma-ray astronomy group and he would always find the time to share his knowledge and expertise with new postdoctoral fellows and senior scientists alike. He was also involved with planning the EXIST mission, a candidate for a future NASA mission. He will be greatly missed by his many friends and colleagues within the Fermi mission and the high-energy astrophysics community.
Testing B-violating signatures from exotic instantons in future colliders
NASA Astrophysics Data System (ADS)
Addazi, Andrea; Kang, Xian-Wei; Khlopov, Maxim Yu.
2017-09-01
We discuss possible implications of exotic stringy instantons for baryon-violating signatures in future colliders. In particular, we discuss high-energy quark collisions and transitions. In principle, the process can be probed by high-luminosity electron-positron colliders. However, we find that an extremely high luminosity is needed in order to provide a (somewhat) stringent bound compared to the current data on NN → ππ,KK. On the other hand, (exotic) instanton-induced six-quark interactions can be tested in near future high-energy colliders beyond LHC, at energies around 20-100 TeV. The Super proton-proton Collider (SppC) would be capable of such measurement given the proposed energy level of 50-90 TeV. Comparison with other channels is made. In particular, we show the compatibility of our model with neutron-antineutron and NN → ππ,KK bounds. A. A.’s work was Supported in part by the MIUR research grant “Theoretical Astroparticle Physics" PRIN 2012CPPYP7. XWK's work is partly Supported by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” when he was in Jülich, and by MOST, Taiwan, (104-2112-M-001-022) from April 2017. The work by MK was performed within the framework of the Center FRPP Supported by MEPhI Academic Excellence Project (contract 02.03.21.0005, 27.08.2013), Supported by the Ministry of Education and Science of Russian Federation, project 3.472.2014/K and grant RFBR 14-22-03048
NASA Astrophysics Data System (ADS)
Steinitz, Gideon; Sturrock, Peter A.; Piatibratova, Oksana; Kotlarsky, Peter
2015-04-01
A radon simulation experiment using a confined mode is operating at GSI since 2007 at a time resolution of 15-minutes [1]. The nuclear radiation from radon in the confined air is measured using internal alpha and gamma sensors, and external gamma sensors. Detailed analysis [1, 2] demonstrated that the variation patterns cannot be ascribed to local environmental influences. On the other hand the specific features and relation led to the suggestion that a component in solar radiation is driving the signals. Prominent periodicities dominate the variation in the annual and diurnal frequency bands. The primary periodicity in the diurnal band has a frequency of 1 CPD (S1). Significant multiples occur at 2 CPD (S2), 3 CPD (S3) and also at 4 CPD (S4). The S2 and S3 constituents are clearly observed in the time domain in addition to the primary S1 periodicity. The measured signal is detrended by removing the large annual variation. Spectral analysis (FFT) of the residual time series reveals sidebands (Sb) alongside and on both sides of the S1 frequency in the time series of the alpha and gamma sensors. The lower sideband (LSb) occurs at a frequency close to the astronomical sidereal frequency (0.9972696 CPD). The upper sideband (USb) occurs at a symmetric frequency relative to S1. The four sensors (alpha and gamma)exhibit the LSb, S1, and USb at the following frequencies (CPD): Gamma-C: 0.99739; 0.99989; 1.00275 Gamma-W: 0.99717; 0.99986; 1.00257 Alpha-H: 0.99710; 0.99992; 1.00269 Alpha-L: 0.99719; 0.99991 Multiples of LSb and USb are observed around the S1 periodicity. Similar features of Sb and multiples occur also around S2, S3, and S4. The development of the specific Sb around the diurnal periodicities may be attributed to a driver composed of two waveforms having periodicities of 1 day and 365.25 days, which interacts in a non-linear mode with radon inside the confined volume. The pattern of the alpha and gamma emission of the decaying radon is reflecting this non-linear interaction. The observed patterns of diurnal periodicities together with the associated Sb and their multiples can be demonstrated by statistical simulation using polynomial combinations of these sinusoidal waveforms. Notwithstanding, at this stage the identification of the underlying physical and geophysical processes remains open. The observation of sidebands around S1 at the specific periodicities indicates that the periodic signals in the radon time series of the experiment are directly related to the cyclic rotational relations in the earth-sun system. This in turn is an independent confirmation of the notion that these signals are influenced by a component in solar radiation [1, 2]. 1. Steinitz, G., Piatibratova, O., Kotlarsky, P., 2011. Possible effect of solar tides on radon signals. Journal of Environmental Radioactivity, 102, 749-765. doi: 10.1016/j.jenvrad.2011.04.002. 2. Sturrock, P.A., Steinitz, G., Fischbach, E., Javorsek, D. and Jenkins, J.H., 2012. Analysis of Gamma Radiation from a Radon Source: Indications of a Solar Influence. Astroparticle Physics, 36/1, 18-26.
NASA Astrophysics Data System (ADS)
Grieder, P. K. F.
In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological and medical aspects of the cosmic radiation because of it ionizing character and the inevitable irradiation to which we are exposed. This book is a reference manual for researchers and students of cosmic ray physics and associated fields and phenomena. It is not intended to be a tutorial. However, the book contains an adequate amount of background materials that its content should be useful to a broad community of scientists and professionals. The present book contains chiefly a data collection in compact form that covers the cosmic radiation in the vicinity of the Earth, in the Earth's atmosphere, at sea level and underground. Included are predominantly experimental but also theoretical data. In addition the book contains related data, definitions and important relations. The aim of this book is to offer the reader in a single volume a readily available comprehensive set of data that will save him the need of frequent time consuming literature searches.
Measurement of Relative Abundances of Ultra-Heavy Cosmic Rays with CALET on the ISS
NASA Astrophysics Data System (ADS)
Rauch, Brian; Calet Collaboration
2016-03-01
The CALorimetric Electron Telescope (CALET) is a Japanese-Italian-US astroparticle observatory that was launched from the Tanegashima Space Center on the H-IIB Launch Vehicle No.5 (H-IIB F5) aboard the KOUNOTORI5 (HTV5 cargo transfer vehicle) to the International Space Station (ISS) on August 19, 2015. The HTV5 arrived at the ISS on August 24, and CALET was installed on port 9 of the Japanese Experiment Module ``Kibo'' Exposed Facility (JEM-EF), where CALET underwent the planned turn on and checkout procedures. CALET has completed its commissioning phase and its main calorimeter (CAL) is observing the highest energy cosmic electrons from 1 GeV to 20 TeV, along with cosmic ray nuclei through iron up to 1,000 TeV and gamma-rays above 10 GeV. In a five-year mission CALET will also have the exposure to measure the relative abundances of the ultra-heavy (UH) cosmic rays with ~4 × the statistics of the TIGER instrument for the full CAL acceptance. Rigidity cutoffs based on the earth's geomagnetic field in the 51.6° inclination ISS orbit can provide an energy independent UH measurement with expanded acceptance with ~10 × the TIGER statistics. An overview of the anticipated performance and preliminary CALET UH analysis data will be presented. This research was supported by NASA at Washington University under Grant Number NNX11AE02G.
Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework
NASA Astrophysics Data System (ADS)
Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.
2017-12-01
The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to identify and classify SPS. A worldwide network of cosmic-ray detectors could not only become a unique tool to study fundamental physics, it will also provide a number of other opportunities, including space-weather or geophysics studies. Among the latter one has to list the potential to predict earthquakes by monitoring the rate of low energy cosmic-ray events. The diversity of goals motivates us to advertise this concept across the astroparticle physics community.
PREFACE: Young Researcher Meeting, Trieste 2014
NASA Astrophysics Data System (ADS)
Agostini, F.; Antolini, C.; Aversa, R.; Cattani, G.; Di Stefano, M.; Longobardi, M.; Martinelli, M.; Miceli, A.; Migliaccio, M.; Paci, F.; Pietrobon, D.; Pusceddu, E.; Stellato, F.
2014-12-01
YRM_LOGO The Young Researcher Meeting (www.yrmr.it) has confirmed once again this year the enthusiasm and determination of Ph.D. students, postdoctoral fellows and young researchers to play a major role in the scientific progress. Since 2009, we regularly gather together to discuss the most recent developments and achievements in Physics, firmly convinced that sharing our expertise and experience is the foundation of research activity. The format we chose is an informal meeting primarily aimed at graduate students and postdoctoral researchers, who are encouraged to present their work in brief presentations that provide genuine engagement of the audience and cross-pollination of ideas. One of the main purposes of the conference is to create an international network of young researchers, both experimentalists and theorists, and fruitful collaborations across the different branches of Physics. After four editions that strengthened it, the Young Researcher Meeting 2014 was held at the International School for Advanced Studies - SISSA, Trieste, for the second time. The fifth appointment was a two-day conference on July 14th-15th 2014. It has been sponsored by a number of research groups of SISSA, the University of Udine and the Solar Physics group of the University of Rome "Tor Vergata", thus gathering even broader support than previous editions. The success of this year event is testified by an increased number of participants and institutions all around Europe. This resulted in an extremely rich and interactive poster session that covered several areas of pure and applied Physics. With the intent of broadening the contents and stimuli adopting multidisciplinary tools, the YRM 2014 hosted the workshop "Communicating Science" held in collaboration with SISSA Medialab. This choice reflects the growing importance of the outreach activity performed by scientists, especially at the earliest stages of their career, as a way of increasing their expertise and developing soft skills. Engaging the public and finding unconventional ways to communicate results turn out to be real assets in improving the quality of presentation of current research to peers, as well as to the general public. In this volume, we collect part of the contributions that have been presented at the conference. They cover topics in astrophysics and cosmology, particle and theoretical physics, soft and condensed matter, medical physics and applied physics. Given the recent experimental achievements in particle physics and cosmology, several contributions were focused on the latest results obtained in these fields, presenting the impact of experiments such as LHC and Planck to the community of young researchers and forecasting the future goals in these areas of research. Particular interest was aroused by the session fully dedicated to applied Physics and conservation of cultural assets. Besides the intrinsic scientific value of the discussed topics, the increasing relative weight of the applied Physics session is a demonstration of the benefits that fundamental science brings to the community. YRM Organising and Editorial Committee Fabio Agostini (fabio.agostini31@gmail.com) Telespazio A Finmeccanica Thales Company Claudia Antolini (claudia.antolini@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati and Fudan University Rossella Aversa (raversa@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati Giordano Cattani (giordano.cattani@gmail.com) Marco Di Stefano (distefan@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati Maria Longobardi (marialongobardi@gmail.com) Department of Condensed Matter Physics, University of Geneva Matteo Martinelli (martinelli@thphys.uni-heidelberg.de) SISSA - Scuola Internazionale Superiore di Studi Avanzati and Institut fur Theoretische Physik Alice Miceli (alice.miceli@uniroma2.it) Physics Department, University of Rome Tor Vergata Marina Migliaccio (mm858@ast.cam.ac.uk) Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge Francesco Paci (fpaci@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati Davide Pietrobon (davide.pietrobon@berkeley.edu) University of California at Berkeley Emanuela Pusceddu (emanuela.pusceddu@gmail.com) Institute of Biometeorology CNR Francesco Stellato (francesco.stellato@roma2.infn.it) INFN Roma Tor Vergata ACKNOWLEDGEMENTS The organisers of the 5th Young Researcher Meeting would like to thank all the scientists who participated to the meeting. We furthermore thank all our sponsors that are listed below for supporting the event. We are grateful to the International School for Advanced Studies (SISSA) for hosting the conference for the second time, and to its director, Prof. Guido Martinelli, for his support and advice. We owe gratitude to SISSA Medialab, for organising the public event on science communication and providing technical support throughout the entire meeting. The publication of the proceedings of the conference is partially supported by the Solar Physics group in Tor Vertaga; we also acknowledge support from the University of Udine. The event was broadcast live by OggiScienza (http://oggiscienza.wordpress.com). The complete videos of the meeting can be found at the YRM Youtube channel https://www.youtube.com/channel/UCw3roeK9oC4NPc-sRQ2t0rg SISSAInternational School for Advanced Studies (SISSA), Trieste PRINPRIN 2010-2011 (MIUR 2010YJ2NYW_001) - "Symmetries, Masses and Mysteries: Electroweak symmetry breaking, flavor mixing and CP violation, and Dark Matter in the LHC era" - SISSA, Trieste BIOMolecular and Statistical Biophysics Group - SISSA, Trieste THEOPRIN 2012 (2012CPPYP7_006) - "Theoretical Astroparticle Physics" - SISSA, Trieste ASTROPRIN 2010-2011 (MIUR 2010NHBSBE_008) - "L'Universo oscuro e l'evoluzione cosmica dei barioni: dalle survey attuali a Euclid" - SISSA, Trieste UDINEDepartment of Chemistry, Physics and Environment of the University of Udine BERRILLISolar Physics Group - Department of Physics of the University of Rome "Tor Vergata"
Genetic programming applied to RFI mitigation in radio astronomy
NASA Astrophysics Data System (ADS)
Staats, K.
2016-12-01
Genetic Programming is a type of machine learning that employs a stochastic search of a solutions space, genetic operators, a fitness function, and multiple generations of evolved programs to resolve a user-defined task, such as the classification of data. At the time of this research, the application of machine learning to radio astronomy was relatively new, with a limited number of publications on the subject. Genetic Programming had never been applied, and as such, was a novel approach to this challenging arena. Foundational to this body of research, the application Karoo GP was developed in the programming language Python following the fundamentals of tree-based Genetic Programming described in "A Field Guide to Genetic Programming" by Poli, et al. Karoo GP was tasked with the classification of data points as signal or radio frequency interference (RFI) generated by instruments and machinery which makes challenging astronomers' ability to discern the desired targets. The training data was derived from the output of an observation run of the KAT-7 radio telescope array built by the South African Square Kilometre Array (SKA-SA). Karoo GP, kNN, and SVM were comparatively employed, the outcome of which provided noteworthy correlations between input parameters, the complexity of the evolved hypotheses, and performance of raw data versus engineered features. This dissertation includes description of novel approaches to GP, such as upper and lower limits to the size of syntax trees, an auto-scaling multiclass classifier, and a Numpy array element manager. In addition to the research conducted at the SKA-SA, it is described how Karoo GP was applied to fine-tuning parameters of a weather prediction model at the South African Astronomical Observatory (SAAO), to glitch classification at the Laser Interferometer Gravitational-wave Observatory (LIGO), and to astro-particle physics at The Ohio State University.
Why PeV scale left-right symmetry is a good thing
NASA Astrophysics Data System (ADS)
Yajnik, Urjit A.
2017-10-01
Left-right symmetric gauge theory presents a minimal paradigm to accommodate massive neutrinos with all the known conserved symmetries duly gauged. The work presented here is based on the argument that the see-saw mechanism does not force the new right-handed symmetry scale to be very high, and as such some of the species from the spectrum of the new gauge and Higgs bosons can have masses within a few orders of magnitude of the TeV scale. The scale of the left-right parity breaking in turn can be sequestered from the Planck scale by supersymmetry. We have studied several formulations of such just beyond Standard Model (JBSM) theories for their consistency with cosmology. Specifically, the need to eliminate phenomenologically undesirable domain walls gives many useful clues. The possibility that the exact left-right symmetry breaks in conjunction with supersymmetry has been explored in the context of gauge mediation, placing restrictions on the available parameter space. Finally, we have also studied a left-right symmetric model in the context of metastable supersymmetric vacua and obtained constraints on the mass scale of right-handed symmetry. In all the cases studied, the mass scale of the right-handed neutrino M_R remains bounded from above, and in some of the cases the scale 10^9 GeV favourable for supersymmetric thermal leptogenesis is disallowed. On the other hand, PeV scale remains a viable option, and the results warrant a more detailed study of such models for their observability in collider and astroparticle experiments.
Experiment Design and Analysis Guide - Neutronics & Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misti A Lillo
2014-06-01
The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.
Introduction to Methods of Approximation in Physics and Astronomy
NASA Astrophysics Data System (ADS)
van Putten, Maurice H. P. M.
2017-04-01
Modern astronomy reveals an evolving Universe rife with transient sources, mostly discovered - few predicted - in multi-wavelength observations. Our window of observations now includes electromagnetic radiation, gravitational waves and neutrinos. For the practicing astronomer, these are highly interdisciplinary developments that pose a novel challenge to be well-versed in astroparticle physics and data analysis. In realizing the full discovery potential of these multimessenger approaches, the latter increasingly involves high-performance supercomputing. These lecture notes developed out of lectures on mathematical-physics in astronomy to advanced undergraduate and beginning graduate students. They are organised to be largely self-contained, starting from basic concepts and techniques in the formulation of problems and methods of approximation commonly used in computation and numerical analysis. This includes root finding, integration, signal detection algorithms involving the Fourier transform and examples of numerical integration of ordinary differential equations and some illustrative aspects of modern computational implementation. In the applications, considerable emphasis is put on fluid dynamical problems associated with accretion flows, as these are responsible for a wealth of high energy emission phenomena in astronomy. The topics chosen are largely aimed at phenomenological approaches, to capture main features of interest by effective methods of approximation at a desired level of accuracy and resolution. Formulated in terms of a system of algebraic, ordinary or partial differential equations, this may be pursued by perturbation theory through expansions in a small parameter or by direct numerical computation. Successful application of these methods requires a robust understanding of asymptotic behavior, errors and convergence. In some cases, the number of degrees of freedom may be reduced, e.g., for the purpose of (numerical) continuation or to identify secular behavior. For instance, secular evolution of orbital parameters may derive from averaging over essentially periodic behavior on relatively short, orbital periods. When the original number of degrees of freedom is large, averaging over dynamical time scales may lead to a formulation in terms of a system in approximately thermodynamic equilibrium subject to evolution on a secular time scale by a regular or singular perturbation. In modern astrophysics and cosmology, gravitation is being probed across an increasingly broad range of scales and more accurately so than ever before. These observations probe weak gravitational interactions below what is encountered in our solar system by many orders of magnitude. These observations hereby probe (curved) spacetime at low energy scales that may reveal novel properties hitherto unanticipated in the classical vacuum of Newtonian mechanics and Minkowski spacetime. Dark energy and dark matter encountered on the scales of galaxies and beyond, therefore, may be, in part, revealing our ignorance of the vacuum at the lowest energy scales encountered in cosmology. In this context, our application of Newtonian mechanics to globular clusters, galaxies and cosmology is an approximation assuming a classical vacuum, ignoring the potential for hidden low energy scales emerging on cosmological scales. Given our ignorance of the latter, this poses a challenge in the potential for unknown systematic deviations. If of quantum mechanical origin, such deviations are often referred to as anomalies. While they are small in traditional, macroscopic Newtonian experiments in the laboratory, they same is not a given in the limit of arbitrarily weak gravitational interactions. We hope this selection of introductory material is useful and kindles the reader's interest to become a creative member of modern astrophysics and cosmology.
Probing Pre- and In-service Physics Teachers' Knowledge Using the Double-Slit Thought Experiment
NASA Astrophysics Data System (ADS)
Asikainen, Mervi A.; Hirvonen, Pekka E.
2014-09-01
This study describes the use of the double-slit thought experiment as a diagnostic tool for probing physics teachers' understanding. A total of 9 pre-service teachers and 18 in-service teachers with a variety of different experience in modern physics teaching at the upper secondary level responded in a paper-and-pencil test and three of these teachers were interviewed. The results showed that the physics teachers' thought experiments with classical particles, light, and electrons were often partial. Many teachers also suffered a lack of the basic ideas and principles of physics, which probably hindered thought experimenting. In particular, understanding the ontological nature of classical particles, light and electrons seemed to be essential in performing the double-slit experiment in an appropriate way. However, the in-service physics teachers who had teaching experience in modern physics were more prepared for the double-slit thought experiment than the pre-service teachers. The results suggest that both thought experiments and the double-slit experiment should be given more weight in physics teacher education, even if experience in modern physics teaching at upper secondary school seems to some extent to develop teachers' abilities.
The experience sampling method: Investigating students' affective experience
NASA Astrophysics Data System (ADS)
Nissen, Jayson M.; Stetzer, MacKenzie R.; Shemwell, Jonathan T.
2013-01-01
Improving non-cognitive outcomes such as attitudes, efficacy, and persistence in physics courses is an important goal of physics education. This investigation implemented an in-the-moment surveying technique called the Experience Sampling Method (ESM) [1] to measure students' affective experience in physics. Measurements included: self-efficacy, cognitive efficiency, activation, intrinsic motivation, and affect. Data are presented that show contrasts in students' experiences (e.g., in physics vs. non-physics courses).
Analysis of pre-service physics teacher skills designing simple physics experiments based technology
NASA Astrophysics Data System (ADS)
Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.
2018-03-01
Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.
ERIC Educational Resources Information Center
Hirça, Necati
2013-01-01
In this study, relationship between prospective science and technology teachers' experiences in conducting Hands on physics experiments and their physics lab I achievement was investigated. Survey model was utilized and the study was carried out in the 2012 spring semester. Seven Hands on physics experiments were conducted with 28 prospective…
Search for the Standard Model Higgs boson in the decay mode H→ W +W -→ ℓ +vℓ -v
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penning, Bjorn
2009-09-07
The question of the nature and principles of the universe and our place in it is the driving force of science since Mesopotamian astronomers glanced for the first time at the starry sky and Greek atomism has been formulated. During the last hundred years modern science was able to extend its knowledge tremendously, answering many questions, opening entirely new fields but as well raising many new questions. Particularly Astronomy, Astroparticle Physics and Particle Physics lead the race to answer these fundamental and ancient questions experimentally. Today it is known that matter consists of fermions, the quarks and leptons. Four fundamentalmore » forces are acting between these particles, the electromagnetic, the strong, the weak and the gravitational force. These forces are mediated by particles called bosons. Our confirmed knowledge of particle physics is based on these particles and the theory describing their dynamics, the Standard Model of Particles. Many experimental measurements show an excellent agreement between observation and theory but the origin of the particle masses and therefore the electroweak symmetry breaking remains unexplained. The mechanism proposed to solve this issue involves the introduction of a complex doublet of scalar fields which generates the masses of elementary particles via their mutual interactions. This Higgs mechanism also gives rise to a single neutral scalar boson with an unpredicted mass, the Higgs boson. During the last twenty years several experiments have searched for the Higgs boson but so far it escaped direct observation. Nevertheless these studies allow to further constrain its mass range. The last experimental limits on the Higgs mass have been set in 2001 at the LEP collider, an electron positron machine close to Geneva, Switzerland. The lower limit set on the Higgs boson mass is m H > 114.4 GeV/c 2 and remained for many years the last experimental constraint on the Standard Model Higgs Boson due to the shutdown of the LEP collider and the experimental challenges at hadron machines as the Tevatron. This thesis was performed using data from the D0 detector located at the Fermi National Accelerator Laboratory in Batavia, IL. Final states containing two electrons or a muon and a tau in combination with missing transverse energy were studied to search for the Standard Model Higgs boson, utilizing up to 4.2 fb -1 of integrated luminosity. In 2008 the CDF and D0 experiments in a combined effort were able to reach for the first time at a hadron collider the sensitivity to further constrain the possible Standard Model Higgs boson mass range. The research conducted for this thesis played a pivotal role in this effort. Improved methods for lepton identification, background separation, assessment of systematic uncertainties and new decay channels have been studied, developed and utilized. Along with similar efforts at the CDF experiment these improvements led finally the important result of excluding the presence of a Standard Model Higgs boson in a mass range of m H = 160-170 GeV/c 2 at 95% Confidence Level. Many of the challenges and methods found in the present analysis will probably in a similar way be ingredients of a Higgs boson evidence or discovery in the near future, either at the Tevatron or more likely at the soon starting Large Hadron Collider (LHC). Continuing to pursue the Higgs boson we are looking forward to many exciting results at the Tevatron and soon at the LHC. In Chapter 2 an introduction to the Standard Model of particle physics and the Higgs mechanism is given, followed by a brief outline of existing theoretical and experimental constraints on the Higgs boson mass before summarizing the Higgs boson production modes. Chapter 3 gives an overview of the experimental setup. This is followed by a description of the reconstruction of the objects produced in proton-antiproton collisions in Chapter 4 and the necessary calorimeter calibrations in Chapter 5. Chapter 6 follows with an explanation of the phenomenology of the proton-antiproton collisions and the data samples used. In Chapter 7 the search for the Standard Model Higgs boson using a di-electron final state is discussed, followed by the analysis of the final states using muons and hadronic decaying taus in Chapter 8. Finally a short outlook for the prospects of Higgs boson searches is given in Chapter 9.« less
Physical experience enhances science learning.
Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L
2015-06-01
Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Sasaki, Makoto; Kifune, Tadashi
In VHEPA (very high energy particle astronomy) 2014 workshop, focused on the next generation explorers for the origin of cosmic rays, held in Kashiwa, Japan, reviewing and discussions were presented on the status of the observation of GeV-TeV photons, TeV-PeV neutrinos, EeV-ZeV hadrons, test of interaction models with Large Hadron Collider (LHC), and theoretical aspects of astrophysics. The acceleration sites of hadrons, i.e., sources of PeV-EeV cosmic rays, should exist in the universe within the GZK-horizon even in the remotest case. We also affirmed that the hadron acceleration mechanism correlates with cosmic ray composition so that it is important to investigate the acceleration mechanism in relevance to the composition survey at PeV-EeV energy. We regard that LHC and astrophysics theories are ready to be used to probe into hadron acceleration mechanism in the universe. Recently, IceCube has reported detection of three events of neutrinos with energies around 1 PeV and additional events at lower energies, which significantly deviate from the expected level of background events. It is necessary to observe GeV-TeV photon, EeV-ZeV hadron and TeV-PeV neutrino all together, in order to understand hadronic interactions of cosmic rays in the PeV-EeV energy region. It is required to make a step further toward exploring the PeV-EeV universe with high accuracy and high statistics observations for both neutrinos and gamma rays simultaneously, by using the instrument such as Ashra Neutrino Telescope Array (NTA). Wide and fine survey of gamma-rays and neutrinos with simultaneously detecting Cherenkov and fluorescence light with NTA will guide us to a new intriguing stage of recognizing astronomical objects and non-thermal phenomena in ultra-high energy region, in addition, new aspect about the fundamental concepts of physics beyond our presently limited understanding; the longstanding problem of cosmic ray origin, the radiation mechanism of gamma-rays, neutrino and cosmic rays from violent objects like blazars, interaction of gamma-rays and cosmic rays with microwave and infrared background photons, and PeV-EeV neutrinos originated from far places beyond the GZK-horizon.
NASA Astrophysics Data System (ADS)
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-08-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.
Physics Textbooks Don't Always Tell the Truth
NASA Astrophysics Data System (ADS)
Franklin, Allan
2016-04-01
Anyone who studies the history of physics quickly realizes that the history presented in physics textbooks is often inaccurate. I will discuss three episodes from the history of modern physics: (1) Robert Millikan's experiments on the photoelectric effect, (2) the Michelson-Morley experiment, and (3) the Ellis-Wooster experiment on the energy spectrum in β decay. Everyone knows that Millikan's work established the photon theory of light and that the Michelson-Morley experiment was crucial in the genesis of Albert Einstein's special theory of relativity. The problem is that what everyone knows is wrong. Neither experiment played the role assigned to it by physics textbooks. The Ellis-Wooster experiment, on the other hand, is rarely discussed in physics texts, but it should be. It led to Wolfgang Pauli's suggestion of the neutrino. I will present a more accurate history of these three experiments than those given in physics texts.
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Dean, W. C., II
1975-01-01
The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.
ERIC Educational Resources Information Center
Snetinová, Marie; Kácovský, Petr; Machalická, Jana
2018-01-01
Experiments in different forms can certainly be suitable tools for increasing student interest in physics. However, educators continuously discuss which forms of experimenting (if any) are the most beneficial for these purposes. At the Faculty of Mathematics and Physics, Charles University, Prague, two different forms of physics experiments are…
NASA's Microgravity Fluid Physics Program: Tolerability to Residual Accelerations
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond
1998-01-01
An overview of the NASA microgravity fluid physics program is presented. The necessary quality of a reduced-gravity environment in terms of tolerable residual acceleration or g levels is a concern that is inevitably raised for each new microgravity experiment. Methodologies have been reported in the literature that provide guidance in obtaining reasonable estimates of residual acceleration sensitivity for a broad range of fluid physics phenomena. Furthermore, a relatively large and growing database of microgravity experiments that have successfully been performed in terrestrial reduced gravity facilities and orbiting platforms exists. Similarity of experimental conditions and hardware, in some cases, lead to new experiments adopting prior experiments g-requirements. Rationale applied to other experiments can, in principle, be a valuable guide to assist new Principal Investigators, PIs, in determining the residual acceleration tolerability of their flight experiments. The availability of g-requirements rationale from prior (mu)g experiments is discussed. An example of establishing g tolerability requirements is demonstrated, using a current microgravity fluid physics flight experiment. The Fluids and Combustion Facility (FCF) which is currently manifested on the US Laboratory of the International Space Station (ISS) will provide opportunities for fluid physics and combustion experiments throughout the life of the ISS. Although the FCF is not intended to accommodate all fluid physics experiments, it is expected to meet the science requirements of approximately 80% of the new PIs that enter the microgravity fluid physics program. The residual acceleration requirements for the FCF fluid physics experiments are based on a set of fourteen reference fluid physics experiments which are discussed.
ERIC Educational Resources Information Center
Cardinal, Bradley J.; Yan, Zi; Cardinal, Marita K.
2013-01-01
People's feelings toward physical activity are often influenced by memories of their childhood experiences in physical education and sport. Unfortunately, many adults remember negative experiences, which may affect their desire to maintain a physically active lifestyle. A survey that asked 293 students about recollections from their childhood…
Reference earth orbital research and applications investigations (blue book). Volume 3: Physics
NASA Technical Reports Server (NTRS)
1971-01-01
The definition of physics experiments to be conducted aboard the space station is presented. The four functional program elements are: (1) space physics research laboratory, (2) plasma physics and environmental perturbation laboratory, (3) cosmic ray physics laboratory, and (4) physics and chemistry laboratory. The experiments to be conducted by each facility are defined and the crew member requirements to accomplish the experiments are presented.
ERIC Educational Resources Information Center
Armijo, Erica Anne
2016-01-01
The purpose of this study is to explore the lived experiences of practicing physical education teachers on the integration of technology in a physical education. This study arose from my current experiences as a physical educator and the current inculcation of technology in education and more specifically physical education. As a current physical…
Physics education: Understanding the barriers for young women in Ontario
NASA Astrophysics Data System (ADS)
Mainhood, Lindsay Ann
In nearly all countries of the world, at every level of education, physics as a field of science is failing to recruit and retain women. This phenomenon is believed to relate to girls' educational experiences from K-12, but the reasons for the gender gap in physics are not fully understood. The purpose of this phenomenological research is to explore and understand the barriers encountered by Ontario female high school students during their physics education and the meanings attributed to those barriers by these young women. This research is guided by social cognitive career theory (SCCT) and uses the concept of physics identity as a lens through which the influence of contextual barriers can be understood. Nine participants, selected via snowball sampling from an Eastern Ontario university, together participated in four semi-structured focus group meetings and individually participated in a single in-depth, one-on-one interview. Audio data was transcribed verbatim and analyzed using a general inductive approach. Emergent themes are descriptively presented as the findings of the research study: perceiving the high school physics experience, experiencing high school physics education, and identity and gender in the high school physics experience. Sub-themes presented include limited prior experiences, negative perceptions of physics, images of physics learners, decision-making, reactions to pedagogy, learning needs, physics identity, gender-dependent influences, and making meaning of the experiences in high school physics. The shared experience of high school physics education for young women is understood as both a richly challenging and rewarding experience. Based on the findings of this research, recommendations are made for practical and research settings, and for future work in this area. Drawing on literature on underrepresentation of women in physics, this research contributes to the physics education research community and beyond; it offers voices of Ontario female high school students, and an understanding of the barriers and the meanings associated with their experiences in high school physics.
Lab-in-a-box @ school: Exiting hands-on experiments in soft matter physics
NASA Astrophysics Data System (ADS)
Jacobs, Karin; Brinkmann, Martin; Müller, Frank
2015-03-01
Soft materials like liquids and polymers are part of everyday life, yet at school, this topic is rarely touched. Within the priority program SPP 1064 'Nano- and Microfluidics' of the German Science Foundation, we designed an outreach project that allows pupils (age 14 to 18) to perform hands-on experiments (www.labinabox.de). The experiments allow them e.g. to feel viscosity and viscoelasticity, experience surface tension or see structure formation. We call the modus operandi 'subjective experiments' to contrast them with the scientifically objective experiments, which pupils often describe as being boring. Over a dozen different experiments under the topic 'physics of fluids' are collected in a big box that travels to the school. Three other topics of boxes are available, 'physics of light, 'physics of liquid crystals', and 'physics of adhesion and friction'. Each experiment can be performed by 1-3 pupils within 10 - 20 min. That way, each scholar can perform 6 to 8 different small experiments within one topic. 'Subjective experiments' especially catch the attention of girls without disadvantaging boys. Both are fascinated by the hands-on physics experience and are therefore eager to perform also 'boring' objective experiments. Morover, before/after polls reveal that their interest in physics has greatly advanced. The project can easily be taken over and/or adapted to other topics in the natural sciences. Financial support of the German Science Foundation DFG is acknowledged.
An Investigation of Tertiary-Level Learning in Some Practical Physics Courses
ERIC Educational Resources Information Center
Wang, Weili; Coll, Richard K.
2005-01-01
Experimental physics is seen as an essential part of tertiary physics education. Students are supposed to develop practical skills and advance from closed "cookbook" experiments to open experiment and design experiment procedures independently. As a consequence tertiary practical physics courses increase in the level of challenge…
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Fengpeng; An, Guangpeng; An, Qi
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3–4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parametersmore » $${\\mathrm{sin}}^{2}{\\theta }_{12}$$, $${\\rm{\\Delta }}{m}_{21}^{2}$$, and $$| {\\rm{\\Delta }}{m}_{{ee}}^{2}| $$ to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino–proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations. Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the $${\\theta }_{23}$$ mixing angle. Detection of the 7Be and 8B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with $${10}^{-5}\\;{{\\rm{eV}}}^{2}\\lt {\\rm{\\Delta }}{m}_{41}^{2}\\lt {10}^{-2}\\;{{\\rm{eV}}}^{2}$$ and a sufficiently large mixing angle $${\\theta }_{14}$$ could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the $$p\\to {K}^{+}+\\bar{\
An, Fengpeng; An, Guangpeng; An, Qi; ...
2016-02-10
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3–4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parametersmore » $${\\mathrm{sin}}^{2}{\\theta }_{12}$$, $${\\rm{\\Delta }}{m}_{21}^{2}$$, and $$| {\\rm{\\Delta }}{m}_{{ee}}^{2}| $$ to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino–proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations. Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the $${\\theta }_{23}$$ mixing angle. Detection of the 7Be and 8B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with $${10}^{-5}\\;{{\\rm{eV}}}^{2}\\lt {\\rm{\\Delta }}{m}_{41}^{2}\\lt {10}^{-2}\\;{{\\rm{eV}}}^{2}$$ and a sufficiently large mixing angle $${\\theta }_{14}$$ could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the $$p\\to {K}^{+}+\\bar{\
ERIC Educational Resources Information Center
Jouriles, Ernest N.; Garrido, Edward; Rosenfield, David; McDonald, Renee
2009-01-01
Objective: This research examined links between adolescents' experiences of psychological and physical relationship aggression and their psychological distress. Experiences of psychological and physical aggression were expected to correlate positively with symptoms of psychological distress, but experiences of psychological aggression were…
The BIG Bell Test: quantum physics experiments with direct public participation
NASA Astrophysics Data System (ADS)
Mitchell, Morgan; Abellan, Carlos; Tura, Jordi; Garcia Matos, Marta; Hirschmann, Alina; Beduini, Federica; Pruneri, Valerio; Acin, Antonio; Marti, Maria; BIG Bell Test Collaboration
The BIG Bell Test is a suite of physics experiments - tests of quantum nonlocality, quantum communications, and related experiments - that use crowd-sourced human randomness as an experimental resource. By connecting participants - anyone with an internet connection - to state-of-the-art experiments on five continents, the project aims at two complementary goals: 1) to provide bits generated directly from human choices, a unique information resource, to physics experiments, and 2) to give the world public the opportunity to contribute in a meaningful way to quantum physics research. We also describe related outreach and educational efforts to spread awareness of quantum physics and its applications.
ERIC Educational Resources Information Center
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-01-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may…
ERIC Educational Resources Information Center
South Carolina Univ., Columbia. Dept. of Physics.
This book contains 65 physics experiments. The experiments are for a college-level physics course for music and art majors. The initial experiments are devoted to the general concept of vibration and cover vibrating strings, air columns, reflection, and interference. Later experiments explore light, color perception, cameras, mirrors and symmetry,…
First order error corrections in common introductory physics experiments
NASA Astrophysics Data System (ADS)
Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team
As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.
The performance assessment of undergraduate students in physics laboratory by using guided inquiry
NASA Astrophysics Data System (ADS)
Mubarok, H.; Lutfiyah, A.; Kholiq, A.; Suprapto, N.; Putri, N. P.
2018-03-01
The performance assessment of basic physics experiment among undergraduate physics students which includes three stages: pre-laboratory, conducting experiment and final report was explored in this study. The research used a descriptive quantitative approach by utilizing guidebook of basic physics experiment. The findings showed that (1) the performance of pre-laboratory rate among undergraduate physics students in good category (average score = 77.55), which includes the ability of undergraduate physics students’ theory before they were doing the experiment. (2) The performance of conducting experiment was in good category (average score = 78.33). (3) While the performance of final report was in moderate category (average score = 73.73), with the biggest weakness at how to analyse and to discuss the data and writing the abstract.
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.
1987-03-01
This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
A preliminary discussion of gravitational physics experiments for the Spacelab era
NASA Technical Reports Server (NTRS)
Decher, R.; Winkler, C. G.
1976-01-01
An overview of past, present, and proposed future experiments in gravitational physics is given. These experiments are concerned with the measurement of relativistic gravity effects to test theories of gravitation. Certain experiments which could be performed on shuttle and Spacelab missions and the potential of Spacelab for gravitation physics research are discussed.
NASA Astrophysics Data System (ADS)
Vinjusveen Myhrehagen, Henning; Bungum, Berit
2016-09-01
The thought experiment ‘Schrödinger’s cat’ exposes fundamental dilemmas in how we interpret quantum physics, and has a potential for deepening students’ understanding of this part of modern physics, including its philosophical consequences. In this paper we report results from the project ReleQuant on how Norwegian physics students in upper secondary schools interpret the thought experiment. The analysis resulted in nine categories, and we discuss how these relate to interpretations made by physicists, in particular the concept of superposition. Even if students’ responses in many cases can be related to interpretations that make sense in physics, we conclude that lack of knowledge about the purpose and the historical context of the thought experiment limits students understanding of the physics content. Exploring the thought experiment from a historical perspective might deepen student understanding of key concepts in quantum physics as well as of how physics develops.
NASA physics and chemistry experiments in-space program
NASA Technical Reports Server (NTRS)
Gabris, E. A.
1981-01-01
The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.
ERIC Educational Resources Information Center
Thacker, Beth Ann
2003-01-01
Interviews university students in modern physics about their understanding of three fundamental experiments. Explores their development of models of microscopic processes. Uses interactive demonstrations to probe student understanding of modern physics experiments in two high school physics classes. Analyzes the nature of students' models and the…
ERIC Educational Resources Information Center
Hills, Laura
2007-01-01
Physical education represents a dynamic social space where students experience and interpret physicality in a context that accentuates peer relationships and privileges particular forms of embodiment. This article focuses on girls' understandings of physicality with respect to the organisation of physical education and more informal social…
Zhang, Li; Xin, Ziqiang; Feng, Tingyong; Chen, Yinghe; Szűcs, Denes
2018-03-01
Recent studies have highlighted the fact that some tasks used to study symbolic number representations are confounded by judgments about physical similarity. Here, we investigated whether the contribution of physical similarity and numerical representation differed in the often-used symbolic same-different, numerical comparison, physical comparison, and priming tasks. Experiment 1 showed that subjective physical similarity was the best predictor of participants' performance in the same-different task, regardless of simultaneous or sequential presentation. Furthermore, the contribution of subjective physical similarity was larger in a simultaneous presentation than in a sequential presentation. Experiment 2 showed that only numerical representation was involved in numerical comparison. Experiment 3 showed that both subjective physical similarity and numerical representation contributed to participants' physical comparison performance. Finally, only numerical representation contributed to participants' performance in a priming task as revealed by Experiment 4. Taken together, the contribution of physical similarity and numerical representation depends on task demands. Performance primarily seems to rely on numerical properties in tasks that require explicit quantitative comparison judgments (physical or numerical), while physical stimulus properties exert an effect in the same-different task.
A Stand-Alone Interactive Physics Showcase
ERIC Educational Resources Information Center
Pfaff, Daniel; Hagelgans, Anja; Weidemuller, Matthias; Bretzer, Klaus
2012-01-01
We present a showcase with interactive exhibits of basic physical experiments that constitutes a complementary method for teaching physics and interesting students in physical phenomena. Our interactive physics showcase, shown in Fig. 1, stimulates interest for science by letting the students experience, firsthand, surprising phenomena and…
ERIC Educational Resources Information Center
Sakon, Takuo; Nakagawa, Keisuke
2016-01-01
A physical experiment concerning the moment of inertia of a rigid disk is described. Basic physical quantities such as the moment of inertia and torque are very important in elementary physics courses. This experiment was designed to improve students' understanding of the relation between the rigid moment of inertia and torque. The moment of…
Kuipers works to remove the Marangoni Suface Fluid Physics Experiment
2012-03-15
ISS030-E-142784 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.
Kuipers works to remove the Marangoni Suface Fluid Physics Experiment
2012-03-15
ISS030-E-142785 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.
Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory
NASA Technical Reports Server (NTRS)
Hollinden, A. B.; Eaton, L. R.
1972-01-01
A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.
ERIC Educational Resources Information Center
Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.; Shanahan, Marie-Claire
2010-01-01
This study explores how students' physics identities are shaped by their experiences in high school physics classes and by their career outcome expectations. The theoretical framework focuses on physics identity and includes the dimensions of student performance, competence, recognition by others, and interest. Drawing data from the Persistence…
The Use of Cylindrical Lenses in Easy Experiments for Physics Education and the Magic Arts
ERIC Educational Resources Information Center
Bednarek, Stanislaw; Krysiak, Jerzy
2011-01-01
The purpose of this article is to present the properties of cylindrical lenses and provide some examples of their use in easy school physics experiments. Such experiments could be successfully conducted in the context of science education, in fun experiments that teach physics and in science fair projects, or used to entertain an audience by…
Nicholson Medal for Human Outreach Talk: Attracting girls to physics: the itinerant science project
NASA Astrophysics Data System (ADS)
Barbosa, Marcia
2010-03-01
Women are underrepresented in physics in Brazil. The percentage of women taking undergraduate studies in physics is below 20% much below medicine where women are now days the majority of the undergraduate students. In order to attract girls to physics the we developed a science truck that visits suburbs as well as the underdeveloped areas of the city. During this visits the kids are exposed to the applications of physics to the world and in particular to technology. They have the chance to manipulate experiments and to learn how they are related to real life technology. After playing with the experiments they answer a simple questionnaire designed to understand how their view about physics have changed due to this experience. We observed that the girls exhibit a less active behavior when given the chance make experiments becoming more active when stimulated. When questioned about the change in their perception regarding physics after being exposed to the experiments the girls show a more significant change in perception than the boys.
ERIC Educational Resources Information Center
Kirkup, Les; Pizzica, Jenny; Waite, Katrina; Srinivasan, Lakshmi
2010-01-01
Physics experiments for students not majoring in physics may have little meaning for those students and appear to them unconnected in any way to their majors. This affects student engagement and influences the extent to which they regard their experiences in the physics laboratory as positive. We apply a framework for the development and…
Ishihara, Toru; Sugasawa, Shigemi; Matsuda, Yusuke; Mizuno, Masao
2018-05-01
The purpose of this study was to evaluate the relationship between sports experience (i.e., tennis experience) and executive function in children while controlling for physical activity and physical fitness. Sixty-eight participants (6-12 years old, 34 males and 34 females) were enrolled in regular tennis lessons (mean = 2.4 years, range = 0.1-7.3 years) prior to the study. Executive functions, including inhibitory control (the Stroop Color-Word Test), working memory (the 2-back Task), and cognitive flexibility (the Local-global Task) were evaluated. Participants' levels of daily physical activity, ranging from moderate to vigorous, were evaluated using triaxial accelerometers. The total score for physical fitness was assessed using the Tennis Field Test. Hierarchical multiple regression analyses revealed interaction effects between gender and tennis experience on participants' reaction time (RT) on the switch cost of the Local-global Task after controlling for age, BMI, gender, physical activity, physical fitness, and tennis experience. Longer tennis experience was associated with shorter switch cost in males but not in females. Higher scores on physical fitness were positively associated with lower interference scores on the Stroop Color-Word Test, RT on the 2-back Task, and RT in the switching condition of the Local-global Task, after controlling for age, BMI, gender, and physical activity. In conclusion, all three foundational components of executive function (i.e., inhibitory control, working memory, and cognitive flexibility) were more strongly related to physical fitness than to physical activity in males and females, whereas greater cognitive flexibility was related to tennis experience only in the males. © 2017 John Wiley & Sons Ltd.
Impact Crater Experiments for Introductory Physics and Astronomy Laboratories
ERIC Educational Resources Information Center
Claycomb, J. R.
2009-01-01
Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…
PREFACE Particles, Strings and Cosmology (PASCOS)
NASA Astrophysics Data System (ADS)
Cabrera, Susana; Hirsch, Martin; Mitsou, Vasiliki; Muñoz, Carlos; Pastor, Sergio; Amparo Tórtola, María; Valle, José W. F.; Vives, Óscar
2010-11-01
The XVI Symposium in the Particles, Strings and Cosmology (PASCOS) series took place on 19-23 July 2010, in the historic city of Valencia, and was hosted by the Instituto de Física Corpuscular (IFIC), the largest particle physics laboratory of the Spanish National Research Council (CSIC), jointly operated with the University of Valencia. The PASCOS series of annual symposia is dedicated to the latest advances on the study of the forces that govern the elementary constituents of matter - the microcosm - and their effects on the understanding of the Universe at large - the macrocosm. Indeed the basic principles of uncertainty and mass-energy equivalence imply that when one probes deep inside the subatomic scale, one inevitably excites states of very high energy and mass which were copiously produced at the Big Bang. Recreating these particles in the laboratory is tantamount to tracing back the very early history of the universe. The interface of particle physics, string theory and cosmology has indeed become a highly active field of research at the frontier of human knowledge and the PASCOS meetings aim to bring together researchers from the three areas so as to facilitate the exchange of ideas and to identify possible synergies. The series started in the mid-nineties in the United States, where the first events took place. However it has by now become truly global, having circulated through India, South Korea, the United Kingdom, Canada and Germany. The aim of the conference was to review the recent progress in particle physics, string theory and cosmology, promoting the exchange of ideas and discussing future prospects. With the startup of LHC and the launch of the Planck satellite as well as many other experiments under way or planned, PASCOS2010 looked at an exciting future, giving theorists an opportunity to prepare for this wealth of new data and the stringent tests to which they will subject the existing theories. While the conferences in this series have traditionally been aimed mainly at theorists, PASCOS2010 had a stronger emphasis on new results and future experiments. The venue for PASCOS 2010 was the Fundación Universidad Empresa (ADEIT), a modern building, located in the historical city centre of Valencia and very close to the conference hotels and to most historic buildings and monuments. The scientific programme consisted of 26 invited Plenary Talks and 99 contributions, all available online at http://pascos2010.astroparticles.es/. Young researchers were encouraged to submit abstracts, many of which were subsequently selected by the organizing committee for oral presentation in parallel sessions. This year's symposium, attended by over 160 participants from all over the globe, was of particular significance, as it came in the wake of first data from the LHC as well as the Planck satellite. In general, plenary sessions were held in the mornings, with afternoons devoted to parallel sessions focussing on the three areas of particles, strings and cosmology. Official Inauguration and Public Talk The Opening of the Symposium took place in the main Auditorium of ADEIT, starting with a brief welcome address by Professor José W F Valle, Chair of the Organizing Committee, followed by addresses of Professor Pedro Carrasco, Research Vice-Rector of the University of València, Professor José Pío Beltran, representing the President of the CSIC, and Professor Francisco Botella, Director of IFIC. There was also a very successful popular science talk by Professor Carlos Frenk, Director of the Institute for Computational Cosmology at Durham University in the United Kingdom on 'The Structure of the Universe'. This as well as the opening of the PASCOS2010 conference was covered by the local media, and a short summary is also published in the CERN Courier. Valencia, October 2010 The Editors Susana Cabrera, Martin Hirsch,Vasiliki Mitsou, Carlos Mu~oz, Sergio Pastor, María Amparo Tórtola, José W. F. Valle and Óscar Vives The PDF contains a list of committees, sponsors and participants and copies of some conference photographs and the conference poster
Recognizing emotion in faces: developmental effects of child abuse and neglect.
Pollak, Seth D; Cicchetti, Dante; Hornung, Katherine; Reed, Alex
2000-09-01
The contributions to the recognition of emotional signals of (a) experience and learning versus (b) internal predispositions are difficult to investigate because children are virtually always exposed to complex emotional experiences from birth. The recognition of emotion among physically abused and physically neglected preschoolers was assessed in order to examine the effects of atypical experience on emotional development. In Experiment 1, children matched a facial expression to an emotional situation. Neglected children had more difficulty discriminating emotional expressions than did control or physically abused children. Physically abused children displayed a response bias for angry facial expressions. In Experiment 2, children rated the similarity of facial expressions. Control children viewed discrete emotions as dissimilar, neglected children saw fewer distinctions between emotions, and physically abused children showed the most variance across emotions. These results suggest that to the extent that children's experience with the world varies, so too will their interpretation and understanding of emotional signals.
Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model
ERIC Educational Resources Information Center
Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert
2015-01-01
The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…
Factors Affecting the Social Experiences of Students in Elementary Physical Education Classes.
ERIC Educational Resources Information Center
Suomi, Joanne; Collier, Douglas; Brown, Lou
2003-01-01
Examined factors that had a positive and negative effect on the social experiences of elementary students with and without disabilities in inclusive physical education classrooms. Data from observations and interviews indicated that the physical education teacher had a positive influence on students' social experiences, while cultures, student…
Spacelab mission 1 experiment descriptions, third edition
NASA Technical Reports Server (NTRS)
Craven, P. D. (Editor)
1983-01-01
Experiments and facilities selected for flight on the first Spacelab mission are described. Chosen from responses to the Announcement of Opportunity for the Spacelab 1 mission, the experiments cover five broad areas of investigation: atmospheric physics and Earth observations; space plasma physics; astronomy and solar physics; material sciences and technology; and life sciences. The name of the principal investigator and country is listed for each experiment.
Dogs, Cats, and Kids: Integrating Yoga into Elementary Physical Education
ERIC Educational Resources Information Center
Toscano, Lisa; Clemente, Fran
2008-01-01
This article describes the benefits of integrating yoga into elementary physical education classes. Taught as warm-up exercises or as an entire class, yoga offers children of any age and physical ability the opportunity to experience success in physical activity. Children need to experience joy while participating in physical activity in order to…
Fermilab | Science at Fermilab | Experiments & Projects | Energy Frontier
Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library
Fermilab | Science at Fermilab | Experiments & Projects
Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library
LHC Nobel Symposium Proceedings
NASA Astrophysics Data System (ADS)
Ekelöf, Tord
2013-12-01
In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of puzzlement. The apparent absence of hints in the LHC experimental data of new phenomena that could relate to dark matter, dark energy, the dominance of matter over antimatter in the Universe, the unification of the strong and the electroweak interactions and their further unification with gravity left the Symposium with no guidance as to how to answer the question: what next? And in experimental fundamental science it is not the confirmation of already established theories that thrills the most; it is the appearance of the unexpected that creates the greatest excitement. However, the LHC is only at the beginning of its voyage into the uncharted territories of higher energies and smaller dimensions that it was built for, so the possibilities for unexpected discoveries are only starting to be explored. The LHC will start up again in 2015 with nearly twice its previous energy and with increased luminosity—new discoveries might then appear sooner than we even dare hope for! The LHC Nobel Symposium was attended by about 60 invited participants and lasted four days. The program was divided into seven sessions; QCD and Heavy Ion Physics, B Physics, Electroweak Physics, The Higgs Boson, Connections to Neutrino Physics and Astroparticle Physics, Beyond the Standard Model and Forward Look. There were 27 plenary invited talks given by participants, each followed by lively discussions. All but one of the speakers have submitted write-ups of their talks for these proceedings. We are hopeful that the remaining talk will be published in a forthcoming issue of Physica Scripta . I am gratified that Professor Roland Allen has agreed to write a paper on the essence of the Higgs boson discovery to be published in Physica Scripta , intended for undergraduate students and educated physicists, regardless of their field of research. I wish to express my deep gratitude to all Speakers and Participants in the Symposium, to the Members of the Local and International Organizing Committees, to the referees of these Proceedings and to the staff at Uppsala University, in particular my Administrative Assistant for the Symposium, Marja Fahlander, at the Royal Swedish Academy of Sciences, at the Nobel Foundation and at the Institute of Physics Publishing Company for Physica Scripta for realizing this enlightening Symposium at its proceedings. The Nobel Symposium was financed by the Nobel Foundation. Tord Ekelöf Chair of the LHC Nobel Symposium Local Organizing Committee and LHC Nobel Guest Editor for the Symposium Proceedings Members of the Local Organizing Committee of the LHC Nobel Symposium Tord Ekelöf (Uppsala University, Chair) Kerstin Jon-And (Stockholms University) Bengt Lund-Jensen (Royal Institute of Technology) Anders Oskarsson (Lunds University) Torsten Åkesson (Lund University) Barbro Åsman (Swedish Royal Academy of Sciences) Members of the International Advisory Committee of the LHC Nobel Symposium Pierluigi Campana (INFN Frascati) Fabiola Gianotti (CERN) Paolo Giubellino (INFN-Torino) Joe Incandela (UC Santa Barbara) Young-Kee Kim (FNAL) Michelangelo Mangano (CERN) Lisa Randall (Harvard University)
An Experimental Introduction to Acoustics
NASA Astrophysics Data System (ADS)
Black, Andy Nicholas; Magruder, Robert H.
2017-11-01
Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is an experiment that serves to introduce an advanced undergraduate or high school student to conducting research in acoustics via an experiment involving a standard dreadnought acoustic guitar, recording industry-related equipment, and relevant industrial analysis software. This experimental process is applicable to a wide range of acoustical topics including both acoustic and electric instruments. Also, the student has a hands-on experience with relevant audio engineering technology to study physical principles.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Akabane, Akira; Shozawa, Jun; Tamaki, Toyomi
The aim of this study is to examine the teaching of physics experiment at elementary and secondary school levels at the time when Japanese science education commenced. In this report, we focused on the first Japanese textbook of physics experiment, Rika-Shoshi, published in 1882 and the editor of the book, Udagawa Jun'ichi. Many experiments in Rika-Shoshi can be performed using low-cost everyday materials. We compare Rika-Shoshi with the original English textbooks and describe Udagawa's physics teaching in the Gunma Normal School based on the documents in the Gunma University archives. We discuss how we can learn from physics education as taught about 130 years ago.
Current experiments in elementary particle physics. Revised
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, H.; Wohl, C.G.; Armstrong, B.
This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
Parisien, Rachel B; Gillanders, Kirstie; Hennessy, Erin K; Herterich, Lisa; Saunders, Kendra; Lati, Jamil; Dos Santos, Stephanie; Hassall, Alison; O'Brien, Kelly K
2016-05-31
The aim of this study was to conduct a preliminary investigation into parents' experiences of physical therapy and early mobility (EM) for their children in a pediatric critical care unit (PCCU). We conducted a series of four qualitative case studies using in-depth semi-structured face-to-face interviews. We recruited parents of children who had undergone surgery and received at least one EM physical therapy intervention while intubated. We conducted a thematic analysis of transcribed interviews to illuminate the factors that influenced EM experiences. Four parents participated in the study. We developed an overview of Parental Experiences with Physical Therapy and Early Mobility in a PCCU, which includes four themes that parents believed influenced their experiences: (1) environmental factors; (2) awareness of physical therapist and health care professional (HCP) roles; (3) communication among parents and HCPs; and (4) parental participation in their child's EM, within the overarching parental experiences in the PCCU. This study affords a preliminary understanding of parents' experiences with physical therapy and EM in a PCCU setting. Results provide an important foundation for future research on mobility in the context of pediatric critical care research and practice.
UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nefkens, B M.K.; Goetz, J; Lapik, A
2011-05-18
This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup 0}, 2{pi}{sup }0, 3{pi}{sup 0}, {eta} , {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4 . It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonicmore » matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, G-parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta} ,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta} and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular the "neutron skin" of {sup 208}Pb, which is of great interest to astroparticle physics for determining the properties of neutron stars. Processes of study are coherent and noncoherent 0 photoproduction. The Crystal Ball is uniquely suited for these studies because of the large acceptance, good direction and energy resolution and it is an inclusive detector for the {pi}{sup 0} final state and exclusive for background such as 2 {pi}{sup 0}.« less
Precision Crystal Calorimeters in High Energy Physics
Ren-Yuan Zhu
2017-12-09
Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystalâs radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.
U.C. Davis high energy particle physics research: Technical progress report -- 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.
An Experiment on a Physical Pendulum and Steiner's Theorem
ERIC Educational Resources Information Center
Russeva, G. B.; Tsutsumanova, G. G.; Russev, S. C.
2010-01-01
Introductory physics laboratory curricula usually include experiments on the moment of inertia, the centre of gravity, the harmonic motion of a physical pendulum, and Steiner's theorem. We present a simple experiment using very low cost equipment for investigating these subjects in the general case of an asymmetrical test body. (Contains 3 figures…
Physical Science Experiments for Scientific Glassblowing Technicians.
ERIC Educational Resources Information Center
Tillis, Samuel E.; Donaghay, Herbert C.
The twenty experiments in this text have been designed to give the scientific glassblowing technician the opportunity to use scientific glass apparatus in the study of physical science. Primary emphasis of these experiments is on the practical application of the physical science program as a working tool for the scientific glassblowing technician.…
ERIC Educational Resources Information Center
Stride, Annette
2016-01-01
This paper explores the physical education (PE) and physical activity experiences of a group of South Asian, Muslim girls, a group typically marginalised in PE and physical activity research. The study responds to ongoing calls for research to explore across different spaces in young people's lives. Specifically, I draw on a…
The use of cylindrical lenses in easy experiments for physics education and the magic arts
NASA Astrophysics Data System (ADS)
Bednarek, Stanisław; Krysiak, Jerzy
2011-09-01
The purpose of this article is to present the properties of cylindrical lenses and provide some examples of their use in easy school physics experiments. Such experiments could be successfully conducted in the context of science education, in fun experiments that teach physics and in science fair projects, or used to entertain an audience by staging tricks, effects or illusions of seemingly impossible or supernatural feats.
Meaningful Experiences in Physical Education and Youth Sport: A Review of the Literature
ERIC Educational Resources Information Center
Beni, Stephanie; Fletcher, Tim; Ní Chróinín, Déirdre
2017-01-01
The purpose of this research is to review the literature about young people's meaningful experiences in physical education and youth sport. We reviewed 50 empirical peer-reviewed articles published in English since 1987. Five themes were identified as central influences to young people's meaningful experiences in physical education and sport:…
Fostering Inclusion and Positive Physical Education Experiences for Overweight and Obese Students
ERIC Educational Resources Information Center
Rukavina, Paul B.; Doolittle, Sarah A.
2016-01-01
Overweight and obese students are often socially and instructionally excluded from physical education and school physical activity opportunities. This article describes teaching strategies from a study of middle school physical education teachers who are committed to providing effective teaching and positive experiences for overweight and obese…
ERIC Educational Resources Information Center
Webster, Collin A.; Nesbitt, Danielle; Lee, Heesu; Egan, Cate
2017-01-01
Purpose: The purpose of this study was to examine preservice physical education teachers' (PPET) service learning experiences planning and implementing course assignments aligned with comprehensive school physical activity program (CSPAP) recommendations. Methods: Based on service learning principles, PPETs (N = 18) enrolled in a physical…
Fermilab | Science at Fermilab | Experiments & Projects | Cosmic Frontier
Proposed Projects and Experiments Fermilab's Tevatron Questions for the Universe Theory Computing High Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library
Attitude towards Physics Lessons and Physical Experiments of the High School Students
ERIC Educational Resources Information Center
Kaya, Hasan; Boyuk, Ugur
2011-01-01
In order that students can develop researching, questioning, critical thinking, problem solving and decision making skills, so that they become lifelong learning individuals, they should be improved regarding their knowledge, understanding and attitude towards natural sciences. Attitudes towards physics lessons and physical experiments of high…
Youth with Visual Impairments: Experiences in General Physical Education
ERIC Educational Resources Information Center
Lieberman, Lauren J.; Robinson, Barbara L.; Rollheiser, Heidi
2006-01-01
The rapid increase in the number of students with visual impairments currently being educated in inclusive general physical education makes it important that physical education instructors know how best to serve them. Assessment of the experiences of students with visual impairments during general physical education classes, knowledge of students'…
ERIC Educational Resources Information Center
Bowyer, Jessica; Darlington, Ellie
2017-01-01
It is essential that physics undergraduates are appropriately prepared for the mathematical demands of their course. This study investigated physics students' perceptions of post-compulsory mathematics as preparation for their degree course. 494 physics undergraduates responded to an online questionnaire about their experiences of A-level…
Registration in a radon system of signals related to the Tohoku Earthquake
NASA Astrophysics Data System (ADS)
Steinitz, Gideon; Piatibratova, Oksana; Kotlarsky, Peter
2013-04-01
The behavior of radon (Rn-222) within confined volumes of air is examined experimentally at the GSI (Jerusalem) since several years. In these experiments a relatively high level of radon is maintained by diffusion from a source via a tube and radiation from it is measured using nuclear detectors. In difference with the expected, nuclear radiation from the radon (progeny) shows: a) temporal variations (signals) spanning annual to daily scale; b) directionality of the nuclear radiation reflected as inverse signal patterns in the east-west versus north-south directions. The experimental setup at the GSI lab consists of a leak tight stainless steel (SS) canister (3.53 l) fed with radon by diffusing via SS tube (0.8 m) from a commercial source (RaCl2; 103 kBq). Four identical gamma detectors (2×2") were placed around its central horizontal plane of the canister, at the primary geographic directions, and a further detector (36×76 mm) was placed along the vertical axis of the canister. Count rates (1-minute intervals) were acquired by a datalogger. The system was used in this configuration in a series of experiments conducted from May 2009 to June 2012. An experiment was operating from 30.1.2011 to 22.3.11. The host gas in this experiment was argon at a pressure of ~1 atmosphere. Distinctive short term periodic (STP) signals with periods of 2-3 hours (frequencies in the range of 9-12 CPD) occur in a time interval of three days in association with the Tohoku earthquake (TE; 11.3.2011) and possibly also with its pre-shock. The STP signals occur from around 6 hours prior to the TE and are maintained to around 48 hours after the TE. These signals are observed at all five sensors and are superimposed on the DR signals with relative amplitudes of around 20%. They exhibit differing forms and phase at the different sensors, located at different directions around the canister. The pattern is similar but not identical to the spatial manifestation of form and phase of the DR signal in such experiments, indicating a communality of the driving mechanism. Similar short term signals have not been encountered in other experiments using this configuration, nor at any of the other configurations. Both DR and STP signals are due neither to mechanical nor to local environmental influences on the experimental system. The DR signals have recently been interpreted to be due to a remote influence on the radon system, possible by a component in solar irradiance. Concerning the TE the implications are: 1. The overall progression of the TE (Mw=9) event is also associated with a non-mechanical geodynamic process which is reflected by nuclear radiation features of radon in air. This process is modifying (superimposed) the driver of the primary DR signal of the radon system. 2. The influencing process is operating at a global scale, but at this stage it remains open whether the effect is transferred to the experimental setup via the solid earth and/or the atmosphere. 3. Detection of such phenomena is possible in radon systems of specific configuration the parameters of which are so far undetermined. 4. The possibility is raised that a pre-cursor of the TE has been detected. Concerning the radon system the implications are: 1. Results obtained by the GSI group indicate that nuclear radiation from radon (and progeny) inside a confined volume of air varies spatially and temporally at time scales from annually to daily. The geophysical drivers of these signals are unclear at this stage. The new experimental results demonstrate that the same radon system is responding to further geophysical drivers operating at a time scale of 2-3 hours. 2. The results further demonstrate the potential of investigations utilizing enhanced radon levels within confined volumes for detection of a new type of time varying geophysical phenomena. References: Steinitz, G., Piatibratova, O., Kotlarsky, P., 2011. Possible effect of solar tides on radon signals. Journal of Environmental Radioactivity, 102, 749-765. doi: 10.1016/j.jenvrad.2011.04.002. Sturrock, P.A., Steinitz, G., Fischbach, E., Javorsek, D. and Jenkins, J.H., 2012. Analysis of Gamma Radiation from a Radon Source: Indications of a Solar Influence. Journal of Astroparticle Physics, 35/1, 18-25.
Hauser, Marc; Spaulding, Bailey
2006-01-01
Human infants and adults generate causal inferences about the physical world from observations of single, novel events, thereby violating Hume's thesis that spatiotemporal cooccurrence from prior experience drives causal perception in our species. Is this capacity unique or shared with other animals? We address this question by presenting the results of three experiments on free-ranging rhesus monkeys (Macaca mulatta), focusing specifically on their capacity to generate expectations about the nature of completely unfamiliar physical transformations. By using an expectancy violation looking-time method, each experiment presented subjects with either physically possible or impossible transformations of objects (e.g., a knife, as opposed to a glass of water, appears to cut an apple in half). In both experiments, subjects looked longer when the transformation was impossible than when it was possible. Follow up experiments ruled out that these patterns could be explained by association. These results show that in the absence of training or direct prior experience, rhesus monkeys generate causal inferences from single, novel events, using their knowledge of the physical world to guide such expectations. PMID:16641097
Inagaki, Tristen K; Irwin, Michael R; Moieni, Mona; Jevtic, Ivana; Eisenberger, Naomi I
2016-01-01
An emerging literature suggests that experiences of physical warmth contribute to social warmth-the experience of feeling connected to others. Thus, thermoregulatory systems, which help maintain our relatively warm internal body temperatures, may also support feelings of social connection. However, the association between internal body temperature and feelings of connection has not been examined. Furthermore, the origins of the link between physical and social warmth, via learning during early experiences with a caregiver or via innate, co-evolved mechanisms, remain unclear. The current study examined the relationship between oral temperature and feelings of social connection as well as whether early caregiver experiences moderated this relationship. Extending the existing literature, higher oral temperature readings were associated with greater feelings of social connection. Moreover, early caregiver experiences did not moderate this association, suggesting that the physical-social warmth overlap may not be altered by early social experience. Results provide additional support for the link between experiences of physical warmth and social warmth and add to existing theories that highlight social connection as a basic need on its own.
Inagaki, Tristen K.; Irwin, Michael R.; Moieni, Mona; Jevtic, Ivana; Eisenberger, Naomi I.
2016-01-01
An emerging literature suggests that experiences of physical warmth contribute to social warmth—the experience of feeling connected to others. Thus, thermoregulatory systems, which help maintain our relatively warm internal body temperatures, may also support feelings of social connection. However, the association between internal body temperature and feelings of connection has not been examined. Furthermore, the origins of the link between physical and social warmth, via learning during early experiences with a caregiver or via innate, co-evolved mechanisms, remain unclear. The current study examined the relationship between oral temperature and feelings of social connection as well as whether early caregiver experiences moderated this relationship. Extending the existing literature, higher oral temperature readings were associated with greater feelings of social connection. Moreover, early caregiver experiences did not moderate this association, suggesting that the physical-social warmth overlap may not be altered by early social experience. Results provide additional support for the link between experiences of physical warmth and social warmth and add to existing theories that highlight social connection as a basic need on its own. PMID:27257914
Faculty development through simulation-based education in physical therapist education.
Greenwood, Kristin Curry; Ewell, Sara B
2018-01-01
The use of simulation-based education (SBE) in health professions, such as physical therapy, requires faculty to expand their teaching practice and development. The impact of this teaching on the individual faculty member, and how their teaching process changes or develops, is not fully understood. The purpose of this study was to explore individual physical therapist faculty members' experience with SBE and how those experiences may have transformed their teaching practice to answer the research questions: How do physical therapist faculty develop through including SBE and are there commonalities among educators? An interpretive phenomenological analysis approach was used with a small sample of subjects who participated in three individual semi-structured interviews. Interview questions were created through the lens of transformative learning theory to allow faculty transformations to be uncovered. A two-step thematic coding process was conducted across participants to identify commonalities of faculty experiences with SBE in physical therapist education. Credibility and trustworthiness were achieved through member checking and expert external review. Thematic findings were validated with transcript excerpts and research field notes. Eight physical therapist faculty members (25% male) with a range of 3 to 16 years of incorporating SBE shared their individual experiences. Four common themes related to faculty development were identified across the participants. Themes identified are the following: faculty strengthen their professional identity as physical therapists, faculty are affected by their introduction and training with simulation, faculty develop their interprofessional education through SBE, and faculty experiences with SBE facilitate professional growth. Physical therapist educators had similarities in their experiences with SBE that transformed their teaching practice and professional development. This study provides insight into what physical therapist faculty may experience when adopting SBE.
FPEF (Fluid Physics Experiment Facility) for the planned MS (Marangoni Surface) experiment
2009-07-01
ISS020-E-016214 (1 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, prepares the Fluid Physics Experiment Facility (FPEF) for the planned Marangoni Surface experiment in the Kibo laboratory of the International Space Station.
UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherfoord, John P.; Johns, Kenneth A.; Shupe, Michael A.
2013-07-29
The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.
Experimenting from a Distance in the Case of Rutherford Scattering
ERIC Educational Resources Information Center
Grober, S.; Vetter, M.; Eckert, B.; Jodl, H. -J.
2010-01-01
The Rutherford scattering experiment plays a central role in working out atomic models in physics and chemistry. Nevertheless, the experiment is rarely performed at school or in introductory physics courses at university. Therefore, we realized this experiment as a remotely controlled laboratory (RCL), i.e. the experiment is set up in reality and…
ERIC Educational Resources Information Center
Beltran-Carrillo, Vicente J.; Devis-Devis, Jose; Peiro-Velert, Carmen; Brown, David H. K.
2012-01-01
This article analyses negative experiences in physical education and sport reported during qualitative interviews of a group of inactive adolescent Spanish boys and girls. The purpose of this analysis is twofold. First and most important, it seeks to give voice to these young people reporting negative experiences and connect them to contexts of…
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Greco, E. V.
1973-01-01
The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.
20 CFR 220.127 - When the only work experience is arduous unskilled physical labor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... unskilled physical labor. 220.127 Section 220.127 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... only work experience is arduous unskilled physical labor. (a) Arduous work. Arduous work is primarily physical work requiring a high level of strength or endurance. The Board will consider the claimant unable...
20 CFR 220.127 - When the only work experience is arduous unskilled physical labor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... unskilled physical labor. 220.127 Section 220.127 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... only work experience is arduous unskilled physical labor. (a) Arduous work. Arduous work is primarily physical work requiring a high level of strength or endurance. The Board will consider the claimant unable...
20 CFR 220.127 - When the only work experience is arduous unskilled physical labor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... unskilled physical labor. 220.127 Section 220.127 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... only work experience is arduous unskilled physical labor. (a) Arduous work. Arduous work is primarily physical work requiring a high level of strength or endurance. The Board will consider the claimant unable...
20 CFR 220.127 - When the only work experience is arduous unskilled physical labor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... unskilled physical labor. 220.127 Section 220.127 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... only work experience is arduous unskilled physical labor. (a) Arduous work. Arduous work is primarily physical work requiring a high level of strength or endurance. The Board will consider the claimant unable...
20 CFR 220.127 - When the only work experience is arduous unskilled physical labor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... education who has a life-long history of arduous physical labor. B says that he is disabled because of... unskilled physical labor. 220.127 Section 220.127 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... only work experience is arduous unskilled physical labor. (a) Arduous work. Arduous work is primarily...
ERIC Educational Resources Information Center
Bennie, Andrew; Langan, Edel
2015-01-01
School physical education (PE) experiences play a critical role in adolescents' physical activity (PA) levels. Teachers are crucial to students' initial experiences in PA; however, limited research has explored teachers' perspectives about PA during PE using in-depth qualitative research techniques. We conducted interviews with 25 current…
Improving Students' Knowledge and Values in Physical Education through "Physical Best" Lessons
ERIC Educational Resources Information Center
Leonetti, Melissa; Zhu, Xihe; Chen, Senlin
2017-01-01
This study examined the effects of using "Physical Best" lessons to promote adolescent energy balance knowledge and task values. Seventh graders (N = 90) were randomly assigned to the experiment and the comparison groups. The experiment group took 10 selected "Physical Best" lessons, while the comparison experienced 10 district…
ERIC Educational Resources Information Center
Close, Eleanor W.; Conn, Jessica; Close, Hunter G.
2016-01-01
In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of "community of practice" and "physics identity," and explore the implications suggested by these theories for LA program adoption and adaptation.…
Physics Education in Virtual Reality: An Example
ERIC Educational Resources Information Center
Kaufmann, Hannes; Meyer, Bernd
2009-01-01
We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths…
Laboratory space physics: Investigating the physics of space plasmas in the laboratory
NASA Astrophysics Data System (ADS)
Howes, Gregory G.
2018-05-01
Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.
Roh, Beop-Rae; Yoon, Yoewon; Kwon, Ahye; Oh, Seunga; Lee, Soyoung Irene; Ha, Kyunghee; Shin, Yun Mi; Song, Jungeun; Park, Eun Jin; Yoo, Heejung; Hong, Hyun Ju
2015-01-01
This study had two main goals: to examine the structure of co-occurring peer bullying experiences among adolescents in South Korea from the perspective of victims and to determine the effects of bullying on suicidal behavior, including suicidal ideation and suicide attempts, among adolescents. This study used data gathered from 4,410 treatment-seeking adolescents at their initial visits to 31 local mental health centers in Gyeonggi Province, South Korea. The structure of peer bullying was examined using latent class analysis (LCA) to classify participants' relevant experiences. Then, a binomial logistic regression adjusted by propensity scores was conducted to identify relationships between experiences of being bullied and suicidal behaviors. The LCA of experiences with bullying revealed two distinct classes of bullying: physical and non-physical. Adolescents who experienced physical bullying were 3.05 times more likely to attempt suicide than those who were not bullied. Victims of (non-physical) cyber bullying were 2.94 times more likely to attempt suicide than were those who were not bullied. Both physical and non-physical bullying were associated with suicide attempts, with similar effect sizes. Schools and mental health professionals should be more attentive than they currently are to non-physical bullying.
Advanced Physics Labs and Undergraduate Research: Helping Them Work Together
NASA Astrophysics Data System (ADS)
Peterson, Richard W.
2009-10-01
The 2009 Advanced Lab Topical Conference in Ann Arbor affirmed the importance of advanced labs that teach crucial skills and methodologies by carefully conducting a time-honored experiment. Others however argued that such a constrained experiment can play a complementary role to more open-ended, project experiences. A genuine ``experiment'' where neither student or faculty member is exactly sure of the best approach or anticipated result can often trigger real excitement, creativity, and career direction for students while reinforcing the advanced lab and undergraduate research interface. Several examples are cited in areas of AMO physics, optics, fluids, and acoustics. Colleges and universities that have dual-degree engineering, engineering physics, or applied physics programs may especially profit from interdisciplinary projects that utilize optical, electromagnetic, and acoustical measurements in conjunction with computational physics and simulation.
Spiller, Laura C.; Jouriles, Ernest N.; McDonald, Renee; Skopp, Nancy A.
2012-01-01
Objective Despite the substantial co-occurrence of women’s experiences of physical and sexual violence, very little is known about their separate and combined effects on child functioning. The present study examines whether sexual victimization experienced by physically abused women is associated with their children’s disruptive behavior problems, after controlling for mothers’ physical victimization and parent to child aggression. It also tests the hypothesis that maternal distress mediates the association between women’s sexual victimization and their children’s disruptive behavior problems. Method The sample includes 449 mothers and their children (4–8 years) who were recruited while residing in domestic violence shelters. Mothers reported on their experiences of physical and sexual victimization over the past year and their current symptoms of psychological distress. Trained diagnosticians interviewed mothers about their children’s disruptive behavior problems. Results Approximately 75% of the women reported experiences of sexual victimization. Physically abused women’s experiences of sexual victimization correlated positively with their children’s disruptive behavior problems and their own psychological distress. The results of path analyses indicated that maternal psychological distress mediates the relation between women’s experiences of sexual victimization and their children’s disruptive behavior problems. Conclusions This research suggests that physically abused women’s experiences of sexual victimization are important for understanding their children’s disruptive behavior problems. Additionally, this research provides further evidence that maternal psychological distress is important for understanding how intimate partner violence might influence children. PMID:23166861
Case-study experiments in the introductory physics curriculum
NASA Astrophysics Data System (ADS)
Arion, D. N.; Crosby, K. M.; Murphy, E. A.
2000-09-01
Carthage College added inquiry-based case study activities to the traditional introductory physics laboratory. Student teams designed, constructed, and executed their own experiments to study real-world phenomena, through which they gained understanding both of physic principles and methods of physics research. Assessment results and student feedback through teacher evaluations indicate that these activities improved student attitudes about physics as well as their ability to solve physics problems relative to previous course offerings that did not include case study.
R&D at JIVE: transforming the way VLBI is done
NASA Astrophysics Data System (ADS)
Szomoru, Arpad; van Langevelde, Huib
2015-08-01
Arpad Szomoru, Huib van Langevelde and the JIVE staffFor many years, the heart of operations at JIVE has been the MkIV hardware correlator, a custom-built high-performance data processor. At this time the MkIV has been replaced by the locally developed EVN software correlator (SFXC).This development has vastly improved the science capacity of the EVN, by providing higher spectral resolution and polarization accuracy, but most notably, by enabling completely new observing modes. Observing multiple simultaneous field centers has enabled wide-field imaging, while a phased-array mode has made it possible to do pulsar time series with the EVN. New algorithms have been developed for near-field VLBI, making it possible to focus on objects within our solar system. This has been used to track the RadioAstron satellite, and by applying the derived orbital parameters to improve subsequent space VLBI observations.New digital baseband convertors will allow higher observing bandwidths in the EVN. In anticipation of this, and of the even higher bandwidths of future mm-VLBI observations, added to the deployment of much larger arrays (including the AVN, the SKA precursors and the SKA itself), we are investigating more powerful and economical solutions. The JIVE UniBoard Correlator is the first FPGA-based EVN correlator; its scalability and flexibility are now under assessment. The new UniBoard2 project, also sponsored by the EC, will skip two generations of FPGA technology and deliver enormous processing power at lower power consumption.Maybe just as importantly, research is ongoing into software tools to enable the efficient handling of the vast data sets that the EVN and other current and future instruments will produce. New data processing pipelines are being designed that will be able to cache intermediate products, and upon changing parameters only re-calculate what is needed, as opposed to re-starting every time from scratch.Finally, we will discuss the development of time and frequency transfer via public networks, in the context of a new H2020 project aimed at the astronomy, astrophysics and astroparticle physics faciclities within the ESFRI roadmap .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szadkowski, Zbigniew; Glas, Dariusz; Pytel, Krzysztof
Observations of ultra-high energy neutrinos became a priority in experimental astro-particle physics. Up to now, the Pierre Auger Observatory did not find any candidate on a neutrino event. This imposes competitive limits to the diffuse flux of ultra-high energy neutrinos in the EeV range and above. A very low rate of events potentially generated by neutrinos is a significant challenge for a detection technique and requires both sophisticated algorithms and high-resolution hardware. A trigger based on a artificial neural network was implemented into the Cyclone{sup R} V E FPGA 5CEFA9F31I7. The prototype Front-End boards for Auger-Beyond-2015 with Cyclone{sup R} Vmore » E can test the neural network algorithm in real pampas conditions in 2015. Showers for muon and tau neutrino initiating particles on various altitudes, angles and energies were simulated in CORSICA and Offline platforms giving pattern of ADC traces in Auger water Cherenkov detectors. The 3-layer 12-10-1 neural network was taught in MATLAB by simulated ADC traces according the Levenberg-Marquardt algorithm. Results show that a probability of a ADC traces generation is very low due to a small neutrino cross-section. Nevertheless, ADC traces, if occur, for 1-10 EeV showers are relatively short and can be analyzed by 16-point input algorithm. For 100 EeV range traces are much longer, but with significantly higher amplitudes, which can be detected by standard threshold algorithms. We optimized the coefficients from MATLAB to get a maximal range of potentially registered events and for fixed-point FPGA processing to minimize calculation errors. Currently used Front-End boards based on no-more produced ACEXR PLDs and obsolete Cyclone{sup R} FPGAs allow an implementation of relatively simple threshold algorithms for triggers. New sophisticated trigger implemented in Cyclone{sup R} V E FPGAs with large amount of DSP blocks, embedded memory running with 120 - 160 MHz sampling may support to discover neutrino events in the Pierre Auger Observatory. (authors)« less
Future flavour physics experiments
2015-01-01
The current status of flavour physics and the prospects for present and future experiments will be reviewed. Measurements in B‐physics, in which sensitive probes of new physics are the CKM angle γ, the Bs mixing phase ϕs, and the branching ratios of the rare decays B(s)0→μ+μ− , will be highlighted. Topics in charm and kaon physics, in which the measurements of ACP and the branching ratios of the rare decays K→πνν¯ are key measurements, will be discussed. Finally the complementarity of the future heavy flavour experiments, the LHCb upgrade and Belle‐II, will be summarised. PMID:26877543
Probing Pre-and In-Service Physics Teachers' Knowledge Using the Double-Slit Thought Experiment
ERIC Educational Resources Information Center
Asikainen, Mervi A.; Hirvonen, Pekka E.
2014-01-01
This study describes the use of the double-slit thought experiment as a diagnostic tool for probing physics teachers' understanding. A total of 9 pre-service teachers and 18 in-service teachers with a variety of different experience in modern physics teaching at the upper secondary level responded in a paper-and-pencil test and three of these…
ERIC Educational Resources Information Center
Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John
2014-01-01
Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.
1989-09-01
This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
Characterizing Student Experiences in Physics Competitions: The Power of Emotions
NASA Astrophysics Data System (ADS)
Moll, Rachel F.; Nashon, S.; Anderson, D.
2006-12-01
Low enrolment and motivation are key issues in physics education and recently the affective dimension of learning is being studied for evidence of its influence on student attitudes towards physics. Physics Olympics competitions are a novel context for stimulating intense emotional experiences. In this study, one team of students and their teacher were interviewed and observed prior to and during the event to characterize their emotions and determine the connections between their experiences and learning and attitudes/motivation towards physics. Results showed that certain types of events stimulated strong emotions of frustration and ownership, and that students’ attitudes were that physics is fun, diverse and relevant. Analysis of these themes indicated that the nature of emotions generated was connected to their attitudes towards physics. This finding points to the potential and value of informal and novel contexts in creating strong positive emotions, which have a strong influence on student attitudes towards physics.
ERIC Educational Resources Information Center
Castelli, Darla M.; Erwin, Heather E.
2007-01-01
In this study, the researchers aim to compare the personal attributes and experiences of children who met or exceeded physical activity guidelines with those who did not. By creating profiles, the researchers could compare motor performance, physical fitness, self-efficacy, time spent outdoors during physical activity, social support from friends…
ERIC Educational Resources Information Center
Hayes, Deborah
2017-01-01
Inactivity amongst children and adults in the UK is currently of great concern. Attitudes towards physical activity develop during childhood and may influence physical activity patterns in later life. This research investigated the experiences and perceptions of physical education (P.E.) amongst primary school pupils. The study established overall…
ERIC Educational Resources Information Center
Webster, Collin A.; Russ, Laura; Webster, Liana; Molina, Sergio; Lee, Heesu; Cribbs, Jason
2016-01-01
The purpose of this study was to examine faculty accounts of the nature and incorporation of Comprehensive School Physical Activity Program (CSPAP) learning experiences for preservice physical education teachers (PPETs) in undergraduate physical education teacher education (PETE). Nine individuals employed as faculty members in different PETE…
ERIC Educational Resources Information Center
Burnette, Samara Fleming
2013-01-01
Currently, little is known about African-American women with doctoral degrees in physics. This study examined the lived experiences of African-American women who completed doctoral programs in physics. Due to factors of race and gender, African-American women automatically enter a double-bind in science, technology, engineering, and mathematics…
ERIC Educational Resources Information Center
Hart, Kathy, Ed.
A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…
PHYSICS AND CHEMISTRY FOR THE AUTOMOTIVE TRADES.
ERIC Educational Resources Information Center
WORTHING, ROBERT
DESIGNED FOR STUDENT USE, THIS MANUAL PRESENTS RELATED INFORMATION AND LABORATORY EXPERIMENTS FOR A 1-YEAR COURSE IN APPLIED PHYSICS AND CHEMISTRY. IT WAS DEVELOPED BY ESSEX COUNTY AUTOMOTIVE TEACHERS. CONTENT HEADINGS ARE -- (1) MATTER AND ITS PROPERTIES (15 EXPERIMENTS), (2) MECHANICS (4 EXPERIMENTS), (3) HEAT (3 EXPERIMENTS), (4) ELECTRICITY (8…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, J. D.; Briggs, J. B.; Gulliford, J.
Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energymore » Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning is the critical experiments with fast reactor fuel rods in water, interesting in terms of justification of nuclear safety during transportation and storage of fresh and spent fuel. These reports provide a detailed review of the experiment, designate the area of their application and include results of calculations on modern systems of constants in comparison with the estimated experimental data.« less
Levels of processing and picture memory: the physical superiority effect.
Intraub, H; Nicklos, S
1985-04-01
Six experiments studied the effect of physical orienting questions (e.g., "Is this angular?") and semantic orienting questions (e.g., "Is this edible?") on memory for unrelated pictures at stimulus durations ranging from 125-2,000 ms. Results ran contrary to the semantic superiority "rule of thumb," which is based primarily on verbal memory experiments. Physical questions were associated with better free recall and cued recall of a diverse set of visual scenes (Experiments 1, 2, and 4). This occurred both when general and highly specific semantic questions were used (Experiments 1 and 2). Similar results were obtained when more simplistic visual stimuli--photographs of single objects--were used (Experiments 5 and 6). As in the case of the semantic superiority effect with words, the physical superiority effect for pictures was eliminated or reversed when the same physical questions were repeated throughout the session (Experiments 4 and 6). Conflicts with results of previous levels of processing experiments with words and nonverbal stimuli (e.g., faces) are explained in terms of the sensory-semantic model (Nelson, Reed, & McEvoy, 1977). Implications for picture memory research and the levels of processing viewpoint are discussed.
Simulation of Physical Experiments in Immersive Virtual Environments
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Wasfy, Tamer M.
2001-01-01
An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.
Thermal physics in practice and its confrontation with school physics
NASA Astrophysics Data System (ADS)
Vochozka, Vladimír; Tesař, Jiří; Bednář, Vít
2017-01-01
Concepts of heat, specific heat capacity and other terms of thermal physics are very abstract. For their better understanding it is necessary in teaching to include newly conceived experiments focused on the everyday experience of students. The paper evaluates the thermal phenomena with the help of infrared camera, respectively surface temperature sensors for on-line measurement. The article focuses on the experimental verification of the law of conservation of energy in thermal physics, comparing specific heat capacity of various substances and their confrontation with established experience of pupils.
Interpersonal aggression victimization within casual sexual relationships and experiences.
Klipfel, Katherine M; Claxton, Shannon E; van Dulmen, Manfred H M
2014-02-01
The frequent occurrence of aggression within committed romantic relationships is well documented. However, little is known about experiences of interpersonal aggression within casual sexual relationships and experiences. This study aimed to describe the occurrence of emotional, physical, and sexual aggression victimization within committed romantic relationships, casual dating relationships, friends-with-benefit relationships, booty-calls, and one-night stands. College students (N = 172) provided data regarding the lifetime occurrence of emotional, physical, and sexual aggression across different forms of casual sexual relationships and experiences (friends-with-benefits, booty-call, casual dating, one-night stands, committed relationships). Emotional, physical, and sexual subtypes of aggression were reported across all casual sexual relationships and experiences. While a higher percentage of individuals who had been involved in committed relationships reported experiencing at least one form of aggression (approximately 69%), prevalence of at least one form of aggression ranged from approximately 31% to 36% for the various casual sexual relationships/experiences. Across relationships/experiences, emotional and sexual aggression were more common than physical aggression. The findings from this study indicate that emotional, physical, and sexual aggression occur across types of relationships and experiences. Thus, the current study underscores the importance of considering casual dating, friends-with-benefits, booty-calls, and one-night stands when assessing interpersonal aggression.
Kodani, Iku; Gupta, Nidhi; Gill, Diane L.
2013-01-01
Multicultural scholarship in sport and exercise psychology should help us understand and apply cultural competencies for all to be physically active. In the present study, two Asian countries, Japan and Singapore, were chosen. The participation rate for physical activities among adolescent girls tends to be lower than that of boys in both countries. Thus, the purpose of the project was to gain knowledge and understanding about sociocultural factors that may explain adolescent girls' perceptions and behaviors toward sport, physical activity, and physical education (PE). A qualitative approach using semi-structured interviews with focus groups was used to understand meanings of physical activity among Buddhist Japanese, and Hindu Indians and Christian Chinese from Singapore. Each focus group consisted of four or five girls and female researchers. Based on the analysis, we created four themes which were "cultural identities," "Asian girls and sport/physical activities," "PE experiences," "motivation for future involvement." The Buddhist Japanese, Hindu Indian, and Christian Chinese participants each reported unique physical activity experiences, and all the participants were aware of how Asian culture may affect being physically active. Experiences of PE classes were similar but perceptions of their PE attire were different for Christian Chinese and Hindu Indian adolescent girls. Based on the results, the importance of nurturing cultural competencies and ways to encourage girls to be physically active throughout life were discussed. PMID:23412952
Araki, Kaori; Kodani, Iku; Gupta, Nidhi; Gill, Diane L
2013-01-01
Multicultural scholarship in sport and exercise psychology should help us understand and apply cultural competencies for all to be physically active. In the present study, two Asian countries, Japan and Singapore, were chosen. The participation rate for physical activities among adolescent girls tends to be lower than that of boys in both countries. Thus, the purpose of the project was to gain knowledge and understanding about sociocultural factors that may explain adolescent girls' perceptions and behaviors toward sport, physical activity, and physical education (PE). A qualitative approach using semi-structured interviews with focus groups was used to understand meanings of physical activity among Buddhist Japanese, and Hindu Indians and Christian Chinese from Singapore. Each focus group consisted of four or five girls and female researchers. Based on the analysis, we created four themes which were "cultural identities," "Asian girls and sport/physical activities," "PE experiences," "motivation for future involvement." The Buddhist Japanese, Hindu Indian, and Christian Chinese participants each reported unique physical activity experiences, and all the participants were aware of how Asian culture may affect being physically active. Experiences of PE classes were similar but perceptions of their PE attire were different for Christian Chinese and Hindu Indian adolescent girls. Based on the results, the importance of nurturing cultural competencies and ways to encourage girls to be physically active throughout life were discussed.
Lippold, Melissa A.; McHale, Susan M.; Davis, Kelly D.; Almeida, David M.; King, Rosalind B.
2014-01-01
Using daily diary data, this study examined the associations between positive and negative parent-youth experiences and youth cortisol and physical health symptoms among a sample of adolescents (N=132, Mean Age = 13.39). On days when girls reported more negative experiences than usual, they exhibited more physical health symptoms and flatter evening cortisol slopes than usual. Negative experiences with mothers were associated with higher dinner and bedtime youth cortisol levels (between-person). Daily positive experiences with fathers were linked with lower dinner cortisol levels. Youth with high levels of negative experiences, on average, were less sensitive to daily variation in negative experiences than youth who experienced lower parental negativity. We discuss the benefits of a daily diary approach. PMID:27231418
Guided Anarchy in an Introductory Physics Laboratory
ERIC Educational Resources Information Center
Heller, Kenneth
1973-01-01
Describes a physics laboratory course which operates without written instructions and with no required experiments. Course is based upon one- or two-week topics in mechanics, heat, electromagnetism and optics with a student-designed experiment in modern physics as an extended project. (DF)
More Homespun Experiments in Physics.
ERIC Educational Resources Information Center
Siddons, J. C.
1979-01-01
Describes how some experiments in physics can be presented in class using cheap materials. How to produce an electrostatic charge using a polythene bottle and how to make a tissue paper electroscope using a tin can are among the experiments described. (HM)
Support News Publications Computing for Experiments Computing for Neutrino and Muon Physics Computing for Collider Experiments Computing for Astrophysics Research and Development Accelerator Modeling ComPASS - Impact of Detector Simulation on Particle Physics Collider Experiments Daniel Elvira's paper "Impact
Quantum Dots: An Experiment for Physical or Materials Chemistry
ERIC Educational Resources Information Center
Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.
2005-01-01
An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.
Doing things my way: teaching physical education with a disability.
Grenier, Michelle A; Horrell, Andrew; Genovese, Bryan
2014-10-01
Having a disability and being a teacher can be a critical site for examining practices associated with ability, competence, and pedagogy. While there is a growing literature base that examines the experiences of students with disabilities in physical education, there is virtually no research that examines the experiences of physical education teachers with disabilities. Using the capability approach, this article explores the experiences of a physical education teaching intern with a physical disability, significant school members, and the students he interacted with through interviews and documents. The results yielded 3 primary themes. The first, "the fluid nature of the disability discourse," demonstrated the complexity of disability and explored the contrast between static tendencies that stereotype disability and the disability experience. The second theme, "doing things my way," reflected the intern's need to distinguish himself as a teacher by defining contexts for experiencing competence. The third and final theme, "agent of change," explored how the intern's experiences as a teacher with a disability informed his educational narrative.
Physical Activity Experiences and Beliefs Among Single Mothers: A Qualitative Study.
Dlugonski, Deirdre; Motl, Robert W
2016-09-01
Single motherhood has been associated with negative health consequences such as depression and cardiovascular disease. Physical activity might reduce these consequences, but little is known about physical activity experiences and beliefs that might inform interventions and programs for single mothers. The present study used social-cognitive theory as a framework to explore physical activity beliefs and experiences among single mothers. Single mothers (N = 14) completed a semistructured interview and the International Physical Activity Questionnaire. Participants were categorized into 3 activity levels, and data were analyzed according to these categories. All participants reported barriers to physical activity. Physically active single mothers seemed to be more confident in their ability to overcome these barriers and more likely to plan physical activity in their daily routine, and they more frequently reported having social support compared with low-active single mothers. Across all activity levels, participants focused on the physical outcomes of physical activity participation such as weight loss. These results provide information that is useful for designing and delivering behavioral interventions for increasing physical activity among single mothers.
Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine; Troelsen, Jens; Schipperijn, Jasper
2016-01-06
Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already physically active. This study was conducted to explore the least physically active children's "lived experiences" within four existential lifeworlds linked to physical activity during recess: space, body, time, and relations. The study builds on ethnographic fieldwork in a public school in Denmark using a combination of participatory photo interviews and participant observation. Thirty-seven grade five children (11-12 years old) were grouped in quartiles based on their objectively measured daily physical activity levels. Eight children in the lowest activity quartile (six girls) were selected to participate in the study. To avoid stigmatising and to make generalisations more reliable we further recruited eight children from the two highest activity quartiles (four girls) to participate. An analysis of the least physically active children's "lived experiences" of space, body, time and relations revealed several key factors influencing their recess physical activity: perceived classroom safety, indoor cosiness, lack of attractive outdoor facilities, bodily dissatisfaction, bodily complaints, tiredness, feeling bored, and peer influence. We found that the four existential lifeworlds provided an in-depth understanding of the least physically active children's "lived experiences" of recess physical activity. Our findings imply that specific intervention strategies might be needed to increase the least physically active children's physical activity level. For example, rethinking the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and creating teacher organised play activities during recess.
Experiences of Physical Therapists Working in the Acute Hospital Setting: Systematic Review.
Lau, Bonnie; Skinner, Elizabeth H; Lo, Kristin; Bearman, Margaret
2016-09-01
Physical therapists working in acute care hospitals require unique skills to adapt to the challenging environment and short patient length of stay. Previous literature has reported burnout of clinicians and difficulty with staff retention; however, no systematic reviews have investigated qualitative literature in the area. The purpose of this study was to investigate the experiences of physical therapists working in acute hospitals. Six databases (MEDLINE, CINAHL Plus, EMBASE, AMED, PsycINFO, and Sociological Abstracts) were searched up to and including September 30, 2015, using relevant terms. Studies in English were selected if they included physical therapists working in an acute hospital setting, used qualitative methods, and contained themes or descriptive data relating to physical therapists' experiences. Data extraction included the study authors and year, settings, participant characteristics, aims, and methods. Key themes, explanatory models/theories, and implications for policy and practice were extracted, and quality assessment was conducted. Thematic analysis was used to conduct qualitative synthesis. Eight articles were included. Overall, study quality was high. Four main themes were identified describing factors that influence physical therapists' experience and clinical decision making: environmental/contextual factors, communication/relationships, the physical therapist as a person, and professional identity/role. Qualitative synthesis may be difficult to replicate. The majority of articles were from North America and Australia, limiting transferability of the findings. The identified factors, which interact to influence the experiences of acute care physical therapists, should be considered by therapists and their managers to optimize the physical therapy role in acute care. Potential strategies include promotion of interprofessional and collegial relationships, clear delineation of the physical therapy role, multidisciplinary team member education, additional support staff, and innovative models of care to address funding and staff shortages. © 2016 American Physical Therapy Association.
Roh, Beop-Rae; Yoon, Yoewon; Kwon, Ahye; Oh, Seunga; Lee, Soyoung Irene; Ha, Kyunghee; Shin, Yun Mi; Song, Jungeun; Park, Eun Jin; Yoo, Heejung; Hong, Hyun Ju
2015-01-01
Objective This study had two main goals: to examine the structure of co-occurring peer bullying experiences among adolescents in South Korea from the perspective of victims and to determine the effects of bullying on suicidal behavior, including suicidal ideation and suicide attempts, among adolescents. Method This study used data gathered from 4,410 treatment-seeking adolescents at their initial visits to 31 local mental health centers in Gyeonggi Province, South Korea. The structure of peer bullying was examined using latent class analysis (LCA) to classify participants’ relevant experiences. Then, a binomial logistic regression adjusted by propensity scores was conducted to identify relationships between experiences of being bullied and suicidal behaviors. Results The LCA of experiences with bullying revealed two distinct classes of bullying: physical and non-physical. Adolescents who experienced physical bullying were 3.05 times more likely to attempt suicide than those who were not bullied. Victims of (non-physical) cyber bullying were 2.94 times more likely to attempt suicide than were those who were not bullied. Conclusions Both physical and non-physical bullying were associated with suicide attempts, with similar effect sizes. Schools and mental health professionals should be more attentive than they currently are to non-physical bullying. PMID:26619356
ERIC Educational Resources Information Center
Dannhauser, Walter
1980-01-01
Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)
Experimenting with Impacts in a Conceptual Physics or Descriptive Astronomy Laboratory
ERIC Educational Resources Information Center
LoPresto, Michael C.
2016-01-01
What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and…
ERIC Educational Resources Information Center
Duggan, Jerome L.; And Others
The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…
Perceptions of the Physical Education Doctoral Experience: Does Previous Teaching Experience Matter?
ERIC Educational Resources Information Center
Richards, K. Andrew R.; McLoughlin, Gabriella M.; Gaudreault, Karen Lux; Shiver, Victoria Nicole
2018-01-01
In the United States, physical education doctoral programs place great stock in recruiting students who have prior in-service teaching experience. However, little is known about how this experience influences perceptions of doctoral education. We conducted this cross-sectional, exploratory study to develop an initial understanding of how prior…
Physical pendulum—a simple experiment can give comprehensive information about a rigid body
NASA Astrophysics Data System (ADS)
Kladivová, Mária; Mucha, L'ubomír
2014-03-01
A simple experiment with a physical pendulum examining some aspects of rigid body motion is presented in this paper. The experiment consists of measuring the period of oscillation of a rod with non-homogeneous mass distribution used as a physical pendulum, dependent upon the position of the pivot axis. The obtained dependence provides sufficient information to calculate the position of the centre of mass, moment of inertia of the rigid body and local gravitational acceleration. This experiment is intended for secondary school and undergraduate students.
Rathschlag, Marco; Memmert, Daniel
2013-04-01
The present study examined the relationship between self-generated emotions and physical performance. All participants took part in five emotion induction conditions (happiness, anger, anxiety, sadness, and an emotion-neutral state) and we investigated their influence on the force of the finger musculature (Experiment 1), the jump height of a counter-movement jump (Experiment 2), and the velocity of a thrown ball (Experiment 3). All experiments showed that participants could produce significantly better physical performances when recalling anger or happiness emotions in contrast to the emotion-neutral state. Experiments 1 and 2 also revealed that physical performance in the anger and the happiness conditions was significantly enhanced compared with the anxiety and the sadness conditions. Results are discussed in relation to the Lazarus (1991, 2000a) cognitive-motivational-relational (CMR) theory framework.
ERIC Educational Resources Information Center
Goldwasser, M. R.; Leal, O.
1979-01-01
Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)
The Kinetics and Thermodynamics of the Phenol from Cumene Process: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Chen, Edward C. M.; Sjoberg, Stephen L.
1980-01-01
Presents a physical chemistry experiment demonstrating the differences between thermodynamics and kinetics. The experiment used the formation of phenol and acetone from cumene hydroperoxide, also providing an example of an industrially significant process. (CS)
NASA Technical Reports Server (NTRS)
Hollinden, A. B.; Eaton, L. R.; Vaughan, W. W.
1972-01-01
The first results of an ongoing preliminary-concept and detailed-feasibility study of a zero-gravity earth-orbital cloud physics research facility are reviewed. Current planning and thinking are being shaped by two major conclusions of this study: (1) there is a strong requirement for and it is feasible to achieve important and significant research in a zero-gravity cloud physics facility; and (2) some very important experiments can be accomplished with 'off-the-shelf' type hardware by astronauts who have no cloud-physics background; the most complicated experiments may require sophisticated observation and motion subsystems and the astronaut may need graduate level cloud physics training; there is a large number of experiments whose complexity varies between these two extremes.
Wiggins, David K; Wiggins, Brenda P
2011-06-01
This study analyzes the experiences of African Americans in the physical education and kinesiology profession since the late 1850s. Using a variety of primary and secondary source material, we place special emphasis on the experiences of African American physical educators in higher education and in the American Alliance for Health, Physical Education, Recreation and Dance and its southern, regional, and state chapters. Apparent from this examination is that African Americans have experienced various forms of racially discriminatory practices in physical education and kinesiology and have found it extraordinarily difficult to assume leader ship positions in the profession and be acknowledged for their scholarly and academic accomplishments.
Atmospheric microphysical experiments on an orbital platform
NASA Technical Reports Server (NTRS)
Eaton, L. R.
1974-01-01
The Zero-Gravity Atmospheric Cloud Physics Laboratory is a Shuttle/Spacelab payload which will be capable of performing a large range of microphysics experiments. This facility will complement terrestrial cloud physics research by allowing many experiments to be performed which cannot be accomplished within the confines of a terrestrial laboratory. This paper reviews the general Cloud Physics Laboratory concept and the experiment scope. The experimental constraints are given along with details of the proposed equipment. Examples of appropriate experiments range from three-dimensional simulation of the earth and planetary atmosphere and of ocean circulation to cloud electrification processes and the effects of atmospheric pollution materials on microphysical processes.
Using Case Studies in Calculus-based Physics
NASA Astrophysics Data System (ADS)
Katz, Debora M.
2006-12-01
Do your students believe that the physics only works in your classroom or laboratory? Or do they see that physics underlies their everyday experience? Case studies in physics help students connect physics principles to their everyday experience. For decades, case studies have been used to teach law, medicine and biology, but they are rarely used in physics. I am working on a calculus-based physics textbook for scientists and engineers. Case studies are woven into each chapter. Stop by and get a case study to test out in your classroom. I would love to get your feedback.
Experiences and Perceptions of Physical Education
ERIC Educational Resources Information Center
Medcalf, Richard; Marshall, Joe; Hardman, Ken; Visser, John
2011-01-01
This research has studied how children and young people, who are deemed by their school to have social, emotional and behavioural difficulties (SEBD), experience the National Curriculum of Physical Education (PE) in England. Research has previously highlighted the physical, social, affective and cognitive benefits of participation in PE.…
Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment
ERIC Educational Resources Information Center
Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.
2005-01-01
A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.
Strange Particles and Heavy Ion Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassalleck, Bernd; Fields, Douglas
This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for thismore » award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.« less
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
2002-01-01
The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.
Probing new top physics at the LHCb experiment.
Kagan, Alexander L; Kamenik, Jernej F; Perez, Gilad; Stone, Sheldon
2011-08-19
We suggest that top quark physics can be studied at the LHCb experiment and that top quark production could be observed. Since LHCb covers a large pseudorapidity region in the forward direction, it has unique abilities to probe new physics in the top quark sector. Furthermore, we demonstrate that LHCb may be able to measure a t ̄t production rate asymmetry and, thus, indirectly probe an anomalous forward-backward t ̄t asymmetry in the forward region, a possibility suggested by the enhanced forward-backward asymmetry reported by the CDF experiment. © 2011 American Physical Society
The "Nut-Drop" Experiment--Bringing Millikan's Challenge to Introductory Students
ERIC Educational Resources Information Center
McCann, Lowell I.; Blodgett, Earl D.
2009-01-01
One of the difficulties in teaching 20th-century physics ideas in introductory physics is that many seminal experiments that are discussed in textbooks are difficult or expensive for students to access experimentally. In this paper, we discuss an analogous exercise to Millikan's oil-drop experiment that lets students experience some of the physics…
Identifying and Addressing Student Difficulties with the Millikan Oil Drop Experiment
ERIC Educational Resources Information Center
Klassen, Stephen
2009-01-01
The Millikan oil drop experiment has been characterized as one of the "most beautiful" physics experiments of all time and, certainly, as one of the most frustrating of all the exercises in the undergraduate physics laboratory. A literature review reveals that work done on addressing student difficulties in performing the oil drop experiment has,…
Peer Provocation in Physical Education: Experiences of Botswana Adolescents
ERIC Educational Resources Information Center
Shehu, Jimoh
2009-01-01
Critical incidents of peer provocation in physical education were investigated among 675 junior secondary school students in Botswana. Data were generated through a brief, open-ended questionnaire requesting the students to narrate their experiences of bad, hurtful and offensive peer behaviours during physical education classes. Six overlapping…
10 CFR 35.50 - Training for Radiation Safety Officer.
Code of Federal Regulations, 2010 CFR
2010-01-01
... professional experience in health physics (graduate training may be substituted for no more than 2 years of the required experience) including at least 3 years in applied health physics; and (iii) Pass an examination... physics and instrumentation, radiation protection, mathematics pertaining to the use and measurement of...
The Influence of Sport Education on Student Motivation in Physical Education
ERIC Educational Resources Information Center
Spittle, Michael; Byrne, Kate
2009-01-01
Background: Physical educators are faced with trying to provide motivating and enjoyable experiences in physical education. Sport Education is an instructional model that aims to provide positive motivational sport experiences by simulating the features of authentic sport. Research support for Sport Education is positive, however, the effects on…
DOING Physics: Physics Activities for Groups.
ERIC Educational Resources Information Center
Zwicker, Earl, Ed.
1985-01-01
Recommends an experiment which will help students experience the physical evidence that floors, tables, and walls actually bend when pressure is exerted against them. Set-up includes: laser, radio, solar cell, and wall-mounted mirror. When the beam is moved by pressure on the wall, participants can "hear the wall bend." (DH)
ERIC Educational Resources Information Center
McEvilly, Nollaig
2014-01-01
This article provides an analysis of developmental discourses underpinning preschool physical education in Scotland's Curriculum for Excellence. Implementing a post-structural perspective, the article examines the preschool experiences and outcomes related to physical education as presented in the Curriculum for Excellence "health and…
Physical Activity Experiences and Beliefs among Single Mothers: A Qualitative Study
ERIC Educational Resources Information Center
Dlugonski, Deirdre; Motl, Robert W.
2016-01-01
Purpose: Single motherhood has been associated with negative health consequences such as depression and cardiovascular disease. Physical activity might reduce these consequences, but little is known about physical activity experiences and beliefs that might inform interventions and programs for single mothers. The present study used…
Learning to Detect Error in Movement Timing Using Physical and Observational Practice
ERIC Educational Resources Information Center
Black, Charles B.; Wright, David L.; Magnuson, Curt E.; Brueckner, Sebastian
2005-01-01
Three experiments assessed the possibility that a physical practice participant 's ability to render appropriate movement timing estimates may be hindered compared to those who merely observed. Results from these experiments revealed that observers and physical practice participants executed and estimated the overall durations of movement…
Learning, Teaching and Assessing Dance in Physical Education
ERIC Educational Resources Information Center
El-Sherif, Jennifer L.
2016-01-01
Many physical educators have limited dance experience and may lack the skills, knowledge and confidence to teach dance in their school programs. Yet, including dance units in physical education curriculums can provide positive experiences for students who may not enjoy traditional instruction. This article provides step-by-step instructions for…
Demonstration Experiments in Physics
ERIC Educational Resources Information Center
Sutton, Richard M.
2003-01-01
This book represents a "cookbook" for teachers of physics, a book of recipes for the preparation of demonstration experiments to illustrate the principles that make the subject of physics so fascinating. Illustrations and explanations of each demonstration are done in an easy-to-understand format. Each can be adapted to be used as a demonstration…
International Physics Research Internships in an Australian University
ERIC Educational Resources Information Center
Choi, Serene Hyun-Jin; Nieminen, Timo A.; Maucort, G.; Gong, Y. X.; Bartylla, C.; Persson, M.
2013-01-01
Research student internships in physics is one way that students can gain a broad range of research experience in a variety of research environments, and develop international contacts. We explore international physics research internships, focusing on the academic learning experiences, by interviewing four international research interns in a…
Computer vision uncovers predictors of physical urban change.
Naik, Nikhil; Kominers, Scott Duke; Raskar, Ramesh; Glaeser, Edward L; Hidalgo, César A
2017-07-18
Which neighborhoods experience physical improvements? In this paper, we introduce a computer vision method to measure changes in the physical appearances of neighborhoods from time-series street-level imagery. We connect changes in the physical appearance of five US cities with economic and demographic data and find three factors that predict neighborhood improvement. First, neighborhoods that are densely populated by college-educated adults are more likely to experience physical improvements-an observation that is compatible with the economic literature linking human capital and local success. Second, neighborhoods with better initial appearances experience, on average, larger positive improvements-an observation that is consistent with "tipping" theories of urban change. Third, neighborhood improvement correlates positively with physical proximity to the central business district and to other physically attractive neighborhoods-an observation that is consistent with the "invasion" theories of urban sociology. Together, our results provide support for three classical theories of urban change and illustrate the value of using computer vision methods and street-level imagery to understand the physical dynamics of cities.
Computer vision uncovers predictors of physical urban change
Naik, Nikhil; Kominers, Scott Duke; Raskar, Ramesh; Glaeser, Edward L.; Hidalgo, César A.
2017-01-01
Which neighborhoods experience physical improvements? In this paper, we introduce a computer vision method to measure changes in the physical appearances of neighborhoods from time-series street-level imagery. We connect changes in the physical appearance of five US cities with economic and demographic data and find three factors that predict neighborhood improvement. First, neighborhoods that are densely populated by college-educated adults are more likely to experience physical improvements—an observation that is compatible with the economic literature linking human capital and local success. Second, neighborhoods with better initial appearances experience, on average, larger positive improvements—an observation that is consistent with “tipping” theories of urban change. Third, neighborhood improvement correlates positively with physical proximity to the central business district and to other physically attractive neighborhoods—an observation that is consistent with the “invasion” theories of urban sociology. Together, our results provide support for three classical theories of urban change and illustrate the value of using computer vision methods and street-level imagery to understand the physical dynamics of cities. PMID:28684401
The whole picture: Child maltreatment experiences of youths who were physically abused.
Stevens, Kristopher I; Schneiderman, Janet U; Negriff, Sonya; Brinkmann, Andrea; Trickett, Penelope K
2015-05-01
The purpose of the current study was to describe the maltreatment experiences of a sample of urban youths identified as physically abused using the Maltreatment Case Record Abstraction Instrument (MCRAI). The sample (n=303) of 9-12 year old youths was recruited from active child protective services (CPS) cases in 2002-2005, and five years of child protective service records were reviewed. The demographic and maltreatment experiences of MCRAI-identified youths with physical abuse were compared to maltreated youths who were not physically abused and youths who were identified as physically abused by CPS when they entered this longitudinal study. T-tests and chi-square tests were used to compare the demographics and maltreatment experiences of the sample MCRAI-identified physically abused to the sample MCRAI-identified as nonphysically abused maltreated by gender. Of the total sample, 156 (51%) were identified by MCRAI as physically abused and 96.8% of these youth also experienced other types of maltreatment. Whereas youth with the initial CPS identification of physical abuse showed little co-occurrence (37.7%) with other forms of maltreatment. The MCRAI-identified physically abused youths had a significantly higher mean number of CPS reports and higher mean number of incidents of maltreatment than MCRAI-identified nonphysically maltreated youths. Lifeline plots of case record history from the time of first report to CPS to entry into the study found substantial individual variability in maltreatment experiences for both boys and girls. Thus, obtaining maltreatment information from a single report vastly underestimates the prevalence of physical abuse and the co-occurrence of other maltreatment types. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kuipers during replacement of the Marangoni Surface Fluid Dynamics Experiment
2012-03-15
ISS030-E-142827 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.
Photoelectroconversion by Semiconductors: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Fan, Qinbai; And Others
1995-01-01
Presents an experiment designed to give students some experience with photochemistry, electrochemistry, and basic theories about semiconductors. Uses a liquid-junction solar cell and illustrates some fundamental physical and chemical principles related to light and electricity interconversion as well as the properties of semiconductors. (JRH)
Control-based continuation: Bifurcation and stability analysis for physical experiments
NASA Astrophysics Data System (ADS)
Barton, David A. W.
2017-02-01
Control-based continuation is technique for tracking the solutions and bifurcations of nonlinear experiments. The idea is to apply the method of numerical continuation to a feedback-controlled physical experiment such that the control becomes non-invasive. Since in an experiment it is not (generally) possible to set the state of the system directly, the control target becomes a proxy for the state. Control-based continuation enables the systematic investigation of the bifurcation structure of a physical system, much like if it was numerical model. However, stability information (and hence bifurcation detection and classification) is not readily available due to the presence of stabilising feedback control. This paper uses a periodic auto-regressive model with exogenous inputs (ARX) to approximate the time-varying linearisation of the experiment around a particular periodic orbit, thus providing the missing stability information. This method is demonstrated using a physical nonlinear tuned mass damper.
Work-related behaviour and experience pattern in nurses: impact on physical and mental health.
Schulz, M; Damkröger, A; Voltmer, E; Löwe, B; Driessen, M; Ward, M; Wingenfeld, K
2011-06-01
Nursing is associated with high levels of emotional strain and heavy workloads. Changing working conditions raise the importance of investigating job satisfaction, stress and burnout and its consequences for nurses. The aim of the study was to investigate whether work-related behaviour and experience patterns are associated with mental and physical health status in nurses. A sample of 356 nurses in four German hospitals were interviewed using questionnaires regarding work-related behaviour and experience patterns, work stress, depression, anxiety and physical symptoms ('Work-related Behaviour and Experience Pattern'--AVEM and ERI). The main result of this study is that unhealthy work-related behaviour and experience patterns (i.e. the excessive ambitious type and the resigned type) are associated with reduced mental and physical health. Preventive, as well as intervention, strategies are needed that focus both on the individual as well as on working conditions. © 2011 Blackwell Publishing.
NASA Technical Reports Server (NTRS)
Motil, Susan M.
2002-01-01
The Light Microscopy Module (LMM) is planned as a remotely controllable, automated, on-orbit facility, allowing flexible scheduling and control of physical science and biological science experiments within the Fluids Integrated Rack (FIR) on the International Space Station. Initially four fluid physics experiments in the FIR will use the LMM the Constrained Vapor Bubble, the Physics of Hard Spheres Experiment-2, Physics of Colloids in Space-2, and Low Volume Fraction Entropically Driven Colloidal Assembly. The first experiment will investigate heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments will investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties.
NASA Astrophysics Data System (ADS)
Dabney, Katherine P.; Tai, Robert H.
2014-06-01
The majority of existing science, technology, engineering, and mathematics (STEM) research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following question: On average, do females who select physics as compared to chemistry doctoral programs differ in their reported personal motivations and background factors prior to entering the field? This question is analyzed using variables from the Project Crossover Survey data set through a subset of female physical science doctoral students and scientists (n =1137). A logistic regression analysis and prototypical odds ratio uncover what differentiates women in the physical sciences based on their academic achievement and experiences ranging from high school through undergraduate education. Results indicate that females who have negative undergraduate chemistry experiences as well as higher grades and positive experiences in undergraduate physics are more likely to pursue a career in physics as opposed to chemistry. Conclusions suggest that a greater emphasis should be placed on the classroom experiences that are provided to females in gateway physics courses. Analyses show that women are not a single entity that should only be examined as a whole group or in comparison to men. Instead women can be compared to one another to see what influences their differences in educational experiences and career choice in STEM-based fields as well as other academic areas of study.
Strong Interaction Studies with PANDA at FAIR
NASA Astrophysics Data System (ADS)
Schönning, Karin
2016-10-01
The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme.
NASA Astrophysics Data System (ADS)
Briere, Roy A.; Harris, Frederick A.; Mitchell, Ryan E.
2016-10-01
The cornerstone of the Chinese experimental particle physics program is a series of experiments performed in the τ-charm energy region. China began building e+e- colliders at the Institute for High Energy Physics in Beijing more than three decades ago. Beijing Electron Spectrometer (BES) is the common root name for the particle physics detectors operated at these machines. We summarize the development of the BES program and highlight the physics results across several topical areas.
NASA Astrophysics Data System (ADS)
2014-05-01
A scientific session "Prospects of Studies in Neutrino Particle Physics and Astrophysics," of the Physical Sciences Division of the Russian Academy of Sciences (DPS RAS), devoted to the centenary of B M Pontecorvo, was held on 2-3 September 2014 at the JINR international conference hall (Dubna, Moscow region).The following reports were put on the session agenda as posted on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow; Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow region; National Research Nuclear University MEPhI, Moscow) "Long-baseline neutrino accelerator experiments: results and prospects";(2) Spiering Ch (Deutsches Elektronen-Synchrotron (DESY), Germany) "Results obtained by ICECUBE and prospects of neutrino astronomy";(3) Barabash A S (Alikhanov Institute for Theoretical and Experimental Physics, Moscow) "Double beta decay experiments: current status and prospects";(4) Bilenky S M (Joint Institute for Nuclear Research, Dubna, Moscow region; Technische Universitat M'unchen, Garching, Germany) "Bruno Pontecorvo and the neutrino";(5) Olshevskiy A G (Joint Institute for Nuclear Research, Dubna, Moscow region) "Reactor neutrino experiments: results and prospects";(6) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) "Low-energy neutrino research at the Baksan Neutrino Laboratory";(7) Gorbunov D S (Institute for Nuclear Research, RAS, Moscow): "Sterile neutrinos and their role in particle physics and cosmology";(8) Derbin A V (Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad region) "Solar neutrino experiments";(9) Rubakov V A (Institute for Nuclear Research, RAS, Moscow) "Prospects of studies in the field of neutrino particle physics and astrophysics." An article by V N Gavrin, close in essence to talk 6, was published in Usp. Fiz. Nauk 181 (9), 975 (2011) [Phys. Usp. 54 (9) 941 (2011)]. Articles by V A Rubakov, close in essence to talk 9, were published in Usp. Fiz. Nauk 182 (10) 1017 (2012); 181 (6) 655 (2011) [Phys. Usp. 55 (10) 949 (2012); 54 (6) 633 (2011)]. Articles based on talks 1-5, 7, and 8 are published below. • Long-baseline neutrino accelerator experiments: results and prospects, Yu G Kudenko Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 462-469 • High-energy neutrino astronomy: a glimpse of the promised land, Ch Spiering Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 470-481 • Double beta decay experiments: current status and prospects, A S Barabash Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 482-488 • Bruno Pontecorvo and the neutrino, S M Bilenky Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 489-496 • Reactor neutrino experiments: results and prospects, A G Olshevskiy Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 497-502 • Sterile neutrinos and their role in particle physics and cosmology, D S Gorbunov Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 503-511 • Solar neutrino experiments, A V Derbin Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 512-524
Yemeke, Tatenda T; Sikkema, Kathleen J; Watt, Melissa H; Ciya, Nonceba; Robertson, Corne; Joska, John A
2017-07-01
Traumatic events can negatively affect clinical outcomes among HIV positive women, particularly when those events result in ongoing psychological distress. Consequently, there have been calls to integrate screening and treatment of traumatic experiences and associated mental health disorders into HIV care. In South Africa, screening for traumatic experiences and mental health is not a routine part of HIV care. The goal of this study was to examine the prevalence of traumatic experiences and mental health distress among women in an HIV clinic in Cape Town, South Africa, and to explore the acceptability of routine screening in this setting. Seventy HIV positive women were screened following referral from health care workers in the clinic. Among the participants, 51% reported a history of sexual abuse and 75% reported physical intimate partner violence (physical IPV). Among all participants, 36% met screening criteria for depression; among those with traumatic experiences ( n = 57), 70% met screening criteria for posttraumatic stress disorder (PTSD). Compared with reporting no sexual abuse or physical IPV, having experienced both sexual abuse and physical IPV was significantly associated with higher odds of depression, while reporting either sexual abuse or physical IPV individually was not significantly associated with increased odds of depression. Among women reporting sexual abuse, 61% were disclosing their experience for the first time during the screening; 31% of women with physical IPV experience were disclosing for the first time. Overall, 98% of participants thought screening should be routine and extended to all women as part of clinic care. Screening women for sexual abuse and physical IPV may be an important component of ensuring HIV care engagement.
NASA Astrophysics Data System (ADS)
An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng
2016-03-01
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations. Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ˜400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the {θ }23 mixing angle. Detection of the 7Be and 8B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with {10}-5 {{{eV}}}2\\lt {{Δ }}{m}412\\lt {10}-2 {{{eV}}}2 and a sufficiently large mixing angle {θ }14 could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the p\\to {K}++\\bar{ν } decay channel, search for neutrinos resulting from dark-matter annihilation in the Sun, search for violation of Lorentz invariance via the sidereal modulation of the reactor neutrino event rate, and search for the effects of non-standard interactions. The proposed construction of the JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics in a timely and cost-effective fashion. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.
The Merli-Missiroli-Pozzi Two-Slit Electron-Interference Experiment.
Rosa, Rodolfo
In 2002 readers of Physics World voted Young's double-slit experiment with single electrons as "the most beautiful experiment in physics" of all time. Pier Giorgio Merli, Gian Franco Missiroli, and Giulio Pozzi carried out this experiment in a collaboration between the Italian Research Council and the University of Bologna almost three decades earlier. I examine their experiment, place it in historical context, and discuss its philosophical implications.
The Advanced Lab Course at the University of Houston
NASA Astrophysics Data System (ADS)
Forrest, Rebecca
2009-04-01
The University of Houston Advanced Lab course is designed to help students understand the physics in classic experiments, become familiar with experimental equipment and techniques, gain experience with independent experimentation, and learn to communicate results orally and in writing. It is a two semester course, with a Lab Seminar also required during the first semester. In the Seminar class we discuss keeping a notebook and writing a laboratory report, error analysis, data fitting, and scientific ethics. The students give presentations, in pairs, on the workings and use of basic laboratory equipment. In the Lab courses students do a one week introductory experiment, followed by six two-week experiments each semester. These range from traditional experiments in modern physics to contemporary experiments with superconductivity and chaos. The students are required to keep a laboratory notebook and to write a four-page paper for each experiment in the publication style of the American Institute of Physics. This course introduces students to the experimental tools and techniques used in physics, engineering, and industry laboratories, and allows them to mature as experimentalists.
NASA Astrophysics Data System (ADS)
Close, Eleanor W.; Conn, Jessica; Close, Hunter G.
2016-06-01
[This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.
Examining Physics Career Interests: Recruitment and Persistence into College
NASA Astrophysics Data System (ADS)
Lock, R. M.; Hazari, Z.; Sadler, P. M.; Sonnert, G.
2012-03-01
Compared to the undergraduate population, the number of students obtaining physics degrees has been declining since the 1960s. This trend continues despite the increasing number of students taking introductory physics courses in high school and college. Our work uses an ex-post facto design to study the factors that influence students' decision to pursue a career in physics at the beginning of college. These factors include high school physics classroom experiences, other science-related experiences, and students' career motivations. The data used in this study is drawn from the Persistence Research in Science and Engineering (PRiSE) Project, a large-scale study that surveyed a nationally representative sample of college/university students enrolled in introductory English courses about their interests and prior experiences in science.
Methods of Achieving and Maintaining Physical Fitness for Prolonged Space Flight
NASA Technical Reports Server (NTRS)
Olree, Harry D. (Principal Investigator); Corbin, Bob; Penrod, James; Smith, Carroll
1969-01-01
This final summary report covers the five experiments that were conducted over a 24-month period beginning May 1, 1967 and ending April 30, 1969. Experiment I revealed that running and riding a bicycle ergometer produced similar gains in physical fitness variables. In Experiment I the subjects exercising at a 180 heart rate made a greater improvement in physical fitness than did those exercising a t a 140 or 160 heart rate. In Experiment II the subjects who exercised sixty minutes per day made greater gains on specified components of physical fitness than did those who exercised twenty or forty minutes per day, twelve times per week made greater gains on specified components of physical fitness than did those who exercised three or six times per week. In Experiment V, it was found that subjects could maintain a moderate level of fitness by exercising at a pulse rate of 160 beats per minute for twenty-minute periods three times per week, that subjects who "overtrained" by exercising twice daily to near exhaustion increased in fitness and that those subjects who discontinued training decreased in fitness.
Status and Prospects of Hirfl Experiments on Nuclear Physics
NASA Astrophysics Data System (ADS)
Xu, H. S.; Zheng, C.; Xiao, G. Q.; Zhan, W. L.; Zhou, X. H.; Zhang, Y. H.; Sun, Z. Y.; Wang, J. S.; Gan, Z. G.; Huang, W. X.; Ma, X. W.
HIRFL is an accelerator complex consisting of 3 accelerators, 2 radioactive beams lines, 1 storage rings and a number of experimental setups. The research activities at HIRFL cover the fields of radio-biology, material science, atomic physics, and nuclear physics. This report mainly concentrates on the experiments of nuclear physics with the existing and planned experimental setups such as SHANS, RIBLL1, ETF, CSRe, PISA and HPLUS at HIRFL.
Informal Science: Family Education, Experiences, and Initial Interest in Science
ERIC Educational Resources Information Center
Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.
2016-01-01
Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…
NASA Astrophysics Data System (ADS)
Mujtaba, Tamjid; Reiss, Michael J.
2013-07-01
This paper explores the factors that are associated in England with 15-year-old students' intentions to study physics after the age of 16, when it is no longer compulsory. Survey responses were collated from 5,034 year 10 students as learners of physics during the academic year 2008-2009 from 137 England secondary schools. Our analysis uses individual items from the survey rather than constructs (aggregates of items) to explore what it is about physics teachers, physics lessons and physics itself that is most correlated with intended participation in physics after the age of 16. Our findings indicate that extrinsic material gain motivation in physics was the most important factor associated with intended participation. In addition, an item-level analysis helped to uncover issues around gender inequality in physics educational experiences which were masked by the use of construct-based analyses. Girls' perceptions of their physics teachers were similar to those of boys on many fronts. However, despite the encouragement individual students receive from their teachers being a key factor associated with aspirations to continue with physics, girls were statistically significantly less likely to receive such encouragement. We also found that girls had less positive experiences of their physics lessons and physics education than did boys.
Development of Computer-Based Experiment Set on Simple Harmonic Motion of Mass on Springs
ERIC Educational Resources Information Center
Musik, Panjit
2017-01-01
The development of computer-based experiment set has become necessary in teaching physics in schools so that students can learn from their real experiences. The purpose of this study is to create and to develop the computer-based experiment set on simple harmonic motion of mass on springs for teaching and learning physics. The average period of…
A Take-Home Physics Experiment Kit for On-Campus and Off-Campus Students
ERIC Educational Resources Information Center
Turner, Joanna; Parisi, Alfio
2008-01-01
A take-home experiment kit has been developed to reinforce the concepts in a first year physics course that both on and off campus students from a variety of educational backgrounds can successfully use. The kit is inexpensive and is composed of easy to obtain items. The experiments conducted with the kit are directed experiments that require…
Using Autobiographical Essays to Encourage Student Reflection on Socialization Experiences
ERIC Educational Resources Information Center
Betourne, Joshua A.; Richards, K. Andrew R.
2015-01-01
Students enter physical education teacher education (PETE) programs with preconceived notions about what it means to be a physical educator, developed in response to their own experiences in K-12 physical education. These preconceived notions may be flawed or incomplete and, in order to be effective, PETE programs must help preservice teachers…
Digital Video: The Impact on Children's Learning Experiences in Primary Physical Education
ERIC Educational Resources Information Center
O'Loughlin, Joe; Chroinin, Deirdre Ni; O'Grady, David
2013-01-01
Technology can support teaching, learning and assessment in physical education. The purpose of this study was to examine children's perspectives and experiences of using digital video in primary physical education. The impact on motivation, feedback, self-assessment and learning was examined. Twenty-three children aged 9-10 years participated in a…
The Nature and Role of Thought Experiments in Solving Conceptual Physics Problems
ERIC Educational Resources Information Center
Kösem, Sule Dönertas; Özdemir, Ömer Faruk
2014-01-01
This study describes the possible variations of thought experiments in terms of their nature, purpose, and reasoning resources adopted during the solution of conceptual physics problems. A phenomenographic research approach was adopted for this study. Three groups of participants with varying levels of physics knowledge--low, medium, and high…
ERIC Educational Resources Information Center
Moy, Brendan; Renshaw, Ian; Davids, Keith; Brymer, Eric
2016-01-01
Background: Physical education teacher education (PETE) programmes have been identified as a critical platform to encourage the exploration of alternative teaching approaches by pre-service teachers. However, the socio-cultural constraint of acculturation or past physical education and sporting experiences results in the maintenance of the status…
African American Teacher Candidates' Experiences in Teaching Secondary Physical Education
ERIC Educational Resources Information Center
Sato, Takahiro; Hodge, Samuel Russell
2017-01-01
The purpose of this study was to describe and explain the teaching experiences of African American physical education teacher candidates in secondary physical education programs at urban schools. The research design was explanatory multiple-case study situated in positioning theory (Harré & van Langenhove, 1999). The participants were seven…
ERIC Educational Resources Information Center
Koponen, Ismo T.; Mantyla, Terhi
2006-01-01
In physics teaching experimentality is an integral component in giving the starting point of knowledge formation and conceptualization. However, epistemology of experiments is not often addressed directly in the educational and pedagogical literature. This warrants an attempt to produce an acceptable reconstruction of the epistemological role of…
Debunking a Video on Youtube as an Authentic Research Experience
ERIC Educational Resources Information Center
Davidowsky, Philip; Rogers, Michael
2015-01-01
Students are exposed to a variety of unrealistic physical experiences seen in movies, video games, and short online videos. A popular classroom activity has students examine footage to identify what aspects of physics are correctly and incorrectly represented. Some of the physical phenomena pictured might be tricks or illusions made easier to…
How can laboratory plasma experiments contribute to space and &astrophysics?
NASA Astrophysics Data System (ADS)
Yamada, M.
Plasma physics plays key role in a wide range of phenomena in the universe, from laboratory plasmas to the magnetosphere, the solar corona, and to the tenuous interstellar and intergalactic gas. Despite the huge difference in physical scales, there are striking similarities in plasma behavior of laboratory and space plasmas. Similar plasma physics problems have been investigated independently by both laboratory plasma physicists and astrophysicists. Since 1991, cross fertilization has been increased among laboratory plasma physicists and space physicists through meeting such as IPELS [Interrelationship between Plasma Experiments in the Laboratory and Space] meeting. The advances in laboratory plasma physics, along with the recent surge of astronomical data from satellites, make this moment ripe for research collaboration to further advance plasma physics and to obtain new understanding of key space and astrophysical phenomena. The recent NRC review of astronomy and astrophysics notes the benefit that can accrue from stronger connection to plasma physics. The present talk discusses how laboratory plasma studies can contribute to the fundamental understandings of the space and astrophysical phenomena by covering common key physics topics such as magnetic reconnection, dynamos, angular momentum transport, ion heating, and magnetic self-organization. In particular, it has recently been recognized that "physics -issue- dedicated" laboratory experiments can contribute significantly to the understanding of the fundamental physics for space-astrophysical phenomena since they can create fundamental physics processes in controlled manner and provide well-correlated plasma parameters at multiple plasma locations simultaneously. Such dedicated experiments not only can bring about better understanding of the fundamental physics processes but also can lead to findings of new physics principles as well as new ideas for fusion plasma confinement. Several dedicated experiments have provided the fundamental physics data for magnetic reconnection [1]. Linear plasma devices have been utilized to investigate Whistler waves and Alfven wave phenomena [2,3]. A rotating gallium disk experiment has been initiated to study magneto-rotational instability [4]. This talk also presents the most recent progress of these dedicated laboratory plasma research. 1. M. Yamada et al., Phys. Plasmas 4, 1936, (1997) 2. R. Stenzel, Phys. Rev. Lett. 65, 3001 (1991) 3. W. Gekelman et al, Plasma Phys. Contr. Fusion, v42, B15-B26, Suppl.12B (2000) 4. H. Ji, J. Goodman, A. Kageyama Mon. Not. R. Astron. Soc. 325, L1- (2001)
Impact of detector simulation in particle physics collider experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvira, V. Daniel
Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less
Impact of detector simulation in particle physics collider experiments
Elvira, V. Daniel
2017-06-01
Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less
Al-Shawi, Ameel F; Lafta, Riyadh K
2015-01-01
Studies have revealed a powerful relationship between adverse childhood experiences (ACEs) and physical and mental health in adulthood. Literature documents the conversion of traumatic emotional experiences in childhood into organic disease later in life. The aim was to estimate the effect of childhood experiences on the physical health of adults in Baghdad city. A cross-sectional study was conducted from January 2013 to January 2014. The study sample was drawn from Baghdad city. Multistage sampling techniques were used in choosing 13 primary health care centers and eight colleges of three universities in Baghdad. In addition, teachers of seven primary schools and two secondary schools were chosen by a convenient method. Childhood experiences were measured by applying a modified standardized ACEs-International Questionnaire form and with questions for bonding to family and parental monitoring. Physical health assessment was measured by a modified questionnaire derived from Health Appraisal Questionnaire of Centers for Disease Control and Prevention. The questionnaire includes questions on cerebrovascular diseases, diabetes mellitus, tumor, respiratory and gastrointestinal diseases. Logistic regression model showed that a higher level of bonding to family (fourth quartile) is expected to reduce the risk of chronic physical diseases by almost the half (odds ratio = 0.57) and exposure to a high level of household dysfunction and abuse (fourth quartile) is expected to increase the risk of chronic physical diseases by 81%. Childhood experiences play a major role in the determination of health outcomes in adulthood, and early prevention of ACEs. Encouraging strong family bonding can promote physical health in later life.
Impact of detector simulation in particle physics collider experiments
NASA Astrophysics Data System (ADS)
Daniel Elvira, V.
2017-06-01
Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.
Kwon, Ja Youn; Kulinna, Pamela Hodges; van der Mars, Hans; Koro-Ljungberg, Mirka; Amrein-Beardsley, Audrey; Norris, Jason
2018-06-01
Physical educators may be the responsible people for implementing comprehensive school physical activity programs (CSPAPs) in schools. However, it is unclear whether physical education teacher education (PETE) programs provide the relevant learning opportunities to preservice teachers for CSPAP implementation. The purpose of this study was to understand preservice teachers' perspectives and experiences of CSPAP preparation in their PETE programs. Fourteen PETE students from 6 different universities participated and shared their experiences in PETE programs. Data were collected through a short survey, 1 formal interview, field images, document gathering, and an additional survey to follow up the interview. Descriptive statistics, constant comparison, and analytic induction techniques were used to analyze the data. Participants' familiarity with CSPAPs was related to positive opinions about the role of physical educators in CSPAPs. Three common themes were revealed: (a) introducing CSPAP via courses, (b) the lack of programwide hands-on experiences for CSPAP, and (c) limited preparation for social skills with stakeholders. Participants' perceptions of the role of physical educators as physical activity leaders had been expanded during their training. The participating PETE programs integrated CSPAP components in the existing courses to introduce CSPAP, while there was a lack of sufficient practical opportunities to learn how to implement (aspects of) a CSPAP. Participants felt they were insufficiently prepared to promote and implement expanded physical activity programming beyond physical education classes in schools. The majority of the PETE preservice teachers wanted more practical CSPAP experiences in their programs.
Norris, Alison H; Decker, Michele R; Weisband, Yiska L; Hindin, Michelle J
2017-06-01
Physical intimate partner violence (IPV) and STIs, including HIV, are highly prevalent in east Africa. While we have some evidence about women's experience with physical IPV, little is known about men's experience with physical IPV, particularly in sub-Saharan Africa. Our objective was to examine, in Tanzanian male migrant plantation residents, the prevalence of, and associations among, experience and enactment of physical IPV and prevalent STI/HIV. Data from a cross-sectional survey of male plantation residents (n=158) in northern Tanzania were analysed to estimate prevalence of physical IPV experience and enactment. We assessed associations between IPV and sexual risk behaviours, and serodiagnosis of HIV, herpes simplex virus type-2 (HSV-2) and syphilis. Overall, 30% of men had experienced and/or enacted physical IPV with their main sexual partner: 19% of men had ever experienced physical IPV with their main sexual partner; 22% had enacted physical IPV with their main sexual partner. Considering overlaps in these groups, 11% of all participants reported reciprocal (both experienced and enacted) physical IPV. 9% of men were HIV seropositive, 51% were HSV-2 seropositive and 10% were syphilis seropositive-54% had at least one STI. Men who reported reciprocal physical IPV had increased odds of STI/HIV (adjusted OR (AOR) 8.85, 95% CI 1.78 to 44.6); the association retained statistical significance (AOR 14.5, 95% CI 1.4 to 147.0) with sexual risk behaviours included in the multivariate model. Men's physical IPV experience and enactment was common among these migrant plantation residents. Men reporting reciprocal physical IPV had significantly increased odds of prevalent STI/IPV, and we hypothesise that they have unstable relationships. Physical IPV is an important risk factor for STI/HIV transmission, and programmatic activities are needed to prevent both. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Space physics educational outreach
NASA Technical Reports Server (NTRS)
Copeland, Richard A.
1995-01-01
The goal of this Space Physics Educational Outreach project was to develop a laboratory experiment and classroom lecture on Earth's aurora for use in lower division college physics courses, with the particular aim of implementing the experiment and lecture at Saint Mary's College of California. The strategy is to teach physics in the context of an interesting natural phenomenon by investigating the physical principles that are important in Earth's aurora, including motion of charged particles in electric and magnetic fields, particle collisions and chemical reactions, and atomic and molecular spectroscopy. As a by-product, the undergraduate students would develop an appreciation for naturally occurring space physics phenomena.
Low-Cost Accelerometers for Physics Experiments
ERIC Educational Resources Information Center
Vannoni, Maurizio; Straulino, Samuele
2007-01-01
The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…
Physics Lab Experiments and Correlated Computer Aids. Teacher Edition.
ERIC Educational Resources Information Center
Gottlieb, Herbert H.
Forty-nine physics experiments are included in the teacher's edition of this laboratory manual. Suggestions are given in margins for preparing apparatus, organizing students, and anticipating difficulties likely to be encountered. Sample data, graphs, calculations, and sample answers to leading questions are also given for each experiment. It is…
Thought Experiments in Physics Education: A Simple and Practical Example.
ERIC Educational Resources Information Center
Lattery, Mark J.
2001-01-01
Uses a Galilean thought experiment to enhance learning in a college-level physical science course. Presents both modern and historical perspectives of Galileo's work. As a final project, students explored Galileo's thought experiment in the laboratory using modern detectors with satisfying results. (Contains 25 references.) (Author/ASK)
ERIC Educational Resources Information Center
Kim, Mikyong Minsun; Williams, Brenda C.
2012-01-01
This phenomenological study aims at understanding lived experiences of college seniors and recent college graduates with physical disabilities seeking employment opportunities after graduation in the USA The extensive interviews revealed that participants' attitudes about and experiences with disability are diverse (pain to pride, denied…
Autonomy and the Student Experience in Introductory Physics
ERIC Educational Resources Information Center
Hall, Nicholas Ron
2013-01-01
The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students…
Low Cost Alternatives to Commercial Lab Kits for Physics Experiments
ERIC Educational Resources Information Center
Kodejška, C.; De Nunzio, G.; Kubinek, R.; Ríha, J.
2015-01-01
Conducting experiments in physics using modern measuring techniques, and particularly those utilizing computers, is often much more attractive to students than conducting experiments conventionally. However, the cost of professional kits in the Czech Republic is still very expensive for many schools. The basic equipment for one student workplace…
Which Accelerates Faster--A Falling Ball or a Porsche?
ERIC Educational Resources Information Center
Rall, James D.; Abdul-Razzaq, Wathiq
2012-01-01
An introductory physics experiment has been developed to address the issues seen in conventional physics lab classes including assumption verification, technological dependencies, and real world motivation for the experiment. The experiment has little technology dependence and compares the acceleration due to gravity by using position versus time…
The relative cost of children's physical play.
Pellegrini; Horvat; Huberty
1998-04-01
There has been a long-standing debate regarding the functions of play during childhood. An important, but neglected, first step in this debate entails documenting the costs associated with play. In this study we analysed energetic costs (expressed in terms of caloric expenditure) associated with physical play in four field experiments of play in primary school children. Experiment 1 established the concurrent validity of an observational check list to estimate caloric expenditure of children's physical play. Experiment 2 compared caloric expenditure of the play (defined as all behaviour exhibited during play time) for two age groups of children during playtime outdoors and during indoor sedentary activity; caloric expenditure of outdoor activity was greater and was significantly correlated with ambient temperature. In experiment 3, children were observed during indoor play to control for the influence of ambient temperature. Outdoor physical play was more energetically costly than indoor physical play. In experiment 4, children's behaviour was observed outdoors and caloric expenditure for play, games and other activities was compared. Physical play was more costly than other forms of behaviour and games. Estimates of total energetic costs of play ranged from 6 to 15%. Results are discussed in terms of the relatively low caloric costs of play. Copyright 1998 The Association for the Study of Animal Behaviour. Copyright 1998 The Association for the Study of Animal Behaviour.
NASA Astrophysics Data System (ADS)
2012-01-01
WE RECOMMEND Air swimmers Helium balloon swims like a fish Their Arrows will Darken the Sun: The Evolution and Science of Ballistics Ballistics book hits the spot Physics Experiments for your Bag Handy experiments for your lessons Quantum Physics for Poets Book shows the economic importance of physics SEP colour wheel kit Wheels investigate colour theory SEP colour mixing kit Cheap colour mixing kit uses red, green and blue LEDs iHandy Level iPhone app superbly measures angles Photonics Explorer kit Free optics kit given to schools WORTH A LOOK DrDAQ DrDAQ software gets an upgrade WEB WATCH Websites show range of physics
"Rutherford's Experiment" on Alpha Particles Scattering: The Experiment That Never Was
ERIC Educational Resources Information Center
Leone, M.; Robotti, N.; Verna, G.
2018-01-01
The so-called "Rutherford's experiment," as it is outlined in many physics textbooks, is a case in point of the flaws around the history at the educational level of one of the decisive event of modern physics: the discovery that the atom has a nucleus. This paper shows that this alleged experiment is a very approximate and very partial…
Physics through the 1990s: Elementary-particle physics
NASA Astrophysics Data System (ADS)
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Physics through the 1990s: elementary-particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the fieldmore » is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.« less
Physics through the 1990s: Elementary-particle physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Understanding Graduate Teaching Assistants as Tutorial Instructors
NASA Astrophysics Data System (ADS)
Scherr, Rachel E.; Elby, A.
2006-12-01
Physics graduate teaching assistants are essential to the implementation of many collaborative active-learning environments, including tutorials. However, many TAs have trouble teaching effectively in these formats. Anecdotal evidence suggests that the problems may include inappropriate models of physics students, unproductive theories of learning, lack of experience with modern pedagogical methods, and weaknesses in understanding basic physics topics. A new research project at the University of Maryland is investigating the specific nature of TAs' experience with reform instruction using in-depth studies of TAs in course preparation sessions, in the tutorial classroom, in a weekly teaching seminar, and in reflective interviews. We find that all TAs studied recognize the insufficiency of traditional instruction to at least some extent, citing as evidence their own learning experiences, prior teaching experiences, and exposure to FCI-type data. We also observe great variability in views of the nature of physics knowledge and learning (both professed and enacted). These results are informing the development of the professional development program for physics teaching assistants at the University of Maryland.
Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.
2000-01-01
At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.
Understanding flavour at the LHC
Nir, Yosef
2018-05-22
Huge progress in flavour physics has been achieved by the two B-factories and the Tevatron experiments. This progress has, however, deepened the new physics flavour puzzle: If there is new physics at the TeV scale, why aren't flavour changing neutral current processes enhanced by orders of magnitude compared to the standard model predictions? The forthcoming ATLAS and CMS experiments can potentially solve this puzzle. Perhaps even more surprisingly, these experiments can potentially lead to progress in understanding the standard model flavour puzzle: Why is there smallness and hierarchy in the flavour parameters? Thus, a rich and informative flavour program is awaiting us not only in the flavour-dedicated LHCb experiment, but also in the high-pT ATLAS and CMS experiments.
ERIC Educational Resources Information Center
Hansen, Lisa; Sanders, Steve
2010-01-01
Although video games are often associated with sedentary behaviors, active gaming is a new genre that requires children to become physically active while playing the games. In this study six fifth grade students' experiences participating in active gaming in eight-week physical education classes were explored. Qualitative methods of interviews,…
On the Limitations of Thought Experiments in Physics and the Consequences for Physics Education.
ERIC Educational Resources Information Center
Reiner, Miriam; Burko, Lior M.
2003-01-01
Focuses on the role of Thought Experiments (TEs) in ongoing processes of conceptual refinement for physicists and physics learners. Analyze TEs related to stellar evolution and general relativity. Identifies the stages at which crucial errors are made in these TEs and the cognitive processes which lead to these errors. Discusses implications for…
The Acculturation Experiences of Foreign-Born Students of Color in Physics
ERIC Educational Resources Information Center
Fries-Britt, Sharon; George Mwangi, Chrystal A.; Peralta, Alicia M.
2014-01-01
This study focuses on 15 foreign-born students majoring in physics who are also racial/ethnic minorities. We address the research question: What are the acculturation experiences of foreign-born Students of Color majoring in physics? Berry's (2003) theory of acculturation and Bandura's (1994) theory of self-efficacy were substantive…
ERIC Educational Resources Information Center
Ruscitti, Robert Joseph; Thomas, Scott Gordon; Bentley, Danielle Christine
2017-01-01
The purpose of this literature review was to analyse studies of the experiences of students without disabilities (SWOD) in inclusive physical education (PE) classes. The literature published from 1975 to 2015 was compiled from three online databases (PsycInfo, Physical Education Index and ERIC). Included literature met inclusion criteria focussed…
ERIC Educational Resources Information Center
Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana
2012-01-01
Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who…
ERIC Educational Resources Information Center
Kuhrasch, Cindy
2007-01-01
Physical education has long been recognized as a forum through which affective skills can be successfully introduced and practiced. Solomon found that current research supports the contention that physical education experiences provide a prime setting for promoting character development. This article describes a three-phase program for teaching…
ERIC Educational Resources Information Center
Körhasan, Nilüfer Didis; Didis, M. Gözde
2015-01-01
This study investigates a group of pre-service physics teachers' perceptions about the causes of problems in school experience through the attribution theory. The participants were thirteen pre-service physics teachers from a public university in Turkey. Data were collected through the interviews by requesting the participants to reflect their own…
SU-E-E-05: Initial Experience On Physics Rotation of Radiological Residents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Williams, D; DiSantis, D
Purpose: The new ABR core exam integrates physics into clinical teaching, with an emphasis on understanding image quality, image artifacts, radiation dose and patient safety for each modality and/or sub-specialty. Accordingly, physics training of radiological residents faces a challenge. A traditional teaching of physics through didactic lectures may not fully fulfill this goal. It is also difficult to incorporate physics teaching in clinical practice due to time constraints. A dedicated physics rotation may be a solution. This study is to evaluate a full week physics workshop developed for the first year radiological residents. Methods: The physics rotation took a fullmore » week. It included three major parts, introduction lectures, hand-on experiences and observation of technologist operation. An introduction of basic concepts was given to each modality at the beginning. Hand-on experiments were emphasized and took most of time. During hand-on experiments, residents performed radiation measurements, studied the relationship between patient dose and practice (i.e., fluoroscopy), investigated influence of acquisition parameters (i.g., kV, mAs) on image quality, and evaluated image quality using phantoms A physics test before and after the workshop was also given but not for comparison purpose. Results: The evaluation shows that the physics rotation during the first week of residency in radiology is preferred by all residents. The length of a full week of physics workshop is appropriate. All residents think that the intensive workshop can significantly benefit their coming clinical rotations. Residents become more comfortable regarding the use of radiation and counseling relevant questions such as a pregnant patient risk from a CE PE examination. Conclusion: A dedicated physics rotation, assisting with didactic lectures, may fulfill the requirements of physics of the new ABR core exam. It helps radiologists deeply understand the physics concepts and more efficiently use the medical physics in practice.« less
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment Using Deep Neural Networks
Racah, Evan; Ko, Seyoon; Sadowski, Peter; ...
2017-02-02
Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists. This analysis is often exploratory, where scientists are unable to enumerate the possible types of signal prior to performing the experiment. Thus, tools for summarizing, clustering, visualizing and classifying high-dimensional data are essential. Here in this work, we show that meaningful physical content can be revealed by transforming the raw data into a learned high-level representation using deep neural networks, with measurements taken at the Daya Bay Neutrino Experiment as a case study. We further show how convolutional deep neural networksmore » can provide an effective classification filter with greater than 97% accuracy across different classes of physics events, significantly better than other machine learning approaches.« less
The Influence of Physical Attractiveness on Belief in a Just World.
Westfall, R Shane; Millar, Murray G; Lovitt, Aileen
2018-01-01
Previous work has consistently found that belief in a just world is strongly correlated with societal privilege. In the present study, we examined the influence of physical attractiveness on belief in a just world. We hypothesized that physically attractive individuals would be stronger endorsers of belief in a just world, whereas less attractive individuals would be less likely to endorse belief in a just world. Both self-rated attractiveness (experiment one) and attractiveness rated by other persons (experiment two) were found to predict endorsement of belief in a just world. Additionally, both attractiveness measures were found to have a relationship with participant's level of life satisfaction. These findings suggest that physical attractiveness powerfully affects our subjective experience as a human and that just-world beliefs are driven, at least in part, by personal experience with inequality.
NASA Astrophysics Data System (ADS)
Bruce, Romain; Baudouy, Bertrand
The Space Radiation Superconducting Shield (SR2S) European project aims at studying a large superconducting toroid magnet to protect the human habitat from the ionizing radiations coming from Galactic Cosmic Ray during long term missions in deep space. Titanium clad MgB2 conductor is used to afford a bending power greater than 5 T.m at 10 K. A specific cryogenic design is needed to cool down this 10 m long and 12.8 m in diameter magnet. A passive cooling system, using a V-groove sunshield, is considered to reduce the heat flux coming from the Sun or Mars. An active configuration, using pulse tube cryocoolers, will be linked to the 80 K thermal screen intercepting most of the heat fluxes coming from the human habitat. The toroid magnet will be connected also to cryocoolers to absorb the few watts reaching its surface. Two kinds of thermal link are being considered to absorb the heat on the 80 K thermal screen. The first one is active, with a pump circulating helium gas in a network of exchange tubes. The second one is passive using long cryogenic pulse heat pipe (PHP) with the evaporator on the surface of the thermal screen and the condenser attached to the pulse tube.
PARTICIPATION IN HIGH ENERGY PHYSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Christopher
2012-12-20
This grant funded experimental and theoretical activities in elementary particles physics at the Illinois Institute of Technology (IIT). The experiments in which IIT faculty collaborated included the Daya Bay Reactor Neutrino Experiment, the MINOS experiment, the Double Chooz experiment, and FNAL E871 - HyperCP experiment. Funds were used to support summer salary for faculty, salary for postdocs, and general support for graduate and undergraduate students. Funds were also used for travel expenses related to these projects and general supplies.
Current experiments in elementary particle physics. Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, H.; Armstrong, F.E.; von Przewoski, B.
1994-08-01
This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
ERIC Educational Resources Information Center
Hovey, Angela; Stalker, Carol A.; Schachter, Candice L.; Teram, Eli; Lasiuk, Gerri
2011-01-01
Many survivors of child sexual abuse who engage in psychotherapy also experience physical health problems. This article summarizes the findings of a multiphased qualitative study about survivors' experiences in healthcare settings. The study informed the development of the "Handbook on Sensitive Practice for Health Care Practitioners: Lessons…
Professionalising Physics Teachers in Doing Experimental Work
ERIC Educational Resources Information Center
Haagen-Schutzenhofer, Claudia; Joham, Birgit
2018-01-01
It is commonly agreed that experiments play a central role in teaching and learning physics. Recently, Inquiry-Based Learning (IBL) has been introduced into science teaching in many countries, thus giving another boost for experiments. From a didactical point of view, experiments can serve a number of different goals in teaching and learning…
Studying Gender Bias in Physics Grading: The Role of Teaching Experience and Country
ERIC Educational Resources Information Center
Hofer, Sarah I.
2015-01-01
The existence of gender-STEM (science, technology, engineering, and mathematics) stereotypes has been repeatedly documented. This article examines physics teachers' gender bias in grading and the influence of teaching experience in Switzerland, Austria, and Germany. In a 2?×?2 between-subjects design, with years of teaching experience included as…
Teaching with Socio-Scientific Issues in Physical Science: Teacher and Students' Experiences
ERIC Educational Resources Information Center
Talens, Joy
2016-01-01
Socio-scientific issues (SSI) are recommended by many science educators worldwide for learners to acquire first hand experience to apply what they learned in class. This investigated experiences of teacher-researcher and students in using SSI in Physical Science, Second Semester, School Year 2012-2013. Latest and controversial news articles on…
ERIC Educational Resources Information Center
Peralta, Louisa; Burns, Kellie
2012-01-01
Recent research focusing on professional experience has shifted towards understanding preservice teachers' learning. The aim of this study was to gain insight into the learning of preservice Physical and Health Education teachers throughout three progressively designed professional experiences. Ten volunteering first-year preservice teachers, who…
High-energy Physics with Hydrogen Bubble Chambers
DOE R&D Accomplishments Database
Alvarez, L. W.
1958-03-07
Recent experience with liquid hydrogen bubble chambers of 25 and 40 cm dia. in high-energy physics experiments is discussed. Experiments described are: interactions of K{sup -} mesons with protons, interactions of antiprotons with protons, catalysis of nuclear fusion reactions by muons, and production and decay of hyperons from negative pions. (W.D.M.)
Perceptions of Overweight Students Concerning Their Experiences in Physical Education
ERIC Educational Resources Information Center
Trout, Josh; Graber, Kim C.
2009-01-01
The purpose of this investigation was to examine overweight students' perceptions of and experiences in physical education. Specifically, the applicability of learned helplessness as a framework to understand their experiences was explored. Participants were seven female and five male high school students whose body mass index was at or higher…
Kuroshima, Hika; Nabeoka, Yukari; Hori, Yusuke; Chijiiwa, Hitomi; Fujita, Kazuo
2017-03-01
Reasoning about physical properties of objects such as heaviness by observing others' actions toward them is important and useful for adapting to the environment. In this study, we asked whether domestic dogs (Canis familiaris) can use a human's action to infer a physical property of target objects. In Experiment 1, dogs watched an experimenter opening two differently loaded swinging doors with different corresponding degrees of effort, and then were allowed to open one of the doors. Dogs chose randomly between the two doors. In Experiment 2, we gave new dogs the same test as in Experiment 1, but only after giving them experience of opening the doors by themselves, so that they already knew that the doors could be either light or heavy. In this test the dogs reliably chose the light door. These results indicate that dogs are able to infer physical characteristics of objects from the latters' movement caused by human action, but that this inferential reasoning requires direct own experience of the objects. Copyright © 2017. Published by Elsevier B.V.
Waismeyer, Anna; Meltzoff, Andrew N
2017-10-01
Infants learn about cause and effect through hands-on experience; however, they also can learn about causality simply from observation. Such observational causal learning is a central mechanism by which infants learn from and about other people. Across three experiments, we tested infants' observational causal learning of both social and physical causal events. Experiment 1 assessed infants' learning of a physical event in the absence of visible spatial contact between the causes and effects. Experiment 2 developed a novel paradigm to assess whether infants could learn about a social causal event from third-party observation of a social interaction between two people. Experiment 3 compared learning of physical and social events when the outcomes occurred probabilistically (happening some, but not all, of the time). Infants demonstrated significant learning in all three experiments, although learning about probabilistic cause-effect relations was most difficult. These findings about infant observational causal learning have implications for children's rapid nonverbal learning about people, things, and their causal relations. Copyright © 2017 Elsevier Inc. All rights reserved.
Landstedt, Evelina; Gillander Gådin, Katja
2011-08-01
To explore the psychological distress associations of experiences of several types of violence and the victim-perpetrator relationship of physical violence, a gender analysis was applied. Data were derived from a cross-sectional questionnaire study among 17-year-old upper secondary school students (N = 1,663). Variables in focus were: self-reported psychological distress, experiences of physical violence, sexual assault, bullying and sexual harassment. Logistic regressions were used to examine associations. Experiences of physical violence, sexual assault, bullying and sexual harassment were associated with psychological distress in boys and girls. The perpetrators of physical violence were predominately males. Whether the perpetrator was unknown or known to the victim seem to be linked to psychological distress. Victimisation by a boyfriend was strongly related to psychological distress among girls. Experiences of several types of violence should be highlighted as factors associated with mental health problems in adolescents. The victim-perpetrator relationships of violence are gendered and likely influence the psychological distress association. Gendered hierarchies and norms likely influence the extent to which adolescents experience violence and how they respond to it in terms of psychological distress.
NASA Astrophysics Data System (ADS)
Hazari, Zahra
2006-12-01
The attrition of females studying physics after high school has been a continuing concern for the physics education community. If females are well prepared, feel confident, and do well in introductory college physics, they may be inclined to study physics further. This quantitative study uses HLM to identify factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that predict female and male performance in introductory college physics. The study includes controls for student demographic and academic background characteristics, and the final dataset consists of 1973 surveys from 54 introductory college physics classes. The results highlight high school physics and affective experiences that differentially predict female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believe that high school physics would help in university physics. There were also experiences that similarly predict female and male performance. The results paint a dynamic picture of the factors from high school physics and the affective domain that influence the future physics performance of females and males. The implication is that there are many aspects to the teaching of physics in high school that, although widely used and thought to be effective, need reform in their implementation in order to be fully beneficial to females and/or males in college.
Building a Program of University Physics and Mathematics Education
NASA Astrophysics Data System (ADS)
Tanaka, Tadayoshi; Nakamura, Akira; Kagiyama, Shigenori; Namiki, Masatoshi; Ejiri, Arisato; Ohshima, Kazunari; Mishima, Akiomi; Aoki, Katsuhiko
Authors built physics learning modules which consist of lectures, experiments and practices, introducing physics experiments of elementary and secondary education. In addition, we are operating "KIT Mathematics Navigation" in order to complement mathematical basics to engineering education. Based on these results, we are building studies and development of an education program in order to support the learning paradigm shift and to help students learn physics and mathematics complimentarily for liberal arts education course in universities.
Some experiments with thin prisms
NASA Astrophysics Data System (ADS)
Fernando, P. C. B.
1980-11-01
In most attempts at modernizing the college physics curriculum one of the first branches of physics to be eliminated is geometrical optics. However, in developing countries where the curriculum must give emphasis to applied areas (if physics is to survive at all!), geometrical optics has a role to play, especially in its relationship to the professional course ''Optometry.'' The author presents a few experiments in geometrical optics with an ophthalmic opitics bias, which could be introduced into the college physics laboratory.
Amponsah-Tawiah, Kwesi; Jain, Aditya; Leka, Stavroula; Hollis, David; Cox, Tom
2013-06-01
In addition to hazardous conditions that are prevalent in mines, there are various physical and psychosocial risk factors that can affect mine workers' safety and health. Without due diligence to mine safety, these risk factors can affect workers' safety experience, in terms of near misses, disabling injuries and accidents experienced or witnessed by workers. This study sets out to examine the effects of physical and psychosocial risk factors on workers' safety experience in a sample of Ghanaian miners. 307 participants from five mining companies responded to a cross sectional survey examining physical and psychosocial hazards and their implications for employees' safety experience. Zero-inflated Poisson regression models indicated that mining conditions, equipment, ambient conditions, support and security, and work demands and control are significant predictors of near misses, disabling injuries, and accidents experienced or witnessed by workers. The type of mine had important implications for workers' safety experience. Copyright © 2013 Elsevier Ltd and National Safety Council. All rights reserved.
NASA Technical Reports Server (NTRS)
Potter, A. E. (Editor); Wilson, T. L. (Editor)
1990-01-01
The present conference on physics and astrophysics from a lunar base encompasses space physics, cosmic ray physics, neutrino physics, experiments in gravitation and general relativity, gravitational radiation physics, cosmic background radiation, particle astrophysics, surface physics, and the physics of gamma rays and X-rays. Specific issues addressed include space-plasma physics research at a lunar base, prospects for neutral particle imaging, the atmosphere as particle detector, medium- and high-energy neutrino physics from a lunar base, muons on the moon, a search for relic supernovae antineutrinos, and the use of clocks in satellites orbiting the moon to test general relativity. Also addressed are large X-ray-detector arrays for physics experiments on the moon, and the measurement of proton decay, arcsec-source locations, halo dark matter and elemental abundances above 10 exp 15 eV at a lunar base.
Conchar, Lauren; Bantjes, Jason; Swartz, Leslie; Derman, Wayne
2016-02-01
Participation in regular physical activity promotes physical health and psychosocial well-being. Interventions are thus needed to promote physical activity, particularly among groups of individuals, such as persons with disability, who are marginalised from physical activity. This study explored the experiences of a group of South African adolescents with cerebral palsy. In-depth semi-structured interviews were conducted with 15 adolescents with cerebral palsy. The results provided insight into a range of factors that promote and hinder participation in physical activity among adolescents with cerebral palsy in resource-scarce environments. © The Author(s) 2014.
Jang, Sun Joo; Park, Hyunju; Kim, Hyunjung; Chang, Sun Ju
2015-06-01
The purpose of the study was to identify factors influencing physical activity among community-dwelling older adults with type 2 diabetes. The study design was based on the Theory of Triadic Influence. A total of 242 older adults with type 2 diabetes participated in this study. Six variables related to physical activity in older adults, including self-efficacy, social normative belief, attitudes, intention, experience, and level of physical activity, were measured using reliable instruments. Data were analyzed using descriptive statistics, Pearson's correlation analyses, and a path analysis. The mean physical activity score was 104.2, range from zero to 381.21. The path analysis showed that self-efficacy had the greatest total effect on physical activity. Also, experience had direct and total effects on physical activity as well as mediated the paths of social normative beliefs to attitudes and intention to physical activity. These factors accounted for 10% of the total variance, and the fit indices of the model satisfied the criteria of fitness. The findings of the study reveal the important role of self-efficacy and past experience in physical activity in older adults with type 2 diabetes.
Ohtake, Patricia J; Lazarus, Marcilene; Schillo, Rebecca; Rosen, Michael
2013-02-01
Rehabilitation of patients in critical care environments improves functional outcomes. This finding has led to increased implementation of intensive care unit (ICU) rehabilitation programs, including early mobility, and an associated increased demand for physical therapists practicing in ICUs. Unfortunately, many physical therapists report being inadequately prepared to work in this high-risk environment. Simulation provides focused, deliberate practice in safe, controlled learning environments and may be a method to initiate academic preparation of physical therapists for ICU practice. The purpose of this study was to examine the effect of participation in simulation-based management of a patient with critical illness in an ICU setting on levels of confidence and satisfaction in physical therapist students. A one-group, pretest-posttest, quasi-experimental design was used. Physical therapist students (N=43) participated in a critical care simulation experience requiring technical (assessing bed mobility and pulmonary status), behavioral (patient and interprofessional communication), and cognitive (recognizing a patient status change and initiating appropriate responses) skill performance. Student confidence and satisfaction were surveyed before and after the simulation experience. Students' confidence in their technical, behavioral, and cognitive skill performance increased from "somewhat confident" to "confident" following the critical care simulation experience. Student satisfaction was highly positive, with strong agreement the simulation experience was valuable, reinforced course content, and was a useful educational tool. Limitations of the study were the small sample from one university and a control group was not included. Incorporating a simulated, interprofessional critical care experience into a required clinical course improved physical therapist student confidence in technical, behavioral, and cognitive performance measures and was associated with high student satisfaction. Using simulation, students were introduced to the critical care environment, which may increase interest in working in this practice area.
Moes, Anne; Vliet, Harry van
2017-06-01
Consumer behaviour in 2016 shows that (r)etailers need online/offline integration to better serve their clients. An important distinguishing feature of the physical shop is how it can offer consumers a shopping experience. This study uses two experiments to research the extent a fashion store's shopping experience can be presented to consumers via visual material (a regular photo, a 360-degree photo and a virtual reality photo of the shop) without the consumers being in the shop itself. The effects of these visual materials will also be measured in (among others) terms of purchase intention, visiting intention to the physical shop and online visit satisfaction. A theoretical framework is used to substantiate how the three types of pictures can be classified in terms of medium richness. The completed experiments show, among other outcomes, that consumers who saw the virtual reality photo of the shop have a more positive shopping experience, a higher purchase intention, a higher intention to visit the physical shop and more online visit satisfaction than people who have only seen the regular photo or the 360-degree photo of the shop. Enjoyment and novelty seem to partly explain these found effects.
NASA Technical Reports Server (NTRS)
Wescott, E. M.; Davis, T. N.
1980-01-01
A reliable payload system and scaled down shaped charges were developed for carrying out experiments in solar-terrestrial magnetospheric physics. Four Nike-Tomahawk flights with apogees near 450 km were conducted to investigate magnetospheric electric fields, and two Taurus-Tomahawk rockets were flown in experiments on the auroral acceleration process in discrete auroras. In addition, a radial shaped charge was designed for plasma perturbation experiments.
Summary of ORSphere critical and reactor physics measurements
NASA Astrophysics Data System (ADS)
Marshall, Margaret A.; Bess, John D.
2017-09-01
In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is to summarize all the evaluated critical and reactor physics measurements evaluations.
NASA Technical Reports Server (NTRS)
Streett, C. L.; Lockard, D. P.; Singer, B. A.; Khorrami, M. R.; Choudhari, M. M.
2003-01-01
The LaRC investigative process for airframe noise has proven to be a useful guide for elucidation of the physics of flow-induced noise generation over the last five years. This process, relying on a close interplay between experiment and computation, is described and demonstrated here on the archetypal problem of flap-edge noise. Some detailed results from both experiment and computation are shown to illustrate the process, and a description of the multi-source physics seen in this problem is conjectured.
STS-54 DSO 802, Educational activities 'Physics of Toys', equipment
NASA Technical Reports Server (NTRS)
1993-01-01
Toys for STS-54 Detailed Supplementary Objective (DSO) 802, Educational activities 'Physics of Toys', are displayed on a table top. Part of the educational activities onboard Endeavour, Orbiter Vehicle (OV) 105, will include several experiments with these toys. DSO 802 will allow the crewmembers to experiment with the various types of toys in a microgravity environment while talking to pupils who will be able to monitor (via classroom television (TV) sets) the onboard activities at their schools. NOTE: Also labeled the Application Specific Preprogrammed Experiment Culture System Physic of Toys (ASPEC).
Daikoku, Tatsuya; Takahashi, Yuji; Futagami, Hiroko; Tarumoto, Nagayoshi; Yasuda, Hideki
2017-02-01
In real-world auditory environments, humans are exposed to overlapping auditory information such as those made by human voices and musical instruments even during routine physical activities such as walking and cycling. The present study investigated how concurrent physical exercise affects performance of incidental and intentional learning of overlapping auditory streams, and whether physical fitness modulates the performances of learning. Participants were grouped with 11 participants with lower and higher fitness each, based on their Vo 2 max value. They were presented simultaneous auditory sequences with a distinct statistical regularity each other (i.e. statistical learning), while they were pedaling on the bike and seating on a bike at rest. In experiment 1, they were instructed to attend to one of the two sequences and ignore to the other sequence. In experiment 2, they were instructed to attend to both of the two sequences. After exposure to the sequences, learning effects were evaluated by familiarity test. In the experiment 1, performance of statistical learning of ignored sequences during concurrent pedaling could be higher in the participants with high than low physical fitness, whereas in attended sequence, there was no significant difference in performance of statistical learning between high than low physical fitness. Furthermore, there was no significant effect of physical fitness on learning while resting. In the experiment 2, the both participants with high and low physical fitness could perform intentional statistical learning of two simultaneous sequences in the both exercise and rest sessions. The improvement in physical fitness might facilitate incidental but not intentional statistical learning of simultaneous auditory sequences during concurrent physical exercise.
Current Experiments in Particle Physics. 1996 Edition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, Hrvoje
2003-06-27
This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.
Playground Physics: Determining the Moment of Inertia of a Merry-Go-Round
ERIC Educational Resources Information Center
Van Hook, Stephen; Lark, Adam; Hodges, Jeff; Celebrezze, Eric; Channels, Lindsey
2007-01-01
A playground can provide a valuable physics education laboratory. For example, Taylor et al. describe bringing teachers in a workshop to a playground to examine the physics of a seesaw and slide, and briefly suggest experiments involving a merry-go-round. In this paper, we describe an experiment performed by students from a Society of Physics…
Planning a school physics experiment
NASA Astrophysics Data System (ADS)
Blasiak, Wladyslaw
1986-09-01
One is continually faced with the need to make decisions; physics, might form the vehicle for teaching the difficult art of decision making. Teachers should direct the abilities and skills of their students toward optimising the choices with which they are faced. Examples of such choices occur in the design of physics experiments and this therefore offers a good opportunity for such instruction.
ERIC Educational Resources Information Center
Herold, Frank; Dandolo, Jack
2009-01-01
Following recent education policy and curriculum changes in England, the notion of inclusion of children with special educational needs in physical education has increasingly become a topic of research interest and concern. It was the aim of this study to explore personal experiences and perspectives of inclusion in physical education. To this end…
ERIC Educational Resources Information Center
Anderson, Steven David; Leyland, Sandra Darkings; Ling, Jonathan
2017-01-01
A key influence on motivation to take part in lifelong physical activity is experience of physical education during the school years. Curriculum-based dance is important for providing a pathway into extra-curricular dance because, for many young people, physical education is their only opportunity to experience dance. A sample of 362 adolescents…
Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course
ERIC Educational Resources Information Center
Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel
2018-01-01
Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we…
ERIC Educational Resources Information Center
TENDAM, D.J.; AND OTHERS
AN ATTEMPT WAS MADE TO ASCERTAIN WHETHER MOTION PICTURE FILMS OF SELECTED PHYSICS DEMONSTRATION EXPERIMENTS WERE AS EFFECTIVE AS DEMONSTRATIONS PERFORMED DURING COLLEGE PHYSICS LECTURES. A SECOND OBJECTIVE WAS TO DETERMINE WHETHER STUDENTS WOULD TAKE ADVANTAGE OF THE OPPORTUNITY TO VIEW SOME EXPERIMENTS ON FILM OUTSIDE OF CLASS ON A VOLUNTARY…
Kim, Hwan-Hee
2015-07-01
[Purpose] The purpose of this study was to investigate the effect of experience-based group therapy consisting of cooking and physical activities for elderly people with mild dementia on their cognitive and physical function, as well as on their psychological symptoms. [Subjects] The subjects of this study were 12 older adults with mild dementia (3 males, 9 females; 76.75 ± 3.61 years) who voluntarily consented to participate in the study. [Methods] In total, 12 subjects received experience-based group therapy for 2 hours per session once per week, totaling 10 sessions. Cognitive function was evaluated using the Mini Mental State Examination-Korean (MMSE-K), and physical function was evaluated using the Geriatric Physical health condition measurement Tool (GPT). The Geriatric Depression Scale Korean Version (GDS-K) and Geriatric Quality of Life-Dementia (GQOL-D) were used to measure psychological symptoms. [Results] There were significant differences between the MMSE-K, GPT, GDS-K, and GQOL-D scores of before and after group therapy. [Conclusion] In conclusion, it is regarded that cognitive function, physical function, and psychological health improved through experience-based group therapy.
[Physical therapy for idiopathic scoliosis].
Steffan, K
2015-11-01
The objective is the description and summary of the current state of idiopathic scoliosis treatment with physical therapy based on new scientific knowledge and concluded from more than 15 years of experience as a leading physician in two well-known clinics specializing in the conservative treatment of scoliosis. Based on current scientific publications on physical therapy in scoliosis treatment and resulting from the considerable personal experience gained working with conservative treatment and consulting scoliosis patients (as inpatients and outpatients), the current methods of physical therapy have been compared and evaluated. Physical therapy according to Schroth and Vojta therapy are at present the most common and effective methods in the physical treatment of idiopathic scoliosis. These methods can be applied during inpatient or outpatient treatment or intensified in the practice of specialized therapists. As there are only a few scientific studies on this subject, the author's findings are based mainly on his own experiences of the conservative treatment of idiopathic scoliosis. Athough these experiences are the results of over 15 years of working in the field of therapy, and the Schroth method in combination with corrective bracing presents highly promising results, it would nevertheless be desirable to conduct detailed scientific studies to verify the effectiveness of conservative treatment.
The impact of sensorimotor experience on affective evaluation of dance
Kirsch, Louise P.; Drommelschmidt, Kim A.; Cross, Emily S.
2013-01-01
Past research demonstrates that we are more likely to positively evaluate a stimulus if we have had previous experience with that stimulus. This has been shown for judgment of faces, architecture, artworks and body movements. In contrast, other evidence suggests that this relationship can also work in the inverse direction, at least in the domain of watching dance. Specifically, it has been shown that in certain contexts, people derive greater pleasure from watching unfamiliar movements they would not be able to physically reproduce compared to simpler, familiar actions they could physically reproduce. It remains unknown, however, how different kinds of experience with complex actions, such as dance, might change observers' affective judgments of these movements. Our aim was to clarify the relationship between experience and affective evaluation of whole body movements. In a between-subjects design, participants received either physical dance training with a video game system, visual and auditory experience or auditory experience only. Participants' aesthetic preferences for dance stimuli were measured before and after the training sessions. Results show that participants from the physical training group not only improved their physical performance of the dance sequences, but also reported higher enjoyment and interest in the stimuli after training. This suggests that physically learning particular movements leads to greater enjoyment while observing them. These effects are not simply due to increased familiarity with audio or visual elements of the stimuli, as the other two training groups showed no increase in aesthetic ratings post-training. We suggest these results support an embodied simulation account of aesthetics, and discuss how the present findings contribute to a better understanding of the shaping of preferences by sensorimotor experience. PMID:24027511
Lifetime Traumatic Experiences and Leisure Physical Inactivity among Adolescent Boys.
Malinauskas, Romualdas; Malinauskiene, Vilija; Malinauskas, Mindaugas
2018-03-01
The aim of this study was to examine the associations between lifetime traumatic experiences and leisure physical inactivity among adolescent boys and to determine to what extent those associations are mediated by posttraumatic stress symptoms, unhealthy behaviors (smoking, alcohol use), the daily consumption of fresh fruit, and sense of coherence. A self-administered questionnaire combining 3 instruments measured leisure physical activity level (Godin and Shephard), symptoms of posttraumatic stress (IES-revised), lifetime traumatic experiences, sense of coherence (SOC-13, from Antonovsky), and behavioral and dietary patterns in a representative sample of eighth grade boys from a number of Kaunas, Lithuania, secondary schools (N = 885; response rate 88.6%). Fifty-six point eight percent of boys had experienced at least 1 lifetime traumatic event, with a 20.5% prevalence of PTS symptoms, and 5.4% were inactive during leisure time. In the logistic regression models, leisure physical inactivity was associated with lifetime traumatic experiences (adjusted OR = 2.33; 95% CI: 1.09-4.98). Sense of coherence and posttraumatic stress symptoms did not mediate those associations. Less-than-daily consumption of fresh fruit showed an independent effect, while smoking and weekly consumption of alcohol did not. Consistent associations between lifetime traumatic experiences and leisure physical inactivity among adolescent boys indicate that the presence of lifetime traumatic events should be taken into account when employing intervention and prevention programs on unhealthy lifestyles (physical inactivity, smoking, and alcohol).
Professional tools and a personal touch – experiences of physical therapy of persons with migraine
Kostenius, Catrine; Öhrling, Kerstin
2013-01-01
Purpose: The aim was to explore the lived experience of physical therapy of persons with migraine. Method: Data were collected by conducting narrative interviews with 11 persons with migraine. Inspired by van Manen, a hermeneutic phenomenological method was used to analyse the experiences of physical therapy which these persons had. Results: Physical therapy for persons with migraine meant making an effort in terms of time and energy to improve their health by meeting a person who was utilising his or her knowledge and skill to help. Being respected and treated as an individual and having confidence in the physical therapist were highlighted aspects. The analysis revealed a main theme, “meeting a physical therapist with professional tools and a personal touch”. The main theme included four sub-themes, “investing time and energy to feel better”, “relying on the competence of the physical therapist”, “wanting to be treated and to become involved as an individual” and “being respected in a trustful relationship”. Conclusions: The therapeutic relationship with the physical therapist is important and the findings of this study can increase awareness about relational aspects of physical therapy and encourage thoughtfulness among physical therapists and other healthcare professionals interacting with persons with migraine. PMID:23311671
Summary of ORSphere Critical and Reactor Physics Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Margaret A.; Bess, John D.
In the early 1970s Dr. John T. Mihalczo (team leader), J. J. Lynn, and J. R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVAmore » I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is summary summarize all the critical and reactor physics measurements evaluations and, when possible, to compare them to GODIVA experiment results.« less
Plans and Recent Developments for Fluid Physics Experiments Aboard the ISS
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Motil, Brian J.
2016-01-01
From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensable laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for Fluid Physics, NASA GRC is developing and testing the Pack Bed Reactor Experiment (PBRE), Zero Boil Off (ZBOT) Two Phase Flow Separator Experiment (TPFSE), Multiphase Flow Heat Transfer (MFHT) Experiment and the Electro-HydroDynamic (EHD) experiment. An overview each experiment, including its objectives, concept and status will be presented. In addition, data will be made available after a nominal period to NASAs Physical Science Informatics PSI database to the scientific community to enable additional analyses of results.
Madigan, Sheri; Wade, Mark; Plamondon, Andre; Maguire, Jonathon L; Jenkins, Jennifer M
2017-08-01
To assess the mechanisms accounting for the transfer of risk from one generation to the next, especially as they relate to maternal adverse childhood experiences and infant physical and emotional health outcomes. Participants were 501 community mother-infant dyads recruited shortly after the birth and followed up at 18 months. Mothers retrospectively reported on their adverse childhood experiences. The main outcome measures were parent-reported infant physical health and emotional problems. Potential mechanisms of intergenerational transmission included cumulative biomedical risk (eg, prenatal and perinatal complications) and postnatal psychosocial risk (eg, maternal depression, single parenthood, marital conflict). Four or more adverse childhood experiences were related to a 2- and 5-fold increased risk of experiencing any biomedical or psychosocial risk, respectively. There was a linear association between number of adverse childhood experiences and extent of biomedical and psychosocial risk. Path analysis revealed that the association between maternal adverse childhood experiences and infant physical health operated specifically through cumulative biomedical risk, while the relationship between adverse childhood experiences and infant emotional health operated specifically through cumulative psychosocial risk. This pattern was not explained by maternal childhood disadvantage or current neighborhood poverty. Maternal adverse childhood experiences confer vulnerability to prenatal, perinatal, and postnatal psychosocial health. The association between adverse childhood experiences and offspring physical and emotional health operates through discrete intermediary mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Hadron Physics with Antiprotons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Ulrich
2005-10-26
The new FAIR facility which comes into operation at GSI in the upcoming years has a dedicated program of utilizing antiprotons for hadron physics. In particular, the planned PANDA experiment belongs to the group of core experiments at the new FAIR facility in Darmstadt/Germany. PANDA will be a universal detector to study the strong interaction by utilizing the annihilation process of antiprotons with protons and nuclear matter. The current paper gives an introduction into the hadron physics with antiprotons and part of the planned physics program with PANDA.
Cabrita, Miriam; Lousberg, Richel; Tabak, Monique; Hermens, Hermie J; Vollenbroek-Hutten, Miriam M R
2017-01-01
Pleasure is one determinant of intrinsic motivation and yet a dimension often forgotten when promoting physical activity among the older population. In this study we investigate the relation between daily activities and physical activity, experience of pleasure, and the interaction between pleasure and physical activity in the daily lives of community-dwelling older adults. Participants carried a hip-worn accelerometer during 30 consecutive days resulting in a total of 320 days of data collection. Current activity, location, companion and experience of pleasure during each activity were assessed through experience sampling on a smartphone every 1-2 h. Between- and within-individual differences were analysed with multi-level models and 10xN = 1 regression analysis. Outdoor activities were associated with higher physical activity than indoor activities ( p < 0.001). Performing leisure activities, outdoors and not alone significantly predicted pleasure in daily life (all p's < 0.05). Being more active while performing leisure activities resulted in higher experiences of pleasure ( p < 0.001). However, when performing basic activities of daily living (e.g. commuting or households) this relation was inverted. Results provide meaningful indication for individual variance. The 30 days of data collected from each participant allow for identification of individual differences. Daily activities and their contexts do influence the experience of pleasure and physical activity of older adults in daily life of older adults, although similar research with larger population is recommended. Results are in accordance with the literature, indicating that the method adopted (accelerometry combined with experience sampling) provides reliable representation of daily life. Identification of individual differences can eventually be automatically performed through data mining techniques. Further research could look at innovative approaches to promote Active Ageing using mobile technology in the daily life, by promoting physical activity through recommendation of pleasurable activities, and thus likely to increase the intrinsic motivation to become physically active.
ERIC Educational Resources Information Center
Ray, Marcy, Ed.
2006-01-01
In this interview, Council member William Greenough discusses the need for rich, complex experiences combined with physical activity in early childhood to help build a strong foundation for learning. He explains how rich, complex experiences are necessary for the development of sound brain architecture, particularly during early childhood, but…
ERIC Educational Resources Information Center
Bhathal, Ragbir; Sharma, Manjula D.; Mendez, Alberto
2010-01-01
This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The…
ERIC Educational Resources Information Center
Huang, Shih-Chieh Douglas
2013-01-01
In this dissertation, I investigate the effects of a grounded learning experience on college students' mental models of physics systems. The grounded learning experience consisted of a priming stage and an instruction stage, and within each stage, one of two different types of visuo-haptic representation was applied: visuo-gestural simulation…
ERIC Educational Resources Information Center
Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.
2008-01-01
As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…
Bicycle Freewheeling with Air Drag as a Physics Experiment
ERIC Educational Resources Information Center
Janssen, Paul; Janssens, Ewald
2015-01-01
To familiarize first-year students with the important ingredients of a physics experiment, we offer them a project close to their daily life: measuring the effect of air resistance on a bicycle. Experiments are done with a bicycle freewheeling on a downhill slope. The data are compared with equations of motions corresponding to different models…
Muslim Girls' Experiences in Physical Education in Norway: What Role Does Religiosity Play?
ERIC Educational Resources Information Center
Walseth, Kristin
2015-01-01
Recent years have seen an increase in scholarly attention to minority pupils and their experience of physical education (PE). UK research identifies specific challenges related to Muslim pupils' participation in PE. In Norway, little research has been undertaken on Muslim pupils' experiences in PE, something this paper hopes to redress in part. In…
Using Student Peer Review of Experiment Reports in an Undergraduate Physics Class
ERIC Educational Resources Information Center
Moran, Timothy; Van Hook, Stephen J.
2006-01-01
A class centered on student design of experiments and peer review of the resulting reports is described. Thirteen students in an honors seminar section of an introductory physics class designed experiments to test various types of paranormal phenomena. Each experimental report was evaluated and ranked by several other students. To give them…
The Oil Drop Experiment: How Did Millikan Decide What Was an Appropriate Drop?
ERIC Educational Resources Information Center
Niaz, Mansoor
2003-01-01
The oil drop experiment is considered an important contribution to the understanding of modern physics and chemistry. The objective of this investigation is to study and contrast the views and understanding with respect to the experiment of physicists or philosophers of science with those of authors of physics or chemistry textbooks and…
ERIC Educational Resources Information Center
Patton, Beth J.; Marty-Snyder, Melissa
2014-01-01
Peer assessment (PA) occurs in many higher education programs. However, there is limited research examining PA in physical education teacher education (PETE) in regards to student teaching experiences. PA may be a method to better prepare PETE students to assess their future students. The field experience students assessed their fellow peers on…
ERIC Educational Resources Information Center
Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.
2010-01-01
We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…
ERIC Educational Resources Information Center
Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.
2012-01-01
A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…
Planning a School Physics Experiment.
ERIC Educational Resources Information Center
Blasiak, Wladyslaw
1986-01-01
Presents a model for planning the measurement of physical quantities. Provides two examples of optimizing the conditions of indirect measurement for laboratory experiments which involve measurements of acceleration due to gravity and of viscosity by means of Stokes' formula. (ML)
Probing the frontiers of particle physics with tabletop-scale experiments.
DeMille, David; Doyle, John M; Sushkov, Alexander O
2017-09-08
The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Hogan, Candice L; Catalino, Lahnna I; Mata, Jutta; Fredrickson, Barbara L
2015-01-01
Physical activity is known to improve emotional experiences, and positive emotions have been shown to lead to important life outcomes, including the development of psychosocial resources. In contrast, time spent sedentary may negatively impact emotional experiences and, consequently, erode psychosocial resources. Two studies tested whether activity independently influenced emotions and psychosocial resources, and whether activity indirectly influenced psychosocial resources through emotional experiences. Using cross-sectional (Study 1a) and longitudinal (Study 1b) methods, we found that time spent physically active independently predicted emotions and psychosocial resources. Mediation analyses suggested that emotions may account for the relation between activity and psychosocial resources. The improved emotional experiences associated with physical activity may help individuals build psychosocial resources known to improve mental health. Study 1a provided first indicators to suggest that, in contrast, sedentary behaviour may reduce positive emotions, which could in turn lead to decrements in psychosocial resources.
In-Service Physical Educators' Experiences of Online Adapted Physical Education Endorsement Courses.
Sato, Takahiro; Haegele, Justin A; Foot, Rachel
2017-04-01
The purpose of this study was to investigate in-service physical education (PE) teachers' experiences during online adapted physical education (APE) graduate courses. Based on andragogy theory (adult learning theory) we employed a descriptive qualitative methodology using an explanatory case study design. The participants (6 female and 3 male) were in-service PE teachers enrolled in an online graduate APE endorsement program. Data collection included journal reflection reports and face-to-face interviews. A constant comparative method was used to interpret the data. Three interrelated themes emerged from the participants' narratives. The first theme, instructor communication, exposes the advantages and disadvantages the participants perceived regarding communication while enrolled in the online APE graduate courses. The second theme, bulletin board discussion experiences, described participants' perceptions of the use of the bulletin board discussion forum. Lastly, the final theme, assessment experiences, described how the participants learned knowledge and skills through online courses related to assessment and evaluation.
Frog: The fast & realistic OpenGL event displayer
NASA Astrophysics Data System (ADS)
Quertenmont, Loïc
2010-04-01
FROG [1] [2] is a generic framework dedicated to visualisation of events in high energy physics experiment. It is suitable to any particular physics experiment or detector design. The code is light (< 3 MB) and fast (browsing time ~ 20 events per second for a large High Energy Physics experiment) and can run on various operating systems, as its object-oriented structure (C++) relies on the cross-platform OpenGL[3] and Glut [4] libraries. Moreover, Frog does not require installation of heavy third party libraries for the visualisation. This documents describes the features and principles of Frog version 1.106, its working scheme and numerous functionalities such as: 3D and 2D visualisation, graphical user interface, mouse interface, configuration files, production of pictures of various format, integration of personal objects, etc. Finally the application of FROG for physic experiment/environement, such as Gastof, CMS, ILD, Delphes will be presented for illustration.
Physics opportunities with a fixed target experiment at the LHC (AFTER@LHC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjidakis, Cynthia; Anselmino, Mauro; Arnaldi, R.
By extracting the beam with a bent crystal or by using an internal gas target, the multi-TeV proton and lead LHC beams allow one to perform the most energetic fixed-target experiments (AFTER@LHC) and to study p+p and p+A collisions at \\sqrt{s_NN}=115 GeV and Pb+p and Pb+A collisions at \\sqrt{s_NN}=72 GeV. Such studies would address open questions in the domain of the nucleon and nucleus partonic structure at high-x, quark-gluon plasma and, by using longitudinally or transversally polarised targets, spin physics. In this paper, we discuss the physics opportunities of a fixed-target experiment at the LHC and we report on themore » possible technical implementations of a high-luminosity experiment. We finally present feasibility studies for Drell-Yan, open heavy-flavour and quarkonium production, with an emphasis on high-x and spin physics.« less
Teaching Physics from a Reduced Gravity Environment
NASA Astrophysics Data System (ADS)
Benge, Raymond D.; Young, C.; Davis, S.; Worley, A.; Smith, L.; Gell, A.
2010-01-01
This poster reports on an educational experiment flown in January 2009 as part of NASA's Microgravity University program. The experiment flown was an investigation into the properties of harmonic oscillators in reduced gravity. Harmonic oscillators are studied in every introductory physics class. The equation for the period of a harmonic oscillator does not include the acceleration due to gravity, so the period should be independent of gravity. However, the equation for the period of a pendulum does include the acceleration due to gravity, so the period of a pendulum should appear longer under reduced gravity (such as lunar or Martian gravity) and shorter under hyper-gravity. Typical homework problems for introductory physics classes ask questions such as "What would be the period of oscillation if this experiment were performed on the Moon or Mars?” This gives students a chance to actually see the effects predicted by the equations. These environments can be simulated aboard an aircraft. Video of the experiments being performed aboard the aircraft is to be used in introductory physics classes. Students will be able to record information from watching the experiment performed aboard the aircraft in a similar manner to how they collect data in the laboratory. They can then determine if the experiment matches theory. Video and an experimental procedure are being prepared based upon this flight, and these materials will be available for download by faculty anywhere with access to the internet who wish to use the experiment in their own classrooms in both college and high school physics classes.
Chandraratne, Nadeeka K; Fernando, Asvini D; Gunawardena, Nalika
2018-07-01
Abuse during childhood is a human tragedy leading to lifelong adverse health, social, and economic consequences for survivors. This descriptive, cross-sectional study aimed to determine the prevalence of childhood physical, sexual and emotional abusive experiences among students (aged 18-19 years) in a Sri Lankan district. Multistage cluster sampling was used to select a sample of 1500 students. Experiences of physical, sexual and emotional abuse and age at abuse, perpetrators, consequences and severity were assessed using a version of ISPCAN Child Abuse Screening Tool-Retrospective Version (ICAST-R) which was culturally adapted and validated by the authors for use amongst Sinhalese students. The prevalence of the various forms of abuse during childhood was as follows: physical: 45.4% (95% CI: 42.9-7.9); sexual: 9.1% (95% CI: 7.6-10.5); emotional: 27.9% (95% CI: 25.7-30.2). The corresponding percentages of individuals categorized as having experienced severe or very severe abuse were as follows, physical: 0.3% (2/672); sexual: 4.05% (3/135); emotional: 8.8% (36/412). Experience of physical abuse was more prevalent amongst male students (54.8% vs. 38.3%) as was emotional abuse (33.9% vs. 23.2%), whereas experience of sexual abuse was more prevalent amongst female students (11.5% vs. 6.4%). Parents and teachers were the commonest perpetrators of physical and emotional abuse. Most of the sexually abusive acts were committed by neighbors or strangers. Some physically abusive acts were more frequent at earlier ages than emotional and sexual abusive acts, which were more common in late adolescence. The results indicate the necessity of targeted interventions to address this public health issue. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ten years of the project Chain Experiment
NASA Astrophysics Data System (ADS)
Susman, Katarina; Ziherl, Saša; Bajc, Jurij
2017-05-01
In this paper the project Chain Experiment is presented. It can be viewed as a competition or as a popularization activity for science, technology, and physics in particular. We present the basic idea of a toppling-domino-like chain of contraptions that are operated one after another, and each demonstrates different physical phenomena. The evolution into its current form with three different types of activities is briefly described. The emphasis of the paper is on the impact of the project on physics education. The ways in which physics students, physics teachers, and participating pupils profit from the different project activities are presented in detail.
NASA Astrophysics Data System (ADS)
Svenson, Eric Johan
Participants on the Invincible America Assembly in Fairfield, Iowa, and neighboring Maharishi Vedic City, Iowa, practicing Maharishi Transcendental Meditation(TM) (TM) and the TM-Sidhi(TM) programs in large groups, submitted written experiences that they had had during, and in some cases shortly after, their daily practice of the TM and TM-Sidhi programs. Participants were instructed to include in their written experiences only what they observed and to leave out interpretation and analysis. These experiences were then read by the author and compared with principles and phenomena of modern physics, particularly with quantum theory, astrophysics, quantum cosmology, and string theory as well as defining characteristics of higher states of consciousness as described by Maharishi Vedic Science. In all cases, particular principles or phenomena of physics and qualities of higher states of consciousness appeared qualitatively quite similar to the content of the given experience. These experiences are presented in an Appendix, in which the corresponding principles and phenomena of physics are also presented. These physics "commentaries" on the experiences were written largely in layman's terms, without equations, and, in nearly every case, with clear reference to the corresponding sections of the experiences to which a given principle appears to relate. An abundance of similarities were apparent between the subjective experiences during meditation and principles of modern physics. A theoretic framework for understanding these rich similarities may begin with Maharishi's theory of higher states of consciousness provided herein. We conclude that the consistency and richness of detail found in these abundant similarities warrants the further pursuit and development of such a framework.
NASA Astrophysics Data System (ADS)
Myrcha, Julian; Trzciński, Tomasz; Rokita, Przemysław
2017-08-01
Analyzing massive amounts of data gathered during many high energy physics experiments, including but not limited to the LHC ALICE detector experiment, requires efficient and intuitive methods of visualisation. One of the possible approaches to that problem is stereoscopic 3D data visualisation. In this paper, we propose several methods that provide high quality data visualisation and we explain how those methods can be applied in virtual reality headsets. The outcome of this work is easily applicable to many real-life applications needed in high energy physics and can be seen as a first step towards using fully immersive virtual reality technologies within the frames of the ALICE experiment.
Mock Data Challenge for the MPD/NICA Experiment on the HybriLIT Cluster
NASA Astrophysics Data System (ADS)
Gertsenberger, Konstantin; Rogachevsky, Oleg
2018-02-01
Simulation of data processing before receiving first experimental data is an important issue in high-energy physics experiments. This article presents the current Event Data Model and the Mock Data Challenge for the MPD experiment at the NICA accelerator complex which uses ongoing simulation studies to exercise in a stress-testing the distributed computing infrastructure and experiment software in the full production environment from simulated data through the physical analysis.
Post-Fisherian Experimentation: From Physical to Virtual
Jeff Wu, C. F.
2014-04-24
Fisher's pioneering work in design of experiments has inspired further work with broader applications, especially in industrial experimentation. Three topics in physical experiments are discussed: principles of effect hierarchy, sparsity, and heredity for factorial designs, a new method called CME for de-aliasing aliased effects, and robust parameter design. The recent emergence of virtual experiments on a computer is reviewed. Here, some major challenges in computer experiments, which must go beyond Fisherian principles, are outlined.
Viscosity of Common Seed and Vegetable Oils
NASA Astrophysics Data System (ADS)
Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.
1997-02-01
Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.
The roots of physics students' motivations: Fear and integrity
NASA Astrophysics Data System (ADS)
Van Dusen, Ben
Too often, physics students are beset by feelings of failure and isolation rather than experiencing the creative joys of discovery that physics has to offer. This dissertation research was founded on the desire of a teacher to make physics class exciting and motivating to his students. This work explores how various aspects of learning environments interact with student motivation. This work uses qualitative and quantitative methods to explore how students are motivated to engage in physics and how they feel about themselves while engaging in physics. The collection of four studies in this dissertation culminates in a sociocultural perspective on motivation and identity. This perspective uses two extremes of how students experience physics as a lens for understanding motivation: fear and self-preservation versus integrity and self-expression. Rather than viewing motivation as a property of the student, or viewing students as inherently interested or disinterested in physics, the theoretical perspective on motivation and identity helps examine features of the learning environments that determine how students' experience themselves through physics class. This perspective highlights the importance of feeling a sense of belonging in the context of physics and the power that teachers have in shaping students' motivation through the construction of their classroom learning environments. Findings demonstrate how different ways that students experience themselves in physics class impact their performance and interest in physics. This dissertation concludes with a set of design principles that can foster integration and integrity among students in physics learning environments.
Greenstein, Caroline; Lowell, Anne; Thomas, David
2016-01-01
What are the experiences of Indigenous children with physical disability and their carers of their community-based physiotherapy service? What factors influence their experiences of the physiotherapy service and how could the service be improved? A qualitative study using in-depth, semi-structured open-ended interviews consistent with the researchers' interpretivist perspectives and ethical principles of Indigenous health research. Interviews were audio recorded, transcribed and coded for themes with qualitative research software using inductive analysis. The interviews were then checked for transcription accuracy and the themes were confirmed with the participants. Nine parents and foster carers of children with physical disability aged 0 to 21 years, five children and youth with physical disability aged 8 to 21 years. The data generated three themes, which informed practice recommendations: carers of children with physical disability experience increased demands and complexity in their lives; relationships involving caring, consistency and communication are important to consumers using the physiotherapy service; and being Indigenous influences consumers' experiences in ways that may not be obvious to non-Indigenous service providers. The issue of communication underpinned the participants' experiences throughout these themes. The research highlighted the importance of effective communication, developing relationships, viewing the child wholistically and recognising the influence of being Indigenous on clients' healthcare needs and experiences. The results suggested that community-based physiotherapists adopt a family/person-centred, context-specific approach when working with Indigenous children with a physical disability and their carers. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Jenni, Peter
2012-02-28
For the past year, experiments at the Large Hadron Collider (LHC) have started exploring physics at the high-energy frontier. Thanks to the superb turn-on of the LHC, a rich harvest of initial physics results have already been obtained by the two general-purpose experiments A Toroidal LHC Apparatus (ATLAS) and the Compact Muon Solenoid (CMS), which are the subject of this report. The initial data have allowed a test, at the highest collision energies ever reached in a laboratory, of the Standard Model (SM) of elementary particles, and to make early searches Beyond the Standard Model (BSM). Significant results have already been obtained in the search for the Higgs boson, which would establish the postulated electro-weak symmetry breaking mechanism in the SM, as well as for BSM physics such as Supersymmetry (SUSY), heavy new particles, quark compositeness and others. The important, and successful, SM physics measurements are giving confidence that the experiments are in good shape for their journey into the uncharted territory of new physics anticipated at the LHC.
The 1975 accident experience of civilian pilots with static physical defects.
DOT National Transportation Integrated Search
1977-08-01
The 1974 aircraft accident experience of civilian pilots with eight selected static physical defects has been examined and reported previously. Three categories--blindness or absence of either eye, deficient color vision with a waiver, and deficient ...
ERIC Educational Resources Information Center
School Science Review, 1983
1983-01-01
Presented are physics experiments, laboratory procedures, demonstrations, and classroom materials/activities. Experiments include: speed of sound in carbon dioxide; inverse square law; superluminal velocities; and others. Equipment includes: current switch; electronic switch; and pinhole camera. Discussion of mechanics of walking is also included.…
Using assistive technology for schoolwork: the experience of children with physical disabilities.
Murchland, Sonya; Parkyn, Helen
2010-01-01
This study explored the experience of children with physical disabilities using assistive technology for participation with schoolwork to gain a greater understanding of their perspectives and subjective experiences. A qualitative study involving thematic analysis of in-depth interviews of the child with a parent or significant adult. Purposeful sampling from a larger study recruited five children aged between 10 and 14 years, with differing physical disabilities who attended mainstream schools. All children used computer-based assistive technology. All of the children recognised that assistive technology enabled them to participate and reduced the impact of their physical disability, allowing independent participation, and facilitated higher learning outcomes. Issues related to ease of use, social implications and assistive technology systems are discussed.
The CAPTAIN liquid argon neutrino experiment
Liu, Qiuguang
2015-01-01
The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less
Instructional strategies for online introductory college physics based on learning styles
NASA Astrophysics Data System (ADS)
Ekwue, Eleazer U.
The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the instructional strategy used to deliver the course is not compatible with the learners' preferred learning styles. This study investigates the effect of four instructional strategies based on four learning styles (listening, reading, iconic, and direct-experience) to improve learning for introductory college physics in an online environment. Learning styles of 146 participants were determined with Canfield Learning Style inventory. Of the 85 learners who completed the study, research results showed a statistically significant increase in learning performance following the online instruction in all four learning style groups. No statistically significant differences in learning were found among the four groups. However, greater significant academic improvement was found among learners with iconic and direct-experience modes of learning. Learners in all four groups expressed that the design of the unit presentation to match their individual learning styles contributed most to their learning experience. They were satisfied with learning a new physics concept online that, in their opinion, is either comparable or better than an instructor-led classroom experience. Findings from this study suggest that learners' performance and satisfaction in an online introductory physics course could be improved by using instructional designs that are tailored to learners' preferred ways of learning. It could contribute toward the challenge of providing viable online physics instruction in colleges and universities.
Slater, Amy; Tiggemann, Marika
2006-07-01
This study aimed to investigate the effects of both past and current physical activity and media use on women's body image. A sample of 144 female undergraduate students completed measures of current physical activity, media use and body image, as well as providing retrospective reports of their physical activity participation and media usage during childhood and adolescence. Regression analyses showed that childhood experiences of physical activity and media use predicted adult body-image concerns more strongly than current activities. It was concluded that early experiences of both physical activity and media use during childhood and adolescence play an important role in the development of adult women's body image.
ERIC Educational Resources Information Center
Miles, Claire; Benn, Tansin
2016-01-01
The case study explores the experiences of Muslim women in the area of physical activity participation conducted whilst they were studying at one UK University. Previous research in the field indicated that Muslim women can be denied opportunities to participate in areas of sport-related physical activity through multiple factors such as…
ERIC Educational Resources Information Center
Velentzas, Athanasios; Halkia, Krystallia; Skordoulis, Constantine
2007-01-01
This work investigates the presence of Thought Experiments (TEs) which refer to the theory of relativity and to quantum mechanics in physics textbooks and in books popularizing physics theories. A further point of investigation is whether TEs--as presented in popular physics books--can be used as an introduction to familiarize secondary school…
Bombak, Andrea E
2015-11-14
Obese individuals are encouraged to participate in physical activity. However, few qualitative studies have explored obese individuals' motivations for and experiences with physical activity. The physical activity experiences of self-identified obese or formerly obese persons (n = 15) were explored through in-depth, semi-structured, audio-taped, repeated interviews and ethnography over one year. Participant observation occurred at multiple sites identified by participants as meaningful to them as obese persons. Data from interview transcripts and fieldnotes were analyzed via thematic content analysis. Underlying goals for engaging in physical activity were diverse. Emergent motivation themes included: protection, pressure, and pleasure. Participants were protective of maintaining functional capacity, establishing fit identities, and achieving weight loss. Participants also discussed feelings of excessive pressure to continue progressing toward weight and fitness goals. Enjoyment in physical activity was often a by-product for all participants and could become a sought-after endpoint. Finding an environment in which participants felt safe, accepted, and encouraged to be active was extremely important for continual engagement. Obese individuals enjoyed physical activity and were concerned about maintaining functional fitness. Stigmatization and untenable goals and monitoring could disrupt physical activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorelenkov, Nikolai N
The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEsmore » (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).« less
Intuitive experimentation in the physical world.
Bramley, Neil R; Gerstenberg, Tobias; Tenenbaum, Joshua B; Gureckis, Todd M
2018-06-06
Many aspects of our physical environment are hidden. For example, it is hard to estimate how heavy an object is from visual observation alone. In this paper we examine how people actively "experiment" within the physical world to discover such latent properties. In the first part of the paper, we develop a novel framework for the quantitative analysis of the information produced by physical interactions. We then describe two experiments that present participants with moving objects in "microworlds" that operate according to continuous spatiotemporal dynamics similar to everyday physics (i.e., forces of gravity, friction, etc.). Participants were asked to interact with objects in the microworlds in order to identify their masses, or the forces of attraction/repulsion that governed their movement. Using our modeling framework, we find that learners who freely interacted with the physical system selectively produced evidence that revealed the physical property consistent with their inquiry goal. As a result, their inferences were more accurate than for passive observers and, in some contexts, for yoked participants who watched video replays of an active learner's interactions. We characterize active learners' actions into a range of micro-experiment strategies and discuss how these might be learned or generalized from past experience. The technical contribution of this work is the development of a novel analytic framework and methodology for the study of interactively learning about the physical world. Its empirical contribution is the demonstration of sophisticated goal directed human active learning in a naturalistic context. Copyright © 2018 Elsevier Inc. All rights reserved.
Hung, Lillian; Chaudhury, Habib; Rust, Tiana
2016-12-01
This qualitative study evaluated the effect of dining room physical environmental changes on staff practices and residents' mealtime experiences in two units of a long-term care facility in Edmonton, Canada. Focus groups with staff (n = 12) and individual interviews with unit managers (n = 2) were conducted. We also developed and used the Dining Environment Assessment Protocol (DEAP) to conduct a systematic physical environmental evaluation of the dining rooms. Four themes emerged on the key influences of the renovations: (a) supporting independence and autonomy, (b) creating familiarity and enjoyment, (c) providing a place for social experience, and (d) challenges in supporting change. Feedback from the staff and managers provided evidence on the importance of physical environmental features, as well as the integral nature of the role of the physical environment and organizational support to provide person-centered care for residents. © The Author(s) 2015.
When Feeling Bad Can Be Good: Mixed Emotions Benefit Physical Health Across Adulthood.
Hershfield, Hal E; Scheibe, Susanne; Sims, Tamara L; Carstensen, Laura L
2013-01-01
Traditional models of emotion-health interactions have emphasized the deleterious effects of negative emotions on physical health. More recently, researchers have turned to potential benefits of positive emotions on physical health as well. Both lines of research, though, neglect the complex interplay between positive and negative emotions and how this interplay affects physical well-being. Indeed, recent theoretical work suggests that a strategy of "taking the good with the bad" may benefit health outcomes. In the present study, the authors assessed the impact of mixed emotional experiences on health outcomes in a 10-year longitudinal experience-sampling study across the adult life span. The authors found that not only were frequent experiences of mixed emotions (co-occurrences of positive and negative emotions) strongly associated with relatively good physical health, but that increases of mixed emotions over many years attenuated typical age-related health declines.
Sattler, Krystal M; Deane, Frank P; Tapsell, Linda; Kelly, Peter J
2018-01-01
Weight stigma is related to lower levels of motivation to exercise in overweight and obesity. This study explored the nature of the relationship between stigma, motivation to exercise and physical activity while accounting for gender differences. Participants were 439 adults with overweight and obesity (mean body mass index = 32.18 kg/m2, standard deviation = 4.09 kg/m2). Females reported significantly more frequent stigma experiences than males. Mediation models found a conditional direct effect of weight stigma for males, with higher frequency of stigma experiences related to higher levels of walking and vigorous physical activity. A conditional indirect effect was found for females for walking, moderate and vigorous levels of physical activity, with higher weight stigma related to lower autonomous motivation, and lower levels of physical activity. Findings suggest that males and females are affected differently by weight-stigma experiences. PMID:29552349
Inferring mass in complex scenes by mental simulation.
Hamrick, Jessica B; Battaglia, Peter W; Griffiths, Thomas L; Tenenbaum, Joshua B
2016-12-01
After observing a collision between two boxes, you can immediately tell which is empty and which is full of books based on how the boxes moved. People form rich perceptions about the physical properties of objects from their interactions, an ability that plays a crucial role in learning about the physical world through our experiences. Here, we present three experiments that demonstrate people's capacity to reason about the relative masses of objects in naturalistic 3D scenes. We find that people make accurate inferences, and that they continue to fine-tune their beliefs over time. To explain our results, we propose a cognitive model that combines Bayesian inference with approximate knowledge of Newtonian physics by estimating probabilities from noisy physical simulations. We find that this model accurately predicts judgments from our experiments, suggesting that the same simulation mechanism underlies both peoples' predictions and inferences about the physical world around them. Copyright © 2016 Elsevier B.V. All rights reserved.
When Feeling Bad Can Be Good: Mixed Emotions Benefit Physical Health Across Adulthood
Hershfield, Hal E.; Scheibe, Susanne; Sims, Tamara L.; Carstensen, Laura L.
2013-01-01
Traditional models of emotion–health interactions have emphasized the deleterious effects of negative emotions on physical health. More recently, researchers have turned to potential benefits of positive emotions on physical health as well. Both lines of research, though, neglect the complex interplay between positive and negative emotions and how this interplay affects physical well-being. Indeed, recent theoretical work suggests that a strategy of “taking the good with the bad” may benefit health outcomes. In the present study, the authors assessed the impact of mixed emotional experiences on health outcomes in a 10-year longitudinal experience-sampling study across the adult life span. The authors found that not only were frequent experiences of mixed emotions (co-occurrences of positive and negative emotions) strongly associated with relatively good physical health, but that increases of mixed emotions over many years attenuated typical age-related health declines. PMID:24032072
Fiber-optical sensor with intensity compensation model in college teaching of physics experiment
NASA Astrophysics Data System (ADS)
Su, Liping; Zhang, Yang; Li, Kun; Zhang, Yu
2017-08-01
Optical fiber sensor technology is one of the main contents of modern information technology, which has a very important position in modern science and technology. Fiber optic sensor experiment can improve students' enthusiasm and broaden their horizons in college physics experiment. In this paper the main structure and working principle of fiberoptical sensor with intensity compensation model are introduced. And thus fiber-optical sensor with intensity compensation model is applied to measure micro displacement of Young's modulus measurement experiment and metal linear expansion coefficient measurement experiment in the college physics experiment. Results indicate that the measurement accuracy of micro displacement is higher than that of the traditional methods using fiber-optical sensor with intensity compensation model. Meanwhile this measurement method makes the students understand on the optical fiber, sensor and nature of micro displacement measurement method and makes each experiment strengthen relationship and compatibility, which provides a new idea for the reform of experimental teaching.
ERIC Educational Resources Information Center
Pe´rez, Eduardo
2015-01-01
The procedure of a physical chemistry experiment for university students must be designed in a way that the accuracy and precision of the measurements is properly maintained. However, in many cases, that requires costly and sophisticated equipment not readily available in developing countries. A simple, low-cost experiment to determine isobaric…
Time Trials--An AP Physics Challenge Lab
ERIC Educational Resources Information Center
Jones, David
2009-01-01
I have come to the conclusion that for high school physics classroom and laboratory experiences, simpler is better! In this paper I describe a very simple and effective lab experience that my AP students have thoroughly enjoyed year after year. I call this lab exercise "Time Trials." The experiment is simple in design and it is a lot of fun for…
ERIC Educational Resources Information Center
Lavonen, Jari; Byman, Reijo; Uitto, Anna; Juuti, Kalle; Meisalo, Veijo
2008-01-01
Interest in physics and chemistry topics and out-of-school experiences of Finnish secondary school students (n = 3626, median age 15) were surveyed using the international ROSE questionnaire. Based on explorative factor analysis the scores of six out-of-school experience factors (indicating how often students had done something outside of school)…
A Narration of a Physical Science Teacher's Experience of Implementing a New Curriculum
ERIC Educational Resources Information Center
Koopman, Oscar; Le Grange, Lesley; de Mink, Karen Joy
2016-01-01
This article narrates the lived experiences of a Physical Science teacher named Thobani (pseudonym) in implementing a new curriculum in South Africa. Drawing on the work of Husserl and Heidegger, the article describes the objects of direct experience in Thobani's consciousness about his life as a learner and teacher as revealed during an in-depth…
ERIC Educational Resources Information Center
Zacharia, Zacharias C.; Olympiou, Georgios; Papaevripidou, Marios
2008-01-01
This study aimed to investigate the comparative value of experimenting with physical manipulatives (PM) in a sequential combination with virtual manipulatives (VM), with the use of PM preceding the use of VM, and of experimenting with PM alone, with respect to changes in students' conceptual understanding in the domain of heat and temperature. A…
Gloster, Andrew T; Meyer, Andrea H; Witthauer, Cornelia; Lieb, Roselind; Mata, Jutta
2017-09-01
People often overestimate how strongly behaviours and experiences are related. This memory-experience gap might have important implications for health care settings, which often require people to estimate associations, such as "my mood is better when I exercise". This study examines how subjective correlation estimates between health behaviours and experiences relate to calculated correlations from online reports and whether subjective estimates are associated with engagement in actual health behaviour. Seven-month online study on physical activity, sleep, affect and stress, with 61 online assessments. University students (N = 168) retrospectively estimated correlations between physical activity, sleep, positive affect and stress over the seven-month study period. Correlations between experiences and behaviours (online data) were small (r = -.12-.14), estimated correlations moderate (r = -.35-.24). Correspondence between calculated and estimated correlations was low. Importantly, estimated correlations of physical activity with stress, positive affect and sleep were associated with actual engagement in physical activity. Estimation accuracy of relations between health behaviours and experiences is low. However, association estimates could be an important predictor of actual health behaviours. This study identifies and quantifies estimation inaccuracies in health behaviours and points towards potential systematic biases in health settings, which might seriously impair intervention efficacy.
Głaz, Stanisław
2016-12-01
The aim of this study was to show the preferences of terminal values of personal and social character and the level of religious experience: God's presence and God's absence, as well as to examine the relationship between the two variables in the groups of seminary students of philosophy and students of physics. The following methods were applied in the study: Rokeach Value Survey and Głaz's Scale of Religious Experience. The study was conducted amongst university students in Kraków (Poland). The results of 100 correctly completed sets of questionnaires were analysed. The results analysis proves that seminary students of philosophy have a higher level of religious experience: God's presence and God's absence than students of physics. Seminary students of philosophy most preferred terminal values in personal and in social character. In the group of seminary students of philosophy, from amongst the four most preferred terminal values, two have a significant relation with the experience of God's presence and God's absence, whereas in the group of students of physics only one of them has a significant relation with the experience of God's absence.
Mental Health Consumer Experiences and Strategies When Seeking Physical Health Care
Ewart, Stephanie B.; Bocking, Julia; Happell, Brenda; Platania-Phung, Chris; Stanton, Robert
2016-01-01
People with mental illness have higher rates of physical health problems and consequently live significantly shorter lives. This issue is not yet viewed as a national health priority and research about mental health consumer views on accessing physical health care is lacking. The aim of this study is to explore the experience of mental health consumers in utilizing health services for physical health needs. Qualitative exploratory design was utilized. Semistructured focus groups were held with 31 consumer participants. Thematic analysis revealed that three main themes emerged: scarcity of physical health care, with problems accessing diagnosis, advice or treatment for physical health problems; disempowerment due to scarcity of physical health care; and tenuous empowerment describing survival resistance strategies utilized. Mental health consumers were concerned about physical health and the nonresponsive health system. A specialist physical health nurse consultant within mental health services should potentially redress this gap in health care provision. PMID:28462330
The "Finding Physics" Project: Recognizing and Exploring Physics Outside the Classroom
NASA Astrophysics Data System (ADS)
Beck, Judith; Perkins, James
2016-11-01
Students in introductory physics classes often have difficulty recognizing the relevance of physics concepts outside the confines of the physics classroom, lab, and textbook. Even though textbooks and instructors often provide examples of physics applications from a wide array of areas, students have difficulty relating physics to their own lives. Encouraging students to apply physics to their own surroundings helps them develop the critical analysis skills of a scientifically literate and competent citizen. Fink, in his book Creating Significant Learning Experiences, emphasizes the importance of constructing opportunities to help students connect what they learn in their academic courses with past and current life experiences and link them to possible future life experiences. Several excellent papers in this journal have presented labs and activities that address this concern by encouraging teachers to bring real-world examples into the classroom or to take students into the field for data collection and observation. Alternatively, Smith suggests a writing exercise in which his students identify and explain an event in terms of their understanding of physics. In this paper we present a multiphase exercise that challenges students to find their own examples of physics from outside the classroom and analyze them using the conceptual understanding and quantitative skills which they are developing in the classroom. The ultimate goal of the "Finding Physics" project is to improve students' learning through enhancing their recognition that, to quote one participant's end-of-course survey, "Physics is everywhere!"
NASA Astrophysics Data System (ADS)
Hazari, Zahra; Sadler, Philip M.; Tai, Robert H.
2008-10-01
The disparity in persistence between males and females studying physics has been a topic of concern to physics educators for decades. Overall, while female students perform as well as or better than male students, they continue to lag considerably in terms of persistence. The most significant drop in females studying physics occurs between high school and college.2 Since most female physicists report that they became attracted to physics and decided to study it further while in high school, according to the International Study of Women in Physics,3 it is problematic that high school is also the stage at which females begin to opt out at much higher rates than males. Although half of the students taking one year of physics in high school are female, females are less likely than males to take a second or Advanced Placement (AP) physics course.4 In addition, the percentage of females taking the first physics course in college usually falls between 30% and 40%. In other words, although you may see gender parity in a first high school physics course, this parity does not usually persist to the next level of physics course. In addition, even if there is parity in a high school physics course, it does not mean that males and females experience the course in the same way. It is this difference in experience that may help to explain the drop in persistence of females.
Some Experiments with Biological Applications for the Elementary Laboratory
ERIC Educational Resources Information Center
Kammer, D. W.; Williams, J. A.
1975-01-01
Summarizes physics laboratory experiments with applications in the biological sciences. Includes the following topics: mechanics of the human arm, fluid flow in tubes, physics of learning, the electrocardiograph, nerve impulse conduction, and corrective lenses for eye defects. (Author/MLH)
INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment
NASA Technical Reports Server (NTRS)
Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.
1992-01-01
The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.
Spacecraft Dynamics as Related to Laboratory Experiments in Space. [conference
NASA Technical Reports Server (NTRS)
Fichtl, G. H. (Editor); Antar, B. N. (Editor); Collins, F. G. (Editor)
1981-01-01
Proceedings are presented of a conference sponsored by the Physics and Chemistry Experiments in Space Working Group to discuss the scientific and engineering aspects involved in the design and performance of reduced to zero gravity experiments affected by spacecraft environments and dynamics. The dynamics of drops, geophysical fluids, and superfluid helium are considered as well as two phase flow, combustion, and heat transfer. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments are also examined.
Andersen, Judith P; Blosnich, John
2013-01-01
Adverse childhood experiences (e.g., physical, sexual and emotional abuse, neglect, exposure to domestic violence, parental discord, familial mental illness, incarceration and substance abuse) constitute a major public health problem in the United States. The Adverse Childhood Experiences (ACE) scale is a standardized measure that captures multiple developmental risk factors beyond sexual, physical and emotional abuse. Lesbian, gay, and bisexual (i.e., sexual minority) individuals may experience disproportionately higher prevalence of adverse childhood experiences. To examine, using the ACE scale, prevalence of childhood physical, emotional, and sexual abuse and childhood household dysfunction among sexual minority and heterosexual adults. Analyses were conducted using a probability-based sample of data pooled from three U.S. states' Behavioral Risk Factor Surveillance System (BRFSS) surveys (Maine, Washington, Wisconsin) that administered the ACE scale and collected information on sexual identity (n = 22,071). Compared with heterosexual respondents, gay/lesbian and bisexual individuals experienced increased odds of six of eight and seven of eight adverse childhood experiences, respectively. Sexual minority persons had higher rates of adverse childhood experiences (IRR = 1.66 gay/lesbian; 1.58 bisexual) compared to their heterosexual peers. Sexual minority individuals have increased exposure to multiple developmental risk factors beyond physical, sexual and emotional abuse. We recommend the use of the Adverse Childhood Experiences scale in future research examining health disparities among this minority population.
DiMenichi, Brynne C; Tricomi, Elizabeth
2015-01-01
Competition has often been implicated as a means to improve effort-based learning and attention. Two experiments examined the effects of competition on effort and memory. In Experiment 1, participants completed a physical effort task in which they were rewarded for winning an overall percentage, or for winning a competition they believed was against another player. In Experiment 2, participants completed a memory task in which they were rewarded for remembering an overall percentage of shapes, or more shapes than a "competitor." We found that, in the physical effort task, participants demonstrated faster reaction times (RTs)-a previous indicator of increased attention-in the competitive environment. Moreover, individual differences predicted the salience of competition's effect. Furthermore, male participants showed faster RTs and greater sustained effort as a result of a competitive environment, suggesting that males may be more affected by competition in physical effort tasks. However, in Experiment 2, participants remembered fewer shapes when competing, and later recalled less of these shapes during a post-test, suggesting that competition was harmful in our memory task. The different results from these two experiments suggest that competition can improve attention in a physical effort task, yet caution the use of competition in memory tasks.
DiMenichi, Brynne C.; Tricomi, Elizabeth
2015-01-01
Competition has often been implicated as a means to improve effort-based learning and attention. Two experiments examined the effects of competition on effort and memory. In Experiment 1, participants completed a physical effort task in which they were rewarded for winning an overall percentage, or for winning a competition they believed was against another player. In Experiment 2, participants completed a memory task in which they were rewarded for remembering an overall percentage of shapes, or more shapes than a “competitor.” We found that, in the physical effort task, participants demonstrated faster reaction times (RTs)—a previous indicator of increased attention—in the competitive environment. Moreover, individual differences predicted the salience of competition’s effect. Furthermore, male participants showed faster RTs and greater sustained effort as a result of a competitive environment, suggesting that males may be more affected by competition in physical effort tasks. However, in Experiment 2, participants remembered fewer shapes when competing, and later recalled less of these shapes during a post-test, suggesting that competition was harmful in our memory task. The different results from these two experiments suggest that competition can improve attention in a physical effort task, yet caution the use of competition in memory tasks. PMID:26388801
Cohen, Dale J.; Warren, Erin; Blanc-Goldhammer, Daryn
2013-01-01
The sound |faiv| is visually depicted as a written number word “five” and as an Arabic digit “5.” Here, we present four experiments – two quantity same/different experiments and two magnitude comparison experiments – that assess whether auditory number words (|faiv|), written number words (“five”), and Arabic digits (“5”) directly activate one another and/or their associated quantity. The quantity same/different experiments reveal that the auditory number words, written number words, and Arabic digits directly activate one another without activating their associated quantity. That is, there are cross-format physical similarity effects but no numerical distance effects. The cross-format magnitude comparison experiments reveal significant effects of both physical similarity and numerical distance. We discuss these results in relation to the architecture of numerical cognition. PMID:23624377
NASA Astrophysics Data System (ADS)
Del Santo, Flavio
2018-05-01
I present the reconstruction of the involvement of Karl Popper in the community of physicists concerned with foundations of quantum mechanics, in the 1980s. At that time Popper gave active contribution to the research in physics, of which the most significant is a new version of the EPR thought experiment, alleged to test different interpretations of quantum mechanics. The genesis of such an experiment is reconstructed in detail, and an unpublished letter by Popper is reproduced in the present paper to show that he formulated his thought experiment already two years before its first publication in 1982. The debate stimulated by the proposed experiment as well as Popper's role in the physics community throughout 1980s is here analysed in detail by means of personal correspondence and publications.
‘Rutherford’s experiment’ on alpha particles scattering: the experiment that never was
NASA Astrophysics Data System (ADS)
Leone, M.; Robotti, N.; Verna, G.
2018-05-01
The so-called Rutherford’s experiment, as it is outlined in many physics textbooks, is a case in point of the flaws around the history at the educational level of one of the decisive event of modern physics: the discovery that the atom has a nucleus. This paper shows that this alleged experiment is a very approximate and very partial synthesis of a series of different particle scattering experiments, starting with that carried out by Rutherford in 1906 and ending with Geiger and Marsden’s 1913 experiments.
NASA Astrophysics Data System (ADS)
Jérome, Denis
2007-01-01
Twenty-one years have now passed since the launch of Europhysics Letters which merged the physics letters journals of two learned societies: Journal de Physique Lettres and Lettere al Nuovo Cimento belonging, respectively, to the French Physical Society (SFP) and to the Italian Physical Society (SIF). This new journal was also supported by the UK Institute of Physics (IOP) and many other National Physical Societies, members of the European Physical Society (EPS). The aim of this merger was expressed by the words of G. H. Stafford, the President of EPS in 1985, for whom Europhysics Letters marked `an important milestone in the progress towards greater unity in Europe' which began with the creation of the European Physical Society nearly twenty years earlier. Europhysics Letters was supposed to be a strong European-based journal for the publication of short important communications covering all domains of physics under the supervision and the scientific control of EPS. In 2007, 21 years later, Europhysics Letters has now come of age and the Board of Directors, under the control of EPS, has decided to mature the journal, now re-branded as EPL and characterized by a new cover design and a new printed format, thus encouraging development into a top-tier journal, a leading global home for ground-breaking physics research letters. The objective is to make EPL a high-impact physics journal leading towards an increase in visibility, impact, prestige, scientific quality, reputation and impact factor although all scientists are currently aware that the presentation of impact factors must be taken with a grain of salt. A new publishing contract amongst the EPL partners will directly involve, besides EDPS (the publishing company of SFP) and SIF, the Institute of Physics through its publishing department (IOP Publishing) in a more active role, its task being hosting the on-line facilities of the journal. The combined publishing expertise and marketing knowledge of EDPS, IOP Publishing and SIF should ensure that EPL considerably increases the number of published papers over the next few years. In addition, EPL should also increase the number of published papers in a significant manner since IOP Publishing in 2007 will discontinue the letter sections in Journal of Physics and encourage their redirection to EPL. Thus EPL will become the only top-tier physics letters-specific journal edited and published exclusively within Europe. EPL has sometimes been considered as a European journal by the non-European scientific community. Although its publishers are indeed European, its content is truly international as presently already one-third of the papers published in 2006 come from non-European countries. We hope this proportion will still increase in the near future. EPL will still be guided by the initial target fixed by N. Kurti, the first Editor-in-Chief of Europhysics Letters: `Scientific publishing ... is one of those matters which is desirable to handle on an international level'. IOP Publishing will provide increased visibility and promotion of the journal through an extensive advertising and marketing campaign including presence at all major scientific events and additionally through a developing and constantly updated new website available at http://www.epljournal.org. The scientific breadth of EPL Editorial Board will increase during 2007 both thematically and geographically with a special effort towards attracting articles from high energy and particles physics, atomic, molecular and optical physics, astroparticles and cosmology research, quantum optics and information research and from life sciences. EPL will also strengthen its links with the condensed and soft matter topics and extend its range to cover physics communities in the USA and Asia. EPL is proud to be a journal produced by physicists for physicists. The Editorial Board, the essential core of active research scientists devoted to the evaluation of the papers, presently comprises 35 highbrow scientists, with a likely expansion in 2007, qualified by their recognized competences in their fields of expertise. The publication times (submission to on-line publication) of EPL are amongst the shortest for peer-reviewed letters journals. In 2006 the average time between submission and e-first publication has been 16 and 9.2 weeks for articles with and without revision, respectively, and the average time from acceptance to on-line first publication was kept lower that 4 weeks. The `Latest articles' service supplies world-wide visibility with the full on-line edition of the most recent issues of EPL posted for 30 days in open access. The evaluation process ensures a helpful and honest peer review connecting physicists from all over the world and providing the authors with constructive suggestions for improvement whenever they are necessary. Another added value that EPL offers to authors is the editorial agreement for mutual transfer which has been extended to the major partner journals, The European Physical Journal series and the Journal of Physics series. This provides an alternative opportunity for publishing scientifically sound manuscripts that may not be suitable for the journal of original submission. EPL is therefore destined to become the keystone of the European publishing platform for the whole world scientific community. Although the staff and Board members of EPL will make all possible efforts to provide the best services to readers and authors, it is only authors and readers that will increase the impact of the review, trusting the journal to publish their best works.
Curriculum that incorporates good physics and good math -- AT THE SAME TIME!
NASA Astrophysics Data System (ADS)
Weisel, Derek
2007-03-01
Anyone with experience in physics education knows there is considerable consternation about how much trouble students can have during their first experience with physics. It is a common opinion that many students struggle in physics because of a weak math background. Recent research has shown that this is not always the case. Many students who have shown a tested proficiency in mathematics still struggle in physics. It is an important question to ask how a student who excels in mathematics can still struggle in physics. If this question can be answered it may open up new methods of instruction to aid all students. After discussion of this question, examples of curriculum that simultaneously meet common standards of physics and common standards of math will be shown.
Blinde, E M; McCallister, S G
1999-09-01
This study explores the often overlooked experiences of women with physical disabilities in the sport and physical fitness activity domain. Interviews with 16 women with a physical disability (age range of 19-54 years) revealed the following major themes: (a) participation in fitness-related as opposed to sport-related activities, (b) participation to maintain the functional level of the body and preserve existing capabilities, (c) intrinsic nature of gains derived from participation (perceived competence, enhanced view of body, motivational outlet, control in life), and (d) perceived differences in the sport and physical fitness activity experiences of men and women with disabilities. Findings support the notion that gender and disability interact in the sport and physical fitness context for women with physical disabilities.
Particle astronomy and particle physics from the moon - The particle observatory
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.
1990-01-01
Promising experiments from the moon using particle detectors are discussed, noting the advantage of the large flux collecting power Pc offered by the remote, stable environment of a lunar base. An observatory class of particle experiments is presented, based upon proposals at NASA's recent Stanford workshop. They vary from neutrino astronomy, particle astrophysics, and cosmic ray experiments to space physics and fundamental physics experiments such as proton decay and 'table-top' arrays. This research is background-limited on earth, and it is awkward and unrealistic in earth orbit, but is particularly suited for the moon where Pc can be quite large and the instrumentation is not subject to atmospheric erosion as it is (for large t) in low earth orbit.
Rotational energy in a physical pendulum
NASA Astrophysics Data System (ADS)
Monteiro, Martín; Cabeza, Cecilia; Marti, Arturo C.
2014-03-01
Smartphone usage has expanded dramatically in recent years worldwide. This revolution also has impact in undergraduate laboratories where different experiences are facilitated by the use of the sensors usually included in these devices. Recently, in several articles published in the literature, the use of smartphones has been proposed for several physics experiments. Although most previous articles focused on mechanical experiments, an aspect that has received less attention is the use of rotation sensors or gyroscopes. Indeed, the use of these sensors paves the way for new experiments enabling the measurement of angular velocities. In a very recent paper the conservation of the angular momentum is considered using rotation sensors.3 In this paper we present an analysis of the rotational energy of a physical pendulum.
Kitchen Physics: Lessons in Fluid Pressure and Error Analysis
NASA Astrophysics Data System (ADS)
Vieyra, Rebecca Elizabeth; Vieyra, Chrystian; Macchia, Stefano
2017-02-01
Although the advent and popularization of the "flipped classroom" tends to center around at-home video lectures, teachers are increasingly turning to at-home labs for enhanced student engagement. This paper describes two simple at-home experiments that can be accomplished in the kitchen. The first experiment analyzes the density of four liquids using a waterproof case and a smartphone barometer in a container, sink, or tub. The second experiment determines the relationship between pressure and temperature of an ideal gas in a constant volume container placed momentarily in a refrigerator freezer. These experiences provide a ripe opportunity both for learning fundamental physics concepts as well as to investigate a variety of error analysis techniques that are frequently overlooked in introductory physics courses.
Experiences of a high-school physics textbook author
NASA Astrophysics Data System (ADS)
Zitzewitz, Paul W.
2004-05-01
For the past twenty years I have been involved writing a widely used high school physics textbook. I will discuss my experiences with the many forces that shape such a book, including state requirements, the publisher, editors, free-lance writers, reviewers, high school teachers, and students. Attempts to incorporate the results of physics education research and the changing role of technology in the production process will also be discussed.
ERIC Educational Resources Information Center
Yli-Piipari, S.; Layne, T.; McCollins, T.; Knox, T.
2016-01-01
The aim of the study was to examine the effect of a 4-week classroom physical activity break intervention on middle school students' health-related physical fitness. The study was a randomized controlled trial with students assigned to the experiment and control conditions. A convenience sample comprised 94 adolescents (experiment group n = 52;…
A qualitative study of the meaning of physical examination teaching for patients.
Chretien, Katherine C; Goldman, Ellen F; Craven, Katherine E; Faselis, Charles J
2010-08-01
Physical examination teaching using actual patients is an important part of medical training. The patient experience undergoing this type of teaching is not well-understood. To understand the meaning of physical examination teaching for patients. Phenomenological qualitative study using semi-structured interviews. Patients who underwent a physical examination-based teaching session at an urban Veterans Affairs Medical Center. A purposive sampling strategy was used to include a diversity of patient teaching experiences. Multiple interviewers triangulated data collection. Interviews continued until new themes were no longer heard (total of 12 interviews). Interviews were recorded and transcribed verbatim. Coding was performed by two investigators and peer-checked. Themes were identified and meanings extracted from themes. Seven themes emerged from the data: positive impression of students; participation considered part of the program; expect students to do their job: hands-on learning; interaction with students is positive; some aspects of encounter unexpected; range of benefits to participation; improve convenience and interaction. Physical examination teaching had four possible meanings for patients: Tolerance, Helping, Social, and Learning. We found it possible for a patient to move from one meaning to another, based on the teaching session experience. Physical examination teaching can benefit patients. Patients have the potential to gain more value from the experience based on the group interaction.
Exercise Performance Measurement with Smartphone Embedded Sensor for Well-Being Management
Liu, Chung-Tse; Chan, Chia-Tai
2016-01-01
Regular physical activity reduces the risk of many diseases and improves physical and mental health. However, physical inactivity is widespread globally. Improving physical activity levels is a global concern in well-being management. Exercise performance measurement systems have the potential to improve physical activity by providing feedback and motivation to users. We propose an exercise performance measurement system for well-being management that is based on the accumulated activity effective index (AAEI) and incorporates a smartphone-embedded sensor. The proposed system generates a numeric index that is based on users’ exercise performance: their level of physical activity and number of days spent exercising. The AAEI presents a clear number that can serve as a useful feedback and goal-setting tool. We implemented the exercise performance measurement system by using a smartphone and conducted experiments to assess the feasibility of the system and investigated the user experience. We recruited 17 participants for validating the feasibility of the measurement system and a total of 35 participants for investigating the user experience. The exercise performance measurement system showed an overall precision of 88% in activity level estimation. Users provided positive feedback about their experience with the exercise performance measurement system. The proposed system is feasible and has a positive effective on well-being management. PMID:27727188
Exercise Performance Measurement with Smartphone Embedded Sensor for Well-Being Management.
Liu, Chung-Tse; Chan, Chia-Tai
2016-10-11
Regular physical activity reduces the risk of many diseases and improves physical and mental health. However, physical inactivity is widespread globally. Improving physical activity levels is a global concern in well-being management. Exercise performance measurement systems have the potential to improve physical activity by providing feedback and motivation to users. We propose an exercise performance measurement system for well-being management that is based on the accumulated activity effective index (AAEI) and incorporates a smartphone-embedded sensor. The proposed system generates a numeric index that is based on users' exercise performance: their level of physical activity and number of days spent exercising. The AAEI presents a clear number that can serve as a useful feedback and goal-setting tool. We implemented the exercise performance measurement system by using a smartphone and conducted experiments to assess the feasibility of the system and investigated the user experience. We recruited 17 participants for validating the feasibility of the measurement system and a total of 35 participants for investigating the user experience. The exercise performance measurement system showed an overall precision of 88% in activity level estimation. Users provided positive feedback about their experience with the exercise performance measurement system. The proposed system is feasible and has a positive effective on well-being management.
The impact of physical and mental tasks on pilot mental workoad
NASA Technical Reports Server (NTRS)
Berg, S. L.; Sheridan, T. B.
1986-01-01
Seven instrument-rated pilots with a wide range of backgrounds and experience levels flew four different scenarios on a fixed-base simulator. The Baseline scenario was the simplest of the four and had few mental and physical tasks. An activity scenario had many physical but few mental tasks. The Planning scenario had few physical and many mental taks. A Combined scenario had high mental and physical task loads. The magnitude of each pilot's altitude and airspeed deviations was measured, subjective workload ratings were recorded, and the degree of pilot compliance with assigned memory/planning tasks was noted. Mental and physical performance was a strong function of the manual activity level, but not influenced by the mental task load. High manual task loads resulted in a large percentage of mental errors even under low mental task loads. Although all the pilots gave similar subjective ratings when the manual task load was high, subjective ratings showed greater individual differences with high mental task loads. Altitude or airspeed deviations and subjective ratings were most correlated when the total task load was very high. Although airspeed deviations, altitude deviations, and subjective workload ratings were similar for both low experience and high experience pilots, at very high total task loads, mental performance was much lower for the low experience pilots.
A facility to search for hidden particles at the CERN SPS: the SHiP physics case.
Alekhin, Sergey; Altmannshofer, Wolfgang; Asaka, Takehiko; Batell, Brian; Bezrukov, Fedor; Bondarenko, Kyrylo; Boyarsky, Alexey; Choi, Ki-Young; Corral, Cristóbal; Craig, Nathaniel; Curtin, David; Davidson, Sacha; de Gouvêa, André; Dell'Oro, Stefano; deNiverville, Patrick; Bhupal Dev, P S; Dreiner, Herbi; Drewes, Marco; Eijima, Shintaro; Essig, Rouven; Fradette, Anthony; Garbrecht, Björn; Gavela, Belen; Giudice, Gian F; Goodsell, Mark D; Gorbunov, Dmitry; Gori, Stefania; Grojean, Christophe; Guffanti, Alberto; Hambye, Thomas; Hansen, Steen H; Helo, Juan Carlos; Hernandez, Pilar; Ibarra, Alejandro; Ivashko, Artem; Izaguirre, Eder; Jaeckel, Joerg; Jeong, Yu Seon; Kahlhoefer, Felix; Kahn, Yonatan; Katz, Andrey; Kim, Choong Sun; Kovalenko, Sergey; Krnjaic, Gordan; Lyubovitskij, Valery E; Marcocci, Simone; Mccullough, Matthew; McKeen, David; Mitselmakher, Guenakh; Moch, Sven-Olaf; Mohapatra, Rabindra N; Morrissey, David E; Ovchynnikov, Maksym; Paschos, Emmanuel; Pilaftsis, Apostolos; Pospelov, Maxim; Reno, Mary Hall; Ringwald, Andreas; Ritz, Adam; Roszkowski, Leszek; Rubakov, Valery; Ruchayskiy, Oleg; Schienbein, Ingo; Schmeier, Daniel; Schmidt-Hoberg, Kai; Schwaller, Pedro; Senjanovic, Goran; Seto, Osamu; Shaposhnikov, Mikhail; Shchutska, Lesya; Shelton, Jessie; Shrock, Robert; Shuve, Brian; Spannowsky, Michael; Spray, Andy; Staub, Florian; Stolarski, Daniel; Strassler, Matt; Tello, Vladimir; Tramontano, Francesco; Tripathi, Anurag; Tulin, Sean; Vissani, Francesco; Winkler, Martin W; Zurek, Kathryn M
2016-12-01
This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.
Matrix Treatment of Ray Optics.
ERIC Educational Resources Information Center
Quon, W. Steve
1996-01-01
Describes a method to combine two learning experiences--optical physics and matrix mathematics--in a straightforward laboratory experiment that allows engineering/physics students to integrate a variety of learning insights and technical skills, including using lasers, studying refraction through thin lenses, applying concepts of matrix…
Women's Recreational Surfing: A Patronising Experience
ERIC Educational Resources Information Center
Olive, Rebecca; McCuaig, Louise; Phillips, Murray G.
2015-01-01
Research analysing the operation of power within sport and physical activity has exposed the marginalisation and exclusion of women's sport in explicit and institutionalised ways. However, for women in recreational and alternative physical activities like surfing, sporting experiences lie outside institutionalised structures, thus requiring…
Cometary nucleus release experiments and ice physics
NASA Technical Reports Server (NTRS)
Huebner, W. F.
1976-01-01
Some physical and chemical processes involved in the evaporation and sublimation of mixtures of frozen gases are discussed. Effects of zero gravity, vacuum, and solar radiation are emphasized. Relevant experiments that can be carried out with the aid of the space shuttle are proposed.
Skylab 2 Solar Physics Experiment
NASA Technical Reports Server (NTRS)
1973-01-01
Skylab 2 Solar Physics Experiment. This black and white view of a solar flare was taken from the skylab remote solar experiment module mounted on top of the vehicle and worked automatically without any interaction from the crew. Solar flares or sunspots are eruptions on the sun's surface and appear to occur in cycles. When these cycles occur, there is worldwide electromagnetic interference affecting radio and television transmission.
ERIC Educational Resources Information Center
Dabke, Rajeev B.; Gebeyehu, Zewdu
2012-01-01
A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…
ERIC Educational Resources Information Center
Velentzas, Athanasios; Halkia, Krystallia
2011-01-01
In this work an attempt is made to explore the possible value of using Thought Experiments (TEs) in teaching physics to upper secondary education students. Specifically, a qualitative research project is designed to investigate the extent to which the Thought Experiment (TE) called "Heisenberg's Microscope", as it has been transformed by…
C. J. Hennigan; M. A. Miracolo; G. J. Engelhart; A. A. May; A. A. Presto; T. Lee; A. P. Sullivan; G. R. McMeeking; H. Coe; C. E. Wold; W.-M. Hao; J. B. Gilman; W. C. Kuster; J. de Gouw; B. A. Schichtel; J. L. Collett; S. M. Kreidenweis; A. L. Robinson
2011-01-01
Smog chamber experiments were conducted to investigate the chemical and physical transformations of organic aerosol (OA) during photo-oxidation of open biomass burning emissions. The experiments were carried out at the US Forest Service Fire Science Laboratory as part of the third Fire Lab at Missoula Experiment (FLAME III). We investigated emissions from 12 different...
The Problem of Representation and Experience in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Ronde, Christian De
2014-03-01
In this paper we discuss the problem of representation and experience in quantum mechanics. We analyze the importance of metaphysics in physical thought and its relation to empiricism and analytic philosophy. We argue against both instrumentalism and scientific realism and claim that both perspectives tend to bypass the problem of representation and justify a "common sense" type experience. Finally, we present our expressionist conception of physics.
2000-01-03
was altered by several variables (patient condition, planned surgical procedure, experience and skill of surgeon and anesthetist, and attention to...be developed. Variables in addition to the patient physical status ( experience of the surgeon, anesthetist, and hospital personnel) could be entered...specific surgery. Surgical risks include experience of the surgical team, the medical institution, elective versus emergent, availability of