Science.gov

Sample records for astrophysical disk models

  1. ON VERTICALLY GLOBAL, HORIZONTALLY LOCAL MODELS FOR ASTROPHYSICAL DISKS

    SciTech Connect

    McNally, Colin P.; Pessah, Martin E. E-mail: mpessah@nbi.dk

    2015-10-01

    Disks with a barotropic equilibrium structure, for which the pressure is only a function of the density, rotate on cylinders in the presence of a gravitational potential, so that the angular frequency of such a disk is independent of height. Such disks with barotropic equilibria can be approximately modeled using the shearing box framework, representing a small disk volume with height-independent angular frequency. If the disk is in baroclinic equilibrium, the angular frequency does generally depend on height, and it is thus necessary to go beyond the standard shearing box approach. In this paper, we show that given a global disk model, it is possible to develop approximate models that are local in horizontal planes without an expansion in height with shearing-periodic boundary conditions. We refer to the resulting framework as the vertically global shearing box (VGSB). These models can be non-axisymmetric for globally barotropic equilibria but should be axisymmetric for globally baroclinic equilibria. We provide explicit equations for this VGSB which can be implemented in standard magnetohydrodynamic codes by generalizing the shearing-periodic boundary conditions to allow for a height-dependent angular frequency and shear rate. We also discuss the limitations that result from the radial approximations that are needed in order to impose height-dependent shearing periodic boundary conditions. We illustrate the potential of this framework by studying a vertical shear instability and examining the modes associated with the magnetorotational instability.

  2. Rossby Wave Instability in Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard; Li, Hui

    2014-10-01

    A brief review is given of the Rossby wave instability in astrophysical disks. In non-self-gravitating discs, around for example a newly forming stars, the instability can be triggered by an axisymmetric bump at some radius r0 in the disk surface mass-density. It gives rise to exponentially growing non-axisymmetric perturbation (proportional to Exp[im ϕ], m = 1,2,...) in the vicinity of r0 consisting of anticyclonic vortices. These vortices are regions of high pressure and consequently act to trap dust particles which in turn can facilitate planetesimal growth in protoplanetary disks. The Rossby vortices in the disks around stars and black holes may cause the observed quasi-periodic modulations of the disk's thermal emission. Stirling Colgate's long standing interest in all types of vortices - particularly tornados - had an important part in stimulating the research on the Rossby wave instability.

  3. THE COSMIC BATTERY IN ASTROPHYSICAL ACCRETION DISKS

    SciTech Connect

    Contopoulos, Ioannis; Nathanail, Antonios; Katsanikas, Matthaios

    2015-06-01

    The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large-scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows, ADAFs. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large-scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysically relevant timescales. We confirm that there exists a critical value of the magnetic Prandtl number between unity and 10 in the outer disk above which the Cosmic Battery mechanism is suppressed.

  4. Examining the accuracy of astrophysical disk simulations with a generalized hydrodynamical test problem [The role of pressure and viscosity in SPH simulations of astrophysical disks

    SciTech Connect

    Raskin, Cody; Owen, J. Michael

    2016-10-24

    Here, we discuss a generalization of the classic Keplerian disk test problem allowing for both pressure and rotational support, as a method of testing astrophysical codes incorporating both gravitation and hydrodynamics. We argue for the inclusion of pressure in rotating disk simulations on the grounds that realistic, astrophysical disks exhibit non-negligible pressure support. We then apply this test problem to examine the performance of various smoothed particle hydrodynamics (SPH) methods incorporating a number of improvements proposed over the years to address problems noted in modeling the classical gravitation-only Keplerian disk. We also apply this test to a newly developed extension of SPH based on reproducing kernels called CRKSPH. Counterintuitively, we find that pressure support worsens the performance of traditional SPH on this problem, causing unphysical collapse away from the steady-state disk solution even more rapidly than the purely gravitational problem, whereas CRKSPH greatly reduces this error.

  5. Examining the accuracy of astrophysical disk simulations with a generalized hydrodynamical test problem [The role of pressure and viscosity in SPH simulations of astrophysical disks

    DOE PAGES

    Raskin, Cody; Owen, J. Michael

    2016-10-24

    Here, we discuss a generalization of the classic Keplerian disk test problem allowing for both pressure and rotational support, as a method of testing astrophysical codes incorporating both gravitation and hydrodynamics. We argue for the inclusion of pressure in rotating disk simulations on the grounds that realistic, astrophysical disks exhibit non-negligible pressure support. We then apply this test problem to examine the performance of various smoothed particle hydrodynamics (SPH) methods incorporating a number of improvements proposed over the years to address problems noted in modeling the classical gravitation-only Keplerian disk. We also apply this test to a newly developed extensionmore » of SPH based on reproducing kernels called CRKSPH. Counterintuitively, we find that pressure support worsens the performance of traditional SPH on this problem, causing unphysical collapse away from the steady-state disk solution even more rapidly than the purely gravitational problem, whereas CRKSPH greatly reduces this error.« less

  6. Examining the Accuracy of Astrophysical Disk Simulations with a Generalized Hydrodynamical Test Problem

    NASA Astrophysics Data System (ADS)

    Raskin, Cody; Owen, J. Michael

    2016-11-01

    We discuss a generalization of the classic Keplerian disk test problem allowing for both pressure and rotational support, as a method of testing astrophysical codes incorporating both gravitation and hydrodynamics. We argue for the inclusion of pressure in rotating disk simulations on the grounds that realistic, astrophysical disks exhibit non-negligible pressure support. We then apply this test problem to examine the performance of various smoothed particle hydrodynamics (SPH) methods incorporating a number of improvements proposed over the years to address problems noted in modeling the classical gravitation-only Keplerian disk. We also apply this test to a newly developed extension of SPH based on reproducing kernels called CRKSPH. Counterintuitively, we find that pressure support worsens the performance of traditional SPH on this problem, causing unphysical collapse away from the steady-state disk solution even more rapidly than the purely gravitational problem, whereas CRKSPH greatly reduces this error.

  7. Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks.

    PubMed

    Ji, Hantao; Burin, Michael; Schartman, Ethan; Goodman, Jeremy

    2006-11-16

    The most efficient energy sources known in the Universe are accretion disks. Those around black holes convert 5-40 per cent of rest-mass energy to radiation. Like water circling a drain, inflowing mass must lose angular momentum, presumably by vigorous turbulence in disks, which are essentially inviscid. The origin of the turbulence is unclear. Hot disks of electrically conducting plasma can become turbulent by way of the linear magnetorotational instability. Cool disks, such as the planet-forming disks of protostars, may be too poorly ionized for the magnetorotational instability to occur, and therefore essentially unmagnetized and linearly stable. Nonlinear hydrodynamic instability often occurs in linearly stable flows (for example, pipe flows) at sufficiently large Reynolds numbers. Although planet-forming disks have extreme Reynolds numbers, keplerian rotation enhances their linear hydrodynamic stability, so the question of whether they can be turbulent and thereby transport angular momentum effectively is controversial. Here we report a laboratory experiment, demonstrating that non-magnetic quasi-keplerian flows at Reynolds numbers up to millions are essentially steady. Scaled to accretion disks, rates of angular momentum transport lie far below astrophysical requirements. By ruling out purely hydrodynamic turbulence, our results indirectly support the magnetorotational instability as the likely cause of turbulence, even in cool disks.

  8. Integrated accretion disk angular momentum removal and astrophysical jet acceleration mechanism

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2015-11-01

    A model has been developed for how accretion disks discard angular momentum while powering astrophysical jets. The model depends on the extremely weak ionization of disks. This causes disk ions to be collisionally locked to adjacent disk neutrals so a clump of disk ions and neutrals has an effective cyclotron frequency αωci where α is the fractional ionization. When αωci is approximately twice the Kepler orbital frequency, conservation of canonical momentum shows that the clump spirals radially inwards producing a radially inward disk electric current as electrons cannot move radially in the disk. Upon reaching the jet radius, this current then flows axially away from the disk plane along the jet, producing a toroidal magnetic field that drives the jet. Electrons remain frozen to poloidal flux surfaces everywhere and electron motion on flux surfaces in the ideal MHD region outside the disk completes the current path. Angular momentum absorbed from accreting material in the disk by magnetic counter-torque -JrBz is transported by the electric circuit and ejected at near infinite radius in the disk plane. This is like an electric generator absorbing angular momentum and wired to a distant electric motor that emits angular momentum. Supported by USDOE/NSF Partnership in Plasma Science.

  9. Laboratory Study of Angular Momentum Transport in Astrophysical Accretion Disks

    NASA Astrophysics Data System (ADS)

    Ji, Hantao

    2014-10-01

    Studying astrophysical processes in the lab becomes increasingly possible and exciting, as one of Stirling's favorite subjects throughout his scientific career. In this talk, I will describe experimental efforts to study mechanisms of rapid angular momentum transport required to occur in accretion disks to explain a wide range of phenomena from star formation, energetic activity of cataclysmic variables, to powering quasars, the most luminous steady sources in the Universe. By carefully isolating effects due to artificial boundaries, which are inherent to terrestrial experiments, certain astrophysical questions regarding hydrodynamic and magnetohydrodynamic stabilities are being addressed in the laboratory. Inspirations from Stirling as well as scientific exchanges with him will be mentioned during this talk as part of my scientific journey on this subject.

  10. MOMENTUM TRANSPORT FROM CURRENT-DRIVEN RECONNECTION IN ASTROPHYSICAL DISKS

    SciTech Connect

    Ebrahimi, F.; Prager, S. C.

    2011-12-20

    Current-driven reconnection is investigated as a possible mechanism for angular momentum transport in astrophysical disks. A theoretical and computational study of angular momentum transport from current-driven magnetohydrodynamic instabilities is performed. It is found that both a single resistive tearing instability and an ideal instability can transport momentum in the presence of azimuthal Keplerian flow. The structure of the Maxwell stress is examined for a single mode through analytic quasilinear theory and computation. Full nonlinear multiple-mode computation shows that a global Maxwell stress causes significant momentum transport.

  11. Generation of dynamo magnetic fields in protoplanetary and other astrophysical accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1988-01-01

    A computational method for treating the generation of dynamo magnetic fields in astrophysical disks is presented. The numerical difficulty of handling the boundary condition at infinity in the cylindrical disk geometry is overcome by embedding the disk in a spherical computational space and matching the solutions to analytically tractable spherical functions in the surrounding space. The lowest lying dynamo normal modes for a 'thick' astrophysical disk are calculated. The generated modes found are all oscillatory and spatially localized. Tha potential implications of the results for the properties of dynamo magnetic fields in real astrophysical disks are discussed.

  12. Global Simulations of Dynamo and Magnetorotational Instability in Madison Plasma Experiments and Astrophysical Disks

    SciTech Connect

    Ebrahimi, Fatima

    2014-07-31

    Large-scale magnetic fields have been observed in widely different types of astrophysical objects. These magnetic fields are believed to be caused by the so-called dynamo effect. Could a large-scale magnetic field grow out of turbulence (i.e. the alpha dynamo effect)? How could the topological properties and the complexity of magnetic field as a global quantity, the so called magnetic helicity, be important in the dynamo effect? In addition to understanding the dynamo mechanism in astrophysical accretion disks, anomalous angular momentum transport has also been a longstanding problem in accretion disks and laboratory plasmas. To investigate both dynamo and momentum transport, we have performed both numerical modeling of laboratory experiments that are intended to simulate nature and modeling of configurations with direct relevance to astrophysical disks. Our simulations use fluid approximations (Magnetohydrodynamics - MHD model), where plasma is treated as a single fluid, or two fluids, in the presence of electromagnetic forces. Our major physics objective is to study the possibility of magnetic field generation (so called MRI small-scale and large-scale dynamos) and its role in Magneto-rotational Instability (MRI) saturation through nonlinear simulations in both MHD and Hall regimes.

  13. Astrophysical Model Selection in Gravitational Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.

    2012-01-01

    Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.

  14. Astrophysics: Surprisingly fast motions in a dust disk

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.

    2015-10-01

    A recently commissioned planet-finding instrument has been used to study a young solar system around the star AU Microscopii, leading to the discovery of rapidly moving features in the dust disk around the star. See Letter p.230

  15. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  16. Do Accretion Disks Exist in High Energy Astrophysics?

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2006-10-01

    The familiar concept of an accretion disk is based on its gas dynamic description where, in particular, the vertical equilibrium is maintained by the (weak) vertical component of the gravitational force due to the central object. When a plasma structure differentially rotating around the same kind of object is considered in which the magnetic field diffusion due to finite resistivity is realistically weak, a radially periodic sequence of pairs of opposite current channels is found. Moreover, the vertical confinement of the structure is maintained by the resulting Lorentz force rather than by gravity. Thus, a ``Lorentz compression'' occurs. In addition, sequences of plasma rings^2 rather than disks emerge. (Note that H. Alfvén had proposed that planetary rings may be ``fossils'' of pre- existing envisioned plasma rings. Moreover, a large ring is the most prominent feature emerging from the high resolution X- ray image of the Crab). The ``seed'' magnetic field in which the structure is immersed is considerably smaller than that produced by the internal toroidal currents. The magnetic pressure is of the order of the plasma pressure. Thus, ring sequence configurations can be suitable for the emergence of a jet from their center. Two coupled non-linear equations have been solved, representing the vertical and the horizontal equilibrium conditions for the structure.*Sponsored in part by the U.S. D.O.E. B. Coppi, Phys. Plasmas 12, 057301, (2005) B. Coppi and F. Rousseau, Ap. J. 641 (1), 458 (2006)

  17. Integrated mechanism that both removes accretion disk angular momentum and drives astrophysical jets

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2016-10-01

    Using concepts from laboratory experiments, Hamiltonian mechanics, Hall MHD, and weakly ionized plasmas, I propose a mechanism that simultaneously drives astrophysical jets and removes accretion disk angular momentum. The mechanism depends on the extreme stratification of ionization between the weakly ionized accretion disk and the highly ionized exterior region. In the exterior region, axisymmetric Hamiltonian mechanics constrain charged particles to move on nested poloidal flux surfaces. In contrast, fluid elements in the weakly ionized, highly collisional accretion disk behave like collisionless meta-particles with effective q / m reduced from than that of an ion by the nominal disk 10-15 - 10-8 fractional ionization; this means that the meta-particle effective cyclotron frequency ωc can be of order of the Kepler frequency ωK =(MG /r3) 1 / 2 . Meta-particles with ωc = - 2ωK have zero canonical angular momentum, experience no centrifugal force and spiral in towards the central body. Because these inward spiraling meta-particles are positive, their accumulation near the central body produces radially and axially outward electric fields. The axial outward electric field drives an out-of-plane poloidal electric current along poloidal flux surfaces in the external region. As in lab experiments, this current and its associated toroidal magnetic field drive astrophysical jets flowing normal to and away from the disk. Supported by NSF/DOE Partnership in Plasma Physics.

  18. A Pure Hydrodynamic Instability in Shear Flows and Its Application to Astrophysical Accretion Disks

    NASA Astrophysics Data System (ADS)

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata

    2016-10-01

    We provide a possible resolution for the century-old problem of hydrodynamic shear flows, which are apparently stable in linear analysis but shown to be turbulent in astrophysically observed data and experiments. This mismatch is noticed in a variety of systems, from laboratory to astrophysical flows. There are so many uncountable attempts made so far to resolve this mismatch, beginning with the early work of Kelvin, Rayleigh, and Reynolds toward the end of the nineteenth century. Here we show that the presence of stochastic noise, whose inevitable presence should not be neglected in the stability analysis of shear flows, leads to pure hydrodynamic linear instability therein. This explains the origin of turbulence, which has been observed/interpreted in astrophysical accretion disks, laboratory experiments, and direct numerical simulations. This is, to the best of our knowledge, the first solution to the long-standing problem of hydrodynamic instability of Rayleigh-stable flows.

  19. Global Self-similar Protostellar Disk/Wind Models

    NASA Astrophysics Data System (ADS)

    Teitler, Seth

    2011-05-01

    The magnetocentrifugal disk wind mechanism is the leading candidate for producing the large-scale, bipolar jets commonly seen in protostellar systems. I present a detailed formulation of a global, radially self-similar model for a non-ideal disk that launches a magnetocentrifugal wind. This formulation generalizes the conductivity tensor formalism previously used in radially localized disk models. The model involves matching a solution of the equations of non-ideal magnetohydrodynamics (MHD) describing matter in the disk to a solution of the equations of ideal MHD describing a "cold" wind. The disk solution must pass smoothly through the sonic point, the wind solution must pass smoothly through the Alfvén point, and the two solutions must match at the disk/wind interface. This model includes for the first time a self-consistent treatment of the evolution of magnetic flux threading the disk, which can change on the disk accretion timescale. The formulation presented here also allows a realistic conductivity profile for the disk to be used in a global disk/wind model for the first time. The physical constraints on the model solutions fix the distribution of the magnetic field threading the disk, the midplane accretion speed, and the midplane migration speed of flux surfaces. I present a representative solution that corresponds to a disk in the ambipolar conductivity regime with a nominal neutral-matter-magnetic-field coupling parameter that is constant along field lines, matched to a wind solution. I conclude with a brief discussion of the importance of self-similar disk/wind models in studying global processes such as dust evolution in protostellar systems. Presented as a dissertation to the Department of Astronomy and Astrophysics, The University of Chicago, in partial fulfillment of the requirements for the PhD degree.

  20. A model for astrophysical spallation reactions

    NASA Technical Reports Server (NTRS)

    Schmitt, W. F.; Ayres, C. L.; Merker, M.; Shen, B. S. P.

    1974-01-01

    A Monte-Carlo model (RENO) for spallation reactions is described which can treat both the spallations induced by a free nucleon and those induced by a complex nucleus. It differs from other such models in that it employs a discrete-nucleon representation of the nucleus and allows clusters of nucleons to form and to participate in the reaction. The RENO model is particularly suited for spallations involving the relatively light nuclei of astrophysical and cosmic-ray interest.

  1. Simple analytic model for astrophysical S factors

    SciTech Connect

    Yakovlev, D. G.; Beard, M.; Gasques, L. R.; Wiescher, M.

    2010-10-15

    We propose a physically transparent analytic model of astrophysical S factors as a function of a center-of-mass energy E of colliding nuclei (below and above the Coulomb barrier) for nonresonant fusion reactions. For any given reaction, the S(E) model contains four parameters [two of which approximate the barrier potential, U(r)]. They are easily interpolated along many reactions involving isotopes of the same elements; they give accurate practical expressions for S(E) with only several input parameters for many reactions. The model reproduces the suppression of S(E) at low energies (of astrophysical importance) due to the shape of the low-r wing of U(r). The model can be used to reconstruct U(r) from computed or measured S(E). For illustration, we parametrize our recent calculations of S(E) (using the Sao Paulo potential and the barrier penetration formalism) for 946 reactions involving stable and unstable isotopes of C, O, Ne, and Mg (with nine parameters for all reactions involving many isotopes of the same elements, e.g., C+O). In addition, we analyze astrophysically important {sup 12}C+{sup 12}C reaction, compare theoretical models with experimental data, and discuss the problem of interpolating reliably known S(E) values to low energies (E < or approx. 2-3 MeV).

  2. Turbulent Transport In Global Models of Magnetized Accretion Disks

    NASA Astrophysics Data System (ADS)

    Sorathia, Kareem

    The modern theory of accretion disks is dominated by the discovery of the magnetorotational instability (MRI). While hydrodynamic disks satisfy Rayleigh's criterion and there exists no known unambiguous route to turbulence in such disks, a weakly magnetized disk of plasma is subject to the MRI and will become turbulent. This MRI-driven magnetohydrodnamic turbulence generates a strong anisotropic correlation between the radial and azimuthal magnetic fields which drives angular momentum outwards. Accretion disks perform two vital functions in various astrophysical systems: an intermediate step in the gravitational collapse of a rotating gas, where the disk transfers angular momentum outwards and allows material to fall inwards; and as a power source, where the gravitational potential energy of infalling matter can be converted to luminosity. Accretion disks are important in astrophysical processes at all scales in the universe. Studying accretion from first principles is difficult, as analytic treatments of turbulent systems have proven quite limited. As such, computer simulations are at the forefront of studying systems this far into the non-linear regime. While computational work is necessary to study accretion disks, it is no panacea. Fully three-dimensional simulations of turbulent astrophysical systems require an enormous amount of computational power that is inaccessible even to sophisticated modern supercomputers. These limitations have necessitated the use of local models, in which a small spatial region of the full disk is simulated, and constrain numerical resolution to what is feasible. These compromises, while necessary, have the potential to introduce numerical artifacts in the resulting simulations. Understanding how to disentangle these artifacts from genuine physical phenomena and to minimize their effect is vital to constructing simulations that can make reliable astrophysical predictions and is the primary concern of the work presented here. The use

  3. Exploring non-normality in magnetohydrodynamic rotating shear flows: Application to astrophysical accretion disks

    NASA Astrophysics Data System (ADS)

    Singh Bhatia, Tanayveer; Mukhopadhyay, Banibrata

    2016-10-01

    shear flows are ubiquitous in astrophysics, especially accretion disks, where molecular viscosity is too low to account for observed data. The primary accepted cause of energy-momentum transport therein is turbulent viscosity. Hence, these results would have important implications in astrophysics.

  4. Astrophysical Plasmas: Codes, Models, and Observations

    NASA Astrophysics Data System (ADS)

    Canto, Jorge; Rodriguez, Luis F.

    2000-05-01

    The conference Astrophysical Plasmas: Codes, Models, and Observations was aimed at discussing the most recent advances, arid some of the avenues for future work, in the field of cosmical plasmas. It was held (hiring the week of October 25th to 29th 1999, at the Centro Nacional de las Artes (CNA) in Mexico City, Mexico it modern and impressive center of theaters and schools devoted to the performing arts. This was an excellent setting, for reviewing the present status of observational (both on earth and in space) arid theoretical research. as well as some of the recent advances of laboratory research that are relevant, to astrophysics. The demography of the meeting was impressive: 128 participants from 12 countries in 4 continents, a large fraction of them, 29% were women and most of them were young persons (either recent Ph.Ds. or graduate students). This created it very lively and friendly atmosphere that made it easy to move from the ionization of the Universe and high-redshift absorbers, to Active Galactic Nucleotides (AGN)s and X-rays from galaxies, to the gas in the Magellanic Clouds and our Galaxy, to the evolution of H II regions and Planetary Nebulae (PNe), and to the details of plasmas in the Solar System and the lab. All these topics were well covered with 23 invited talks, 43 contributed talks. and 22 posters. Most of them are contained in these proceedings, in the same order of the presentations.

  5. DiskJockey: Protoplanetary disk modeling for dynamical mass derivation

    NASA Astrophysics Data System (ADS)

    Czekala, Ian

    2016-03-01

    DiskJockey derives dynamical masses for T Tauri stars using the Keplerian motion of their circumstellar disks, applied to radio interferometric data from the Atacama Large Millimeter Array (ALMA) and the Submillimeter Array (SMA). The package relies on RADMC-3D (ascl:1202.015) to perform the radiative transfer of the disk model. DiskJockey is designed to work in a parallel environment where the calculations for each frequency channel can be distributed to independent processors. Due to the computationally expensive nature of the radiative synthesis, fitting sizable datasets (e.g., SMA and ALMA) will require a substantial amount of CPU cores to explore a posterior distribution in a reasonable timeframe.

  6. Few-body models for nuclear astrophysics

    SciTech Connect

    Descouvemont, P.; Baye, D.; Aoyama, S.; Arai, K.

    2014-04-15

    We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  7. Dynamo magnetic field modes in thin astrophysical disks - An adiabatic computational approximation

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1991-01-01

    An adiabatic approximation is applied to the calculation of turbulent MHD dynamo magnetic fields in thin disks. The adiabatic method is employed to investigate conditions under which magnetic fields generated by disk dynamos permeate the entire disk or are localized to restricted regions of a disk. Two specific cases of Keplerian disks are considered. In the first, magnetic field diffusion is assumed to be dominated by turbulent mixing leading to a dynamo number independent of distance from the center of the disk. In the second, the dynamo number is allowed to vary with distance from the disk's center. Localization of dynamo magnetic field structures is found to be a general feature of disk dynamos, except in the special case of stationary modes in dynamos with constant dynamo number. The implications for the dynamical behavior of dynamo magnetized accretion disks are discussed and the results of these exploratory calculations are examined in the context of the protosolar nebula and accretion disks around compact objects.

  8. ON THE ANISOTROPIC NATURE OF MRI-DRIVEN TURBULENCE IN ASTROPHYSICAL DISKS

    SciTech Connect

    Murphy, Gareth C.; Pessah, Martin E. E-mail: mpessah@nbi.dk

    2015-04-01

    The magnetorotational instability (MRI) is thought to play an important role in enabling accretion in sufficiently ionized astrophysical disks. The rate at which MRI-driven turbulence transports angular momentum is intimately related to both the strength of the amplitudes of the fluctuations on various scales and the degree of anisotropy of the underlying turbulence. This has motivated several studies to characterize the distribution of turbulent power in spectral space. In this paper we investigate the anisotropic nature of MRI-driven turbulence using a pseudo-spectral code and introduce novel ways for providing a robust characterization of the underlying turbulence. We study the growth of the MRI and the subsequent transition to turbulence via parasitic instabilities, identifying their potential signature in the late linear stage. We show that the general flow properties vary in a quasi-periodic way on timescales comparable to ∼10 inverse angular frequencies, motivating the temporal analysis of its anisotropy. We introduce a 3D tensor invariant analysis to quantify and classify the evolution of the anisotropy of the turbulent flow. This analysis shows a continuous high level of anisotropy, with brief sporadic transitions toward two- and three-component isotropic turbulent flow. This temporal-dependent anisotropy renders standard shell averaging especially when used simultaneously with long temporal averages, inadequate for characterizing MRI-driven turbulence. We propose an alternative way to extract spectral information from the turbulent magnetized flow, whose anisotropic character depends strongly on time. This consists of stacking 1D Fourier spectra along three orthogonal directions that exhibit maximum anisotropy in Fourier space. The resulting averaged spectra show that the power along each of the three independent directions differs by several orders of magnitude over most scales, except the largest ones. Our results suggest that a first

  9. On the Anisotropic Nature of MRI-driven Turbulence in Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    Murphy, Gareth C.; Pessah, Martin E.

    2015-04-01

    The magnetorotational instability (MRI) is thought to play an important role in enabling accretion in sufficiently ionized astrophysical disks. The rate at which MRI-driven turbulence transports angular momentum is intimately related to both the strength of the amplitudes of the fluctuations on various scales and the degree of anisotropy of the underlying turbulence. This has motivated several studies to characterize the distribution of turbulent power in spectral space. In this paper we investigate the anisotropic nature of MRI-driven turbulence using a pseudo-spectral code and introduce novel ways for providing a robust characterization of the underlying turbulence. We study the growth of the MRI and the subsequent transition to turbulence via parasitic instabilities, identifying their potential signature in the late linear stage. We show that the general flow properties vary in a quasi-periodic way on timescales comparable to ∼10 inverse angular frequencies, motivating the temporal analysis of its anisotropy. We introduce a 3D tensor invariant analysis to quantify and classify the evolution of the anisotropy of the turbulent flow. This analysis shows a continuous high level of anisotropy, with brief sporadic transitions toward two- and three-component isotropic turbulent flow. This temporal-dependent anisotropy renders standard shell averaging especially when used simultaneously with long temporal averages, inadequate for characterizing MRI-driven turbulence. We propose an alternative way to extract spectral information from the turbulent magnetized flow, whose anisotropic character depends strongly on time. This consists of stacking 1D Fourier spectra along three orthogonal directions that exhibit maximum anisotropy in Fourier space. The resulting averaged spectra show that the power along each of the three independent directions differs by several orders of magnitude over most scales, except the largest ones. Our results suggest that a first

  10. Shape: A 3D Modeling Tool for Astrophysics.

    PubMed

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  11. Crystalline structure of accretion disks: Features of a global model

    NASA Astrophysics Data System (ADS)

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. PlasmasPHPAEN1070-664X10.1063/1.1883667 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J.AJLEEY0004-637X10.1086/500315 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  12. Crystalline structure of accretion disks: features of a global model.

    PubMed

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. Plasmas 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J. 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  13. Force-Free Models of Magnetically Linked Star--Disk Systems

    NASA Astrophysics Data System (ADS)

    Uzdensky, D. A.; Königl, A.; Litwin, C.

    2000-12-01

    Disk accretion onto a magnetized star occurs in a variety of astrophysical contexts, from young stars to X-ray pulsars. The magnetohydrodynamic interaction between the stellar field and the accreting matter can have a strong effect on the disk structure, the transfer of mass and angular momentum between the disk and the star, and the production of bipolar outflows, e.g., plasma jets. We study a key element of this interaction --- the time evolution of the magnetic field configuration brought about by the relative rotation between the disk and the star --- using simplified, largely semianalytic, models. We first discuss the rapid inflation and opening up of the magnetic field lines in the corona above the accretion disk, which is caused by the differential rotation twisting. Then we consider additional physical effects that tend to limit this expansion, such as the effect of plasma inertia and the possibility of reconnection in the disk's corona, the latter possibly leading to repeated cycles in the evolution. We also derive the condition for the existence of a steady state for a resistive disk and conclude that a steady state configuration is not realistically possible. Finally, we generalize our analysis of the opening of magnetic field lines by using a non-self-similar numerical model that applies to an arbitrarily rotating (e.g. keplerian) disk. Work supported by NASA grants NAG 5-3687 and NAG 5-1485 and by ASCI/Alliances Center for Astrophysical Thermonuclear Flashes under DOE subcontract B341495.

  14. Modeling sgB[e] Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Feldmeier, A.; Krtička, J.

    2017-02-01

    During their evolution, massive stars are characterized by a significant loss of mass either via spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around these objects is still under debate. Is it a viscous disk or an ouftlowing disk-forming wind or some other mechanism? It is also unclear how various physical mechanisms that act on the circumstellar environment of the stars affect its shape, density, kinematic, and thermal structure. We assume that the disk-forming mechanism is a viscous transport within an equatorial outflowing disk of a rapidly or even critically rotating star. We study the hydrodynamic and thermal structure of optically thick dense parts of outflowing circumstellar disks that may form around, e.g., Be stars, sgB[e] stars, or Pop III stars. We calculate self-consistent time-dependent models of the inner dense region of the disk that is strongly affected either by irradiation from the central star and by contributions of viscous heating effects. We also simulate the dynamic effects of collision between expanding ejecta of supernovae and circumstellar disks that may be form in sgB[e] stars and, e.g., LBVs or Pop III stars.

  15. Improving the thin-disk models of circumstellar disk evolution. The 2+1-dimensional model

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.; Pavlyuchenkov, Yaroslav N.

    2017-09-01

    Context. Circumstellar disks of gas and dust are naturally formed from contracting pre-stellar molecular cores during the star formation process. To study various dynamical and chemical processes that take place in circumstellar disks prior to their dissipation and transition to debris disks, the appropriate numerical models capable of studying the long-term disk chemodynamical evolution are required. Aims: We improve the frequently used 2D hydrodynamical model for disk evolution in the thin-disk limit by employing a better calculation of the disk thermal balance and adding a reconstruction of the disk vertical structure. Together with the hydrodynamical processes, the thermal evolution is of great importance since it influences the strength of gravitational instability and the chemical evolution of the disk. Methods: We present a new 2+1-dimensional numerical hydrodynamics model of circumstellar disk evolution, where the thin-disk model is complemented with the procedure for calculating the vertical distributions of gas volume density and temperature in the disk. The reconstruction of the disk vertical structure is performed at every time step via the solution of the time-dependent radiative transfer equations coupled to the equation of the vertical hydrostatic equilibrium. Results: We perform a detailed comparison between circumstellar disks produced with our previous 2D model and with the improved 2+1D approach. The structure and evolution of resulting disks, including the differences in temperatures, densities, disk masses, and protostellar accretion rates, are discussed in detail. Conclusions: The new 2+1D model yields systematically colder disks, while the in-falling parental clouds are warmer. Both effects act to increase the strength of disk gravitational instability and, as a result, the number of gravitationally bound fragments that form in the disk via gravitational fragmentation as compared to the purely 2D thin-disk simulations with a simplified

  16. Modeling Gas Distribution in Protoplanetary Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kronberg, Martin; Lewis, Josiah; Brittain, Sean

    2010-07-01

    Protoplanetary accretion disks are disks of dust and gas which surround and feed material onto a forming star in the earliest stages of its evolution. One of the most useful methods for studying these disks is near infrared spectroscopy of rovibrational CO emission. This paper presents the methods in which synthetically generated spectra are modeled and fit to spectral data gathered from protoplanetary disks. This paper also discussed the methods in which this code can be improved by modifying the code to run a Monte Carlo analysis of best fit across the CONDOR cluster at Clemson University, thereby allowing for the creation of a catalog of protoplanetary disks with detailed information about them as gathered from the model.

  17. Analytic models of relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. V.

    2015-06-01

    We present not a literature review but a description, as detailed and consistent as possible, of two analytic models of disk accretion onto a rotating black hole: a standard relativistic disk and a twisted relativistic disk. Although one of these models is older than the other, both are of topical interest for black hole studies. The treatment is such that the reader with only a limited knowledge of general relativity and relativistic hydrodynamics, with little or no use of additional sources, can gain insight into many technical details lacking in the original papers.

  18. Modeling collisions in circumstellar debris disks

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  19. A Realistic Accretion Disk Model for AGNs

    NASA Technical Reports Server (NTRS)

    Suleimanov, V.; Ghosh, K. K.; Austin, R. A.; Ramsey, B. D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We present a new relativistic accretion disk model of AGNs, based on alpha modified accretion disk theory, where alpha is a parameter that characterizes the efficiency of the mechanism of angular momentum transport. In this model we have considered a geometrically-thin, high-luminosity (alpha-accretion disk, around a supermassive black hole. The geometrically thin limit assumes a local energy balance within the accretion disk, which has been used to derive the plasma temperature of the disk. The energy balance equation has three solutions: low, medium and high temperature, depending on the heating rate of the accretion disk. We predict that the inner part of a high luminosity accretion disk is in the high- temperature (10(exp 7) to 10(exp 9) K) state and for this we obtain the high temperature solution of the energy balance equation using a Comptonization process. We find the local spectrum of each ring of the disk (we have divided the high temperature region of the disk into 50 rings) to be a diluted Wien spectrum. However, the emergent integral spectrum of the high temperature region is a power-law with a high-energy cutoff that depends on the basic parameters of AGNs (the accretion rate, the incidence angle, and the mass and the angular momentum of the central black hole). We have fitted the observed spectra of 28 AGNs using the present model and have derived the values of the basic parameters of these AGNs. Results of these spectral fittings have been discussed in the framework of the unification model of AGNs.

  20. An MCMC Circumstellar Disks Modeling Tool

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler; Perrin, Marshall D.; Mazoyer, Johan; Choquet, Elodie; Soummer, Remi; Ren, Bin; Pueyo, Laurent; Debes, John H.; Duchene, Gaspard; Pinte, Christophe; Menard, Francois

    2016-01-01

    We present an enhanced software framework for the Monte Carlo Markov Chain modeling of circumstellar disk observations, including spectral energy distributions and multi wavelength images from a variety of instruments (e.g. GPI, NICI, HST, WFIRST). The goal is to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in the derived properties. This modular code is designed to work with a collection of existing modeling tools, ranging from simple scripts to define the geometry for optically thin debris disks, to full radiative transfer modeling of complex grain structures in protoplanetary disks (using the MCFOST radiative transfer modeling code). The MCMC chain relies on direct chi squared comparison of model images/spectra to observations. We will include a discussion of how best to weight different observations in the modeling of a single disk and how to incorporate forward modeling from PCA PSF subtraction techniques. The code is open source, python, and available from github. Results for several disks at various evolutionary stages will be discussed.

  1. Are Bulges and Disks Real? Decomposing Spectral Data Cubes Into Their Astrophysical Components

    NASA Astrophysics Data System (ADS)

    Merrifield, Michael; Tabor, Martha; Aragon-Salamanca, Alfonso; Cappellari, Michele; Johnston, Evelyn

    2016-01-01

    Decomposing galaxies photometrically into bulge and disk components is now a well-established technique, but it remains unclear how distinct and real these components are, and how they relate to each other. To address these questions, we have been developing novel techniques to extract the various structural components from integral field unit (IFU) spectral observations of galaxies, in order to study simultaneously their spectral and spatial properties.As a first approach, by spatially decomposing each wavelength in a spectral data cube, we can discover how much light comes from the separate components as a function of wavelength, and hence derive unprecedentedly high quality spectra of bulge and disk for detailed analysis of their stellar populations.In addition, we have decomposed spectral data cubes by fitting the spectrum at each location with the sum of two components, with the spectral properties left entirely free to fit both kinematic and stellar population properties, subject only to the constraint that the relative flux contributions match those of a conventional bulge-disk decomposition.Initial results applied to MaNGA and other IFU surveys show the power of these techniques when applied to such high quality data. The first method allows us to understand the formation sequence of bulges and disks, with, for example, bulges showing the younger stellar populations in S0 galaxies, implying that this was where the last gasp of star formation occurred. The second technique reveals subtle population gradients within individual components, but also confirms that the decomposition into separate components is a credible procedure, as the resulting bulges and disks have entirely plausible kinematic properties that are in no way imposed by the decomposition.Although our initial application of these decomposition techniques has been to studying bulges and disks in S0 galaxies, the methods have much wider application to the spectral data cubes that MaNGA and other

  2. Systemization and Use of Atomic Data for Astrophysical Modeling

    NASA Astrophysics Data System (ADS)

    Brickhouse, Nancy S.

    The growth of supercomputing capabilities over the past decade has led to tremendous opportunities to produce theoretical atomic data for use in modeling astrophysical plasmas; however, not all data are created equally. Both accurate and complete atomic data are important to astrophysical modeling via plasma codes. Critical theoretical evaluations, experimental benchmarks, and even astrophysical observations themselves are all useful in assessing the temperatures, densities, opacities, abundances, and other physical quantities determined from spectroscopy. The database challenge for the future is to move toward increasing both flexibility and standardization of atomic data formats so that the quality of the data can be taken into account in modeling. Problems in X-ray spectroscopy will illustrate the importance of opening up what has often been a black box to many astronomers.

  3. WAVE-VORTEX MODE COUPLING IN ASTROPHYSICAL ACCRETION DISKS UNDER COMBINED RADIAL AND VERTICAL STRATIFICATION

    SciTech Connect

    Salhi, A.; Lehner, T.; Godeferd, F.; Cambon, C.

    2013-07-10

    We examine accretion disk flow under combined radial and vertical stratification utilizing a local Cartesian (or ''shearing box'') approximation. We investigate both axisymmetric and nonaxisymmetric disturbances with the Boussinesq approximation. Under axisymmetric disturbances, a new dispersion relation is derived. It reduces to the Solberg-Hoieland criterion in the case without vertical stratification. It shows that, asymptotically, stable radial and vertical stratification cannot induce any linear instability; Keplerian flow is accordingly stable. Previous investigations strongly suggest that the so-called bypass concept of turbulence (i.e., that fine-tuned disturbances of any inviscid smooth shear flow can reach arbitrarily large transient growth) can also be applied to Keplerian disks. We present an analysis of this process for three-dimensional plane-wave disturbances comoving with the shear flow of a general rotating shear flow under combined stable radial and vertical rotation. We demonstrate that large transient growth occurs for K{sub 2}/k{sub 1} >> 1 and k{sub 3} = 0 or k{sub 1} {approx} k{sub 3}, where k{sub 1}, K{sub 2}, and k{sub 3} are the azimuthal, radial, and vertical components of the initial wave vector, respectively. By using a generalized ''wave-vortex'' decomposition of the disturbance, we show that the large transient energy growth in a Keplerian disk is mainly generated by the transient dynamics of the vortex mode. The analysis of the power spectrum of total (kinetic+potential) energy in the azimuthal or vertical directions shows that the contribution coming from the vortex mode is dominant at large scales, while the contribution coming from the wave mode is important at small scales. These findings may be confirmed by appropriate numerical simulations in the high Reynolds number regime.

  4. Astrophysical models of r-process nucleosynthesis: An update

    SciTech Connect

    Qian Yongzhong

    2012-11-12

    An update on astrophysical models for nucleosynthesis via rapid neutron capture, the r process, is given. A neutrino-induced r process in supernova helium shells may have operated up to metallicities of {approx} 10{sup -3} times the solar value. Another r-process source, possibly neutron star mergers, is required for higher metallicities.

  5. An Anisotropic Multiphysics Model for Intervertebral Disk

    PubMed Central

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-01-01

    Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD. PMID:27099402

  6. Astrophysical and terrestrial constraints on singlet Majoron models

    NASA Astrophysics Data System (ADS)

    Pilaftsis, Apostolos

    1994-03-01

    The general Lagrangian containing the couplings of the Higgs scalars to Majorana neutrinos is presented in the context of singlet Majoron models with intergenerational mixings. The analytical expressions for the coupling of the Majoron field to charged fermions are derived within these models. Astrophysical considerations imply severe restrictions on the parameters of the three-generation Majoron model if the Dirac neutrino mass matrix of the model follows a mass hierarchical pattern dictated by grand unified theories. Bounds that originate from analyzing possible charged lepton-violating decays in terrestrial experiments are also discussed. In particular, we find that experimental searches for muon decays by Majoron emission cannot generally be precluded by astrophysical requirements.

  7. Laboratory Study of Magnetohydrodynamic and Hydrodynamic Instabilities in Rotating Flows Relevant to Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    Ji, Hantao

    Efficient dissipation of the orbital energy of plasma occurs in accretion disks ranging from those in which planets form around protostars, to those around supermassive black holes in active galactic nuclei. Two mechanisms have been proposed for the turbulence that drives dissipation and angular-momentum transport in such disks: (1) a linear instability of magnetized and electrically conducting flow known as magnetorotational instability (MRI); and (2) nonlinear hydrodynamic shear-flow instability. Two laboratory apparatuses have been constructed at Princeton to study these mechanisms. The LiquidMetal MRI experiment is designed to study MRI and related MHD instabilities. The Hydrodynamic Turbulence Experiment (HTX) is designed to study nonlinear hydrodynamic transition. Both of these devices are novel in two respects: large Reynolds numbers (Regtrsim 10(6) ) and multiple independently driven rings on the axial boundaries to minimize secondary (Ekman) flows. We have demonstrated negligible angular momentum transport at Re ≤ 2× 10(6) in quasi-keplerian hydrodynamic flow with minimized Ekman circulation. This result, published in Nature, has generated significant interest among astrophysicists and fluid dynamicists. Recently, the MHD experiment has demonstrated robust nonaxisymmetric Shercliff-layer instabilities in strong axial magnetic fields. The latter result has paved a clear path towards first conclusive demonstration of MRI in the laboratory. Support is requested to continue fundamental laboratory studies with these devices. The proposed research will focus on experimental studies of the following major questions: (Q1) Why are quasi-keplerian flows resistant to turbulence? Can the turbulence found by other experiments be explained by differences in the boundary conditions or diagnostics used? Can nonlinear hydrodynamic transition occur in flow that is partially magnetized but too diffusive for MRI? (Q2) How do MRI, Shercliff-layer instabilities, and other

  8. ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS

    SciTech Connect

    Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D.; Ingleby, L.; Calvet, N.; Hernandez, J.; Furlan, E.; D'Alessio, P.; Muzerolle, J. E-mail: sandrews@cfa.harvard.edu E-mail: dwilner@cfa.harvard.edu E-mail: ncalvet@umich.edu E-mail: Elise.Furlan@jpl.nasa.gov E-mail: muzerol@stsci.edu

    2012-03-10

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

  9. Modeling of Radiative Transfer in Protostellar Disks

    NASA Technical Reports Server (NTRS)

    VonAllmen, Paul; Turner, Neal

    2007-01-01

    This program implements a spectral line, radiative transfer tool for interpreting Spitzer Space Telescope observations by matching them with models of protostellar disks for improved understanding of planet and star formation. The Spitzer Space Telescope detects gas phase molecules in the infrared spectra of protostellar disks, with spectral lines carrying information on the chemical composition of the material from which planets form. Input to the software includes chemical models developed at JPL. The products are synthetic images and spectra for comparison with Spitzer measurements. Radiative transfer in a protostellar disk is primarily affected by absorption and emission processes in the dust and in molecular gases such as H2, CO, and HCO. The magnitude of the optical absorption and emission is determined by the population of the electronic, vibrational, and rotational energy levels. The population of the molecular level is in turn determined by the intensity of the radiation field. Therefore, the intensity of the radiation field and the population of the molecular levels are inter-dependent quantities. To meet the computational challenges of solving for the coupled radiation field and electronic level populations in disks having wide ranges of optical depths and spatial scales, the tool runs in parallel on the JPL Dell Cluster supercomputer with C++ and Fortran compiler with a Message Passing Interface. Because this software has been developed on a distributed computing platform, the modeling of systems previously beyond the reach of available computational resources is possible.

  10. Astrophysical constraints on extended gravity models

    SciTech Connect

    Lambiase, Gaetano; Stabile, Antonio; Sakellariadou, Mairi; Stabile, Arturo E-mail: mairi.sakellariadou@kcl.ac.uk E-mail: arturo.stabile@gmail.com

    2015-07-01

    We investigate the propagation of gravitational waves in the context of fourth order gravity nonminimally coupled to a massive scalar field. Using the damping of the orbital period of coalescing stellar binary systems, we impose constraints on the free parameters of extended gravity models. In particular, we find that the variation of the orbital period is a function of three mass scales which depend on the free parameters of the model under consideration; we can constrain these mass scales from current observational data.

  11. a Unified Model of High-Energy Astrophysical Phenomena

    NASA Astrophysics Data System (ADS)

    de Rújula, A.

    I outline a unified model of high-energy astrophysics, in which the gamma background radiation, cluster "cooling flows", gamma-ray bursts, X-ray flashes and cosmic-ray electrons and nuclei of all energies — share a common origin. The mechanism underlying these phenomena is the emission of relativistic "cannonballs" by ordinary supernovae, analogous to the observed ejection of plasmoids by quasars and microquasars. I concentrate on Cosmic Rays: the longest-lasting conundrum in astrophysics. The distribution of Cosmic Rays in the Galaxy, their total "luminosity", the broken power-law spectra with their observed slopes, the position of the knee(s) and ankle(s), and the alleged variations of composition with energy are all explained in terms of simple and "standard" physics. The model is only lacking a satisfactory theoretical understanding of the "cannon" that emits the cannonballs in catastrophic episodes of accretion onto a compact object.

  12. Global self-similar protostellar disk/wind models

    NASA Astrophysics Data System (ADS)

    Teitler, Seth A.

    The magnetocentrifugal disk wind mechanism is the leading candidate for producing the large-scale, bipolar jets commonly seen in protostellar systems. I present a detailed formulation of a global, radially self-similar model for a fully general, non-ideal disk that launches a magnetocentrifugal disk wind. This formulation generalizes the conductivity tensor formalism previously used in radially localized disk models to a global disk model. The model involves matching a solution of the equations of non-ideal MHD describing matter in the disk to a solution of the equations of ideal MHD describing a "cold" wind. The disk solution is required to pass smoothly through the sonic point, the wind solution is required to pass smoothly through the Alfven point, and the two solutions must match at the disk/wind interface. This model includes for the first time a self-consistent treatment of the evolution of magnetic flux threading the disk, which can change on the disk accretion timescale. These constraints fix the distribution of the magnetic field threading the disk, the midplane accretion speed, and the midplane migration speed of flux surfaces. Specializing to the case of a disk in the ambipolar diffusivity regime, I present a representative solution using the neutral matter-field coupling constant. I conclude with a brief discussion of the importance of self-similar disk/wind models in studying global processes in protostellar systems.

  13. Astrophysical Probes of New Models of Dark Matter

    NASA Astrophysics Data System (ADS)

    Zurek, Kathryn

    One of the most pressing and relevant cosmological questions is on the nature of the dark matter. I propose a comprehensive program at the boundary of astrophysics and cosmology with particle physics, focused on the question on the nature of the Dark Matter (DM). Research at the boundary of the two fields is critically important as a plethora of experiments in both particle physics and astrophysics, such as direct and indirect detection of Dark Matter (DM) by the Fermi Gamma Ray Space Telescope (FGST), AMS-02, and Cosmic Microwave Background probes such as Planck, come online. At the same time, data from the Large Hadron Collider (LHC) will probe fundamental questions about Electroweak Symmetry Breaking and its implications for astrophysics and cosmology, as concerns especially the nature of the DM and the generation of the baryon asymmetry. Physics beyond the Standard Model (SM) is required to explain the astrophysical observation that DM dominates over ordinary matter by a ratio 5:1, as we learned through WMAP, as well as large scale structure surveys. Despite lacking an understanding of the properties of the DM, its presence is crucial for the formation of structure in the universe. Particle physics provides a framework for understanding what the DM could be. This proposal centers on building new models of DM, as well as studying their signatures both in the galaxy and on earth. While particle physics has provided a few popular candidates for DM (such as the supersymmetric neutralino), whose signatures have been extensively studied in the literature, it is important to consider other theoretically motivated candidates which provide distinct signatures. This proposal focuses on such new models of DM, especially models of DM from hidden sectors. For example, recently, the PAMELA experiment has observed a rise in the ratio of positron to electron flux at high energies. The flux may likely come from astrophysical objects nearby, such as pulsars. An intriguing

  14. Disk-instability model for outbursts of dwarf novae. II Full-disk calculations

    NASA Astrophysics Data System (ADS)

    Mineshige, S.; Osaki, Y.

    The time evolution of unstable accretion disks was calculated by solving full-disk equations in the nonthermal equilibrium situation. It is confirmed that instabilities based on a constant-alpha disk (where alpha is the standard viscosity parameter) yield only small amplitude continuous light variation and thus fail to reproduce the dwarf-nova outbursts. By assigning high alpha in hot state and low alpha in cool state, the basic feature of dwarf-nova outbursts can be reproduced by the disk-instability model. Numerical results are presented for two typical cases of outbursts, types A and B in Smak's (1984) notation. The local variations in the accretion disks and the global propagation of the transition waves are then discussed in detail. The propagation of transition waves is fairly complicated, particularly in the case when a heating wave propagating outward is reflected in the middle of the disk as a cooling wave.

  15. Modeling gas-dust interactions in debris disks

    NASA Astrophysics Data System (ADS)

    Richert, Alex J. W.; Kuchner, Marc J.; Lyra, Wladimir

    2017-01-01

    The discovery of gas in debris disks has raised the question of whether gas-dust interactions can observably affect global disk structure. This has important implications for identifying planets in debris disks, as well as probing dust grain composition, which is key to understanding the habitability of planetary systems. In this dissertation talk, I present two-dimensional global hydrodynamical models of debris disks with gas and discuss the effects of the gas on the global distribution of the dust.

  16. Hydrodynamical Modeling of Large Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Krtǐcka, J.

    2016-11-01

    Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. We also study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We use analytical calculations to study the stability of outflowing disks submerged to the magnetic field. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Therefore, the disk sonic radius can be roughly considered as an outer disk radius.

  17. EMPIRE: A Reaction Model Code for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Palumbo, A.; Herman, M.; Capote, R.

    2014-06-01

    The correct modeling of abundances requires knowledge of nuclear cross sections for a variety of neutron, charged particle and γ induced reactions. These involve targets far from stability and are therefore difficult (or currently impossible) to measure. Nuclear reaction theory provides the only way to estimate values of such cross sections. In this paper we present application of the EMPIRE reaction code to nuclear astrophysics. Recent measurements are compared to the calculated cross sections showing consistent agreement for n-, p- and α-induced reactions of strophysical relevance.

  18. Nonthermal accretion disk models around neutron stars

    NASA Technical Reports Server (NTRS)

    Tavani, M.; Liang, Edison P.

    1994-01-01

    We consider the structure and emission spectra of nonthermal accretion disks around both strongly and weakly magnetized neutron stars. Such disks may be dissipating their gravitational binding energy and transferring their angular momentum via semicontinuous magnetic reconnections. We consider specifically the structure of the disk-stellar magnetospheric boundary where magnetic pressure balances the disk pressure. We consider energy dissipation via reconnection of the stellar field and small-scale disk turbulent fields of opposite polarity. Constraints on the disk emission spectrum are discussed.

  19. TOWARD A GLOBAL EVOLUTIONARY MODEL OF PROTOPLANETARY DISKS

    SciTech Connect

    Bai, Xue-Ning

    2016-04-20

    A global picture of the evolution  of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  20. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    NASA Technical Reports Server (NTRS)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to

  1. Cosmological and astrophysical constraints on tachyon dark energy models

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Moucherek, F. M. O.

    2016-06-01

    Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant α . Here we take advantage of recent observational progress and use a combination of background cosmological observations of type Ia supernovas and astrophysical and local measurements of α to improve constraints on this class of models. We show that the constraints on α imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state (1 +w0)<2.4 ×10-7 at the 99.7% confidence level. Therefore current and forthcoming standard background cosmology observational probes cannot distinguish this class of models from a cosmological constant, while detections of α variations could possibly do so since they would have a characteristic redshift dependence.

  2. Vibro-Acoustic Model of a Disk Drive

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Ran; Singh, Rajendra

    A new mathematical model of the vibro-acoustic characteristics of a computer hard-disk drive is presented in this paper. In particular, a mobility transfer function is defined that links sound radiated by a stationary or rotating disk to electromagnetic torque pulsations and structural dynamics. A simplified disk-drive system consisting of a brushless d.c. motor driving a single disk-spindle assembly, which is mounted on a flexible casing, is considered as the example case. Parametric studies illustrate the roles of bearing stiffness and disk geometry on the vibration and radiated sound.

  3. Models of unsaturated Compton disks around supermassive black holes

    NASA Technical Reports Server (NTRS)

    Liang, E. P. T.; Thompson, K. A.

    1979-01-01

    Two inverse-Compton disk models for the hard X-ray spectra of quasi-stellar objects and active galactic nuclei are studied and compared. One is a slightly generalized version of the Shapiro, Lightman and Eardley optically thin disk model, and the other is a conduction-stabilized Corona model. Observational distinctions between the two models are discussed.

  4. Models of unsaturated Compton disks around supermassive black holes

    NASA Technical Reports Server (NTRS)

    Liang, E. P. T.; Thompson, K. A.

    1979-01-01

    Two inverse-Compton disk models for the hard X-ray spectra of quasi-stellar objects and active galactic nuclei are studied and compared. One is a slightly generalized version of the Shapiro, Lightman and Eardley optically thin disk model, and the other is a conduction-stabilized Corona model. Observational distinctions between the two models are discussed.

  5. Spectral line shapes modeling in laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Stamm, R.; Boland, D.; Christova, M.; Godbert-Mouret, L.; Koubiti, M.; Marandet, Y.; Mekkaoui, A.; Rosato, J.

    2009-07-01

    An overview of several spectral line shapes studies of common interest in astrophysical and laboratory plasmas is presented. For lines dominated by Stark broadening, approaches taking into account the dynamics of numerous perturbers are sometimes required. We briefly recall ab initio simulation techniques and model microfield methods used for such conditions. Together with the impact approximation, such models may also be used for studying the effects on a line profile of a magnetic field of the order of the tesla, allowing the diagnostic of stellar objects or magnetic fusion devices. The problem of the apparent spectral line emitted in a plasma affected by strong fluctuations of the plasma parameters is discussed for the case of optically thin plasmas.

  6. On numerical considerations for modeling reactive astrophysical shocks

    SciTech Connect

    Papatheodore, Thomas L.; Messer, O. E. Bronson E-mail: bronson@ornl.gov

    2014-02-10

    Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds and associated quantities is to prohibit burning inside the numerically broadened shock. We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in models of Type Ia supernovae, including potential impacts on observables.

  7. A weakened cascade model for turbulence in astrophysical plasmas

    SciTech Connect

    Howes, G. G.; TenBarge, J. M.; Dorland, W.

    2011-10-15

    A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.

  8. On Numerical Considerations for Modeling Reactive Astrophysical Shocks

    SciTech Connect

    Papatheodore, Thomas L; Messer, Bronson

    2014-01-01

    Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds (and associated quantities) is to prohibit burning inside the numerically broadened shock (Fryxell et al. 1989). We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that, in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. (1989). In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly-resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in Type Ia supernovae.

  9. Vector Interaction Enhanced Bag Model for Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Klähn, Thomas; Fischer, Tobias

    2015-09-01

    For quark matter studies in astrophysics the thermodynamic bag model (tdBAG) has been widely used. Despite its success it fails to account for various phenomena expected from QCD. We suggest a straightforward extension of tdBAG in order to take the dynamical breaking of chiral symmetry and the influence of vector interactions explicitly into account. As for tdBAG the model mimics confinement in a phenomenological approach. It is based on an analysis of the Nambu-Jona-Lasinio (NJL) model at finite density. Furthermore, we demonstrate how NJL and bag models in this regime follow from the more general and QCD-based framework of the Dyson-Schwinger equations in a medium by assuming simple gluon contact interaction. Based on our simple and novel model, we construct quark hadron hybrid equations of state and systematically study chiral and deconfinement phase transitions, the appearance of s-quarks, and the role of vector interaction. We further study these aspects for matter in β-equilibrium at zero temperature, with particular focus on the current ˜2 {M}⊙ maximum mass constraint for neutron stars. Our approach indicates that the currently only theoretical evidence for the hypothesis of stable strange matter is an artifact of tdBAG and results from neglecting the dynamical breaking of chiral symmetry.

  10. Model of magnetic reconnection in space and astrophysical plasmas

    SciTech Connect

    Boozer, Allen H.

    2013-03-15

    Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.

  11. Modeling Dust Emission of HL Tau Disk Based on Planet-Disk Interactions

    DOE PAGES

    Jin, Sheng; Li, Shengtai; Isella, Andrea; ...

    2016-02-09

    In this paper, we use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 MJup at 13.1, 33.0, and 68.6 AU, respectively. Finally,more » implications for the planet formation as well as the limitations of this scenario are discussed.« less

  12. MODELING DUST EMISSION OF HL TAU DISK BASED ON PLANET–DISK INTERACTIONS

    SciTech Connect

    Jin, Sheng; Ji, Jianghui; Li, Shengtai; Li, Hui; Isella, Andrea

    2016-02-10

    We use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 M{sub Jup} at 13.1, 33.0, and 68.6 AU, respectively. Implications for the planet formation as well as the limitations of this scenario are discussed.

  13. Modeling Dust Emission of HL Tau Disk Based on Planet-Disk Interactions

    SciTech Connect

    Jin, Sheng; Li, Shengtai; Isella, Andrea; Li, Hui; Ji, Jianghui

    2016-02-09

    In this paper, we use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 MJup at 13.1, 33.0, and 68.6 AU, respectively. Finally, implications for the planet formation as well as the limitations of this scenario are discussed.

  14. Consistent dust and gas models for protoplanetary disks. I. Disk shape, dust settling, opacities, and PAHs

    NASA Astrophysics Data System (ADS)

    Woitke, P.; Min, M.; Pinte, C.; Thi, W.-F.; Kamp, I.; Rab, C.; Anthonioz, F.; Antonellini, S.; Baldovin-Saavedra, C.; Carmona, A.; Dominik, C.; Dionatos, O.; Greaves, J.; Güdel, M.; Ilee, J. D.; Liebhart, A.; Ménard, F.; Rigon, L.; Waters, L. B. F. M.; Aresu, G.; Meijerink, R.; Spaans, M.

    2016-02-01

    We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavelengths. The first paper of this series focuses on the assumptions about the shape of the disk, the dust opacities, dust settling, and polycyclic aromatic hydrocarbons (PAHs). In particular, we propose new standard dust opacities for disk models, we present a simplified treatment of PAHs in radiative equilibrium which is sufficient to reproduce the PAH emission features, and we suggest using a simple yet physically justified treatment of dust settling. We roughly adjust parameters to obtain a model that predicts continuum and line observations that resemble typical multi-wavelength continuum and line observations of Class II T Tauri stars. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all mainstream continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63 μm, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties, i.e. large grains, often needed to fit the SED, have important consequences for disk chemistry and heating/cooling balance, leading to stronger near- to far-IR emission lines in general. Strong dust settling and missing disk flaring have similar effects on continuum observations, but opposite effects on far-IR gas emission lines. PAH molecules can efficiently shield the gas from stellar UV radiation because of their strong absorption and negligible scattering opacities in comparison to evolved dust. The observable millimetre-slope of the SED can become significantly more gentle in the case of cold disk midplanes, which we find regularly in our T Tauri models

  15. Investigating FP Tau’s protoplanetary disk structure through modeling

    NASA Astrophysics Data System (ADS)

    Brinjikji, Marah; Espaillat, Catherine

    2017-01-01

    This project presents a study aiming to understand the structure of the protoplanetary disk around FP Tau, a very young, very low mass star in the Taurus star-forming region. We have gathered existing optical, Spitzer, Herschel and submillimeter observations to construct the spectral energy distribution (SED) of FP Tau. We have used the D’Alessio et al (2006) physically self-consistent irradiated accretion disk model including dust settling to model the disk of FP Tau. Using this method, the best fit for the SED of FP Tau is a model that includes a gap located 10-20 AU away from the star. This gap is filled with optically thin dust that separates the optically thick dust in the outer disk from the optically thick dust in the inner disk. These characteristics indicate that FP Tau’s protostellar system is best classified as a pre-transitional disk. Near-infrared interferometry in the K-Band from Willson et al 2016 indicates that FP Tau has a small gap located 10-20 AU from the star, which is consistent with the model we produced, lending further support to the pre-transitional disk interpretation. The most likely explanation for the existence of a gap in the disk is a forming planet.

  16. Modeling Protostar Envelopes and Disks Seen With ALMA

    NASA Astrophysics Data System (ADS)

    Terebey, Susan; Flores-Rivera, Lizxandra; Willacy, Karen

    2017-01-01

    Thermal continuum emission from protostars comes from both the envelope and circumstellar disk. The dust emits on a variety of spatial scales, ranging from sub-arcseconds for disks to roughly 10 arcseconds for envelopes for nearby protostars. We present models of what ALMA should detect that incorporate a self-consistent collapse solution, radiative transfer, and realistic dust properties.

  17. Constraining Dark Matter and Dark Energy Models using Astrophysical Surveys

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka M.

    This thesis addresses astrophysical probes to constrain dark matter (DM) and dark energy models. Primordial black holes (PBHs) remain one of the few DM candidates within the Standard Model of Particle Physics. This thesis presents a new probe of this PBH DM, using the microlensing of the source stars monitored by the already existing Kepler satellite. With its photometric precision and the large projected cross section of the nearby stars, it is found that previous constraints on PBH DM could theoretically be extended by two orders of magnitude. Correcting a well-known microlensing formula, a limb-darkening analysis is included, and a new approximation is calculated for future star selection. A preliminary prediction is calculated for the planned Wide-Field Infrared Survey Telescope. A preliminary study of the first two years of publicly available Kepler data is presented. The investigation yields many new sources of background error not predicted in the theoretical calculations, such as stellar flares and comets in the field of view. Since no PBH candidates are detected, an efficiency of detection is therefore calculated by running a Monte Carlo with fake limb-darkened finite-source microlensing events. It is found that with just the first 8 quarters of data, a full order of magnitude of the PBH mass range can be already constrained. Finally, one of the astrophysical probes of dark energy is also addressed - specifically, the baryon acoustic oscillations (BAO) measurement in the gas distribution, as detected in quasar absorption lines. This unique measurement of dark energy at intermediate redshifts is being measured by current telescope surveys. The last part of this thesis therefore focuses on understanding the systematic effects in such a detection. Since the bias between the underlying dark matter distribution and the measured gas flux distribution is based on gas physics, hydrodynamic simulations are used to understand the evolution of neutral hydrogen over

  18. An analytic performance model of disk arrays and its application

    NASA Technical Reports Server (NTRS)

    Lee, Edward K.; Katz, Randy H.

    1991-01-01

    As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are desirable over other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytical performance models of disk arrays are difficult to formulate due to the presence of queuing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. We develop, validate, and apply an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time, and throughput. We then validate the analytic model via simulation and investigate the accuracy of each approximation used in deriving the analytical model. Finally, we apply the analytical model to derive an equation for the optimal unit of data striping in disk arrays.

  19. Sharp Eccentric Rings in Planetless Hydrodynamical Models of Debris Disks

    NASA Technical Reports Server (NTRS)

    Lyra, W.; Kuchner, M. J.

    2013-01-01

    Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper Belt in our solar system. These "debris disks" show a variety of non-trivial structures attributed to planetary perturbations and utilized to constrain the properties of the planets. However, analyses of these systems have largely ignored the fact that, increasingly, debris disks are found to contain small quantities of gas, a component all debris disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity where the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report that dust-gas interactions can produce some of the key patterns seen in debris disks that were previously attributed to planets. Through linear and nonlinear modeling of the hydrodynamical problem, we find that a robust clumping instability exists in this configuration, organizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The hypothesis that these disks might contain planets, though thrilling, is not necessarily required to explain these systems.

  20. Experimental modeling of jet-ring turbine disk cooling

    NASA Technical Reports Server (NTRS)

    Metzger, D. E.; Kim, Y. W.

    1991-01-01

    The experimental facility and some early results are described from a current research program modeling turbine disk cooling with multiple impinging jets, such as employed on the Space Shuttle Main Engine oxygen turbopump. The study is designed to obtain detailed local convection heat transfer rates on specially constructed turbine disk models that employ either multiple cooling jet impingement near the disk outer radius from a jet ring, or alternatively, single entrance coolant supply into the center of the disk cavity. Jet impingement is an effective scheme for cooling of turbine disks at or near the blade attachment region, but the heat transfer mechanisms and merits relative to other schemes are not well understood. The present study employs two specially constructed full scale plastic model disks, contoured and plane, together with the corresponding stators. Local heat transfer rates are determined by a computer vision system from the response of thin liquid crystal coatings applied to the disk test faces. The present results indicate that multiple jet impingement directed at the blade attachment region results in higher cooling rates in that region than does the same flow supplied to the disk center, but this conclusion must be regarded as tentative.

  1. Experimental dynamic characterizations and modelling of disk vibrations for HDDs.

    PubMed

    Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua

    2008-01-01

    Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.

  2. A Model of Molecular Emission from Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Harrold, Samuel Thomas; Lacy, J.; Salyk, C.; Doty, S.

    2011-01-01

    We present results from a new model describing the mid-infrared emission of simple organic molecules from the protoplanetary disks of low-mass stars. We will test whether indicators of disk evolution, such as grain growth, dust settling, and dust crystallinity, enhance the emission of simple organic molecules in the mid-infrared, in particular that of HCN and C2H2, from the inner few AU of the disk. The Q branches of HCN at 13.9 um and of C2H2 at 13.7 um have been detected in the spectra of disks around T-Tauri stars using Spitzer's IRS (Carr & Najita, 2008). Our new model, pisco, calculates the steady-state disk structure and molecular level populations via non-LTE, 3D radiative transfer. The chemical abundances are determined through a chemical evolutionary code. This work is supported by the NSF GRFP.

  3. PROTOPLANETARY DISK STRUCTURE WITH GRAIN EVOLUTION: THE ANDES MODEL

    SciTech Connect

    Akimkin, V.; Wiebe, D.; Pavlyuchenkov, Ya.; Zhukovska, S.; Semenov, D.; Henning, Th.; Vasyunin, A.; Birnstiel, T. E-mail: dwiebe@inasan.ru E-mail: zhukovska@mpia.de E-mail: henning@mpia.de E-mail: tbirnstiel@cfa.harvard.edu

    2013-03-20

    We present a self-consistent model of a protoplanetary disk: 'ANDES' ('AccretioN disk with Dust Evolution and Sedimentation'). ANDES is based on a flexible and extendable modular structure that includes (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. For the first time, grain evolution and time-dependent molecular chemistry are included in a protoplanetary disk model. We find that grain growth and sedimentation of large grains onto the disk midplane lead to a dust-depleted atmosphere. Consequently, dust and gas temperatures become higher in the inner disk (R {approx}< 50 AU) and lower in the outer disk (R {approx}> 50 AU), in comparison with the disk model with pristine dust. The response of disk chemical structure to the dust growth and sedimentation is twofold. First, due to higher transparency a partly UV-shielded molecular layer is shifted closer to the dense midplane. Second, the presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO there, while in adjacent upper layers the depletion is still effective. Molecular concentrations and thus column densities of many species are enhanced in the disk model with dust evolution, e.g., CO{sub 2}, NH{sub 2}CN, HNO, H{sub 2}O, HCOOH, HCN, and CO. We also show that time-dependent chemistry is important for a proper description of gas thermal balance.

  4. Protoplanetary Disk Structure with Grain Evolution: The ANDES Model

    NASA Astrophysics Data System (ADS)

    Akimkin, V.; Zhukovska, S.; Wiebe, D.; Semenov, D.; Pavlyuchenkov, Ya.; Vasyunin, A.; Birnstiel, T.; Henning, Th.

    2013-03-01

    We present a self-consistent model of a protoplanetary disk: "ANDES" ("AccretioN disk with Dust Evolution and Sedimentation"). ANDES is based on a flexible and extendable modular structure that includes (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. For the first time, grain evolution and time-dependent molecular chemistry are included in a protoplanetary disk model. We find that grain growth and sedimentation of large grains onto the disk midplane lead to a dust-depleted atmosphere. Consequently, dust and gas temperatures become higher in the inner disk (R <~ 50 AU) and lower in the outer disk (R >~ 50 AU), in comparison with the disk model with pristine dust. The response of disk chemical structure to the dust growth and sedimentation is twofold. First, due to higher transparency a partly UV-shielded molecular layer is shifted closer to the dense midplane. Second, the presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO there, while in adjacent upper layers the depletion is still effective. Molecular concentrations and thus column densities of many species are enhanced in the disk model with dust evolution, e.g., CO2, NH2CN, HNO, H2O, HCOOH, HCN, and CO. We also show that time-dependent chemistry is important for a proper description of gas thermal balance.

  5. Evolution of Planetary Disks: Observations, Modeling and Instrumental Prospect

    NASA Astrophysics Data System (ADS)

    Augereau, Jean-Charles

    2000-11-01

    The recently discovered extrasolar planets have formed in gaseous and dusty disks possibily analogous to those observed around stars close to the Main Sequence, such as β Pictoris. This thesis deals with the dust in circumstellar environments around such stars and combines: high angular resolution observations, the modeling of grains' physical and chemical properties to deduce their optical behaviour, the modeling of optically thin disks, and the dynamics of planetesimals that release the dust grains observed. Our images obtained with the Hubble Space Telescope reveal two new circumstellar disks around HD 141569 and HD 100546, two stars sometimes classified as Herbig-like stars. Whereas the two systems have almost the same age (~10 million years), their morphologies differ. These observations highlight the difficulties to ellaborate a single scenario that would describe the all evolution of protoplanetary systems. The dust ring surrounding HR 4796 A, a star with an age similar to the two previous stars, is marginaly resolved from the ground. The full modeling of this disk allows to reproduce all the available observations. These results imply that, whereas the star is still quite young, planetesimals should be present to supply the disk in porous and amorphous dust grains which are afterwards blown away by radiation pressure. A dynamical model for the prototypical disk around β Pictoris is proposed. Assuming realistic optical grain properties, this approach allows to reproduce the main caracteristics of the disk and in particular the fine asymmetries that are observed. This model assumes the presence of a planetary companion which perturbes a disk of planetesimals and takes into account the differential effect of the radiation pressure on the grains. Finally, the disk model I developped during the thesis is used in order to optimize the use of future observationnal instruments.

  6. No evidence for Bardeen-Petterson alignment in GRMHD simulations and semi-analytic models of moderately thin, prograde, tilted accretion disks

    SciTech Connect

    Zhuravlev, Viacheslav V.; Ivanov, Pavel B.; Teixeira, Danilo Morales

    2014-12-01

    In this paper, we introduce the first results that use data extracted directly from numerical simulations as inputs to the analytic twisted disk model of Zhuravlev and Ivanov. In both numerical and analytic approaches, fully relativistic models of tilted and twisted disks having a moderate effective viscosity around a slowly rotating Kerr black hole are considered. Qualitatively, the analytic model demonstrates the same dynamics as the simulations, although with some quantitative offset. Namely, the general relativistic magnetohydrodynamic simulations typically give smaller variations of tilt and twist across the disk. When the black hole and the disk rotate in the same direction, the simulated tilted disk and analytic model show no sign of Bardeen-Petterson alignment, even in the innermost parts of the disk where the characteristic time for relaxation to a quasi-stationary configuration is of the same order as the computation time. In the opposite case, when the direction of the disk's rotation is opposite to that of the black hole, a partial alignment is observed, in agreement with previous theoretical estimates. Thus, both fully numerical and analytic schemes demonstrate that the Bardeen-Petterson effect may not be possible for the case of prograde rotation provided that disk's effective viscosity is sufficiently small. This may have implications in modeling of different astrophysical phenomena such as disk spectra and jet orientation.

  7. Modeling of debris disks in Single and Binary stars

    NASA Astrophysics Data System (ADS)

    García, L.; Gómez, M.

    2016-10-01

    Infrared space observatories such as Spitzer and Herschel have allowed the detection of likely analogs to the Kuiper Belt in single as well as binary systems. The aim of this work is to characterize debris disks in single and binary stars and to identify features shared by the disks in both types of systems, as well as possible differences. We compiled a sample of 25 single and 14 binary stars (ages > 100 Myr) with flux measurements at λ >100 μm and evidence of infrared excesses attributed to the presence of debris disks. Then, we constructed and modeled the observed spectral energy distributions (SEDs), and compared the parameters of the disks of both samples. Both types of disks are relatively free of dust in the inner region (< 3-5 AU) and extend beyond 100 AU. No significant differences in the mass and dust size distributions of both samples are found.

  8. Modeling Collisions in Circumstellar Debris Disks with SMACK

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika; Kuchner, Marc J.

    2015-01-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions.The Superparticle-Method Algorithm for Collisions in Kuiper belts and debris disks (SMACK) is the first code to simultaneously model the dynamical and collisional evolution of planetesimals in three dimensions. We use SMACK to investigate the effects of collisions on the morphology of a disk of planetesimals perturbed by a planet and apply our model to a number of resolved debris disks including Fomalhaut, beta Pictoris, and HR 4796. We find that collisions can significantly alter the morphology of disks. Including collisions can yield estimates for planet masses 5x smaller than collisionless models, and collisions can expand the pericenter glow model of eccentric rings to explain observed apocentric excesses at long wavelengths.

  9. Dynamical Evolution of Galaxy Disks in CDM models

    NASA Astrophysics Data System (ADS)

    Font, A.; Navarro, J.; Quinn, T.; Stadel, J.

    2002-12-01

    A long lasting problem in our understanding of the evolution of disk galaxies is the question of how stellar disks respond to encounters with the numerous dark matter sub-halos predicted by the Cold Dark Matter cosmology. We address this issue through a set of high resolution numerical simulations that include a realistic distribution of satellites (with masses and orbital parameters as predicted by CDM models), orbiting around a typical stellar disk, like the Milky Way's. This is the first numerical study to account for the interactions of multiple satellites with a disk within the full cosmological context. The primary conclusion of our study is that the disk is able to survive in this violent environment for several Gyrs, thus weakening the argument calling for a revision of the CDM paradigm. The only visible adjustments made by the disk to the incoming satellites are through the (angular momentum conserving) tilting, and through changes in the kinematical properties of the stars: minor vertical disk heating, flaring and warping. Changes in the disk structure are driven mainly by a few massive satellites rather than by the cumulative effect of many minor mergers.

  10. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    SciTech Connect

    Karlsson, Niklas

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  11. Modeling transiting circumstellar disks: characterizing the newly discovered eclipsing disk system OGLE LMC-ECL-11893

    SciTech Connect

    Scott, Erin L.; Mamajek, Eric E.; Pecaut, Mark J.; Quillen, Alice C.; Moolekamp, Fred; Bell, Cameron P. M.

    2014-12-10

    We investigate the nature of the unusual eclipsing star OGLE LMC-ECL-11893 (OGLE J05172127-6900558) in the Large Magellanic Cloud recently reported by Dong et al. The eclipse period for this star is 468 days, and the eclipses exhibit a minimum of ∼1.4 mag, preceded by a plateau of ∼0.8 mag. Spectra and optical/IR photometry are consistent with the eclipsed star being a lightly reddened B9III star of inferred age ∼150 Myr and mass ∼4 M {sub ☉}. The disk appears to have an outer radius of ∼0.2 AU with predicted temperatures of ∼1100-1400 K. We model the eclipses as being due to either a transiting geometrically thin dust disk or gaseous accretion disk around a secondary object; the debris disk produces a better fit. We speculate on the origin of such a dense circumstellar dust disk structure orbiting a relatively old low-mass companion, and on the similarities of this system to the previously discovered EE Cep.

  12. Dynamos: from an astrophysical model to laboratory experiments

    NASA Astrophysics Data System (ADS)

    Sokoloff, D. D.; Stepanov, R. A.; Frick, P. G.

    2014-03-01

    Magnetic field generation and evolution in celestial bodies—the subject matter of the theory of the dynamo—held Ya B Zeldovich's interest for years. Over the time since then, the study of the dynamo process has developed from a part of astrophysics and geophysics to a self-contained domain of physics, with the possibility of laboratory dynamo physics experiments. We give some theoretical background and discuss laboratory dynamo experiments (including those conducted in Russia), as well as their impact on dynamo theory and its astrophysical applications.

  13. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  14. Freddi: Fast Rise Exponential Decay accretion Disk model Implementation

    NASA Astrophysics Data System (ADS)

    Malanchev, K. L.; Lipunova, G. V.

    2016-10-01

    Freddi (Fast Rise Exponential Decay: accretion Disk model Implementation) solves 1-D evolution equations of the Shakura-Sunyaev accretion disk. It simulates fast rise exponential decay (FRED) light curves of low mass X-ray binaries (LMXBs). The basic equation of the viscous evolution relates the surface density and viscous stresses and is of diffusion type; evolution of the accretion rate can be found on solving the equation. The distribution of viscous stresses defines the emission from the source. The standard model for the accretion disk is implied; the inner boundary of the disk is at the ISCO or can be explicitely set. The boundary conditions in the disk are the zero stress at the inner boundary and the zero accretion rate at the outer boundary. The conditions are suitable during the outbursts in X-ray binary transients with black holes. In a binary system, the accretion disk is radially confined. In Freddi, the outer radius of the disk can be set explicitely or calculated as the position of the tidal truncation radius.

  15. Simple Models for Turbulent Self-Regulation in Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Struck, Curtis; Smith, Daniel C.

    1999-12-01

    Supernova explosions and winds and energetic photon fluxes from young star clusters drive outflows and supersonic turbulence in the interstellar medium in galaxy disks and provide broad-spectrum heating, which generates a wide range of thermal phases in the gas. Star formation, the source of the energy inputs, is itself regulated by heating and phase exchanges in the gas. However, thermohydrodynamic self-regulation cannot be a strictly local process in the interstellar gas since galaxy disks also have a nearly universal structure on large scales. We propose that turbulent heating, wave pressure, and gas exchanges between different regions of disks play a dominant role in determining the preferred, quasi-equilibrium, self-similar states of gas disks on large scales. This paper presents simple families of analytic, thermohydrodynamic models for these global states, which include terms for turbulent pressure and Reynolds stresses. In these model disks, star formation rates, phase balances, and hydrodynamic forces are all tightly coupled and balanced. The models have stratified radial flows, with the cold gas slowly flowing inward in the midplane of the disk and with the warm/hot phases that surround the midplane flowing outward. The models suggest a number of results that are in accord with observations, as well as some novel predictions, including the following. (1) The large-scale gas-density and thermal-phase distributions in galaxy disks can be explained as the result of turbulent heating and spatial couplings. (2) The turbulent pressures and stresses that drive radial outflows in the warm gas above and below the disk midplane also allow a reduced circular velocity there. This effect was observed by Swaters, Sancisi, & van der Hulst in NGC 891, a particularly turbulent edge-on disk. The models predict that the effect should be universal in such disks. (3) Since dissipative processes generally depend on the square of the gas density, the heating and cooling balance

  16. Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?

    NASA Astrophysics Data System (ADS)

    Riols, A.; Rincon, F.; Cossu, C.; Lesur, G.; Ogilvie, G. I.; Longaretti, P.-Y.

    2017-02-01

    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo mechanisminvolving magnetorotational instability (MRI). This dynamo may notably contribute to explaining the time-variability of various accreting systems, as high-resolution simulations of MRI dynamo turbulence exhibit statistical self-organization into large-scale cyclic dynamics. However, understanding the physics underlying these statistical states and assessing their exact astrophysical relevance is theoretically challenging. The study of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has highlighted the role of turbulent magnetic diffusion in the seeming impossibility of a dynamo at low magnetic Prandtl number (Pm), a common regime in disks. Arguably though, these simple laminar structures may not be fully representative of the complex, statistically self-organized states expected in astrophysical regimes. Here, we aim at closing this seeming discrepancy by reporting the numerical discovery of exactly periodic, yet semi-statistical "chimeral MRI dynamo states" which are the organized outcome of a succession of MRI-unstable, non-axisymmetric dynamical stages of different forms and amplitudes. Interestingly, these states, while reminiscent of the statistical complexity of turbulent simulations, involve the same physical principles as simpler laminar cycles, and their analysis further confirms the theory that subcritical turbulent magnetic diffusion impedes the sustainment of an MRI dynamo at low Pm. Overall, chimera dynamo cycles therefore offer an unprecedented dual physical and statistical perspective on dynamos in rotating shear flows, which may prove useful in devising more accurate, yet intuitive mean-field models of time-dependent turbulent disk dynamos. Movies associated to Fig. 1 are available at http://www.aanda.org

  17. Modeling Mid-Infrared Polarization from Protoplanetary Disks and YSOs

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Pantin, Eric; Li, Dan; Telesco, Charles M.

    2017-01-01

    Imaging polarimetry has demonstrated its potential to map magnetic fields in star formation regions. To interpret high-resolution, mid-infrared (mid-IR) observations obtained with present or forthcoming instruments, such as GTC/CanariCam and SOFIA/HAWC+, we have developed a new package of codes to model mid-IR polarization from protoplanetary disks and YSOs. Based on RADMC-3D and DDSCAT, our package is the first of its kind that takes into account all polarization mechanisms known to be present in the mid-IR, including dichroic absorption, dichroic emission, and scattering. Mid-IR polarization arising from a disk or YSO depends on dust properties (e.g., the size distribution, shape, and composition), magnetic field configurations, and the geometry of the disk and/or envelope, all of which can be customized in our model. We have created synthetic maps of mid-IR linear polarization for a series of fiducial disk and YSO models to compare with observations. In general, we find 1) that emissive polarization arising from aligned dust grains in disk magnetic fields is at the level of a few percent and lower than previous expectations, and 2) that micron-sized dust particles are required to reproduce the observed level of polarization from dust scattering in the mid-IR for a typical Herbig Ae/Be disk. The research was support in part by NSF awards AST -0903672, AST-0908624, and AST-1515331 to CMT.

  18. The Role of Theoretical Atomic Physics in Astrophysical Plasma Modeling

    NASA Astrophysics Data System (ADS)

    Gorczyca, Tom

    2008-05-01

    The interpretation of cosmic spectra relies on a vast sea of atomic data which are not readily obtainable from analytic expressions or simple calculations. Since experimental determination of the multitude of atomic excitation, ionization, and recombination rates is clearly impossible, theoretical calculations are required for all transitions of all ionization stages of all elements through the iron peak elements, and to achieve the accuracy necessary for interpreting the most recently observed, high-resolution spectra, state-of-the-art atomic theoretical techniques need to be used. In this talk, I will give an overview of the latest status of the theoretical treatments of atomic processes in astrophysical plasmas, including a description of the available atomic databases. The successes of atomic theory, as assessed by benchmarking computational results with experimental measurements, where available, will be discussed as well as the present challenges facing the theoretical atomic laboratory astrophysics community.

  19. A model for neutrino emission from nuclear accretion disks

    NASA Astrophysics Data System (ADS)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  20. Thick Accretion Disk Model for Ultraluminous Supersoft Sources

    NASA Astrophysics Data System (ADS)

    Gu, Wei-Min; Sun, Mou-Yuan; Lu, You-Jun; Yuan, Feng; Liu, Ji-Feng

    2016-02-01

    We propose a geometrically thick, super-Eddington accretion disk model, where an optically thick wind is not necessary, to understand ultraluminous supersoft sources (ULSs). For high mass accretion rates \\dot{M}≳ 30{\\dot{M}}{{Edd}} and not small inclination angles θ ≳ 25^\\circ , where {\\dot{M}}{{Edd}} is the Eddington accretion rate, the hard photons from the hot inner region may be shaded by the geometrically thick inner disk, and therefore only the soft photons from the outer thin disk and the outer photosphere of the thick disk can reach the observer. Our model can naturally explain the approximate relation between the typical thermal radius and the thermal temperature, {R}{{bb}}\\propto {T}{{bb}}-2. Moreover, the thick disk model can unify ULSs and normal ultraluminous X-ray sources, where the different observational characteristics are probably related to the inclination angle and the mass accretion rate. By comparing our model with the optically thick outflow model, we find that a lower mass accretion rate is required in our model.

  1. Simulations of Accretion Disk Wind Models

    NASA Astrophysics Data System (ADS)

    Brooks, Craig L.; Yong, Suk Yee; O'Dowd, Matthew; Webster, Rachel L.; Bate, Nicholas

    2016-01-01

    The kinematics of the broad emission line region (BELR) in quasars is largely unknown, however there is strong evidence that outflows may be a key component. For example, in approximately 15% of quasars we observe broad, blue-shifted absorption features which may be ubiquitous based on line-of-sight arguments. We use a new mathematical description of an outflowing disk-wind with an initial rotational component to predict surface brightness distributions of this wind at different orientations. These surface brightness distributions will allow us to simulate gravitational microlensing of BELR light, with a view to mapping the structure and better understanding the kinematics of these flows.

  2. MHD Modelling of Protostellar Disk Winds and Jets

    NASA Astrophysics Data System (ADS)

    Nolan, Christopher; Sutherland, Ralph; Salmeron, Raquel; Bicknell, Geoff

    2013-07-01

    One of the outstanding challenges in star formation is the angular momentum problem. Angular momentum transport is required to allow a cloud core to collapse to form a star. Angular momentum in the initial collapsing cloud prevents the majority of material falling directly onto the protostar, instead settling into a circumstellar disk around it. It is from this point that the angular momentum must be redistributed to allow material to accrete. Radial transport of angular momentum is accomplished via the magnetorotational instability (MRI). Vertical angular momentum transport has generally been attributed to centrifugally driven winds (CDWs) from the disk surface. Both modes of transport depend on the strength of the local magnetic field, parametrised by the ratio of the vertical Alfven speed to the isothermal sound speed, a0. MRI is expected to dominate in the presence of weak fields (a0 ≪ 1), whereas CDWs require a strong field (a0 ≲ 1). Here we present calculations of the structure of minimum-mass solar nebula protostellar disks in strong fields (a0 = 1) around a solar mass star, focusing on the regions of these disks that may launch a CDW from their surface. These results have implications for disk-driven models of protostellar jet launching including the connection between disk properties and large scale features of jets.

  3. Mass Distribution and Bar Formation in Growing Disk Galaxy Models

    NASA Astrophysics Data System (ADS)

    Berrier, Joel C.; Sellwood, J. A.

    2016-11-01

    We report idealized simulations that mimic the growth of galaxy disks embedded in responsive halos and bulges. The disks manifested an almost overwhelming tendency to form strong bars that we found very difficult to prevent. We found that fresh bars formed in growing disks after we had destroyed the original, indicating that bar formation also afflicts continued galaxy evolution, and not just the early stages of disk formation. This behavior raises still more insistently the previously unsolved question of how some galaxies avoid bars. Since our simulations included only collisionless star and halo particles, our findings may apply to gas-poor galaxies only; however, the conundrum persists for the substantial unbarred fraction of those galaxies. Our original objective was to study how internal dynamics rearranged the distribution of mass in the disk as a generalization of our earlier study with rigid spherical components. With difficulty, we were able to construct some models that were not strongly influenced by bars, and found that halo compression and angular momentum exchange with the disk did not alter our earlier conclusion that spiral activity is largely responsible for creating smooth density profiles and rotation curves.

  4. Astrophysical applications of quasar microlensing

    NASA Astrophysics Data System (ADS)

    Mediavilla, E.; Jiménez-Vicente, J.; Muñoz, J. A.

    2017-03-01

    We present a quick overview of several examples that illustrate the application of quasar microlensing to various problems of great interest in Astrophysics and Cosmology. We start introducing the main tool for simulating quasar microlensing, the magnification map. Then, the flux magnification statistics obtained from the magnification maps is used to study the quasar accretion disk size and temperature profile with results that challenge the thin disk model. The microlensing flux magnification statistics is also useful to determine the radial slope of the dark matter distribution in lens galaxies. The extremely high microlensing magnification at caustics allows to scan with horizon scale accuracy the quasar accretion disk, spiraling around the central super massive black hole, resolving the innermost stable circular orbit. Finally, transverse peculiar velocities of the lens galaxies, of great interest in cosmology, can be inferred either counting peaks in the microlensing light curves or directly from astrometric measurements of the highly magnified relative motions between lensed quasar images.

  5. The Disk Wind Model of the Broad Line Regions in Active Galactic Nuclei and Cataclysmic Variables

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell

    2002-01-01

    This is the final progress report for our Astrophysics Theory Program (NRA 97-OSS12) grant NAG5-7723. We have made considerable progress on incorporating photoionization calculations with a 2.5D hydrodynamical code to model disk winds in AGNs. Following up on our simultaneous broad band monitoring campaign of the type I Seyfert galaxy NGC 5548, we have investigated the constraints imposed on models of accretion in Seyfert galaxies by their optical, UV, and X-ray spectral energy distributions (SEDs). Using results from thermal Comptonization models that relate the physical properties of the hot inner accretion flow to the thermal reprocessing that occurs in the surrounding colder thin disk, we find that we can constrain the central black hole mass, accretion rate and size scale of the hot central flow. We have applied our model to observations of Seyfert galaxies NGC 3516, NGC 7469 and NGC 5548. Our mass and accretion rate estimates for these objects roughly agree with those found using other methods.

  6. The Disk Wind Model of the Broad Line Regions in Active Galactic Nuclei and Cataclysmic Variables

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell

    2002-01-01

    This is the final progress report for our Astrophysics Theory Program (NRA 97-OSS12) grant NAG5-7723. We have made considerable progress on incorporating photoionization calculations with a 2.5D hydrodynamical code to model disk winds in AGNs. Following up on our simultaneous broad band monitoring campaign of the type I Seyfert galaxy NGC 5548, we have investigated the constraints imposed on models of accretion in Seyfert galaxies by their optical, UV, and X-ray spectral energy distributions (SEDs). Using results from thermal Comptonization models that relate the physical properties of the hot inner accretion flow to the thermal reprocessing that occurs in the surrounding colder thin disk, we find that we can constrain the central black hole mass, accretion rate and size scale of the hot central flow. We have applied our model to observations of Seyfert galaxies NGC 3516, NGC 7469 and NGC 5548. Our mass and accretion rate estimates for these objects roughly agree with those found using other methods.

  7. Percolation of binary disk systems: Modeling and theory

    DOE PAGES

    Meeks, Kelsey; Tencer, John; Pantoya, Michelle L.

    2017-01-12

    The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This paper utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and comparedmore » to previously published correlations. Finally, a set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.« less

  8. Percolation of binary disk systems: Modeling and theory

    NASA Astrophysics Data System (ADS)

    Meeks, Kelsey; Tencer, John; Pantoya, Michelle L.

    2017-01-01

    The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This work utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and compared to previously published correlations. A set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.

  9. Modeling Observable Signatures of Protoplanetary Disks: Combining Hydrodynamic Simulations with Radiative Transfer Methods

    NASA Astrophysics Data System (ADS)

    Kloster, Dylan; Jang-Condell, Hannah; Kasper, David

    2016-01-01

    New high resolution images of protoplanetary disks from facilities like ALMA are revealing complex disk structures, possibly due to interactions between the disk and newly forming planets within that disk. Analysis of what the structures in these images reveal about the evolution of protoplanetary disks requires detailed models of disk/planet interaction combined with radiative transfer techniques to calculate observable signatures of these disks. We model this disk-planet interaction as hydrodynamic and magnetohydrodynamic numerical simulations using the PLUTO code. We then apply a modified version of the radiative transfer code PaRTY (Parallel Radiative Transfer in YSOs) to these HD/MHD simulations to calculate the observed intensity of these disks via thermal emission and scattering from the host star. Using a wide variety of stellar properties, disk structures, and planet masses, our goal is to produce a robust set of models that will be essential in analyzing the images taken with this new generation of telescopes.

  10. APPLICATION OF THE DISK EVAPORATION MODEL TO ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu, B. F.

    2009-12-10

    The disk corona evaporation model extensively developed for the interpretation of observational features of black hole X-ray binaries (BHXRBs) is applied to active galactic nuclei (AGNs). Since the evaporation of gas in the disk can lead to its truncation for accretion rates less than a maximal evaporation rate, the model can naturally account for the soft spectrum in high-luminosity AGNs and the hard spectrum in low-luminosity AGNs. The existence of two different luminosity levels describing transitions from the soft to hard state and from the hard to soft state in BHXRBs, when applied to AGNs, suggests that AGNs can be in either spectral state within a range of luminosities. For example, at a viscosity parameter, alpha, equal to 0.3, the Eddington ratio from the hard-to-soft transition and from the soft-to-hard transition occurs at 0.027 and 0.005, respectively. The differing Eddington ratios result from the importance of Compton cooling in the latter transition, in which the cooling associated with soft photons emitted by the optically thick inner disk in the soft spectral state inhibits evaporation. When the Eddington ratio of the AGN lies below the critical value corresponding to its evolutionary state, the disk is truncated. With decreasing Eddington ratios, the inner edge of the disk increases to greater distances from the black hole with a concomitant increase in the inner radius of the broad-line region, R {sub BLR}. The absence of an optically thick inner disk at low luminosities (L) gives rise to region in the R {sub BLR}-L plane for which the relation R {sub BLR} propor to L {sup 1/2} inferred at high luminosities is excluded. As a result, a lower limit to the accretion rate is predicted for the observability of broad emission lines, if the broad-line region is associated with an optically thick accretion disk. Thus, true Seyfert 2 galaxies may exist at very low accretion rates/luminosities. The differences between BHXRBs and AGNs in the framework of

  11. Gas And Dust Evolution In Protoplanetary Disks: Models Vs. Observations

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola

    2016-07-01

    Recent powerful facilities as ALMA and VLT/SPHERE, with their unprecedented sensitivity and spatial resolution, have revealed fascinating structures in protoplanetary disks at different wavelengths, such as: multiple rings, vortices, asymmetries, dips, and spiral arms. In this talk, I will compare these observations with theoretical models that combine hydrodynamical simulations of gas evolution and dust growth, which include the coagulation and fragmentation of particles. I will present how these detailed observations are providing significant insights about different parameters that play an important role in the evolution of protoplanetary disks such as snow lines, potential embedded planets, and viscosity.

  12. Astrophysics today

    SciTech Connect

    Cameron, A.G.W.

    1984-01-01

    Examining recent history, current trends, and future possibilities, the author reports the frontiers of research on the solar system, stars, galactic physics, and cosmological physics. The book discusses the great discoveries in astronomy and astrophysics and examines the circumstances in which they occurred. It discusses the physics of white dwarfs, the inflationary universe, the extinction of dinosaurs, black hole, cosmological models, and much more.

  13. An X-Ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Chiang, James; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert. galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, and Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubifiski, and Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can, in principle, be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the heretofore poorly measured hard X-ray continuum above approximately 50 keV in type 1 Seyfert galaxies. Conversely, forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft gamma-ray telescopes, such as those aboard the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

  14. Modeling Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Drake, R. P.; Grosskopf, Michael; Bauerle, Matthew; Kruanz, Carolyn; Keiter, Paul; Malamud, Guy; Crash Team

    2013-10-01

    The understanding of high energy density systems can be advanced by laboratory astrophysics experiments. Computer simulations can assist in the design and analysis of these experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport and electron heat conduction. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Radiative shocks experiments, Kelvin-Helmholtz experiments, Rayleigh-Taylor experiments, plasma sheet, and interacting jets experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  15. Planet formation in transition disks: Modeling, spectroscopy, and theory

    NASA Astrophysics Data System (ADS)

    Liskowsky, Joseph Paul

    due to either a massive planet accreting the material onto it or via a photoevaporation process whereby the central star's radiation field ejects material from the inner disk out of the bound system in the the interstellar medium. It is presumed that this phase is the last gasp of the planetary disk's evolution before the debris disk stage and before a fully formed solar system evolves. Our work specifically focuses on one object of this transition disk class: HD100546. We add to the understanding of transition disks by showing that a model where ro-vibrational OH emission in the NIR is preferentially emitted along the 'wall' of the disk is consistent with observations, and furthermore that adding an eccentricity to this `wall' component is required to generate the necessary observed line shape. In conjunction with this observation we present supporting material which motivates the usage of such an eccentric wall component in light of predictions of the influence of giant planet formation occurring within the disk.

  16. An analytic model for buoyancy resonances in protoplanetary disks

    SciTech Connect

    Lubow, Stephen H.; Zhu, Zhaohuan E-mail: zhzhu@astro.princeton.edu

    2014-04-10

    Zhu et al. found in three-dimensional shearing box simulations a new form of planet-disk interaction that they attributed to a vertical buoyancy resonance in the disk. We describe an analytic linear model for this interaction. We adopt a simplified model involving azimuthal forcing that produces the resonance and permits an analytic description of its structure. We derive an analytic expression for the buoyancy torque and show that the vertical torque distribution agrees well with the results of the Athena simulations and a Fourier method for linear numerical calculations carried out with the same forcing. The buoyancy resonance differs from the classic Lindblad and corotation resonances in that the resonance lies along tilted planes. Its width depends on damping effects and is independent of the gas sound speed. The resonance does not excite propagating waves. At a given large azimuthal wavenumber k{sub y} > h {sup –1} (for disk thickness h), the buoyancy resonance exerts a torque over a region that lies radially closer to the corotation radius than the Lindblad resonance. Because the torque is localized to the region of excitation, it is potentially subject to the effects of nonlinear saturation. In addition, the torque can be reduced by the effects of radiative heat transfer between the resonant region and its surroundings. For each azimuthal wavenumber, the resonance establishes a large scale density wave pattern in a plane within the disk.

  17. Constraining Collisional Models of Planetesimals in Debris Disks

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith A.; Wilner, David J.; Hughes, A. Meredith; Steele, Amy; Ricci, Luca; Andrews, Sean M.; Chandler, Claire J.; Tahli Maddison, Sarah

    2016-01-01

    Debris disks around main-sequence stars are produced by the ongoing collisional erosion of planetesimals, analogous to Kuiper Belt Objects (KBOs) or comets in our own Solar System. Observations of these dusty belts offer a window into the physical and dynamical properties of planetesimals in extrasolar systems through the size distribution of dust grains. In particular, the millimeter/radio spectral index of thermal dust emission encodes information on the grain size distribution that can be used to test proposed collisional models of planetesimals. We have made sensitive Jansky Very Large Array (JVLA) observations of a sample of 7 nearby debris disks at 9 mm and combine these with archival Australia Telescope Compact Array (ATCA) observations of 8 additional debris disks at 7 mm. Using measurements at (sub)millimeter wavelengths from the literature, we place tight constraints on the millimeter spectral indices and thus grain size distributions of this sample of debris disks. Our analysis gives a weighted mean for the slope of the power-law grain distribution that is close to the classical prediction for a steady-state collisional cascade (q=3.5), but not consistent with the steeper distributions predicted by recent models that include more complex fragmentation processes. To interpret this result, we explore the effects of material strengths, velocity distributions, and small-size cutoffs on the steady-state grain size distribution.

  18. Modeling Disk Cracks in Rotors by Utilizing Speed Dependent Eccentricity

    NASA Astrophysics Data System (ADS)

    Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Haase, Wayne C.

    2010-03-01

    This paper discusses the feasibility of vibration-based structural health monitoring for detecting disk cracks in rotor systems. The approach of interest assumes that a crack located on a rotating disk causes a minute change in the system’s center of mass due to the centrifugal force induced opening of the crack. The center of mass shift is expected to reveal itself in the vibration vector (i.e., whirl response; plotted as amplitude and phase versus speed) gathered during a spin-up and/or spin-down test. Here, analysis is accomplished by modeling a Jeffcott rotor that is characterized by analytical, numerical, and experimental data. The model, which has speed dependent eccentricity, is employed in order to better understand the sensitivity of the approach. For the experimental set-up emulated here (i.e., a single disk located mid-span on a flexible shaft), it appears that a rather sizable flaw in the form of a through-thickness notch could be detected by monitoring the damage-induced shift in center of mass. Although, identifying actual disk cracks in complex “real world” environments, where noncritical crack lengths are small and excessive mechanical and/or electrical noise are present, would prove to be rather challenging. Further research is needed in this regard.

  19. Magnetized Astrophysical Flows

    NASA Astrophysics Data System (ADS)

    Russo, Matthew

    2016-08-01

    This thesis combines two studies of astrophysical flows in which magnetic fields play a dominant role. The first concerns outflows from compact objects in which plasma is accelerated to highly relativistic speeds by strong, ordered magnetic fields. We generalize the theory of relativistic, ideal magnetohydrodynamic (MHD) outflows by including an intense radiation source as is likely to occur in gamma-ray bursts (GRBs). This represents a hybrid of the traditional fireball and electromagnetic models of GRBs, which posit respectively that the acceleration is accomplished by thermal pressure or magnetic stresses. We find that acceleration is more efficient and occurs over a larger range of radii than in a pure Poynting jet. We also uncover a distinct observational signature in the emitted spectrum when the Poynting flux exceeds the radiation energy flux due to the Compton up-scattering of photons within the relativistic flow. We then turn to study the accretion of magnetized protoplanetary disks (PPDs) in which the assumptions of ideal MHD begin to break down due to the low level of ionization. We develop a novel model that prescribes the profiles of the magnetic field and mass flux in PPDs by tying them to the field of a magnetized, radial protostellar wind. We find that the inner disk is more strongly magnetized and thus supports a higher accretion rate by both large scale stresses and turbulence driven by the magnetorotational instability (MRI). This leads to an inside-out clearing of the inner disk that stalls at a low column density when particles are lofted from the midplane to higher altitudes where they suppress MRI turbulence. We calculate the long-term evolution of such a disk and show that the migration of planets is significantly slowed (or reversed), perhaps alleviating one of the central problems concerning the formation of planetary systems.

  20. Testing protostellar disk formation models with ALMA observations

    NASA Astrophysics Data System (ADS)

    Harsono, D.; van Dishoeck, E. F.; Bruderer, S.; Li, Z.-Y.; Jørgensen, J. K.

    2015-05-01

    Context. Recent simulations have explored different ways to form accretion disks around low-mass stars. However, it has been difficult to differentiate between the proposed mechanisms because of a lack of observable predictions from these numerical studies. Aims: We aim to present observables that can differentiate a rotationally supported disk from an infalling rotating envelope toward deeply embedded young stellar objects (Menv>Mdisk) and infer their masses and sizes. Methods: Two 3D magnetohydrodynamics (MHD) formation simulations are studied with a rotationally supported disk (RSD) forming in one but not the other (where a pseudo-disk is formed instead), together with the 2D semi-analytical model. We determine the dust temperature structure through continuum radiative transfer RADMC3D modeling. A simple temperature-dependent CO abundance structure is adopted and synthetic spectrally resolved submm rotational molecular lines up to Ju = 10 are compared with existing data to provide predictions for future ALMA observations. Results: The 3D MHD simulations and 2D semi-analytical model predict similar compact components in continuum if observed at the spatial resolutions of 0.5-1″ (70-140 AU) typical of the observations to date. A spatial resolution of ~14 AU and high dynamic range (>1000) are required in order to differentiate between RSD and pseudo-disk formation scenarios in the continuum. The first moment maps of the molecular lines show a blue- to red-shifted velocity gradient along the major axis of the flattened structure in the case of RSD formation, as expected, whereas it is along the minor axis in the case of a pseudo-disk. The peak position-velocity diagrams indicate that the pseudo-disk shows a flatter velocity profile with radius than does an RSD. On larger scales, the CO isotopolog line profiles within large (>9″) beams are similar and are narrower than the observed line widths of low-J (2-1 and 3-2) lines, indicating significant turbulence in the

  1. Microstructure Modeling of Third Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program was to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool was to be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishments achieved during the third year (2009) of the program are summarized. The activities of this year included: Further development of multistep precipitation simulation framework for gamma prime microstructure evolution during heat treatment; Calibration and validation of gamma prime microstructure modeling with supersolvus heat treated LSHR; Modeling of the microstructure evolution of the minor phases, particularly carbides, during isothermal aging, representing the long term microstructure stability during thermal exposure; and the implementation of software tools. During the research and development efforts to extend the precipitation microstructure modeling and prediction capability in this 3-year program, we identified a hurdle, related to slow gamma prime coarsening rate, with no satisfactory scientific explanation currently available. It is desirable to raise this issue to the Ni-based superalloys research community, with hope that in future there will be a mechanistic understanding and physics-based treatment to overcome the hurdle. In the mean time, an empirical correction factor was developed in this modeling effort to capture the experimental observations.

  2. Radiation Hydrodynamical Models of the Inner Rim in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Flock, Mario

    2016-06-01

    Many stars host planets orbiting within one astronomical unit (AU). These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric, and include starlight heating, silicate grains sublimating and condensing to equilibrium at the local, timedependent temperature and density, and accretion stresses parametrizing the results of MHD magneto-rotational turbulence models. The results compare well with radiation hydrostatic solutions, and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rims’s location. A small optically-thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops at the position of thermal ionization at temperatures about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are su ciently high for annealing to form crystalline silicates.

  3. Gas dynamics for accretion disk simulations

    NASA Technical Reports Server (NTRS)

    Whitehurst, R.

    1994-01-01

    The behavior of accretion disks can largely be understood in terms of the basic physical processes of mass, energy, and momentum conservation. Despite this, detailed modeling of these systems using modern computational techniques is challenging and controversial. Disturbing differences exist between methods used widely in astrophysics, namely Eulerian finite-difference techniques and particle codes such as SPH. Therefore neither technique is fully satisfactory for accretion disk simulations. This paper describes a new fully Lagrangian method designed to resolve these difficulties.

  4. Constraints on Planetesimal Collision Models in Debris Disks

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith A.; Wilner, David J.; Chandler, Claire; Ricci, Luca; Maddison, Sarah T.; Cranmer, Steven R.; Andrews, Sean M.; Hughes, A. Meredith; Steele, Amy

    2016-06-01

    Observations of debris disks offer a window into the physical and dynamical properties of planetesimals in extrasolar systems through the size distribution of dust grains. In particular, the millimeter spectral index of thermal dust emission encodes information on the grain size distribution. We have made new VLA observations of a sample of seven nearby debris disks at 9 mm, with 3\\prime\\prime resolution and ˜5 μJy beam-1rms. We combine these with archival ATCA observations of eight additional debris disks observed at 7 mm, together with up-to-date observations of all disks at (sub)millimeter wavelengths from the literature, to place tight constraints on the millimeter spectral indices and thus grain size distributions. The analysis gives a weighted mean for the slope of the power-law grain size distribution, n(a)\\propto {a}-q, of < q> =3.36+/- 0.02, with a possible trend of decreasing q for later spectral type stars. We compare our results to a range of theoretical models of collisional cascades, from the standard self-similar, steady-state size distribution (q = 3.5) to solutions that incorporate more realistic physics such as alternative velocity distributions and material strengths, the possibility of a cutoff at small dust sizes from radiation pressure, and results from detailed dynamical calculations of specific disks. Such effects can lead to size distributions consistent with the data, and plausibly the observed scatter in spectral indices. For the AU Mic system, the VLA observations show clear evidence of a highly variable stellar emission component; this stellar activity obviates the need to invoke the presence of an asteroid belt to explain the previously reported compact millimeter source in this system.

  5. Three-dimensional models of astrophysical magnetohydrodynamical jets

    NASA Astrophysics Data System (ADS)

    Murphy, Gareth C.

    2007-05-01

    In the previous fifty years it has become clear that jets and outflows play a vital role in the formation of stars and compact objects. Jets from young stellar objects typically show Herbig-Haro knots and bow shocks. Additionally, it now appears that (1) most stars form in binaries, and (2) jets from young stars are multiple and episodic outflows. Several groups have carried out large-scale simulations of jets, but often assuming a uniform ambient medium and a single disk and star. In this thesis the problems associated with non-uniform media and binary systems are explored. In order to understand the role of jets in star formation the questions are asked: how do jets from binary stars behave? What is the effect of the prehistory of jets on their collimation, acceleration and morphology? To answer these questions, a parallel adaptive-grid magnetohydrodynamics code, ATLAS, is modified to include optically thin atomic radiative cooling losses. The code is rigorously tested, with particular reference to the shock-capturing and the radiative cooling. The tests used include one-dimensional shock-tube tests, two-dimensional blast waves, double Mach reflection of a strong shock from a wedge, the overstable radiatively cooling shock, and the Orszag-Tang vortex. A comparison of the code with another code, PLUTO, for the type of jet problems solved in this thesis is also performed. Using ATLAS, the propagation of jets in complex environments is studied. The first ever simulations of binary jets are performed. Three aspects of the problem are studied, the effects of source orbiting, the effects of interaction, and the role of the magnetic field. It is shown that jets from binary stars can interact and the signature of the interaction is demonstrated. The negligible effect of source orbiting is demonstrated. A toroidal magnetic field is placed in the ambient environment and further accentuates the interaction. Following on from this work, the evolution of the jet when the

  6. Model-based Clustering of High-Dimensional Data in Astrophysics

    NASA Astrophysics Data System (ADS)

    Bouveyron, C.

    2016-05-01

    The nature of data in Astrophysics has changed, as in other scientific fields, in the past decades due to the increase of the measurement capabilities. As a consequence, data are nowadays frequently of high dimensionality and available in mass or stream. Model-based techniques for clustering are popular tools which are renowned for their probabilistic foundations and their flexibility. However, classical model-based techniques show a disappointing behavior in high-dimensional spaces which is mainly due to their dramatical over-parametrization. The recent developments in model-based classification overcome these drawbacks and allow to efficiently classify high-dimensional data, even in the "small n / large p" situation. This work presents a comprehensive review of these recent approaches, including regularization-based techniques, parsimonious modeling, subspace classification methods and classification methods based on variable selection. The use of these model-based methods is also illustrated on real-world classification problems in Astrophysics using R packages.

  7. Microstructure Modeling of 3rd Generation Disk Alloy

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2008-01-01

    The objective of this initiative, funded by NASA's Aviation Safety Program, is to model, validate, and predict, with high fidelity, the microstructural evolution of third-generation high-refractory Ni-based disc superalloys during heat treating and service conditions. This initiative is a natural extension of the DARPA-AIM (Accelerated Insertion of Materials) initiative with GE/Pratt-Whitney and with other process simulation tools. Strong collaboration with the NASA Glenn Research Center (GRC) is a key component of this initiative and the focus of this program is on industrially relevant disk alloys and heat treatment processes identified by GRC. Employing QuesTek s Computational Materials Dynamics technology and PrecipiCalc precipitation simulator, physics-based models are being used to achieve high predictive accuracy and precision. Combining these models with experimental data and probabilistic analysis, "virtual alloy design" can be performed. The predicted microstructures can be optimized to promote desirable features and concurrently eliminate nondesirable phases that can limit the reliability and durability of the alloys. The well-calibrated and well-integrated software tools that are being applied under the proposed program will help gas turbine disk alloy manufacturers, processing facilities, and NASA, to efficiently and effectively improve the performance of current and future disk materials.

  8. Dynamical Modelling Of The Inner Galactic Barred Disk

    NASA Astrophysics Data System (ADS)

    Portail, Matthieu

    2016-09-01

    Understanding the present state of the Milky Way disk is a necessary first step towards learning about the formation history of our Galaxy. While it is clear from infrared photometry that the inner disk hosts a 5 kpc long bar with a central Box/Peanut bulge, the interplay between the bar and the inner disk remains poorly known. To this end we build N-body dynamical models of the inner Galaxy with the Made-to-Measure method, combining deep photometry from the VVV, UKIDSS and 2MASS surveys with kinematics from the BRAVA, OGLE and ARGOS surveys. We explore their stellar to dark matter fraction together with their bar pattern speed and constrain from the modelling the effective Galactic potential (gravitational potential + bar pattern speed) inside the solar radius. Our best model is able to reproduce simultaneously (i) the Box/Peanut shape of the bulge, (ii) the transition between bulge and long bar, (iii) the bulge line-of-sight kinematics and proper motion dispersions, (iv) the ARGOS velocity field in the bar region and (v) the rotation curve of the Galaxy inside 10 kpc. Our effective potential will be an important input to more detailed chemodynamical studies of the stellar populations in the inner Galaxy, as revealed by the ARGOS or APOGEE surveys.

  9. Computer Modeling of Electrostatic Aggregation of Granular Materials in Planetary and Astrophysical Settings

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Sauke, T.

    1999-01-01

    Electrostatic forces strongly influence the behavior of granular materials in both dispersed (cloud) systems and semi-packed systems. These forces can cause aggregation or dispersion of particles and are important in a variety of astrophysical and planetary settings. There are also many industrial and commercial settings where granular matter and electrostatics become partners for both good and bad. This partnership is important for human exploration on Mars where dust adheres to suits, machines, and habitats. Long-range Coulombic (electrostatic) forces, as opposed to contact-induced dipoles and van der Waals attractions, are generally regarded as resulting from net charge. We have proposed that in addition to net charge interactions, randomly distributed charge carriers on grains will result in a dipole moment regardless of any net charge. If grains are unconfined, or fluidized, they will rotate so that the dipole always induces attraction between grains. Aggregates are readily formed, and Coulombic polarity resulting from the dipole produces end-to-end stacking of grains to form filamentary aggregates. This has been demonstrated in USML experiments on Space Shuttle where microgravity facilitated the unmasking of static forces. It has also been demonstrated in a computer model using grains with charge carriers of both sign. Model results very closely resembled micro-g results with actual sand grains. Further computer modeling of the aggregation process has been conducted to improve our understanding of the aggregation process, and to provide a predictive tool for microgravity experiments slated for Space Station. These experiments will attempt to prove the dipole concept as outlined above. We have considerably enhanced the original computer model: refinements to the algorithm have improved the fidelity of grain behavior during grain contact, special attention has been paid to simulation time steps to enable establishment of a meaningful, quantitative time axis

  10. Computer Modeling of Electrostatic Aggregation of Granular Materials in Planetary and Astrophysical Settings

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Sauke, T.

    1999-01-01

    Electrostatic forces strongly influence the behavior of granular materials in both dispersed (cloud) systems and semi-packed systems. These forces can cause aggregation or dispersion of particles and are important in a variety of astrophysical and planetary settings. There are also many industrial and commercial settings where granular matter and electrostatics become partners for both good and bad. This partnership is important for human exploration on Mars where dust adheres to suits, machines, and habitats. Long-range Coulombic (electrostatic) forces, as opposed to contact-induced dipoles and van der Waals attractions, are generally regarded as resulting from net charge. We have proposed that in addition to net charge interactions, randomly distributed charge carriers on grains will result in a dipole moment regardless of any net charge. If grains are unconfined, or fluidized, they will rotate so that the dipole always induces attraction between grains. Aggregates are readily formed, and Coulombic polarity resulting from the dipole produces end-to-end stacking of grains to form filamentary aggregates. This has been demonstrated in USML experiments on Space Shuttle where microgravity facilitated the unmasking of static forces. It has also been demonstrated in a computer model using grains with charge carriers of both sign. Model results very closely resembled micro-g results with actual sand grains. Further computer modeling of the aggregation process has been conducted to improve our understanding of the aggregation process, and to provide a predictive tool for microgravity experiments slated for Space Station. These experiments will attempt to prove the dipole concept as outlined above. We have considerably enhanced the original computer model: refinements to the algorithm have improved the fidelity of grain behavior during grain contact, special attention has been paid to simulation time steps to enable establishment of a meaningful, quantitative time axis

  11. Computer Modeling of Electrostatic Aggregation of Granular Materials in Planetary and Astrophysical Settings

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Sauke, T.

    1999-09-01

    Electrostatic forces strongly influence the behavior of granular materials in both dispersed (cloud) systems and semi-packed systems. These forces can cause aggregation or dispersion of particles and are important in a variety of astrophysical and planetary settings. There are also many industrial and commercial settings where granular matter and electrostatics become partners for both good and bad. This partnership is important for human exploration on Mars where dust adheres to suits, machines, and habitats. Long-range Coulombic (electrostatic) forces, as opposed to contact-induced dipoles and van der Waals attractions, are generally regarded as resulting from net charge. We have proposed that in addition to net charge interactions, randomly distributed charge carriers on grains will result in a dipole moment regardless of any net charge. If grains are unconfined, or fluidized, they will rotate so that the dipole always induces attraction between grains. Aggregates are readily formed, and Coulombic polarity resulting from the dipole produces end-to-end stacking of grains to form filamentary aggregates. This has been demonstrated in USML experiments on Space Shuttle where microgravity facilitated the unmasking of static forces. It has also been demonstrated in a computer model using grains with charge carriers of both sign. Model results very closely resembled micro-g results with actual sand grains. Further computer modeling of the aggregation process has been conducted to improve our understanding of the aggregation process, and to provide a predictive tool for microgravity experiments slated for Space Station. These experiments will attempt to prove the dipole concept as outlined above. We have considerably enhanced the original computer model: refinements to the algorithm have improved the fidelity of grain behavior during grain contact, special attention has been paid to simulation time steps to enable establishment of a meaningful, quantitative time axis

  12. The Behavior of Accretion Disks in Low Mass X-ray Binaries: Disk Winds and Alpha Model

    NASA Astrophysics Data System (ADS)

    Bayless, Amanda J.

    2010-01-01

    This dissertation presents research on two low mass X-ray binaries. The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy with the ACS/SBC on the Hubble Space Telescope and new V- and J-band photometry with the 1.3-m SMARTS telescope at CTIO. We show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km/s as determined from the Doppler width of the C IV emission line. The broad and shallow eclipse indicates that the disk has a vertically-extended, optically-thick component at optical wavelengths. This component extends almost to the edge of the disk and has a height equal to 50% of the disk radius. As it has a low brightness temperature, we identify it as the optically-thick base of the disk wind. V1408 Aql (=4U 1957+115) is a low mass X-ray binary which continues to be a black hole candidate. We have new photometric data of this system from the Otto Struve 2.1-m telescope's high speed CCD photometer at McDonald Observatory. The light curve is largely sinusoidal which we model with two components: a constant light source from the disk and a sinusoidal modulation at the orbital period from the irradiated face of the companion star. This is a radical re-interpretation of the orbital light curve. We do not require a large or asymmetric disk rim to account for the modulation in the light curve. Thus, the orbital inclination is unconstrained in our new model, removing the foundation for any claims of the compact object being a black hole.

  13. Drag-o-llision Models of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2009-01-01

    An extrasolar planet sculpts the famous debris disk around Fomalhaut; probably many other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks---difficult processes to model simultaneously. The author describes new 3-D models of debris disk dynamics, Drag-o-llision models, that incorporate both collisions and resonant trapping of dust for the first time. The author also discusses the implications of these models for coronagraphic imaging with Gemini and other telescopes.

  14. Unified Models of AGN Accretion Disks and Blazars

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Ramos, E.; Becker, P.; Subramanian, P.; Yang, R.

    1996-01-01

    Accretion disks around supermassive black holes are expected to be the power sources in all AGNS, including blazars. To date, though, little direct evidence for such disks exists in AGN observations. In blazars, the intense relativistic beaming would mask any underlying disk component. Here we present relevant work that our group at GMU is carrying out on unified aspects of disk accretion onto supermassive black holes and the possible coupling of thick disks to beams in the inner regions.

  15. Eddington's Stellar Models and Early Twentieth Century Astrophysics

    NASA Astrophysics Data System (ADS)

    Eisberg, Joann

    1991-06-01

    Between 1916 and 1926, Arthur Stanley Eddington developed models of the temperature, pressure and density in the interior of stars. The models generated a relationship between stellar mass and luminosity that agreed well with observation. Coupled with the evolutionary theory that astronomers then thought governed stars, the models explained the distribution of stars upon the Hertzsprung-Russell diagram. This thesis argues that Eddington's models were shaped by the cosmological concerns that had preoccupied the British astronomical community in the preceding decade. British astronomers participated in a program of statistical cosmology, spearheaded by the Dutch astronomer, J. C. Kapteyn, to map the universe by studying the distribution of stars in neighborhoods successively more distant from the sun. The parameters of chief concern in this program were proper motion, which was used to measure stellar distance, and luminosity, considered the most important inherent characteristic of a star. In 1913 Henry Norris Russell published an empirical diagram of stellar luminosity and spectral type, on which he based a new theory of the evolution of stars from bright, red giants to bright, blue giants, to faint red dwarfs. British astronomers recognized the theory and diagram as fruits of the statistical program, and they rapidly accepted its parameters as the ones a stellar model should generate. Prompted by his interest in cepheid variable stars to construct a model of stars in radiative equilibrium, Eddington's first concern was to reproduce the features of Russell's diagram. Russell's evolutionary theory played so large a role in Eddington's work that when his own mass -luminosity relationship threatened to overturn it, he tailored his theory of stellar energy generation to preserve it.

  16. Modeling of the hydrogen maser disk in MWC 349

    NASA Technical Reports Server (NTRS)

    Ponomarev, Victor O.; Smith, Howard A.; Strelnitski, Vladimir S.

    1994-01-01

    Maser amplification in a Keplerian circumstellar disk seen edge on-the idea put forward by Gordon (1992), Martin-Pintado, & Serabyn (1992), and Thum, Martin-Pintado, & Bachiller (1992) to explain the millimeter hydrogen recombination lines in MWC 349-is further justified and developed here. The double-peaked (vs. possible triple-peaked) form of the observed spectra is explained by the reduced emission from the inner portion of the disk, the portion responsible for the central ('zero velocity') component of a triple-peaked spectrum. Radial gradient of electron density and/or free-free absorption within the disk are identified as the probable causes of this central 'hole' in the disk and of its opacity. We calculate a set of synthetic maser spectra radiated by a homogeneous Keplerian ring seen edge-on and compare them to the H30-alpha observations of Thum et al., averaged over about 1000 days. We used a simple graphical procedure to solve an inverse problem and deduced the probable values of some basic disk and maser parameters. We find that the maser is essentially unsaturated, and that the most probable values of electron temperature. Doppler width of the microturbulence, and electron density, all averaged along the amplification path are, correspondingly, T(sub e) less than or equal to 11,000 K, V(sub micro) less than or equal to 14 km/s, n(sub e) approx. = (3 +/- 2) x 10(exp 7)/cu cm. The model shows that radiation at every frequency within the spectrum arises in a monochromatic 'hot spot.' The maximum optical depth within the 'hot spot' producing radiation at the spectral peak maximum is tau(sub max) approx. = 6 +/- 1; the effective width of the masing ring is approx. = 0.4-0.7 times its outer diameter; the size of the 'hot spot' responsible for the radiation at the spectral peak frequency is approx. = 0.2-0.3 times the distance between the two 'hot spots' corresponding to two peaks. An important derivation of our model is the dynamical mass of the central star

  17. MODELING MAGNETOROTATIONAL TURBULENCE IN PROTOPLANETARY DISKS WITH DEAD ZONES

    SciTech Connect

    Okuzumi, Satoshi; Hirose, Shigenobu

    2011-12-01

    Turbulence driven by magnetorotational instability (MRI) crucially affects the evolution of solid bodies in protoplanetary disks. On the other hand, small dust particles stabilize MRI by capturing ionized gas particles needed for the coupling of the gas and magnetic fields. To provide an empirical basis for modeling the coevolution of dust and MRI, we perform three-dimensional, ohmic-resistive MHD simulations of a vertically stratified shearing box with an MRI-inactive 'dead zone' of various sizes and with a net vertical magnetic flux of various strengths. We find that the vertical structure of turbulence is well characterized by the vertical magnetic flux and three critical heights derived from the linear analysis of MRI in a stratified disk. In particular, the turbulent structure depends on the resistivity profile only through the critical heights and is insensitive to the details of the resistivity profile. We discover scaling relations between the amplitudes of various turbulent quantities (velocity dispersion, density fluctuation, vertical diffusion coefficient, and outflow mass flux) and vertically integrated accretion stresses. We also obtain empirical formulae for the integrated accretion stresses as a function of the vertical magnetic flux and the critical heights. These empirical relations allow us to predict the vertical turbulent structure of a protoplanetary disk for a given strength of the magnetic flux and a given resistivity profile.

  18. Thermodynamic model of MHD turbulence and some of its applications to accretion disks

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, A. V.; Marov, M. Ya.

    2008-06-01

    Within the framework of the main problem of cosmogony related to the reconstruction of the evolution of the protoplanetary gas-dust cloud that surrounded the proto-Sun at an early stage of its existence, we have derived a closed system of magnetohydrodynamic equations for the scale of mean motion in the approximation of single-fluid magnetohydrodynamics designed to model the shear and convective turbulent flows of electrically conducting media in the presence of a magnetic field. These equations are designed for schematized formulations and the numerical solution of special problems to interconsistently model intense turbulent flows of cosmic plasma in accretion disks and associated coronas, in which the magnetic field noticeably affects the dynamics of astrophysical processes. In developing the model of a conducting turbulized medium, apart from the conventional probability-theoretical averaging of the MHD equations, we systematically use the weighted Favre averaging. The latter allows us to considerably simplify the writing of the averaged equations of motion for a compressible fluid and the analysis of the mechanisms of macroscopic field amplification by turbulent flows. To clearly interpret the individual components of the plasma and field-energy balance, we derive various energy equations that allow us to trace the possible energy conversions from one form into another, in particular, to understand the transfer mechanisms of the gravitational and kinetic energies of the mean motion into magnetic energy. Special emphasis is placed on the method for obtaining the closure relations for the total (with allowance made for the magnetic field) kinetic turbulent stress tensor in an electrically conducting medium and the turbulent electromotive force (or the so-called magnetic Reynolds tensor). This method also makes it possible to analyze the constraints imposed on the turbulent transport coefficients by the entropy growth condition. As applied to the problem of

  19. Radiation Hydrodynamics Models of the Inner Rim in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.

    2016-08-01

    Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and include starlight heating silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.

  20. Stress singularities in a model of a wood disk under sinusoidal pressure

    Treesearch

    Jay A. Johnson; John C. Hermanson; Steven M. Cramer; Charles Amundson

    2005-01-01

    A thin, solid, circular wood disk, cut from the transverse plane of a tree stem, can be modeled as a cylindrically orthotropic elastic material. It is known that a stress singularity can occur at the center of a cylindrically orthotropic disk subjected to uniform pressure. If a solid cylindrically orthotropic disk is subjected to sinusoidal pressure distributions, then...

  1. Planet formation in density perturbed transitional disks: a grid model approach

    NASA Astrophysics Data System (ADS)

    Chaparro Molano, G.; Agreda, E.; Miguel, Y.; Casas-Miranda, R. A.

    2017-07-01

    With increasingly sharp sub-millimeter direct imaging of transitional disks captured by ALMA, our understanding of the conditions necessary for debris disks to form planetary systems has drastically improved in recent years. Evidence for particle traps in transitional disks suggests that planet formation could possibly take place within density perturbed regions. For this reason we run a grid of models of planet formation in density perturbed transitional disks, and analyze the impact on giant planet formation.

  2. A soliton gas model for astrophysical magnetized plasma turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Sheerin, J. P.

    1982-06-01

    Plasma turbulence is considered as an ensemble of solitons. The derivation of the Alfven soliton by Spangler and Sheering (1981) is reviewed, and expressions are derived for the magnetic irregularity spectrum and the relationship between the magnetic and density irregularity power spectra. A derived expression also provides the answer to the question of the correlation between magnetic field and density enhancements. The properties of the turbulence model are compared with observations of plasma turbulence in the solar wind, and are found to reasonably account for them.

  3. A Model Study of the Thermal Evolution of Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We address the question of the evolution of ices that have been exposed to radiation from stellar sources and cosmic rays. We studied in the laboratory the thermal evolution of a model ice sample: a mixture of water, hydrogen peroxide, dioxygen, and ozone produced by irradiating solid H2O2 with 50 keV H(+) at 17 K. The changes in composition and release of volatiles during warming to 200 K were monitored by infrared spectroscopy, mass spectrometry, and microbalance techniques. We find evidence for voids in the water component from the infrared bands due to dangling H bonds. The absorption from these bands increases during heating and can be observed at temperatures as high as approx. 155 K. More O2 is stored in the radiolyzed film than can be retained by codeposition of O2 and H2O. This O2 remains trapped until approx. 155 K, where it desorbs in an outburst as water ice crystallizes. Warming of the ice also drastically decreases the intrinsic absorbance of O2 by annealing defects in the ice. We also observe loss of O3 in two stages during heating, which correlates with desorption and possibly chemical reactions with radicals stored in the ice, triggered by the temperature increase.

  4. Parameterized reduced order modeling of misaligned stacked disks rotor assemblies

    NASA Astrophysics Data System (ADS)

    Ganine, Vladislav; Laxalde, Denis; Michalska, Hannah; Pierre, Christophe

    2011-01-01

    Light and flexible rotating parts of modern turbine engines operating at supercritical speeds necessitate application of more accurate but rather computationally expensive 3D FE modeling techniques. Stacked disks misalignment due to manufacturing variability in the geometry of individual components constitutes a particularly important aspect to be included in the analysis because of its impact on system dynamics. A new parametric model order reduction algorithm is presented to achieve this goal at affordable computational costs. It is shown that the disks misalignment leads to significant changes in nominal system properties that manifest themselves as additional blocks coupling neighboring spatial harmonics in Fourier space. Consequently, the misalignment effects can no longer be accurately modeled as equivalent forces applied to a nominal unperturbed system. The fact that the mode shapes become heavily distorted by extra harmonic content renders the nominal modal projection-based methods inaccurate and thus numerically ineffective in the context of repeated analysis of multiple misalignment realizations. The significant numerical bottleneck is removed by employing an orthogonal projection onto the subspace spanned by first few Fourier harmonic basis vectors. The projected highly sparse systems are shown to accurately approximate the specific misalignment effects, to be inexpensive to solve using direct sparse methods and easy to parameterize with a small set of measurable eccentricity and tilt angle parameters. Selected numerical examples on an industrial scale model are presented to illustrate the accuracy and efficiency of the algorithm implementation.

  5. Modelling Cosmic-Ray Effects in the Protosolar Disk

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    2010-01-01

    The role that Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) play in the dynamic evolution of protosolar disks and the origin of our Solar System is a fundamental one. The GCRs are an important component of the interstellar medium (ISM), and even play a role in correcting the age determinations of some irons versus CAIs (calcium-aluminum inclusions) in meteoroids . Because CRs also are one of the energy transport mechanisms in a planetary nebula, the question of modelling their effect upon this broad subject is a serious topic for planetary science. The problem is addressed here.

  6. Disk-Corona Model of Active Galactic Nuclei with Nonthermal Pairs

    NASA Technical Reports Server (NTRS)

    Tsuruta, Sachiko; Kellen, Michael

    1995-01-01

    As a promising model for the X-ray emission from radio-quiet quasars and Seyfert 1 nuclei, we present a nonthermal disk-corona model, where soft photons from a disk are Comptonized by the nonthermal electron-positron pairs in a coronal region above the disk. Various characteristics of our model are qualitatively similar to the homogeneous, spherical, nonthermal pair models previously studied, but the important difference is that in our disk-corona model gamma-ray depletion is far more efficient, and, moreover, the gamma-ray annihilation line is much less prominent. Consequently, this model naturally satisfies the observed constraints on active galactic nuclei.

  7. Dynamical experiments on models of colliding disk galaxies

    NASA Technical Reports Server (NTRS)

    Gerber, Richard A.; Balsara, Dinshaw S.; Lamb, Susan A.

    1990-01-01

    Collisions between galaxies can induce large morphological changes in the participants and, in the case of colliding disk galaxies, bridges and tails are often formed. Observations of such systems indicate a wide variation in color (see Larson and Tinsley, 1978) and that some of the particpants are experiencing enhanced rates of star formation, especially in their central regions (Bushouse 1986, 1987; Kennicutt et al., 1987, Bushouse, Lamb, and Werner, 1988). Here the authors describe progress made in understanding some of the dynamics of interacting galaxies using N-body stellar dynamical computer experiments, with the goal of extending these models to include a hydrodynamical treatment of the gas so that a better understanding of globally enhanced star formation will eventually be forthcoming. It was concluded that close interactions between galaxies can produce large perturbations in both density and velocity fields. The authors measured, via computational experiments that represent a galaxy's stars, average radial velocity flows as large as 100 km/sec and 400 percent density increases. These can occur in rings that move outwards through the disk of a galaxy, in roughly homologous inflows toward the nucleus, and in off center, non-axisymmetric regions. Here the authors illustrate where the gas is likely to flow during the early stages of interaction and in future work they plan to investigate the fate of the gas more realistically by using an N-body/Smoothed Particle Hydrodynamics code to model both the stellar and gaseous components of a disk galaxy during a collision. Specifically, they will determine the locations of enhanced gas density and the strength and location of shock fronts that form during the interaction.

  8. Optical model and optimal output coupler for a continuous wave Yb:YAG thin-disk laser with multiple-disk configuration.

    PubMed

    Zhu, Guangzhi; Zhu, Xiao; Zhu, Changhong; Shang, Jianli

    2012-09-10

    This article presents the fundamental principles of operational performance of a continuous wave (cw) thin-disk laser with multiple disks in one resonator. Based on the model of an end-pumped Yb:YAG thin-disk laser with nonuniform temperature distribution, the effect of the multiple disks in one resonator is considered. The analytic expressions are derived to analyze the laser output intensity, laser intensity in the resonator, threshold intensity, and the optical efficiency of a thin-disk laser with multiple disks arranged in series. The dependence of output coupler reflectivity and the number of thin disks on various parameters are investigated, which are useful to determine the optimal output coupler reflectivity of the thin-disk lasers and control the laser intensity in the resonator.

  9. Foundations of Black Hole Accretion Disk Theory.

    PubMed

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  10. Simulating Astrophysical Jets in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2004-11-01

    A laboratory plasma configuration based on spheromak [1] magnetic fusion plasma physics technology is used to simulate many important features of magnetically driven astrophysical jets. The experimental sequence starts with a quasi-static seed poloidal magnetic field that links a central disk electrode to a co-planar bounding annular electrode; this arrangement provides a topology analogous to the poloidal magnetic field of a star linking a surrounding accretion disk. After puffing neutral gas from nozzles mounted on the electrodes, plasma is created via application of a large emf between the central disk and the bounding annular electrode. The emf then drives a large poloidal electric current flowing from the central disk electrode (star) to the annulus (accretion disk) along the bias poloidal magnetic field. This electric current produces large magnetohydrodynamic forces which result in dynamics analogous to the dynamics of an astrophysical jet. In particular, the laboratory "astrophysical jet" is observed [2,3] to evolve through a distinct, reproducible sequence consisting of jet formation, collimation, kink instability, and for appropriate parameters, detachment into an unbounded, expanding spheromak-like plasmoid. These observations and related observations on a solar prominence simulation experiment [4] have motivated an analytic model [5] for the collimation physics whereby stagnation of convected, frozen-in toroidal magnetic flux amplifies the toroidal magnetic flux density and then, since the toroidal magnetic field (i.e., toroidal flux density) provides the pinch force, the pinch force is increased, collimating the jet. The following talk (You, Bellan, Yun) will present detailed measurements of the jet formation, acceleration, and collimation process. [1] P. M. Bellan, Spheromaks (Imperial College Press, London, 2000). [2] S. C. Hsu and P. M. Bellan, Mon. Not. R. Astron. Soc. 334, 257 (2002). [3] S. C. Hsu and P. M. Bellan, Phys. Rev. Letters 90, article

  11. Magnetically Torqued Thin Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kluźniak, W.; Rappaport, S.

    2007-12-01

    We compute the properties of a geometrically thin, steady accretion disk surrounding a central rotating, magnetized star. The magnetosphere is assumed to entrain the disk over a wide range of radii. The model is simplified in that we adopt two (alternate) ad hoc, but plausible, expressions for the azimuthal component of the magnetic field as a function of radial distance. We find a solution for the angular velocity profile tending to corotation close to the central star and smoothly matching a Keplerian curve at a radius where the viscous stress vanishes. The value of this ``transition'' radius is nearly the same for both of our adopted B-field models. We then solve analytically for the torques on the central star and for the disk luminosity due to gravity and magnetic torques. When expressed in a dimensionless form, the resulting quantities depend on one parameter alone, the ratio of the transition radius to the corotation radius. For rapid rotators, the accretion disk may be powered mostly by spin-down of the central star. These results are independent of the viscosity prescription in the disk. We also solve for the disk structure for the special case of an optically thick alpha disk. Our results are applicable to a range of astrophysical systems including accreting neutron stars, intermediate polar cataclysmic variables, and T Tauri systems.

  12. Automated optic disk boundary detection by modified active contour model.

    PubMed

    Xu, Juan; Chutatape, Opas; Chew, Paul

    2007-03-01

    This paper presents a novel deformable-model-based algorithm for fully automated detection of optic disk boundary in fundus images. The proposed method improves and extends the original snake (deforming-only technique) in two aspects: clustering and smoothing update. The contour points are first self-separated into edge-point group or uncertain-point group by clustering after each deformation, and these contour points are then updated by different criteria based on different groups. The updating process combines both the local and global information of the contour to achieve the balance of contour stability and accuracy. The modifications make the proposed algorithm more accurate and robust to blood vessel occlusions, noises, ill-defined edges and fuzzy contour shapes. The comparative results show that the proposed method can estimate the disk boundaries of 100 test images closer to the groundtruth, as measured by mean distance to closest point (MDCP) <3 pixels, with the better success rate when compared to those obtained by gradient vector flow snake (GVF-snake) and modified active shape models (ASM).

  13. Detecting the growth of structures in Pure Stellar Disk Models

    NASA Astrophysics Data System (ADS)

    Valencia-Enríquez, D.; Puerari, I.; Chaves-Velasquez, L.

    2017-10-01

    We performed a series of 3D N-body simulations where the initial conditions were chosen to get two sets of models; unbarred and barred ones. In this work, we analyze the growth of spirals and bar structures using 1D, and 2D Fourier transform (FT) methods. Spectrograms and diagrams of the amplitude of the Fourier coefficients as a function of time, radius and pitch angle show that the general morphology of our modeled galaxies is due to the superposition of structures which have different values of pitch angle and number of arms. Also, in barred models a geometric classification of orbits from the bar reference frame was done, showing that the barred potential and the Lagrangian points L4 and L5 catch approximately one-third of the total disk mass.

  14. Hybrid polygon and hydrodynamic nebula modeling with multi-waveband radiation transfer in astrophysics

    NASA Astrophysics Data System (ADS)

    Steffen, W.; Koning, N.

    2017-07-01

    We demonstrate the potential for research and outreach of mixed polygon and hydrodynamic modeling and multi-waveband rendering in the interactive 3-D astrophysical virtual laboratory Shape. In 3-D special effects and animation software for the mass media, computer graphics techniques that mix polygon and numerical hydrodynamics have become common place. In astrophysics, however, interactive modeling with polygon structures has only become available with the software Shape. Numerical hydrodynamic simulations and their visualization are usually separate, while in Shape it is integrated with the polygon modeling approach that requires no programming by the user. With two generic examples, we demonstrate that research and outreach modeling can be achieved with techniques similar to those used in the media industry with the added capability for physical rendering at any wavelength band, yielding more realistic radiation modeling. Furthermore, we show how the hydrodynamics and the polygon mesh modeling can be mixed to achieve results that are superior to those obtained using either one of these modeling techniques alone.

  15. Numerical modeling of the interstellar medium in galactic disks

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Bregman, J. N.; Norman, Michael L.

    1993-01-01

    We have been developing detailed hydrodynamic models of the global interstellar medium in the hope of understanding the mass and volume occupied by various phases, as well as their structure and kinematics. In our model, the gas is modeled by one fluid while representative Pop 1 stars are modeled by a second fluid. The two fluids are coupled in that the gas forms into stars at a rate given by a Schmidt law while stellar mass loss returns matter into the gas phase (on a time scale of 100 Myr). Also, the stars heat the gas through stellar winds and the gas cools through optically thin radiation. The time behavior of these two fluids is studied in two spatial dimensions with the Eulerian finite difference numerical hydrodynamic code Zen. The two spatial dimensions are along the plane of a disk (x, total length of 2 kpc) and perpendicular to the disk (z, total height of +/- 15 kpc) and a galactic gravitational field in the z direction, typical of that at the solar circle, is imposed upon the simulation; self-gravity and rotation are absent. For the boundary conditions, outflow is permitted at the top and bottom of the grid (z = +/- 15 kpc) while periodic boundary conditions are imposed upon left and right sides of the grid. As initial conditions, we assumed a gaseous distribution like that seen for the H1 by earlier researchers, although the results are insensitive to the initial conditions. We have run simulations in which the heating due to stars, parameterized as a stellar wind velocity, a, is varied from low (a = 150 km/s), to intermediate (a = 300 km/s), to high (a = 600 km/s). Since the intermediate case is roughly equivalent to the Galactic energy injection rate from supernovae, this summary will concentrate on results from this simulation.

  16. Research to Develop Process Models for Producing a Dual Property Titanium Alloy Compressor Disk.

    DTIC Science & Technology

    1981-10-01

    81 -4130 - RESEARCH TO DEVELOP PROCESS MODELS FOR PRODUCING A DUAL PROPERTY TITANIUM ALLOY COMPRESSOR DISK G. D. Lahoti T. Altan Battelle’s Columbus...COVERED INTERIM ANNUAL TECHNICAL RESEARCH TO DEVELOP PROCESS MODELS FOR PRODUCING A DUAL PROPERTY TITANIUM ALLOY REPORT, 8/1/80 to 7/31/81 COMPRESSOR DISK...validity and application of this approach will be demonstrated by developing forging process for a compressor disk from Ti-6242 alloy, as an example. VD

  17. B1:. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Friedman, John L.

    2002-09-01

    This review summarizes the parallel session on relativistic astrophysics at GR16. Much of the work reported here involved the structure and stability of neutron stars and the astrophysics of accretion disks around neutron stars and black holes. A large part of the recent work in relativistic astrophysics is tied to numerical investigations of binary coalescence and gravitational waves, but these topics demanded sessions of their own; gravitational waves in the present session were mentioned in connection with neutron-star instability and in a talk on coupling of gravitational waves to radio waves. Two talks involved relativistic stellar systems and cosmology. Finally, several authors outlined advances involving gravitational collapse, cosmic censorship, and baby universes.

  18. Arnold's structural theorem for the thick disk model describes the structure of planetary systems and circumstellar disks

    NASA Astrophysics Data System (ADS)

    Salmin, Vladimir

    2010-05-01

    Ideal hydrodynamics and MHD are widely used in astrophysical models due to not only low viscosity but because of large scale of the systems. These general models allow to describe not only flows of neutral gas and magnetized plasma but evolution of many-body system as well. Our basic idea is to describe cosmic structures by 3D steady Euler equation of ideal fluid flow. According to Arnold's structural theorem, 3D steady Euler equation of ideal incompressible fluid flow has solution with toroidal topology described by divergent free vector field. The minimal energy among all the fields with closed flow lines on 3D sphere has a structure called Hopf field. Stereographic projection of Hopf field into Euclidian space has image as field where flow lines are Villarceau circles lying on tori corresponding to the levels of Bernoulli function. Arnold's structural theorem is also applicable to steady ideal incompressible MHD and steady isentropic or isothermal flow of ideal compressible fluid. We tested Arnold's structural theorem in the 3D hydrodynamic model of thick disk formation. We have shown that optimal level of Bernoulli function corresponding to "optimal torus" exists, and relative surface free energy is minimal at this level. Corresponding inclination of Villarceau circles to accretion plane is ?-4. Beat of oscillations with wave numbers corresponding to structural radii of "optimal torus" lying in accretion plane leads to scaling of "optimal tori" with factor: K = 1 + sin(?-4) ≈ 1.7071.... Set of scaled optimal tori form thick disk with divergence angle to accretion plane ?-4. Considering optimal tori as precursors of planetary orbits, we found coincidence of scaling factors in Dermort's Law for semi-major axis of Solar system K = 1.7002 ± 0.018 and HR8799 system K = 1.68 ± 0.05 with the optimal one. Also, we analyzed the probability distribution of ratios of semi-major axes of neighbor planets in the known multiple-exoplanet systems. We found existence of two

  19. Study of X-ray photoionized Fe plasma and comparisons with astrophysical modeling codes

    SciTech Connect

    Foord, M E; Heeter, R F; Chung, H; vanHoof, P M; Bailey, J E; Cuneo, M E; Liedahl, D A; Fournier, K B; Jonauskas, V; Kisielius, R; Ramsbottom, C; Springer, P T; Keenan, K P; Rose, S J; Goldstein, W H

    2005-04-29

    The charge state distributions of Fe, Na and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate the ionization parameter {zeta} in the plasma reaches values {zeta} = 20-25 erg cm s{sup -1} under near steady-state conditions. A curve-of-growth analysis, which includes the effects of velocity gradients in a one-dimensional expanding plasma, fits the observed line opacities. Absorption lines are tabulated in the wavelength region 8-17 {angstrom}. Initial comparisons with a number of astrophysical x-ray photoionization models show reasonable agreement.

  20. Power-law wrinkling turbulence-flame interaction model for astrophysical flames

    SciTech Connect

    Jackson, Aaron P.; Townsley, Dean M.; Calder, Alan C.

    2014-04-01

    We extend a model for turbulence-flame interactions (TFI) to consider astrophysical flames with a particular focus on combustion in Type Ia supernovae. The inertial range of the turbulent cascade is nearly always under-resolved in simulations of astrophysical flows, requiring the use of a model in order to quantify the effects of subgrid-scale wrinkling of the flame surface. We provide implementation details to extend a well-tested TFI model to low-Prandtl number flames for use in the compressible hydrodynamics code FLASH. A local, instantaneous measure of the turbulent velocity is calibrated for FLASH and verification tests are performed. Particular care is taken to consider the relation between the subgrid rms turbulent velocity and the turbulent flame speed, especially for high-intensity turbulence where the turbulent flame speed is not expected to scale with the turbulent velocity. Finally, we explore the impact of different TFI models in full-star, three-dimensional simulations of Type Ia supernovae.

  1. MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: THE NUMERICAL METHOD

    SciTech Connect

    Gaspar, Andras; Psaltis, Dimitrios; Oezel, Feryal; Rieke, George H.; Cooney, Alan E-mail: dpsaltis@as.arizona.edu E-mail: grieke@as.arizona.edu

    2012-04-10

    We develop a new numerical algorithm to model collisional cascades in debris disks. Because of the large dynamical range in particle masses, we solve the integro-differential equations describing erosive and catastrophic collisions in a particle-in-a-box approach, while treating the orbital dynamics of the particles in an approximate fashion. We employ a new scheme for describing erosive (cratering) collisions that yields a continuous set of outcomes as a function of colliding masses. We demonstrate the stability and convergence characteristics of our algorithm and compare it with other treatments. We show that incorporating the effects of erosive collisions results in a decay of the particle distribution that is significantly faster than with purely catastrophic collisions.

  2. Tests and consequences of disk plus halo models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Smith, I. A.

    1995-01-01

    The gamma-ray burst observations made by the Burst and Transient Source Experiment (BATSE) and by previous experiments are still consistent with a combined Galactic disk (or Galactic spiral arm) plus extended Galactic halo model. Testable predictions and consequences of the disk plus halo model are discussed here; tests performed on the expanded BATSE database in the future will constrain the allowed model parameters and may eventually rule out the disk plus halo model. Using examples, it is shown that if the halo has an appropriate edge, BATSE will never detect an anisotropic signal from the halo of the Andromeda galaxy. A prediction of the disk plus halo model is that the fraction of the bursts observed to be in the 'disk' population rises as the detector sensitivity improves. A careful reexamination of the numbers of bursts in the two populations for the pre-BATSE databases could rule out this class of models. Similarly, it is predicted that different satellites will observe different relative numbers of bursts in the two classes for any model in which there are two different spatial distribiutions of the sources, or for models in which there is one spatial distribution of the sources that is sampled to different depths for the two classes. An important consequence of the disk plus halo model is that for the birthrate of the halo sources to be small compared to the birthrate of the disk sources, it is necessary for the halo sources to release many orders of magnitude more energy over their bursting lifetime than the disk sources. The halo bursts must also be much more luminous than the disk bursts; if this disk-halo model is correct, it is necessary to explain why the disk sources do not produce halo-type bursts.

  3. Tests and consequences of disk plus halo models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Smith, I. A.

    1995-01-01

    The gamma-ray burst observations made by the Burst and Transient Source Experiment (BATSE) and by previous experiments are still consistent with a combined Galactic disk (or Galactic spiral arm) plus extended Galactic halo model. Testable predictions and consequences of the disk plus halo model are discussed here; tests performed on the expanded BATSE database in the future will constrain the allowed model parameters and may eventually rule out the disk plus halo model. Using examples, it is shown that if the halo has an appropriate edge, BATSE will never detect an anisotropic signal from the halo of the Andromeda galaxy. A prediction of the disk plus halo model is that the fraction of the bursts observed to be in the 'disk' population rises as the detector sensitivity improves. A careful reexamination of the numbers of bursts in the two populations for the pre-BATSE databases could rule out this class of models. Similarly, it is predicted that different satellites will observe different relative numbers of bursts in the two classes for any model in which there are two different spatial distribiutions of the sources, or for models in which there is one spatial distribution of the sources that is sampled to different depths for the two classes. An important consequence of the disk plus halo model is that for the birthrate of the halo sources to be small compared to the birthrate of the disk sources, it is necessary for the halo sources to release many orders of magnitude more energy over their bursting lifetime than the disk sources. The halo bursts must also be much more luminous than the disk bursts; if this disk-halo model is correct, it is necessary to explain why the disk sources do not produce halo-type bursts.

  4. THE MISSING CAVITIES IN THE SEEDS POLARIZED SCATTERED LIGHT IMAGES OF TRANSITIONAL PROTOPLANETARY DISKS: A GENERIC DISK MODEL

    SciTech Connect

    Dong, R.; Rafikov, R.; Zhu, Z.; Brandt, T.; Janson, M.; Hartmann, L.; Whitney, B.; Muto, T.; Hashimoto, J.; Kuzuhara, M.; Grady, C.; Follette, K.; Tanii, R.; Itoh, Y.; Thalmann, C.; Wisniewski, J.; Mayama, S.; Abe, L.; Brandner, W.; Carson, J.; and others

    2012-05-10

    Transitional circumstellar disks around young stellar objects have a distinctive infrared deficit around 10 {mu}m in their spectral energy distributions, recently measured by the Spitzer Infrared Spectrograph (IRS), suggesting dust depletion in the inner regions. These disks have been confirmed to have giant central cavities by imaging of the submillimeter continuum emission using the Submillimeter Array (SMA). However, the polarized near-infrared scattered light images for most objects in a systematic IRS/SMA cross sample, obtained by HiCIAO on the Subaru telescope, show no evidence for the cavity, in clear contrast with SMA and Spitzer observations. Radiative transfer modeling indicates that many of these scattered light images are consistent with a smooth spatial distribution for {mu}m-sized grains, with little discontinuity in the surface density of the {mu}m-sized grains at the cavity edge. Here we present a generic disk model that can simultaneously account for the general features in IRS, SMA, and Subaru observations. Particularly, the scattered light images for this model are computed, which agree with the general trend seen in Subaru data. Decoupling between the spatial distributions of the {mu}m-sized dust and mm-sized dust inside the cavity is suggested by the model, which, if confirmed, necessitates a mechanism, such as dust filtration, for differentiating the small and big dust in the cavity clearing process. Our model also suggests an inwardly increasing gas-to-dust ratio in the inner disk, and different spatial distributions for the small dust inside and outside the cavity, echoing the predictions in grain coagulation and growth models.

  5. Promoting the Understanding of Scientific Reasoning, Mathematical Modeling and Data Analysis: A Course for Astrophysics Majors

    NASA Astrophysics Data System (ADS)

    Robbins, Dennis; Ford, S.

    2014-01-01

    The NSF-supported “AstroCom NYC” program, a collaboration of the City University of New York, American Museum of Natural History (AMNH), and Columbia University has the explicit goal of increasing the participation of underrepresented minorities in astronomy and astrophysics by providing pedagogical mentoring and research experiences to undergraduate students. To supplement AstroCom scholars' undergraduate course work, and as a gateway to summer astrophysics research opportunities, we implemented a course called “Methods of Scientific Research” (MSR). The semester-long MSR course emphasizes the study of data using computers and other digital tools in a laboratory environment that encourages collaborative and active learning. We enroll early physical science majors and deliberately seek to inculcate habits of mind needed for science research, including assigning physical meaning to variables and measurements; engaging in mathematical modeling; quantifying error; eliminating bias; proposing hypotheses; creating predictions; testing predictions. Using laptop computers interfaced with probeware, students collect and analyze data using graphing software. Students study concepts such as motion, temperature, magnetism, electricity, gas pressure, and force with open-ended investigations where large data sets can be readily collected and replicated during a course meeting. Students are guided to examine data for patterns and trends, to make meaning of descriptive statistics such as means, standard deviations, maximum and minimum values, correlation coefficients and root mean square error values, and in general to understand, judge, and describe the studied phenomena based on data. A secondary goal of the course is to familiarize students with the facilities at AMNH, where they will do summer research as part of AstroCom NYC, in an effort to build a sense of belonging and to help them begin to self-identify as a scientist. We will discuss some our activities and

  6. The circumstellar disk of HH 30. Searching for signs of disk evolution with multi-wavelength modeling

    NASA Astrophysics Data System (ADS)

    Madlener, D.; Wolf, S.; Dutrey, A.; Guilloteau, S.

    2012-07-01

    Context. Circumstellar disks are characteristic for star formation and vanish during the first few Myr of stellar evolution. During this time planets are believed to form in the dense midplane by growth, sedimentation and aggregation of dust. Indicators of disk evolution, such as holes and gaps, can be traced in the spectral energy distribution (SED) and spatially resolved images. Aims: We aim to construct a self-consistent model of HH 30 by fitting all available continuum observations simultaneously. New data sets not available in previous studies, such as high-resolution interferometric imaging with the Plateau de Bure Interferometer (PdBI) at λ = 1.3 mm and SED measured with IRS on the Spitzer Space Telescope in the mid-infrared, put strong constraints on predictions and are likely to provide new insights into the evolutionary state of this object. Methods: A parameter study based on simulated annealing was performed to find unbiased best-fit models for independent observations made in the wavelength domain λ ~ 1 μm...4 mm. The method essentially creates a Markov chain through parameter space by comparing predictions generated by our self-consistent continuum radiation transfer code MC3D with observations. Results: We present models of the edge-on circumstellar disk of HH 30 based on observations from the near-infrared to mm-wavelengths that suggest the presence of an inner depletion zone with ~45 AU radius and a steep decline of mm opacity beyond ≳ 140 AU. Our modeling indicates that several modes of dust evolution such as growth, settling, and radial migration are taking place in this object. Conclusions: High-resolution observations of HH 30 at different wavelengths with next-generation observatories such as ALMA and JWST will enable the modeling of inhomogeneous dust properties and significantly expand our understanding of circumstellar disk evolution.

  7. The Thermodynamic Model of a Moon Forming Disk Based on SPH Simulations

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Stevenson, D. J.

    2011-12-01

    According to the giant impact hypothesis, a Mars size body hits the proto-Earth in the late stage of Earth forming event (e.g. Benz et al., 1986, Thompson and Stevenson 1988). The impact generates a debris disk around the proto-Earth, from which the Moon is accreted. SPH simulations suggest that the silicate disk has high temperature (~ a few thousands K) and partially vaporized (~10-30% by mass) (Canup 2004). However, SPH does not determine the state of the resulting hydrostatic disk. To do this, we have taken the output of SPH, applied conservation of entropy, mass and angular momentum and corrected for the additional energy released upon quick relaxation to the hydrostatic Keplerian state. We find that the disk is remarkably uniform in entropy but is of lower entropy than the adjacent outer shell of Earth. Constant entropy implies a temperature variation, typically from 4500K (inner disk) to 2500K (outer disk) at the midplane. For grazing impact cases (impact angles: 40 - 60 degrees, impact velocity: escape velocity, mantle material: forsterite), 90% of the disk mass is within 10 Earth radius. The disk vapor mass fractions are about 10-20%, which are consistent with Canup (2004) results. This may be an underestimate because iron is more volatile than magnesium. Mass loss from this disk will be small. The effects of initial condition differences will be discussed in the presentation. This is the first attempt to create a bridge between SPH results and a thermodynamic disk model.

  8. Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model.

    PubMed

    Ahmad, Iftikhar; Raja, Muhammad Asif Zahoor; Bilal, Muhammad; Ashraf, Farooq

    2016-01-01

    This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is exploited for modelling of the equation in an unsupervised manner. The proposed approximated solutions of higher order ordinary differential equation are calculated with the weights of neural networks trained with genetic algorithm, and pattern search hybrid with sequential quadratic programming for rapid local convergence. The results of proposed solvers for solving the nonlinear singular systems are in good agreements with the standard solutions. Accuracy and convergence the design schemes are demonstrated by the results of statistical performance measures based on the sufficient large number of independent runs.

  9. Studying Wake Deflection of Wind Turbines in Yaw using Drag Disk Experiments and Actuator Disk Modeling in LES

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Meyers, Johan; Meneveau, Charles

    2015-11-01

    Recently, there has been a push towards the optimization in the power output of entire large wind farms through the control of individual turbines, as opposed to operating each turbine in a maximum power point tracking manner. In this vane, the wake deflection by wind turbines in yawed conditions has generated considerable interest in recent years. In order to effectively study the wake deflection according to classical actuator disk momentum theory, a 3D printed drag disk model with a coefficient of thrust of approximately 0.75 - 0.85 and a diameter of 3 cm is used, studied under uniform inflow in a wind tunnel with test section of 1 m by 1.3 m, operating with a negligible inlet turbulence level at an inflow velocity of 10 m/s. Mean velocity profile measurements are performed using Pitot probes. Different yaw angles are considered, including 10, 20, and 30 degrees. We confirm earlier results that (e.g.) a 30 degree yaw angle deflects the center of the wake around 1/2 of a rotor diameter when it impinges on a downstream turbine. Detailed comparisons between the experiments and Large Eddy Simulations using actuator disk model for the wind turbines are carried out in order to help validate the CFD model. Work supported by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project) and by ERC (ActiveWindFarms, grant no. 306471).

  10. VizieR Online Data Catalog: Parametric model for circumstellar disks gas mass (Williams+, 2014)

    NASA Astrophysics Data System (ADS)

    Williams, J. P.; Best, W. M. J.

    2017-07-01

    Circumstellar disks are relatively small, faint objects that have, to date, required long integrations with millimeter wavelength interferometers to study their molecular gas content. Consequently, only a small number of disks have been imaged in isotopologue lines and most analyses have been tailored to the individual object. Driven by the moderately large sample size but low signal-to-noise level in our data here, we use a different approach. Rather than analyze each disk individually, we create a large grid of models that span a wide range of disk parameters, particularly in gas mass, and compare with the data in a uniform way. (1 data file).

  11. Modelling the 3D physical structure of astrophysical sources with gass

    NASA Astrophysics Data System (ADS)

    Quénard, D.; Bottinelli, S.; Caux, E.

    2017-06-01

    The era of interferometric observations leads to the need of a more and more precise description of physical structures and dynamics of star-forming regions, from pre-stellar cores to protoplanetary discs. The molecular emission can be traced in multiple physical components such as infalling envelopes, outflows and protoplanetary discs. To compare with the observations, a precise and complex radiative transfer modelling of these regions is needed. We present gass (Generator of Astrophysical Sources Structure), a code that allows us to generate the three-dimensional (3D) physical structure model of astrophysical sources. From the gass graphical interface, the user easily creates different components such as spherical envelopes, outflows and discs. The physical properties of these components are modelled thanks to dedicated graphical interfaces that display various figures in order to help the user and facilitate the modelling task. For each component, the code randomly generates points in a 3D grid with a sample probability weighted by the molecular density. The created models can be used as the physical structure input for 3D radiative transfer codes to predict the molecular line or continuum emission. An analysis of the output hyper-spectral cube given by such radiative transfer code can be made directly in gass using the various post-treatment options implemented, such as calculation of moments or convolution with a beam. This makes gass well suited to model and analyse both interferometric and single-dish data. This paper is focused on the results given by the association of gass and lime, a 3D radiative transfer code, and we show that the complex geometry observed in star-forming regions can be adequately handled by gass+lime.

  12. Action-Based Dynamical Modeling for the Milky Way Disk

    NASA Astrophysics Data System (ADS)

    Trick, Wilma H.; Bovy, Jo; Rix, Hans-Walter

    2016-10-01

    We present RoadMapping, a full-likelihood dynamical modeling machinery that aims to recover the Milky Way’s (MW) gravitational potential from large samples of stars in the Galactic disk. RoadMapping models the observed positions and velocities of stars with a parameterized, three-integral distribution function (DF) in a parameterized axisymmetric potential. We investigate through differential test cases with idealized mock data how the breakdown of model assumptions and data properties affect constraints on the potential and DF. Our key results are: (i) If the MW’s true potential is not included in the assumed model potential family, we can—in the axisymmetric case—still find a robust estimate for the potential, with only ≲ 10 % difference in surface density within | z| ≤slant 1.1 {kpc} inside the observed volume. (ii) Modest systematic differences between the true and model DF are inconsequential. E.g., when binning stars to define sub-populations with simple DFs, binning errors do not affect the modeling as long as the DF parameters of neighboring bins differ by \\lt 20 % . In addition, RoadMapping ensures unbiased potential estimates for either (iii) small misjudgements of the spatial selection function (i.e., ≲ 15 % at the survey volume’s edge), (iv) if distances are known to within 10%, or (v) if proper motion uncertainties are known within 10% or are smaller than δ μ ≲ 1 {mas} {{yr}}-1. Challenges are the rapidly increasing computational costs for large sample sizes. Overall, RoadMapping is well suited to making precise new measurements of the MW’s potential with data from the upcoming Gaia releases.

  13. Protoplanetary disk formation and evolution models: DM Tau and GM Aur

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Guillot, T.

    2002-09-01

    We study the formation and evolution of protoplanetary disks using an axisymmetric turbulent disk model. We compare model results with observational parameters derived for the DM Tau and GM Aur systems. These are relatively old T Tauri stars with large and massive protoplanetary disks. Early disk formation is studied in the standard scenario of slowly rotating isothermal collapsing spheres and is strongly dependent on the initial angular momentum and the collapse accretion rate. The viscous evolution of the disk is integrated in time using the classical Alpha prescription of turbulence. We follow the temporal evolution of the disks until their characteristics fit the observed characteristics of DM Tau and GM Aur. We therefore obtain the set of model parameters that are able to explain the present state of these disks. We also study the disk evolution under the Beta parameterization of turbulence, recently proposed for sheared flows on protoplanetary disks. Both parameterizations allow explaining the present state of both DM Tau and GM Aur. We infer a value of Alpha between 5x10-3 to 0.02 for DM Tau and one order of magnitude smaller for GM Aur. Values of the Beta parameter are in accordance with theoretical predictions of Beta around 2x10-5 but with a larger dispersion on other model parameters, which make us favor the Alpha parameterization of turbulence. Implications for planetary system development in these systems are presented. In particular, GM Aur is a massive and slowly evolving disk where conditions are very favorable for planetesimal growth. The large value of present disk mass and the relatively small observed accretion rate of this system may also be indicative of the presence of an inner gas giant planet. Acknowledgements: This work has been supported by Programme Nationale de Planetologie. R. Hueso acknowledges a post-doctoral fellowship from Gobierno Vasco.

  14. Stability of general-relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a Γ-law equation of state with Γ=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  15. Stability of general-relativistic accretion disks

    SciTech Connect

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-15

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a {Gamma}-law equation of state with {Gamma}=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  16. A class of multidimensional cosmological models and its possible astrophysical consequences.

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.

    1992-08-01

    Assuming a homogeneous matter-energy content such that p = p(t) and d = d(t) the author has obtained exact solutions for cosmological models in higher dimensions under different symmetries. Depending on the form of metric chosen the models are either uniquely Robertson-Walker-like in higher dimensions or differ significantly from the latter in the sense that the geometry is spatially inhomogeneous. Space geometry as regards singularity, astrophysical parameters like "deceleration factor", entropy, and time-temperature relation of the universe are also calculated. Utilizing one of the solutions an expression for luminosity distance function is found in higher dimension and it is observed that the de Sitter spacetime sets an upper limit to the absolute distance of any cosmological source. Further, some remarks of general nature are made about nucleosynthesis in higher dimensional world with the help of time-temperature relation and it is conjectured that dimensionality may have significant impact.

  17. Simulating the Timescale-Dependent Color Variation in Quasars with a Revised Inhomogeneous Disk Model

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Yi; Wang, Jun-Xian; Gu, Wei-Min; Sun, Yu-Han; Wu, Mao-Chun; Huang, Xing-Xing; Chen, Xiao-Yang

    2016-07-01

    The UV-optical variability of active galactic nuclei and quasars is useful for understanding the physics of the accretion disk and is gradually being attributed to stochastic fluctuations over the accretion disk. Quasars generally appear bluer when they brighten in the UV-optical bands; the nature of this phenomenon remains controversial. Recently, Sun et al. discovered that the color variation of quasars is timescale-dependent, in the way that faster variations are even bluer than longer term ones. While this discovery can directly rule out models that simply attribute the color variation to contamination from the host galaxies, or to changes in the global accretion rates, it favors the stochastic disk fluctuation model as fluctuations in the inner-most hotter disk could dominate the short-term variations. In this work, we show that a revised inhomogeneous disk model, where the characteristic timescales of thermal fluctuations in the disk are radius-dependent (i.e., τ ˜ r; based on that originally proposed by Dexter & Agol), can reproduce well a timescale-dependent color variation pattern, similar to the observed one and unaffected by the uneven sampling and photometric error. This demonstrates that one may statistically use variation emission at different timescales to spatially resolve the accretion disk in quasars, thus opening a new window with which to probe and test the accretion disk physics in the era of time domain astronomy. Caveats of the current model, which ought to be addressed in future simulations, are discussed.

  18. MODELING MID-INFRARED VARIABILITY OF CIRCUMSTELLAR DISKS WITH NON-AXISYMMETRIC STRUCTURE

    SciTech Connect

    Flaherty, K. M.; Muzerolle, J.

    2010-08-20

    Recent mid-infrared observations of young stellar objects have found significant variations possibly indicative of changes in the structure of the circumstellar disk. Previous models of this variability have been restricted to axisymmetric perturbations in the disk. We consider simple models of a non-axisymmetric variation in the inner disk, such as a warp or a spiral wave. We find that the precession of these non-axisymmetric structures produces negligible flux variations but a change in the height of these structures can lead to significant changes in the mid-infrared flux. Applying these models to observations of the young stellar object LRLL 31 suggests that the observed variability could be explained by a warped inner disk with variable scale height. This suggests that some of the variability observed in young stellar objects could be explained by non-axisymmetric disturbances in the inner disk and this variability would be easily observable in future studies.

  19. Computer Model Shows a Disk Galaxy's Life History

    NASA Image and Video Library

    This cosmological simulation follows the development of a single disk galaxy over about 13.5 billion years, from shortly after the Big Bang to the present time. Colors indicate old stars (red), you...

  20. The rat intervertebral disk degeneration pain model: relationships between biological and structural alterations and pain

    PubMed Central

    2011-01-01

    Introduction Degeneration of the interverterbral disk is as a cause of low-back pain is increasing. To gain insight into relationships between biological processes, structural alterations and behavioral pain, we created an animal model in rats. Methods Disk degeneration was induced by removal of the nucleus pulposus (NP) from the lumbar disks (L4/L5 and L5/L6) of Sprague Dawley rats using a 0.5-mm-diameter microsurgical drill. The degree of primary hyperalgesia was assessed by using an algometer to measure pain upon external pressure on injured lumbar disks. Biochemical and histological assessments and radiographs of injured disks were used for evaluation. We investigated therapeutic modulation of chronic pain by administering pharmaceutical drugs in this animal model. Results After removal of the NP, pressure hyperalgesia developed over the lower back. Nine weeks after surgery we observed damaged or degenerated disks with proteoglycan loss and narrowing of disk height. These biological and structural changes in disks were closely related to the sustained pain hyperalgesia. A high dose of morphine (6.7 mg/kg) resulted in effective pain relief. However, high doses of pregabalin (20 mg/kg), a drug that has been used for treatment of chronic neuropathic pain, as well as the anti-inflammatory drugs celecoxib (50 mg/kg; a selective inhibitor of cyclooxygenase 2 (COX-2)) and ketorolac (20 mg/kg; an inhibitor of COX-1 and COX-2), did not have significant antihyperalgesic effects in our disk injury animal model. Conclusions Although similarities in gene expression profiles suggest potential overlap in chronic pain pathways linked to disk injury or neuropathy, drug-testing results suggest that pain pathways linked to these two chronic pain conditions are mechanistically distinct. Our findings provide a foundation for future research on new therapeutic interventions that can lead to improvements in the treatment of patients with back pain due to disk degeneration. PMID

  1. Debris disks as seen by Herschel: statistics and modeling

    NASA Astrophysics Data System (ADS)

    Lebreton, J.; Marshall, J. P.; Augereau, J. C.; Eiroa, C.

    2011-10-01

    As leftovers of planet formation, debris disks represent an essential component of planetary systems. We first introduce the latest statistics obtained by the DUNES consortium, who are taking a census of extrasolar analogues to the Edgeworth-Kuiper Belt using the Herschel Space Observatory. Then we present a detailed study of the much younger debris disk surrounding the F5.5 star HD 181327. We derive strong constraints on the properties of its dust and we discuss its possible gaseous counterpart.

  2. Modelling the Gas Dynamics of Protoplanetary Disks by the SPH Method

    NASA Astrophysics Data System (ADS)

    Demidova, T. V.

    2016-12-01

    A modification of the GADGET-2 program package is proposed for three-dimensional modelling of gasdynamic flows in protoplanetary disks when perturbing objects (components of a binary system, brown dwarfs, protoplanets) are present. In these systems, the matter in the common disk falls onto the central star and companions to form accretion disks around them. The GADGET-2 code has been supplemented for calculating the accretion rate to each massive object and the line density of matter in the direction toward the central star as functions of the phase of the orbital period. The orbital parameters of the companion are specified as initial conditions for the problem. These orbits can be circular, eccentric, or inclined relative to the plane of the disk. With the aid of the modified code, details in the inner parts of the disk can be calculated with high accuracy: the accretion disks of the star and the companion are identified, as well as the gas bridge between them, flows of matter from the common disk which fill the accretion disks with matter, and density waves in the accretion and common disks.

  3. The magnetic nature of disk accretion onto black holes.

    PubMed

    Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy

    2006-06-22

    Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.

  4. Numerical Modeling of Tidal Effects in Polytropic Accretion Disks

    NASA Technical Reports Server (NTRS)

    Godon, Patrick

    1997-01-01

    A two-dimensional time-dependent hybrid Fourier-Chebyshev method of collocation is developed and used for the study of tidal effects in accretion disks, under the assumptions of a polytropic equation of state and a standard alpha viscosity prescription. Under the influence of the m = 1 azimuthal component of the tidal potential, viscous oscillations in the outer disk excite an m = 1 eccentric instability in the disk. While the m = 2 azimuthal component of the tidal potential excites a Papaloizou-Pringle instability in the inner disk (a saturated m = 2 azimuthal mode), with an elliptic pattern rotating at about a fraction (approx. = 1/3) of the local Keplerian velocity in the inner disk. The period of the elliptic mode corresponds well to the periods of the short-period oscillations observed in cataclysmic variables. In cold disks (r(Omega)/c(sub s) = M approx. = 40) we also find a critical value of the viscosity parameter (alpha approx. = 0.01), below which shock dissipation dominates and is balanced by the wave amplification due to the wave action conservation. In this case the double spiral shock propagates all the way to the inner boundary with a Mach number M(sub s) approx. = 1.3.

  5. Computer simulation of astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Max, Claire E.

    1991-01-01

    The role of sophisticated numerical models and simulations in the field of plasma astrophysics is discussed. The need for an iteration between microphysics and macrophysics in order for astrophysical plasma physics to produce quantitative results that can be related to astronomical data is stressed. A discussion on computational requirements for simulations of astrophysical plasmas contrasts microscopic plasma simulations with macroscopic system models. An overview of particle-in-cell simulations (PICS) is given and two examples of PICS of astrophysical plasma are discussed including particle acceleration by collisionless shocks in relativistic plasmas and magnetic field reconnection in astrophysical plasmas.

  6. Action-Based Dynamical Modelling For The Milky Way Disk

    NASA Astrophysics Data System (ADS)

    Trick, Wilma; Rix, Hans-Walter; Bovy, Jo

    2016-09-01

    We present Road Mapping, a full-likelihood dynamical modelling machinery, that aims to recover the Milky Way's (MW) gravitational potential from large samples of stars in the Galactic disk. Road Mapping models the observed positions and velocities of stars with a parameterized, action-based distribution function (DF) in a parameterized axisymmetric gravitational potential (Binney & McMillan 2011, Binney 2012, Bovy & Rix 2013).In anticipation of the Gaia data release in autumn, we have fully tested Road Mapping and demonstrated its robustness against the breakdown of its assumptions.Using large suites of mock data, we investigated in isolated test cases how the modelling would be affected if the data's true potential or DF was not included in the families of potentials and DFs assumed by Road Mapping, or if we misjudged measurement errors or the spatial selection function (SF) (Trick et al., submitted to ApJ). We found that the potential can be robustly recovered — given the limitations of the assumed potential model—, even for minor misjudgments in DF or SF, or for proper motion errors or distances known to within 10%.We were also able to demonstrate that Road Mapping is still successful if the strong assumption of axisymmetric breaks down (Trick et al., in preparation). Data drawn from a highresolution simulation (D'Onghia et al. 2013) of a MW-like galaxy with pronounced spiral arms does neither follow the assumed simple DF, nor does it come from an axisymmetric potential. We found that as long as the survey volume is large enough, Road Mapping gives good average constraints on the galaxy's potential.We are planning to apply Road Mapping to a real data set — the Tycho-2 catalogue (Hog et al. 2000) —very soon, and might be able to present some preliminary results already at the conference.

  7. High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2011-01-01

    High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10-35 m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations ofthe spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV at a proton Lorentz factor of -2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.

  8. Some astrophysical implication of gas profiles in a new galaxy clusters model

    NASA Astrophysics Data System (ADS)

    Piedipalumbo, Ester; Cardone, V. F.; Tortora, C.

    2004-12-01

    The structure of the dark matter and the thermodynamical status of the hot gas in galaxy clusters is an interesting and widely discussed topic in modern astrophysics. Recently, Rasia et al. (2004) have proposed a new dynamical model of clusters of galaxies, which describes both the dark matter halo and the hot intracluster gas. We analyze the influence of the gas density and temperature profiles on the properties of the X-emission and the comptonization parameter that determines the CMBR temperature decrement due to the Sunyaev - Zel’dovich effect† .A complete traetment of this topic is found in Cardone V.F., Piedipalumbo E., Tortora C., 2005, A&A, 429, 49

  9. Important plasma problems in astrophysics

    SciTech Connect

    Kulsrud, R.M.

    1995-01-01

    In astrophysics, plasmas occur under very extreme conditions. For example there are ultra strong magnetic fields in neutron stars) relativistic plasmas around black holes and in jets, extremely energetic particles such as cosmic rays in the interstellar medium, extremely dense plasmas in accretion disks, and extremely large magnetic Reynold`s numbers in the interstellar medium. These extreme limits for astrophysical plasmas make plasma phenomena much simpler to analyze in astrophysics than in the laboratory. An understanding of such phenomena often results in an interesting way, by simply taking the extreme limiting case of a known plasma theory. I will describe one of the more exciting examples. I will attempt to convey the excitement I felt when I was first exposed to it. However, not all plasma astrophysical phenomena are so simple. There are certain important plasma phenomena in astrophysics, which have not been so easily resolved. In fact a resolution of them is blocking significant progress in astrophysical research. They have not yet yielded to attacks by theoretical astrophysicists nor to extensive numerical simulation. I will attempt to describe one of the more important of these plasma-astrophysical problems, and discuss why its resolution is so important to astrophysics. This significant example is fast, magnetic reconnection. Another significant example is the large-magnetic-Reynold`s-number MHD dynamos.

  10. Modeling self-subtraction in angular differential imaging: Application to the HD 32297 debris disk

    SciTech Connect

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul

    2014-01-01

    We present a new technique for forward-modeling self-subtraction of spatially extended emission in observations processed with angular differential imaging (ADI) algorithms. High-contrast direct imaging of circumstellar disks is limited by quasi-static speckle noise, and ADI is commonly used to suppress those speckles. However, the application of ADI can result in self-subtraction of the disk signal due to the disk's finite spatial extent. This signal attenuation varies with radial separation and biases measurements of the disk's surface brightness, thereby compromising inferences regarding the physical processes responsible for the dust distribution. To compensate for this attenuation, we forward model the disk structure and compute the form of the self-subtraction function at each separation. As a proof of concept, we apply our method to 1.6 and 2.2 μm Keck adaptive optics NIRC2 scattered-light observations of the HD 32297 debris disk reduced using a variant of the 'locally optimized combination of images' algorithm. We are able to recover disk surface brightness that was otherwise lost to self-subtraction and produce simplified models of the brightness distribution as it appears with and without self-subtraction. From the latter models, we extract radial profiles for the disk's brightness, width, midplane position, and color that are unbiased by self-subtraction. Our analysis of these measurements indicates a break in the brightness profile power law at r ≈ 110 AU and a disk width that increases with separation from the star. We also verify disk curvature that displaces the midplane by up to 30 AU toward the northwest relative to a straight fiducial midplane.

  11. Spectral Modeling in Astrophysics - The Physics of Non-equilibrium Clouds

    NASA Astrophysics Data System (ADS)

    Ferland, Gary; Williams, Robin

    2016-02-01

    Collisional-radiative spectral modeling plays a central role in astrophysics, probing phenomena ranging from the chemical evolution of the Universe to the energy production near supermassive black holes in distant quasars. The observed emission lines form in non-equilibrium clouds that have very low densities by laboratory standards, and are powered by energy sources which themselves are not in equilibrium. The spectrum is the result of a large number of microphysical processes, thermal statistics often do not apply, and analytical theory cannot be used. Numerical simulations are used to understand the physical state and the resulting spectrum. The greatest distinction between astrophysical modeling and conventional plasma simulations lies in the range of phenomena that must be considered. A single astronomical object will often have gas with kinetic temperatures of T˜10^6 K, 10^4 K, and T≤ 10^3 K, with the physical state ranging from molecular to fully ionized, and emitting over all wavelengths between the radio and x-ray. Besides atomic, plasma, and chemical physics, condensed matter physics is important because of the presence of small solid `grains' which affect the gas through catalytic reactions and the infrared emission they produce. The ionization, level populations, chemistry, and grain properties must be determined self-consistently, along with the radiation transport, to predict the observed spectrum. Although the challenge is great, so are the rewards. Numerical spectral simulations allow us to read the message contained in the spectrum emitted by objects far from the Earth that existed long ago.

  12. Hydraulic jumps in 'viscous' accretion disks. [in astronomical models

    NASA Technical Reports Server (NTRS)

    Michel, F. C.

    1984-01-01

    It is proposed that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central 'paddle wheel', may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the 'slow' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 to the 10th gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure.

  13. Hydraulic jumps in 'viscous' accretion disks. [in astronomical models

    NASA Technical Reports Server (NTRS)

    Michel, F. C.

    1984-01-01

    It is proposed that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central 'paddle wheel', may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the 'slow' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 to the 10th gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure.

  14. Models that Teach about the Computer: AppleWorks and ProDOS, the Computer's Memory and Disk Storage.

    ERIC Educational Resources Information Center

    Niess, Margaret L.

    1989-01-01

    This final article in a series on creating models for teaching about computer memory and disk storage and retrieval focuses on AppleWorks software and the Professional Disk Operating System (ProDOS). Instructions for creating a paper model of the AppleWorks menu system and the ProDOS disk file are given. (LRW)

  15. A SMACK Model of Colliding Planetesimals in the β Pictoris Debris Disk

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Kuchner, Marc J.

    2015-12-01

    We present a new model of the β Pictoris disk-and-planet system that simulates both the planetesimal collisions and the dynamics of the resulting dust grains, allowing us to model features and asymmetries in both thermal and scattered light images of the disk. Our two-part model first simulates the collisional and dynamical evolution of the planetesimals with the Superparticle-Method Algorithm for Collisions in Kuiper belts and then simulates the dynamical evolution of the resulting dust grains with a standard Bulirsch-Stoer N-body integrator. Given the observed inclination and eccentricity of the β Pictoris b planet, the model neatly ties together several features of the disk: the central hole in the submillimeter images, the two-disk “x”-pattern seen in scattered light, and possibly even the clumpy gas seen by ALMA. We also find that most of the dust in the β Pictoris system is likely produced outside the ring at 60-100 AU. Instead of a birth ring, this disk has a “stirring ring” at 60-100 AU where the high-velocity collisions produced by the secular wave launched by the planet are concentrated. The two-disk x-pattern arises because collisions occur more frequently at the peaks and troughs of the secular wave. The perturbations of the disk in this region create an azimuthally and vertically asymmetric spatial distribution of collisions, which could yield an azimuthal clump of gas without invoking resonances or an additional planet.

  16. Modeling and Vibration Analysis of Spinning Hard Disk and Head Assembly

    NASA Astrophysics Data System (ADS)

    Lin, Kao-An; Huang, Shyh-Chin

    A read/write head assembly attached to a spinning disk was modeled and investigated through a different approach, in which the head assembly was represented by a suspension arm with an attached mass and an air spring (film) at its free end. The receptance method was applied to connect the spinning disk and the head assembly. The natural frequencies and mode shapes of the combined spinning disk-fixed head assembly as a whole were then interpreted. Numerical results showed that the head assembly induced extra modes from a single disk. Even for just weak coupling between disk and head, the bifurcations of mode shapes were very obvious, but the changes of natural frequencies were slight. The effects on frequency changes due to head's flexibility, air spring constant, head's location, and spinning speed were examined as well. Disk's spinning speed was found to pull the disk-head frequency loci to pass through the crossings of single disk's frequency loci and induce curve veering phenomenon.

  17. Modifying the Standard Disk Model for the Ultraviolet Spectral Analysis of Disk-dominated Cataclysmic Variables. I. The Novalikes MV Lyrae, BZ Camelopardalis, and V592 Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Godon, Patrick; Sion, Edward M.; Balman, Şölen; Blair, William P.

    2017-09-01

    The standard disk is often inadequate to model disk-dominated cataclysmic variables (CVs) and generates a spectrum that is bluer than the observed UV spectra. X-ray observations of these systems reveal an optically thin boundary layer (BL) expected to appear as an inner hole in the disk. Consequently, we truncate the inner disk. However, instead of removing the inner disk, we impose the no-shear boundary condition at the truncation radius, thereby lowering the disk temperature and generating a spectrum that better fits the UV data. With our modified disk, we analyze the archival UV spectra of three novalikes that cannot be fitted with standard disks. For the VY Scl systems MV Lyr and BZ Cam, we fit a hot inflated white dwarf (WD) with a cold modified disk (\\dot{M} ∼ a few 10‑9 M ⊙ yr‑1). For V592 Cas, the slightly modified disk (\\dot{M}∼ 6× {10}-9 {M}ȯ {{yr}}-1) completely dominates the UV. These results are consistent with Swift X-ray observations of these systems, revealing BLs merged with ADAF-like flows and/or hot coronae, where the advection of energy is likely launching an outflow and heating the WD, thereby explaining the high WD temperature in VY Scl systems. This is further supported by the fact that the X-ray hardness ratio increases with the shallowness of the UV slope in a small CV sample we examine. Furthermore, for 105 disk-dominated systems, the International Ultraviolet Explorer spectra UV slope decreases in the same order as the ratio of the X-ray flux to optical/UV flux: from SU UMa’s, to U Gem’s, Z Cam’s, UX UMa’s, and VY Scl’s.

  18. PHOTOIONIZATION MODELS OF THE INNER GASEOUS DISK OF THE HERBIG BE STAR BD+65 1637

    SciTech Connect

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D.

    2016-01-20

    We attempt to constrain the physical properties of the inner, gaseous disk of the Herbig Be star BD+65 1637 using non-LTE, circumstellar disk codes and observed spectra (3700–10500 Å) from the ESPaDOnS instrument on the Canada–France–Hawaii Telescope. The photoionizing radiation of the central star is assumed to be the sole source of input energy for the disk. We model optical and near-infrared emission lines that are thought to form in this region using standard techniques that have been successful in modeling the spectra of classical Be stars. By comparing synthetic line profiles of hydrogen, helium, iron, and calcium with the observed line profiles, we try to constrain the geometry, density structure, and kinematics of the gaseous disk. Reasonable matches have been found for all line profiles individually; however, no disk density model based on a single power law for the equatorial density was able to simultaneously fit all of the observed emission lines. Among the emission lines, the metal lines, especially the Ca ii IR triplet, seem to require higher disk densities than the other lines. Excluding the Ca ii lines, a model in which the equatorial disk density falls as 10{sup −10} (R{sub *}/R){sup 3} g cm{sup −3} seen at an inclination of 45° for a 50 R{sub *} disk provides reasonable matches to the overall line shapes and strengths. The Ca ii lines seem to require a shallower drop-off as 10{sup −10} (R{sub *}/R){sup 2} g cm{sup −3} to match their strength. More complex disk density models are likely required to refine the match to the BD+65 1637 spectrum.

  19. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  20. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-12-31

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  1. Astrophysical Magnetic Fields and Topics in Galaxy Formation

    NASA Technical Reports Server (NTRS)

    Field, George B.

    1997-01-01

    The grant was used to support theoretical research on a variety of astro-physical topics falling broadly into those described by the proposal: galaxy formation, astrophysical magnetic fields, magnetized accretion disks in AGN, new physics, and other astrophysical problems. Work accomplished; references are to work authored by project personel.

  2. Modeling Circumstellar Disks of B-Type Stars with Observations from the Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.

    2013-01-01

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  3. MODELING CIRCUMSTELLAR DISKS OF B-TYPE STARS WITH OBSERVATIONS FROM THE PALOMAR TESTBED INTERFEROMETER

    SciTech Connect

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Sigut, T. A. A.; Rinehart, S. A.; Van Belle, G. T.

    2013-05-15

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of 15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8 spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  4. gadgetbelt: A Tool for Modeling Planetary Sculpting of Massive Debris Disks

    NASA Astrophysics Data System (ADS)

    Dawson, Rebekah; Murray-Clay, Ruth

    2013-07-01

    In models of the sculpting of planetesimal disks by planets, the planetesimals are often treated as test particles, with their effect on the planet modeled analytically. However, this treatment is insufficient in certain regimes, including: when the self-gravity of the disk causes density waves, transporting the angular momentum imparted or removed by the planet (e.g. Hahn 2003); when the self-gravity of the disk causes the disk to precess, interfering with the resonant and secular effects of the planet on the disk; and/or when interaction of the planet with individual planetesimals causes stochasticity in the planet's orbital evolution (e.g.,Murray-Clay & Chiang 2006), not well captured by prescriptions of the planetesimal-induced orbital evolution. We are adapting gadget (Springel 2005), a cosmological simulation code, for use in collisionless debris disks, allowing us to model thousands to millions of planetesimals in a reasonable CPU time through gains in speed from gadget's parallel processing implementation and tree code for N-body interactions. We will use this code, gadgetbelt, to explore regimes in which the planetesimal disk's self-gravity and/or back-reaction on the planet cannot be neglected and to explore the effects of stochasticity, which may lead to constraints on the planetesimal size-distribution. Here we present results from our benchmarking of gadgetbelt to the full N-body integrator mercury (Chambers 1999) and plans for future work.

  5. Comparison of central axis and jet ring coolant supply for turbine disk cooling on a SSME-HPOTP model

    NASA Technical Reports Server (NTRS)

    Kim, Y. W.; Metzger, D. E.

    1992-01-01

    The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.

  6. Scour around a perforated disk modeling a marine hydrokinetic device

    NASA Astrophysics Data System (ADS)

    Beninati, M. L.; Soliani, G.; Zhou, C. C.; Krane, M.; Fontaine, A.

    2013-12-01

    A study was conducted to investigate the behavior of scour hole dimensions and scour rates around a bottom-mounted cylindrical support structure of a perforated disk. The experiments focus on collecting temporal variations of scour depth around the support structure of the perforated disk for two scour regimes: transitional (ReD = 8500 and 9400) and live-bed (ReD = 10200). A perforated disk is used to approximate the drag of a submerged, horizontal axis, marine hydrokinetic (MHK) turbine. The goal is to compare the scour behavior around a perforated disk to that of a marine hydrokinetic (MHK) device. This study is motivated by the need to predict the environmental effect of MHK devices on an erodible bed. Testing is conducted in the small-scale hydraulic flume facility (1.2 m wide, 0.38 m deep, and 9.75 m long) at Bucknell University. The base of the support structure is marked incrementally to allow for time based observations of changes in scour depth. Bed form topologies are then acquired after a three hour time interval using a 2D sediment bed profiler. Experimental results show that scour rate is dependent on flow speed. Additionally, an increase in scour hole size occurs as the scour conditions are varied from transitional to live-bed.

  7. Observational Manifestation of Chaos in Astrophysical Objects

    NASA Astrophysics Data System (ADS)

    Fridman, A.; Marov, M.; Miller, R.

    2002-12-01

    This book addresses a broad range of problems related to observed manifestations of chaotic motions in galactic and stellar objects, by invoking basic theory, numerical modeling, and observational evidence. For the first time, methods of stochastic dynamics are applied to actually observed astronomical objects, e.g. the gaseous disc of the spiral galaxy NGC 3631. In the latter case, the existence of chaotic trajectories in the boundary of giant vortices was recently found by the calculation of the Lyapunov characteristic number of these trajectories. The reader will find research results on the peculiarities of chaotic system behaviour; a study of the integrals of motion in self-consistent systems; numerical modeling results of the evolution process of disk systems involving resonance excitation of the density waves in spiral galaxies; a review of specific formations in stars and high-energy sources demonstrating their stochastic nature; a discussion of the peculiarities of the precessional motion of the accretion disk and relativistic jets in the double system SS 433; etc. This book stands out as the first one that deals with the problem of chaos in real astrophysical objects. It is intended for graduate and post-graduate students in the fields of non-linear dynamics, astrophysics, planetary and space physics; specifically for those dealing with computer modeling of the relevant processes. Link: http://www.wkap.nl/prod/b/1-4020-0935-6

  8. Molecular Astrophysics

    NASA Astrophysics Data System (ADS)

    Hartquist, T. W.

    2005-07-01

    Part I. Molecular Clouds and the Distribution of Molecules in the Milky Way and Other Galaxies: 1. Molecular clouds in the Milky Way P. Friberg and A. Hjalmarson; 2. Molecules in galaxies L. Blitz; Part II. Diffuse Molecular Clouds: 3. Diffuse cloud chemistry E. F. Van Dishoeck; 4. Observations of velocity and density structure in diffuse clouds W. D. Langer; 5. Shock chemistry in diffuse clouds T. W. Hartquist, D. R. Flower and G. Pineau des Forets; Part III. Quiescent Dense Clouds: 6. Chemical modelling of quiescent dense interstellar clouds T. J. Millar; 7. Interstellar grain chemistry V. Buch; 8. Large molecules and small grains in astrophysics S. H. Lepp; Part IV. Studies of Molecular Processes: 9. Molecular photoabsorption processes K. P. Kirby; 10. Interstellar ion chemistry: laboratory studies D. Smith, N. G. Adams and E. E. Ferguson; 11. Theoretical considerations on some collisional processes D. R. Bates; 12. Collisional excitation processes E. Roueff; 13. Neutral reactions at Low and High Temperatures M. M. Graff; Part V. Atomic Species in Dense Clouds: 14. Observations of atomic species in dense clouds G. J. Melnick; 15. Ultraviolet radiation in molecular clouds W. G. Roberge; 16. Cosmic ray induced photodissociation and photoionization of interstellar molecules R. Gredel; 17. Chemistry in the molecular cloud Barnard 5 S. B. Charnley and D. A. Williams; 18. Molecular cloud structure, motions, and evolution P. C. Myers; Part VI. H in Regions of Massive Star Formation: 19. Infrared observations of line emission from molecular hydrogen T. R. Geballe; 20. Shocks in dense molecular clouds D. F. Chernoff and C. F. McKee; 21. Dissociative shocks D. A. Neufeld; 22. Infrared molecular hydrogen emission from interstellar photodissociation regions A. Sternberg; Part VII. Molecules Near Stars and in Stellar Ejecta: 23. Masers J. M. Moran; 24. Chemistry in the circumstellar envelopes around mass-losing red giants M. Jura; 25. Atoms and molecules in supernova 1987a R

  9. The Viscous Decretion Disk Model of the Classical Be Star β CMi Revisited

    NASA Astrophysics Data System (ADS)

    Klement, R.; Carciofi, A. C.; Rivinius, Th.

    2017-02-01

    We revisit the viscous decretion disk (VDD) model of the classical Be star β CMi as presented by Klemen et al. (2015) using an updated version of the radiative transfer code HDUST. A software bug was causing the mean intensities to be slightly underestimated in the equatorial region of the disk with small but detectable effects on the disk temperature and emergent spectrum. The new model fixes an unexplained feature of the original model, which was able to reproduce the observations only when considering a dual density behavior: a steep density fall-off in the very inner parts of the disk followed by a shallower density profile. The new model is able to reproduce all the observables reasonably well using a single power law for the density profile throughout the entire disk, as predicted by the VDD model. All the other original conclusions, most importantly the reported truncation of the disk at a distance of 35 stellar equatorial radii from the central star, remain unchanged.

  10. MODELING THE RESOLVED DISK AROUND THE CLASS 0 PROTOSTAR L1527

    SciTech Connect

    Tobin, John J.; Hartmann, Lee; Calvet, Nuria; Chiang, Hsin-Fang; Looney, Leslie W.; Wilner, David J.; Loinard, Laurent; D'Alessio, Paola

    2013-07-01

    We present high-resolution sub/millimeter interferometric imaging of the Class 0 protostar L1527 IRS (IRAS 04368+2557) at {lambda} = 870 {mu}m and 3.4 mm from the Submillimeter Array and Combined Array for Research in Millimeter Astronomy. We detect the signature of an edge-on disk surrounding the protostar with an observed diameter of 180 AU in the sub/millimeter images. The mass of the disk is estimated to be 0.007 M{sub Sun }, assuming optically thin, isothermal dust emission. The millimeter spectral index is observed to be quite shallow at all the spatial scales probed: {alpha} {approx} 2, implying a dust opacity spectral index {beta} {approx} 0. We model the emission from the disk and surrounding envelope using Monte Carlo radiative transfer codes, simultaneously fitting the sub/millimeter visibility amplitudes, sub/millimeter images, resolved L' image, spectral energy distribution, and mid-infrared spectrum. The best-fitting model has a disk radius of R = 125 AU, is highly flared (H{proportional_to}R {sup 1.3}), has a radial density profile {rho}{proportional_to}R {sup -2.5}, and has a mass of 0.0075 M{sub Sun }. The scale height at 100 AU is 48 AU, about a factor of two greater than vertical hydrostatic equilibrium. The resolved millimeter observations indicate that disks may grow rapidly throughout the Class 0 phase. The mass and radius of the young disk around L1527 are comparable to disks around pre-main-sequence stars; however, the disk is considerably more vertically extended, possibly due to a combination of lower protostellar mass, infall onto the disk upper layers, and little settling of {approx}1 {mu}m-sized dust grains.

  11. Modeling the Resolved Disk around the Class 0 Protostar L1527

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Hartmann, Lee; Chiang, Hsin-Fang; Wilner, David J.; Looney, Leslie W.; Loinard, Laurent; Calvet, Nuria; D'Alessio, Paola

    2013-07-01

    We present high-resolution sub/millimeter interferometric imaging of the Class 0 protostar L1527 IRS (IRAS 04368+2557) at λ = 870 μm and 3.4 mm from the Submillimeter Array and Combined Array for Research in Millimeter Astronomy. We detect the signature of an edge-on disk surrounding the protostar with an observed diameter of 180 AU in the sub/millimeter images. The mass of the disk is estimated to be 0.007 M ⊙, assuming optically thin, isothermal dust emission. The millimeter spectral index is observed to be quite shallow at all the spatial scales probed: α ~ 2, implying a dust opacity spectral index β ~ 0. We model the emission from the disk and surrounding envelope using Monte Carlo radiative transfer codes, simultaneously fitting the sub/millimeter visibility amplitudes, sub/millimeter images, resolved L' image, spectral energy distribution, and mid-infrared spectrum. The best-fitting model has a disk radius of R = 125 AU, is highly flared (HvpropR 1.3), has a radial density profile ρvpropR -2.5, and has a mass of 0.0075 M ⊙. The scale height at 100 AU is 48 AU, about a factor of two greater than vertical hydrostatic equilibrium. The resolved millimeter observations indicate that disks may grow rapidly throughout the Class 0 phase. The mass and radius of the young disk around L1527 are comparable to disks around pre-main-sequence stars; however, the disk is considerably more vertically extended, possibly due to a combination of lower protostellar mass, infall onto the disk upper layers, and little settling of ~1 μm-sized dust grains.

  12. Shell model study on the astrophysical neutron capture of 8Li

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Liang; Dong, Bao-Guo; Yan, Yu-Liang; Zhang, Xi-Zhen

    2012-09-01

    The astrophysical important neutron capture of 8Li is investigated by combining the shell model and potential model. Three effective interactions, SFO, PSDMK2 and PSDWBP are used to calculate the spectroscopic factors and reaction widths. For the resonant capture from 8Li to the first continuum state of 9Li , the three effective interactions give similar neutron partial widths, and they are well compared with the experimental results. However, the calculated photon widths are over 5 times less than the previous estimate. This will make the substantial difference that, at high temperature, the direct capture mechanism still dominates. The calculated capture rates generally agree well with the experimental data. The uncertainty of calculated cross-sections and capture rates mainly results from the different prediction of spectroscopic factors for the three effective interactions. The total neutron capture rates in our calculations are less than 4300 cm3 mole-1 s-1 for T 9 < 5 which confirms that the main reaction flow will proceed through the reaction 8Li ( α, n) 11B in the stellar environments.

  13. Period Analysis, Photometry, and Astrophysical Modelling of the Contact Eclipsing Binary BC Gruis

    NASA Astrophysics Data System (ADS)

    Moriarty, D. J. W.

    2016-06-01

    BC Gruis is a W UMa type contact binary system of the W-subtype with the primary minimum 0.1 magnitudes fainter than the secondary minimum. The period is currently 0.3073060 ± 0.0000001 days; it was 4 seconds longer prior to 2000. There were small modulations of 0.001 - 0.003 days in the Observed-Calculated diagram due to asymmetry in the light curves, most likely caused by star spots. An astrophysical model of the system was developed with the mass ratio of 1.16 determined from published spectral data. The best fit to light curves in B, V and I pass bands in 2014-9-30 was given by including 2 large cool star spots on the more massive, cooler component and 1 cool spot on the hotter star. In 2015-9-8, the asymmetry in the light curves was different and was modelled best with a hot spot on the more massive component at the neck joining the stars and 1 cool spot on the other component.

  14. Photon-dominated regions: development of a time-dependent model and application to astrophysical problems

    NASA Astrophysics Data System (ADS)

    Bell, Thomas Alexander

    Photon-dominated regions occur in many regions of astrophysical interest and an understanding of their underlying chemical and physical processes can provide an insight into the conditions within them. This thesis describes the development and implementation of a time-dependent version of the UCL_PDR model, including comprehensive benchmarking as part of an international effort to understand the differences between individual models and improve their agreement in key areas. The code has been applied to calculate theoretical values of the CO-to-H2 conversion factor, XqOi to investigate its sensitivity to physical parameter variation. Xqo is found to vary significantly from its canonical value under certain conditions and by over an order of magnitude in the case of high density or low metallicity. By fitting observed line intensity ratios in a sample of nearby galaxies, PDR models have been constructed to represent the conditions found in a range of galaxy types. These are used to derive appropriate values of Xqo for such objects and to investigate the possibility of using higher transition lines of CO as more reliable mass tracers in these environments. A parameter space search has also been conducted using the model to look for conditions that produce significant column densities of H2 with low levels of emission that would be undetectable or overlooked by current surveys. A plausible region of parameter space is found to produce such molecular dark matter, capable of concealing significant masses of gas that may form reservoirs for future star formation. Additional applications of the ucl_pdr model are discussed, including a study of the chemistry within transient microstructure in the diffuse interstellar medium and models of the time-dependent expansion of a molecular shell around a massive star cluster, applied to observations of the central starburst in M 82.

  15. Observations and models of deuterated H3+ in proto-planetary disks.

    PubMed

    Ceccarelli, Cecilia; Dominik, Carsten

    2006-11-15

    Young, gas-rich proto-planetary disks orbiting around solar-type young stars represent a crucial phase in disk evolution and planetary formation. Of particular relevance is to observationally track the evolution of the gas, which governs the overall evolution of the disk and is eventually dispersed. However, the bulk of the mass resides in the plane, which is so cold and dense that virtually all heavy-element-bearing molecules freeze out onto the dust grains and disappear from the gas phase. In this paper, we show that the ground-state ortho-H2D+ transition is the best, if not the only, tracer of the disk-plane gas. We report the theoretical models of the chemical structure of the plane of the disk, where the deuterated forms of H3+, including H2D+, play a major role. We also compare the theoretical predictions with the observations obtained towards the disk of the young star DM Tau and show that the ionization rate is probably enhanced there, perhaps owing to the penetration of X-rays from the central object through the disk plane. We conclude by remarking that the ground-state ortho-H2D+ transition is such a powerful diagnostic that it may also reveal the matter in the dark halos of external galaxies, if it is hidden in cold, dense and small clouds, as several theories predict.

  16. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  17. AdS black disk model for small-x DIS

    NASA Astrophysics Data System (ADS)

    Cornalba, Lorenzo; Costa, Miguel S.; Penedones, João

    2011-05-01

    Using the approximate conformal invariance of QCD at high energies we consider a simple AdS black disk model to describe saturation in DIS. Deep inside saturation the structure functions have the same power law scaling, FT˜FL˜x-ω, where ω is related to the expansion rate of the black disk with energy. Furthermore, the ratio FL/FT is given by the universal value 1+ω/3+ω, independently of the target.

  18. Herniated disk

    MedlinePlus

    ... the disk. This may place pressure on nearby nerves or the spinal cord. ... Lumbar radiculopathy; Cervical radiculopathy; Herniated ... LBP - herniated disk; Sciatica - herniated disk; Herniated disk

  19. MODELING THE HD 32297 DEBRIS DISK WITH FAR-INFRARED HERSCHEL DATA

    SciTech Connect

    Donaldson, J. K.; Lebreton, J.; Augereau, J.-C.; Krivov, A. V.

    2013-07-20

    HD 32297 is a young A-star ({approx}30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 {mu}m. We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains >2 {mu}m consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7{sigma} detection of [C II] emission at 158 {mu}m with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected.

  20. HERSCHEL PACS OBSERVATIONS AND MODELING OF DEBRIS DISKS IN THE TUCANA-HOROLOGIUM ASSOCIATION

    SciTech Connect

    Donaldson, J. K.; Roberge, A.; Chen, C. H.; Augereau, J.-C.; Menard, F.; Eiroa, C.; Meeus, G.; Krivov, A. V.; Mathews, G. S.; Riviere-Marichalar, P.; Sandell, G.

    2012-07-10

    We present Herschel PACS photometry of 17 B- to M-type stars in the 30 Myr old Tucana-Horologium Association. This work is part of the Herschel Open Time Key Programme 'Gas in Protoplanetary Systems'. 6 of the 17 targets were found to have infrared excesses significantly greater than the expected stellar IR fluxes, including a previously unknown disk around HD30051. These six debris disks were fitted with single-temperature blackbody models to estimate the temperatures and abundances of the dust in the systems. For the five stars that show excess emission in the Herschel PACS photometry and also have Spitzer IRS spectra, we fit the data with models of optically thin debris disks with realistic grain properties in order to better estimate the disk parameters. The model is determined by a set of six parameters: surface density index, grain size distribution index, minimum and maximum grain sizes, and the inner and outer radii of the disk. The best-fitting parameters give us constraints on the geometry of the dust in these systems, as well as lower limits to the total dust masses. The HD105 disk was further constrained by fitting marginally resolved PACS 70 {mu}m imaging.

  1. Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data

    NASA Technical Reports Server (NTRS)

    Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.

    2013-01-01

    HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected

  2. Detailed Mid- and Far- Ultraviolet Model Spectra for Accretion Disks in Cataclysmic Binaries

    NASA Technical Reports Server (NTRS)

    Wade, Richard A.; Hubeny, Ivan

    1998-01-01

    We present a large grid of computed far- and mid-ultraviolet spectra (850-2000 A) of the integrated light from steady-state accretion disks in luminous cataclysmic variables. The spectra are tabulated at 0.25 A intervals with an adopted FWHM resolution of 1.0 A, so they are suitable for use with observed spectra from a variety of modern space-borne observatories. Twenty-six different combinations of white dwarf mass M(sub wd) and mass accretion rate dot-m are considered, and spectra are presented for six different disk inclinations i. The disk models are computed self-consistently in the plane-parallel approximation, assuming LTE and vertical hydrostatic equilibrium, by solving simultaneously the radiative transfer, hydrostatic equilibrium, and energy balance equations. Irradiation from external sources is neglected. Local spectra of disk annuli are computed taking into account line transitions from elements 1-28 (H through Ni). Limb darkening as well as Doppler broadening and blending of lines are taken into account in computing the integrated disk spectra. The radiative properties of the models are discussed, including the dependence of ultraviolet fluxes and colors on M(sub wd), dot-m, and i. The appearance of the disk spectra is illustrated, with regard to changes in the same three parameters. Finally, possible future improvements to the present models and spectra are discussed.

  3. High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2012-01-01

    High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.

  4. High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2011-01-01

    High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35)m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and y-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future.

  5. Improvements and modeling calculations for a laboratory photoionized plasma experiment at Z relevant to astrophysics

    NASA Astrophysics Data System (ADS)

    Lockard, T. E.; Mayes, D. C.; Durmaz, T.; Mancini, R. C.; Loisel, G.; Bailey, J. E.; Rochau, G. A.; Liedahl, D. A.; Heeter, R. F.

    2013-10-01

    Creating a photoionized plasma in a controlled laboratory environment is difficult due to the intense x-ray flux needed to drive the plasma. This is overcome by the intense flux of x-ray photons produced by the pulsed power Z-machine at Sandia National Laboratories. We discuss improvements to a gascell experiment at Z including new ultrathin windows and window plates, and lower filling pressures that permit producing photoionized plasmas of larger ionization parameters. To understand the radiation environment, constrained view-factor calculations have been performed to model the x-ray flux at the gascell. Radiation-hydrodynamic simulations were also done to provide information on the overall evolution of the plasma and, in particular, the radiation heating of the plasma including non-equilibrium effects. We will also discuss a series of collisional-radiative atomic kinetics calculations that were done using a collection of laboratory and astrophysics codes. These results are useful to understand the relative importance of photon- and particle-driven atomic processes in the plasma. This work is sponsored in part by the National Nuclear Security Administration under the High Energy Density Laboratory Plasmas grant program through DOE Grant DE-FG52-09NA29551, and the Z Facility Fundamental Science Program of SNL.

  6. Monte Carlo models and analysis of galactic disk gamma-ray burst distributions

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon

    1989-01-01

    Gamma-ray bursts are transient astronomical phenomena which have no quiescent counterparts in any region of the electromagnetic spectrum. Although temporal and spectral properties indicate that these events are likely energetic, their unknown spatial distribution complicates astrophysical interpretation. Monte Carlo samples of gamma-ray burst sources are created which belong to Galactic disk populations. Spatial analysis techniques are used to compare these samples to the observed distribution. From this, both quantitative and qualitative conclusions are drawn concerning allowed luminosity and spatial distributions of the actual sample. Although the Burst and Transient Source Experiment (BATSE) experiment on Gamma Ray Observatory (GRO) will significantly improve knowledge of the gamma-ray burst source spatial characteristics within only a few months of launch, the analysis techniques described herein will not be superceded. Rather, they may be used with BATSE results to obtain detailed information about both the luminosity and spatial distributions of the sources.

  7. PANCHROMATIC OBSERVATIONS AND MODELING OF THE HV TAU C EDGE-ON DISK

    SciTech Connect

    Duchene, G.; Maness, H. L.; McCabe, C.; Pinte, C.; Menard, F.; Duvert, G.; Ghez, A. M.; Bouy, H.; Wolf, S.; Padgett, D. L.; Brooke, T. Y.; Noriega-Crespo, A.

    2010-03-20

    We present new high spatial resolution ({approx}<0.''1) 1-5 {mu}m adaptive optics images, interferometric 1.3 mm continuum and {sup 12}CO 2-1 maps, and 350 {mu}m, 2.8 and 3.3 mm fluxes measurements of the HV Tau system. Our adaptive optics images unambiguously demonstrate that HV Tau AB-C is a common proper motion pair. They further reveal an unusually slow orbital motion within the tight HV Tau AB pair that suggests a highly eccentric orbit and/or a large deprojected physical separation. Scattered light images of the HV Tau C edge-on protoplanetary disk suggest that the anisotropy of the dust scattering phase function is almost independent of wavelength from 0.8 to 5 {mu}m, whereas the dust opacity decreases significantly over the same range. The images further reveal a marked lateral asymmetry in the disk that does not vary over a timescale of two years. We further detect a radial velocity gradient in the disk in our {sup 12}CO map that lies along the same position angle as the elongation of the continuum emission, which is consistent with Keplerian rotation around a 0.5-1 M{sub sun} central star, suggesting that it could be the most massive component in the triple system. To obtain a global representation of the HV Tau C disk, we search for a model that self-consistently reproduces observations of the disk from the visible regime up to millimeter wavelengths. We use a powerful radiative transfer model to compute synthetic disk observations and use a Bayesian inference method to extract constraints on the disk properties. Each individual image, as well as the spectral energy distribution, of HV Tau C can be well reproduced by our models with fully mixed dust provided grain growth has already produced larger-than-interstellar dust grains. However, no single model can satisfactorily simultaneously account for all observations. We suggest that future attempts to model this source include more complex dust properties and possibly vertical stratification. While both

  8. A model of an X-ray-illuminated accretion disk and corona

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    1993-01-01

    The X-ray-illuminated surface of the accretion disk in a low-mass X-ray Binary (LMXRB) and the X-ray-heated corona above the disk produce optical, UV, and soft X-ray emission lines. This paper presents 1D models of the emission line spectra and the vertical temperature and density structures at different radii. The models include a detailed treatment of the important atomic processes and an escape probability treatment of radiative transfer. Soker and Raymond (1993) use the density structure predicted by these models for a 2D Monte Carlo simulation of the photon scattering in the accretion disk corona (ADC) to examine the effects of the ADC on the angular distribution of X-rays and the flux of X-rays incident on the outer disk. This paper concentrates on the emission line fluxes for various elemental abundances and disk parameters. The UV lines of the classic LMXRBs are consistent with the model predictions. Some CNO processing is necessary to account for the nitrogen and helium abundances in Sco X-1 and other LMXRBs. Comparison of the models with observed spectra also points to a soft X-ray component with luminosity comparable to the hard X-rays. The models predict a substantial luminosity in the group of highly ionized iron lines near 100 A.

  9. A model of an X-ray-illuminated accretion disk and corona

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    1993-01-01

    The X-ray-illuminated surface of the accretion disk in a low-mass X-ray Binary (LMXRB) and the X-ray-heated corona above the disk produce optical, UV, and soft X-ray emission lines. This paper presents 1D models of the emission line spectra and the vertical temperature and density structures at different radii. The models include a detailed treatment of the important atomic processes and an escape probability treatment of radiative transfer. Soker and Raymond (1993) use the density structure predicted by these models for a 2D Monte Carlo simulation of the photon scattering in the accretion disk corona (ADC) to examine the effects of the ADC on the angular distribution of X-rays and the flux of X-rays incident on the outer disk. This paper concentrates on the emission line fluxes for various elemental abundances and disk parameters. The UV lines of the classic LMXRBs are consistent with the model predictions. Some CNO processing is necessary to account for the nitrogen and helium abundances in Sco X-1 and other LMXRBs. Comparison of the models with observed spectra also points to a soft X-ray component with luminosity comparable to the hard X-rays. The models predict a substantial luminosity in the group of highly ionized iron lines near 100 A.

  10. Modeling the NIR-silhouette massive disk candidate in M 17

    NASA Astrophysics Data System (ADS)

    Steinacker, J.; Chini, R.; Nielbock, M.; Nürnberger, D.; Hoffmeister, V.; Huré, J.-M.; Semenov, D.

    2006-09-01

    Aims.The physical properties of the massive disk candidate in the star-forming region M 17 are analyzed. Methods: .Making use of the rare configuration in which the gas and dust structure is seen in silhouette against the background radiation at λ=2.2~μm, we determine the column density distribution from a high-resolution NAOS/CONICA image. The influence of scattered light on the mass determination is analyzed using 3D radiative transfer calculations. Further upper flux limits derived from observations with the Spitzer telescope at MIR wavelengths are used together with the NACO image to estimate the flux from the central object. For a range of stellar radii, stellar surface temperatures, and dust grain sizes, we apply three different models to account for the observed fluxes. The stability of the disk against self-gravitational forces is analyzed calculating the ratio of the gravitational acceleration by the central object and the disk, and the deviations from a Keplerian profile. Results: .We find that the column density is consistent with a central source surrounded by a rotationally symmetric distribution of gas and dust. The extent of the symmetric disk part is about 3000 AU, with a warped point-symmetrical extension beyond that radius, and therefore larger than any circumstellar disk yet detected. The modeling yields a radial density powerlaw exponent of -1.1 indicating a flat radial density distribution, and a large e-folding scale height ratio H/R of about 0.5. The mass of the entire disk estimated from the column density is discussed depending on the assumed distance and the dust model and ranges between 0.02 and 5 M⊙. We conclude that unless a star is located close to the disk in the foreground, scattered light will have little influence on the mass determination. We present a Spitzer image taken at λ=7.8~μm with the disk seen in emission and identify polycyclic aromatic hydrocarbon (PAH) emission on the disk surface excited by the nearby massive

  11. The Kinematics of Quasar Broad Emission Line Regions Using a Disk-Wind Model

    NASA Astrophysics Data System (ADS)

    Yong, Suk Yee; Webster, Rachel L.; King, Anthea L.; Bate, Nicholas F.; O'Dowd, Matthew J.; Labrie, Kathleen

    2017-09-01

    The structure and kinematics of the broad line region in quasars are still unknown. One popular model is the disk-wind model that offers a geometric unification of a quasar based on the viewing angle. We construct a simple kinematical disk-wind model with a narrow outflowing wind angle. The model is combined with radiative transfer in the Sobolev, or high velocity, limit. We examine how angle of viewing affects the observed characteristics of the emission line. The line profiles were found to exhibit distinct properties depending on the orientation, wind opening angle, and region of the wind where the emission arises.

  12. An interferometric study of the Fomalhaut inner debris disk. III. Detailed models of the exozodiacal disk and its origin

    NASA Astrophysics Data System (ADS)

    Lebreton, J.; van Lieshout, R.; Augereau, J.-C.; Absil, O.; Mennesson, B.; Kama, M.; Dominik, C.; Bonsor, A.; Vandeportal, J.; Beust, H.; Defrère, D.; Ertel, S.; Faramaz, V.; Hinz, P.; Kral, Q.; Lagrange, A.-M.; Liu, W.; Thébault, P.

    2013-07-01

    Context. Debris disks are thought to be extrasolar analogs to the solar system planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140 AU comparable to the Edgeworth-Kuiper belt, as well as evidence of a warm dust component, unresolved by single-dish telescopes, which is suspected of being a bright analog to the solar system's zodiacal dust. Aims: Interferometric observations obtained with the VLTI/VINCI instrument and the Keck Interferometer Nuller have identified near- and mid-infrared excesses attributed respectively to hot and warm exozodiacal dust residing in the inner few AU of the Fomalhaut environment. We aim to characterize the properties of this double inner dust belt and to unveil its origin. Methods: We performed parametric modeling of the exozodiacal disk ("exozodi") using the GRaTeR radiative transfer code to reproduce the interferometric data, complemented by mid- to far-infrared photometric measurements from Spitzer and Herschel. A detailed treatment of sublimation temperatures was introduced to explore the hot population at the size-dependent sublimation rim. We then used an analytical approach to successively testing several source mechanisms for the dust and suspected parent bodies. Results: A good fit to the multiwavelength data is found by two distinct dust populations: (1) a population of very small (0.01 to 0.5 μm), hence unbound, hot dust grains confined in a narrow region (~0.1-0.3 AU) at the sublimation rim of carbonaceous material; (2) a population of bound grains at ~2 AU that is protected from sublimation and has a higher mass despite its fainter flux level. We propose that the hot dust is produced by the release of small carbon grains following the disruption of dust aggregates that originate in the warm component. A mechanism, such as gas braking, is required to further confine the small grains for a long enough time. In situ dust production could hardly be ensured for the age of the star, so we conclude that the

  13. Modeling gravitational instabilities in self-gravitating protoplanetary disks with adaptive mesh refinement techniques

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Tim; Schleicher, Dominik R. G.

    2015-07-01

    The astonishing diversity in the observed planetary population requires theoretical efforts and advances in planet formation theories. The use of numerical approaches provides a method to tackle the weaknesses of current models and is an important tool to close gaps in poorly constrained areas such as the rapid formation of giant planets in highly evolved systems. So far, most numerical approaches make use of Lagrangian-based smoothed-particle hydrodynamics techniques or grid-based 2D axisymmetric simulations. We present a new global disk setup to model the first stages of giant planet formation via gravitational instabilities (GI) in 3D with the block-structured adaptive mesh refinement (AMR) hydrodynamics code enzo. With this setup, we explore the potential impact of AMR techniques on the fragmentation and clumping due to large-scale instabilities using different AMR configurations. Additionally, we seek to derive general resolution criteria for global simulations of self-gravitating disks of variable extent. We run a grid of simulations with varying AMR settings, including runs with a static grid for comparison. Additionally, we study the effects of varying the disk radius. The physical settings involve disks with Rdisk = 10,100 and 300 AU, with a mass of Mdisk ≈ 0.05 M⊙ and a central object of subsolar mass (M⋆ = 0.646 M⊙). To validate our thermodynamical approach we include a set of simulations with a dynamically stable profile (Qinit = 3) and similar grid parameters. The development of fragmentation and the buildup of distinct clumps in the disk is strongly dependent on the chosen AMR grid settings. By combining our findings from the resolution and parameter studies we find a general lower limit criterion to be able to resolve GI induced fragmentation features and distinct clumps, which induce turbulence in the disk and seed giant planet formation. Irrespective of the physical extension of the disk, topologically disconnected clump features are only

  14. Viscous Models for the Long-term Evolution of the Galactic Disk Based on Dynamical Instabilities

    NASA Astrophysics Data System (ADS)

    Meusinger, H.; Thon, R.

    We discuss a basic family of models for the long-term evolution of the Galactic disk including the following fundamental ideas: (i) Star formation is driven by local dynamic instabilities of the disk. Following Wang & Silk (1994), the local star formation timescale is intimately linked to the local growth rate of gravitational instabilities and is described in terms of the stability parameter Q. (ii) Radial gas flows within the disk are induced by a (hypothetical) viscosity of the interstellar medium. It is assumed that viscous gas transport and star formation are linked to the same causes and that the characteristic timescales of these both processes are therefore equivalent (Lin-Pringle condition). (iii) Secular infall of external gas, as indicated e.g. by high-velocity Hi clouds, strongly affects the long-term evolution of the disk. We adopt total mass fractions for the infalling gas as high as 50% up to 95%. Infall onto the disk may induce further radial gas streaming within the disk. (iv). The abundance evolution of the elements iron and oxygen is driven by supernovae of type II and type Ia. The modelling of the chemical evolution does not make use of the instantaneous recycling approximation. The models are compared with relevant observations concerning the solar neighbourhood and the radial profiles of the Galactic disk. Good agreement is found with most of the constraints. Moreover, the models predict a bimodal Schmidt law for the star formation rate, in qualitative agreement with what is found for nearby spiral galaxies. Applications of our results to high-z damped Lyα QSO absorbers are briefly discussed.

  15. SMACK: A New Algorithm for Modeling Collisions and Dynamics of Planetesimals in Debris Disks

    NASA Technical Reports Server (NTRS)

    Nesvold, Erika Rose; Kuchner, Marc J.; Rein, Hanno; Pan, Margaret

    2013-01-01

    We present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. We show that SMACK is stable to numerical viscosity and numerical heating over 10(exp 7) yr, and that it can reproduce analytic models of disk evolution. We use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit. Differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring.

  16. Quasi-static model of collimated jets and radio lobes. I. Accretion disk and jets

    SciTech Connect

    Colgate, Stirling A.; Li, Hui; Fowler, T. Kenneth; Pino, Jesse

    2014-07-10

    This is the first of a series of papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetic helix that could explain both the observed radio jet/lobe structures on very large scales and ultimately the enormous power inferred from the observed ultra-high-energy cosmic rays. In this work, we solve a set of one-dimensional equations similar to the steady-state standard accretion disk model, but now including the large-scale magnetic fields giving rises to jets. We find that the frequently made assumption that large-scale fields are frozen into the disk is fundamentally incorrect, due to the necessity for current and the accreting mass to flow perpendicular to magnetic flux surfaces. A correct treatment greatly simplifies the calculations, yielding fields that leave the disk nearly vertically with magnetic profiles uniquely determined by disk angular momentum conservation. Representative solutions of the magnetic fields in different radial regions of the disk surface are given, and they determine the overall key features in the jet structure and its dissipation, which will be the subjects of later papers.

  17. A simple analytic model for the evolution of captured galactic disks

    NASA Technical Reports Server (NTRS)

    Steiman-Cameron, Thomas Y.; Durisen, Richard H.

    1990-01-01

    The general analytic solution developed by Steinman-Cameron and Durisen and published in 1988 for the evolution of dissipative nonplanar disks is applied to captured galactic disks in model galaxies with nonspherical, scale-free, logarithmic gravitational potentials. Such potentials produce flat rotation curves, similar to those seen in real galaxies. In this case, the analytic solution yields a self-similar structure for the warps and twists that develop while the disks is settling. Being scale-free in a simple, analytic form, this solution is completely defined by only a few dimensionless fitting parameters. As a result, it can be utilized as a mathematical tool to fit settling disks in real galaxies. The minimum time it takes for a disk to settle into a steady state orientation is also a scale-free quantity when expressed in units of the precession period or the orbit period. For realistic parameters, settling times are on the order of one-half to two periods. The use of the time-dependent structure of settling disks as a probe of the three-dimensional mass distribution of the host galaxies, including dark halos, is discussed.

  18. Grain Growth in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Perez Munoz, Laura Maria

    The majority of young, low-mass stars are surrounded by optically thick accretion disks. These circumstellar disks provide large reservoirs of gas and dust that will eventually be transformed into planetary systems. Theory and observations suggest that the earliest stage toward planet formation in a protoplanetary disk is the growth of particles, from sub-micron-sized grains to centimeter- sized pebbles. Theory indicates that small interstellar grains are well coupled into the gas and are incorporated to the disk during the proto-stellar collapse. These dust particles settle toward the disk mid-plane and simultaneously grow through collisional coagulation in a very short timescale. Observationally, grain growth can be inferred by measuring the spectral energy distribution at long wavelengths, which traces the continuum dust emission spectrum and hence the dust opacity. Several observational studies have indicated that the dust component in protoplanetary disks has evolved as compared to interstellar medium dust particles, suggesting at least 4 orders of magnitude in particle-size growth. However, the limited angular resolution and poor sensitivity of previous observations has not allowed for further exploration of this astrophysical process. As part of my thesis, I embarked in an observational program to search for evidence of radial variations in the dust properties across a protoplanetary disk, which may be indicative of grain growth. By making use of high angular resolution observations obtained with CARMA, VLA, and SMA, I searched for radial variations in the dust opacity inside protoplanetary disks. These observations span more than an order of magnitude in wavelength (from sub-millimeter to centimeter wavelengths) and attain spatial resolutions down to 20 AU. I characterized the radial distribution of the circumstellar material and constrained radial variations of the dust opacity spectral index, which may originate from particle growth in these circumstellar

  19. Dynamical rearrangement of super-Earths during disk dispersal. I. Outline of the magnetospheric rebound model

    NASA Astrophysics Data System (ADS)

    Liu, Beibei; Ormel, Chris W.; Lin, Douglas N. C.

    2017-05-01

    Context. The Kepler mission has discovered that close-in super-Earth planets are common around solar-type stars. They are often seen together in multiplanetary systems, but their period ratios do not show strong pile-ups near mean motion resonances (MMRs). One scenario is that super-Earths form early, in the presence of a gas-rich disk. These planets interact gravitationally with the disk gas, inducing their orbital migration. However, for this scenario disk migration theory predicts that planets will end up at resonant orbits due to their differential migration speed. Aims: Motivated by the discrepancy between observation and theory, we seek a mechanism that moves planets out of resonances. We examine the orbital evolution of planet pairs near the magnetospheric cavity during the gas disk dispersal phase. Our study determines the conditions under which planets can escape resonances. Methods: We extend Type I migration theory by calculating the torque a planet experiences at the interface of the empty magnetospheric cavity and the disk, namely the one-sided torque. We perform two-planet N-body simulations with the new Type I expressions, varying the planet masses, stellar magnetic field strengths, disk accretion rates, and gas disk depletion timescales. Results: As planets migrate outwards with the expanding magnetospheric cavity, their dynamical configurations can be rearranged. Migration of planets is substantial (minor) in a massive (light) disk. When the outer planet is more massive than the inner planet, the period ratio of two planets increases through outward migration. On the other hand, when the inner planet is more massive, the final period ratio tends to remain similar to the initial one. Larger stellar magnetic field strengths result in planets stopping their migration at longer periods. We apply this model to two systems, Kepler-170 and Kepler-180. By fitting their present dynamical architectures, the disk and stellar B-field parameters at the time of

  20. A Systematic Homogeneous Archival Ultraviolet Spectral Analysis of Cataclysmic Variables using a Modified Standard Disk Model

    NASA Astrophysics Data System (ADS)

    Godon, Patrick

    Many ultraviolet spectra of cataclysmic variables (CVs) with a white dwarf (WD) accreting at a high rate have been difficult, even impossible, to model with standard disk models. The standard disk models appear to be too blue in comparison to the observed spectra. We propose to carry out a systematic and consistent analysis of archival ultraviolet spectra of 90 CVs using a truncated inner disk model (based and backed by observational data and theoretical results). We use the synthetic stellar spectra codes TLUSTY and SYNSPEC to generate these synthetic spectra. Deriving mass accretion rates for CVs will advance the theories of evolution of CVs as well as shed light on the Physics of accretion disks. As a by product we will make our theoretical spectra publicly available online. This will be of invaluable importance to future NASA UV missions. The WD is the most common end-product of stellar evolution and the accretion disk is the most common universal structure resulting from mass transfer with angular momentum, and both can be observed in CVs in the UV. As a consequence, an understanding of accretion in CV systems is the first step toward a global understanding of accretion in other systems throughout the universe, ranging from Young Stellar Objects, galactic binaries to AGN. This ADP proposal address the NASA Strategic Goals and Science Outcomes 3D: Discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets.

  1. Model Selection and Parameter Estimation in Neutrino Cosmology and High Energy Astrophysics Around the Galactic Center

    NASA Astrophysics Data System (ADS)

    Canac, Nicolas

    2016-08-01

    Understanding the particle nature of dark matter and determining the properties of neutrinos remain two of the most important questions within the physics community. Both problems lie within the intersection between astrophysics and particle physics, a fact which gives rise to a rich set of independent and complementary approaches to making progress on both fronts. This thesis presents three works that attempt to construct models and constrain the properties of these particles using empirical data from a large host of astronomical observations. The first work uses observations from the Fermi Gamma-ray Space Telescope's Large Area Telescope (Fermi LAT) to construct empirical models of the diffuse gamma-ray background in the Galactic Center (GC). A new template associated with cosmic rays interacting with molecular gas is detected with high significance. Using this new template along with other known sources of gamma-ray emission in the GC, I find that the previously detected extended gamma-ray excess is still detected for all permutations of the background model, although its properties vary significantly within the observed range of models. The second work presents a detection of a new source of gamma-ray emission in the GC that traces the morphology of infrared starlight, again using observations from the Fermi LAT. I argue that this emission is likely due to the same source of cosmic rays responsible for producing the emission associated with the molecular gas template in the previous work, and further make the case that this population of cosmic rays could be produced by the same source responsible for the GC excess. The last work explores how derived neutrino parameter constraints depend on the assumed form of the primordial power spectrum, using constraints derived from a host of cosmological data sets, including cosmic microwave background, baryon acoustic oscillation, power spectrum, cluster counts, and hubble constant measurements. I find that for a model

  2. Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas

    NASA Astrophysics Data System (ADS)

    Lattuada, D.; Barbarino, M.; Bonasera, A.; Bang, W.; Quevedo, H. J.; Warren, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.

    2016-04-01

    In this work, we present a new and general method for measuring the astrophysical S factor of nuclear reactions in laser-induced plasmas and we apply it to :mmultiscripts>(d ,n )3He . The experiment was performed with the Texas Petawatt Laser, which delivered 150-270 fs pulses of energy ranging from 90 to 180 J to D2 or CD4 molecular clusters (where D denotes 2H ) . After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S factor using the measured energy distribution of the ions, the measured volume of the fusion plasma, and the measured fusion yields. This method is model independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution, especially at high energies, and of the relevant fusion yields. In the :mmultiscripts>(d ,n )3He and 3He(d ,p )4He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S factor in the d +d case (lower Gamow energies), for the d +3He case the data are not precise enough to obtain the S factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.

  3. Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas

    DOE PAGES

    Lattuada, D.; Barbarino, M.; Bonasera, A.; ...

    2016-04-19

    In this paper, we present a new and general method for measuring the astrophysical S factor of nuclear reactions in laser-induced plasmas and we apply it to 2H(d,n)3He. The experiment was performed with the Texas Petawatt Laser, which delivered 150–270 fs pulses of energy ranging from 90 to 180 J to D2 or CD4 molecular clusters (where D denotes 2H). After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S factor using the measured energy distribution of the ions, the measured volume of the fusion plasma,more » and the measured fusion yields. This method is model independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution, especially at high energies, and of the relevant fusion yields. In the 2H(d,n)3He and 3He(d,p)4He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S factor in the d+d case (lower Gamow energies), for the d+3He case the data are not precise enough to obtain the S factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.« less

  4. Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays

    SciTech Connect

    García, J.; Steiner, J. F.; McClintock, J. E.; Brenneman, L. E-mail: jsteiner@head.cfa.harvard.edu E-mail: lbrenneman@cfa.harvard.edu; and others

    2014-02-20

    X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the XILLVER code and self-consistently connected it with the relativistic blurring code RELLINE. The new model, relxill, calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I∝ln (1 + 1/μ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativistic reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be overestimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constraint of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.

  5. Detailed Modeling of β CMi: A Multi-Technique Test of the Viscous Decretion Disk Scenario

    NASA Astrophysics Data System (ADS)

    Klement, R.; Carciofi, A. C.; Štefl, S.; Faes, D. M.; Rivinius, T.

    2016-11-01

    β CMi is a well-known close and bright classical Be star. Its observable properties, especially the little variability of line emission, point at an exceptional stability of the circumstellar disk at least on a scale of decades, which makes β CMi an ideal laboratory for a detailed test of the viscous decretion disk (VDD) scenario currently assumed to explain the formation and evolution of Be disks. A large set of multi-wavelength and multi-technique observations is used to produce arguably the most constrained model to date. The SED has been, for the first time with a physical model, reasonably reproduced from ultraviolet up to radio wavelengths. In this contribution we present the general aspects of the model and look more closely on the diagnostic potential of the ultraviolet spectrum and the spectral shape of visual polarisation in constraining some of the central star parameters for the case of β CMi.

  6. SMACK: A NEW ALGORITHM FOR MODELING COLLISIONS AND DYNAMICS OF PLANETESIMALS IN DEBRIS DISKS

    SciTech Connect

    Nesvold, Erika R.; Kuchner, Marc J.; Pan, Margaret; Rein, Hanno E-mail: Marc.Kuchner@nasa.gov E-mail: rein@ias.edu

    2013-11-10

    We present the Superparticle-Method/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in three dimensions, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. We show that SMACK is stable to numerical viscosity and numerical heating over 10{sup 7} yr and that it can reproduce analytic models of disk evolution. We use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit. Differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring.

  7. An Efficient Monte Carlo Method for Modeling Radiative Transfer in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Kim, Stacy

    2011-01-01

    Monte Carlo methods have been shown to be effective and versatile in modeling radiative transfer processes to calculate model temperature profiles for protoplanetary disks. Temperatures profiles are important for connecting physical structure to observation and for understanding the conditions for planet formation and migration. However, certain areas of the disk such as the optically thick disk interior are under-sampled, or are of particular interest such as the snow line (where water vapor condenses into ice) and the area surrounding a protoplanet. To improve the sampling, photon packets can be preferentially scattered and reemitted toward the preferred locations at the cost of weighting packet energies to conserve the average energy flux. Here I report on the weighting schemes developed, how they can be applied to various models, and how they affect simulation mechanics and results. We find that improvements in sampling do not always imply similar improvements in temperature accuracies and calculation speeds.

  8. An Efficient Monte Carlo Method for Modeling Radiative Transfer in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Kim, Stacy

    2011-01-01

    Monte Carlo methods have been shown to be effective and versatile in modeling radiative transfer processes to calculate model temperature profiles for protoplanetary disks. Temperatures profiles are important for connecting physical structure to observation and for understanding the conditions for planet formation and migration. However, certain areas of the disk such as the optically thick disk interior are under-sampled, or are of particular interest such as the snow line (where water vapor condenses into ice) and the area surrounding a protoplanet. To improve the sampling, photon packets can be preferentially scattered and reemitted toward the preferred locations at the cost of weighting packet energies to conserve the average energy flux. Here I report on the weighting schemes developed, how they can be applied to various models, and how they affect simulation mechanics and results. We find that improvements in sampling do not always imply similar improvements in temperature accuracies and calculation speeds.

  9. MHD of accretion-disk flows

    NASA Astrophysics Data System (ADS)

    Yankova, Krasimira

    2015-01-01

    Accretion is one of the most important problems of astrophysics concerning the transfer of matter and the transformation of energy into space. Process represents a falling of the substance on a cosmic object from the surrounding area and is a powerful gravitational mechanism for the production of radiation. Accretion disc effectively converts the mass of the substance by viscous friction and released potential energy transformed into radiation by particle collisions. Accretion onto compact object shows high energy efficiency and temporal variability in a broad class of observational data in all ranges. In the disks of these objects are developed a series instabilities and structures that govern the distribution of the energy. They are expressed in many variety non-stationary phenomena that we observe. That is why we propose generalized model of magnetized accretion disk with advection, which preserves the nonlinearity of the problem. We study interaction of the plasmas flow with the magnetic field, and how this affects the self-organizing disk. The aim of the work is to describe the accretion flow in detail, in his quality of the open astrophysical system, to investigate the evolution and to reveal the mechanisms of the structuring the disk-corona system for to interpret correctly the high energy behavior of such sources.

  10. Cognitive Astrophysics

    NASA Astrophysics Data System (ADS)

    Madore, Barry F.

    2012-09-01

    Cognitive Astrophysics works at the cusp between Cognitive Science and Astrophysics, drawing upon lessons learned in the Philosophy of Science, Linguistics and Artificial Intelligence. We will introduce and illustrate the concept of ``Downward Causation,'' common in philosophical discussions, but either unknown to or disdained by most physicists. A clear example operating on cosmological scales involving the origin of large-scale structure will be given. We will also make the case that on scales exceeding most laboratory experiments, self-gravitating matter can be considered to be in a ``fifth state'', characterized primarily by its negative specific heat, as first recognized by Lynden-Bell and Lynden-Bell (1977, MNRAS, 181, 405). Such systems increase their temperature as they lose energy. Numerous examples will be given and discussed.

  11. Model For Variability of the Solar Far Ultraviolet Flux Using Full Disk Magnetograms

    NASA Astrophysics Data System (ADS)

    Cook, J. W.; Brueckner, G. E.; Prinz, D. K.; Floyd, L. E.; Lund, P. A.

    1994-12-01

    The variability of the solar full disk flux in the 1175-2100 Angstroms wavelength range is largely determined from the surface distribution on the Sun of active regions, whose increase and decrease over the solar cycle, and passage across the disk, is the main source of long term, and 27 day, variability. Variations in the distribution of brightness in quiet areas, perhaps from decay of active regions causing an enhanced network (``third component"), could also affect variability. While earlier models of the full disk variability have relied on proxy activity indicators, such as the Ca II plage area, a more direct indicator of activity may be full disk photospheric magnetograms. We have recast our earlier model (1980, J.G.R., 85, 2257) of ultraviolet variability to base it upon Kitt Peak full disk magnetograms, using the work of Cook and Ewing (1990, Ap. J., 355, 719) on the observed relationship of brightness at 1600 Angstroms with magnetic field strength. We compare our model results with observations of the solar irradiance from the SUSIM experiment flown on the UARS satellite.

  12. Astrophysical symmetries

    PubMed Central

    Trimble, Virginia

    1996-01-01

    Astrophysical objects, ranging from meteorites to the entire universe, can be classified into about a dozen characteristic morphologies, at least as seen by a blurry eye. Some patterns exist over an enormously wide range of distance scales, apparently as a result of similar underlying physics. Bipolar ejection from protostars, binary systems, and active galaxies is perhaps the clearest example. The oral presentation included about 130 astronomical images which cannot be reproduced here. PMID:11607715

  13. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    NASA Astrophysics Data System (ADS)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D.

    2017-02-01

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (Hα and Hβ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10‑10(R */R)3 g cm‑3 in the equatorial plane of a 25 R * (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the Hα-emitting portion of the inner gaseous disk of ∼10‑9 M *. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium. Based on observations obtained at the Canada–France–Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l”Univers of the Centre National de la Recherche Scientique of France, and the University of Hawaii.

  14. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-01-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a

  15. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-01-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a

  16. Detailed models of a sample of debris disks: from Herschel, KIN and Spitzer to the JWST

    NASA Astrophysics Data System (ADS)

    Lebreton, J.; Beichman, C.; Augereau, J. C.

    2014-12-01

    Dusty debris disks surrounding main sequence stars are extrasolar equivalents to the Solar System populations of asteroids, icy bodies and dust grains. Many were observed in thermal emission by Herschel with unprecedented wavelength coverage and spatial resolution, complementing available scattered light images, mid-infrared spectra and interferometric measurements. We present detailed models of the HD 181327 and HD 32297 disks obtained with the GRaTer radiative transfer code and made possible thanks to Herschel. We then focus on the intriguing case of the nearby F2V star η Corvi that shows strong infrared excess despite an estimated age of 1.4 Gyr. We establish a detailed model of its disk from the sub-AU scale to its outermost regions based on observations from the Keck Interferometer Nuller, Herschel and Spitzer. These bright and extended disks will be of prime interest for future observations with the JWST. We finally discuss new debris disks science that will be addressed with the NIRCam and MIRI instruments.

  17. Active Microwave Remote Sensing of a Natural, Tallgrass Prairie and a Projected Disk Component Model to Explain the Behavior of a Modified Dielectric Disk Model.

    NASA Astrophysics Data System (ADS)

    Martin, Robert David, Jr.

    C-band scatterometer measurements were made of a tallgrass prairie in an attempt to determine the degree of correlation between (1) the backscattering coefficient (sigma_sp{rm tr}{ circ}) and different expressions of soil moisture and (2) the backscattering coefficient and various canopy parameters. The findings of this study support those made in previous studies in terms of the optimum polarization and view angle selection for soil moisture work (i.e., near-nadir view angles and HH and VV polarizations). In contrast to previous studies, view angles of 30 ^circ and 45^circ also produced strong correlations with soil moisture. A moderately strong correlation and partial correlation was found between sigma_sp{rm tr}{circ} and leaf water potential, indicating some capability of C-band measurements to detect extremes in the water status of prairie vegetation under shallow soil conditions. Also, site differences due to burn treatments appeared to cause significant differences in the sensitivity of sigma_sp{ rm tr}{circ} to soil moisture. In a second study, the disk model developed by Drs. Eom and Fung was tested against a set of field measurements of sigma_sp{rm tr} {circ} from a crop of sunflowers. The model overestimated sigma_sp{ rm tr}{circ} at early growth stages, but decreased the overestimate as the crop matured. The author modified the model to accommodate canopies with non-uniform, continuous leaf angle distributions. The modification altered the shape of the response curve for predicted sigma_sp{rm tr }{circ} versus view angle, but failed to reduce the overestimate in the early growth states. Additional modifications (e.g., incorporating row structure information) may be necessary. A new model, called the Projected Disk Component Model (PDCM), was developed to help explain the behavior of the modified disk model (MDM). By reducing several types of theoretical disk canopies to a simple, quantitative measure of their constituent horizontal and vertical

  18. Herschel survey and modelling of externally-illuminated photoevaporating protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Champion, J.; Berné, O.; Vicente, S.; Kamp, I.; Le Petit, F.; Gusdorf, A.; Joblin, C.; Goicoechea, J. R.

    2017-08-01

    Context. Protoplanetary disks undergo substantial mass-loss by photoevaporation, a mechanism that is crucial to their dynamical evolution. However, the processes regulating the gas energetics have not so far been well constrained by observations. Aims: We aim to study the processes involved in disk photoevaporation when it is driven by far-UV photons (i.e. 6 < E < 13.6 eV). Methods: We present a unique Herschel survey and new ALMA observations of four externally-illuminated photoevaporating disks (a.k.a. proplyds). To analyse these data, we developed a 1D model of the photodissociation region (PDR) of a proplyd, based on the Meudon PDR code. Using this model, we computed the far infrared line emission. Results: With this model, we successfully reproduce most of the observations and derive key physical parameters, that is, the densities at the disk surface of about 106 cm-3 and local gas temperatures of about 1000 K. Our modelling suggests that all studied disks are found in a transitional regime resulting from the interplay between several heating and cooling processes that we identify. These differ from those dominating in classical PDRs, meaning the grain photo-electric effect and cooling by [OI] and [CII] FIR lines. This specific energetic regime is associated to an equilibrium dynamical point of the photoevaporation flow: the mass-loss rate is self-regulated to keep the envelope column density at a value that maintains the temperature at the disk surface around 1000 K. From the physical parameters derived from our best-fit models, we estimate mass-loss rates - of the order of 10-7M⊙/yr - that are in agreement with earlier spectroscopic observation of ionised gas tracers. This holds only if we assume photoevaporation in the supercritical regime where the evaporation flow is launched from the disk surface at sound speed. Conclusions: We have identified the energetic regime regulating FUV-photoevaporation in proplyds. This regime could be implemented into models

  19. Mathematical modeling of the head-disk interface (abstract)

    NASA Astrophysics Data System (ADS)

    Crone, Robert M.; Jhon, Myung S.

    1993-05-01

    State-of-the-art theoretical and numerical techniques required to simulate the head-disk interface (HDI) of future magnetic storage devices is presented. The severity of operating conditions (i.e., attempts to achieve flying heights as low as 40 nm) pose several challenges. Large transient pressure gradients can be established within air bearing leading to numerical oscillations as well as to increased program execution times. Enhanced gaseous rarefaction effects must also be incorporated into the analysis. In the present study, accurate nonoscillatory air bearing pressure distributions were obtained using a high resolution finite element algorithm to solve the generalized Reynolds equation. Higher order gaseous rarefaction effects are incorporated into generalized Reynolds equations using the total mass flow rate coefficient predicted from the linearized Boltzmann equation. The form of the generalized Reynolds equation that is presented in this paper is an improved version of the continued fraction approximation previously proposed by Crone et al.1 A simple scaling analysis, which is based upon the results of the linearized Boltzmann equation, will also be presented to study the effect of slider miniaturization, as well as to obtain a novel interpretation of accelerated wear and accelerated flyability test results.

  20. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  1. Space Telescope and Optical Reverberation Mapping Project.VI. Reverberating Disk Models for NGC 5548

    NASA Astrophysics Data System (ADS)

    Starkey, D.; Horne, Keith; Fausnaugh, M. M.; Peterson, B. M.; Bentz, M. C.; Kochanek, C. S.; Denney, K. D.; Edelson, R.; Goad, M. R.; De Rosa, G.; Anderson, M. D.; Arévalo, P.; Barth, A. J.; Bazhaw, C.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Croxall, K. V.; Crenshaw, D. M.; Dalla Bontà, E.; De Lorenzo-Cáceres, A.; Dietrich, M.; Efimova, N. V.; Ely, J.; Evans, P. A.; Filippenko, A. V.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gonzalez, L.; Gorjian, V.; Grier, C. J.; Grupe, D.; Hall, P. B.; Hicks, S.; Horenstein, D.; Hutchison, T.; Im, M.; Jensen, J. J.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, S. C.; Kim, M.; Klimanov, S. A.; Korista, K. T.; Kriss, G. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; MacInnis, F.; Manne-Nicholas, E. R.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Pancoast, A.; Parks, J. R.; Pei, L.; Pogge, R. W.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Siegel, M. H.; Spencer, M.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Vestergaard, M.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zheng, W.; Zu, Y.

    2017-01-01

    We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 \\mathringA to 9157 \\mathringA ) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i=36^\\circ +/- 10^\\circ , temperature {T}1=(44+/- 6)× {10}3 K at 1 light day from the black hole, and a temperature–radius slope (T\\propto {r}-α ) of α =0.99+/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/{L}{Edd}=0.1.

  2. Space Telescope and Optical Reverberation Mapping Project. VI. Reverberating Disk Models for NGS 5548

    NASA Technical Reports Server (NTRS)

    Starkey, D.; Gehrels, Cornelis; Horne, Keith; Fausnaugh, M. M.; Peterson, B. M.; Bentz, M. C.; Kochanek, C. S.; Denney, K. D.; Edelson, R.; Goad, M. R.; hide

    2017-01-01

    We conduct a multi-wavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Angstrom to 9157 Angstrom) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36deg +/- 10deg, temperature T(sub 1) = (44+/-6) times 10 (exp 3)K at 1 light day from the black hole, and a temperature radius slope (T proportional to r (exp -alpha)) of alpha = 0.99 +/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/L(sub Edd) = 0.1.

  3. Kinetic Modeling of Radiative Turbulence in Relativistic Astrophysical Plasmas: Particle Acceleration and High-Energy Flares

    NASA Astrophysics Data System (ADS)

    Wise, John

    In the near future, next-generation telescopes, covering most of the electromagnetic spectrum, will provide a view into the very earliest stages of galaxy formation. To accurately interpret these future observations, accurate and high-resolution simulations of the first stars and galaxies are vital. This proposal is centered on the formation of the first galaxies in the Universe and their observational signatures in preparation for these future observatories. This proposal has two overall goals: 1. To simulate the formation and evolution of a statistically significant sample of galaxies during the first billion years of the Universe, including all relevant astrophysics while resolving individual molecular clouds, in various cosmological environments. These simulations will utilize a sophisticated physical model of star and black hole formation and feedback, including radiation transport and magnetic fields, which will lead to the most realistic and resolved predictions for the early universe; 2. To predict the observational features of the first galaxies throughout the electromagnetic spectrum, allowing for optimal extraction of galaxy and dark matter halo properties from their photometry, imaging, and spectra; The proposed research plan addresses a timely and relevant issue to theoretically prepare for the interpretation of future observations of the first galaxies in the Universe. A suite of adaptive mesh refinement simulations will be used to follow the formation and evolution of thousands of galaxies observable with the James Webb Space Telescope (JWST) that will be launched during the second year of this project. The simulations will have also tracked the formation and death of over 100,000 massive metal-free stars. Currently, there is a gap of two orders of magnitude in stellar mass between the smallest observed z > 6 galaxy and the largest simulated galaxy from "first principles", capturing its entire star formation history. This project will eliminate this

  4. AdS Black Disk Model for Small-x Deep Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Cornalba, Lorenzo; Costa, Miguel S.; Penedones, João

    2010-08-01

    Using the approximate conformal invariance of QCD at high energies we consider a simple anti-de Sitter black disk model to describe saturation in deep inelastic scattering. Deep inside saturation the structure functions have the same power law scaling, FT˜FL˜x-ω, where ω is related to the expansion rate of the black disk with energy. Furthermore, the ratio FL/FT is given by the universal value (1+ω)/(3+ω), independently of the target. For γ*-γ* scattering at high energies we obtain explicit expressions and ratios for the total cross sections of transverse and longitudinal photons in terms of the single parameter ω.

  5. LES of wind farm response to transient scenarios using a high fidelity actuator disk model

    NASA Astrophysics Data System (ADS)

    Moens, M.; Duponcheel, M.; Winckelmans, G.; Chatelain, P.

    2016-09-01

    Large eddy simulations coupled to Actuator Disks are used to investigate wake effects in wind farms. An effort is made on the wind turbine model: it uses the prevailing velocities at each point of the disk to estimate the aerodynamic loads and is improved using a tip-loss correction and realistic control schemes. This accurate and efficient tool is used to study the wind farm response in terms of flow and power production during an unsteady scenario: this work focuses on an emergency shutdown of one rotor inside a wind farm.

  6. Centrifugally driven winds from protostellar disks. I - Wind model and thermal structure

    NASA Technical Reports Server (NTRS)

    Safier, Pedro N.

    1993-01-01

    The thermal structure of a wind that is centrifugally driven from the surface of a protostellar disk is studied. A generalized version of the Blandford and Payne self-similar wind model is introduced, and the temperature and ionization distributions in the outflow are investigated. For the evolution of atomic winds, the heat equation and the rate equations that describe the ionization and excitation state of hydrogen are solved self-consistently. Ambipolar diffusion is found to be a robust mechanism for heating the gas. In the more powerful outflows, molecular hydrogen is collisionally dissociated close to the disk surface, and hydrogen is mainly atomic within a few astronomical units from the central source. It is also demonstrated that these outflows have enough momentum to lift dust grains from the disk surface.

  7. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC< 10 kpc) from the Gaia-ESO survey (GES) internal data release 2 (iDR2). We aim at decomposing it into data groups highlighting number density and/or slope variations in the abundance-metallicity plane. An independent sample of disk red clump stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) was used to cross-check the identified features. Results: We find that the sample is separated into five groups associated with major Galactic components; the metal-rich end of the halo, the thick disk, and three subgroups for the thin disk sequence. This is confirmed with the sample of red clump stars from APOGEE. The three thin disk groups served to explore this sequence in more detail. The two metal-intermediate and metal-rich groups of the thin disk decomposition ([Fe/H] > -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] < -0.25 dex) is shifted to larger distances than those of the more metal-rich parts. Moreover, the metal-poor part of the thin disk presents indications of a scale height

  8. Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling

    NASA Technical Reports Server (NTRS)

    Bonacuse, Pete; Kantzos, Pete; Telesman, Jack

    2002-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro

  9. Computational Relativistic Astrophysics Using the Flowfield-Dependent Variation Theory

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Theoretical models, observations and measurements have preoccupied astrophysicists for many centuries. Only in recent years, has the theory of relativity as applied to astrophysical flows met the challenges of how the governing equations can be solved numerically with accuracy and efficiency. Even without the effects of relativity, the physics of magnetohydrodynamic flow instability, turbulence, radiation, and enhanced transport in accretion disks has not been completely resolved. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks and also in the study of Gamma-Ray bursts (GRB). Thus, our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flowfield-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for Computational Relativistic Astrophysics (CRA) are demonstrated.

  10. Modeling MHD accretion-ejection: episodic ejections of jets triggered by a mean-field disk dynamo

    SciTech Connect

    Stepanovs, Deniss; Fendt, Christian; Sheikhnezami, Somayeh E-mail: fendt@mpia.de

    2014-11-20

    We present MHD simulations exploring the launching, acceleration, and collimation of jets and disk winds. The evolution of the disk structure is consistently taken into account. Extending our earlier studies, we now consider the self-generation of the magnetic field by an α{sup 2}Ω mean-field dynamo. The disk magnetization remains on a rather low level, which helps to evolve the simulations for T > 10, 000 dynamical time steps on a domain extending 1500 inner disk radii. We find the magnetic field of the inner disk to be similar to the commonly found open field structure, favoring magneto-centrifugal launching. The outer disk field is highly inclined and predominantly radial. Here, differential rotation induces a strong toroidal component, which plays a key role in outflow launching. These outflows from the outer disk are slower, denser, and less collimated. If the dynamo action is not quenched, magnetic flux is continuously generated, diffuses outward through the disk, and fills the entire disk. We have invented a toy model triggering a time-dependent mean-field dynamo. The duty cycles of this dynamo lead to episodic ejections on similar timescales. When the dynamo is suppressed as the magnetization falls below a critical value, the generation of the outflows and also accretion is inhibited. The general result is that we can steer episodic ejection and large-scale jet knots by a disk-intrinsic dynamo that is time-dependent and regenerates the jet-launching magnetic field.

  11. Slotted-wall research with disk and parachute models in a low-speed wind tunnel

    SciTech Connect

    Macha, J.M.; Buffington, R.J.; Henfling, J.L. ); Every, D. Van; Harris, J.L. )

    1990-01-01

    An experimental investigation of slotted-wall blockage interference has been conducted using disk and parachute models in a low speed wind tunnel. Test section open area ratio, model geometric blockage ratio, and model location along the length of the test section were systematically varied. Resulting drag coefficients were compared to each other and to interference-free measurements obtained in a much larger wind tunnel where the geometric blockage ratio was less than 0.0025. 9 refs., 10 figs.

  12. Thermal modeling of head disk interface system in heat assisted magnetic recording

    SciTech Connect

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S.; Min Kim, Hyung

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  13. Accretion disk modeling of AGN continuum using non-LTE stellar atmospheres. [active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Sun, Wei-Hsin; Malkan, Matthew A.

    1988-01-01

    Active galactic nuclei (AGN) accretion disk spectra were calculated using non-LTE stellar atmosphere models for Kerr and Schwarzschild geometries. It is found that the Lyman limit absorption edge, probably the most conclusive observational evidence for the accretion disk, would be drastically distorted and displaced by the relativistic effects from the large gravitational field of the central black hole and strong Doppler motion of emitting material on the disk surface. These effects are especially pronounced in the Kerr geometry. The strength of the Lyman limit absorption is very sensitive to the surface gravity in the stellar atmosphere models used. For models at the same temperature but different surface gravities, the strength of the Lyman edge exhibits an almost exponential decrease as the surface gravity approach the Eddington limit, which should approximate the thin disk atmosphere. The relativistic effects as well as the vanishing of the Lyman edge at the Eddington gravity may be the reasons that not many Lyman edges in the rest frames of AGNs and quasars are found.

  14. Multitechnique testing of the viscous decretion disk model. I. The stable and tenuous disk of the late-type Be star β CMi

    NASA Astrophysics Data System (ADS)

    Klement, R.; Carciofi, A. C.; Rivinius, Th.; Panoglou, D.; Vieira, R. G.; Bjorkman, J. E.; Štefl, S.; Tycner, C.; Faes, D. M.; Korčáková, D.; Müller, A.; Zavala, R. T.; Curé, M.

    2015-12-01

    Context. The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star β CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. Aims: The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. Methods: We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photometry covering the interval between optical and radio wavelengths, optical polarimetry, and optical and near-IR (spectro)interferometry. Results: A parametric VDD model with radial density exponent of n = 3.5, which is the canonical value for isothermal flaring disks, is found to explain observables typically formed in the inner disk, while observables originating in the more extended parts favor a shallower, n = 3.0, density falloff. Theoretical consequences of this finding are discussed and the outcomes are compared with the predictions of a fully self-consistent VDD model. Modeling of radio observations allowed for the first determination of the physical extent of a Be disk (35+10-5 stellar radii), which might be caused by a binary companion. Finally, polarization data allowed for an indirect measurement of the rotation rate of the star, which was found to be W ≳ 0.98, i.e., very close to critical. Based partly on observations from Ond

  15. Ceramic Inclusions in Powder Metallurgy Disk Alloys: Characterization and Modeling

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.

    2001-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially in turbine disk applications. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that are inherent to the powder atomization process. These inclusions can have a potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they typically do not reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where known populations of ceramic particles, whose composition and morphology are designed to mimic the "natural" inclusions, are added to the precursor powder. Surface-connected inclusions have been found to have a particularly large detrimental effect on fatigue life; therefore, the quantity of ceramic "seeds" added is calculated to ensure that a minimum number will intersect the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface area was needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macroscopic slices from extrusions

  16. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  17. Non-LTE spectral models for the gaseous debris-disk component of Ton 345

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Nagel, T.; Rauch, T.; Werner, K.

    2014-11-01

    Context. For a fraction of single white dwarfs with debris disks, an additional gaseous disk was discovered. Both dust and gas are thought to be created by the disruption of planetary bodies. Aims: The composition of the extrasolar planetary material can directly be analyzed in the gaseous disk component, and the disk dynamics might be accessible by investigating the temporal behavior of the Ca ii infrared emission triplet, hallmark of the gas disk. Methods: We obtained new optical spectra for the first helium-dominated white dwarf for which a gas disk was discovered (Ton 345) and modeled the non-LTE spectra of viscous gas disks composed of carbon, oxygen, magnesium, silicon, sulfur, and calcium with chemical abundances typical for solar system asteroids. Iron and its possible line-blanketing effects on the model structure and spectral energy distribution was still neglected. A set of models with different radii, effective temperatures, and surface densities as well as chondritic and bulk-Earth abundances was computed and compared with the observed line profiles of the Ca ii infrared triplet. Results: Our models suggest that the Ca ii emission stems from a rather narrow gas ring with a radial extent of R = 0.44-0.94 R⊙, a uniform surface density Σ = 0.3 g cm-2, and an effective temperature of Teff ≈ 6000 K. The often assumed chemical mixtures derived from photospheric abundances in polluted white dwarfs - similar to a chondritic or bulk-Earth composition - produce unobserved emission lines in the model and therefore have to be altered. We do not detect any line-profile variability on timescales of hours, but we confirm the long-term trend over the past decade for the red-blue asymmetry of the double-peaked lines. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  18. Dynamics and Observational Appearance of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew Frederick

    In my thesis I present a study of the dynamics and observational characteristics of massive circumstellar disks in two dimensions (r, f ) using two complimentary hydro-dynamic codes: a `Smoothed Particle Hydrodynamic' (SPH) code and a `Piecewise Parabolic Method' (PPM) code. I also study the detection limits available to radial velocity searches for low mass companions to main sequence stars. This thesis is organized as a series of published or submitted papers, connected by introductory and concluding material. I strongly recommend that readers of this abstract obtain the published versions of each of these papers. I first outline the progress which has been made in the modeling of the structure and origins of the solar system, then in chapter 2 (The Astrophysical Journal v502, p342, with W. Benz, F. Adams and D. Arnett), I proceed with numerical simulations of circumstellar disks using both hydrodynamic codes assuming a `locally isothermal' equation of state. The disks studied range in mass from 0.05M* to 1.0 M* and in initial minimum Toomre Q value from 1.1 to 3.0. Massive disks (MD > 0.2 M*) tend to form grand design spiral structure with 1-3 arms, while low mass disks (MD <= 0.2M*) tend to form filamentary, >4 armed spiral structures. In chapter 4 (submitted to The Astrophysical Journal with W. Benz and T. Ruzmaikina), I relax the assumption the locally isothermal evolution assumption and instead include simple heating and cooling prescriptions for the system. Under these physical conditions, the spiral arm growth is suppressed in the inner 1/3 of the disks relative to the isothermal evolution and in the remainder, changes character to more diffuse spiral structures. I synthesize spectral energy distributions (SEDs) from the simulations and compare them to fiducial SEDs derived from observed systems. The size distribution of grains in the inner disk can have marked consequences on the near infrared portion of the SED. After being vaporized in a hot midplane

  19. Three-dimensional modelling of thin liquid films over spinning disks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar

    2016-11-01

    In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.

  20. Large eddy simulation of unsteady wind farm behavior using advanced actuator disk models

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2014-11-01

    The present project aims at improving the level of fidelity of unsteady wind farm scale simulations through an effort on the representation and the modeling of the rotors. The chosen tool for the simulations is a Fourth Order Finite Difference code, developed at Universite catholique de Louvain; this solver implements Large Eddy Simulation (LES) approaches. The wind turbines are modeled as advanced actuator disks: these disks are coupled with the Blade Element Momentum method (BEM method) and also take into account the turbine dynamics and controller. A special effort is made here to reproduce the specific wake behaviors. Wake decay and expansion are indeed initially governed by vortex instabilities. This is an information that cannot be obtained from the BEM calculations. We thus aim at achieving this by matching the large scales of the actuator disk flow to high fidelity wake simulations produced using a Vortex Particle-Mesh method. It is obtained by adding a controlled excitation at the disk. We apply this tool to the investigation of atmospheric turbulence effects on the power production and on the wake behavior at a wind farm level. A turbulent velocity field is then used as inflow boundary condition for the simulations. We gratefully acknowledge the support of GDF Suez for the fellowship of Mrs Maud Moens.

  1. Particle astrophysics

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    1991-01-01

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  2. Particle astrophysics

    NASA Astrophysics Data System (ADS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  3. Contact graphs of disk packings as a model of spatial planar networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongzhi; Guan, Jihong; Ding, Bailu; Chen, Lichao; Zhou, Shuigeng

    2009-08-01

    Spatially constrained planar networks are frequently encountered in real-life systems. In this paper, based on a space-filling disk packing we propose a minimal model for spatial maximal planar networks, which is similar to but different from the model for Apollonian networks (Andrade et al 2005 Phys. Rev. Lett. 94 018702). We present an exhaustive analysis of various properties of our model, and obtain the analytic solutions for most of the features, including degree distribution, clustering coefficient, average path length and degree correlations. The model recovers some striking generic characteristics observed in most real networks. To address the robustness of the relevant network properties, we compare the structural features between the investigated network and the Apollonian networks. We show that topological properties of the two networks are encoded in the way of disk packing. We argue that spatial constraints of nodes are relevant to the structure of the networks.

  4. FROM DUST TO PLANETESIMALS: AN IMPROVED MODEL FOR COLLISIONAL GROWTH IN PROTOPLANETARY DISKS

    SciTech Connect

    Garaud, Pascale; Meru, Farzana; Galvagni, Marina; Olczak, Christoph

    2013-02-20

    Planet formation occurs within the gas- and dust-rich environments of protoplanetary disks. Observations of these objects show that the growth of primordial submicron-sized particles into larger aggregates occurs at the earliest evolutionary stages of the disks. However, theoretical models of particle growth that use the Smoluchowski equation to describe collisional coagulation and fragmentation have so far failed to produce large particles while maintaining a significant population of small grains. This has generally been attributed to the existence of two barriers impeding growth due to bouncing and fragmentation of colliding particles. In this paper, we demonstrate that the importance of these barriers has been artificially inflated through the use of simplified models that do not take into account the stochastic nature of the particle motions within the gas disk. We present a new approach in which the relative velocities between two particles are described by a probability distribution function that models both deterministic motion (from the vertical settling, radial drift, and azimuthal drift) and stochastic motion (from Brownian motion and turbulence). Taking both into account can give quite different results to what has been considered recently in other studies. We demonstrate the vital effect of two 'ingredients' for particle growth: the proper implementation of a velocity distribution function that overcomes the bouncing barrier and, in combination with mass transfer in high-mass-ratio collisions, boosts the growth of larger particles beyond the fragmentation barrier. A robust result of our simulations is the emergence of two particle populations (small and large), potentially explaining simultaneously a number of longstanding problems in protoplanetary disks, including planetesimal formation close to the central star, the presence of millimeter- to centimeter-sized particles far out in the disk, and the persistence of {mu}m-sized grains for millions of

  5. Astrophysical Probes of Dark Matter Interactions

    NASA Astrophysics Data System (ADS)

    Reece, Matthew

    The majority of matter in the universe is dark matter, made up of some particle beyond those in the Standard Model of particle physics. So far we have very little information about what dark matter is and how it interacts, except through gravity. Constraints from halo shapes and the Bullet Cluster give upper bounds on the self-interaction strength of dark matter, but these bounds are very weak: roughly the same size as nuclear physics cross sections, which are very large by the standards of particle physics. Given how little we know about dark matter, it is important to search for it in as broad a context as possible. Existing direct and indirect detection analyses are typically motivated by simple particle physics models like WIMP dark matter. This research will aim to widen the scope of searches for dark matter by considering a more complete range of particle physics models, working out their implications for astrophysical data, and interpreting existing data in terms of these new models. New models of dark matter can affect searches in a variety of ways. Signals may show up in conventional indirect detection searches, e.g. in gamma rays detected by Fermi-LAT or in antiprotons detected by AMS-02. The new particle physics content of the models could be reflected in surprising spectral shapes or other features of such signals, or in gamma rays with a different profile on the sky than expected in typical models. The PI has worked, for example, on a model in which signals may arise from a dark disk, which is just one of many possibilities. Signals of new dark matter models might also arise in more subtle ways. Structure in the dark sector could influence the development of structure in the visible sector, indirectly. For instance, a dark matter disk or other dark structures could alter the orbits of stars in the galaxy and may be detectable through detailed studies of the kinematics of stellar populations. Dark accretion disks could exist around astrophysical objects

  6. Mathematical modeling of electroless nickel deposition at steady state using rotating disk electrode

    SciTech Connect

    Kim, Y.S.; Sohn, H.J.

    1996-02-01

    Mathematical modeling of electroless nickel deposition was performed to predict the phosphorus content in Ni-P alloy film at steady state using the rotating disk system. The model consists of steady-state convective diffusion equations with nonlinear boundary conditions and overpotential equations satisfying the mixed potential theory. The weight percent of phosphorus predicted in Ni-P alloy agrees well with the experimental values within the experimental conditions carried out.

  7. Modelling astrophysical outflows via the unified dynamo-reverse dynamo mechanism

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Mahajan, Swadesh M.

    2015-04-01

    The unified dynamo-reverse dynamo (Dy-RDy) mechanism, capable of simultaneously generating large-scale outflows and magnetic fields from an ambient microscopic reservoir, is explored in a broad astrophysical context. The Dy-RDy mechanism is derived via the Hall magnetohydrodynamics, which unifies the evolution of magnetic field and fluid vorticity. It also introduces an intrinsic length-scale, the ion skin depth, allowing for the proper normalization and categorization of microscopic and macroscopic scales. The large-scale Alfvén Mach number MA, defining the relative `abundance' of the flow field to the magnetic field is shown to be tied to a microscopic scalelength that reflects the characteristics of the ambient short-scale reservoir. The dynamo (Dy), preferentially producing the large-scale magnetic field, is the dominant mode when the ambient turbulence is mostly kinetic, while the outflow producing reverse dynamo (RDy) is the principal manifestation of a magnetically dominated turbulent reservoir. It is conjectured that an efficient RDy may be the source of many observed astrophysical outflows that have MA ≫ 1.

  8. Kinetic Modeling of Radiative Turbulence in Relativistic Astrophysical Plasmas: Particle Acceleration and High-Energy Flares

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Relativistic astrophysical plasma environments routinely produce intense high-energy emission, which is often observed to be nonthermal and rapidly flaring. The recently discovered gamma-ray (> 100 MeV) flares in Crab Pulsar Wind Nebula (PWN) provide a quintessential illustration of this, but other notable examples include relativistic active galactic nuclei (AGN) jets, including blazars, and Gamma-ray Bursts (GRBs). Understanding the processes responsible for the very efficient and rapid relativistic particle acceleration and subsequent emission that occurs in these sources poses a strong challenge to modern high-energy astrophysics, especially in light of the necessity to overcome radiation reaction during the acceleration process. Magnetic reconnection and collisionless shocks have been invoked as possible mechanisms. However, the inferred extreme particle acceleration requires the presence of coherent electric-field structures. How such large-scale accelerating structures (such as reconnecting current sheets) can spontaneously arise in turbulent astrophysical environments still remains a mystery. The proposed project will conduct a first-principles computational and theoretical study of kinetic turbulence in relativistic collisionless plasmas with a special focus on nonthermal particle acceleration and radiation emission. The main computational tool employed in this study will be the relativistic radiative particle-in-cell (PIC) code Zeltron, developed by the team members at the Univ. of Colorado. This code has a unique capability to self-consistently include the synchrotron and inverse-Compton radiation reaction force on the relativistic particles, while simultaneously computing the resulting observable radiative signatures. This proposal envisions performing massively parallel, large-scale three-dimensional simulations of driven and decaying kinetic turbulence in physical regimes relevant to real astrophysical systems (such as the Crab PWN), including the

  9. Laboratory astrophysics: 2D and 3D numerical modeling of jets and flows produced in wire array experiments

    NASA Astrophysics Data System (ADS)

    Ciardi, A.; Lebedev, S. V.; Ampleford, D. J.; Chittenden, J. P.; Bland, S. N.; Sherlock, M.; Rapley, J.; Bott, S. C.; Jennings, C.

    2004-04-01

    Numerical modeling of jets formed in conical wire array Z-pinch experiments shows that scaled, astrophysically relevant flows can be obtained in the laboratory. These jets are hypersonic, with Mach number in excess of 20, are radiatively cooled and have a length to width ratio of ~ 1:10. Furthermore the jet formation mechanism is due to the hydrodynamic confinement of a standing conical shock, which redirects and collimates the converging plasma flow. The jets produced are also characterized by large Reynolds and Peclet numbers. Jet-wind interactions are modeled assuming a supersonically expanding radiatively ablated plasma wind. The jet bends away from the wind and it remains well collimated during and after the interaction, with the bending determined by the ram pressure of the impinging wind. A further development in wire array laboratory astrophysics experiments is the use of radial arrays, where the interaction of a ``freely'' expanding toroidal-like plasma cloud produces an axial collimated flow; subsequently a strong shock drives a supersonic, high density radiatively cooled ``bullet'' through this background medium.

  10. Detectability of planetary characteristics in disk-averaged spectra. I: The Earth model.

    PubMed

    Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Fishbein, Evan; Turnbull, Margaret; Bibring, Jean-Pierre

    2006-02-01

    Over the next 2 decades, NASA and ESA are planning a series of space-based observatories to detect and characterize extrasolar planets. This first generation of observatories will not be able to spatially resolve the terrestrial planets detected. Instead, these planets will be characterized by disk-averaged spectroscopy. To assess the detectability of planetary characteristics in disk-averaged spectra, we have developed a spatially and spectrally resolved model of the Earth. This model uses atmospheric and surface properties from existing observations and modeling studies as input, and generates spatially resolved high-resolution synthetic spectra using the Spectral Mapping Atmospheric Radiative Transfer model. Synthetic spectra were generated for a variety of conditions, including cloud coverage, illumination fraction, and viewing angle geometry, over a wavelength range extending from the ultraviolet to the farinfrared. Here we describe the model and validate it against disk-averaged visible to infrared observations of the Earth taken by the Mars Global Surveyor Thermal Emission Spectrometer, the ESA Mars Express Omega instrument, and ground-based observations of earthshine reflected from the unilluminated portion of the Moon. The comparison between the data and model indicates that several atmospheric species can be identified in disk-averaged Earth spectra, and potentially detected depending on the wavelength range and resolving power of the instrument. At visible wavelengths (0.4-0.9 microm) O3, H2O, O2, and oxygen dimer [(O2)2] are clearly apparent. In the mid-infrared (5-20 microm) CO2, O3, and H2O are present. CH4, N2O, CO2, O3, and H2O are visible in the near-infrared (1-5 microm). A comprehensive three-dimensional model of the Earth is needed to produce a good fit with the observations.

  11. A Resonantly Excited Disk-Oscillation Model of High-Frequency QPOs of Microquasars

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2012-12-01

    A possible model of twin high-frequency QPOs (HF QPOs) of microquasars is examined. The disk is assumed to have global magnetic fields and to be deformed with a two-armed pattern. In this deformed disk, a set of a two-armed (m = 2) vertical p-mode oscillation and an axisymmetric (m = 0) g-mode oscillation is considered. They resonantly interact through the disk deformation when their frequencies are the same. This resonant interaction amplifies the set of the above oscillations in the case where these two oscillations have wave energies of opposite signs. These oscillations are assumed to be excited most efficiently in the case where the radial group velocities of these two waves vanish at the same place. The above set of oscillations is not unique, depending on the node number n, of oscillations in the vertical direction. We consider that the basic two sets of oscillations correspond to the twin QPOs. The frequencies of these oscillations depend on the disk parameters, such as the strength of the magnetic fields. For observational mass ranges of GRS 1915+ 105, GRO J1655-40, XTE J1550-564, and HEAO H1743-322, the spins of these sources are estimated. High spins of these sources can be described if the disks have weak poloidal magnetic fields as well as toroidal magnetic fields of moderate strength. In this model the 3:2 frequency ratio of high-frequency QPOs is not related to their excitation, but occurs by chance.

  12. The structure and appearance of winds from supercritical accretion disks. I - Numerical models

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1979-01-01

    Equations for the structure and appearance of supercritical accretion disks and the radiation-driven winds which emanate from them are derived and solved by a steady-state hydrodynamic computer code with a relaxation technique used in stellar structure problems. The present model takes into account the mass of the accreting star, the total accretion rate, a generalization of the disk alpha parameter which accounts for heating by processes in addition to viscosity, and the ratio of the total luminosity to the Eddington luminosity. Solutions indicate that for accretion onto a hard-surfaced star, steady, optically thick winds result for even slightly supercritical accretion, and the object will appear as a supergiant star with a high mass loss rate and a nonblackbody spectrum. Winds from black hole accretion disks are expected to depend on the form of the accretion interior to the critical radius, possibly consisting of no ejection at all, a wind similar to that of a hard-surfaced star, or a column of material ejected from a hole in the accretion disk.

  13. Double Feedforward Control System Based on Precise Disturbance Modeling for Optical Disk

    NASA Astrophysics Data System (ADS)

    Sakimura, Naohide; Nakazaki, Tatsuya; Ohishi, Kiyoshi; Miyazaki, Toshimasa; Koide, Daiichi; Tokumaru, Haruki; Takano, Yoshimichi

    2013-09-01

    Optical disk drive systems must realize high-precision tracking control for their proper operation. For this purpose, we previously proposed a tracking control system that is composed of a high-gain servo controller (HGSC) and a feedforward controller with an equivalent-perfect tracking control (E-PTC) system. However, it is difficult to design the control parameter for actual multi-harmonic disturbances. In this paper, we propose a precise disturbance model of an actual optical disk using the experimental spectrum data of a feedback controller and describe the design of a fine tracking control system. In addition, we propose a double feedforward control (DFFC) system for further high-precision control. The proposed DFFC system is constructed using two zero phase error tracking (ZPET) control systems based on error prediction and trajectory command prediction. Our experimental results confirm that the proposed system effectively suppresses the tracking error at 6000 rpm, which is the disk rotation speed of Digital Versatile Disk Recordable (DVD+R).

  14. Development of an advanced actuator disk model for Large-Eddy Simulation of wind farms

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2015-11-01

    This work aims at improving the fidelity of the wind turbine modelling for Large-Eddy Simulation (LES) of wind farms, in order to accurately predict the loads, the production, and the wake dynamics. In those simulations, the wind turbines are accounted for through actuator disks. i.e. a body-force term acting over the regularised disk swept by the rotor. These forces are computed using the Blade Element theory to estimate the normal and tangential components (based on the local simulated flow and the blade characteristics). The local velocities are modified using the Glauert tip-loss factor in order to account for the finite number of blades; the computation of this correction is here improved thanks to a local estimation of the effective upstream velocity at every point of the disk. These advanced actuator disks are implemented in a 4th order finite difference LES solver and are compared to a classical Blade Element Momentum method and to high fidelity wake simulations performed using a Vortex Particle-Mesh method in uniform and turbulent flows.

  15. The structure and appearance of winds from supercritical accretion disks. I - Numerical models

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1979-01-01

    Equations for the structure and appearance of supercritical accretion disks and the radiation-driven winds which emanate from them are derived and solved by a steady-state hydrodynamic computer code with a relaxation technique used in stellar structure problems. The present model takes into account the mass of the accreting star, the total accretion rate, a generalization of the disk alpha parameter which accounts for heating by processes in addition to viscosity, and the ratio of the total luminosity to the Eddington luminosity. Solutions indicate that for accretion onto a hard-surfaced star, steady, optically thick winds result for even slightly supercritical accretion, and the object will appear as a supergiant star with a high mass loss rate and a nonblackbody spectrum. Winds from black hole accretion disks are expected to depend on the form of the accretion interior to the critical radius, possibly consisting of no ejection at all, a wind similar to that of a hard-surfaced star, or a column of material ejected from a hole in the accretion disk.

  16. Extreme Scale Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre

    2009-11-01

    We live in extraordinary times. With increasingly sophisticated observatories opening up new vistas on the universe, astrophysics is becoming more complex and data-driven. The success in understanding astrophysical systems that are inherently multi-physical, nonlinear systems demands realism in our models of the phenomena. We cannot hope to advance the realism of these models to match the expected sophistication of future observations without extreme-scale computation. Just one example is the advent of gravitational wave astronomy. Detectors like LIGO are about to make the first ever detection of gravitational waves. The gravitational waves are produced during violent events such as the merger of two black holes. The detection of these waves or ripples in the fabric of spacetime is a formidable undertaking, requiring innovative engineering, powerful data analysis tools and careful theoretical modeling. I will discuss the computational and theoretical challenges ahead in our new understanding of physics and astronomy where gravity exhibits its strongest grip on our spacetime.

  17. Advanced Models of Accretion Disk Atmospheres and Spectra for Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Wade, Richard A.

    1997-01-01

    This work led to the development of code for fitting models to data, and to an understanding of the nature of the models which enabled a more rapid search of 'parameter space' for optimal fits to spectral data sets. The code was used to find optimal fits to IUE spectra of quiescent dwarf novae that have been reported to show evidence for the white dwarf. The models consisted of a white dwarf component and an accretion disk with boundary conditions appropriate for the choice of the white dwarf. The preliminary work has strengthened the initial impression that accretion disk spectra can mimic the appearance of white dwarf spectra in the short-wavelength ultraviolet, so that additional constraints (such as distance) are needed to distinguish to two cases.

  18. Simple wideband models for disks and wires in the eddy current approximation

    NASA Astrophysics Data System (ADS)

    Scott, Waymond R.; McFadden, Michael

    2013-05-01

    Wideband electromagnetic induction systems have shown improved false alarm rates when compared with traditional metal detectors. Calibration of these sensors and the development of algorithms for target discrimination could be assisted by a set of models for common targets. In this paper, simple wideband models of the eddy current response for a wire and disk are provided. These are provided in the form of a singularity expansion of the polarizability dyadic. In an effort to make this form more concrete, a major focus of the paper is on relating the terms of the expansion to graphs of the currents present on the disk. The models provided in the paper are based on limiting forms of a cylinder as computed using the body-of-revolutions finite element method. Measured polarizability dyadics are also shown to fit the forms provided reasonably well.

  19. Exozodi disk models for the HOSTS survey on the LBTI

    NASA Astrophysics Data System (ADS)

    Wyatt, Mark; Kennedy, G.; Skemer, A.; Bryden, G.; Danchi, W. C.; Defrere, D.; Haniff, C.; Hinz, P.; Mennesson, B.; Millan-Gabet, R.; Panic, O.; Rieke, G.; Roberge, A.; Serabyn, G.; Shannon, A. B.; Stapelfeldt, K. R.; Weinberger, A. J.; LBTI-HOSTS

    2014-01-01

    This poster describes a simple model for exozodiacal emission that was developed to interpret observations of the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) project on the Large Binocular Telescope Interferometer (LBTI). HOSTS is a NASA-funded key science project using mid-infrared nulling interferometry at the LBTI to seach for faint exozodiacal dust (exozodi) in the habitable zones of nearby stars. The aim was to make a model that includes the fewest possible assumptions, so that it is easy to characterize how choices of model parameters affect what can be inferred from the observations. However the model is also sufficiently complex that it can be compared in a physically meaningful way with the level of dust in the Solar System, and can also be readily used to assess the impact of a detection (or of a non-detection) on the ability of a mission to detect Earth-like planets. Here we describe the model, and apply it to the sample of stars being searched by HOSTS to determine the zodi level (i.e., the number of Solar System zodiacal clouds) that would be needed for a detection for each star in the survey. Particular emphasis is given to our definition of a zodi, and what that means for stars of different luminosity, and a comparison is given between different zodi definitions justifying our final choice. The achievable exozodi levels range from 1-20 zodi for different stars in the prime sample for a 0.01% null depth, with a median level of 2.5 zodi.

  20. A GENERAL RELATIVISTIC MODEL OF ACCRETION DISKS WITH CORONAE SURROUNDING KERR BLACK HOLES

    SciTech Connect

    You Bei; Cao Xinwu; Yuan Yefei E-mail: cxw@shao.ac.cn

    2012-12-20

    We calculate the structure of a standard accretion disk with a corona surrounding a massive Kerr black hole in the general relativistic frame, in which the corona is assumed to be heated by the reconnection of the strongly buoyant magnetic fields generated in the cold accretion disk. The emergent spectra of accretion disk-corona systems are calculated by using the relativistic ray-tracing method. We propose a new method to calculate the emergent Comptonized spectra from the coronae. The spectra of disk-corona systems with a modified {alpha}-magnetic stress show that both the hard X-ray spectral index and the hard X-ray bolometric correction factor L{sub bol}/L{sub X,2-10keV} increase with the dimensionless mass accretion rate, which is qualitatively consistent with the observations of active galactic nuclei. The fraction of the power dissipated in the corona decreases with increasing black hole spin parameter a, which leads to lower electron temperatures of the coronae for rapidly spinning black holes. The X-ray emission from the coronae surrounding rapidly spinning black holes becomes weak and soft. The ratio of the X-ray luminosity to the optical/UV luminosity increases with the viewing angle, while the spectral shape in the X-ray band is insensitive to the viewing angle. We find that the spectral index in the infrared waveband depends on the mass accretion rate and the black hole spin a, which deviates from the f{sub {nu}}{proportional_to}{nu}{sup 1/3} relation expected by the standard thin disk model.

  1. THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. II. EFFECTS OF BINARY AND DISK PARAMETERS

    SciTech Connect

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.

  2. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    SciTech Connect

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.

  3. Self-consistent models for triaxial galaxies with flat rotation curves - The disk case

    NASA Technical Reports Server (NTRS)

    Kuijken, Konrad

    1993-01-01

    We examine the possibility of constructing scale-free triaxial logarithmic potentials self-consistently, using Schwarzschild's linear programing method. In particular, we explore the limit of nonaxisymmetric disks. In this case it is possible to reduce the problem to the self-consistent reconstruction of the disk surface density on the unit circle, a considerably simpler problem than the usual 2D or 3D one. Models with surface densities of the form Sigma = (x exp n + (y/q) exp n) exp - 1/n with n = 2 or 4 are investigated. We show that the complicated shapes of the 'boxlet' orbit families (which replace the box orbit family found in potentials with smooth cores) limit the possibility of building self-consistent models, though elliptical disks of axis ratio above 0.7 and a restricted range of boxier models can be constructed. This result relies on using sufficiently fine bins, smaller than the 10 deg bins commonly used in 2D or 3D investigations. It also indicates the need for caution in interpreting N-body models of triaxial halos in which the core of the potential is numerically smoothed.

  4. Self-consistent models for triaxial galaxies with flat rotation curves - The disk case

    NASA Technical Reports Server (NTRS)

    Kuijken, Konrad

    1993-01-01

    We examine the possibility of constructing scale-free triaxial logarithmic potentials self-consistently, using Schwarzschild's linear programing method. In particular, we explore the limit of nonaxisymmetric disks. In this case it is possible to reduce the problem to the self-consistent reconstruction of the disk surface density on the unit circle, a considerably simpler problem than the usual 2D or 3D one. Models with surface densities of the form Sigma = (x exp n + (y/q) exp n) exp - 1/n with n = 2 or 4 are investigated. We show that the complicated shapes of the 'boxlet' orbit families (which replace the box orbit family found in potentials with smooth cores) limit the possibility of building self-consistent models, though elliptical disks of axis ratio above 0.7 and a restricted range of boxier models can be constructed. This result relies on using sufficiently fine bins, smaller than the 10 deg bins commonly used in 2D or 3D investigations. It also indicates the need for caution in interpreting N-body models of triaxial halos in which the core of the potential is numerically smoothed.

  5. Spheroidal and Torsional Modes of Quasistatic Shear Oscillations in the Solid Globe Models of Nuclear Physics and Pulsar Astrophysics

    NASA Astrophysics Data System (ADS)

    Bastrukov, Sergey; Chang, Hsiang-Kuang; Mişicu, Şerban; Molodtsova, Irina; Podgainy, Dima

    The past three decades of investigation on nuclear physics and pulsar astrophysics have seen gradual recognition that elastodynamic approach to the continuum mechanics of nuclear matter provides proper account of macroscopic motions of degenerate Fermi-matter constituting interior of the nuclear material objects, the densest of all known today. This paper focuses on one theoretical issue of this development which is concerned with oscillatory behavior of a viscoelastic solid globe in the regime of quasistatic, force-free, noncompressional oscillations less investigated in the literature compared to oscillations in the regime of standing shear waves. We show that in this case the problem of computing frequency and lifetime of spheroidal and torsional modes of nonradial shear vibrations damped by viscosity can be unambiguously resolved by working from the energy balance equation and taking advantage of the Rayleigh's variational method. The efficiency of this method is demonstrated by solid globe models of nuclear physics and pulsar astrophysics dealing with oscillations of a spherical mass of a viscoelastic Fermi-solid with homogeneous and nonhomogeneous profiles of the bulk density, the shear modulus, and the shear viscosity.

  6. ZAPP: The Z Astrophysical Plasma Properties collaboration

    SciTech Connect

    Rochau, G. A.; Bailey, J. E.; Falcon, R. E.; Loisel, G. P.; Nagayama, T.; Mancini, R. C.; Hall, I.; Winget, D. E.; Montgomery, M. H.; Liedahl, D. A.

    2014-05-15

    The Z Facility at Sandia National Laboratories [Matzen et al., Phys. Plasmas 12, 055503 (2005)] provides MJ-class x-ray sources that can emit powers >0.3 PW. This capability enables benchmark experiments of fundamental material properties in radiation-heated matter at conditions previously unattainable in the laboratory. Experiments on Z can produce uniform, long-lived, and large plasmas with volumes up to 20 cc, temperatures from 1–200 eV, and electron densities from 10{sup 17–23} cc{sup −1}. These unique characteristics and the ability to radiatively heat multiple experiments in a single shot have led to a new effort called the Z Astrophysical Plasma Properties (ZAPP) collaboration. The focus of the ZAPP collaboration is to reproduce the radiation and material characteristics of astrophysical plasmas as closely as possible in the laboratory and use detailed spectral measurements to strengthen models for atoms in plasmas. Specific issues under investigation include the LTE opacity of iron at stellar-interior conditions, photoionization around active galactic nuclei, the efficiency of resonant Auger destruction in black-hole accretion disks, and H-Balmer line shapes in white dwarf photospheres.

  7. ANA: Astrophysical Neutrino Anisotropy

    NASA Astrophysics Data System (ADS)

    Denton, Peter

    2017-08-01

    ANA calculates the likelihood function for a model comprised of two components to the astrophysical neutrino flux detected by IceCube. The first component is extragalactic. Since point sources have not been found and there is increasing evidence that one source catalog cannot describe the entire data set, ANA models the extragalactic flux as isotropic. The second component is galactic. A variety of catalogs of interest are also provided. ANA takes the galactic contribution to be proportional to the matter density of the universe. The likelihood function has one free parameter fgal that is the fraction of the astrophysical flux that is galactic. ANA finds the best fit value of fgal and scans over 0

  8. X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres

    NASA Technical Reports Server (NTRS)

    Garcia, Javier; Kallman, Timothy R.

    2009-01-01

    We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  9. Microstructure Modeling of 3rd Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.

  10. Modelling CH^+ in the protoplanetary disk HD100546

    NASA Astrophysics Data System (ADS)

    Thi, W. F.; Menard, F.; Meeus, G.; Martin-Zaidi, C.; Woitke, P.; Tatulli, E.; Benisty, M.; Kamp, I.; Pascucci, I.; Pinte, C.; Grady, C. A.; Brittain, S.; White, G. J.; Howard, C. D.; Sandell, G.; Eiroa, C.

    2011-05-01

    Despite its importance in the thermal-balance of the gas and in the determination of primeval planetary atmospheres, the chemistry in protoplanetary discs remains poorly constrained with only a handful of detected species. We observed the emission from disc around the Herbig Ae star HD 100546 with the PACS instrument in the spectroscopic mode on board the Herschel Space Telescope as part of the Gas in Protoplanetary Systems (GASPS) programme and used archival data from the DIGIT programme to search for the rotational emission of CH^+. We detected in both datasets an emission line centred at 72.16 μm that most likely corresponds to the J=5-4 rotational emission of CH^+. The J=3-2 and 6-5 transitions are also detected albeit with lower confidence. Other CH^+ rotational lines in the PACS observations are blended with water emissions. A rotational diagram analysis shows that the CH^+ gas is warm at 323+2320-151 K with a mass of ˜3 × 10-14-5 × 10-12 M_⊙. We modelled the CH^+ chemistry with the chemo-physical code ProDiMo using a disc density structure and grain parameters that match continuum observations and near- and mid-infrared interferometric data. The model suggests that CH^+ is most abundant at the location of the rim at 10-13 AU from the star where the gas is warm, consistent with previous observations of hot CO gas emission.

  11. Dark Matter Astrophysics

    NASA Astrophysics Data System (ADS)

    D'Amico, Guido; Kamionkowski, Marc; Sigurdson, Kris

    This chapter is intended to provide a brief pedagogical review of dark matter for the newcomer to the subject. We begin with a discussion of the astrophysical evidence for dark matter. The standard weakly interacting massive particle (WIMP) scenario—the motivation, particle models, and detection techniques—is then reviewed. We provide a brief sampling of some recent variations to the standard WIMP scenario, as well as some alternatives (axions and sterile neutrinos). Exercises are provided for the reader.

  12. A Method for the Study of Accretion Disk Emission in Cataclysmic Variables. I. The Model

    NASA Astrophysics Data System (ADS)

    Puebla, Raúl E.; Diaz, Marcos P.; Hillier, D. John; Hubeny, Ivan

    2011-07-01

    We have developed a spectrum synthesis method for modeling the ultraviolet (UV) emission from the accretion disk from cataclysmic variables (CVs). The disk is separated into concentric rings, with an internal structure from the Wade & Hubeny disk-atmosphere models. For each ring, a wind atmosphere is calculated in the comoving frame with a vertical velocity structure obtained from a solution of the Euler equation. Using simple assumptions, regarding rotation and the wind streamlines, these one-dimensional models are combined into a single 2.5-dimensional model for which we compute synthetic spectra. We find that the resulting line and continuum behavior as a function of the orbital inclination is consistent with the observations, and verify that the accretion rate affects the wind temperature, leading to corresponding trends in the intensity of UV lines. In general, we also find that the primary mass has a strong effect on the P Cygni absorption profiles, the synthetic emission line profiles are strongly sensitive to the wind temperature structure, and an increase in the mass-loss rate enhances the resonance line intensities. Synthetic spectra were compared with UV data for two high orbital inclination nova-like CVs—RW Tri and V347 Pup. We needed to include disk regions with arbitrary enhanced mass loss to reproduce reasonably well widths and line profiles. This fact and a lack of flux in some high ionization lines may be the signature of the presence of density-enhanced regions in the wind, or alternatively, may result from inadequacies in some of our simplifying assumptions.

  13. Lower Bound on the Mean Square Displacement of Particles in the Hard Disk Model

    NASA Astrophysics Data System (ADS)

    Richthammer, Thomas

    2016-08-01

    The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate to what extent particle positions may fluctuate. We consider a finite volume version of the model in a box of dimensions 2 n × 2 n with arbitrary boundary configuration, and we show that the mean square displacement of particles near the center of the box is bounded from below by c log n. The result generalizes to a large class of models with fairly arbitrary interaction.

  14. Accretion disk coronae of intermediate polar cataclysmic variables. 3D magnetohydrodynamic modelling and thermal X-ray emission

    NASA Astrophysics Data System (ADS)

    Barbera, E.; Orlando, S.; Peres, G.

    2017-04-01

    Context. Intermediate polar cataclysmic variables (IPCV) contain a magnetic, rotating white dwarf surrounded by a magnetically truncated accretion disk. To explain their strong flickering X-ray emission, accretion has been successfully taken into account. Nevertheless, observations suggest that accretion phenomena might not be the only process behind it. An intense flaring activity occurring on the surface of the disk may generate a corona, contribute to the thermal X-ray emission, and influence the system stability. Aims: Our purposes are: investigating the formation of an extended corona above the accretion disk, due to an intense flaring activity occurring on the disk surface; studying the effects of flares on the disk and stellar magnetosphere; assessing its contribution to the observed thermal X-ray flux. Methods: We have developed a 3D magnetohydrodynamic (MHD) model of a IPCV system. The model takes into account gravity, disk viscosity, thermal conduction, radiative losses, and coronal flare heating through heat injection at randomly chosen locations on the disk surface. To perform a parameter space exploration, several system conditions have been considered, with different magnetic field intensity and disk density values. From the results of the evolution of the model, we have synthesized the thermal X-ray emission. Results: The simulations show the formation of an extended corona, linking disk and star. The flaring activity is capable of strongly influencing the disk configuration and possibly its stability, effectively deforming the magnetic field lines. Hot plasma evaporation phenomena occur in the layer immediately above the disk. The flaring activity gives rise to a thermal X-ray emission in both the [ 0.1-2.0 ] keV and the [ 2.0-10 ] keV X-ray bands. Conclusions: An intense coronal activity occurring on the disk surface of an IPCV can affect the structure of the disk depending noticeably on the density of the disk and the magnetic field of the central

  15. Elastic, charge transfer, and related transport cross sections for proton impact of atomic hydrogen for astrophysical and laboratory plasma modeling

    NASA Astrophysics Data System (ADS)

    Schultz, D. R.; Ovchinnikov, S. Yu; Stancil, P. C.; Zaman, T.

    2016-04-01

    Updating and extending previous work (Krstić and Schultz 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3458 and other references) comprehensive calculations were performed for elastic scattering and charge transfer in proton—atomic hydrogen collisions. The results, obtained for 1301 collision energies in the center-of-mass energy range of 10-4-104 eV, are provided for integral and differential cross sections relevant to transport modeling in astrophysical and other plasma environments, and are made available through a website. Use of the data is demonstrated through a Monte Carlo transport simulation of solar wind proton propagation through atomic hydrogen gas representing a simple model of the solar wind interaction with heliospheric neutrals.

  16. STELLAR-MASS BLACK HOLE SPIN CONSTRAINTS FROM DISK REFLECTION AND CONTINUUM MODELING

    SciTech Connect

    Miller, J. M.; Reynolds, C. S.; Fabian, A. C.; Miniutti, G.; Gallo, L. C.

    2009-05-20

    Accretion disk reflection spectra, including broad iron emission lines, bear the imprints of the strong Doppler shifts and gravitational redshifts close to black holes. The extremity of these shifts depends on the proximity of the innermost stable circular orbit to the black hole, and that orbit is determined by the black hole spin parameter. Modeling relativistic spectral features, then, gives a means of estimating black hole spin. We report on the results of fits made to archival X-ray spectra of stellar-mass black holes and black hole candidates, selected for strong disk reflection features. Following recent work, these spectra were fit with reflection models and disk continuum emission models (where required) in which black hole spin is a free parameter. Although our results must be regarded as preliminary, we find evidence for a broad range of black hole spin parameters in our sample. The black holes with the most relativistic radio jets are found to have high spin parameters, though jets are observed in a black hole with a low spin parameter. For those sources with constrained binary system parameters, we examine the distribution of spin parameters versus black hole mass, binary mass ratio, and orbital period. We discuss the results within the context of black hole creation events, relativistic jet production, and efforts to probe the innermost relativistic regime around black holes.

  17. METALLICITY GRADIENTS THROUGH DISK INSTABILITY: A SIMPLE MODEL FOR THE MILKY WAY'S BOXY BULGE

    SciTech Connect

    Martinez-Valpuesta, Inma; Gerhard, Ortwin E-mail: gerhard@mpe.mpg.de

    2013-03-20

    Observations show a clear vertical metallicity gradient in the Galactic bulge, which is often taken as a signature of dissipative processes in the formation of a classical bulge. Various evidence shows, however, that the Milky Way is a barred galaxy with a boxy bulge representing the inner three-dimensional part of the bar. Here we show with a secular evolution N-body model that a boxy bulge formed through bar and buckling instabilities can show vertical metallicity gradients similar to the observed gradient if the initial axisymmetric disk had a comparable radial metallicity gradient. In this framework, the range of metallicities in bulge fields constrains the chemical structure of the Galactic disk at early times before bar formation. Our secular evolution model was previously shown to reproduce inner Galaxy star counts and we show here that it also has cylindrical rotation. We use it to predict a full mean metallicity map across the Galactic bulge from a simple metallicity model for the initial disk. This map shows a general outward gradient on the sky as well as longitudinal perspective asymmetries. We also briefly comment on interpreting metallicity gradient observations in external boxy bulges.

  18. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  19. As the Disk Turns... Monitoring the Azimuthal Thermal Gradient of the Irradiated Dust Disk in Epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Hoard, Donald; Howell, Steve; Stencel, Robert

    2013-10-01

    Epsilon Aurigae is the eclipsing binary star with the longest known orbital period, showing a single long (~2 yr) eclipse every 27.1 yr. For the last ~200 years, the nature of the eclipsing object defied explanation. We recently showed that epsilon Aur most likely consists of a high luminosity F0 post-AGB star, and a B5 V star surrounded by a solar system size (~8 AU diameter) disk of dusty material. We propose to continue our IRAC monitoring of epsilon Aur, to characterize the disk's azimuthal thermal variation as its irradiated, warm (1150 K) portion increasingly comes into view. We request 0.2 hr to obtain 2 IRAC observations. If Cycle 10 is extended through Jan 2015, we request another 6 visits (0.6 hr) in Dec 2014, coinciding with the predicted start of coherent pulsations of the F star, which occur every ~3000 days. The most recent eclipse was in Aug 2009-Jul 2011; we are now in the post-eclipse phase, when the heated side of the disk begins rotating into view. During the majority of our past IRAC observations (starting a few months prior to the eclipse ingress), only the cool (550 K) side of the disk was visible. In 2014-2015, as we move toward quadrature, the effect of heating due to the F star will increase the IRAC ch1/ch2 flux ratio. The eclipse of epsilon Aur is a rare event and a unique astrophysical opportunity, since backlighting of the disk by the luminous eclipsed star reveals details that cannot be detected in similar disks around single stars. This is one of the very few astrophysical disks where azimuthal thermal gradients can be mapped and interpreted. Observations of the warm side of the disk are crucial to test and constrain new models of disk structure. As part of our overall monitoring campaign with Spitzer, Hubble, Herschel, and numerous ground-based facilities, the proposed observations will make an important contribution to the understanding of binary stars, including mass transfer and evolution, along with new insights into

  20. Kinematical Modeling of WARPS in the H i Disks of Galaxies

    NASA Astrophysics Data System (ADS)

    Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.

    1993-10-01

    In order to gain an appreciation for the general structure of warped gas layers in galaxies, we have constructed kinematical, tilted-ring models of 21 galaxies for which detailed H I observations already exist in the literature. In this paper we present results for the 15 normal spiral galaxies of this sample that are not viewed edge-on. A comparison between our models and tilted-ring models of the same galaxies previously constructed by other authors shows that there is generally good agreement. We make an attempt to unify the notation of diff&rent authors who have published radio observations and/or kinematical models of individual galaxies in this sample. We also suggest how, in future work of this nature, model parameters should be presented and referenced in order to maintain a reasonable degree of consistency in the literature. When viewed in the perspective of dynamical models, a twisted warped gas layer can be understood as arising from orbiting gas which is in the process of settling to a preferred orientation in the nonspherical, gravitational potential well of the galaxy. Hence, detailed kinematical modeling of a specific galaxy disk can provide not only information regarding the orientation and structure of its warp but also information about the shape (whether oblate or prolate) of the dark halo in which the disk is embedded. By examining a large number of galaxies in a consistent manner, we have deduced some general characteristics of warped disks that have heretofore gone unnoticed. We have also identified uniqueness problems that can arise in this type of modeling procedure which can considerably cloud one's ability to completely decipher an individual disk's structure. For 14 out of 15 spiral galaxies modeled here, we have been able to determine the local kinematical structure of the warp. Gas layers do not appear to warp more than ˜40° out of the plane defined by the central disk of the galaxy, but they can twist through angles as large as ˜170

  1. The Gaseous Disks of Young Stellar Objects

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.

    2006-01-01

    Disks represent a crucial stage in the formation of stars and planets. They are novel astrophysical systems with attributes intermediate between the interstellar medium and stars. Their physical properties are inhomogeneous and are affected by hard stellar radiation and by dynamical evolution. Observing disk structure is difficult because of the small sizes, ranging from as little as 0.05 AU at the inner edge to 100-1000 AU at large radial distances. Nonetheless, substantial progress has been made by observing the radiation emitted by the dust from near infrared to mm wavelengths, i.e., the spectral energy distribution of an unresolved disk. Many fewer results are available for the gas, which is the main mass component of disks over much of their lifetime. The inner disk gas of young stellar objects (henceforth YSOs) have been studied using the near infrared rovibrational transitions of CO and a few other molecules, while the outer regions have been explored with the mm and sub-mm lines of CO and other species. Further progress can be expected in understanding the physical properties of disks from observations with sub-mm arrays like SMA, CARMA and ALMA, with mid infrared measurements using Spitzer, and near infrared spectroscopy with large ground-based telescopes. Intense efforts are also being made to model the observations using complex thermal-chemical models. After a brief review of the existing observations and modeling results, some of the weaknesses of the models will be discussed, including the absence of good laboratory and theoretical calculations for essential microscopic processes.

  2. Alignment physics of disks warped by Lense-Thirring precession

    NASA Astrophysics Data System (ADS)

    Krolik, Julian H.; Sorathia, Kareem; Hawley, John F.

    2014-12-01

    Accretion disks occur in a wide variety of astrophysical contexts, from planet formation to accretion onto black holes. For simplicity, they are generally imagined as thin and flat. However, whenever the disk's angular momentum is oblique to the angular momentum of the central object(s), a torque causes rings within the disk to precess, twisting and warping it. Because the torque weakens rapidly with increasing radius, it has long been thought that some unspecified ‘friction’ brings the inner portions of such disks into alignment, while the outer parts remain in their original orientation. Nearly all previous work on this topic has assumed that such a disk's internal stresses can be described by an isotropic viscosity, even though it has been known for more than four decades that fluid viscosity is far too weak to be significant in accretion disks, and for two decades that accretion stresses are actually due to anisotropic MHD turbulence. This paper reviews recent numerical simulation work showing how twisted disks align when their mechanics are described only in terms of real forces, including MHD turbulence. The detailed mechanisms of alignment are identified, the rate at which it occurs is quantified, and the isotropic viscosity model is shown to be in drastic disagreement with the simulation data.

  3. Formation and evolution of the protoplanetary disk

    NASA Technical Reports Server (NTRS)

    Ruzmaikina, Tamara V.; Makalkin, A. B.

    1991-01-01

    A disk formation model during collapse of the protosolar nebula, yielding a low-mass protoplanetary disk is presented. The following subject areas are covered: (1) circumstellar disks; (2) conditions for the formation of stars with disks; (3) early evolution of the protoplanetary disk; and (4) temperature conditions and the convection in the protoplanetary disk.

  4. Computational astrophysical fluid dynamics

    NASA Technical Reports Server (NTRS)

    Norman, Michael L.; Clarke, David A.; Stone, James M.

    1991-01-01

    The field of astrophysical fluid dynamics (AFD) is described as an emerging discipline which derives historically from both the theory of stellar evolution and space plasma physics. The fundamental physical assumption behind AFD is that fluid equations of motion accurately describe the evolution of plasmas on scales that are large in comparison with particle interaction length scales. Particular attention is given to purely fluid models of large-scale astrophysical plasmas. The role of computer simulation in AFD research is also highlighted and a suite of general-purpose application codes for AFD research is discussed. The codes are called ZEUS-2D and ZEUS-3D and solve the equations of AFD in two and three dimensions, respectively, in several coordinate geometries for general initial and boundary conditions. The topics of bipolar outflows from protostars, galactic superbubbles and supershells, and extragalactic radio sources are addressed.

  5. Exploring Stability of General Relativistic Accretion Disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-04-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios, involving core collapse of massive stars and mergers of compact ob jects. I will present results on our recent study of the stability of such disks against runaway and non-axisymmetric instabilities, which we explore using three-dimensional hydrodynamics simulations in full general relativity. All of our models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. We will discuss the types, growth rates and pattern speeds of the unstable modes, as well as the detectability of the gravitational waves from such objects.

  6. General Aerodynamic Characteristics of a Research Model with High Disk Loading Direct Lifting Fan Mounted in Fuselage

    NASA Image and Video Library

    1960-10-26

    3/4 Low front view of fuselage and fan. Showing jet engine hanging below. Lift fan powered by jet exhaust. General Aerodynamic Characteristics of a Research Model with High Disk Loading Direct Lifting Fan Mounted in Fuselage

  7. Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction

    NASA Astrophysics Data System (ADS)

    Legrand, Mathias; Pierre, Christophe; Cartraud, Patrice; Lombard, Jean-Pierre

    2009-01-01

    In modern turbo machines such as aircraft jet engines, structural contacts between the casing and bladed disk may occur through a variety of mechanisms: coincidence of vibration modes, thermal deformation of the casing, rotor imbalance due to design uncertainties to name a few. These nonlinear interactions may result in severe damage to both structures and it is important to understand the physical circumstances under which they occur. In this study, we focus on a modal coincidence during which the vibrations of each structure take the form of a k-nodal diameter traveling wave characteristic of axi-symmetric geometries. A realistic two-dimensional model of the casing and bladed disk is introduced in order to predict the occurrence of this very specific interaction phenomenon versus the rotation speed of the engine. The equations of motion are solved using an explicit time integration scheme in conjunction with the Lagrange multiplier method where friction is accounted for. This model is validated from the comparison with an analytical solution. The numerical results show that the structures may experience different kinds of behaviors (namely damped, sustained and divergent motions) mainly depending on the rotational velocity of the bladed disk.

  8. Titius-Bode laws in the solar system. 2: Build your own law from disk models

    NASA Astrophysics Data System (ADS)

    Dubrulle, B.; Graner, F.

    1994-02-01

    Simply respecting both scale and rotational invariance, it is easy to construct an endless collection of theoretical models predicting a Titius-Bode law, irrespective to their physical content. Due to the numerous ways to get the law and its intrinsic arbitrariness, it is not a useful constraint on theories of solar system formation. To illustrate the simple elegance of scale-invariant methods, we explicitly cook up one of the simplest examples, an infinitely thin cold gaseous disk rotating around a central object. In that academic case, the Titius-Bode law holds during the linear stage of the gravitational instability. The time scale of the instability is of the order of a self-gravitating time scale, (G rhod)-1/2, where rhod is the disk density. This model links the separation between different density maxima with the ratio MD/MC of the masses of the disk and the central object; for instance, MD/MC of the order of 0.18 roughly leads to the observed separation between the planets. We discuss the boundary conditions and the limit of the Wentzel-Kramer-Brillouin (WKB) approximation.

  9. A Comprehensive Opacities/Atomic Database for the Analysis of Astrophysical Spectra and Modeling

    NASA Technical Reports Server (NTRS)

    Pradhan, Anil K. (Principal Investigator)

    1997-01-01

    The main goals of this ADP award have been accomplished. The electronic database TOPBASE, consisting of the large volume of atomic data from the Opacity Project, has been installed and is operative at a NASA site at the Laboratory for High Energy Astrophysics Science Research Center (HEASRC) at the Goddard Space Flight Center. The database will be continually maintained and updated by the PI and collaborators. TOPBASE is publicly accessible from IP: topbase.gsfc.nasa.gov. During the last six months (since the previous progress report), considerable work has been carried out to: (1) put in the new data for low ionization stages of iron: Fe I - V, beginning with Fe II, (2) high-energy photoionization cross sections computed by Dr. Hong Lin Zhang (consultant on the Project) were 'merged' with the current Opacity Project data and input into TOPbase; (3) plans laid out for a further extension of TOPbase to include TIPbase, the database for collisional data to complement the radiative data in TOPbase.

  10. Investigation of the initial state of the Moon-forming disk: Bridging SPH simulations and hydrostatic models

    NASA Astrophysics Data System (ADS)

    Nakajima, Miki; Stevenson, David J.

    2014-05-01

    According to the standard giant impact hypothesis, the Moon formed from a partially vaporized disk generated by a collision between the proto-Earth and a Mars-sized impactor. The initial structure of the disk significantly affects the Moon-forming process, including the Moon’s mass, its accretion time scale, and its isotopic similarity to Earth. The dynamics of the impact event determines the initial structure of a nearly hydrostatic Moon-forming disk. However, the hydrostatic and hydrodynamic models have been studied separately and their connection has not previously been well quantified. Here, we show the extent to which the properties of the disk can be inferred from Smoothed Particle Hydrodynamic (SPH) simulations. By using entropy, angular momentum and mass distributions of the SPH outputs as approximately conserved quantities, we compute the two-dimensional disk structure. We investigate four different models: (a) standard, the canonical giant impact model, (b) fast-spinning Earth, a collision between a fast-spinning Earth and a small impactor, (c) sub-Earths, a collision between two objects with half Earth’s mass, and (d) intermediate, a collision of two bodies whose mass ratio is 7:3. Our SPH calculations show that the initial disk has approximately uniform entropy. This is because the materials of different angular momenta are shocked to similar extents. The disks of the fast-spinning Earth and sub-Earths cases are hotter and more vaporized (∼80-90% vapor) than the standard case (∼20%). The intermediate case falls between these values. In the highly vaporized cases, our procedure fails to establish a unique surface density profile of the disk because the disk is unstable according to the Rayleigh criterion (the need for a monotonically increasing specific angular momentum with radius). In these cases, we estimate non-unique disk models by conserving global quantities (mass and total angular momentum). We also develop a semi-analytic model for the

  11. Energy–density functional plus quasiparticle–phonon model theory as a powerful tool for nuclear structure and astrophysics

    SciTech Connect

    Tsoneva, N.; Lenske, H.

    2016-11-15

    During the last decade, a theoretical method based on the energy–density functional theory and quasiparticle–phonon model, including up to three-phonon configurations was developed. The main advantages of themethod are that it incorporates a self-consistentmean-field and multi-configuration mixing which are found of crucial importance for systematic investigations of nuclear low-energy excitations, pygmy and giant resonances in an unified way. In particular, the theoretical approach has been proven to be very successful in predictions of new modes of excitations, namely pygmy quadrupole resonance which is also lately experimentally observed. Recently, our microscopically obtained dipole strength functions are implemented in predictions of nucleon-capture reaction rates of astrophysical importance. A comparison to available experimental data is discussed.

  12. Astrophysical blastwaves

    NASA Astrophysics Data System (ADS)

    Ostriker, Jeremiah P.; McKee, Christopher F.

    The authors present a general discussion of spherical, nonrelativistic blastwaves in an astrophysical context. A variety of effects has been included: expansion of the ambient medium, gravitation, and an embedded fluid of clouds capable of exchanging mass, energy, or momentum with the medium. The authors also consider cases of energy injection due either to a central source or to detonations. Cosmological solutions are extensively treated. Most attention is devoted to problems in which it is permissible to assume self-similarity, as in the prototype Sedov-Taylor blastwave. A general virial theorem for blastwaves is derived. For self-similar blastwaves, the radius varies as a power of the time, Rs~tη. The integral properties of the solution are completely specified by two dimensionless numbers measuring the relative importance of thermal and kinetic energy. The authors find certain exact kinematical relations and a variety of analytic approximations to determine these numbers with varying degrees of accuracy. The approximations may be based on assumptions about the internal density distributions (e.g., shell-like), pressure distribution, or velocity distribution. In many cases exact conditions from, for example, boundary conditions or other constraints may be used to determine unspecified parameters. One new set of exact integral constraints has been derived. The various approximation schemes are tested with known solutions. The authors find that for blastwaves in which the flow extends to the origin, the assumption that the internal velocity is linear with radius is reasonably accurate. For blastwaves in which an interior vacuum develops, the equally simple approximation of constant interior velocity is accurate. These lowest-order approximations are shown to give numerical coefficients in the relation R=const×tη which are accurate to about 1-2%. The higher-order approximations show an accuracy that in some cases equals that obtained, to date, by direct

  13. Herniated Disk

    MedlinePlus

    ... to pain if the back is stressed. A herniated disk is a disk that ruptures. This allows the ... or back pain. Your doctor will diagnose a herniated disk with a physical exam and, sometimes, imaging tests. ...

  14. Numerical modelling of Mars supersonic disk-gap-band parachute inflation

    NASA Astrophysics Data System (ADS)

    Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang

    2016-06-01

    The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.

  15. Astrophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  16. Workshop on the origin of the heavy elements: Astrophysical models and experimental challenges, Santa Fe, New Mexico, September 3-4, 1999

    SciTech Connect

    Robert C. Haight; John L. Ullmann; Daniel D. Strottman; Paul E. Koehler; Franz Kaeppeler

    2000-01-01

    This Workshop was held on September 3--4, 1999, following the 10th International Symposium on Capture Gamma-Ray Spectroscopy. Presentations were made by 14 speakers, 6 from the US and 8 from other countries on topics relevant to s-, r- and rp-process nucleosynthesis. Laboratory experiments, both present and planned, and astrophysical observations were represented as were astrophysical models. Approximately 50 scientists participated in this Workshop. These Proceedings consist of copies of vu-graphs presented at the Workshop. For further information, the interested readers are referred to the authors.

  17. Simulating a Thin Accretion Disk Using PLUTO

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Vogeley, Michael S.; Boyd, Patricia T.

    2017-08-01

    Accreting black hole systems such as X-ray binaries and active galactic nuclei exhibit variability in their luminosity on many timescales ranging from milliseconds to tens of days, and even hundreds of days. The mechanism(s) driving this variability and the relationship between short- and long-term variability is poorly understood. Current studies on accretion disks seek to determine how the changes in black hole mass, the rate at which mass accretes onto the central black hole, and the external environment affect the variability on scales ranging from stellar-mass black holes to supermassive black holes. Traditionally, the fluid mechanics equations governing accretion disks have been simplified by considering only the kinematics of the disk, and perhaps magnetic fields, in order for their phenomenological behavior to be predicted analytically. We seek to employ numerical techniques to study accretion disks including more complicated physics traditionally ignored in order to more accurately understand their behavior over time. We present a proof-of-concept three dimensional, global simulation using the astrophysical hydrodynamic code PLUTO of a simplified thin disk model about a central black hole which will serve as the basis for development of more complicated models including external effects such as radiation and magnetic fields. We also develop a tool to generate a synthetic light curve that displays the variability in luminosity of the simulation over time. The preliminary simulation and accompanying synthetic light curve demonstrate that PLUTO is a reliable code to perform sophisticated simulations of accretion disk systems which can then be compared to observational results.

  18. The atomic gas in outer disks in semi-analytic models of galaxy formation†

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Luo, Yu

    2017-03-01

    We use semi-analytic models of galaxy formation L-Galaxies based on ΛCDM cosmology to study the HI gas component in galaxy outskirts. We adopt the radially-resolved version of the models by Fu et al. (2013), which includes both atomic and molecular gas component in interstellar medium. This model has been recently updated by Luo et al. (2016) to include cold gas stripping in the outer disk regions of the satellite galaxies by ram pressure. In our models, we can perfectly reproduce the HI size-mass relation, which is discovered by Broeils & Rhee (1997) and confirmed by many subsequent observations. In our model, the reason for such tight correlation between HI size and mass is atomic-molecular phase conversion in high gas surface density regions while HI ionization in low gas surface density region, which leads to very narrow distribution of HI mean surface density. The models also reproduce the universal exponential HI radial profiles in galaxy outskirts found by Bluedisk (Wang et al. 2013), which arises from cold gas accretion onto the galaxy disks in exponentially profiles.

  19. Porous dust grains in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Kirchschlager, Florian; Wolf, Sebastian

    2013-07-01

    We investigate the impact of porous dust grains on the structure and observable appearance of circumstellar disks (Kirchschlager & Wolf 2013). Our study is motivated by observations and laboratory studies which indicate that dust grains in various astrophysical environments are porous. In addition, the modeling of the spatial structure and grain size distribution of debris disks reveals that under the assumption of spherical compact grains the resulting minimum grain size is often significantly larger than the blowout size, which might be a hint for porosity. Using the discrete dipole approximation, we compute the optical properties of spherical, porous grains (Draine & Flatau 1994, 2010). Subsequently, we calculate the blowout sizes for various debris disk systems and grain porosities. We find that the blowout size increases with particle porosity and stellar temperature. In addition, the lower dust equilibrium temperature of porous particles results in a shift of the maximum of the thermal reemission of debris disks towards longer wavelengths. For our studies of the impact of dust grain porosity in protoplanetary disks we use the radiative transfer software MC3D, which is based on the Monte-Carlo method and solves the radiative transfer problem self-consistently (Wolf et al. 1999, Wolf 2003). We find that the spectral energy distribution of protoplanetary disks shows significant differences between the cases of porous and compact grains. In particular, the flux in the optical wavelength range is increased for porous grains. Furthermore, the silicate peak at ~9.8 microns exhibits a strong dependence on the degree of grain porosity. We also investigate the temperature distribution in the disk. In the midplane no influence of porosity is detectable, but in the vertical direction minor changes of a few Kelvin are found. To complete our study we outline the differences between the two grain types in maps of the linear polarization. We detect a polarization reversal in

  20. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves

    NASA Astrophysics Data System (ADS)

    Lelli, Federico; McGaugh, Stacy S.; Schombert, James M.

    2016-12-01

    We introduce SPARC (Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 μm and high-quality rotation curves from previous H i/Hα studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity (V bar/V obs) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ⋆) at [3.6]. Assuming ϒ⋆ ≃ 0.5 M ⊙/L ⊙ (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii) V bar/V obs varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ⋆ ≃ 0.2 M ⊙/L ⊙ as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ⋆ ≃ 0.7 M ⊙/L ⊙ at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.

  1. DISKSPEC: A Tool for Analyzing Observed Spectra of Accretion Disk Systems

    NASA Astrophysics Data System (ADS)

    Hubeny, Ivan

    2013-10-01

    Accretion disks are ubiquitous in astronomy, associated with AGN, stellar mass black holes, X-ray binaries, progenitors of Ia supernovae, X-ray binaries, cataclysmic variables {CVs} {ordinary, recurrent, and dwarf novae, novalikes}, pre-main sequence stars. An understanding of the nature of, and physical processes in, accretion disks is one of the central themes in astrophysics. A large number of past, present, and future HST observational programs were/are/will be devoted to astronomical systems that harbor an accretion disk. We propose to develop a package DISKSPEC, which enables the user to generate a synthetic spectum of an accretion disk for essentially any combination of input parameters. The strategy is to use a sufficiently dense and extended grid of models for genericdisk rings, and to develop a code that computes a spectrum of the whole disk by interpolating the generic grid spectra to the actual spectra emergent from the individual radial rings of the disk, and integrates over the disk taking into account Doppler shifts due to disk rotation. We believe that the package will serve many researchers using new or archival HST data to be able to perform a spectroscopic analysis of objects that contain an accretion disk in a fast and flexible way, and thus contribute significantly to a better use of past, present, and future HST observations.

  2. V3885 SAGITTARIUS: A COMPARISON WITH A RANGE OF STANDARD MODEL ACCRETION DISKS

    SciTech Connect

    Linnell, Albert P.; Szkody, Paula; Godon, Patrick; Sion, Edward M.; Hubeny, Ivan; Barrett, Paul E. E-mail: szkody@astro.washington.ed E-mail: edward.sion@villanova.ed E-mail: barrett.paul@usno.navy.mi

    2009-10-01

    A chi-tilde{sup 2} analysis of standard model accretion disk synthetic spectrum fits to combined Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius, on an absolute flux basis, selects a model that accurately represents the observed spectral energy distribution. Calculation of the synthetic spectrum requires the following system parameters. The cataclysmic variable secondary star period-mass relation calibrated by Knigge in 2006 and 2007 sets the secondary component mass. A mean white dwarf (WD) mass from the same study, which is consistent with an observationally determined mass ratio, sets the adopted WD mass of 0.7 M {sub sun}, and the WD radius follows from standard theoretical models. The adopted inclination, i = 65 deg., is a literature consensus, and is subsequently supported by chi-tilde{sup 2} analysis. The mass transfer rate is the remaining parameter to set the accretion disk T {sub eff} profile, and the Hipparcos parallax constrains that parameter to M-dot=(5.0+-2.0) x 10{sup -9} M odot yr{sup -1} by a comparison with observed spectra. The fit to the observed spectra adopts the contribution of a 57, 000 +- 5000 K WD. The model thus provides realistic constraints on M-dot and T {sub eff} for a large M-dot system above the period gap.

  3. V3885 Sagittarius: A Comparison With a Range of Standard Model Accretion Disks

    NASA Technical Reports Server (NTRS)

    Linnell, Albert P.; Godon, Patrick; Hubeny, Ivan; Sion, Edward M; Szkody, Paula; Barrett, Paul E.

    2009-01-01

    A chi-squared analysis of standard model accretion disk synthetic spectrum fits to combined Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius, on an absolute flux basis, selects a model that accurately represents the observed spectral energy distribution. Calculation of the synthetic spectrum requires the following system parameters. The cataclysmic variable secondary star period-mass relation calibrated by Knigge in 2006 and 2007 sets the secondary component mass. A mean white dwarf (WD) mass from the same study, which is consistent with an observationally determined mass ratio, sets the adopted WD mass of 0.7M(solar mass), and the WD radius follows from standard theoretical models. The adopted inclination, i = 65 deg, is a literature consensus, and is subsequently supported by chi-squared analysis. The mass transfer rate is the remaining parameter to set the accretion disk T(sub eff) profile, and the Hipparcos parallax constrains that parameter to mas transfer = (5.0 +/- 2.0) x 10(exp -9) M(solar mass)/yr by a comparison with observed spectra. The fit to the observed spectra adopts the contribution of a 57,000 +/- 5000 K WD. The model thus provides realistic constraints on mass transfer and T(sub eff) for a large mass transfer system above the period gap.

  4. V3885 Sagittarius: A Comparison With a Range of Standard Model Accretion Disks

    NASA Technical Reports Server (NTRS)

    Linnell, Albert P.; Godon, Patrick; Hubeny, Ivan; Sion, Edward M; Szkody, Paula; Barrett, Paul E.

    2009-01-01

    A chi-squared analysis of standard model accretion disk synthetic spectrum fits to combined Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius, on an absolute flux basis, selects a model that accurately represents the observed spectral energy distribution. Calculation of the synthetic spectrum requires the following system parameters. The cataclysmic variable secondary star period-mass relation calibrated by Knigge in 2006 and 2007 sets the secondary component mass. A mean white dwarf (WD) mass from the same study, which is consistent with an observationally determined mass ratio, sets the adopted WD mass of 0.7M(solar mass), and the WD radius follows from standard theoretical models. The adopted inclination, i = 65 deg, is a literature consensus, and is subsequently supported by chi-squared analysis. The mass transfer rate is the remaining parameter to set the accretion disk T(sub eff) profile, and the Hipparcos parallax constrains that parameter to mas transfer = (5.0 +/- 2.0) x 10(exp -9) M(solar mass)/yr by a comparison with observed spectra. The fit to the observed spectra adopts the contribution of a 57,000 +/- 5000 K WD. The model thus provides realistic constraints on mass transfer and T(sub eff) for a large mass transfer system above the period gap.

  5. CP(N-1) model on a disk and decay of a non-Abelian string

    NASA Astrophysics Data System (ADS)

    Gorsky, A.; Milekhin, A.

    2013-10-01

    We consider the role of quantum effects in the nonperturbative decay of the non-Abelian string with orientational moduli in nonsupersymmetric D=4 gauge theory. To this aim the effective action in the CP(N-1) model on a disk at large N has been calculated. It exhibits a phase transition at some radius, the “wrong sign” Luscher term, and a large boundary boojumlike negative contribution. The effect of the θ term and the possibility of the spontaneous creation of the non-Abelian string are briefly discussed.

  6. HNC IN PROTOPLANETARY DISKS

    SciTech Connect

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua; Kastner, Joel

    2015-07-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.

  7. Direct detection of a magnetic field in the innermost regions of an accretion disk

    NASA Astrophysics Data System (ADS)

    Donati, Jean-François; Paletou, Fréderic; Bouvier, Jérome; Ferreira, Jonathan

    2005-11-01

    Models predict that magnetic fields play a crucial role in the physics of astrophysical accretion disks and their associated winds and jets. For example, the rotation of the disk twists around the rotation axis the initially vertical magnetic field, which responds by slowing down the plasma in the disk and by causing it to fall towards the central star. The magnetic energy flux produced in this process points away from the disk, pushing the surface plasma outwards, leading to a wind from the disk and sometimes a collimated jet. But these predictions have hitherto not been supported by observations. Here we report the direct detection of the magnetic field in the core of the protostellar accretion disk FU Orionis. The surface field reaches strengths of about 1kG close to the centre of the disk, and it includes a significant azimuthal component, in good agreement with recent models. But we find that the field is very filamentary and slows down the disk plasma much more than models predict, which may explain why FU Ori fails to collimate its wind into a jet.

  8. Direct detection of a magnetic field in the innermost regions of an accretion disk.

    PubMed

    Donati, Jean-François; Paletou, Fréderic; Bouvier, Jérome; Ferreira, Jonathan

    2005-11-24

    Models predict that magnetic fields play a crucial role in the physics of astrophysical accretion disks and their associated winds and jets. For example, the rotation of the disk twists around the rotation axis the initially vertical magnetic field, which responds by slowing down the plasma in the disk and by causing it to fall towards the central star. The magnetic energy flux produced in this process points away from the disk, pushing the surface plasma outwards, leading to a wind from the disk and sometimes a collimated jet. But these predictions have hitherto not been supported by observations. Here we report the direct detection of the magnetic field in the core of the protostellar accretion disk FU Orionis. The surface field reaches strengths of about 1 kG close to the centre of the disk, and it includes a significant azimuthal component, in good agreement with recent models. But we find that the field is very filamentary and slows down the disk plasma much more than models predict, which may explain why FU Ori fails to collimate its wind into a jet.

  9. Hydrodynamical processes in planet-forming accretion disks

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai

    thermodynamics, dust dynamics, disk self-gravity and three-dimensional effects. By including these effects, we go wellbeyond previous works based on idealized disk models. This effort is necessary to understand how these instabilities operate and interact in realistic protoplanetary disks. This will enable us to provide a unified picture of how various hydrodynamic activities fit together to drive global disk evolution. We will address key questions including the strength of the resulting hydrodynamic turbulence, the lifetime of large-scale vortices under realistic disk conditions, and their impact on the evolution of solids within the disk. Inclusion of these additional physics will likely uncover new, yet-unknown hydrodynamic processes. Our generalized models enables a direct link between theory and observations. For example, a self-consistent incorporation of dust dynamics into the theory of hydrodynamic instabilities is particularly important, since it is the dust component that is usually observed. We will also establish the connection between the properties of large-scale, observable structures such as vortices, to the underlying disk properties, such as disk mass, and vertical structure, which are difficult to infer directly from observations. We also propose to study, for the first time, the dynamical interaction between hydrodynamic turbulence and proto-planets, as well as the influence of largescale vortices on disk-planet interaction. This is necessary towards a realistic modeling of the orbital evolution of proto planets, and thus in predicting the final architecture of planetary systems. The proposal team's expertise and experience, ranging from mathematical analyses to state-of the-art numerical simulations in astrophysical fluid dynamics, provides a multi-method approach to these problems. This is necessary towards establishing a rigorous understanding of these fundamental hydrodynamical processes in protoplanetary accretion disks.

  10. Far-ultraviolet and X-ray irradiated protoplanetary disks: a grid of models. II. Gas diagnostic line emission

    NASA Astrophysics Data System (ADS)

    Aresu, G.; Meijerink, R.; Kamp, I.; Spaans, M.; Thi, W.-F.; Woitke, P.

    2012-11-01

    Context. Most of the mass in protoplanetary disks is in the form of gas. The study of the gas and its diagnostics is of fundamental importance in order to achieve a detailed description of the thermal and chemical structure of the disk. Both radiation from the central star (from optical to X-ray wavelengths) and viscous accretion are the main sources of energy, dominating disk physics and chemistry in its early stages. This is the environment in which the first phases of planet formation will proceed. Aims: We investigate how stellar and disk parameters impact the fine-structure cooling lines [Ne ii], [Ar ii], [O i], [C ii], and H2O rotational lines in the disk. These lines are potentially powerful diagnostics of the disk structure, and their modeling permits a thorough interpretation of the observations carried out with instrumental facilities such as Spitzer and Herschel. Methods: Following our earlier paper, we computed a grid of 240 disk models, in which the X-ray luminosity, UV-excess luminosity, minimum dust grain size, dust size distribution power law, and surface density distribution power law are systematically varied. We solve self-consistently for the disk vertical hydrostatic structure in every model and apply detailed line radiative transfer to calculate line fluxes and profiles for a series of well-known mid- and far-infrared cooling lines. Results: The [O i] 63 μm line flux increases with increasing LFUV when LX < 1030 erg s-1 and with increasing X-ray luminosity when LX > 1030 erg s-1. While [C ii] 157 μm is mainly driven by LFUV via C+ production, X-rays affect the line flux to a lesser extent. In addition, [Ne ii] 12.8 μm correlates with X-rays; the line profile emitted from the disk atmosphere shows a double-peaked component caused by emission in the static disk atmosphere, next to a high-velocity double-peaked component caused by emission in the very inner rim. Water transitions, depending on the disk region they arise from, show different

  11. Models of the η Corvi Debris Disk from the Keck Interferometer, Spitzer, and Herschel

    NASA Astrophysics Data System (ADS)

    Lebreton, J.; Beichman, C.; Bryden, G.; Defrère, D.; Mennesson, B.; Millan-Gabet, R.; Boccaletti, A.

    2016-02-01

    Debris disks are signposts of analogs to small-body populations of the solar system, often, however, with much higher masses and dust production rates. The disk associated with the nearby star η Crv is especially striking, as it shows strong mid- and far-infrared excesses despite an age of ∼1.4 Gyr. We undertake constructing a consistent model of the system that can explain a diverse collection of spatial and spectral data. We analyze Keck Interferometer Nuller measurements and revisit Spitzer and additional spectrophotometric data, as well as resolved Herschel images, to determine the dust spatial distribution in the inner exozodi and in the outer belt. We model in detail the two-component disk and the dust properties from the sub-AU scale to the outermost regions by fitting simultaneously all measurements against a large parameter space. The properties of the cold belt are consistent with a collisional cascade in a reservoir of ice-free planetesimals at 133 AU. It shows marginal evidence for asymmetries along the major axis. KIN enables us to establish that the warm dust consists of a ring that peaks between 0.2 and 0.8 AU. To reconcile this location with the ∼400 K dust temperature, very high albedo dust must be invoked, and a distribution of forsterite grains starting from micron sizes satisfies this criterion, while providing an excellent fit to the spectrum. We discuss additional constraints from the LBTI and near-infrared spectra, and we present predictions of what James Webb Space Telescope can unveil about this unusual object and whether it can detect unseen planets.

  12. MODELS OF THE η CORVI DEBRIS DISK FROM THE KECK INTERFEROMETER, SPITZER, AND HERSCHEL

    SciTech Connect

    Lebreton, J.; Beichman, C.; Millan-Gabet, R.; Bryden, G.; Mennesson, B.; Defrère, D.; Boccaletti, A.

    2016-02-01

    Debris disks are signposts of analogs to small-body populations of the solar system, often, however, with much higher masses and dust production rates. The disk associated with the nearby star η Crv is especially striking, as it shows strong mid- and far-infrared excesses despite an age of ∼1.4 Gyr. We undertake constructing a consistent model of the system that can explain a diverse collection of spatial and spectral data. We analyze Keck Interferometer Nuller measurements and revisit Spitzer and additional spectrophotometric data, as well as resolved Herschel images, to determine the dust spatial distribution in the inner exozodi and in the outer belt. We model in detail the two-component disk and the dust properties from the sub-AU scale to the outermost regions by fitting simultaneously all measurements against a large parameter space. The properties of the cold belt are consistent with a collisional cascade in a reservoir of ice-free planetesimals at 133 AU. It shows marginal evidence for asymmetries along the major axis. KIN enables us to establish that the warm dust consists of a ring that peaks between 0.2 and 0.8 AU. To reconcile this location with the ∼400 K dust temperature, very high albedo dust must be invoked, and a distribution of forsterite grains starting from micron sizes satisfies this criterion, while providing an excellent fit to the spectrum. We discuss additional constraints from the LBTI and near-infrared spectra, and we present predictions of what James Webb Space Telescope can unveil about this unusual object and whether it can detect unseen planets.

  13. Non-LTE Modeling of Infrared Molecular Line Emission From Protoplanetary Disks: Evidence for Dust Settling

    NASA Astrophysics Data System (ADS)

    Lacy, John H.; Watson, D. M.; Harrold, S. T.

    2010-01-01

    Spitzer IRS spectra of disks around T Tauri stars show emission in the 13.9 and 13.7 um Q branches of HCN and C2H2 (Carr & Najita, 2008). In order to explain these emission features, we made a non-LTE radiative transfer and excitation model of molecular gas and dust in disks. The model assumes the molecules are in rotational LTE, but it includes both radiative and collisional excitation of the vibrational states. We found that the strengths of the emission features are most sensitive to dust settling and/or grain growth, which moves the mid-IR dust photosphere to a larger gas density and column density, where vibrational states can be efficiently collisionally excited. Good fits were obtained by assuming that the dust scale height is 1/2 of the hydrostatic equilibrium gas scale height. To test this explanation, we compared the observed emission strengths with SED indices which are thought to be indicators of dust settling. A good correlation was found, supporting our model and the interpretation of the SEDs. This work was supported by NSF grant AST-0607312.

  14. Modelling circumbinary protoplanetary disks. I. Fluid simulations of the Kepler-16 and 34 systems

    NASA Astrophysics Data System (ADS)

    Lines, S.; Leinhardt, Z. M.; Baruteau, C.; Paardekooper, S.-J.; Carter, P. J.

    2015-10-01

    Context. The Kepler mission's discovery of a number of circumbinary planets orbiting close (ap< 1.1 au) to the stellar binary raises questions as to how these planets could have formed given the intense gravitational perturbations the dual stars impart on the disk. The gas component of circumbinary protoplanetary disks is perturbed in a similar manner to the solid, planetesimal dominated counterpart, although the mechanism by which disk eccentricity originates differs. Aims: This is the first work of a series that aims to investigate the conditions for planet formation in circumbinary protoplanetary disks. Methods: We present a number of hydrodynamical simulations that explore the response of gas disks around two observed binary systems: Kepler-16 and Kepler-34. We probe the importance of disk viscosity, aspect-ratio, inner boundary condition, initial surface density gradient, and self-gravity on the dynamical evolution of the disk, as well as its quasi-steady-state profile. Results: We find there is a strong influence of binary type on the mean disk eccentricity, e̅d, leading to e̅d = 0.02 - 0.08 for Kepler-16 and e̅d = 0.10 - 0.15 in Kepler-34. The value of α-viscosity has little influence on the disk, but we find a strong increase in mean disk eccentricity with increasing aspect-ratio due to wave propagation effects. The choice of inner boundary condition only has a small effect on the surface density and eccentricity of the disk. Our primary finding is that including disk self-gravity has little impact on the evolution or final state of the disk for disks with masses less than 12.5 times that of the minimum-mass solar nebula. This finding contrasts with the results of self-gravity relevance in circumprimary disks, where its inclusion is found to be an important factor in describing the disk evolution.

  15. THE MASS-DEPENDENT STAR FORMATION HISTORIES OF DISK GALAXIES: INFALL MODEL VERSUS OBSERVATIONS

    SciTech Connect

    Chang, R. X.; Hou, J. L.; Shen, S. Y.; Shu, C. G.

    2010-10-10

    We introduce a simple model to explore the star formation histories of disk galaxies. We assume that the disk originate and grows by continuous gas infall. The gas infall rate is parameterized by the Gaussian formula with one free parameter: the infall-peak time t{sub p} . The Kennicutt star formation law is adopted to describe how much cold gas turns into stars. The gas outflow process is also considered in our model. We find that, at a given galactic stellar mass M{sub *}, the model adopting a late infall-peak time t{sub p} results in blue colors, low-metallicity, high specific star formation rate (SFR), and high gas fraction, while the gas outflow rate mainly influences the gas-phase metallicity and star formation efficiency mainly influences the gas fraction. Motivated by the local observed scaling relations, we 'construct' a mass-dependent model by assuming that the low-mass galaxy has a later infall-peak time t{sub p} and a larger gas outflow rate than massive systems. It is shown that this model can be in agreement with not only the local observations, but also with the observed correlations between specific SFR and galactic stellar mass SFR/M{sub *} {approx} M{sub *} at intermediate redshifts z < 1. Comparison between the Gaussian-infall model and the exponential-infall model is also presented. It shows that the exponential-infall model predicts a higher SFR at early stage and a lower SFR later than that of Gaussian infall. Our results suggest that the Gaussian infall rate may be more reasonable in describing the gas cooling process than the exponential infall rate, especially for low-mass systems.

  16. SUSTAINING STAR FORMATION RATES IN SPIRAL GALAXIES: SUPERNOVA-DRIVEN TURBULENT ACCRETION DISK MODELS APPLIED TO THINGS GALAXIES

    SciTech Connect

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-15

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  17. Bayesian Models for Astrophysical Data Using R, JAGS, Python, and Stan

    NASA Astrophysics Data System (ADS)

    Hilbe, Joseph M.; de Souza, Rafael S.; Ishida, Emille E. O.

    2017-05-01

    This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.

  18. Chondrites and the Protoplanetary Disk, Part 1

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The papers discussed the following: The Formation Process of Adhering and Consorting Compound Chondrules Inferred Their Petrology and Major-Element Composition. The Prospect of High-Precision Pb Isotopic Dating of Meteorites. Evolution of UV-Irradiated Protoplanetary Disks. A Model for the Formation of E Chondrites. Oxygen Isotopic Diffusion and Exchange Experiments on Olivine and Chondrule Melts: Preliminary Results. Shock Heating: Origin of Shock Waves in the Protoplanetary Disk. Thermal Structures of Protoplanetary Disks. Meteoritical Astrophysics: A New Subdiscipline. Origin and Thermal History of FeNi-Metal in Primitive Chondrites. The Collisions of Chondrules Behind Shock Waves. Primary Signatures of the Nebular Dust Preserved in Accretionary Rims and Matrices of CV Chondrites. History of Thermally Processed Solids in the Protoplanetary Disk: Reconciling Theoretical Models and Meteoritical. Evidence Evaporation and Condensation During CAI and Chondrule Formation. Shock Heating: Effects on Chondritic Material. Rhounite-bearing Inclusions E201 and E202 from Efremovka: Constraints from Trace. Element Measurements Element Mapping in Anhydrous IDPs: Identification of the Host Phases of Major/Minor Elements as a Test of Nebula Condensation Models. Theoretical Studies of Disk Evolution Around Solar Mass Stars. Chemical Effects of High-Temperature Processing of Silicates. I-Xe and the Chronology of the Early Solar System. The Effects of X-Rays on the Gas and Dust in Young Stellar Objects. Origin of Short-lived Radionuclides in the Early Solar System. On Early Solar System Chronology: Implications of an Initially Heterogeneous Distribution of Short-lived Radionuclides. The Origin of Short-lived Radionuclides and Early Solar System Irradiation. Disequilibrium Melting and Oxygen Isotope Exchange of CAIs and Chondrules in the Solar Nebula. Mineralogy and Chemistry of Fine-grained Matrices, Rims, and Dark Inclusions in the CR Carbonaceous Chondrites Acfer/El Djouf 001 and

  19. Chondrites and the Protoplanetary Disk, Part 1

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The papers discussed the following: The Formation Process of Adhering and Consorting Compound Chondrules Inferred Their Petrology and Major-Element Composition. The Prospect of High-Precision Pb Isotopic Dating of Meteorites. Evolution of UV-Irradiated Protoplanetary Disks. A Model for the Formation of E Chondrites. Oxygen Isotopic Diffusion and Exchange Experiments on Olivine and Chondrule Melts: Preliminary Results. Shock Heating: Origin of Shock Waves in the Protoplanetary Disk. Thermal Structures of Protoplanetary Disks. Meteoritical Astrophysics: A New Subdiscipline. Origin and Thermal History of FeNi-Metal in Primitive Chondrites. The Collisions of Chondrules Behind Shock Waves. Primary Signatures of the Nebular Dust Preserved in Accretionary Rims and Matrices of CV Chondrites. History of Thermally Processed Solids in the Protoplanetary Disk: Reconciling Theoretical Models and Meteoritical. Evidence Evaporation and Condensation During CAI and Chondrule Formation. Shock Heating: Effects on Chondritic Material. Rhounite-bearing Inclusions E201 and E202 from Efremovka: Constraints from Trace. Element Measurements Element Mapping in Anhydrous IDPs: Identification of the Host Phases of Major/Minor Elements as a Test of Nebula Condensation Models. Theoretical Studies of Disk Evolution Around Solar Mass Stars. Chemical Effects of High-Temperature Processing of Silicates. I-Xe and the Chronology of the Early Solar System. The Effects of X-Rays on the Gas and Dust in Young Stellar Objects. Origin of Short-lived Radionuclides in the Early Solar System. On Early Solar System Chronology: Implications of an Initially Heterogeneous Distribution of Short-lived Radionuclides. The Origin of Short-lived Radionuclides and Early Solar System Irradiation. Disequilibrium Melting and Oxygen Isotope Exchange of CAIs and Chondrules in the Solar Nebula. Mineralogy and Chemistry of Fine-grained Matrices, Rims, and Dark Inclusions in the CR Carbonaceous Chondrites Acfer/El Djouf 001 and

  20. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    NASA Astrophysics Data System (ADS)

    Tombesi, F.

    2016-05-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this ``quasar mode'' feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).

  1. Action-based Dynamical Modeling for the Milky Way Disk: The Influence of Spiral Arms

    NASA Astrophysics Data System (ADS)

    Trick, Wilma H.; Bovy, Jo; D'Onghia, Elena; Rix, Hans-Walter

    2017-04-01

    RoadMapping is a dynamical modeling machinery developed to constrain the Milky Way’s (MW) gravitational potential by simultaneously fitting an axisymmetric parametrized potential and an action-based orbit distribution function (DF) to discrete 6D phase-space measurements of stars in the Galactic disk. In this work, we demonstrate RoadMapping's robustness in the presence of spiral arms by modeling data drawn from an N-body simulation snapshot of a disk-dominated galaxy of MW mass with strong spiral arms (but no bar), exploring survey volumes with radii 500 {pc}≤slant {r}\\max ≤slant 5 {kpc}. The potential constraints are very robust, even though we use a simple action-based DF, the quasi-isothermal DF. The best-fit RoadMapping model always recovers the correct gravitational forces where most of the stars that entered the analysis are located, even for small volumes. For data from large survey volumes, RoadMapping finds axisymmetric models that average well over the spiral arms. Unsurprisingly, the models are slightly biased by the excess of stars in the spiral arms. Gravitational potential models derived from survey volumes with at least {r}\\max =3 {kpc} can be reliably extrapolated to larger volumes. However, a large radial survey extent, {r}\\max ˜ 5 {kpc}, is needed to correctly recover the halo scale length. In general, the recovery and extrapolability of potentials inferred from data sets that were drawn from inter-arm regions appear to be better than those of data sets drawn from spiral arms. Our analysis implies that building axisymmetric models for the Galaxy with upcoming Gaia data will lead to sensible and robust approximations of the MW’s potential.

  2. A NEW RAYTRACER FOR MODELING AU-SCALE IMAGING OF LINES FROM PROTOPLANETARY DISKS

    SciTech Connect

    Pontoppidan, Klaus M.; Meijerink, Rowin; Blake, Geoffrey A.; Dullemond, Cornelis P.

    2009-10-20

    The material that formed the present-day solar system originated in feeding zones in the inner solar nebula located at distances within approx20 AU from the Sun, known as the planet-forming zone. Meteoritic and cometary material contain abundant evidence for the presence of a rich and active chemistry in the planet-forming zone during the gas-rich phase of solar system formation. It is a natural conjecture that analogs can be found among the zoo of protoplanetary disks around nearby young stars. The study of the chemistry and dynamics of planet formation requires: (1) tracers of dense gas at 100-1000 K and (2) imaging capabilities of such tracers with 5-100 mas (0.5-20 AU) resolution, corresponding to the planet-forming zone at the distance of the closest star-forming regions. Recognizing that the rich infrared (2-200 mum) molecular spectrum recently discovered to be common in protoplanetary disks represents such a tracer, we present a new general ray-tracing code, RADLite, that is optimized for producing infrared line spectra and images from axisymmetric structures. RADLite can consistently deal with a wide range of velocity gradients, such as those typical for the inner regions of protoplanetary disks. The code is intended as a back-end for chemical and excitation codes, and can rapidly produce spectra of thousands of lines for grids of models for comparison with observations. Such radiative transfer tools will be crucial for constraining both the structure and chemistry of planet-forming regions, including data from current infrared imaging spectrometers and extending to the Atacama Large Millimeter Array and the next generation of Extremely Large Telescopes, the James Webb Space Telescope and beyond.

  3. A New Raytracer for Modeling AU-Scale Imaging of Lines from Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Pontoppidan, Klaus M.; Meijerink, Rowin; Dullemond, Cornelis P.; Blake, Geoffrey A.

    2009-10-01

    The material that formed the present-day solar system originated in feeding zones in the inner solar nebula located at distances within ~20 AU from the Sun, known as the planet-forming zone. Meteoritic and cometary material contain abundant evidence for the presence of a rich and active chemistry in the planet-forming zone during the gas-rich phase of solar system formation. It is a natural conjecture that analogs can be found among the zoo of protoplanetary disks around nearby young stars. The study of the chemistry and dynamics of planet formation requires: (1) tracers of dense gas at 100-1000 K and (2) imaging capabilities of such tracers with 5-100 mas (0.5-20 AU) resolution, corresponding to the planet-forming zone at the distance of the closest star-forming regions. Recognizing that the rich infrared (2-200 μm) molecular spectrum recently discovered to be common in protoplanetary disks represents such a tracer, we present a new general ray-tracing code, RADLite, that is optimized for producing infrared line spectra and images from axisymmetric structures. RADLite can consistently deal with a wide range of velocity gradients, such as those typical for the inner regions of protoplanetary disks. The code is intended as a back-end for chemical and excitation codes, and can rapidly produce spectra of thousands of lines for grids of models for comparison with observations. Such radiative transfer tools will be crucial for constraining both the structure and chemistry of planet-forming regions, including data from current infrared imaging spectrometers and extending to the Atacama Large Millimeter Array and the next generation of Extremely Large Telescopes, the James Webb Space Telescope and beyond.

  4. The Birth of Disks Around Protostars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    publication led by Hsi-Wei Yen (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), a team of scientists presents results from ALMAs observations of three very early-stage protostars: Lupus 3 MMS, IRAS 153983559, and IRAS 153982429. ALMAs spectacular resolution allowed Yen and collaborators to infer the presence of a 100-AU Keplerian disk around Lupus 3 MMS, and signatures of infall on scales of 30 AU around the other two sources.The authors construct models of the sources and show that the observations are consistent with the presence of disks around all three sources: a 100-AU disk around a 0.3 solar-mass protostar in the Lupus system, a 20-AU disk around a 0.01 solar-mass protostar in IRAS 153983559, and 6-AU disk around a 0.03 solar-mass protostar in IRAS 153982429.By comparing their observations to those of other early-stage protostars, the authors conclude that in the earliest protostar stage, known as the Class 0 stage, the protostars disk grows rapidly in radius. As the protostar ages and enters the Class I stage, the disk growth stagnates, changing only very slowly after this.These observations mark an important step in our ability to study the gas motions on such small scales at early stages of stellar birth. Additional future studies will hopefully allow us to continue to buildthis picture!CitationHsi-Wei Yen et al 2017 ApJ 834 178. doi:10.3847/1538-4357/834/2/178

  5. Disks in elliptical galaxies

    SciTech Connect

    Rix, H.; White, S.D.M. )

    1990-10-01

    The abundance and strength of disk components in elliptical galaxies are investigated by studying the photometric properties of models containing a spheroidal r exp 1/4-law bulge and a weak exponential disk. Pointed isophotes are observed in a substantial fraction of elliptical galaxies. If these isophote distortions are interpreted in the framework of the present models, then the statistics of observed samples suggest that almost all radio-weak ellipticals could have disks containing roughly 20 percent of the light. It is shown that the E5 galaxy NGC 4660 has the photometric signatures of a disk containing a third of the light. 30 refs.

  6. A New Family of Analytical Potential-Density Pairs for Galaxy Models Compound by Thin Disks and Spheroidal Halos

    NASA Astrophysics Data System (ADS)

    Santos, Y. F.; Pimentel, O. M.; González, G. A.

    2017-07-01

    A new family of three-dimensional Newtonian models for galaxies is constructed. The models describe a thin disk and a matter halo, whose gravitational potentials satisfies the equation (2) presented in Gonzalez & Pimentel (2016, Phys. Rev. D, 93, 044034), and therefore, they satisfy the energy conditions for a gravitational system. The expressions for the potential of the disk and the halo are obtained by applying the "displace, cut, and reflect" method to the solution of the Laplace equation in cylindrical coordinates. Analytical expressions that describe the rotation curves and the mass distributions in the disk and in the halo are computed for the first three models of the family of solutions. It is shown that the mass densities of the disks and the haloes present a maximum at the center of the system and go to zero at infinity. Finally, for some values of the free parameters, the obtained rotation curves present a flat region for larger values of the radial coordinate. The model was obtained considering the total gravitational potential, which satisfies the equation (2) imposed by Gonzalez & Pimentel (2016). The potential generated by the spheroidal halo of matter is constructed considering a multipolar expansion, expressed in cylindrical coordinates. As this solution of the Laplace equation a substitution is done so that the Laplacian is nonzero, the z coordinate (Kuzmin, 1956, AZh, 33; Toomre, 1963, ApJ, 138, 385). So the new potential satisfies Poisson equation and represents the distribution of three-dimensional material. From the gravitational potential analytical expressions were derived for the surface density of the disk, halo density of matter and from the rotation was derived. We found that the surface densities of the disks present a maximum at the center, vanishing at infinity; and the halo density is maximum at the disk surface, also vanishing at infinity. For some values of the parameters, the derived rotation curves present a flat region for

  7. Kaluza-Klein type of cosmological models and its astrophysical significances.

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.

    Postulating homogeneity in matter content the author has obtained exact solutions for cosmological models in higher dimensions under different symmetries. Depending on the form of the metric the models are either uniquely Robertson-Walker in higher dimensions or differ significantly from the latter in the sense that the geometry is spatially inhomogeneous.

  8. Confronting Standard Models of Proto-planetary Disks with New Mid-infrared Sizes from the Keck Interferometer

    NASA Astrophysics Data System (ADS)

    Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.; Sitko, Michael L.; Russell, Ray W.; Grady, Carol A.; Day, Amanda N.; Perry, R. B.; Harries, Tim J.; Aarnio, Alicia N.; Colavita, Mark M.; Wizinowich, Peter L.; Ragland, Sam; Woillez, Julien

    2016-08-01

    We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used “star + inner dust rim + flared disk” class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at “transition disk”-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.

  9. A guide to the use of the pressure disk rotor model as implemented in INS3D-UP

    NASA Technical Reports Server (NTRS)

    Chaffin, Mark S.

    1995-01-01

    This is a guide for the use of the pressure disk rotor model that has been placed in the incompressible Navier-Stokes code INS3D-UP. The pressure disk rotor model approximates a helicopter rotor or propeller in a time averaged manner and is intended to simulate the effect of a rotor in forward flight on the fuselage or the effect of a propeller on other aerodynamic components. The model uses a modified actuator disk that allows the pressure jump across the disk to vary with radius and azimuth. The cyclic and collective blade pitch angles needed to achieve a specified thrust coefficient and zero moment about the hub are predicted. The method has been validated with experimentally measured mean induced inflow velocities as well as surface pressures on a generic fuselage. Overset grids, sometimes referred to as Chimera grids, are used to simplify the grid generation process. The pressure disk model is applied to a cylindrical grid which is embedded in the grid or grids used for the rest of the configuration. This document will outline the development of the method, and present input and results for a sample case.

  10. Theoretical Modeling of Formic Acid (HCOOH), Formate (HCOO(-)), and Ammonia (NH(4)) Vibrational Spectra in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Park, Jin-Young; Woon, David E.

    2006-01-01

    Ions embedded in icy grain mantles are thought to account for various observed infrared spectroscopic features, particularly in certain young stellar objects. The dissociation of formic acid (HCOOH) in astrophysical ices to form the formate ion (HCOO(-)) was modeled with density functional theory cluster calculations. Like isocyanic acid (HOCN), HCOOH was found to spontaneously deprotonate when sufficient water is present to stabilize charge transfer complexes. Both ammonia and water can serve as proton acceptors, yielding ammonium (NH4(+)) and hydronium (H3O(+)) counterions. Computed frequencies of weak infrared features produced by stretching and bending modes in both HCOO(-) and HCOOH were compared with experimental and astronomical data. Our results confirm laboratory assignments that a band at 1381 cm(exp -1) can be attributed to the CH bend in either HCOO(-) or HCOOH, but a band at 1349 cm(exp -1) corresponds to CO stretching in HCOO(-). Another feature at 1710 cm(exp -1) (5.85 m) can possibly be assigned to a CO stretching mode in HCOOH, as suggested by experiment, but the agreement is less satisfactory. In addition, we examine and analyze spectroscopic features associated with NH+4, both as a counterion to HCOO(-) or OCN(-) and in isolation, in order to compare with experimental and astronomical data in the 7 m region.

  11. Theoretical Modeling of Formic Acid (HCOOH), Formate (HCOO(-)), and Ammonia (NH(4)) Vibrational Spectra in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Park, Jin-Young; Woon, David E.

    2006-01-01

    Ions embedded in icy grain mantles are thought to account for various observed infrared spectroscopic features, particularly in certain young stellar objects. The dissociation of formic acid (HCOOH) in astrophysical ices to form the formate ion (HCOO(-)) was modeled with density functional theory cluster calculations. Like isocyanic acid (HOCN), HCOOH was found to spontaneously deprotonate when sufficient water is present to stabilize charge transfer complexes. Both ammonia and water can serve as proton acceptors, yielding ammonium (NH4(+)) and hydronium (H3O(+)) counterions. Computed frequencies of weak infrared features produced by stretching and bending modes in both HCOO(-) and HCOOH were compared with experimental and astronomical data. Our results confirm laboratory assignments that a band at 1381 cm(exp -1) can be attributed to the CH bend in either HCOO(-) or HCOOH, but a band at 1349 cm(exp -1) corresponds to CO stretching in HCOO(-). Another feature at 1710 cm(exp -1) (5.85 m) can possibly be assigned to a CO stretching mode in HCOOH, as suggested by experiment, but the agreement is less satisfactory. In addition, we examine and analyze spectroscopic features associated with NH+4, both as a counterion to HCOO(-) or OCN(-) and in isolation, in order to compare with experimental and astronomical data in the 7 m region.

  12. Baryon isocurvature scenario in inflationary cosmology - A particle physics model and its astrophysical implications

    NASA Technical Reports Server (NTRS)

    Yokoyama, Jun'ichi; Suto, Yasushi

    1991-01-01

    A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.

  13. Baryon isocurvature scenario in inflationary cosmology - A particle physics model and its astrophysical implications

    NASA Technical Reports Server (NTRS)

    Yokoyama, Jun'ichi; Suto, Yasushi

    1991-01-01

    A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.

  14. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. II; Application to Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Joern; Maisack, Michael; Begelman, Mitchell C.

    1997-01-01

    We apply our self-consistent accretion disk corona (ADC) model, with two different geometries, to the broadband X-ray spectrum of the black hole candidate Cygnus X-1. As shown in a companion paper, models in which the Comptonizing medium is a slab surrounding the cold accretion disk cannot have a temperature higher than about 140 keV for optical depths greater than 0.2, resulting in spectra that are much softer than the observed 10-30 keV spectrum of Cyg X-1. In addition, the slab-geometry models predict a substantial "soft excess" at low energies, a feature not observed for Cyg X-1, and Fe K-alpha fluorescence lines that are stronger than observed. Previous Comptonization models in the literature have invoked a slab geometry with optical depth tau(sub T) approx. greater than 0.3 and coronal temperature T(sub c) approx. 150 keV, but they are not self-consistent. Therefore, ADC models with a slab geometry are not appropriate for explaining the X-ray spectrum of Cyg X-1. Models with a spherical corona and an exterior disk, however, predict much higher self-consistent coronal temperatures than the slab-geometry models. The higher coronal temperatures are due to the lower amount of reprocessing of coronal radiation in the accretion disk, giving rise to a lower Compton cooling rate. Therefore, for the sphere-plus-disk geometry, the predicted spectrum can be hard enough to describe the observed X-ray continuum of Cyg X-1 while predicting Fe fluorescence lines having an equivalent width of approx. 40 eV. Our best-fit parameter values for the sphere-plus-disk geometry are tau(sub T) approx. equal to 1.5 and T(sub c) approx. equal to 90 keV.

  15. The Jet-Disk Symbiosis in Blazar and Unified Model of FSRQs and BL Lac Objects

    NASA Astrophysics Data System (ADS)

    Xie, Zhao Hua; Li, Zhang

    2012-04-01

    Using multi-wave band data for a large sample of 70 blazars, including 38 flat-spectrum radio quasars (FSRQs) and 32 BL Lac Objeces, we studied the correlations for both the flux and luminosity of the broad-line emission (FBLR) with the near-infrared flux (FK), X-ray flux (FX) and radio flux at 5 GHz (FR), respectively. We could see that there is always a strong correlation between the broad-line and multi-wave bands for a sample of 70 blazars; also, the slopes of the corresponding linear-regression equations are close to 1, which is consistent with the theoretical results. These results provide some new experimental evidence about coupling of the accretion disk and the jet of blazars. Simultaneously, we also indicated that the relative location of BL Lacs and FSRQs are quite separated, and that the luminosity of the the broad-line emission for BL Lacs is much less for FSRQs, which can prove that FSRQs and BL Lacs could be considered as a single population, or FSRQs and BL Lacs should be regarded as a class. But they are in different evolutionary stages of blazars, and have different types of accretion disks with different line-to-continuum ratios. Finally, the unified model of FSRQs and BL Lacs is also discussed.

  16. Evaluation of the polyurethane foam (PUF) disk passive air sampler: Computational modeling and experimental measurements

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Ashman, Paul; Huang, Jiaoyan; Dhaniyala, Suresh; Holsen, Thomas M.

    2011-08-01

    Computational fluid dynamics (CFD) simulations coupled with wind tunnel-experiments were used to determine the sampling rate (SR) of the widely used polyurethane foam (PUF) disk passive sampler. In the wind-tunnel experiments, water evaporation rates from a water saturated PUF disk installed in the sampler housing were determined by measuring weight loss over time. In addition, a modified passive sampler designed to collect elemental mercury (Hg 0) with gold-coated filters was used. Experiments were carried out at different wind speeds and various sampler angles. The SRs obtained from wind-tunnel experiments were compared to those obtained from the field by scaling the values by the ratios of air diffusivities. Three-dimensional (3D) CFD simulations were also used to generate SRs for both polychlorinated biphenyls (PCBs) and Hg 0. Overall, the modeled and measured SRs agree well and are consistent with the values obtained from field studies. As previously observed, the SRs increased linearly with increasing wind speed. In addition, it was determined that the SR was strongly dependent on the angle of the ambient wind. The SRs increased when the base was tilted up pointing into the wind and when the base was tilted down (i.e., such that the top of the sampler was facing the wind) the SR decreased initially and then increased. The results suggest that there may be significant uncertainty in concentrations obtained from passive sampler measurements without knowledge of wind speed and wind angle relative to the sampler.

  17. Debris disks: a theorist's view

    NASA Astrophysics Data System (ADS)

    Krivov, A. V.

    2007-08-01

    Debris disks are roughly solar system-sized, optically thin, gas-poor dust disks that encircle a notable fraction of main-sequence stars at ages ranging from about 10 Myr to several Gyr. They are thought to be continuously replenished by collisions between "exoasteroids" and activity of "exocomets", small bodies left over from the planet formation process. I will first outline main physical mechanisms operating in debris disks and compare them with other dusty systems: protoplanetary disks, dusty planetary rings, and classical Saturn's rings. I will then review basic methods and essential results of debris disks modeling, covering both steady-state and stochastic models of axisymmetric and structured disks.

  18. Marriage of Electromagnetism and Gravity in an Extended Space Model and Astrophysical Phenomena

    NASA Astrophysics Data System (ADS)

    Andreev, V. A.; Tsipenyuk, D. Yu.

    2013-09-01

    The generalization of Einstein's special theory of relativity (SRT) is proposed. In this model the possibility of unification of scalar gravity and electromagnetism into a single unified field is considered. Formally, the generalization of the SRT is that instead of (1+3)-dimensional Minkowski space the (1+4)-dimensional extension G is considered. As a fifth additional coordinate the interval S is used. This value is saved under the usual Lorentz transformations in Minkowski space M, but it changes when the transformations in the extended space G are used. We call this model the extended space model (ESM). From a physical point of view our expansion means that processes in which the rest mass of the particles changes are acceptable now. If the rest mass of a particle does not change and the physical quantities do not depend on an additional variable S, then the electromagnetic and gravitational fields exist independently of each other. But if the rest mass is variable and there is a dependence on S, then these two fields are combined into a single unified field. In the extended space model a photon can have a nonzero mass and this mass can be either positive or negative. The gravitational effects such as the speed of escape, gravitational red shift and detection of light can be analyzed in the frame of the extended space model. In this model all these gravitational effects can be found algebraically by the rotations in the (1+4) dimensional space. Now it becomes possible to predict some future results of visible size of supermassive objects in our Universe due to new stage of experimental astronomy development in the RadioAstron Project and analyze phenomena is an explosion of the star V838 Mon.

  19. The Z Astrophysical Plasma Properties Collaboration

    NASA Astrophysics Data System (ADS)

    Rochau, Gregory

    2013-10-01

    The Z Facility at Sandia National Laboratories provides near-thermal, MJ-class x-ray sources that emit at powers up to 0.3 PW. This capability enables precise benchmark experiments of fundamental material properties in radiation heated matter at conditions previously unattainable in the laboratory. Experiments on Z can produce uniform, long-lived, and large plasmas at conditions that span volumes up to 100 cm3, temperatures from 1-200 eV, and electron densities from 1E16-23 cm-3. These unique characteristics and the ability to radiatively heat multiple experiments in a single shot have led to a new effort called the Z Astrophysical Plasma Properties (ZAPP) collaboration. This collaboration includes four national laboratories (SNL, LANL, LLNL, and CEA) and three universities (UT-Austin, UN-Reno, and Ohio State) and has been enabled by recent support from the NNSA in fundamental High Energy Density science. The focus of the ZAPP collaboration is to reproduce the radiation and material characteristics of astrophysical plasmas as closely as possible in the laboratory and use detailed spectral measurements to strengthen models for atoms in plasmas. Specific issues under investigation include the LTE opacity of iron at stellar-interior conditions, H-Balmer line shapes in white dwarf photospheres, photoionization around active galactic nuclei, and the efficiency of resonant Auger destruction in black-hole accretion disks. Each of these issues can be simultaneously studied with high precision by acquiring up to 59 individual spectra on a single Z shot. We present the challenges, opportunities, and initial results from ZAPP experiments on Z. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  20. Flexible, Mastery-Oriented Astrophysics Sequence.

    ERIC Educational Resources Information Center

    Zeilik, Michael, II

    1981-01-01

    Describes the implementation and impact of a two-semester mastery-oriented astrophysics sequence for upper-level physics/astrophysics majors designed to handle flexibly a wide range of student backgrounds. A Personalized System of Instruction (PSI) format was used fostering frequent student-instructor interaction and role-modeling behavior in…

  1. Flexible, Mastery-Oriented Astrophysics Sequence.

    ERIC Educational Resources Information Center

    Zeilik, Michael, II

    1981-01-01

    Describes the implementation and impact of a two-semester mastery-oriented astrophysics sequence for upper-level physics/astrophysics majors designed to handle flexibly a wide range of student backgrounds. A Personalized System of Instruction (PSI) format was used fostering frequent student-instructor interaction and role-modeling behavior in…

  2. Science with hot astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Kaastra, J. S.; Gu, L.; Mao, J.; Mehdipour, M.; Mernier, F.; de Plaa, J.; Raassen, A. J. J.; Urdampilleta, I.

    2017-08-01

    We present some recent highlights and prospects for the study of hot astrophysical plasmas. Hot plasmas can be studied primarily through their X-ray emission and absorption. Most astrophysical objects, from solar system objects to the largest scale structures of the Universe, contain hot gas. In general we can distinguish collisionally ionised gas and photoionised gas. We introduce several examples of both classes and show where the frontiers of this research in astrophysics can be found. We put this also in the context of the current and future generation of X-ray spectroscopy satellites. The data coming from these missions challenge the models that we have for the calculation of the X-ray spectra.

  3. Experimental High Energy Neutrino Astrophysics

    SciTech Connect

    Distefano, Carla

    2005-10-12

    Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

  4. Does the Debris Disk around HD 32297 Contain Cometary Grains?

    NASA Astrophysics Data System (ADS)

    Rodigas, Timothy J.; Debes, John H.; Hinz, Philip M.; Mamajek, Eric E.; Pecaut, Mark J.; Currie, Thayne; Bailey, Vanessa; Defrere, Denis; De Rosa, Robert J.; Hill, John M.; Leisenring, Jarron; Schneider, Glenn; Skemer, Andrew J.; Skrutskie, Michael; Vaitheeswaran, Vidhya; Ward-Duong, Kimberly

    2014-03-01

    We present an adaptive optics imaging detection of the HD 32297 debris disk at L' (3.8 μm) obtained with the LBTI/LMIRcam infrared instrument at the Large Binocular Telescope. The disk is detected at signal-to-noise ratio per resolution element ~3-7.5 from ~0.''3 to 1.''1 (30-120 AU). The disk at L' is bowed, as was seen at shorter wavelengths. This likely indicates that the disk is not perfectly edge-on and contains highly forward-scattering grains. Interior to ~50 AU, the surface brightness at L' rises sharply on both sides of the disk, which was also previously seen at Ks band. This evidence together points to the disk containing a second inner component located at lsim50 AU. Comparing the color of the outer (50 disk at L' with archival Hubble Space Telescope/NICMOS images of the disk at 1-2 μm allows us to test the recently proposed cometary grains model of Donaldson et al. We find that the model fails to match this disk's surface brightness and spectrum simultaneously (reduced chi-square = 17.9). When we modify the density distribution of the model disk, we obtain a better overall fit (reduced chi-square = 2.87). The best fit to all of the data is a pure water ice model (reduced chi-square = 1.06), but additional resolved imaging at 3.1 μm is necessary to constrain how much (if any) water ice exists in the disk, which can then help refine the originally proposed cometary grains model. Based on observations made at the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: the University of Arizona on behalf of the Arizona University system; Istituto Nazionale di Astrosica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; the Ohio State University, and the Research Corporation, on behalf of the University of Notre Dame

  5. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    PubMed

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. Copyright © 2015, American Association for the Advancement of Science.

  6. Gamma-ray bursts: Modeling electron-positron pair plasmas in cataclysmic astrophysical phenomena

    NASA Astrophysics Data System (ADS)

    Salmonson, Jay David

    Despite three decades of intense scientific scrutiny, gamma-ray bursts have remained one of astronomy's biggest unsolved mysteries. Recent observational breakthroughs have allowed us to learn much about these big, brief, brilliant bangs seen from across the cosmos, but their origin remains a mystery. In this work we study three progenitor models: a neutron star binary system near its last stable orbit, a charged black hole, and the collapse of a globular star cluster. All of these scenarios result in a common theme; the relativistic expansion of a super- heated electron-positron-photon plasma. Thus we study the evolution of, and emission from, this plasma as it might result from these three progenitors using numerical general relativistic hydrodynamic simulations. This emission is then compared with that of gamma-ray bursts to test the feasibility of each of these models as a gamma-ray burst progenitor.

  7. Abundances in Astrophysical Environments: Reaction Network Simulations with Reaction Rates from Many-nucleon Modeling

    NASA Astrophysics Data System (ADS)

    Amason, Charlee; Dreyfuss, Alison; Launey, Kristina; Draayer, Jerry

    2017-01-01

    We use the ab initio (first-principle) symmetry-adapted no-core shell model (SA-NCSM) to calculate reaction rates of significance to type I X-ray burst nucleosynthesis. We consider the 18O(p,γ)19F reaction, which may influence the production of fluorine, as well as the 16O(α,γ)20Ne reaction, which is key to understanding the production of heavier elements in the universe. Results are compared to those obtained in the no-core sympletic shell model (NCSpM) with a schematic interaction. We discuss how these reaction rates affect the relevant elemental abundances. We thank the NSF for supporting this work through the REU Site in Physics & Astronomy (NSF grant #1560212) at Louisiana State University. This work was also supported by the U.S. NSF (OCI-0904874, ACI -1516338) and the U.S. DOE (DE-SC0005248).

  8. Modelling of Be Disks in Binary Systems Using the Hydrodynamic Code PLUTO

    NASA Astrophysics Data System (ADS)

    Cyr, I. H.; Panoglou, D.; Jones, C. E.; Carciofi, A. C.

    2016-11-01

    The study of the gas structure and dynamics of Be star disks is critical to our understanding of the Be star phenomenon. The central star is the major force driving the evolution of these disks, however other external forces may also affect the formation of the disk, for example, the gravitational torque produced in a close binary system. We are interested in understanding the gravitational effects of a low-mass binary companion on the formation and growth of a disk in a close binary system. To study these effects, we used the grid-based hydrodynamic code PLUTO. Because this code has not been used to study such systems before, we compared our simulations against codes used in previous work on binary systems. We were able to simulate the formation of a disk in both an isolated and binary system. Our current results suggest that PLUTO is in fact a well suited tool to study the dynamics of Be disks.

  9. Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei.

    PubMed

    Mertsch, Philipp; Sarkar, Subir

    2009-08-21

    The excess in the positron fraction measured by PAMELA has been interpreted as due to annihilation or decay of dark matter in the Galaxy. More prosaically it has been ascribed to direct production of positrons by nearby pulsars or due to pion production during diffusive shock acceleration of hadronic cosmic rays in nearby sources. We point out that measurements of secondary cosmic ray nuclei can discriminate between these possibilities. New data on the titanium-to-iron ratio support the hadronic source model above and enable a prediction for the boron-to-carbon ratio at energies above 100 GeV.

  10. Chemistry in disks. IV. Benchmarking gas-grain chemical models with surface reactions

    NASA Astrophysics Data System (ADS)

    Semenov, D.; Hersant, F.; Wakelam, V.; Dutrey, A.; Chapillon, E.; Guilloteau, St.; Henning, Th.; Launhardt, R.; Piétu, V.; Schreyer, K.

    2010-11-01

    Context. We describe and benchmark two sophisticated chemical models developed by the Heidelberg and Bordeaux astrochemistry groups. Aims: The main goal of this study is to elaborate on a few well-described tests for state-of-the-art astrochemical codes covering a range of physical conditions and chemical processes, in particular those aimed at constraining current and future interferometric observations of protoplanetary disks. Methods: We considered three physical models: a cold molecular cloud core, a hot core, and an outer region of a T Tauri disk. Our chemical network (for both models) is based on the original gas-phase osu_03_2008 ratefile and includes gas-grain interactions and a set of surface reactions for the H-, O-, C-, S-, and N-bearing molecules. The benchmarking was performed with the increasing complexity of the considered processes: (1) the pure gas-phase chemistry, (2) the gas-phase chemistry with accretion and desorption, and (3) the full gas-grain model with surface reactions. The chemical evolution is modeled within 109 years using atomic initial abundances with heavily depleted metals and hydrogen in its molecular form. Results: The time-dependent abundances calculated with the two chemical models are essentially the same for all considered physical cases and for all species, including the most complex polyatomic ions and organic molecules. This result, however, required a lot of effort to make all necessary details consistent through the model runs, e.g., definition of the gas particle density, density of grain surface sites, or the strength and shape of the UV radiation field. Conclusions: The reference models and the benchmark setup, along with the two chemical codes and resulting time-dependent abundances are made publicly available on the internet. This will facilitate and ease the development of other astrochemical models and provide nonspecialists with a detailed description of the model ingredients and requirements to analyze the cosmic

  11. GLOBAL MODELING OF RADIATIVELY DRIVEN ACCRETION OF METALS FROM COMPACT DEBRIS DISKS ONTO WHITE DWARFS

    SciTech Connect

    Bochkarev, Konstantin V.; Rafikov, Roman R. E-mail: rrr@astro.princeton.edu

    2011-11-01

    Recent infrared observations have revealed the presence of compact (radii {approx}< R{sub sun}) debris disks around more than a dozen metal-rich white dwarfs (WDs), likely produced by a tidal disruption of asteroids. Accretion of high-Z material from these disks may account for the metal contamination of these WDs. It was previously shown using local calculations that the Poynting-Robertson (PR) drag acting on the dense, optically thick disk naturally drives metal accretion onto the WD at the typical rate M-dot{sub PR}{approx}10{sup 8} g s{sup -1}. Here we extend this local analysis by exploring the global evolution of the debris disk under the action of the PR drag for a variety of assumptions about the disk properties. We find that massive disks (mass {approx}> 10{sup 20} g), which are optically thick to incident stellar radiation, inevitably give rise to metal accretion at rates M-dot {approx}>0.2 M-dot{sub PR}. The magnitude of M-dot and its time evolution are determined predominantly by the initial pattern of the radial distribution of the debris (i.e., ring-like versus disk-like) but not by the total mass of the disk. The latter determines only the disk lifetime, which can be several Myr or longer. The evolution of an optically thick disk generically results in the development of a sharp outer edge of the disk. We also find that the low-mass ({approx}< 10{sup 20} g), optically thin disks exhibit M-dot << M-dot{sub PR} and evolve on a characteristic timescale {approx}10{sup 5}-10{sup 6} yr, independent of their total mass.

  12. Astronomy & Astrophysics: an international journal

    NASA Astrophysics Data System (ADS)

    Bertout, C.

    2011-07-01

    After a brief historical introduction, we review the scope, editorial process, and production organization of A&A, one of the leading journals worldwide dedicated to publishing the results of astrophysical research. We then briefly discuss the economic model of the Journal and some current issues in scientific publishing.

  13. Simplified model to describe the dissociative recombination of linear polyatomic ions of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Douguet, N.; Fonseca dos Santos, S.; Kokoouline, V.; Orel, A. E.

    2015-01-01

    We present results of a theoretical study on dissociative recombination of the HCNH+, HCO+ and N2H+ linear polyatomic ions at low energies using a simple theoretical model. In the present study, the indirect mechanism for recombination proceeds through the capture of the incoming electron in excited vibrational Rydberg states attached to the degenerate transverse modes of the linear ions. The strength of the non-adiabatic coupling responsible for dissociative recombination is determined directly from the near-threshold scattering matrix obtained numerically using the complex Kohn variational method. The final cross sections for the process are compared with available experimental data. It is demonstrated that at low collision energies, the major contribution to the dissociative recombination cross section is due to the indirect mechanism.

  14. Models for the Spectral Energy Distibution of Disks at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Goodman, Michael; Ignace, R.

    2010-01-01

    We discuss the spectral energy distributions (SEDs) of axisymmetric circumstellar disks that produce infrared (IR), millimeter (mm), and radio emission excesses. In particular, we explore the effects of disk flaring on the SED shape. We find that relatively mild deviations from a power-law SED result from flaring. Key diagnostics for assessing flared disks from the SEDs are highlighted, and applications to IR and mm spectral measurements for Be star disks are noted. This research was funded by a grant from the National Science Foundation, AST-0936427.

  15. Iron K Lines from Accretion Disks: Models for Line Production and Spectroscopic Constraints

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy; Palmeri, Patrick

    2004-01-01

    Measured profiles of the iron K lines provide important dynamical information about emitting matrial in compact objects. However, much of the modeling work which has been used to infer the location and origin of line observed from AGN and galactic black hole sources is based on highly simplified assumptions about the microphysics of K line emission. In particular, many of the intrinsic line energies, widths and emissivities are based on central-field atomic calculations. We present the results of new calculations of the quantities for the entire iron isonuclear sequence, and demonstrate that the intrinsic K line spectra contain considerably more complexity than has been previously considered. We also present calculations of iron K emission and absorption spectra which include the new data, including the local spectrum radiated from an X-ray illuminated accretion disk. The implications for the interpretation of observed iron K lines from black hole sources will be discussed.

  16. Iron K Lines from Accretion Disks: Models for Line Production and Spectroscopic Constraints

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy; Palmeri, Patrick

    2004-01-01

    Measured profiles of the iron K lines provide important dynamical information about emitting matrial in compact objects. However, much of the modeling work which has been used to infer the location and origin of line observed from AGN and galactic black hole sources is based on highly simplified assumptions about the microphysics of K line emission. In particular, many of the intrinsic line energies, widths and emissivities are based on central-field atomic calculations. We present the results of new calculations of the quantities for the entire iron isonuclear sequence, and demonstrate that the intrinsic K line spectra contain considerably more complexity than has been previously considered. We also present calculations of iron K emission and absorption spectra which include the new data, including the local spectrum radiated from an X-ray illuminated accretion disk. The implications for the interpretation of observed iron K lines from black hole sources will be discussed.

  17. Future Experiments in Astrophysics

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.

    2002-01-01

    The measurement methodologies of astrophysics experiments reflect the enormous variation of the astrophysical radiation itself. The diverse nature of the astrophysical radiation, e.g. cosmic rays, electromagnetic radiation, and neutrinos, is further complicated by the enormous span in energy, from the 1.95 Kappa relic neutrino background to cosmic rays with energy greater than 10(exp 20)eV. The measurement of gravity waves and search for dark matter constituents are also of astrophysical interest. Thus, the experimental techniques employed to determine the energy of the incident particles are strongly dependent upon the specific particles and energy range to be measured. This paper summarizes some of the calorimetric methodologies and measurements planned by future astrophysics experiments. A focus will be placed on the measurement of higher energy astrophysical radiation. Specifically, future cosmic ray, gamma ray, and neutrino experiments will be discussed.

  18. Future of Nuclear Data for Astrophysics

    SciTech Connect

    Smith, Michael Scott

    2005-01-01

    Nuclear astrophysics is an exciting growth area in nuclear science. Because of the enormous nuclear data needs of this field, it has an exciting potential to boost nuclear data activities in the twenty-first century. Furthermore, the tremendous interest of the general public in astrophysics makes this area of work an excellent vehicle for wide exposure of nuclear data activities. Unfortunately, decreasing data evaluation manpower, the difficulty of processing nuclear data into formats compatible with astrophysical models, and a lack of a coherent future plan have brought about a crisis in nuclear data for nuclear astrophysics. It is imperative to take action now before the situation worsens - especially before new future facilities begin operation. A number of specific actions are proposed to help ensure that nuclear data is rapidly incorporated into astrophysical models in the future.

  19. Modeling Earth's Disk-Integrated, Time-Dependent Spectrum: Applications to Directly Imaged Habitable Planets

    NASA Astrophysics Data System (ADS)

    Lustig-Yaeger, Jacob; Schwieterman, Edward; Meadows, Victoria; Fujii, Yuka; NAI Virtual Planetary Laboratory, ISSI 'The Exo-Cartography Inverse Problem'

    2016-10-01

    Earth is our only example of a habitable world and is a critical reference point for potentially habitable exoplanets. While disk-averaged views of Earth that mimic exoplanet data can be obtained by interplanetary spacecraft, these datasets are often restricted in wavelength range, and are limited to the Earth phases and viewing geometries that the spacecraft can feasibly access. We can overcome these observational limitations using a sophisticated UV-MIR spectral model of Earth that has been validated against spacecraft observations in wavelength-dependent brightness and phase (Robinson et al., 2011; 2014). This model can be used to understand the information content - and the optimal means for extraction of that information - for multi-wavelength, time-dependent, disk-averaged observations of the Earth. In this work, we explore key telescope parameters and observing strategies that offer the greatest insight into the wavelength-, phase-, and rotationally-dependent variability of Earth as if it were an exoplanet. Using a generalized coronagraph instrument simulator (Robinson et al., 2016), we synthesize multi-band, time-series observations of the Earth that are consistent with large space-based telescope mission concepts, such as the Large UV/Optical/IR (LUVOIR) Surveyor. We present fits to this dataset that leverage the rotationally-induced variability to infer the number of large-scale planetary surface types, as well as their respective longitudinal distributions and broadband albedo spectra. Finally, we discuss the feasibility of using such methods to identify and map terrestrial exoplanets surfaces with the next generation of space-based telescopes.

  20. Variations on Debris Disks. IV. An Improved Analytical Model for Collisional Cascades

    NASA Astrophysics Data System (ADS)

    Kenyon, Scott J.; Bromley, Benjamin C.

    2017-04-01

    We derive a new analytical model for the evolution of a collisional cascade in a thin annulus around a single central star. In this model, r max the size of the largest object changes with time, {r}\\max \\propto {t}-γ , with γ ≈ 0.1-0.2. Compared to standard models where r max is constant in time, this evolution results in a more rapid decline of M d , the total mass of solids in the annulus, and L d , the luminosity of small particles in the annulus: {M}d\\propto {t}-(γ +1) and {L}d\\propto {t}-(γ /2+1). We demonstrate that the analytical model provides an excellent match to a comprehensive suite of numerical coagulation simulations for annuli at 1 au and at 25 au. If the evolution of real debris disks follows the predictions of the analytical or numerical models, the observed luminosities for evolved stars require up to a factor of two more mass than predicted by previous analytical models.

  1. HI Gas in Disk and Dwarf Galaxies in the Semi-analytic Models of Galaxy Formation†

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Wang, Jing; Luo, Yu

    We construct the radially-resolved semi-analytic models of galaxy formation based on the L-Galaxies model framework, which include both atomic and molecular gas phase in ISM. The models run on the halo outputs of ΛCDM cosmology N-body simulation. Our models can reproduce varies observations of HI gas in nearby galaxies, e.g. the HI mass function, the HI-to-star ratio vs stellar mass and stellar surface density, universal HI radial surface density profile in outer disks etc. We also give the physical origin of HI size-mass relation. Based on our model results for local dwarf galaxies, we show that the ``missing satellite problem'' also exists in the HI component, i.e., the models over-predict dwarf galaxies with low HI mass around the Milky Way. That is a shortcoming of current ΛCDM cosmology framework. Future survey for HI gas in local dwarf galaxies (e.g. MeerKAT, SKA & FAST) can help to verify the nature of dark matter (cold or warm).

  2. Semi-analytic models for HI gas in disk and local dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Fu, Jian

    2015-08-01

    We construct the radially-resolved semi-analytic models of galaxy formation based on the L-Galaxies model framework, which include both atomic and molecular gas phase in ISM. The models adopt the ΛCDM cosmology simulation Millennium, Millennium II and Aquarius. Our models can reproduce varies properties of HI gas in nearby galaxies, e.g. the HI mass function, the HI-to-star ratio vs stellar mass and stellar surface density, universal HI radial surface density profile in outer disks etc. We can also give some physical origins of HI size mass relation in many observations.Based on our model results for local dwarf galaxies, we show that the "missing satellite problem" also exists in the HI component, i.e., the models over predict dwarf galaxies with low HI mass. That is a shortcoming of current ΛCDM cosmology framework. Future survey for HI gas in dwarf galaxies (e.g. SKA or FAST) in local group can help to verify the correctness of cold dark matter.

  3. Theory and laboratory astrophysics

    NASA Technical Reports Server (NTRS)

    Schramm, David N.; Mckee, Christopher F.; Alcock, Charles; Allamandola, Lou; Chevalier, Roger A.; Cline, David B.; Dalgarno, Alexander; Elmegreen, Bruce G.; Fall, S. Michael; Ferland, Gary J.

    1991-01-01

    Science opportunities in the 1990's are discussed. Topics covered include the large scale structure of the universe, galaxies, stars, star formation and the interstellar medium, high energy astrophysics, and the solar system. Laboratory astrophysics in the 1990's is briefly surveyed, covering such topics as molecular, atomic, optical, nuclear and optical physics. Funding recommendations are given for the National Science Foundation, NASA, and the Department of Energy. Recommendations for laboratory astrophysics research are given.

  4. Accelerator Experiments for Astrophysics

    SciTech Connect

    Ng, J

    2003-10-15

    Many recent discoveries in astrophysics involve phenomena that are highly complex. Carefully designed experiments, together with sophisticated computer simulations, are required to gain insights into the underlying physics. We show that particle accelerators are unique tools in this area of research, by providing precision calibration data and by creating extreme experimental conditions relevant for astrophysics. In this paper we discuss laboratory experiments that can be carried out at the Stanford Linear Accelerator Center and implications for astrophysics.

  5. GIANT PLANET FORMATION BY DISK INSTABILITY IN LOW MASS DISKS?

    SciTech Connect

    Boss, Alan P.

    2010-12-20

    Forming giant planets by disk instability requires a gaseous disk that is massive enough to become gravitationally unstable and able to cool fast enough for self-gravitating clumps to form and survive. Models with simplified disk cooling have shown the critical importance of the ratio of the cooling to the orbital timescales. Uncertainties about the proper value of this ratio can be sidestepped by including radiative transfer. Three-dimensional radiative hydrodynamics models of a disk with a mass of 0.043 M{sub sun} from 4 to 20 AU in orbit around a 1 M{sub sun} protostar show that disk instabilities are considerably less successful in producing self-gravitating clumps than in a disk with twice this mass. The results are sensitive to the assumed initial outer disk (T{sub o}) temperatures. Models with T{sub o} = 20 K are able to form a single self-gravitating clump, whereas models with T{sub o} = 25 K form clumps that are not quite self-gravitating. These models imply that disk instability requires a disk with a mass of at least {approx}0.043 M{sub sun} inside 20 AU in order to form giant planets around solar-mass protostars with realistic disk cooling rates and outer-disk temperatures. Lower mass disks around solar-mass protostars must rely upon core accretion to form inner giant planets.

  6. Exploring Disks Around Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  7. Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas

    SciTech Connect

    Lattuada, D.; Barbarino, M.; Bonasera, A.; Bang, W.; Quevedo, H. J.; Warren, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.

    2016-04-19

    In this paper, we present a new and general method for measuring the astrophysical S factor of nuclear reactions in laser-induced plasmas and we apply it to 2H(d,n)3He. The experiment was performed with the Texas Petawatt Laser, which delivered 150–270 fs pulses of energy ranging from 90 to 180 J to D2 or CD4 molecular clusters (where D denotes 2H). After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S factor using the measured energy distribution of the ions, the measured volume of the fusion plasma, and the measured fusion yields. This method is model independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution, especially at high energies, and of the relevant fusion yields. In the 2H(d,n)3He and 3He(d,p)4He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S factor in the d+d case (lower Gamow energies), for the d+3He case the data are not precise enough to obtain the S factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.

  8. Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas

    SciTech Connect

    Lattuada, D.; Barbarino, M.; Bonasera, A.; Bang, W.; Quevedo, H. J.; Warren, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.

    2016-04-19

    In this paper, we present a new and general method for measuring the astrophysical S factor of nuclear reactions in laser-induced plasmas and we apply it to 2H(d,n)3He. The experiment was performed with the Texas Petawatt Laser, which delivered 150–270 fs pulses of energy ranging from 90 to 180 J to D2 or CD4 molecular clusters (where D denotes 2H). After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S factor using the measured energy distribution of the ions, the measured volume of the fusion plasma, and the measured fusion yields. This method is model independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution, especially at high energies, and of the relevant fusion yields. In the 2H(d,n)3He and 3He(d,p)4He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S factor in the d+d case (lower Gamow energies), for the d+3He case the data are not precise enough to obtain the S factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.

  9. Astrophysics and Space Science

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy; Brinks, Elias; Khanna, Ramon

    2015-08-01

    Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science, and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis, and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will not longer be considered.The journal also publishes topical collections consisting of invited reviews and original research papers selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers.Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.Astrophysics and Space Science has an Impact Factor of 2.4 and features short editorial turnaround times as well as short publication times after acceptance, and colour printing free of charge. Published by Springer the journal has a very wide online dissemination and can be accessed by researchers at a very large number of institutes worldwide.

  10. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  11. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  12. He3(α,γ)Be7 and H3(α,γ)Li7 astrophysical S factors from the no-core shell model with continuum

    DOE PAGES

    Dohet-Eraly, Jeremy; Navratil, Petr; Quaglioni, Sofia; ...

    2016-04-12

    The 3He(α,γ)7Be and 3H(α,γ)7Li astrophysical S factors are calculated within the no-core shell model with continuum using a renormalized chiral nucleon–nucleon interaction. The 3He(α,γ)7Be astrophysical S factors agree reasonably well with the experimental data while the 3H(α,γ)7Li ones are overestimated. The seven-nucleon bound and resonance states and the α + 3He/3H elastic scattering are also studied and compared with experiment. Here, the low-lying resonance properties are rather well reproduced by our approach. At low energies, the s-wave phase shift, which is non-resonant, is overestimated.

  13. Reprocessing in Luminous Disks

    NASA Technical Reports Server (NTRS)

    Bell, K. Robbins; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We develop and investigate a procedure that accounts for disk reprocessing of photons that originate in the disk itself. Surface temperatures and simple, black body spectral energy distributions (SEDs) of protostellar disks are calculated. In disks that flare with radius, reprocessing of stellar photons results in temperature profiles considerably shallower than r(sup -3/4). Including the disk as a radiation source (as in the case of actively secreting disks) along with the stellar source further flattens the temperature profile. Disks that flare strongly near the star and then smoothly curve over and become shadowed at some distance ("decreasing curvature" disks) exhibit nearly power-law temperature profiles which result in power-law infrared SEDs with slopes in agreement with typical observations of young stellar objects. Disk models in which the photospheric thickness is controlled by the local opacity and in which the temperature decreases with radius naturally show this shape. Uniformly flaring models do not match observations as well; progressively stronger reprocessing at larger radii leads to SEDs that flatten toward the infrared or even have a second peak at the wavelength corresponding (through the Wien law) to the temperature of the outer edge of the disk. In FU Orionis outbursting systems, the dominant source of energy is the disk itself. The details of the reprocessing depend sensitively on the assumed disk shape and emitted temperature profile. The thermal instability outburst models of Bell Lin reproduce trends in the observed SEDs of Fuors with T varies as r(sup -3/4) in the inner disk (r approx. less than 0.25au corresponding to lambda approx. less than 10 microns) and T varies as r(sup -1/2) in the outer disk. Surface irradiation during outburst and quiescence is compared in the region of planet formation (1 - 10 au). The contrast between the two phases is diminished by the importance of the reprocessing of photons from the relatively high mass

  14. Reprocessing in Luminous Disks

    NASA Technical Reports Server (NTRS)

    Bell, K. Robbins; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We develop and investigate a procedure that accounts for disk reprocessing of photons that originate in the disk itself. Surface temperatures and simple, black body spectral energy distributions (SEDs) of protostellar disks are calculated. In disks that flare with radius, reprocessing of stellar photons results in temperature profiles considerably shallower than r(sup -3/4). Including the disk as a radiation source (as in the case of actively secreting disks) along with the stellar source further flattens the temperature profile. Disks that flare strongly near the star and then smoothly curve over and become shadowed at some distance ("decreasing curvature" disks) exhibit nearly power-law temperature profiles which result in power-law infrared SEDs with slopes in agreement with typical observations of young stellar objects. Disk models in which the photospheric thickness is controlled by the local opacity and in which the temperature decreases with radius naturally show this shape. Uniformly flaring models do not match observations as well; progressively stronger reprocessing at larger radii leads to SEDs that flatten toward the infrared or even have a second peak at the wavelength corresponding (through the Wien law) to the temperature of the outer edge of the disk. In FU Orionis outbursting systems, the dominant source of energy is the disk itself. The details of the reprocessing depend sensitively on the assumed disk shape and emitted temperature profile. The thermal instability outburst models of Bell Lin reproduce trends in the observed SEDs of Fuors with T varies as r(sup -3/4) in the inner disk (r approx. less than 0.25au corresponding to lambda approx. less than 10 microns) and T varies as r(sup -1/2) in the outer disk. Surface irradiation during outburst and quiescence is compared in the region of planet formation (1 - 10 au). The contrast between the two phases is diminished by the importance of the reprocessing of photons from the relatively high mass

  15. Eccentricity Pumping Through Circumbinary Disks in Hot Subdwarf Binaries

    NASA Astrophysics Data System (ADS)

    Vos, J.

    2015-12-01

    Hot subdwarf-B stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts these objects to be circularized before the onset of Roche-lobe overflow (RLOF). We have tested three different eccentricity pumping processes on their viability to reproduce the observed wide sdB population; tidally-enhanced wind mass-loss, phase-dependent RLOF on eccentric orbits and the interaction between a circumbinary (CB) disk and the binary. The binary module of the stellar-evolution code Modules for Experiments in Stellar Astrophysics (MESA) is extended to include the eccentricity-pumping processes, and a parameter study is carried out. We find that models including phase-dependent RLOF or a CB disk can reach the observed periods and eccentricities. However, the models cannot explain the observed correlation between period and eccentricity. Nor can circular short period systems be formed when eccentricity pumping mechanisms are active.

  16. Theoretical Particle Astrophysics

    SciTech Connect

    Kamionkowski, Marc

    2013-08-07

    Abstract: Theoretical Particle Astrophysics The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.

  17. Testing Accretion Disk Wind Models of Broad Absorption Line Quasars with SDSS Spectra

    NASA Astrophysics Data System (ADS)

    Lindgren, Sean; Gabel, Jack

    2017-06-01

    We present an investigation of a large sample of broad absorption line (BAL) quasars (QSO) from the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5). Properties of the BALs, such as absorption equivalent width, outflow velocities, and depth of BAL, are obtained from analysis by Gibson et al. We perform correlation analysis on these data to test the predictions made by the radiation driven, accretion disk streamline model of Murray and Chiang. We find the CIV BAL maximum velocity and the continuum luminosity are correlated, consistent with radiation driven models. The mean minimum velocity of CIV is lower in low ionization BALs (LoBALs), than highly ionized BALs (HiBALS), suggesting an orientation effect consistent with the Murray and Chiang model. Finally, we find that HiBALs greatly outnumber LoBALs in the general BAL population, supporting prediction of the Murray and Chiang model that HiBALs have a greater global covering factor than LoBALs.

  18. Dynamics of flux tubes in accretion disks

    NASA Technical Reports Server (NTRS)

    Vishniac, E. T.; Duncan, R. C.

    1994-01-01

    The study of magnetized plasmas in astrophysics is complicated by a number of factors, not the least of which is that in considering magnetic fields in stars or accretion disks, we are considering plasmas with densities well above those we can study in the laboratory. In particular, whereas laboratory plasmas are dominated by the confining magnetic field pressure, stars, and probably accretion disks, have magnetic fields whose beta (ratio of gas pressure to magnetic field pressure) is much greater than 1. Observations of the Sun suggest that under such circumstances the magnetic field breaks apart into discrete flux tubes with a small filling factor. On the other hand, theoretical treatments of MHD turbulence in high-beta plasmas tend to assume that the field is more or less homogeneously distributed throughout the plasma. Here we consider a simple model for the distribution of magnetic flux tubes in a turbulent medium. We discuss the mechanism by which small inhomogeneities evolve into discrete flux tubes and the size and distribution of such flux tubes. We then apply the model to accretion disks. We find that the fibrilation of the magnetic field does not enhance magnetic buoyancy. We also note that the evolution of an initially diffuse field in a turbulent medium, e.g., any uniform field in a shearing flow, will initially show exponential growth as the flux tubes form. This growth saturates when the flux tube formation is complete and cannot be used as the basis for a self-sustaining dynamo effect. Since the typical state of the magnetic field is a collection of intense flux tubes, this effect is of limited interest. However, it may be important early in the evolution of the galactic magnetic field, and it will play a large role in numerical simulations. Finally, we note that the formation of flux tubes is an essential ingredient in any successful dynamo model for stars or accretion disks.

  19. Theoretical Astrophysics at Fermilab

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  20. Effect of Degeneration on Fluid–Solid Interaction within Intervertebral Disk Under Cyclic Loading – A Meta-Model Analysis of Finite Element Simulations

    PubMed Central

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562

  1. A Comprehensive Dust Model Applied to the Resolved Beta Pictoris Debris Disk from Optical to Radio Wavelengths

    NASA Astrophysics Data System (ADS)

    Ballering, Nicholas P.; Su, Kate Y. L.; Rieke, George H.; Gáspár, András

    2016-06-01

    We investigate whether varying the dust composition (described by the optical constants) can solve a persistent problem in debris disk modeling—the inability to fit the thermal emission without overpredicting the scattered light. We model five images of the β Pictoris disk: two in scattered light from the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph at 0.58 μm and HST/Wide Field Camera 3 (WFC 3) at 1.16 μm, and three in thermal emission from Spitzer/Multiband Imaging Photometer for Spitzer (MIPS) at 24 μm, Herschel/PACS at 70 μm, and Atacama Large Millimeter/submillimeter Array at 870 μm. The WFC3 and MIPS data are published here for the first time. We focus our modeling on the outer part of this disk, consisting of a parent body ring and a halo of small grains. First, we confirm that a model using astronomical silicates cannot simultaneously fit the thermal and scattered light data. Next, we use a simple generic function for the optical constants to show that varying the dust composition can improve the fit substantially. Finally, we model the dust as a mixture of the most plausible debris constituents: astronomical silicates, water ice, organic refractory material, and vacuum. We achieve a good fit to all data sets with grains composed predominantly of silicates and organics, while ice and vacuum are, at most, present in small amounts. This composition is similar to one derived from previous work on the HR 4796A disk. Our model also fits the thermal spectral energy distribution, scattered light colors, and high-resolution mid-IR data from T-ReCS for this disk. Additionally, we show that sub-blowout grains are a necessary component of the halo.

  2. A Modification of the Levich Model to Flux at a Rotating Disk in the presence of Planktonic Bacteria

    NASA Astrophysics Data System (ADS)

    Jones, Akhenaton-Andrew; Buie, Cullen

    2015-11-01

    The Levich model of flow at a rotating disk describes convective mass transport to a disk when edge effects and wall effects can be neglected. It is used to interpret electrochemical reaction kinetics and electrochemical impedance of flow systems. The solution has been shown to be invalid for high densities (~ 1 % v/v) of inert, non-motile nano-sized particles (<0.1 μm) and macro-particles (>1.5 μm), yet little work has been done for motile bacteria and bacterial sized particles. The influence of planktonic bacteria on rotating disk experiments is crucial for the evaluation of electrochemically active biofilms. In this work, we show that the presence of bacteria creates significant deviation from the ideal Levich model not shared by inert particles. We also study the impact of dead (fixed) bacteria on deviation form the Levich model. This work has implications for studies of microbial induced corrosion, microbial adhesion, and antibiotic transport to adhered biofilms preformed in rotating disk systems.

  3. Analysis of the V-Band Light Curve of the Be Star ω CMa with the Viscous Decretion Disk Model

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, M. R.; Carciofi, A. C.

    2017-02-01

    We analyze the V-band photometry data of the Be star ω CMa, observed over the last four decades. The data is fitted by hydrodynamic models based on the viscous decretion disk (VDD) theory, in which a disk around a fast-spinning Be star is formed by material ejected by the central star and driven to progressively wider orbits by means of viscous torques. For the first time, we apply the model for both the disk build up and the dissipation phases. Our simulations offer a good description of the photometric variability in both phases, which suggests that the VDD model adequately describes the disk structural evolution. Furthermore, our analysis allowed us to determine the viscosity parameter (α) of the gas, as well as the net mass loss rate. We find that α is variable, ranging from 0.1 to 1.0, and that buildup phases have larger values of α than the dissipation phases. Additionally, we find that, contrary to what is generally assumed, even during quiescence the outward mass flux is never zero, suggesting that the star alternates between a high mass loss phase (outburst) and a low mass loss phase (quiescence).

  4. Astrophysical Institute, Potsdam

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Built upon a tradition of almost 300 years, the Astrophysical Institute Potsdam (AIP) is in an historical sense the successor of one of the oldest astronomical observatories in Germany. It is the first institute in the world which incorporated the term `astrophysical' in its name, and is connected with distinguished scientists such as Karl Schwarzschild and Albert Einstein. The AIP constitutes on...

  5. Herzberg Institute of Astrophysics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Herzberg Institute of Astrophysics (HIA) is the Institute within the NATIONAL RESEARCH COUNCIL of Canada responsible for providing astronomical facilities, and developing related instrumentation and software for Canadian researchers. The Institute was established in 1975, and now operates 1.8 m and 1.2 m optical telescopes at the DOMINION ASTROPHYSICAL OBSERVATORY close to Victoria, BC, as we...

  6. Modeling High-resolution Spectra from X-ray Illuminated Accretion Disks

    NASA Astrophysics Data System (ADS)

    Garcia, Javier; Kallman, T.

    2010-01-01

    This work is focused on the study of X-ray illuminated accretion disks around compact objects by modeling their structure and reprocessed spectra. Use of low-accuracy and incomplete atomic data is a key limitation in models which have been calculated so far. We remedy this situation by incorporating data for line energies, transition probabilities and photoionization cross sections taken from various sources, most notably calculations using the R-matrix suite of codes. We also implement a self-consistent approach for the radiative transfer of X-rays and the heating and ionization of the gas. These promise to lead to significant improvements in the understanding of the X-ray observations of active galactic nuclei (AGN), X-ray binaries and galactic black holes. By performing detailed radiative transfer calculations we have computed the reflected spectra from constant density slabs for different input parameters (e.g., density, strength of incident X-rays, iron abundance), including the redistribution of photons due to Compton scattering. Although broad and skewed iron emission lines observed in many accreting systems are often attributed to the Doppler effect and gravitational redshift, our results show that Comptonization can be responsible for a significant fraction of the line broadening. By analyzing simulated Suzaku observations from our models, we provide equivalent and physical widths and line centroid energies for atomic lines, absorption edges and recombination continua (among other features). These are provided in tabular and graphical form that can be used directly in the interpretation of observational data.

  7. Multiscale modeling of organic molecules contamination in head-disk interface under high thermal stress

    NASA Astrophysics Data System (ADS)

    Song, Wonyup; Chung, Pil Seung; Bielger, Lorenz T.; Jhon, Myung S.

    2017-05-01

    Heat assisted magnetic recording (HAMR) which locally reduces coercivity with a laser pulse, is currently the most promising technology to achieve areal density beyond 10 Tbit/in2. However, due to the extreme operating condition of HAMR, the head-disk interface (HDI) suffers from extensive depletion and contamination of organic molecules. Our previous studies indicate that the conventional linear perfluoropolyether (PFPE) lubricants/grease molecules are not suitable for the severe thermal stress especially when coupled with external fields as the lubricant layer can be depleted and damaged. To simulate the molecular evaporation phenomena, we introduced novel multiscale modeling scheme, "Collection Of Spheres" model, which can predict mesoscale phenomena based on the atomistic/molecular level details via reduced order method. We have examined how the molecular architect affects evaporation under various degree of thermal stress (e.g., peak temperature and duration). Specifically, we examined several PFPEs (e.g., Z, Zdol, and Ztetraol) to study the effect of back-bone and end group properties on evaporation. Our multiscale model can provide holistic simulation of the HDI and provide molecular design criteria for HAMR device.

  8. Testing the AGN paradigm; Proceedings of the 2nd Annual Topical Astrophysics Conference, Univ. of Maryland, College Park, Oct. 14-16, 1991

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S. (Editor); Neff, Susan G. (Editor); Urry, C. M. (Editor)

    1992-01-01

    The present volume on testing the AGN paradigm discusses black holes, accretion disks, high-energy continuum jets, AGN geometry, and the broad-line region. Attention is given to the search for black holes in galaxy nuclei, the structure of M32 at red wavelengths, testing the AGN paradigm for the Milky Way, and relativistic fluid flows in the magnetized Schwarzschild spacetime. Topics addressed include orbital models for the periodic X-ray flares of NGC 6814, observational evidence for thin AGN disks, X-ray Fe line studies, and the role of the UV bump in line emission. Also discussed are signatures of black hole accretion disks, rapid variability in AGN and accretion disk hot spots, relativistic jets in AGN, and the radiation field in astrophysical jets.

  9. Secondary Disks and Disk Regrowth in S0 Galaxies

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda; Kannappan, Sheila; Norris, Mark; Khochfar, Sadegh; Berlind, Andreas

    2010-08-01

    Early-type galaxies are predicted to regrow late-type disks in hierarchical models of galaxy formation, but the observational confirmation of this process remains largely indirect. We seek to approach this problem kinematically by searching for evidence of disk regrowth in the form of extended secondary disks in S0s (distinct from the small-scale KDCs identified in SAURON). In order to address the possible contribution of secondary disks not indicative of true disk regrowth and the expected variations of secondary disk frequency with mass, color, and environment, we propose deep spectroscopy of a broad sample of 60 S0 galaxies located in the RESOLVE Survey volume. With these data and similar data in hand for ~12 additional S0s, we aim both to resolve conflicting measurements of the frequency of secondary disks in early-type galaxies and to determine the incidence of disk regrowth.

  10. Magnetized and collimated millimeter scale plasma jets with astrophysical relevance

    SciTech Connect

    Brady, Parrish C.; Quevedo, Hernan J.; Valanju, Prashant M.; Bengtson, Roger D.; Ditmire, Todd

    2012-01-15

    Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

  11. Modeling high-resolution spectra from x-ray illuminated accretion disks

    NASA Astrophysics Data System (ADS)

    Garcia, Javier Adolfo

    2010-10-01

    This work focuses on the study of X-ray illuminated accretion disks around black holes by modeling their structure and reprocessed emission. The calculation of new models for the reflected spectra consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. Plane-parallel geometry and azimuthal symmetry are assumed, such that each calculation corresponds to a ring at a given distance from the central object. The radiation transfer equations are solved by using the Feautrier scheme. Ionization and thermal balance are solved by using the photoionization code XSTAR, including the most recent and complete atomic data for K-shell of the isonuclear sequences of iron, oxygen, and nitrogen. The redistribution of photons due to Compton scattering is included using a Gaussian approximation for the Compton kernel. The atomic data for nitrogen ions, namely, level energies, wavelengths, gf-values, radiative widths, total and partial Auger widths, and total and partial photoionization cross sections are computed with a portfolio of publicly available atomic physics codes: AUTOSTRUCTURE, HFR, and BPRM. The shape of the Fe K-line is perhaps one of the most important features in the Xray spectrum of accreting sources. Therefore, the effect of fluorescent Kalpha line emission and absorption in the emitted spectrum is explored, as well as the dependence of the spectrum on the strength of the incident X-rays and other input parameters and the importance of Comptonization on the emitted spectrum. These calculations predict under which conditions the line is formed, providing information about the ionization stage of the emitting gas. The width of this line is often related to relativistic effects (i.e. gravitational redshift), since the emitting gas may be located in regions close to the black hole. However, these models suggest

  12. A review of astrophysical reconnection

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Magnetic reconnection is a basic plasma process involving rapid rearrangement of magnetic field topology. It often leads to violent release of magnetic energy and its conversion to the plasma thermal and kinetic energy as well as nonthermal particle acceleration. It is thus believed to power numerous types of explosive phenomena both inside and outside the Solar system, including various kinds of high-energy flares. In this talk I will first give an overview of astrophysical systems where reconnection is believed to play an important role. Examples include pulsed high-energy emission in pulsar magnetospheres; gamma-ray flares in pulsar wind nebulae and AGN/blazar jets; Gamma-Ray Bursts; and giant flares in magnetar systems. I will also analyze the physical conditions of the plasma in some of these astrophysical systems and will discuss the fundamental physical differences between various astrophysical instances of magnetic reconnection and the more familiar solar and space examples of reconnection. In particular, I will demonstrate the importance of including radiative effects in order to understand astrophysical magnetic reconnection and in order to connect our theoretical models with the observed radiation signatures.

  13. Condensation Processes in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Rietmeijer, Frans J. M.; Hill, Hugh G. M.

    2002-01-01

    Astrophysical systems present an intriguing set of challenges for laboratory chemists. Chemistry occurs in regions considered an excellent vacuum by laboratory standards and at temperatures that would vaporize laboratory equipment. Outflows around Asymptotic Giant Branch (AGB) stars have timescales ranging from seconds to weeks depending on the distance of the region of interest from the star and, on the way significant changes in the state variables are defined. The atmospheres in normal stars may only change significantly on several billion-year timescales. Most laboratory experiments carried out to understand astrophysical processes are not done at conditions that perfectly match the natural suite of state variables or timescales appropriate for natural conditions. Experimenters must make use of simple analog experiments that place limits on the behavior of natural systems, often extrapolating to lower-pressure and/or higher-temperature environments. Nevertheless, we argue that well-conceived experiments will often provide insights into astrophysical processes that are impossible to obtain through models or observations. This is especially true for complex chemical phenomena such as the formation and metamorphism of refractory grains under a range of astrophysical conditions. Data obtained in our laboratory has been surprising in numerous ways, ranging from the composition of the condensates to the thermal evolution of their spectral properties. None of this information could have been predicted from first principals and would not have been credible even if it had.

  14. Nuclear physics and astrophysics

    SciTech Connect

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing.

  15. Cooling and Infrared Emission due to Molecular Collisional Excitation in Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Stancil, Phillip

    2011-06-01

    Non-thermal popluations of molecules in a variety of astronomical environments, including photodissociation regions, X-ray dominated regions, and protoplanetary disks, are controlled by collisional excitation and quenching of their rovibrational levels. The important colliders are the dominant neutral species: H, He, and H2. Resulting emission lines are primary cooling transitions and can be observed by current and upcoming IR/submillimeter observatories including Spitzer, Herschel, SOFIA, and ALMA. Modeling these environments, however, requires large-scale computation of collisional excitation processes. The status, needs, and astrophysical applications for important molecular targets will be reviewed including H2, HD, CO, H2O, and NH3.

  16. A Pulsar and a Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  17. The Milky Way disk

    NASA Astrophysics Data System (ADS)

    Carraro, G.

    2015-08-01

    This review summarises the invited presentation I gave on the Milky Way disc. The idea underneath was to touch those topics that can be considered hot nowadays in the Galactic disk research: the reality of the thick disk, the spiral structure of the Milky Way, and the properties of the outer Galactic disk. A lot of work has been done in recent years on these topics, but a coherent and clear picture is still missing. Detailed studies with high quality spectroscopic data seem to support a dual Galactic disk, with a clear separation into a thin and a thick component. Much confusion and very discrepant ideas still exist concerning the spiral structure of the Milky Way. Our location in the disk makes it impossible to observe it, and we can only infer it. This process of inference is still far from being mature, and depends a lot on the selected tracers, the adopted models and their limitations, which in many cases are neither properly accounted for, nor pondered enough. Finally, there are very different opinions on the size (scale length, truncation radius) of the Galactic disk, and on the interpretation of the observed outer disk stellar populations in terms either of external entities (Monoceros, Triangulus-Andromeda, Canis Major), or as manifestations of genuine disk properties (e.g., warp and flare).

  18. CIRCUMPLANETARY DISK FORMATION

    SciTech Connect

    Ward, William R.; Canup, Robin M.

    2010-11-15

    The development and evolution of a circumplanetary disk during the accretion of a giant planet is examined. The planet gains mass and angular momentum from infalling solar nebula material while simultaneously contracting due to luminosity losses. When the planet becomes rotationally unstable it begins to shed material into a circumplanetary disk. Viscosity causes the disk to spread to a moderate fraction of the Hill radius where it is assumed that a small fraction of the material escapes back into heliocentric orbit, carrying away most of the excess angular momentum. As the planet's contraction continues, its radius can become smaller than the spatial range of the inflow and material begins to fall directly onto the disk, which switches from a spin-out disk to an accretion disk as the planet completes its growth. We here develop a description of the circumplanetary disk, which is combined with models of the planet's contraction and the inflow rate including its angular momentum content to yield a solution for the time evolution of a planet-disk system.

  19. Warm gas in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    van der Plas, Gerrit

    2010-12-01

    This thesis presents a study of warm CO, [OI] and H2 gas coming from the disks around Herbig Ae/Be stars. These various gas tracers are each a proxy for a different radial and vertical region of the PP disk surface. Our sample consists of disks whose shape (based on modeling of the the disk dust emission) can be divided into flaring and self-shadowed (flat). We find [1] evidence for the vertical decoupling of gas and dust in one disks (Chapter 2); [2] That disk geometry has a large influence on the spatial distribution and excitation mechanism of the CO emission (chapters 3,4); [3] Near-IR H 2 emission around 2 (out of 14) HAEBE stars, probably originating from large (±50AU) radii of the disk (chapter 5). In chapter 6 we investigate the trends between CO emission and disk geometry as noted in Chapter 3 and 4.

  20. Modeling and validation of residual stress distribution in an HSLA-100 disk

    SciTech Connect

    Feng, Z.; Zhu, Y.Y.; Zacharia, T.; Fields, R.J.; Prask, H.J.; Brand, P.C.; Blackburn, J.M.

    1995-12-31

    The residual stress distribution in a GTA spot we 100 steel disk was analyzed using thermomechanically uncoupled and semi-coupled finite element (FE) formulations and measured with the neutron diffraction technique. The computations used temperature-dependent the and mechanical properties of the base metal. The thermal analysis was based on the heat conduction formulation with the Gaussian heat input from the arc. The semi-coupled approach is an effective alternative to the fully coupled approach in which the incompatibility in the thermal and mechanical time increments often leads to numerical convergence difficulties. Convergence was achieved in the semi-coupled approach where a larger time increment for temperature calculation was automatically divided into some sub-intervals for the thermal stress calculation. The temperature, deformation configurations, and state variables were updated at the end of the temperature increment. The predictions from the FE models are in very good agreement with the neutron measurement results in the far heat-affected zone (HAZ) and in the base metal. Both models over-predicted the residual stress field in the fusion zone and near HAZ as measured by the neutron diffraction method. The discrepancy could be attributed to the changes in microstructures and material properties in the HAZ and fusion zone due to phase transformations during the welding thermal cycle. The formation of cracks in the fusion zone is another factor that possibly contributes to the lower measured residual stress values.

  1. Instability of counter-rotating stellar disks

    NASA Astrophysics Data System (ADS)

    Hohlfeld, R. G.; Lovelace, R. V. E.

    2015-09-01

    We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.

  2. Next-Generation Modeling, Analysis, and Testing of the Vibration of Mistuned Bladed Disks

    DTIC Science & Technology

    2007-12-21

    key mistuning phenomena were examined through vibration testing of blisks (single-piece bladed disks). New methods were developed for identifying...examined through vibration testing of blisks (single-piece bladed disks). New methods were developed for identifying blade mistuning parameters from test...identification methods for mis- tuned systems " To advance the state of the art in blisk vibration testing, with particular attention to the precise

  3. Protostellar disks and the primitive solar nebula

    NASA Technical Reports Server (NTRS)

    Cassen, P. M.; Pollack, J. B.; Bunch, T.; Hubickyj, O.; Moins, P.; Yuan, C.

    1987-01-01

    The objective is to obtain quantitative information on the turbulent transport of mass, angular momentum, and energy under the conditions that characterize the solar nebula, by direct numerical calculations. These calculations were made possible by research conducted on supercomputers (Cray XMP and Cray 2) by the Ames Computational Fluid Dynamics Branch. Techniques were developed that permitted the accurate representation of turbulent flows over the full range of important eddy sizes. So far, these techniques were applied (and verified) primarily in mundane laboratory situations, but they have a strong potential for astrophysical applications. A sequence of numerical experiments were conducted to evaluate the Reynold's stress tensor, turbulent heat transfer rate, turbulent dissipation rate, and turbulent kinetic energy spectrum, as functions of position, for conditions relevant to the solar nebula. Emphasis is placed on the variation of these properties with appropriate nondimensional quantities, so that relations can be derived that will be useful for disk modeling under a variety of hypotheses and initial conditions.

  4. Computational Infrastructure for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Lingerfelt, E. J.; Scott, J. P.; Nesaraja, C. D.; Hix, W. R.; Bardayan, D. W.; Blackmon, J. C.; Chae, K.; Guidry, M. W.; Hard, C. C.; Sharp, J. E.; Kozub, R. L.; Meyer, R. A.

    2004-12-01

    The Computational Infrastructure for Nuclear Astrophysics is a platform-independent, online suite of computer codes developed by the ORNL Nuclear Data Project that makes a rapid connection between laboratory nuclear physics results and astrophysical models. It enables users to evaluate cross sections, process them into thermonuclear reaction rates, and parameterize (with a few percent accuracy) these rates that vary by up to 30 orders of magnitude over the temperatures of interest. Users can then properly format these rates for input into astrophysical computer simulations, create and manipulate libraries of rates, as well as run and visualize sample post-processing nucleosynthesis calculations. For example, we have developed animated nuclide charts that show how predicted abundances (represented by a user-defined color scale) change in time. With this unique suite, users can within a very short time quantify the astrophysical impact of a newly measured or calculated cross section, or a newly created customized reaction rate library, and then document and share their results with the scientific community. The suite has a straightforward interface with a "Windows Wizard" motif whereby users progress through complicated calculations in a step-by-step fashion. Users can upload their own files for processing and save their work on our server, as well as work with files that other users wish to share. These tools are currently being used to investigate novae and X-ray bursts. The suite is available through nucastrodata.org, a website that also hyperlinks available nuclear data sets relevant for nuclear astrophysics research. New features are continually being added to this software, which is funded by the U.S. Department of Energy Low Energy Nuclear Physics and Nuclear Data Programs. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  5. On the Relative Relevance of Subject-Specific Geometries and Degeneration-Specific Mechanical Properties for the Study of Cell Death in Human Intervertebral Disk Models

    PubMed Central

    Malandrino, Andrea; Pozo, José M.; Castro-Mateos, Isaac; Frangi, Alejandro F.; van Rijsbergen, Marc M.; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme

    2015-01-01

    Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration. PMID:25717471

  6. On the relative relevance of subject-specific geometries and degeneration-specific mechanical properties for the study of cell death in human intervertebral disk models.

    PubMed

    Malandrino, Andrea; Pozo, José M; Castro-Mateos, Isaac; Frangi, Alejandro F; van Rijsbergen, Marc M; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme

    2015-01-01

    Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration.

  7. Design, testing and two-dimensional flow modeling of a multiple-disk fan

    SciTech Connect

    Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki

    2009-11-15

    A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

  8. Towards Bayesian Machine Learning for Estimating Parameters of Accretion Disk Models for SPH Simulations

    NASA Astrophysics Data System (ADS)

    Goel, Amit; Montgomery, Michele; Wiegand, Paul

    2016-01-01

    Accretion disks are ubiquitous in Active Galactic Nuclei, in protostellar systems forming protoplanets, and in close binary star systems such as X-ray binaries, Cataclysmic Variables, and Algols, for example. Observations such as disk tilt are found in all of these different accreting system types, suggesting a common physics must be present. To understand the common connections between these different system types, which can help us understand their unique evolutions, we need to better understand the physics of accretion. For example, viscosity is typically a constant value in the disk of a system that is in a specific state such as a quiescent state. However, viscosity can't be constant throughout the disk, especially at the boundaries. To learn more about viscosity and other common parameters in these disk, we use Bayesian Inference and Markov Chain Monte Carlo techniques to make predictions of events to come in the numerical simulations of these accreting disks. In this work, we present our techniques and initial findings.

  9. MODELING THE OUTFLOW IN THE NARROW-LINE REGION OF MARKARIAN 573: BICONICAL ILLUMINATION OF A GASEOUS DISK

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Trippe, M. L.

    2010-08-15

    We present a study of the outflowing ionized gas in the resolved narrow-line region of the Seyfert 2 galaxy Mrk 573, and its interaction with an inner dust/gas disk, based on Hubble Space Telescope (HST) Wide Field Planetary Camera 2 and Space Telescope Imaging Spectrograph observations. From the spectroscopic and imaging information, we determined the fundamental geometry of the outflow and inner disk, via two modeling programs used to recreate the morphology of these regions imaged with HST. We also determined that the bicone of ionizing radiation from the active galactic nucleus intersects with the inner disk, illuminating a section of the disk including inner segments of spiral arms, fully seen through structure mapping, which appear to be outflowing and expanding. In addition, we see high velocities at projected distances of {>=}2'' ({approx}700 pc) from the nucleus, which could be due to rotation or in situ acceleration of gas off the spiral arms. We find that the true half-opening angle of the ionizing bicone (53{sup 0}) is much larger than the apparent half-opening angle (34{sup 0}) due to the above geometry, which may apply to a number of other Seyferts as well.

  10. Hα emission line spectroscopy in NGC 330. On the hybrid model for global oscillations in Be star circumstellar disks

    NASA Astrophysics Data System (ADS)

    Hummel, W.; Gässler, W.; Muschielok, B.; Schink, H.; Nicklas, H.; Conti, G.; Mattaini, E.; Keller, S.; Mantel, K.-H.; Appenzeller, I.; Rupprecht, G.; Seifert, W.; Stahl, O.; Tarantik, K.

    2001-06-01

    We perform an observational test on global oscillations in Be star circumstellar disks in the metal deficient environment of the SMC. According to the hybrid model of disk oscillations early-type Be stars require an optically thin line force to establish a density wave. The low metallicity in the SMC should therefore diminish or prevent the formation of disk oscillations in early-type Be stars. We present short wavelength range spectra around Hα of 48 Be stars in the young open cluster NGC 330 in the SMC. We find that the fraction of early-type Be stars in NGC 330 which host a global disk oscillation does not differ from the known fraction of Galactic field Be stars. This observational result is in contradiction to the theoretical prediction. We discuss several interpretations and propose a further observational test. Based on observations collected with VLT-Kueyen-FORS2-MXU during the commissioning~1 of FORS2 and the mechanical commissioning of the MXU, operated on Cerro Paranal (Chile) by the European Southern Observatory and the VLT instrument consortium (FORS2).

  11. Building a reduced model for nonlinear dynamics in Rayleigh-Bénard convection with counter-rotating disks.

    PubMed

    Navarro, M C; Witkowski, L Martin; Tuckerman, L S; Le Quéré, P

    2010-03-01

    A reduced model to decrease the number of degrees of freedom of the discretized Navier-Stokes equations to a small set that nevertheless captures the essential dynamics of the flow is proposed. The Rayleigh-Bénard convection problem in a cylinder of aspect ratio one where the lower and upper disks, maintained at hot and cold temperatures, respectively, rotate at equal and opposite angular velocities has been chosen to test the technique. The nonlinear dynamics is rich and complex when the temperature difference between disks and their angular velocity is varied. Representatives states--stationary, periodic near sinusoidal, and near heteroclinic--are presented. In each case, the reduced model is compared with temporal integration, and we show that 41 degrees of freedom are sufficient to reproduce the signal. We discuss the strengths and weaknesses of the algorithm by which we build our reduced model.

  12. Optical Disks.

    ERIC Educational Resources Information Center

    Gale, John C.; And Others

    1985-01-01

    This four-article section focuses on information storage capacity of the optical disk covering the information workstation (uses microcomputer, optical disk, compact disc to provide reference information, information content, work product support); use of laser videodisc technology for dissemination of agricultural information; encoding databases…

  13. Herniated Disk

    MedlinePlus

    ... forearm, or fingers.A slipped disk in the lumbar part of your spine can cause pain in the back and legs. It is often referred to as sciatica. This is because the disk pushes on the sciatic nerve, which runs down your leg. Symptoms include:Pain ...

  14. Towards a comprehensive model of Earth's disk-integrated Stokes vector

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.

    2015-07-01

    at three wavelengths (0.48, 0.56 and 0.63 μm) during a flyby in 2005. The light curves show distinct structure associated with the varying aspect of the Earth's visible disk (phases of 98-107°) as the planet undergoes a full 24 h rotation; the structure is reasonably well reproduced with model simulations.

  15. Constraining the Physics of AM Canum Venaticorum Systems with the Accretion Disk Instability Model

    NASA Technical Reports Server (NTRS)

    Cannizzo, John K.; Nelemans, Gijs

    2015-01-01

    Recent work by Levitan et al. has expanded the long-term photometric database for AM CVn stars. In particular, their outburst properties are well correlated with orbital period and allow constraints to be placed on the secular mass transfer rate between secondary and primary if one adopts the disk instability model for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a function of orbital period to place a constraint on mass transfer rate versus orbital period. We infer a rate approximately 5 x 10(exp -9) solar mass yr(exp -1) ((P(sub orb)/1000 s)(exp -5.2)). We show that the functional form so obtained is consistent with the recurrence time-orbital period relation found by Levitan et al. using a simple theory for the recurrence time. Also, we predict that their steep dependence of outburst duration on orbital period will flatten considerably once the longer orbital period systems have more complete observations.

  16. Constraining the Physics of AM Canum Venaticorum Systems with the Accretion Disk Instability Model

    NASA Astrophysics Data System (ADS)

    Cannizzo, John K.; Nelemans, Gijs

    2015-04-01

    Recent work by Levitan et al. has expanded the long-term photometric database for AM CVn stars. In particular, their outburst properties are well correlated with orbital period and allow constraints to be placed on the secular mass transfer rate between secondary and primary if one adopts the disk instability model for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a function of orbital period to place a constraint on mass transfer rate versus orbital period. We infer a rate ˜5× {{10}-9}{{M}⊙ } y{{r}-1}{{({{P}orb}/1000 s)}-5.2}. We show that the functional form so obtained is consistent with the recurrence time-orbital period relation found by Levitan et al. using a simple theory for the recurrence time. Also, we predict that their steep dependence of outburst duration on orbital period will flatten considerably once the longer orbital period systems have more complete observations.

  17. Constraining the Physics of AM Canum Venaticorum Systems with the Accretion Disk Instability Model

    NASA Technical Reports Server (NTRS)

    Cannizzo, John K.; Nelemans, Gijs

    2015-01-01

    Recent work by Levitan et al. has expanded the long-term photometric database for AM CVn stars. In particular, their outburst properties are well correlated with orbital period and allow constraints to be placed on the secular mass transfer rate between secondary and primary if one adopts the disk instability model for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a function of orbital period to place a constraint on mass transfer rate versus orbital period. We infer a rate approximately 5 x 10(exp -9) solar mass yr(exp -1) ((P(sub orb)/1000 s)(exp -5.2)). We show that the functional form so obtained is consistent with the recurrence time-orbital period relation found by Levitan et al. using a simple theory for the recurrence time. Also, we predict that their steep dependence of outburst duration on orbital period will flatten considerably once the longer orbital period systems have more complete observations.

  18. Chemical Signposts in Transition Disks

    NASA Astrophysics Data System (ADS)

    Cleeves, I.; Bergin, E. A.; Fogel, J.

    2011-05-01

    In the era of the Kepler Mission, the detection of numerous multi-planet systems has demonstrated that planet-formation appears to be a rather ubiquitous phenomenon. Such systems are believed to form from nascent protoplanetary disks, whose environment sets the stage for initial planetary chemical composition and evolution. However, disk systems typically vary by orders of magnitude in radiation field, densities and temperatures, and thus complex disk models are necessary to fully understand this unique chemical environment. Further evidence for disks as progenitors to planetary systems comes from Spitzer surveys of young disk systems, which have revealed a class of objects known as ``transition disks''. These systems appear to have inner voids and gaps in the dust opacity, possibly indicative of planet evolution and disk clearing. This physical evolution in the dust disk will significantly impact its chemical nature, and therefore these potentially planet-forming systems in ``transition'' should have unique chemical signatures. We predict one such signature to be an active chemistry at the wall interface where the conditions are such that the disk is both heated and optically thick to the photo-dissociating UV. The net result is a wide variety of gas-phase molecules, appearing in line emission as bright molecular rings far from the central star. This behavior should also reveal a wealth of information about the physical conditions in this actively evolving zone between the inner ``cleared'' disk and the massive outer disk. For this presentation I will discuss the features of our disk chemical model pipeline and select model results of transition disk systems. I will also highlight the exciting future of protoplanetary disk chemistry in the era of ALMA, which will truly revolutionize our understanding of the chemical nature of disks.

  19. Modelling circumbinary protoplanetary disks. II. Gas disk feedback on planetesimal dynamical and collisional evolution in the circumbinary systems Kepler-16 and 34

    NASA Astrophysics Data System (ADS)

    Lines, S.; Leinhardt, Z. M.; Baruteau, C.; Paardekooper, S.-J.; Carter, P. J.

    2016-05-01

    Aims: We investigate the feasibility of planetesimal growth in circumbinary protoplanetary disks around the observed systems Kepler-16 and Kepler-34 under the gravitational influence of a precessing eccentric gas disk. Methods: We embed the results of our previous hydrodynamical simulations of protoplanetary disks around binaries into an N-body code to perform 3D, high-resolution, inter-particle gravity-enabled simulations of planetesimal growth and dynamics that include the gravitational force imparted by the gas. Results: Including the full, precessing asymmetric gas disk generates high eccentricity orbits for planetesimals orbiting at the edge of the circumbinary cavity, where the gas surface density and eccentricity have their largest values. The gas disk is able to efficiently align planetesimal pericenters in some regions leading to phased, non-interacting orbits. Outside of these areas eccentric planetesimal orbits become misaligned and overlap leading to crossing orbits and high relative velocities during planetesimal collisions. This can lead to an increase in the number of erosive collisions that far outweighs the number of collisions that result in growth. Gravitational focusing from the static axisymmetric gas disk is weak and does not significantly alter collision outcomes from the gas free case. Conclusions: Due to asymmetries in the gas disk, planetesimals are strongly perturbed onto highly eccentric orbits. Where planetesimals orbits are not well aligned, orbit crossings lead to an increase in the number of erosive collisions. This makes it difficult for sustained planetesimal accretion to occur at the location of Kepler-16b and Kepler-34b and we therefore rule out in situ growth. This adds further support to our initial suggestions that most circumbinary planets should form further out in the disk and migrate inwards.

  20. Theoretical study of the electronically excited radical cations of naphthalene and anthracene as archetypal models for astrophysical observations. Part II. Dynamics consequences.

    PubMed

    Ghanta, S; Reddy, V Sivaranjana; Mahapatra, S

    2011-08-28

    Nuclear dynamics is investigated theoretically from first principles by employing the ab initio vibronic models of the prototypical naphthalene and anthracene radical cations developed in Part I. This Part is primarily aimed at corroborating a large amount of available experimental data with a specific final goal to establish an unambiguous link with the current observations in astrophysics and astronomy. The detailed analyses presented here perhaps establish that these two prototypical polycyclic aromatic hydrocarbon radical cations are indeed potential carriers of the observed diffuse interstellar bands.

  1. Stellar models simulating the disk-locking mechanism and the evolutionary history of the Orion Nebula cluster and NGC 2264

    NASA Astrophysics Data System (ADS)

    Landin, N. R.; Mendes, L. T. S.; Vaz, L. P. R.; Alencar, S. H. P.

    2016-02-01

    Context. Rotational evolution in young stars is described by pre-main sequence evolutionary tracks including non-gray boundary conditions, rotation, conservation of angular momentum, and simulations of disk-locking. Aims: By assuming that disk-locking is the regulation mechanism for the stellar angular velocity during the early stages of pre-main sequence evolution, we use our rotating models and observational data to constrain disk lifetimes (Tdisk) of a representative sample of low-mass stars in two young clusters, the Orion Nebula cluster (ONC) and NGC 2264, and to better understand their rotational evolution. Methods: The period distributions of the ONC and NGC 2264 are known to be bimodal and to depend on the stellar mass. To follow the rotational evolution of these two clusters' stars, we generated sets of evolutionary tracks from a fully convective configuration with low central temperatures (before D- and Li-burning). We assumed that the evolution of fast rotators can be represented by models considering conservation of angular momentum during all stages and of moderate rotators by models considering conservation of angular velocity during the first stages of evolution. With these models we estimate a mass and an age for all stars. Results: The resulting mass distribution for the bulk of the cluster population is in the ranges of 0.2-0.4 M⊙ and 0.1-0.6 M⊙ for the ONC and NGC 2264, respectively. For the ONC, we assume that the secondary peak in the period distribution is due to high-mass objects still locked in their disks, with a locking period (Plock) of ~8 days. For NGC 2264 we make two hypotheses: (1) the stars in the secondary peak are still locked with Plock = 5 days, and (2) NGC 2264 is in a later stage in the rotational evolution. Hypothesis 2 implies in a disk-locking scenario with Plock = 8 days, a disk lifetime of 1 Myr and, after that, constant angular momentum evolution. We then simulated the period distribution of NGC 2264 when the mean age

  2. Accretion disk radiation dynamics and the cosmic battery

    SciTech Connect

    Koutsantoniou, Leela E.; Contopoulos, Ioannis E-mail: icontop@academyofathens.gr

    2014-10-10

    We investigate the dynamics of radiation in the surface layers of an optically thick astrophysical accretion disk around a Kerr black hole. The source of the radiation is the surface of the accretion disk itself, and not a central object as in previous studies of the Poynting-Robertson effect. We generate numerical sky maps from photon trajectories that originate on the surface of the disk as seen from the inner edge of the disk at the position of the innermost stable circular orbit. We investigate several accretion disk morphologies with a Shakura-Sunyaev surface temperature distribution. Finally, we calculate the electromotive source of the Cosmic Battery mechanism around the inner edge of the accretion disk and obtain characteristic timescales for the generation of astrophysical magnetic fields.

  3. Observations and kinematic modeling of neutral hydrogen in spiral galaxies: Implications for disk-halo flows and accretion

    NASA Astrophysics Data System (ADS)

    Zschaechner, Laura Kristina

    Recent realizations concerning kinematic measurements of extra-planar layers in nearby galaxies may provide important clues to the origin of such layers and thereby the growth and evolution of galaxy disks. In particular, observations have shown a decrease in rotation speed with height (lags) in the extra-planar layers of multiple galaxies, leading to various models which attempt to understand this gradient in terms of disk-halo flows and accretion of primordial gas. In this thesis we present deep observations and detailed kinematic models of neutral hydrogen (HI) in five nearby, edge-on spiral galaxies (NGC 4244, NGC 4565, NGC 4302, NGC 3044 and NGC 4013) observed with the Very Large Array and the Westerbork Synthesis Radio Telescope. These models provide insight concerning both the morphology and kinematics of HI above and within the disk, especially in terms of their lags. Characterization of the magnitude and radial variation of lags aids in determining whether extra-planar HI originates in the plane of the disk (as described in galactic fountain-type models) or is accreted. In these galaxies we find substantial extra- planar Hi is not ubiquitous, while lags appear to be so. Furthermore, the lags we measure are steeper than those produced by purely ballistic effects, indicating that additional physical effects must be at work. In every (with the exception of NGC 4013) galaxy we model, a radial shallowing of the lag is observed, starting at approximately half of R25, and reaching its lowest magnitude near R25. Combining our sample with results from the literature, we see no clear connection between the presence of extra-planar Hi and star formation, nor do we see any connection between lag magnitude and star formation. Our findings provide constraints for theoretical scenarios which we will describe.

  4. Particle rings and astrophysical accretion discs

    SciTech Connect

    Lovelace, R. V. E. Romanova, M. M.

    2016-03-25

    Norman Rostoker had a wide range of interests and significant impact on the plasma physics research at Cornell during the time he was a Cornell professor. His interests ranged from the theory of energetic electron and ion beams and strong particle rings to the related topics of astrophysical accretion discs. We outline some of the topics related to rings and discs including the Rossby wave instability which leads to formation of anticyclonic vortices in astrophysical discs. These vorticies are regions of high pressure and act to trap dust particles which in turn may facilitate planetesimals growth in proto-planetary disks and could be important for planet formation. Analytical methods and global 3D magneto-hydrodynamic simulations have led to rapid advances in our understanding of discs in recent years.

  5. Astrophysical payloads for picosatellites

    NASA Astrophysics Data System (ADS)

    Hudec, R.

    2017-07-01

    The recent progress in cubesatellite technology allows to consider scientific applications of these minsatellites including astrophysical research. Miniature X-ray and UV-payloads may serve as an example.

  6. Compressible Astrophysics Simulation Code

    SciTech Connect

    Howell, L.; Singer, M.

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  7. Transient Astrophysics Observatory (TAO)

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; TAO Team

    2016-10-01

    The Transient Astrophysics Observatory (TAO) is a NASA MidEx mission concept (formerly known as Lobster) designed to provide simultaneous wide-field gamma-ray, X-ray, and near-infrared observations of the sky.

  8. Wind tunnel measurements of wake structure and wind farm power for actuator disk model wind turbines in yaw

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Kang, Justin; Meyers, Johan; Meneveau, Charles

    2016-11-01

    Reducing wake losses in wind farms by deflecting the wakes through turbine yawing has been shown to be a feasible wind farm control approach. In this work, the deflection and morphology of wakes behind a wind turbine operating in yawed conditions are studied using wind tunnel experiments of a wind turbine modeled as a porous disk in a uniform inflow. First, by measuring velocity distributions at various downstream positions and comparing with prior studies, we confirm that the nonrotating wind turbine model in yaw generates realistic wake deflections. Second, we characterize the wake shape and make observations of what is termed a "curled wake," displaying significant spanwise asymmetry. Through the use of a 100 porous disk micro-wind farm, total wind farm power output is studied for a variety of yaw configurations. Strain gages on the tower of the porous disk models are used to measure the thrust force as a substitute for turbine power. The frequency response of these measurements goes up to the natural frequency of the model and allows studying the spatiotemporal characteristics of the power output under the effects of yawing. This work has been funded by the National Science Foundation (Grants CBET-113380 and IIA-1243482, the WINDINSPIRE project). JB and JM are supported by ERC (ActiveWindFarms, Grant No. 306471).

  9. SPAN: Astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Green, James L.; Warren, Wayne H., Jr.; Lopez-Swafford, Brian

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links science research and data analysis computers in the U.S., Canada, and Europe. The purpose of this document is to provide Astronomy and Astrophysics scientists, currently reachable on SPAN, with basic information and contacts for access to correlative data bases, star catalogs, and other astrophysic facilities accessible over SPAN.

  10. Dominion Radio Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Dominion Radio Astrophysical Observatory began operating in 1959, and joined the NATIONAL RESEARCH COUNCIL in 1970. It became part of the Herzberg Institute of Astrophysics in 1975. The site near Penticton, BC has a 26 m radio telescope, a seven-antenna synthesis telescope on a 600 m baseline and two telescopes dedicated to monitoring the solar radio flux at 10.7 cm. This part of the Institu...

  11. Rotating flexible disk under shaft temperature increment

    NASA Astrophysics Data System (ADS)

    Pei, Yong-Chen; He, Ling; Wang, Ji-Xin

    2010-08-01

    A rotating flexible annular thin disk subjected to the temperature increment of the shaft clamping the disk was modeled in this paper. At disk top and bottom surfaces and free outer edge, the heat convection boundaries were assumed. Disk transverse deflection was considered as a function of both disk radial and circumferential coordinates, and temperature distribution was solved along disk thickness and radial directions simultaneously. As a result, the shaft temperature increment causes thermo-elastic instability of some disk modes. Effects of the shaft temperature increment, ratio of disk convective heat transfer coefficient to thermal conductivity, disk thickness, nodal circle and diameter numbers of disk mode on the natural frequencies, thermo-elastic instability and critical angular speed of the disk were discussed.

  12. Gravitation & Astrophysics, 4th Intl Workshop

    NASA Astrophysics Data System (ADS)

    Liu, Liao; Luo, Jun; Li, Xin-Zhou; Hsu, Jong-Ping

    The Table of Contents for the book is as follows: * Empirical Tests of the Relativistic Gravity: The Past, The Present and The Future * A Three-Dimensional Outer-Magnetospheric Gap Model for Gamma-Ray Pulsars: The Geminga Pulsar * Gravitational Thermodynamics of Space-time Foam in One-Loop Approximation * Absorbing Charged Rotating Metric in de Sitter Space in Advanced Time Coordinates and the Related Energy-Momentum Tensor * Asymptotically Flat Five-Dimensional Axisymmetrical Kaluza-Klein Spacetime Solution * Exact Stiff Dissipative Cosmologies * Precision Gravity Experiments Using Superconducting Accelerometers * Measurement of the Newtonian Gravitational Constant G * Systematic Errors in the Measurement of G with Torsion Balance * Baksan Laser Interferometer Observations: Gravitational and Geophysical Aspects * Scalar Field Dressing of Black Holes in the Bergmann-Nordvedt-Wagoner Theory * What Will Happen When an Accelerating Black Hole Touches its Rindler Horizon * Determining the Hubble Constant with Bidirectional Relativistic Proper Motions * New Brans-Dicke Wormholes * The Theory of Accretion Disks and Recent Progress in Astrophysics * Some Rigorous Results of the Cosmic Strings * Metric of an Infinitesimal Neighborhood Nearby One of the Two Horizon Poles of an Infinite Kerr Black Hole * Energy-Momentum (Quasi-) Localization for Gravitating Systems * Large-Scale Cryogenic Gravitational Wave Telescope * Gravitational Lensing as a Probe of Dark Energy * Interaction of Spinning Black Hole with Accreting Particles near the Horizon * Entropy of the Semiclassical Schwarzschild Black Hole * Degenerate Metrics and Degenerate Phase Boundaries * The Evolution of the Universe Based on Finsler Spacetime * Investigation of a Laser Walk-off Angle Sensor and Its Application to Tilt Measurement in Gravitational Wave Detector * A Generalized Two-Parameteric Hilbert-Palatini Action in Four-Dimensional Gravity * Einstein Gravity-Supergravity Correspondence * Measurement of

  13. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  14. A Model of MBH Accretion Disk Dynamo, Jet and Radio Lobe

    NASA Astrophysics Data System (ADS)

    Colgate, Stirling; Li, Hui; Kronberg, Philipp

    2007-04-01

    Stirling Colgate, Hui Li, Philipp Kronberg, LANL. The minimum total energy of radio lobes occurs at equipartition of magnetic energy and relativistic electron energy. Typical total energies, 10^61 ergs challenge Massive Black Hole formation, 10^62 ergs. This large coherent magnetic flux is substantiated by rotation measures and polarization, and relativistic electrons by Compton x-rays from the cosmic radiation. This coherent flux is produced from a helical flux pinch driven by Keplerian winding, of a quadrupole poloidal magnetic field. The poloidal field is created by a coherent αφ dynamo in the disk produced by plumes driven by star-disk collisions. Toroidal flux inside the disk is advected through the event horizon, but the poloidal flux accumulates inside and outside the disk. Outside the disk it saturates the helicity production at a value well below the dynamical Keplerian stress. The winding of the external poloidal flux produces the helical jet with a small flux core, stabilized by relativistic run-away current carriers, starved by preferential loss. After current carrier loss the flux core becomes pinch unstable producing the solenoidal current configuration approximating radio lobes.

  15. History of Thermally Processed Solids in the Protoplanetary Disk: Reconciling Theoretical Models and Meteoritical Evidence

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Petaev, M.; Scott, E. R. D.; Weidenschilling, S.; Ciesla, F. J.

    2004-01-01

    In this talk we assess theoretical models of the radial, temporal, and thermal evolution of nebula solids, and their ultimate accretion into planetesimals such as we see today, using meteorite evidence as a guide. Each class of chondrites contains a characteristic suite of chondrules and CAIs that may have formed over a period of several Myr during which planetesimals were accreting in the disk. Details of the various models for transient melting of chondrules and igneous CAIs will be left to others. However, high-temperature processes of different kinds evaporation, alteration, etc did affect these constituents and their environment over this time span. Here we describe evolutionary scenarios consistent with a large time gap between CAI and chondrule formation and the presence of distinctive suites of chondrules and CAIs in each chondrite class. Particle-gas dynamical processes transport particles of all relevant sizes (microns to many meters) within the nebula and affect their evolution in a variety of important ways. Turbulent radial diffusion spreads particles radially down their concentration gradients - as one example, it can prevent CAIs from being lost into the sun on several Myr timescales [1]. Vertical diffusion spreads the dense midplane particle layer, determining its volume density, which in turn affects the particle growth rate and even the dominant growth process [2-4]. Turbulent concentration selects aerodynamically sorted particles for orders-of-magnitude density enhancement, and is applicable to porous, fluffy particles of appropriate size as well as to solid chondrules [5]. Inward radial drift under gas drag brings a surprisingly large amount of material to regions where it evaporates; these evaporation fronts cause significant chemical modification of the nebula gas over a wide range of radii [6]. Radial transport by stellar winds can be important for small particles [7].

  16. History of Thermally Processed Solids in the Protoplanetary Disk: Reconciling Theoretical Models and Meteoritical Evidence

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Petaev, M.; Scott, E. R. D.; Weidenschilling, S.; Ciesla, F. J.

    2004-01-01

    In this talk we assess theoretical models of the radial, temporal, and thermal evolution of nebula solids, and their ultimate accretion into planetesimals such as we see today, using meteorite evidence as a guide. Each class of chondrites contains a characteristic suite of chondrules and CAIs that may have formed over a period of several Myr during which planetesimals were accreting in the disk. Details of the various models for transient melting of chondrules and igneous CAIs will be left to others. However, high-temperature processes of different kinds evaporation, alteration, etc did affect these constituents and their environment over this time span. Here we describe evolutionary scenarios consistent with a large time gap between CAI and chondrule formation and the presence of distinctive suites of chondrules and CAIs in each chondrite class. Particle-gas dynamical processes transport particles of all relevant sizes