Science.gov

Sample records for astrophysically triggered searches

  1. A Search for PAHs in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Salama, F.; Cami, J.; Tan, X.; Biennier, L.

    2005-01-01

    We present the results of a dedicated search for the spectral signatures in the visible range of neutral polycyclic aromatic hydrocarbons (PAHs) in astronomical observations representing various astrophysical environments, probing a total column of line of sight material corresponding to Av=50. Laboratory measurements of PAHs in simulated astrophysical conditions are now available (see contribution of Salama et al.) which provide for the first time the exact wavelengths for the spectral features of these molecules, as well as detailed information on the intrinsic line profiles and oscillator strengths. These measurements therefore allow a direct comparison to astronomical observations and an estimate of, or upper limit to, the abundance of individual PAHs in space. As the column densities for individual PAHs in interstellar or circumstellar lines of sight are expected to be very low, such a comparison and analysis requires astronomical observations at very high signal to noise. We present such a data set here for lines of sight representing diffuse clouds and circumstellar environments of carbon stars, and their comparison with gas phase spectra of a representative set of free, cold PAHs.

  2. Global Search of Triggered Tectonic Tremor

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Aiken, C.; Chao, K.; Gonzalez-Huizar, H.; Wang, B.; Ojha, L.; Yang, H.

    2013-05-01

    Deep tectonic tremor has been observed at major plate-boundary faults around the Pacific Rim. While regular or ambient tremor occurs spontaneously or accompanies slow-slip events, tremor could be also triggered by large distant earthquakes and solid earth tides. Because triggered tremor occurs on the same fault patches as ambient tremor and is relatively easy to identify, a systematic global search of triggered tremor could help to identify the physical mechanisms and necessary conditions for tremor generation. Here we conduct a global search of tremor triggered by large teleseismic earthquakes. We mainly focus on major faults with significant strain accumulations where no tremor has been reported before. These includes subduction zones in Central and South America, strike-slip faults around the Caribbean plate, the Queen Charlotte-Fairweather fault system and the Denali fault in the western Canada and Alaska, the Sumatra-Java subduction zone, the Himalaya frontal thrust faults, as well as major strike-slip faults around Tibet. In each region, we first compute the predicted dynamic stresses σd from global earthquakes with magnitude>=5.0 in the past 20 years, and select events with σd > 1 kPa. Next, we download seismic data recorded by stations from local or global seismic networks, and identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. In cases where station distributions are dense enough, we also locate tremor based on the standard envelope cross-correlation techniques. Finally, we calculate the triggering potential for the Love and Rayleigh waves with the local fault orientation and surface-wave incident angles. So far we have found several new places that are capable of generating triggered tremor. We will summarize these observations and discuss their implications on physical mechanisms of tremor and remote triggering.

  3. Statistical issues in astrophysical searches for particle dark matter

    NASA Astrophysics Data System (ADS)

    Conrad, Jan

    2015-03-01

    In this review statistical issues appearing in astrophysical searches for particle dark matter, i.e. indirect detection (dark matter annihilating into standard model particles) or direct detection (dark matter particles scattering in deep underground detectors) are discussed. One particular aspect of these searches is the presence of very large uncertainties in nuisance parameters (astrophysical factors) that are degenerate with parameters of interest (mass and annihilation/decay cross sections for the particles). The likelihood approach has become the most powerful tool, offering at least one well motivated method for incorporation of nuisance parameters and increasing the sensitivity of experiments by allowing a combination of targets superior to the more traditional data stacking. Other statistical challenges appearing in astrophysical searches are to large extent similar to any new physics search, for example at colliders, a prime example being the calculation of trial factors. Frequentist methods prevail for hypothesis testing and interval estimation, Bayesian methods are used for assessment of nuisance parameters and parameter estimation in complex parameter spaces. The basic statistical concepts will be exposed, illustrated with concrete examples from experimental searches and caveats will be pointed out.

  4. Global Search for Deep Triggered Tremor

    NASA Astrophysics Data System (ADS)

    Chao, K.; Peng, Z.; Enescu, B.; Wu, C.; Fry, B.

    2011-12-01

    Deep "non-volcanic" tremor has been observed at many major plate-boundary faults, which provides new information about fault slip behaviors below the seismogenic zone. Most 'regular' or 'ambient' tremor occurs spontaneously or accompanies slow-slip events, while some tremor can be 'triggered' by large distant earthquakes. Recent studies have shown that triggered tremor occurs on the same fault patches as ambient tremor and can be used as a proxy to estimate background tremor activity. However, it is still not clear why tremor can only be observed in certain tectonic regions, and what the necessary conditions are for tremor generation. Here we conduct a global search for tremor triggered by teleseismic earthquakes with Mw ≥ 7.5 between 2001 and 2011 following our previous studies. We focus on regions in southwest Japan and the North Island of New Zealand. In southwest Japan, we found a total of 16 teleseismic earthquakes associated with clear triggered tremor during the passing surface waves. Using standard envelope cross-correlation techniques, we found that the triggered tremor is located close to the regions where ambient tremor is identified previously. Thus far, in New Zealand, we have only identified 4 events associated with triggered tremor in the North Island. Next, we calculate the dynamic stress loading and compare the stress threshold of triggering with the following regions: the Parkfield-Cholame section of the San Andreas Fault in central California, the Calaveras Fault in northern California, the San Jacinto Fault in southern California, the southern and northern Central Range in Taiwan, and the Vancouver Island in Cascadia. The apparent triggering threshold in southwest Japan is around 3-4 KPa, close to the triggering threshold at Parkfield (2-3 KPa) and southern Central Range in Taiwan (7-8 KPa). Our next steps are to explore the triggering potentials at these regions with amplitude, frequency, incident angle and types of incoming waves, and

  5. A Search for Astrophysical Meter Wavelength Radio Transients

    NASA Astrophysics Data System (ADS)

    Cutchin, Sean; Simonetti, John; Kavic, Michael

    2011-10-01

    Astrophysical phenomena such as exploding primordial black holes (PBHs), gamma-ray bursts (GRBs), compact object mergers, and supernovae are expected to produce a single pulse of electromagnetic radiation detectable in the low-frequency end of the radio spectrum. Detection of any of these pulses would be significant for the study of the objects themselves, their host environments, and the interstellar/intergalactic medium. Furthermore, a positive detection of an exploding PBH could be a signature of an extra spatial dimension, which would drastically alter our perception of spacetime. However, even upper limits on the existence of PBHs, from searches, would be important to discussions of cosmology. We describe a method to carry out an agnostic single dispersed pulse search, and apply it to data collected with ETA. Applying the single pulse search procedure to 30 hours worth ETA data yielded no compelling detections with S/N >=6. However, with 8 hours of interference free data, we find an observational upper limit to the rate of exploding PBHs r 8 x10-8 ,pc-3,y-1 for a PBH with a fireball Lorentz factor γf= 10^4.3.

  6. Taming astrophysical bias in direct dark matter searches

    SciTech Connect

    Pato, Miguel; Strigari, Louis E.; Trotta, Roberto; Bertone, Gianfranco E-mail: strigari@stanford.edu E-mail: gf.bertone@gmail.com

    2013-02-01

    We explore systematic biases in the identification of dark matter in future direct detection experiments and compare the reconstructed dark matter properties when assuming a self-consistent dark matter distribution function and the standard Maxwellian velocity distribution. We find that the systematic bias on the dark matter mass and cross-section determination arising from wrong assumptions for its distribution function is of order ∼ 1σ. A much larger systematic bias can arise if wrong assumptions are made on the underlying Milky Way mass model. However, in both cases the bias is substantially mitigated by marginalizing over galactic model parameters. We additionally show that the velocity distribution can be reconstructed in an unbiased manner for typical dark matter parameters. Our results highlight both the robustness of the dark matter mass and cross-section determination using the standard Maxwellian velocity distribution and the importance of accounting for astrophysical uncertainties in a statistically consistent fashion.

  7. Global search of triggered non-volcanic tremor

    NASA Astrophysics Data System (ADS)

    Chao, Tzu-Kai Kevin

    chapter focuses on a systematic comparison of triggered tremor around the Calaveras Fault (CF) in northern California (NC), the Parkfield-Cholame section of the San Andreas Fault (SAF) in central California (CC), and the San Jacinto Fault (SJF) in southern California (SC). Out of 42 large (Mw ≥7.5) earthquakes between 2001 and 2010, only the 2002 Mw 7.9 Denali fault earthquake triggered clear tremor in NC and SC. In comparison, abundant triggered and ambient tremor has been observed in CC. Further analysis reveal that the lack of triggered tremor observations in SC and NC is not simply a consequence of their different background noise levels as compared to CC, but rather reflects different background tremor rates in these regions. In the final chapter, I systematically search for triggered tremor following the 2011 Mw9.0 Tohoku-Oki earthquake in the regions where ambient or triggered tremor has been found before. The main purpose is to check whether triggered tremor is observed in regions when certain conditions (e.g., surface wave amplitudes) are met. Triggered tremor is observed in southwest Japan, Taiwan, the Aleutian Arc, south-central Alaska, northern Vancouver Island, the Parkfield-Cholame section of the SAF in CC and the SJF in SC, and the North Island of New Zealand. Such a widespread triggering of tremor is not too surprising because of the large amplitude surface waves (minimum peak value of ˜0.1 cm/s) and the associated dynamic stresses (at least ˜7-8 kPa), which is one of the most important factors in controlling the triggering threshold. The triggered tremor in different region is located close to or nearby the ambient tremor active area. In addition, the amplitudes of triggered tremor have positive correlations with the amplitudes of teleseismic surface waves among many regions. Moreover, both Love and Rayleigh waves participate in triggering tremor in different regions, and their triggering potential is somewhat controlled by the incident angles. In

  8. Searches for Point-like Sources of Astrophysical Neutrinos with the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Feintzeig, Jacob

    Cosmic rays are accelerated to high energies in astrophysical objects, and create neutrinos when interacting with matter or photons. Observing a point source of high-energy astro-physical neutrinos would therefore be a smoking gun signature of cosmic ray acceleration. While evidence for a diffuse flux of astrophysical neutrinos was recently found, the origin of this flux is not yet known. We present three analyses searching for neutrino point sources with the IceCube Neutrino Observatory, a cubic kilometer Cherenkov detector located at the geographic South Pole. The analyses target astrophysical sources emitting neutrinos of all flavors, and cover energies from TeV to EeV. The first analysis searches point source emission of muon neutrinos using throughgoing muon tracks. The second analysis searches for spatial clustering among high-energy astrophysical neutrino candidate events, and is sensitive to neutrinos of all three flavors. The third analysis selects starting track events, muon neutrinos with interactions vertices inside the detector, to lower the energy threshold in the southern hemisphere. In each analysis, an un-binned likelihood method tests for spatial clustering of events anywhere in the sky as well as for neutrinos correlated with known gamma-ray sources. All results are consistent with the background-only hypothesis, and the resulting upper limits on E-2 neutrino emission are the most stringent throughout the entire sky. In the northern hemisphere, the upper limits are beginning to constrain emission models. In the southern hemisphere, the upper limits in the 100 TeV energy range are an order of magnitude lower than previous IceCube results, but are not yet probing predicted flux levels. By comparing the point source limits to the observed diffuse astrophysical neutrino flux, we also constrain the minimum number of neutrino sources and investigate the properties of potential source populations contributing to the diffuse flux. Additionally, an a

  9. The Search for Transient Astrophysical Neutrino Emission with IceCube-DeepCore

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Smith, M. W. E.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-01-01

    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5° < δ < 90°) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae.

  10. Search for astrophysical tau neutrinos in three years of IceCube data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Smith, M. W. E.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-01-01

    The IceCube Neutrino Observatory has observed a diffuse flux of TeV-PeV astrophysical neutrinos at 5.7 σ significance from an all-flavor search. The direct detection of tau neutrinos in this flux has yet to occur. Tau neutrinos become distinguishable from other flavors in IceCube at energies above a few hundred TeV, when the cascade from the tau neutrino charged current interaction becomes resolvable from the cascade from the tau lepton decay. This paper presents results from the first dedicated search for tau neutrinos with energies between 214 TeV and 72 PeV in the full IceCube detector. The analysis searches for IceCube optical sensors that observe two separate pulses in a single event—one from the tau neutrino interaction and a second from the tau decay. No candidate events were observed in three years of IceCube data. For the first time, a differential upper limit on astrophysical tau neutrinos is derived around the PeV energy region, which is nearly 3 orders of magnitude lower in energy than previous limits from dedicated tau neutrino searches.

  11. Search for Coincidences in Time and Arrival Direction of Auger Data with Astrophysical Transients

    SciTech Connect

    Anchordoqui, Luis; Collaboration, for the Pierre Auger

    2007-06-01

    The data collected by the Pierre Auger Observatory are analyzed to search for coincidences between the arrival directions of high-energy cosmic rays and the positions in the sky of astrophysical transients. Special attention is directed towards gamma ray observations recorded by NASA's Swift mission, which have an angular resolution similar to that of the Auger surface detectors. In particular, we check our data for evidence of a signal associated with the giant flare that came from the soft gamma repeater 1806-20 on December 27, 2004.

  12. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Kelley, J. L.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Macías, O.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; IceCube Collaboration

    2014-03-01

    A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle distribution differs for astrophysical and atmospheric signals. A global fit of the reconstructed energies and directions of observed events is performed, including possible neutrino flux contributions for an astrophysical signal and atmospheric backgrounds as well as systematic uncertainties of the experiment and theoretical predictions. The best fit yields an astrophysical signal flux for νμ+ν¯μ of E2.Φ(E)=0.25×10-8 GeV cm-2 s-1 sr-1, and a zero prompt component. Although the sensitivity of this analysis for astrophysical neutrinos surpasses the Waxman and Bahcall upper bound, the experimental limit at 90% confidence level is a factor of 1.5 above at a flux of E2.Φ(E)=1.44×10-8 GeV cm-2 s-1 sr-1.

  13. A search for non-triggered events in the BATSE data base

    SciTech Connect

    Kommers, J. M.; Lewin, W. H. G.; Kouveliotou, C.; Pendleton, G. N.; Fishman, G. J.; Meegan, C. A.

    1998-05-16

    The archival data from BATSE permit a search for transients that did not activate the onboard burst trigger. Examples of such non-triggered events include faint gamma-ray bursts (GRBs), emission from soft gamma-ray repeaters (SGRs), and bursts and flares from X-ray binaries. A GRB may fail to trigger onboard because it is too faint, because it occurs while the onboard trigger is disabled, or because it biases the onboard background estimation. We describe a search of the BATSE archival data that is sensitive to GRBs with peak fluxes fainter by a factor of {approx}2 than those detected with the onboard burst trigger (on the 1.024 s time scale)

  14. A search for a diffuse flux of astrophysical muon neutrinos with the IceCube Neutrino Observatory in the 40-string configuration

    NASA Astrophysics Data System (ADS)

    Grullon, Sean

    Neutrinos have long been important in particle physics and are now practical tools for astronomy. Neutrino Astrophysics is expected to help answer longstanding astrophysical problems such as the origin of cosmic rays and the nature of cosmic accelerators. The IceCube Neutrino Observatory is a 1 km3 detector currently under construction at the South Pole and will help answer some of these fundamental questions. Searching for high energy neutrinos from unresolved astrophysical sources is one of the main analysis techniques used in the search for astrophysical neutrinos with IceCube. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could contribute to form a detectable signal above the atmospheric neutrino background. Since astrophysical neutrinos are expected to have a harder energy spectrum than atmospheric neutrinos, a reliable method of estimating the energy of the neutrino-induced lepton is crucial. This analysis uses data from the IceCube detector collected in its half completed configuration between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos across the entire northern sky.

  15. Searching for Dark Matter using the NOvA upward-going muon trigger

    NASA Astrophysics Data System (ADS)

    Principato, Cristiana; Group, Robert; Norman, Andrew; Aliaga, Leonidas; Ding, Pengfei; Tsaris, Aristeidis; Oksuzian, Yuri; NOvA Collaboration

    2017-01-01

    The NOvA collaboration has constructed a 14,000 ton, fine-grained, low-Z, total absorption tracking calorimeter at an off-axis angle to an upgraded NuMI neutrino beam. This detector, with its excellent granularity and energy resolution and relatively low-energy neutrino thresholds, was designed to observe electron neutrino appearance in a muon neutrino beam, but it also has unique capabilities suitable for more exotic efforts. In fact, if sufficient cosmic ray background rejection can be demonstrated, NO νA will be capable of a competitive indirect dark matter search for low-mass Weakly-Interacting Massive Particles (WIMPs). The cosmic ray muon rate at the NO νA far detector is approximately 100 kHz and provides the primary challenge for triggering and optimizing such a search analysis. We present the first dark matter search results using the full dataset collected with the upward-going muon trigger.

  16. Astrophysical interpretation of small-scale neutrino angular correlation searches with IceCube

    NASA Astrophysics Data System (ADS)

    Leuermann, Martin; Schimp, Michael; Wiebusch, Christopher H.

    2016-10-01

    The IceCube Neutrino Observatory has discovered a diffuse all-flavor flux of high-energy astrophysical neutrinos. However, the corresponding astrophysical sources have not yet been identified. Neither significant point sources nor significant angular correlations of event directions have been observed by IceCube or other instruments to date. We present a new method to interpret the non-observation of angular correlations in terms of exclusions on the strength and number of point-like neutrino sources in generic astrophysical scenarios. Additionally, we constrain the presence of these sources taking into account the measurement of the diffuse high-energy neutrino flux by IceCube. We apply the method to two types of astrophysically motivated source count distributions: The first type is obtained by considering the cosmological evolution of the co-moving density of active galaxies, while the second type is directly derived from the gamma ray source count distribution observed by Fermi-LAT. As a result, we constrain the possible parameter space for both types of source count distributions.

  17. The Search for Sources of High Energy Astrophysical Neutrinos with VERITAS

    NASA Astrophysics Data System (ADS)

    Ghadimi, Ava; Santander, Marcos; VERITAS Collaboration

    2017-01-01

    The IceCube collaboration has reported the detection of an all-sky astrophysical flux of high-energy neutrinos. So far, no neutrino point sources have been detected. The VERITAS (Very Energetic Radiation Imaging Telescope Array System) gamma-ray observatory has observed the sky in the direction of muon neutrino events of poten- tial astrophysical origin looking for gamma-ray emission. Hadronic gamma-rays are expected to be produced in the same cosmic-ray interactions that lead to the emission of the high-energy neutrinos detected by IceCube. We present results from follow-up VERITAS observations of 28 muon neutrino events detected by IceCube with energies above 100 TeV. No gamma-ray excess was detected at the locations of the neutrino events so gamma-ray flux upper limits were calculated. We will discuss how these results correlate to the all-sky neutrino flux.

  18. Results from the Rothney Astrophysical Observatory Variable Star Search Program: Background, Procedure, and Results from RAO Field 1

    NASA Astrophysics Data System (ADS)

    Williams, Michael D.; Milone, E. F.

    2013-12-01

    We describe a variable star search program and present the fully reduced results of a search in a 19 square degree (4.4 × 4.4) field centered on J2000 RA = 22:03:24, DEC= +18:54:32. The search was carried out with the Baker-Nunn Patrol Camera located at the Rothney Astrophysical Observatory in the foothills of the Canadian Rockies. A total of 26,271 stars were detected in the field, over a range of about 11-15 (instrumental) magnitudes. Our image processing made use of the IRAF version of the DAOPHOT aperture photometry routine and we used the ANOVA method to search for periodic variations in the light curves. We formally detected periodic variability in 35 stars, that we tentatively classify according to light curve characteristics: 6 EA (Algol), 5 EB (?? Lyrae), 19 EW (W UMa), and 5 RR (RR Lyrae) stars. Eleven of the detected variable stars have been reported previously in the literature. The eclipsing binary light curves have been analyzed with a package of light curve modeling programs and 25 have yielded converged solutions. Ten of these are of systems that are detached, 3 semi-detached, 10 overcontact, and 2 are of systems that appear to be in marginal contact. We discuss these results as well as the advantages and disadvantages of the instrument and of the program.

  19. The NASA Astrophysics Data System: The search engine and its user interface

    NASA Astrophysics Data System (ADS)

    Eichhorn, Guenther; Kurtz, Michael J.; Accomazzi, Alberto; Grant, Carolyn S.; Murray, Stephen S.

    2000-04-01

    The ADS Abstract and Article Services provide access to the astronomical literature through the World Wide Web (WWW). The forms based user interface provides access to sophisticated searching capabilities that allow our users to find references in the fields of Astronomy, Physics/Geophysics, and astronomical Instrumentation and Engineering. The returned information includes links to other on-line information sources, creating an extensive astronomical digital library. Other interfaces to the ADS databases provide direct access to the ADS data to allow developers of other data systems to integrate our data into their system. The search engine is a custom-built software system that is specifically tailored to search astronomical references. It includes an extensive synonym list that contains discipline specific knowledge about search term equivalences. Search request logs show the usage pattern of the various search system capabilities. Access logs show the world-wide distribution of ADS users. The ADS can be accessed at: http://adswww.harvard.edu

  20. Rotational frequencies of transition metal hydrides for astrophysical searches in the far-infrared

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Beaton, Stuart P.; Evenson, Kenneth M.

    1993-01-01

    Accurate frequencies for the lowest rotational transitions of five transition metal hydrides (CrH, FeH, CoH, NiH, and CuH) in their ground electronic states are reported to help the identification of these species in astrophysical sources from their far-infrared spectra. Accurate frequencies are determined in two ways: for CuH, by calculation from rotational constants determined from higher J transitions with an accuracy of 190 kHz; for the other species, by extrapolation to zero magnetic field from laser magnetic resonance spectra with an accuracy of 0.7 MHz.

  1. Search for Sugars and Related Compounds in Residues Produced from the UV Irradiation of Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Nuevo, M.; Materese, C. K.; Cooper, G. W.

    2015-01-01

    A large variety of organics of biological and prebiotic interests have been detected in meteorites, including one sugar and several sugar acids and sugar alcohols [1]. The presence of these compounds in meteorites, along with amino acids, amphiphiles, and nucleobases [2-4], indicates that molecules essential to life can be formed abiotically under astrophysical conditions. This hypothesis is supported by extensive laboratory studies involving the formation of complex organic molecules from the ultraviolet (UV) irradiation of astrophysical ice analogs (H2O, CO, CO2, CH3OH, CH4, NH3, etc.). These studies show that the organic residues recovered at room temperature contain many of the same compounds as those found in meteorites[3,58]. However, to the best of our knowledge, no systematic search for the presence of sugars and sugar derivatives in such laboratory residues have been reported to date. Only a limited number of small (greater than 4 C atoms) sugar-related compounds such as glycerol and glyceric acid [9], and more recently small (2-4 C atoms) aldehydes [10] have been detected in residues.

  2. Premerger Localization of Gravitational Wave Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart

    NASA Astrophysics Data System (ADS)

    Kocsis, Bence; Haiman, Zoltán; Menou, Kristen

    2008-09-01

    Electromagnetic (EM) counterparts to SMBH binary mergers observed by LISA can be localized to within the field of view of astronomical instruments (~10 deg2) hours to weeks prior to coalescence. The temporal coincidence of any prompt EM counterpart with a gravitationally timed merger may offer the best chance of identifying a unique host galaxy. We discuss the challenges posed by searches for such prompt EM counterparts and propose novel observational strategies to address them. In particular, we discuss the size and shape evolution of the LISA localization error ellipses on the sky and quantify the corresponding requirements for dedicated EM surveys of the area prior to coalescence. A triggered EM counterpart search campaign will require monitoring a several square degree area. It could aim for variability at the 24-27 mag level in optical bands, for example, which corresponds to 1%-10% of the Eddington luminosity of the prime LISA sources of ~106-107 M⊙ BHs at z = 1-2, on timescales of minutes to hours, the orbital timescale of the binary in the last 2-4 weeks of coalescence. A cross-correlation of the period of any variable EM signal with the quasi-periodic gravitational waveform over 10-1000 cycles may aid the detection. Alternatively, EM searches can detect a transient signal accompanying the coalescence. The triggered searches will be ambitious, but if they successfully identify a unique prompt EM counterpart, they will enable new fundamental tests of gravitational physics. We highlight the measurement of differences in the arrival times of photons and gravitons from the same cosmological source as a valuable independent test of the massive character of gravity and of possible violations of Lorentz invariance in the gravity sector.

  3. Searches for diffuse astrophysical muon-neutrino fluxes with IceCube

    NASA Astrophysics Data System (ADS)

    Hill, Gary C.; Hoshina, Kotoyo; Boersma, David; Ice Cube Collaboration

    2008-11-01

    The IceCube detector, located at the Amundsen-Scott South Pole station, is the largest neutrino detector ever constructed. It currently consists of 40 of the planned 80 strings -each instrumented with 60 optical modules between 1500 and 2500 metres depth in the clear Antarctic ice. One of the key searches is for a diffuse flux of high energy extraterrestrial neutrinos, in excess of that observed from cosmic-ray induced atmospheric neutrinos. To date, the best constraints on a diffuse flux come from IceCube's predecessor, AMANDA (Antarctic Muon And Neutrino Detector Array). The current focus is on analysis of the 2007 IceCube 22 string data, which will exceed the sensitivity of the integrated AMANDA exposure. Here we review the methodology and discuss the progress and status of the 22 string analysis.

  4. Astrophysically motivated time frequency clustering for burst gravitational wave search: application to TAMA300 data

    NASA Astrophysics Data System (ADS)

    Honda, Ryota; Yamagishi, Shougo; Kanda, Nobuyuki; TAMA Collaboration

    2008-09-01

    We have developed a method of 'time frequency (TF) clustering' to find burst gravitational waves for TAMA data analysis. The TF clustering method on the sonogram (spectrogram) shows some characteristics of short-duration signals. Burst gravitational waveforms from stellar-core collapse of supernovae that are predicted by Dimmelmeier et al [1, 2] (DFM waveforms) have short durations on the order of 10 ms and have a large spike and ringing tail in time series. On the other hand, typical detector instrumental noise transients of the same timescale have different waveforms as like as simpler spikes. Since the numerically predicted waveforms may not be reliable given conditions and model dependency, using one search algorithm is not robust to differentiate gravitational waves from instrumental noises. Our proposal for performing the separation is to compare many parameters of the cluster that represent the signal waveform. This approach will be useful for cases when the difference between gravitational waves and noise is not clear for one parameter. We employ TF clustering to represent the waveform characteristics. We calculated the parameters of each respective cluster, such as the magnitude and the Nth momentum around the center of a power distribution of the cluster. Using these parameters, we can efficiently identify some predicted gravitational waveforms and can exclude the TAMA detector's typical unstable spike-like noises due to the instruments. Our selection criteria for TF cluster shape parameters achieved an average efficiency of roughly 50% for injected DFM waveforms of h_rss\\sim 2 \\times 10^{-20}\\; {Hz^{-1/2}} (source distance of 350 pc) with false alarm rate of ~1 Hz. In addition, the false alarm rate for larger noises, such as SNR > 100, is improved 10-fold by applying the selection criteria for TF cluster parameters.

  5. Future Experiments in Astrophysics

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.

    2002-01-01

    The measurement methodologies of astrophysics experiments reflect the enormous variation of the astrophysical radiation itself. The diverse nature of the astrophysical radiation, e.g. cosmic rays, electromagnetic radiation, and neutrinos, is further complicated by the enormous span in energy, from the 1.95 Kappa relic neutrino background to cosmic rays with energy greater than 10(exp 20)eV. The measurement of gravity waves and search for dark matter constituents are also of astrophysical interest. Thus, the experimental techniques employed to determine the energy of the incident particles are strongly dependent upon the specific particles and energy range to be measured. This paper summarizes some of the calorimetric methodologies and measurements planned by future astrophysics experiments. A focus will be placed on the measurement of higher energy astrophysical radiation. Specifically, future cosmic ray, gamma ray, and neutrino experiments will be discussed.

  6. Searching for Carrington-like events and their signatures and triggers

    NASA Astrophysics Data System (ADS)

    Saiz, Elena; Guerrero, Antonio; Cid, Consuelo; Palacios, Judith; Cerrato, Yolanda

    2016-01-01

    The Carrington storm in 1859 is considered to be the major geomagnetic disturbance related to solar activity. In a recent paper, Cid et al. (2015) discovered a geomagnetic disturbance case with a profile extraordinarily similar to the disturbance of the Carrington event at Colaba, but at a mid-latitude observatory, leading to a reinterpretation of the 1859 event. Based on those results, this paper performs a deep search for other "Carrington-like" events and analyses interplanetary observations leading to the ground disturbances which emerged from the systematic analysis. The results of this study based on two Carrington-like events (1) reinforce the awareness about the possibility of missing hazardous space weather events as the large H-spike recorded at Colaba by using global geomagnetic indices, (2) argue against the role of the ring current as the major current involved in Carrington-like events, leaving field-aligned currents (FACs) as the main current involved and (3) propose abrupt southward reversals of IMF along with high solar wind pressure as the interplanetary trigger of a Carrington-like event.

  7. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  8. The Astrophysics Data System

    NASA Astrophysics Data System (ADS)

    Eichhorn, Guenther; Accomazzi, Alberto; Kurtz, Michael J.; Grant, Carolyn S.

    The NASA Astrophysics Data System has been very successful in providing the researcher and librarian the capability to effectively search the astronomical and space science literature from their desktop. It currently provides access to four searchable databases of scientific bibliographic references and a large archive of full-text documents which includes all the major astronomical journals.

  9. Vehicle-triggered video compression/decompression for fast and efficient searching in large video databases

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng

    2013-03-01

    Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.

  10. The Fermilab Particle Astrophysics Center

    SciTech Connect

    Not Available

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  11. Software Trigger Algorithms to Search for Magnetic Monopoles with the NO$\

    SciTech Connect

    Wang, Z.; Dukes, E.; Ehrlich, R.; Frank, M.; Group, C.; Norman, A.

    2014-01-01

    The NOvA far detector, due to its surface proximity, large size, good timing resolution, large energy dynamic range, and continuous readout, is sensitive to the detection of magnetic monopoles over a large range of velocities and masses. In order to record candidate magnetic monopole events with high efficiency we have designed a software-based trigger to make decisions based on the data recorded by the detector. The decisions must be fast, have high efficiency, and a large rejection factor for the over 100,000 cosmic rays that course through the detector every second. In this paper we briefly describe the simulation of magnetic monopoles, including the detector response, and then discuss the algorithms applied to identify magnetic monopole candidates. We also present the results of trigger efficiency and purity tests using simulated samples of magnetic monopoles with overlaid cosmic backgrounds and electronic noise.

  12. LIGO Triggered Search for Coincidence with High Energy Photon Survey Missions

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2009-01-01

    LIGO is about to begin a new, higher sensitivity science run, where gravitational detection is plausible. A possible candidate for detection is a compact binary merger, which would also be likely to emit a high energy electromagnetic signal. Coincident observation of the gw signal from a compact merger with an x-ray or gamma-ray signal would add considerable weight to the claim for gw detection. In this talk I will consider the possibility of using LIGO triggers with time and sky position to perform a coincident analysis of EM signals from the RXTE, SWIFT, and FERMI missions.

  13. All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2017-02-01

    Since the recent detection of an astrophysical flux of high-energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resolution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over 7 yr from 2008 to 2015. The discovery potential of the analysis in the northern sky is now significantly below {E}ν 2dφ /{{dE}}ν = 10‑12 TeV cm‑2 s‑1, on average 38% lower than the sensitivity of the previously published analysis of 4 yr exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.

  14. Terrestrial Gamma Ray Flash Search in the Triggered Gamma Ray Burst Data of Fermi

    NASA Astrophysics Data System (ADS)

    Hughes, M.; Connaughton, V.

    2012-12-01

    Terrestrial Gamma Ray flashes (TGFs) occur near lightning-producing storms. The Fermi Gamma-Ray Burst monitor (GBM) has a catalog of over 200 TGFs which were found using an on-board algorithm. However, the limitations of the on-board algorithm mean that weaker events are undetected, and in normal data-taking mode (0.256 s resolution) cannot be found in an offline analysis. To get an idea of how many TGFs GBM could be expected to detect in an offline analysis of its highest temporal resolution data, we inspected the high-resolution data available around the times of non-TGF triggers gathered over the four years of the Fermi mission. The triggered data were from nearly 1000 gamma ray bursts observed by GBM. After applying statistical tests to the candidates we uncovered, and rejecting likely cosmic-ray events, 28 TGF candidates remained. Comparing the exposures of the high-resolution data with the time taken to record 28 TGFs on-board, we estimate a 36-fold increase in detected TGFs with the availability of high-resolution data throughout the Fermi orbit.

  15. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  16. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-12-31

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  17. Self-triggered Search for GRB Emission at ~ 100 GeV with HAWC

    NASA Astrophysics Data System (ADS)

    Wood, Joshua; HAWC Collaboration

    2015-04-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a ground-based, TeV gamma-ray observatory currently under construction in the state of Puebla, Mexico at an altitude of 4100m. Its 22,000 m2 instrumented area, wide field of view (~ 2 sr), and > 95% uptime make it an ideal instrument for discovering GRB emission at ~ 100 GeV energies. Such a discovery would provide key information about the origins of prompt GRB emission as well as constraints on EBL models and Lorentz invariance. We will present prospects for discovering GRB emission at ~ 100 GeV energies using a simple, blind search algorithm on HAWC data.

  18. Using Boosting Decision Trees in Gravitational Wave Searches triggered by Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Zuraw, Sarah; LIGO Collaboration

    2015-04-01

    The search for gravitational wave bursts requires the ability to distinguish weak signals from background detector noise. Gravitational wave bursts are characterized by their transient nature, making them particularly difficult to detect as they are similar to non-Gaussian noise fluctuations in the detector. The Boosted Decision Tree method is a powerful machine learning algorithm which uses Multivariate Analysis techniques to explore high-dimensional data sets in order to distinguish between gravitational wave signal and background detector noise. It does so by training with known noise events and simulated gravitational wave events. The method is tested using waveform models and compared with the performance of the standard gravitational wave burst search pipeline for Gamma-ray Bursts. It is shown that the method is able to effectively distinguish between signal and background events under a variety of conditions and over multiple Gamma-ray Burst events. This example demonstrates the usefulness and robustness of the Boosted Decision Tree and Multivariate Analysis techniques as a detection method for gravitational wave bursts. LIGO, UMass, PREP, NEGAP.

  19. Astrophysics today

    SciTech Connect

    Cameron, A.G.W.

    1984-01-01

    Examining recent history, current trends, and future possibilities, the author reports the frontiers of research on the solar system, stars, galactic physics, and cosmological physics. The book discusses the great discoveries in astronomy and astrophysics and examines the circumstances in which they occurred. It discusses the physics of white dwarfs, the inflationary universe, the extinction of dinosaurs, black hole, cosmological models, and much more.

  20. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  1. Cognitive Astrophysics

    NASA Astrophysics Data System (ADS)

    Madore, Barry F.

    2012-09-01

    Cognitive Astrophysics works at the cusp between Cognitive Science and Astrophysics, drawing upon lessons learned in the Philosophy of Science, Linguistics and Artificial Intelligence. We will introduce and illustrate the concept of ``Downward Causation,'' common in philosophical discussions, but either unknown to or disdained by most physicists. A clear example operating on cosmological scales involving the origin of large-scale structure will be given. We will also make the case that on scales exceeding most laboratory experiments, self-gravitating matter can be considered to be in a ``fifth state'', characterized primarily by its negative specific heat, as first recognized by Lynden-Bell and Lynden-Bell (1977, MNRAS, 181, 405). Such systems increase their temperature as they lose energy. Numerous examples will be given and discussed.

  2. Astrophysical symmetries

    PubMed Central

    Trimble, Virginia

    1996-01-01

    Astrophysical objects, ranging from meteorites to the entire universe, can be classified into about a dozen characteristic morphologies, at least as seen by a blurry eye. Some patterns exist over an enormously wide range of distance scales, apparently as a result of similar underlying physics. Bipolar ejection from protostars, binary systems, and active galaxies is perhaps the clearest example. The oral presentation included about 130 astronomical images which cannot be reproduced here. PMID:11607715

  3. Implications of an astrophysical interpretation of PAMELA and Fermi-LAT data for future searches of a positron signal from dark matter annihilations

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Young; Yaguna, Carlos E.

    2010-01-01

    The recent data from PAMELA and Fermi-LAT can be interpreted as evidence of new astrophysical sources of high energy positrons. In that case, such astrophysical positrons constitute an additional background against the positrons from dark matter annihilation. In this paper, we study the effect of that background on the prospects for the detection of a positron dark matter signal in future experiments. In particular, we determine the new regions in the (mass, ⟨σv⟩) plane that are detectable by the AMS-02 experiment for several dark matter scenarios and different propagation models. We find that, due to the increased background, these regions feature annihilation rates that are up to a factor of 3 larger than those obtained for the conventional background. That is, an astrophysical interpretation of the present data by PAMELA and Fermi-LAT implies that the detection of positrons from dark matter annihilation is slightly more challenging than previously believed.

  4. Particle astrophysics

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    1991-01-01

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  5. Particle astrophysics

    NASA Astrophysics Data System (ADS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  6. A search in strainmeter data for slow slip associated with triggered and ambient tremor near Parkfield, California

    USGS Publications Warehouse

    Smith, E.F.; Gomberg, J.

    2009-01-01

    We test the hypothesis that, as in subduction zones, slow slip facilitates triggered and ambient tremor in the transform boundary setting of California. Our study builds on the study of Peng et al. (2009) of triggered and ambient tremor near Parkfield, California during time intervals surrounding 31, potentially triggering, M ≥ 7.5 teleseismic earthquakes; waves from 10 of these triggered tremor and 29 occurred in periods of ambient tremor activity. We look for transient slow slip during 3-month windows that include 11 of these triggering and nontriggering teleseisms, using continuous strain data recorded on two borehole Gladwin tensor strainmeters (GTSM) located within the distribution of tremor epicenters. We model the GTSM data assuming only tidal and “drift” signals are present and find no detectable slow slip, either ongoing when the teleseismic waves passed or triggered by them. We infer a conservative detection threshold of about 5 nanostrain for abrupt changes and about twice this for slowly evolving signals. This could be lowered slightly by adding analyses of other data types, modeled slow slip signals, and GTSM data calibration. Detection of slow slip also depends on the slipping fault's location and size, which we describe in terms of equivalent earthquake moment magnitude, M. In the best case of the GTSM above a very shallow slipping fault, detectable slip events must exceed M~2, and if the slow slip is beneath the seismogenic zone (below ~15 km depth), even M~5 events are likely to remain hidden.

  7. Molecular Astrophysics

    NASA Astrophysics Data System (ADS)

    Hartquist, T. W.

    2005-07-01

    Part I. Molecular Clouds and the Distribution of Molecules in the Milky Way and Other Galaxies: 1. Molecular clouds in the Milky Way P. Friberg and A. Hjalmarson; 2. Molecules in galaxies L. Blitz; Part II. Diffuse Molecular Clouds: 3. Diffuse cloud chemistry E. F. Van Dishoeck; 4. Observations of velocity and density structure in diffuse clouds W. D. Langer; 5. Shock chemistry in diffuse clouds T. W. Hartquist, D. R. Flower and G. Pineau des Forets; Part III. Quiescent Dense Clouds: 6. Chemical modelling of quiescent dense interstellar clouds T. J. Millar; 7. Interstellar grain chemistry V. Buch; 8. Large molecules and small grains in astrophysics S. H. Lepp; Part IV. Studies of Molecular Processes: 9. Molecular photoabsorption processes K. P. Kirby; 10. Interstellar ion chemistry: laboratory studies D. Smith, N. G. Adams and E. E. Ferguson; 11. Theoretical considerations on some collisional processes D. R. Bates; 12. Collisional excitation processes E. Roueff; 13. Neutral reactions at Low and High Temperatures M. M. Graff; Part V. Atomic Species in Dense Clouds: 14. Observations of atomic species in dense clouds G. J. Melnick; 15. Ultraviolet radiation in molecular clouds W. G. Roberge; 16. Cosmic ray induced photodissociation and photoionization of interstellar molecules R. Gredel; 17. Chemistry in the molecular cloud Barnard 5 S. B. Charnley and D. A. Williams; 18. Molecular cloud structure, motions, and evolution P. C. Myers; Part VI. H in Regions of Massive Star Formation: 19. Infrared observations of line emission from molecular hydrogen T. R. Geballe; 20. Shocks in dense molecular clouds D. F. Chernoff and C. F. McKee; 21. Dissociative shocks D. A. Neufeld; 22. Infrared molecular hydrogen emission from interstellar photodissociation regions A. Sternberg; Part VII. Molecules Near Stars and in Stellar Ejecta: 23. Masers J. M. Moran; 24. Chemistry in the circumstellar envelopes around mass-losing red giants M. Jura; 25. Atoms and molecules in supernova 1987a R

  8. Theoretical Particle Astrophysics

    SciTech Connect

    Kamionkowski, Marc

    2013-08-07

    Abstract: Theoretical Particle Astrophysics The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.

  9. A targeted LIGO-Virgo search for gravitational waves associated with gamma-ray bursts using low-threshold swift GRB triggers

    NASA Astrophysics Data System (ADS)

    Harstad, Emelie D.

    Gamma-ray bursts (GRBs) are short, intense ashes of 0.1-1 MeV electromagnetic radiation that are routinely observed by Earth orbiting satellites. The sources of GRBs are known to be extragalactic and located at cosmological distances. Due to the extremely high isotropic equivalent energies of GRBs, which are on the order of Eiso˜1054 erg, the gamma-ray emission is believed to be collimated, making them observable only when they are directed towards Earth. The favored progenitor models of GRBs are also believed to emit gravitational waves that would be observable by the current generation of ground-based interferometric gravitational wave detectors. The LIGO (Laser Interferometer Gravitational-Wave Observatory) and Virgo instruments operated near design sensitivity and collected more than a year of triple coincident data during the S5/VSR1 science run, which spanned the two year interval between November 2005 and October 2007. During this time, GRB detections were being made by the NASA/Goddard Swift Burst Alert Telescope at a rate of approximately 0.3 per day, producing a collection of triggers that has since been used in a coincident GRB-GW burst search with data from the LIGO-Virgo interferometer network. This dissertation describes the search for gravitational waves using the times and locations of 123 below-threshold potential GRB triggers from Swift over the same time period. Although most of the below-threshold triggers are likely false alarms, there is reason to believe that some are the result of actual faintly-observed GRB events. Recent GRB observations indicate that the local rate of low-luminosity GRBs is much higher than previously believed. This result, combined with the possibility of discovering a rare nearby GRB event accompanied by gravitational waves, is what motivates this search. The analysis results indicate no evidence for gravitational waves associated with any of the below-threshold triggers. A median distance lower limit of ˜16 Mpc was

  10. Nuclear and Particle Astrophysics at CIPANP 2003

    NASA Astrophysics Data System (ADS)

    Baltz, Edward A.; Stone, James

    2004-02-01

    In the nuclear and particle astrophysics session of CIPANP 2003 we heard talks on a number of topics, focused for the most part into four broad areas. Here we outline the discussions of the standard cosmological model, dark matter searches, cosmic rays, and neutrino astrophysics. The robustness of theoretical and experimental programs in all of these areas is very encouraging, and we expect to have many questions answered, and new ones asked, in time for CIPANP 2006.

  11. Space astronomy and astrophysics program by NASA

    NASA Astrophysics Data System (ADS)

    Hertz, Paul L.

    2014-07-01

    The National Aeronautics and Space Administration recently released the NASA Strategic Plan 20141, and the NASA Science Mission Directorate released the NASA 2014 Science Plan3. These strategic documents establish NASA's astrophysics strategic objectives to be (i) to discover how the universe works, (ii) to explore how it began and evolved, and (iii) to search for life on planets around other stars. The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. NASA uses the prioritized recommendations and decision rules of the National Research Council's 2010 decadal survey in astronomy and astrophysics2 to set the priorities for its investments. The NASA Astrophysics Division has laid out its strategy for advancing the priorities of the decadal survey in its Astrophysics 2012 Implementation Plan4. With substantial input from the astrophysics community, the NASA Advisory Council's Astrophysics Subcommittee has developed an astrophysics visionary roadmap, Enduring Quests, Daring Visions5, to examine possible longer-term futures. The successful development of the James Webb Space Telescope leading to a 2018 launch is an Agency priority. One important goal of the Astrophysics Division is to begin a strategic mission, subject to the availability of funds, which follows from the 2010 decadal survey and is launched after the James Webb Space Telescope. NASA is studying a Wide Field Infrared Survey Telescope as its next large astrophysics mission. NASA is also planning to partner with other space agencies on their missions as well as increase the cadence of smaller Principal Investigator led, competitively selected Astrophysics Explorers missions.

  12. Nuclear physics and astrophysics

    SciTech Connect

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing.

  13. Numerical Relativity and Astrophysics

    NASA Astrophysics Data System (ADS)

    Lehner, Luis; Pretorius, Frans

    2014-08-01

    Throughout the Universe many powerful events are driven by strong gravitational effects that require general relativity to fully describe them. These include compact binary mergers, black hole accretion, and stellar collapse, where velocities can approach the speed of light and extreme gravitational fields (ΦNewt/c2≃1) mediate the interactions. Many of these processes trigger emission across a broad range of the electromagnetic spectrum. Compact binaries further source strong gravitational wave emission that could directly be detected in the near future. This feat will open up a gravitational wave window into our Universe and revolutionize our understanding of it. Describing these phenomena requires general relativity, and—where dynamical effects strongly modify gravitational fields—the full Einstein equations coupled to matter sources. Numerical relativity is a field within general relativity concerned with studying such scenarios that cannot be accurately modeled via perturbative or analytical calculations. In this review, we examine results obtained within this discipline, with a focus on its impact in astrophysics.

  14. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; Barthelmy, S. D.; Coutu, S.; DeYoung, T.; Falcone, A. D.; Gao, Shan; Hashemi, B.; Homeier, A.; Marka, S.; Owen, B. J.; Taboada, I.

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  15. Theory and laboratory astrophysics

    NASA Technical Reports Server (NTRS)

    Schramm, David N.; Mckee, Christopher F.; Alcock, Charles; Allamandola, Lou; Chevalier, Roger A.; Cline, David B.; Dalgarno, Alexander; Elmegreen, Bruce G.; Fall, S. Michael; Ferland, Gary J.

    1991-01-01

    Science opportunities in the 1990's are discussed. Topics covered include the large scale structure of the universe, galaxies, stars, star formation and the interstellar medium, high energy astrophysics, and the solar system. Laboratory astrophysics in the 1990's is briefly surveyed, covering such topics as molecular, atomic, optical, nuclear and optical physics. Funding recommendations are given for the National Science Foundation, NASA, and the Department of Energy. Recommendations for laboratory astrophysics research are given.

  16. High Energy Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)

    2000-01-01

    The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.

  17. Astrophysical implications of periodicity

    NASA Technical Reports Server (NTRS)

    Muller, Richard A.

    1988-01-01

    Two remarkable discoveries of the last decade have profound implications for astrophysics and for geophysics. These are the discovery by Alvarez et al., that certain mass extinctions are caused by the impact on the earth of a large asteroid or comet, and the discovery by Raup and Sepkoski that such extinctions are periodic, with a cycle time of 26 to 30 million years. The validity of both of these discoveries is assumed and the implications are examined. Most of the phenomena described depend not on periodicity, but just on the weaker assumption that the impacts on the earth take place primarily in showers. Proposed explanations for the periodicity include galactic oscillations, the Planet X model, and the possibility of Nemesis, a solar companion star. These hypotheses are critically examined. Results of the search for the solar companion are reported. The Deccan flood basalts of India have been proposed as the impact site for the Cretaceous impact, but this hypotheisis is in contradiction with the conclusion of Courtillot et al., that the magma flow began during a period of normal magnetic field. A possible resolution of this contradiction is proposed.

  18. Astrophysics and Space Science

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy; Brinks, Elias; Khanna, Ramon

    2015-08-01

    Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science, and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis, and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will not longer be considered.The journal also publishes topical collections consisting of invited reviews and original research papers selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers.Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.Astrophysics and Space Science has an Impact Factor of 2.4 and features short editorial turnaround times as well as short publication times after acceptance, and colour printing free of charge. Published by Springer the journal has a very wide online dissemination and can be accessed by researchers at a very large number of institutes worldwide.

  19. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  20. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  1. Herzberg Institute of Astrophysics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Herzberg Institute of Astrophysics (HIA) is the Institute within the NATIONAL RESEARCH COUNCIL of Canada responsible for providing astronomical facilities, and developing related instrumentation and software for Canadian researchers. The Institute was established in 1975, and now operates 1.8 m and 1.2 m optical telescopes at the DOMINION ASTROPHYSICAL OBSERVATORY close to Victoria, BC, as we...

  2. Searches for electromagnetic signatures of gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Soares-Santos, Marcelle

    2017-01-01

    Motivated by the exciting prospect of new wealth of information that will arise from observations of gravitational and electromagnetic radiation from the same astrophysical phenomena, our community has performed a broad range of follow-up programs for LIGO/Virgo events. In this talk, I present an overview of this effort, including results of searches for signatures of the first two LIGO-triggered binary black hole mergers in the 2015-2016 observing campaign, when multiple facilities reported searches in gamma/X-rays, optical, infra-red, and radio wavelengths. I will also discuss plans for upcoming observing campaigns and long term prospects for this exciting emerging field: multi-messenger astrophysics with gravitational waves.

  3. Dynamic triggering

    USGS Publications Warehouse

    Hill, David P.; Prejean, Stephanie; Schubert, Gerald

    2015-01-01

    Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.

  4. Transient Astrophysics Observatory (TAO)

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; TAO Team

    2016-10-01

    The Transient Astrophysics Observatory (TAO) is a NASA MidEx mission concept (formerly known as Lobster) designed to provide simultaneous wide-field gamma-ray, X-ray, and near-infrared observations of the sky.

  5. Compressible Astrophysics Simulation Code

    SciTech Connect

    Howell, L.; Singer, M.

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  6. SPAN: Astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Green, James L.; Warren, Wayne H., Jr.; Lopez-Swafford, Brian

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links science research and data analysis computers in the U.S., Canada, and Europe. The purpose of this document is to provide Astronomy and Astrophysics scientists, currently reachable on SPAN, with basic information and contacts for access to correlative data bases, star catalogs, and other astrophysic facilities accessible over SPAN.

  7. Dominion Radio Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Dominion Radio Astrophysical Observatory began operating in 1959, and joined the NATIONAL RESEARCH COUNCIL in 1970. It became part of the Herzberg Institute of Astrophysics in 1975. The site near Penticton, BC has a 26 m radio telescope, a seven-antenna synthesis telescope on a 600 m baseline and two telescopes dedicated to monitoring the solar radio flux at 10.7 cm. This part of the Institu...

  8. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  9. NASA's Astrophysics Program

    NASA Astrophysics Data System (ADS)

    Hertz, Paul L.

    2013-04-01

    The environment in which NASA and other Government agencies are operating is constantly changing. It is significantly different from the environment assumed by the recent 2010 Decadal Survey. NASA has described its plans for responding to the Decadal Survey in its 2012 Astrophysics Implementation Plan (http://science.nasa.gov/astrophysics/documents/). The NASA Astrophysics Division plans to: Enable the science and priorities identified by the Decadal Survey with new activities as well as through ongoing missions, including large missions, medium missions, and Explorers; Invest in the Astrophysics Research Program for developing the science cases and technologies of new missions and for maximizing the scientific return from operating missions; Engage in effective international and interagency partnerships that leverage NASA resources and extend the reach of our science results; Conduct studies of WFIRST and candidate probes that derive from the activities prioritized in the Decadal Survey and are responsive to the Decadal Survey science questions; Be prepared to begin a strategic mission, subject to the availability of funds, which follows from the Decadal Survey and is launched after the James Webb Space Telescope.

  10. Surprises in astrophysical gasdynamics.

    PubMed

    Balbus, Steven A; Potter, William J

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  11. Augmented Reality in astrophysics

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Shingles, Luke J.

    2013-09-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss possible future trends for Augmented Reality applications in astrophysics, and explore the current limitations associated with the technology. This Augmented Article, the first of its kind, is designed to allow the reader to directly experiment with this technology.

  12. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  13. Astrophysics: An Integrative Course

    ERIC Educational Resources Information Center

    Gutsche, Graham D.

    1975-01-01

    Describes a one semester course in introductory stellar astrophysics at the advanced undergraduate level. The course aims to integrate all previously learned physics by applying it to the study of stars. After a brief introductory section on basic astronomical measurements, the main topics covered are stellar atmospheres, stellar structure, and…

  14. The NASA Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  15. Surprises in astrophysical gasdynamics

    NASA Astrophysics Data System (ADS)

    Balbus, Steven A.; Potter, William J.

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one’s a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  16. Chaos and Complexity in Astrophysics

    NASA Astrophysics Data System (ADS)

    Regev, Oded

    2006-03-01

    Part I. Dynamical Systems - General: 1. Introduction to Part I; 2. Astrophysical examples; 3. Mathematical properties of dynamical systems; 4. Properties of chaotic dynamics; 5. Analysis of time series; 6. Regular and irregular motion in Hamiltonian systems; 7. Extended systems - instabilities and patterns; Part II. Astrophysical Applications: 8. Introduction to Part II; 9. Planetary, stellar and galactic dynamics; 10. Irregularly variable astronomical point sources; 11. Complex spatial patterns in astrophysics; 12. Topics in astrophysical fluid dynamics; References; Index.

  17. Polarimetry in astrophysics and cosmology

    NASA Astrophysics Data System (ADS)

    Zeng, Lingzhen

    Astrophysicists are mostly limited to passively observing electromagnetic radiation from a distance, which generally shows some degree of polarization. Polarization often carries a wealth of information on the physical state and geometry of the emitting object and intervening material. In the microwave part of the spectrum, polarization provides information about galactic magnetic fields and the physics of interstellar dust. The measurement of this polarized radiation is central to much modern astrophysical research. The first part of this thesis is about polarimetry in astrophysics. In Chapter 1, I review the basics of polarization and summarize the most important mechanisms that generate polarization in astrophysics. In Chapter 2, I describe the data analysis of polarization observation on M17 (a young, massive star formation region in the Galaxy) from Caltech Submillimeter Observatory (CSO) and show the physics that we learn about M17 from the polarimetry. Polarimetry also plays an important role in modern cosmology. Inflation theory predicts two types of polarization in the Cosmic Microwave Background (CMB) radiation, called E-modes and B-modes. Measurements to date of the E-mode signal are consistent with the predictions of anisotropic Thompson scattering, while the B-mode signal has yet to be detected. The B-mode power spectrum amplitude can be parameterized by the relative amplitude of the tensor to scalar modes r. For the simplest inflation models, the expected deviation from scale invariance (ns = 0.963 ± 0.012) is coupled to gravitational waves with r ≈ 0.1. These considerations establish a strong motivation to search for this remnant from when the universe was about 10-32 seconds old. The second part of this thesis is about the Cosmology Large Angular Scale Surveyor (CLASS) experiment, that is designed to have an unprecedented ability to detect the B-mode polarization to the level of r ≤ 0.01. Chapter 3 is an introduction to cosmology, including the

  18. Computer simulation of astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Max, Claire E.

    1991-01-01

    The role of sophisticated numerical models and simulations in the field of plasma astrophysics is discussed. The need for an iteration between microphysics and macrophysics in order for astrophysical plasma physics to produce quantitative results that can be related to astronomical data is stressed. A discussion on computational requirements for simulations of astrophysical plasmas contrasts microscopic plasma simulations with macroscopic system models. An overview of particle-in-cell simulations (PICS) is given and two examples of PICS of astrophysical plasma are discussed including particle acceleration by collisionless shocks in relativistic plasmas and magnetic field reconnection in astrophysical plasmas.

  19. Trigger finger

    MedlinePlus

    ... Redness in your cut or hand Swelling or warmth in your cut or hand Yellow or green drainage from the cut Hand pain or discomfort Fever If your trigger finger returns, call your surgeon. You may need another surgery.

  20. Astrophysical terms in Armenian

    NASA Astrophysics Data System (ADS)

    Yeghikian, A. G.

    2015-07-01

    There are quite a few astrophysical textbooks (to say nothing about monographs) in Armenian, which are, however out of date and miss all the modern terms concerning space sciences. Many terms have been earlier adopted from English and, especially, from Russian. On the other hand, teachers and lecturers in Armenia need scientific terms in Armenian adequately reproducing either their means when translating from other languages or (why not) creating new ones. In short, a permanently updated astrophysical glossary is needed to serve as explanation of such terms. I am not going here to present the ready-made glossary (which should be a task for a joint efforts of many professionals) but instead just would like to describe some ambiguous examples with comments where possible coming from my long-year teaching, lecturing and professional experience. A probable connection between "iron" in Armenian as concerned to its origin is also discussed.

  1. Computational astrophysical fluid dynamics

    NASA Technical Reports Server (NTRS)

    Norman, Michael L.; Clarke, David A.; Stone, James M.

    1991-01-01

    The field of astrophysical fluid dynamics (AFD) is described as an emerging discipline which derives historically from both the theory of stellar evolution and space plasma physics. The fundamental physical assumption behind AFD is that fluid equations of motion accurately describe the evolution of plasmas on scales that are large in comparison with particle interaction length scales. Particular attention is given to purely fluid models of large-scale astrophysical plasmas. The role of computer simulation in AFD research is also highlighted and a suite of general-purpose application codes for AFD research is discussed. The codes are called ZEUS-2D and ZEUS-3D and solve the equations of AFD in two and three dimensions, respectively, in several coordinate geometries for general initial and boundary conditions. The topics of bipolar outflows from protostars, galactic superbubbles and supershells, and extragalactic radio sources are addressed.

  2. Extreme Scale Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre

    2009-11-01

    We live in extraordinary times. With increasingly sophisticated observatories opening up new vistas on the universe, astrophysics is becoming more complex and data-driven. The success in understanding astrophysical systems that are inherently multi-physical, nonlinear systems demands realism in our models of the phenomena. We cannot hope to advance the realism of these models to match the expected sophistication of future observations without extreme-scale computation. Just one example is the advent of gravitational wave astronomy. Detectors like LIGO are about to make the first ever detection of gravitational waves. The gravitational waves are produced during violent events such as the merger of two black holes. The detection of these waves or ripples in the fabric of spacetime is a formidable undertaking, requiring innovative engineering, powerful data analysis tools and careful theoretical modeling. I will discuss the computational and theoretical challenges ahead in our new understanding of physics and astronomy where gravity exhibits its strongest grip on our spacetime.

  3. Nuclear Astrophysics with LUNA

    NASA Astrophysics Data System (ADS)

    Broggini, Carlo

    2016-04-01

    One of the main ingredients of nuclear astrophysics is the knowledge of the thermonuclear reactions which power the stars and synthesize the chemical elements. Deep underground in the Gran Sasso Laboratory the cross section of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The main results obtained during the 'solar' phase of LUNA are reviewed and their influence on our understanding of the properties of the neutrino and of the Sun is discussed. We then describe the current LUNA program mainly devoted to the study of the nucleosynthesis of the light elements in AGB stars and Classical Novae. Finally, the future of LUNA towards the study of helium and carbon burning with a new 3.5 MV accelerator is outlined.

  4. Birth of Neutrino Astrophysics

    SciTech Connect

    2010-05-07

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  5. Dark Matter Astrophysics

    NASA Astrophysics Data System (ADS)

    D'Amico, Guido; Kamionkowski, Marc; Sigurdson, Kris

    This chapter is intended to provide a brief pedagogical review of dark matter for the newcomer to the subject. We begin with a discussion of the astrophysical evidence for dark matter. The standard weakly interacting massive particle (WIMP) scenario—the motivation, particle models, and detection techniques—is then reviewed. We provide a brief sampling of some recent variations to the standard WIMP scenario, as well as some alternatives (axions and sterile neutrinos). Exercises are provided for the reader.

  6. Birth of Neutrino Astrophysics

    ScienceCinema

    None

    2016-07-12

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  7. The Nuclear Astrophysics Explorer

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Teegarden, B. J.; Gehrels, N.; Mahoney, W. A.

    1989-01-01

    The Nuclear Astrophysics Explorer was proposed in 1986 for NASA's Explorer Concept Study Program by an international collaboration of 25 scientists from nine institutions. The one-year feasibility study began in June 1988. The Nuclear Astrophysics Explorer would obtain high resolution observations of gamma-ray lines, E/Delta E about 1000, at a sensitivity of about 0.000003 ph/sq cm s, in order to study fundamental problems in astrophysics such as nucleosynthesis, supernovae, neutron star and black-hole physics, and particle acceleration and interactions. The instrument would operate from 15 keV to 10 Mev and use a heavily shielded array of nine cooled Ge spectrometers in a very low background configuration. Its 10 deg FWHM field of view would contain a versatile coded mask system which would provide two-dimensional imaging with 4 deg resolution, one-dimensional imaging with 2 deg resolution, and efficiendt measurements of diffuse emission. An unshielded Ge spectrometer would obtain wide-field measurements of transient gamma-ray sources. The earliest possible mission would begin in 1995.

  8. Astrophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  9. Getting Astrophysical Information from LISA Data

    NASA Technical Reports Server (NTRS)

    Stebbins, R. T.; Bender, P. L.; Folkner, W. M.

    1997-01-01

    Gravitational wave signals from a large number of astrophysical sources will be present in the LISA data. Information about as many sources as possible must be estimated from time series of strain measurements. Several types of signals are expected to be present: simple periodic signals from relatively stable binary systems, chirped signals from coalescing binary systems, complex waveforms from highly relativistic binary systems, stochastic backgrounds from galactic and extragalactic binary systems and possibly stochastic backgrounds from the early Universe. The orbital motion of the LISA antenna will modulate the phase and amplitude of all these signals, except the isotropic backgrounds and thereby give information on the directions of sources. Here we describe a candidate process for disentangling the gravitational wave signals and estimating the relevant astrophysical parameters from one year of LISA data. Nearly all of the sources will be identified by searching with templates based on source parameters and directions.

  10. Triggering Klystrons

    SciTech Connect

    Stefan, Kelton D.; /Purdue U. /SLAC

    2010-08-25

    To determine if klystrons will perform to the specifications of the LCLS (Linac Coherent Light Source) project, a new digital trigger controller is needed for the Klystron/Microwave Department Test Laboratory. The controller needed to be programmed and Windows based user interface software needed to be written to interface with the device over a USB (Universal Serial Bus). Programming the device consisted of writing logic in VHDL (VHSIC (Very High Speed Integrated Circuits) hardware description language), and the Windows interface software was written in C++. Xilinx ISE (Integrated Software Environment) was used to compile the VHDL code and program the device, and Microsoft Visual Studio 2005 was used to compile the C++ based Windows software. The device was programmed in such a way as to easily allow read/write operations to it using a simple addressing model, and Windows software was developed to interface with the device over a USB connection. A method of setting configuration registers in the trigger device is absolutely necessary to the development of a new triggering system, and the method developed will fulfill this need adequately. More work is needed before the new trigger system is ready for use. The configuration registers in the device need to be fully integrated with the logic that will generate the RF signals, and this system will need to be tested extensively to determine if it meets the requirements for low noise trigger outputs.

  11. Laboratory astrophysics experiments relating to ionising and weakly radiative shocks

    NASA Astrophysics Data System (ADS)

    Cross, Joseph; Foster, John; Graham, Peter; Busschaert, Clotilde; Charpentier, Nicolas; Danson, Colin; Doyle, Hugo; Drake, R. Paul; Falize, Emeric; Fyrth, Jim; Gumbrell, Edward; Koenig, Michel; Kuranz, Carolyn; Loupias, Berenice; Michaut, Claire; Patankar, Sid; Skidmore, Jonathan; Spindloe, Christopher; Tubman, Ellie; Woolsey, Nigel; Yurchak, Roman; Gregori, Gianluca

    2014-10-01

    The aim of the POLAR project is to simulate, in the laboratory, the accretion shock region of a magnetic cataclysmic variable binary star system. Scaling laws have shown that laser experiments can be related to astrophysical phenomena by matching relevant dimensionless parameters. As well as forming a reverse shock, relevant to the POLAR project, the experimental system is also likely formed of a weakly radiating shock and an ionisation front. Results from our experiment at the Orion Laser are presented here, alongside comparisons to simulation and the astrophysical case (of relevance to triggered star formation).

  12. Studying Nuclear Astrophysics at NIF

    SciTech Connect

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on

  13. The Photochemistry of Pyrimidine in Realistic Astrophysical Ices and the Production of Nucleobases

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C4H4N2) in H2O-rich ice mixtures that contain NH3, CH3OH, or CH4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H2O, CH3OH, and NH3, with or without CH4, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  14. 'Hot Topics' in Astrophysics

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    2000-01-01

    Three current topics in astrophysics are described here on the occasion of the joint meeting of the American Association of Physics Teachers and the American Astronomical Society (Jan. 7-11, 2001, San Diego, Calif.). Many equally exciting topics--ranging from the dozens of newly discovered planets of sunlike stars to evidence suggesting that the expansion of the universe is accelerating--could have been chosen. The topics discussed are: (1) the habitability of Mars, (2) black holes, galaxy bulges, and the X-ray background, and (3) the greatest explosions since the Big Bang.

  15. Turbulence in astrophysics

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    1990-01-01

    Some of the astrophysical scenarios in which turbulence plays an important role are discussed in view of the comparative advantages of currently available models of turbulence phenomena; attention is given to a specific model that has undergone continuous refinement since 1985. The desideratum in this inquiry is a turbulence model which incorporates the best features of an a priori deterministic model, as well as a redundant set of results from full numerical simulations for a wide variety of turbulent flows; there should also be a simplification of the former, and an enlargement of the complexities of the latter.

  16. Perspectives in astrophysical databases

    NASA Astrophysics Data System (ADS)

    Frailis, Marco; de Angelis, Alessandro; Roberto, Vito

    2004-07-01

    Astrophysics has become a domain extremely rich of scientific data. Data mining tools are needed for information extraction from such large data sets. This asks for an approach to data management emphasizing the efficiency and simplicity of data access; efficiency is obtained using multidimensional access methods and simplicity is achieved by properly handling metadata. Moreover, clustering and classification techniques on large data sets pose additional requirements in terms of computation and memory scalability and interpretability of results. In this study we review some possible solutions.

  17. Astrophysical blast wave data

    SciTech Connect

    Riley, Nathan; Geissel, Matthias; Lewis, Sean M; Porter, John L.

    2015-03-01

    The data described in this document consist of image files of shadowgraphs of astrophysically relevant laser driven blast waves. Supporting files include Mathematica notebooks containing design calculations, tabulated experimental data and notes, and relevant publications from the open research literature. The data was obtained on the Z-Beamlet laser from July to September 2014. Selected images and calculations will be published as part of a PhD dissertation and in associated publications in the open research literature, with Sandia credited as appropriate. The authors are not aware of any restrictions that could affect the release of the data.

  18. Magnetic helicity in astrophysical dynamos

    NASA Astrophysics Data System (ADS)

    Candelaresi, Simon

    2012-09-01

    The broad variety of ways in which magnetic helicity affects astrophysical systems, in particular dynamos, is discussed. The so-called alpha effect is responsible for the growth of large-scale magnetic fields. The conservation of magnetic helicity, however, quenches the alpha effect, in particular for high magnetic Reynolds numbers. Predictions from mean-field theories state particular power law behavior of the saturation strength of the mean fields, which we confirm in direct numerical simulations. The loss of magnetic helicity in the form of fluxes can alleviate the quenching effect, which means that large-scale dynamo action is regained. Physically speaking, galactic winds or coronal mass ejections can have fundamental effects on the amplification of galactic and solar magnetic fields. The gauge dependence of magnetic helicity is shown to play no effect in the steady state where the fluxes are represented in form of gauge-independent quantities. This we demonstrate in the Weyl-, resistive- and pseudo Lorentz-gauge. Magnetic helicity transport, however, is strongly affected by the gauge choice. For instance the advecto-resistive gauge is more efficient in transporting magnetic helicity into small scales, which results in a distinct spectrum compared to the resistive gauge. The topological interpretation of helicity as linking of field lines is tested with respect to the realizability condition, which imposes a lower bound for the spectral magnetic energy in presence of magnetic helicity. It turns out that the actual linking does not affect the relaxation process, unlike the magnetic helicity content. Since magnetic helicity is not the only topological variable, I conduct a search for possible others, in particular for non-helical structures. From this search I conclude that helicity is most of the time the dominant restriction in field line relaxation. Nevertheless, not all numerical relaxation experiments can be described by the conservation of magnetic helicity

  19. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; Barthelmy, Scott; Palmer, David; Mitchell, John; Esposito, Joseph; Sreekumar, P.; Hua, Xin-Min; Mandzhavidze, Natalie; Chan, Kai-Wing; Soong, Yang; Barrett, Paul

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  20. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, L.

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  1. Astrophysics Source Code Library -- Now even better!

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Schmidt, Judy; Berriman, Bruce; DuPrie, Kimberly; Hanisch, Robert J.; Mink, Jessica D.; Nemiroff, Robert J.; Shamir, Lior; Shortridge, Keith; Taylor, Mark B.; Teuben, Peter J.; Wallin, John F.

    2015-01-01

    The Astrophysics Source Code Library (ASCL, ascl.net) is a free online registry of codes used in astronomy research. Indexed by ADS, it now contains nearly 1,000 codes and with recent major changes, is better than ever! The resource has a new infrastructure that offers greater flexibility and functionality for users, including an easier submission process, better browsing, one-click author search, and an RSS feeder for news. The new database structure is easier to maintain and offers new possibilities for collaboration. Come see what we've done!

  2. The Nuclear Astrophysics Explorer

    NASA Technical Reports Server (NTRS)

    Matteson, James L.; Teegarden, B. J.; Gehrels, Neil; Mahoney, William A.

    1990-01-01

    The Nuclear Astrophysics Explorer (NAE) is a concept for a possible future NASA Explorer mission which would obtain high resolution, E/Delta E about 500, observations of gamma-ray lines in order to study many fundamental problems in astrophysics. It operates from 15 keV to 10 MeV with a 3-sigma sensitivity of about 3 x 10 to the -6th ph/sq cm-s in a 10 to the 6th s observation. This is 100 times below the presently known gamma-ray line fluxes. The NAE uses a heavily shielded array of nine cooled Ge detectors in a very low background configuration. Its 10-deg field of view contains a versatile coded mask system which provides 2D imaging with 4-deg resolution, 1D imaging with 2-deg resolution and efficient measurements of emission from diffuse and point sources. The late 1990s is the earliest the NAE mission could begin. The scientific motivation, instrument concept, mission concept and expected results, and status and plans for the NAE are presented.

  3. Frontier Research in Astrophysics

    NASA Astrophysics Data System (ADS)

    Giovanelli, Franco; Sabau-Graziati, Lola

    We want to join about 90 colleagues from the whole world involved in various topics of modern Astrophysics and Particle Physics in order to discuss the most recent experimental and theoretical results for an advance in the comprehension of the Physics governing our Universe. For reaching the aim of the workshop the idea is to use ground- and space-based experimental developments, theoretical developments AND the coming out science results which have already resulted OR WILL result into high impact science papers. The following items will be reviewed: Cosmology: Cosmic Background, Dark Matter, Dark Energy, Clusters of Galaxies. Physics of the Diffuse Cosmic Sources. Physics of Cosmic Rays. Physics of Discrete Cosmic Sources. Extragalactic Sources: Active Galaxies, Normal Galaxies, Gamma-Ray Bursts. Galactic Sources: Star Formation, Pre-Main-Sequence and Main-Sequence Stars, Cataclysmic Variables and Novae, Supernovae and SNRs, X-Ray Binary Systems, Pulsars, Black Holes, Gamma-Ray Sources, Nucleosynthesis. Future Physics and Astrophysics: Ongoing and Planned Ground- and Space-based Experiments. The workshop will include few 40-minute general review talks to introduce the current problems, and typically 20-minute talks discussing new experimental and theoretical results. A series of 15-minute talks will discuss the ongoing and planned ground- and space-based experiments. The cadence of the workshop will be biennial. The participation will be only by invitation. Editors: Franco Giovannelli and Lola Sabau-Graziati

  4. Towards the Astrophysical Cyberspace

    NASA Astrophysics Data System (ADS)

    Richmond, Alan

    We are accustomed to thinking of user interfaces in terms of screens, keyboards, and relatively local applications. Our user conducts a dialog with our application through the mechanisms we provide; at their simplest, these are just reads and writes built into our chosen programming language. With the advent of bit-mapped graphical workstations, seamless network integration, and several other exciting new technologies, we are going to witness a profound change in this viewpoint. We look at possible futures for astrophysical user interfaces, ranging from the use of GUI builders, through hypertext and multimedia, to virtual reality scenarios. We will show that the trend is to increasing transparency, so that the user interface will become less and less of an obvious intermediary, and more of a `looking glass' into astrophysical datascapes and cyberspaces. Examples will be presented of user interfaces available now, that begin to demonstrate these trends. Our primary example is HEASARC's StarTrax, which will provide access to many services, i.e. bulletins, catalogs, proposal and analysis tools, initially for the ROSAT MIPS (Mission Information and Planning System), later for the Next Generation Browse. Thanks are due to Nick White of the HEASARC/ASCA-GOF NASA/GSFC for initiating and supporting the StarTrax user interface development project.

  5. Goddard's Astrophysics Science Division Annual Report 2013

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  6. The Astrophysics Science Division Annual Report 2009

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  7. The SAO/NASA Astrophysics Data System: A Gateway to the Planetary Sciences Literature

    NASA Astrophysics Data System (ADS)

    Henneken, E. A.; Accomazzi, A.; Grant, C. S.; Kurtz, M. J.; Thompson, D.; Bohlen, E.; Murray, S. S.

    2009-03-01

    The SAO/NASA Astrophysics Data System (ADS) provides various free services for finding, accessing, and managing bibliographic data, including a basic search form, the myADS notification service, and private libraries, plus access to scanned published articles.

  8. Search for hydraulic connectivity between surface reservoirs and surrounding aquifers in the reservoir-triggered seismic environment (Koyna region, India) using hydrochemical and isotopic signatures

    NASA Astrophysics Data System (ADS)

    Reddy, D. V.; Nagabhushanam, P.

    2016-01-01

    Triggered seismicity is an accepted hypothesis in the present days. However, detailed hydrogeological investigations are lacking in the well-known reservoir-triggered seismic (RTS) zones. Here, we made an attempt to understand the direct linkage between the well-known Koyna-Warna reservoirs believed to be under the RTS zone (situated in the Deccan volcanic province (DVP), India) and the surrounding groundwater system up to 250 m deep from the ground surface. Seismic activity in the region started soon after the impoundment of water in the Koyna reservoir and being continued over the last four and a half decades. Though researchers have carried out numerous studies on the Koyna seismicity, no hydrogeological investigations were attempted. Hence, hydrogeological, hydrochemical, and isotopic investigations were carried out for 7 years on groundwaters from 15 deep bore wells (up to 250 m) and two surface reservoir waters to elucidate the direct hydraulic connectivity between them. No appreciable seasonal change was observed in piezometric heads of the artesian wells, but the semi-artesian wells did show fluctuation of ~2 to 12 m during different years, which did not have any relation with the reservoir water levels. No considerable seasonal change in hydrochemistry was observed in individual wells due to the confined nature of the aquifers. The hydrochemical and δ18O data of the studied deep groundwaters and reservoir waters, being different from each other, rule out the possibility of direct hydraulic connectivity between them and surrounding groundwater (up to 250 m), even though favorable topographic conditions exist for linkage. The radiocarbon ages, being incomparable between different well waters, support the inference drawn from hydrochemistry and stable isotope data.

  9. Recognition of compact astrophysical objects

    NASA Technical Reports Server (NTRS)

    Ogelman, H. (Editor); Rothschild, R. (Editor)

    1977-01-01

    NASA's Laboratory for High Energy Astrophysics and the Dept. of Physics and Astrophysics at the Univ. of Md. collaberated on a graduate level course with this title. This publication is an edited version of notes used as the course text. Topics include stellar evolution, pulsars, binary stars, X-ray signatures, gamma ray sources, and temporal analysis of X-ray data.

  10. Important plasma problems in astrophysics

    SciTech Connect

    Kulsrud, R.M.

    1995-01-01

    In astrophysics, plasmas occur under very extreme conditions. For example there are ultra strong magnetic fields in neutron stars) relativistic plasmas around black holes and in jets, extremely energetic particles such as cosmic rays in the interstellar medium, extremely dense plasmas in accretion disks, and extremely large magnetic Reynold`s numbers in the interstellar medium. These extreme limits for astrophysical plasmas make plasma phenomena much simpler to analyze in astrophysics than in the laboratory. An understanding of such phenomena often results in an interesting way, by simply taking the extreme limiting case of a known plasma theory. I will describe one of the more exciting examples. I will attempt to convey the excitement I felt when I was first exposed to it. However, not all plasma astrophysical phenomena are so simple. There are certain important plasma phenomena in astrophysics, which have not been so easily resolved. In fact a resolution of them is blocking significant progress in astrophysical research. They have not yet yielded to attacks by theoretical astrophysicists nor to extensive numerical simulation. I will attempt to describe one of the more important of these plasma-astrophysical problems, and discuss why its resolution is so important to astrophysics. This significant example is fast, magnetic reconnection. Another significant example is the large-magnetic-Reynold`s-number MHD dynamos.

  11. Astrophysical Cause of Tectonics

    NASA Astrophysics Data System (ADS)

    Mensur, O.

    2016-05-01

    Tectonic earthquakes, of Mw (6 ± 5%)+, are found forming a strengthening-peaking-waning pattern distinguishable from respectively quiescent times so well that the pattern means discovery of a universal natural mechanism that necessitates expanding on classical physics. The pattern is seen only during Earth's alignments to two other heavenly bodies in our solar system lasting for more than 3 days. This empirical proof of astrophysical origins of seismotectonics is immediately obvious and verifiable. The find is consequential due to sheer size of processes and energies involved in defining the pattern that now enables all-or-nothing negative forecasting by foretelling dates without strong quakes. Near co-planarity of a solar system's planets, which is for our solar system typically regarded an oddity, is in fact a necessary condition for active geophysics as a life system.

  12. Perspectives in numerical astrophysics:

    NASA Astrophysics Data System (ADS)

    Reverdy, V.

    2016-12-01

    In this discussion paper, we investigate the current and future status of numerical astrophysics and highlight key questions concerning the transition to the exascale era. We first discuss the fact that one of the main motivation behind high performance simulations should not be the reproduction of observational or experimental data, but the understanding of the emergence of complexity from fundamental laws. This motivation is put into perspective regarding the quest for more computational power and we argue that extra computational resources can be used to gain in abstraction. Then, the readiness level of present-day simulation codes in regard to upcoming exascale architecture is examined and two major challenges are raised concerning both the central role of data movement for performances and the growing complexity of codes. Software architecture is finally presented as a key component to make the most of upcoming architectures while solving original physics problems.

  13. Numerical relativity beyond astrophysics.

    PubMed

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  14. Black-hole astrophysics

    SciTech Connect

    Bender, P.; Bloom, E.; Cominsky, L.

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  15. Beauty and Astrophysics

    NASA Astrophysics Data System (ADS)

    Bessell, Michael S.

    2000-08-01

    Spectacular colour images have been made by combining CCD images in three different passbands using Adobe Photoshop. These beautiful images highlight a variety of astrophysical phenomena and should be a valuable resource for science education and public awareness of science. The wide field images were obtained at the Siding Spring Observatory (SSO) by mounting a Hasselblad or Nikkor telephoto lens in front of a 2K × 2K CCD. Options of more than 30 degrees or 6 degrees square coverage are produced in a single exposure in this way. Narrow band or broad band filters were placed between lens and CCD enabling deep, linear images in a variety of passbands to be obtained. We have mapped the LMC and SMC and are mapping the Galactic Plane for comparison with the Molonglo Radio Survey. Higher resolution images have also been made with the 40 inch telescope of galaxies and star forming regions in the Milky Way.

  16. Astrophysics Faces the Millennium

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia

    2001-03-01

    The Medieval synthesis of Aristotelian philosophy and church doctrine, due largely to Thomas Aquinas, insisted that the universe outside the earth's atmosphere must be immutable, single-centered, fully inventoried, immaculate or perfect, including perfectly spherical, and much else that sounds strange to modern ears. The beginnings of modern astronomy can be largely described as the overthrow of these various concepts by a combination of new technologies and new ways of thinking, and many current questions in astrophysics can be directly tied to developments of those same concepts. Indeed they probably all can be, but not over time, ending with questions like: Do other stars have spots? What does it mean when quasar jets look like they are moving faster than the speed of light? Is there anything special about our star, our galaxy, our planet, or our universe? How did these all form, and what is their long-term fate?

  17. Numerical relativity beyond astrophysics

    NASA Astrophysics Data System (ADS)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  18. Adventures in theoretical astrophysics

    NASA Astrophysics Data System (ADS)

    Farmer, Alison Jane

    This thesis is a tour of topics in theoretical astrophysics, unified by their diversity and their pursuit of physical understanding of astrophysical phenomena. In the first chapter, we raise the possibility of the detection of white dwarfs in transit surveys for extrasolar Earths, and discuss the peculiarities of detecting these more massive objects. A population synthesis calculation of the gravitational wave background from extragalactic binary stars is then presented. In this study, we establish a firm understanding of the uncertainties in such a calculation and provide a valuable reference for planning the Laser Interferometer Space Antenna mission. The long-established problem of cosmic ray confinement to the Galaxy is addressed in another chapter. We introduce a new wave damping mechanism, due to the presence of background turbulence, that prevents the confinement of cosmic rays by the resonant streaming instability. We also investigate the spokes in Saturn's B ring, an electrodynamic mystery that is being illuminated by new data sent back from the Cassini spacecraft. In particular, we present assessments of the presence of charged dust near the rings, and the size of currents and electric fields in the ring system. We make inferences from the Cassini discovery of oxygen ions above the rings. In addition, the previous leading theory for spoke formation is demonstrated to be unphysical. In the final chapter, we explain the wayward motions of Prometheus and Pandora, two small moons of Saturn. Previously found to be chaotic as a result of mutual interactions, we account for their behavior by analogy with a parametric pendulum. We caution that this behavior may soon enter a new regime.

  19. Theoretical Astrophysics at Fermilab

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  20. The Search for a Lipid Trigger: The Effect of Salt Stress on the Lipid Profile of the Model Microalgal Species Chlamydomonas reinhardtii for Biofuels Production

    PubMed Central

    Hounslow, Emily; Kapoore, Rahul Vijay; Vaidyanathan, Seetharaman; Gilmour, D. James; Wright, Phillip C.

    2016-01-01

    Background: Algal cells produce neutral lipid when stressed and this can be used to generate biodiesel. Objective: Salt stressed cells of the model microalgal species Chlamydomonas reinhardtii were tested for their suitability to produce lipid for biodiesel. Methods: The starchless mutant of C. reinhardtii (CC-4325) was subjected to salt stress (0.1, 0.2 and 0.3 M NaCl) and transesterification and GC analysis were used to determine fatty acid methyl ester (FAME) content and profile. Results: Fatty acid profile was found to vary under salt stress conditions, with a clear distinction between 0.1 M NaCl, which the algae could tolerate, and the higher levels of NaCl (0.2 and 0.3 M), which caused cell death. Lipid content was increased under salt conditions, either through long-term exposure to 0.1 M NaCl, or short-term exposure to 0.2 and 0.3 M NaCl. Palmitic acid (C16:0) and linolenic acid (C18:3n3) were found to increase significantly at the higher salinities. Conclusion: Salt increase can act as a lipid trigger for C. reinhardtii.

  1. A Search for Triggered Star Formation in the Compact Group of Galaxies NGC 5851, NGC 5852 and CGCG 077-007

    NASA Astrophysics Data System (ADS)

    Olsen, Charlotte Alexandra; Basu-Zych, Antara; Hornschemeier, Ann E.; NASA / GSFC X-ray Galaxies Group

    2017-01-01

    Galaxy interactions provide ideal conditions for triggering star formation, and impact galaxy evolution and the structure of the universe. The aim of this research is to study the key factors during galaxy interactions that influence star formation events by studying close pairs of galaxies to find the relationship between interaction properties (e.g. relative velocities and distances, mass ratios, orientation, and merger stage) and star formation rate (SFR). We present our analysis on one compact group of star-forming galaxies CGCG 077-007, NGC 5851, and their quiescent companion NGC 5852. Within this group we investigate the conditions where galaxy interactions cause higher SFR or supermassive black hole accretion (i.e. AGN activity), which might rather quench SFR. Areas of increased star formation are classified by the identification of the most UV bright regions within the galaxies. We find these areas by taking the Swift UVOT W2 filter and subtracting from it the Sloan Digital Sky Survey (SDSS) z-band image in order to remove the underlying stellar population. The regions identified by this process allow us to conduct a multi-wavelength study of stellar populations within this compact group. We use Spectral Energy Distribution models to fit ultraviolet to mid-infrared photometry from Swift UVOT, SDSS, 2MASS and WISE and measure global star formation histories for the galaxies and for the identified star forming regions within the galaxies. In the future we will include analysis of Swift XRT data to place constraints on AGN activity, and relate to the star formation history. This group serves as a pilot study and we will apply these methods to a sample of 30 galaxy groups and close pairs in order to investigate the relationship between galaxy interactions, SFR, and AGN activity and gain deeper insight into how mergers drive galaxy evolution.

  2. Fifteen Years of Laboratory Astrophysics at Ames

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Salama, F.; Hudgins, D. M.; Bernstein, M.; Goorvitch, David (Technical Monitor)

    1998-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past fifteen years thanks to significant, parallel developments in two closely related areas: observational astronomy and laboratory astrophysics. Fifteen years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon-rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, these cold dust particles are coated with mixed-molecular ices whose compositions are very well known. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the ISM. This great progress has only been made possible by the close collaboration of laboratory experimentalists with observers and theoreticians, all with the goal of applying their skills to astrophysical problems of direct interest to NASA programs. Such highly interdisciplinary collaborations ensure fundamental, in depth coverage of the wide-ranging challenges posed by astrophysics. These challenges include designing astrophysically focused experiments and data analysis, tightly coupled with astrophysical searches spanning 2 orders of magnitude in wavelength, and detailed theoretical modeling. The impact of our laboratory has been particularly effective as there is constant cross-talk and feedback between quantum theorists; theoretical astrophysicists and chemists; experimental physicists; organic, physical and petroleum chemists; and infrared and UV/Vis astronomers. In this paper, two examples

  3. Introduction to Stellar Astrophysics

    NASA Astrophysics Data System (ADS)

    Böhm-Vitense, Erika

    1992-01-01

    This book is the final one in a series of three texts which together provide a modern, complete and authoritative account of our present knowledge of the stars. It discusses the internal structure and the evolution of stars, and is completely self-contained. There is an emphasis on the basic physics governing stellar structure and the basic ideas on which our understanding of stellar structure is based. The book also provides a comprehensive discussion of stellar evolution. Careful comparison is made between theory and observation, and the author has thus provided a lucid and balanced introductory text for the student. As for volumes 1 and 2, volume 3 is self-contained and can be used as an independent textbook. The author has not only taught but has also published many original papers in this subject. Her clear and readable style should make this text a first choice for undergraduate and beginning graduate students taking courses in astronomy and particularly in stellar astrophysics.

  4. Byurakan Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    This booklet is devoted to NAS RA V. Ambartsumian Byurakan Astrophysical Observatory and is aimed at people interested in astronomy and BAO, pupils and students, BAO visitors and others. The booklet is made as a visiting card and presents concise and full information about BAO. A brief history of BAO, the biography of the great scientist Viktor Ambartsumian, brief biographies of 13 other deserved scientists formerly working at BAO (B.E. Markarian, G.A. Gurzadyan, L.V. Mirzoyan, M.A. Arakelian, et al.), information on BAO telescopes (2.6m, 1m Schmidt, etc.) and other scientific instruments, scientific library and photographic plate archive, Byurakan surveys (including the famous Markarian Survey included in the UNESCO Memory of the World International Register), all scientific meetings held in Byurakan, international scientific collaboration, data on full research staff of the Observatory, as well as former BAO researchers, who have moved to foreign institutions are given in the booklet. At the end, the list of the most important books published by Armenian astronomers and about them is given.

  5. Astrophysical smooth particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rosswog, Stephan

    2009-04-01

    The paper presents a detailed review of the smooth particle hydrodynamics (SPH) method with particular focus on its astrophysical applications. We start by introducing the basic ideas and concepts and thereby outline all ingredients that are necessary for a practical implementation of the method in a working SPH code. Much of SPH's success relies on its excellent conservation properties and therefore the numerical conservation of physical invariants receives much attention throughout this review. The self-consistent derivation of the SPH equations from the Lagrangian of an ideal fluid is the common theme of the remainder of the text. We derive a modern, Newtonian SPH formulation from the Lagrangian of an ideal fluid. It accounts for changes of the local resolution lengths which result in corrective, so-called "grad-h-terms". We extend this strategy to special relativity for which we derive the corresponding grad-h equation set. The variational approach is further applied to a general-relativistic fluid evolving in a fixed, curved background space-time. Particular care is taken to explicitly derive all relevant equations in a coherent way.

  6. Neutron reactions in astrophysics

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Lederer, C.; Käppeler, F.

    2014-05-01

    The quest for the origin of matter in the Universe had been the subject of philosophical and theological debates over the history of mankind, but quantitative answers could be found only by the scientific achievements of the last century. A first important step on this way was the development of spectral analysis by Kirchhoff and Bunsen in the middle of the 19th century, which provided first insight in the chemical composition of the sun and the stars. The energy source of the stars and the related processes of nucleosynthesis, however, could be revealed only with the discoveries of nuclear physics. A final break-through came eventually with the compilation of elemental and isotopic abundances in the solar system, which reflect the various nucleosynthetic processes in detail. This review focuses on the mass region above iron, where the formation of the elements is dominated by neutron capture, mainly in the slow (s) and rapid (r) processes. Following a brief historic account and a sketch of the relevant astrophysical models, emphasis is put on the nuclear physics input, where status and perspectives of experimental approaches are presented in some detail, complemented by the indispensable role of theory.

  7. Nuclear and particle astrophysics

    SciTech Connect

    Glendenning, N.K.

    1990-10-31

    We discuss the physics of matter that is relevant to the structure of compact stars. This includes nuclear, neutron star matter and quark matter and phase transitions between them. Many aspects of neutron star structure and its dependance on a number of physical assumptions about nuclear matter properties and hyperon couplings are investigated. We also discuss the prospects for obtaining constraints on the equation of state from astrophysical sources. Neuron star masses although few are known at present, provide a very direct constraint in as much as the connection to the equation of state involves only the assumption that Einstein's general of theory of relativity is correct at the macroscopic scale. Supernovae simulations involve such a plethora of physical processes including those involved in the evolution of the precollapse configuration, not all of them known or understood, that they provide no constraint at the present time. Indeed the prompt explosion, from which a constraint had been thought to follow, is now believed not to be mechanism by which most, if any stars, explode. In any case the nuclear equation of state is but one of a multitude on uncertain factors, and possibly one of the least important. The rapid rotation of pulsars is also discussed. It is shown that for periods below a certain limit it becomes increasingly difficult to reconcile them with neutron stars. Strange stars are possible if strange matter is the absolute ground state. We discuss such stars and their compatibility with observation. 112 refs., 37 figs., 6 tabs.

  8. Particle Astrophysics Using Balloons

    NASA Astrophysics Data System (ADS)

    Seo, E. S.

    Cosmic rays, energetic particles coming from outer space, bring us information about the physical processes that accelerate particles to relativistic energies, about the effects of those particles in driving dynamical processes in our Galaxy, and about the distribution of matter and fields in interstellar space. Cosmic rays were discovered in the early twentieth century using a balloon-borne electroscope. Balloons are currently being used for answering fundamental questions about the cosmos: (1) Is the Universe symmetric, and if so where is the antimatter? (2) What is the dark matter? (3) How do cosmic rays get their enormous energies? (4) Can the entire energy spectrum of cosmic rays result from a single acceleration mechanism? (5) Are supernovae really the sources of cosmic rays? (6) What is the history of cosmic rays in the Galaxy? (7) What is the origin of the "knee" in the cosmic ray energy spectrum? etc. The status of results from past balloon-borne measurements and expected results from ongoing and planned future balloon-borne particle astrophysics experiments will be reviewed.

  9. GRB Astrophysics with LOBSTER

    SciTech Connect

    Hudec, R.; Pina, L.; Sveda, L.; Inneman, A.

    2006-05-19

    We refer on the recent developments of LOBSTER project suggesting novel wide-field Lobster-Eye type of X-ray All Sky Monitor to detect and to analyze GRBs including XRF and X-ray rich GRBs. The triggers can be detected and localized by their X-ray emission in the 0.1 - 8 keV energy range. The system exhibits fine detecting sensitivities of order of 10-12 ergcm-2s-1 and the localization accuracy is of order of a few arcmin. The LOBSTER is expected to contribute significantly to analyses of GRBs and especially the XRFs.

  10. Radiative capture reactions in astrophysics

    DOE PAGES

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  11. An introduction to modern astrophysics and cosmology

    NASA Astrophysics Data System (ADS)

    Carroll, Bradley W.; Ostlie, Dale A.

    2006-07-01

    "An introduction to modern astrophysics, 2nd Edition" has been thoroughly revised to reflect the dramatic changes and advancements in astrophysics that have occurred over the past decade. This book has been updated to include the latest results from relevant fields of astrophysics and advances in our theoretical understanding of astrophysical phenomena.

  12. Minicourses in Astrophysics, Modular Approach, Vol. I.

    ERIC Educational Resources Information Center

    Illinois Univ., Chicago.

    This is the first volume of a two-volume minicourse in astrophysics. It contains chapters on the following topics: planetary atmospheres; X-ray astronomy; radio astrophysics; molecular astrophysics; and gamma-ray astrophysics. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are included with…

  13. Firearm trigger assembly

    DOEpatents

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  14. Computational astrophysics: Pulsating stars

    NASA Astrophysics Data System (ADS)

    Davis, C. G.

    The field of computational astrophysics in pulsating star studies has grown considerably since the advent of the computer. Initially calculations were done on the IBM 704 with 32K of memory and now we use the CRAY YMP computers with considerably more memory. Our early studies were for models of pulsating stars using a 1D Lagrangian hydrodynamic code (SPEC) with radiation diffusion. The radiative transfer was treated in the equilibrium diffusion approximation and the hydrodynamics was done utilizing the approximation of artificial viscosity. The early calculations took many hours of 704 CPU time. Early in 1965 we decided to improve on the usual treatment of the radiative transfer used in our codes by utilizing the method of moments, the so-called variable Eddington approximation. In this approximation the material energy field is uncoupled from the radiation energy field and the angular dependence is introduced through the Eddington factor. A multigroup frequency dependent method may also be applied. The Eddington factor is determined by snapshots of the stars structure utilizing a y-line approximation. The full radiative transfer approximation appears necessary in order to understand the light curves for W Virginia stars and may be important for the light curves of RR Lyrae stars. A detailed radiative transfer method does not appear to be necessary for the understanding of Cepheid light curves. A recent improvement to our models for pulsating stars is in the use of an adaptive mesh scheme to resolve the sharp features in the nonlinear hydrodynamic structure. From these improved structures, better analysis of the radius, velocity, and light curves could be obtained.

  15. Astrometry for Astrophysics

    NASA Astrophysics Data System (ADS)

    van Altena, William F.

    Part I. Astrometry in the Twenty-First Century: 1. Opportunities and challenges for astrometry in the twenty-first century M. Perryman; 2. Astrometric satellites L. Lindegren; 3. Ground-based opportunities for astrometry N. Zacharias; Part II. Relativistic Foundations of Astrometry and Celestial Mechanics: 4. Vectors in astrometry, an introduction L. Lindegren; 5. Relativistic principles of astrometry and celestial mechanics S. Klioner; 6. Celestial mechanics of the N-body problem S. Klioner; 7. Celestial coordinate systems and positions N. Capitaine and M. Stavinschi; 8. Fundamental algorithms for celestial coordinates and positions P. Wallace; Part III. Observing through the Atmosphere: 9. The Earth's atmosphere: refraction, turbulence, delays and limitations to astrometic precision W. van Altena and E. Fomalont; 10. Astrometry with ground-based diffraction-limited imaging A. Ghez; 11. Optical interferometry A. Glindermann; 12. Radio interferometry E. Fomalont; Part VI. From Detected Photons to the Celestial Sphere: 13. Geometrical optics and astrometry D. Schroeder; 14. CCD imaging detectors S. Howell; 15. Using CCDs in the time-delayed integration mode D. Rabinowitz; 16. Statistical astronomy A. Brown; 17. Analyzing poorly-sampled images: HST imaging astrometry J. Anderson; 18. Image deconvolution J. Nuñez; 19. From measures to celestial coordinates Z. H. Tang and W. van Altena; 20. Astrometric catalogs: concepts, history and necessity C. López; 21. Trigonometric parallaxes F. Benedict and B. McArthur; Part V. Applications of Astrometry to Topics in Astrophysics: 22. Galactic structure astrometry R. Méndez; 23. Binary and multiple stars E. Horch; 24. Binaries: HST, Hipparcos and Gaia D. Pourbaix; 25. Star clusters I. Platais; 26. Solar System astrometry F. Mignard; 27. Extrasolar planets A. Sozzetti; 28. Astrometric measurement and cosmology R. Easther; Appendices; Index.

  16. Astrometry for Astrophysics

    NASA Astrophysics Data System (ADS)

    van Altena, William F.

    2012-11-01

    Part I. Astrometry in the Twenty-First Century: 1. Opportunities and challenges for astrometry in the twenty-first century M. Perryman; 2. Astrometric satellites L. Lindegren; 3. Ground-based opportunities for astrometry N. Zacharias; Part II. Relativistic Foundations of Astrometry and Celestial Mechanics: 4. Vectors in astrometry, an introduction L. Lindegren; 5. Relativistic principles of astrometry and celestial mechanics S. Klioner; 6. Celestial mechanics of the N-body problem S. Klioner; 7. Celestial coordinate systems and positions N. Capitaine and M. Stavinschi; 8. Fundamental algorithms for celestial coordinates and positions P. Wallace; Part III. Observing through the Atmosphere: 9. The Earth's atmosphere: refraction, turbulence, delays and limitations to astrometic precision W. van Altena and E. Fomalont; 10. Astrometry with ground-based diffraction-limited imaging A. Ghez; 11. Optical interferometry A. Glindermann; 12. Radio interferometry E. Fomalont; Part VI. From Detected Photons to the Celestial Sphere: 13. Geometrical optics and astrometry D. Schroeder; 14. CCD imaging detectors S. Howell; 15. Using CCDs in the time-delayed integration mode D. Rabinowitz; 16. StaStatistical astronomy A. Brown; 17. Analyzing poorly-sampled images: HST imaging astrometry J. Anderson; 18. Image deconvolution J. Nuñez; 19. From measures to celestial coordinates Z. H. Tang and W. van Altena; 20. Astrometric catalogs: concepts , history and necessity C. Löpez; 21. Trigonometric parallaxes F. Benedict and B. McArthur; Part V. Applications of Astrometry to Topics in Astrophysics: 22. Galactic structure astrometry R. Méndez; 23. Binary and multiple stars E. Horch; 24. Binaries: HST, Hipparcos and Gaia D. Pourbaix; 25. Star clusters I. Platais; 26. Solar System astrometry F. Mignard; 27. Extrasolar planets A. Sozzetti; 28. Astrometric measurement and cosmology R. Easther; Appendices; Index.

  17. Magnetized Astrophysical Flows

    NASA Astrophysics Data System (ADS)

    Russo, Matthew

    2016-08-01

    This thesis combines two studies of astrophysical flows in which magnetic fields play a dominant role. The first concerns outflows from compact objects in which plasma is accelerated to highly relativistic speeds by strong, ordered magnetic fields. We generalize the theory of relativistic, ideal magnetohydrodynamic (MHD) outflows by including an intense radiation source as is likely to occur in gamma-ray bursts (GRBs). This represents a hybrid of the traditional fireball and electromagnetic models of GRBs, which posit respectively that the acceleration is accomplished by thermal pressure or magnetic stresses. We find that acceleration is more efficient and occurs over a larger range of radii than in a pure Poynting jet. We also uncover a distinct observational signature in the emitted spectrum when the Poynting flux exceeds the radiation energy flux due to the Compton up-scattering of photons within the relativistic flow. We then turn to study the accretion of magnetized protoplanetary disks (PPDs) in which the assumptions of ideal MHD begin to break down due to the low level of ionization. We develop a novel model that prescribes the profiles of the magnetic field and mass flux in PPDs by tying them to the field of a magnetized, radial protostellar wind. We find that the inner disk is more strongly magnetized and thus supports a higher accretion rate by both large scale stresses and turbulence driven by the magnetorotational instability (MRI). This leads to an inside-out clearing of the inner disk that stalls at a low column density when particles are lofted from the midplane to higher altitudes where they suppress MRI turbulence. We calculate the long-term evolution of such a disk and show that the migration of planets is significantly slowed (or reversed), perhaps alleviating one of the central problems concerning the formation of planetary systems.

  18. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  19. Astrophysics of Life

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Reid, I. Neill; Sparks, William B.

    2011-03-01

    1. A voyage from dark clouds to the early Earth P. Ehrenfreund, S. B. Charnley and O. Botta; 2. Galactic environment of the Sun and stars: interstellar and interplanetary material P. C. Frisch, H. R. Muller, G. P. Zank and C. Lopate; 3. Transits R. L. Gilliland; 4. Planet migration E. W. Thommes and J. J. Lissauer; 5. Organic synthesis in space S. A. Sandford; 6. The Vegetation Red Edge Spectroscopic Feature as a surface biomarker S. Seager and E. B. Ford; 7. Search for extra-solar planets through gravitational microlensing K. C. Sahu; 8. The galactic habitable zone G. Gonzalez; 9. Cosmology and life M. Livio.

  20. Lecture Notes and Essays in Astrophysics. II Astrophysics Symposium of the GEA-RSEF.

    NASA Astrophysics Data System (ADS)

    Ulla, Ana; Manteiga, Minia

    2006-12-01

    This second volume of "Lecture Notes and Essays in Astrophysics" contains a selection of lectures on a variety of topics that contribute to illustrate the current healthy state of Spanish Astrophysics. The first "lecture notes" review two space projects with a relevant participation from the Spanish Astrophysical community, CoRoT and Cassini-Huygens missions. The present-day knowledge about Titan, the solar system object with a physical environment most similar to that at Earth, is carefully revised in a pleasant lecture by Luisa María Lara, Rafael Rodrigo and José Juan López Moreno. The recent success in the launching and operativity of the CoRoT mission increases even more the interest of the review by Rafael Garrido and Hans J. Deeg illustrating the search for exoplanets by the CoRoT satellite. The potential discovery of Earth-like planets around other stars will need, apart from sophisticated technological development, the design of techniques for identifying the most representative parameters of their atmospheres and surfaces. Manuel Vazquez, P. Montañés Rodríguez and E. Pallé, review the main results of observations and simulations looking at our planet with low or null resolution, in other words, considering the Earth as an exoplanet. Our aim is to offer the specialized public, and particularly to graduate and postgraduate astrophysics students, selected comprehensive reviews on hot topics lectured by expert researchers on the subject ("Lecture Notes"). As in the first volume of the series, this issue is complemented by a set of chapters on more specific topics ("Essays").

  1. Astrophysical Plasma Emission Database: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Smith, Randall K.; Brickhouse, N. S.; Liedahl, D. A.

    The Astrophysical Plasma Emission Database (APED) contains atomic data for the 14 most abundant astrophysical elements collected from the literature. Although APED was originally designed for use in calculating a collisional-equilibrium X-ray spectrum suitable for analysis of high-resolution data it is in a general format which can be efficiently used to calculate absorption spectra photoionization models and non-equilibrium collisional models. We emphasize original sources; each transition rate and energy level in APED contains a bibliographic reference. The entire APED can be downloaded from http://cxc.harvard.edu/atomdb/ or our website WebGUIDE (http://obsvis.harvard.edu/WebGUIDE/) can be used to search for individual lines or transitions. We are continually working to expand APED (current version 1.3.0) and regularly issue updated collections. I will present some new results for non-equilibrium plasmas from our upcoming release and discuss a new project AstroAtom (http://cfa-www.harvard.edu/astroatom/) a website designed to foster communication between atomic physicists and astrophysicists.

  2. Stellar Astrophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Thompson, Michael J.; Christensen-Dalsgaard, Jørgen

    2008-02-01

    Preface; 1. A selective overview Jørgen Christensen-Dalsgaard and Michael J. Thompson; Part I. Stellar Convection and Oscillations: 2. On the diversity of stellar pulsations Wojciech A. Dziembowski; 3. Acoustic radiation and mode excitation by turbulent convection Günter Houdek; 4. Understanding roAp stars Margarida S. Cunha; 5. Waves in the magnetised solar atmosphere Colin S. Rosenthal; Part II. Stellar Rotation and Magnetic Fields: 6. Stellar rotation: a historical survey Leon Mestel; 7. The oscillations of rapidly rotating stars Michel Rieutord; 8. Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between? Michael E. McIntyre; 9. Dynamics of the solar tachocline Pascale Garaud; 10. Dynamo processes: the interaction of turbulence and magnetic fields Michael Proctor; 11. Dynamos in planets Chris Jones; Part III. Physics and Structure of Stellar Interiors: 12. Solar constraints on the equation of state Werner Däppen; 13. 3He transport and the solar neutrino problem Chris Jordinson; 14. Mixing in stellar radiation zones Jean-Paul Zahn; 15. Element settling and rotation-induced mixing in slowly rotating stars Sylvie Vauclair; Part IV. Helio- and Asteroseismology: 16. Solar structure and the neutrino problem Hiromoto Shibahashi; 17. Helioseismic data analysis Jesper Schou; 18. Seismology of solar rotation Takashi Sekii; 19. Telechronohelioseismology Alexander Kosovichev; Part V. Large-Scale Numerical Experiments: 20. Bridges between helioseismology and models of convection zone dynamics Juri Toomre; 21. Numerical simulations of the solar convection zone Julian R. Elliott; 22. Modelling solar and stellar magnetoconvection Nigel Weiss; 23. Nonlinear magnetoconvection in the presence of a strong oblique field Keith Julien, Edgar Knobloch and Steven M. Tobias; 24. Simulations of astrophysical fluids Marcus Brüggen; Part VI. Dynamics: 25. A magic electromagnetic field Donald Lynden-Bell; 26. Continuum equations for stellar dynamics Edward A

  3. Stellar Astrophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Thompson, Michael J.; Christensen-Dalsgaard, Jørgen

    2003-05-01

    Preface; 1. A selective overview Jørgen Christensen-Dalsgaard and Michael J. Thompson; Part I. Stellar Convection and Oscillations: 2. On the diversity of stellar pulsations Wojciech A. Dziembowski; 3. Acoustic radiation and mode excitation by turbulent convection Günter Houdek; 4. Understanding roAp stars Margarida S. Cunha; 5. Waves in the magnetised solar atmosphere Colin S. Rosenthal; Part II. Stellar Rotation and Magnetic Fields: 6. Stellar rotation: a historical survey Leon Mestel; 7. The oscillations of rapidly rotating stars Michel Rieutord; 8. Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between? Michael E. McIntyre; 9. Dynamics of the solar tachocline Pascale Garaud; 10. Dynamo processes: the interaction of turbulence and magnetic fields Michael Proctor; 11. Dynamos in planets Chris Jones; Part III. Physics and Structure of Stellar Interiors: 12. Solar constraints on the equation of state Werner Däppen; 13. 3He transport and the solar neutrino problem Chris Jordinson; 14. Mixing in stellar radiation zones Jean-Paul Zahn; 15. Element settling and rotation-induced mixing in slowly rotating stars Sylvie Vauclair; Part IV. Helio- and Asteroseismology: 16. Solar structure and the neutrino problem Hiromoto Shibahashi; 17. Helioseismic data analysis Jesper Schou; 18. Seismology of solar rotation Takashi Sekii; 19. Telechronohelioseismology Alexander Kosovichev; Part V. Large-Scale Numerical Experiments: 20. Bridges between helioseismology and models of convection zone dynamics Juri Toomre; 21. Numerical simulations of the solar convection zone Julian R. Elliott; 22. Modelling solar and stellar magnetoconvection Nigel Weiss; 23. Nonlinear magnetoconvection in the presence of a strong oblique field Keith Julien, Edgar Knobloch and Steven M. Tobias; 24. Simulations of astrophysical fluids Marcus Brüggen; Part VI. Dynamics: 25. A magic electromagnetic field Donald Lynden-Bell; 26. Continuum equations for stellar dynamics Edward A

  4. Exotic nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2012-07-01

    Recently the academic community has marked several anniversaries connected with discoveries that played a significant role in the development of astrophysical investigations. The year 2009 was proclaimed by the United Nations the International Year of Astronomy. This was associated with the 400th anniversary of Galileo Galilei's discovery of the optical telescope, which marked the beginning of regular research in the field of astronomy. An important contribution to not only the development of physics of the microcosm, but also to the understanding of processes occurring in the Universe, was the discovery of the atomic nucleus made by E. Rutherford 100 years ago. Since then the investigations in the fields of physics of particles and atomic nuclei have helped to understand many processes in the microcosm. Exactly 80 years ago, K. Yanski used a radio-telescope in order to receive the radiation from cosmic objects for the first time, and at the present time this research area of physics is the most efficient method for studying the properties of the Universe. Finally, the April 12, 1961 (50 years ago) launching of the first sputnik into space with a human being onboard, the Russian cosmonaut Yuri Gagarin, marked the beginning of exploration of the Universe with the direct participation of man. All these achievements considerably extended our ideas about the Universe. This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclear-physics methods for studying cosmic objects and properties of the Universe. The results of

  5. Topics in theoretical astrophysics

    NASA Astrophysics Data System (ADS)

    Li, Chao

    This thesis presents a study of various interesting problems in theoretical astrophysics, including gravitational wave astronomy, gamma ray bursts and cosmology. Chapters 2, 3 and 4 explore prospects for detecting gravitational waves from stellar-mass compact objects spiraling into intermediate-mass black holes with ground-based observatories. It is shown in chapter 2 that if the central body is not a BH but its metric is stationary, axisymmetric, reflection symmetric and asymptotically flat, then the waves will likely be triperiodic, as for a BH. Chapters 3 and 4 show that the evolutions of the waves' three fundamental frequencies and of the complex amplitudes of their spectral components encode (in principle) details of the central body's metric, the energy and angular momentum exchange between the central body and the orbit, and the time-evolving orbital elements. Chapter 5 studies a local readout method to enhance the low frequency sensitivity of detuned signal-recycling interferometers. We provide both the results of improvement in quantum noise and the implementation details in Advanced LIGO. Chapter 6 applies and generalizes causal Wiener filter to data analysis in macroscopic quantum mechanical experiments. With the causal Wiener filter method, we demonstrate that in theory we can put the test masses in the interferometer to its quantum mechanical ground states. Chapter 7 presents some analytical solutions for expanding fireballs, the common theoretical model for gamma ray bursts and soft gamma ray repeaters. We apply our results to SGR 1806-20 and rediscover the mismatch between the model and the afterglow observations. Chapter 8 discusses the reconstruction of the scalar-field potential of the dark energy. We advocate direct reconstruction of the scalar field potential as a way to minimize prior assumptions on the shape, and thus minimize the introduction of bias in the derived potential. Chapter 9 discusses gravitational lensing modifications to cosmic

  6. High Energy Density Laboratory Astrophysics

    SciTech Connect

    Remington, B A

    2004-11-11

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we will review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  7. The Next Century Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1991-01-01

    The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.

  8. The photochemistry of pyrimidine in realistic astrophysical ices and the production of nucleobases

    SciTech Connect

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C{sub 4}H{sub 4}N{sub 2}) in H{sub 2}O-rich ice mixtures that contain NH{sub 3}, CH{sub 3}OH, or CH{sub 4} leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H{sub 2}O, CH{sub 3}OH, and NH{sub 3}, with or without CH{sub 4}, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  9. FOREWORD: Nuclear Physics in Astrophysics V

    NASA Astrophysics Data System (ADS)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    of neutrinos, such as double-beta decay and neutrino mixing were well represented at the conference. One of the central problems in modern cosmology and astrophysics is the search for dark matter. Several talks dealt with this subject and with methods to detect dark matter. Another intriguing and rather novel subject that was discussed at the meeting was time variation of fundamental physical constants. Two speakers have examined the sensitivity of Big-Bang Nucleosynthesis to the variation of the values of the fundamental constants. The role of some specific nuclei (such as Ni 56) in cosmology was pointed out. Many of the presentations at the conference described experimental studies of reactions relevant to nucleosynthesis at various stages of cosmic evolution. As reflected in the conference, these activities are widespread, encompassing many laboratories. Rare Isotope Beam (RIB) facilities are in the forefront of these studies. To understand the various processes of nucleosynthesis one has to have a good theory of nuclei far from the stability line. A number of presentations dealt with the description of such exotic nuclei. It is clear from the presentations that the future of experimental nuclear astrophysics looks promising as existing experimental facilities are being upgraded and new facilities are being built. X-Ray and Gamma-Ray Bursts and cosmic explosions were the subject of several talks. A discussion of various experiments attempting to measure time-reversal violation was the subject of one lecture. The solution of the puzzle as to why the universe is asymmetric with respect to matter-antimatter requires knowledge of the limit of time-reversal conservation. The late John Bahcall was a great astrophysicist and a supporter of the conference series 'Nuclear physics in Astrophysics'. On the last day of the conference, following a talk by Neta Bahcall from Princeton University on dark matter in the Universe, a short commemoration for John was held. Detailed

  10. Nuclear astrophysics lessons from INTEGRAL.

    PubMed

    Diehl, Roland

    2013-02-01

    Measurements of high-energy photons from cosmic sources of nuclear radiation through ESA's INTEGRAL mission have advanced our knowledge: new data with high spectral resolution showed that characteristic gamma-ray lines from radioactive decays occur throughout the Galaxy in its interstellar medium. Although the number of detected sources and often the significance of the astrophysical results remain modest, conclusions derived from this unique astronomical window of radiation originating from nuclear processes are important, complementing the widely-employed atomic-line based spectroscopy. We review the results and insights obtained in the past decade from gamma-ray line measurements of cosmic sources in the context of their astrophysical questions.

  11. Nuclear astrophysics and electron beams

    SciTech Connect

    Schwenk, A.

    2013-11-07

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  12. Experimental High Energy Neutrino Astrophysics

    SciTech Connect

    Distefano, Carla

    2005-10-12

    Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

  13. Novel laboratory simulations of astrophysical jets

    NASA Astrophysics Data System (ADS)

    Brady, Parrish Clawson

    This thesis was motivated by the promise that some physical aspects of astrophysical jets and collimation processes can be scaled to laboratory parameters through hydrodynamic scaling laws. The simulation of astrophysical jet phenomena with laser-produced plasmas was attractive because the laser- target interaction can inject energetic, repeatable plasma into an external environment. Novel laboratory simulations of astrophysical jets involved constructing and using the YOGA laser, giving a 1064 nm, 8 ns pulse laser with energies up to 3.7 + 0.2 J . Laser-produced plasmas were characterized using Schlieren, interferometry and ICCD photography for their use in simulating jet and magnetosphere physics. The evolution of the laser-produced plasma in various conditions was compared with self-similar solutions and HYADES computer simulations. Millimeter-scale magnetized collimated outflows were produced by a centimeter scale cylindrically symmetric electrode configuration triggered by a laser-produced plasma. A cavity with a flared nozzle surrounded the center electrode and the electrode ablation created supersonic uncollimated flows. This flow became collimated when the center electrode changed from an anodeto a cathode. The plasma jets were in axially directed permanent magnetic fields with strengths up to 5000 Gauss. The collimated magnetized jets were 0.1-0. 3 cm wide, up to 2.0 cm long, and had velocities of ~4.0 × 10 6 cm/s. The dynamics of the evolution of the jet were compared qualitatively and quantitatively with fluxtube simulations from Bellan's formulation [6] giving a calculated estimate of ~2.6 × 10 6 cm/s for jet evolution velocity and evidence for jet rotation. The density measured with interferometry was 1.9 ± 0.2 × 10 17 cm -3 compared with 2.1 × 10 16 cm -3 calculated with Bellan's pressure balance formulation. Kinks in the jet column were produced consistent with the Kruskal-Shafranov condition which allowed stable and symmetric jets to form with

  14. A review of astrophysical reconnection

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Magnetic reconnection is a basic plasma process involving rapid rearrangement of magnetic field topology. It often leads to violent release of magnetic energy and its conversion to the plasma thermal and kinetic energy as well as nonthermal particle acceleration. It is thus believed to power numerous types of explosive phenomena both inside and outside the Solar system, including various kinds of high-energy flares. In this talk I will first give an overview of astrophysical systems where reconnection is believed to play an important role. Examples include pulsed high-energy emission in pulsar magnetospheres; gamma-ray flares in pulsar wind nebulae and AGN/blazar jets; Gamma-Ray Bursts; and giant flares in magnetar systems. I will also analyze the physical conditions of the plasma in some of these astrophysical systems and will discuss the fundamental physical differences between various astrophysical instances of magnetic reconnection and the more familiar solar and space examples of reconnection. In particular, I will demonstrate the importance of including radiative effects in order to understand astrophysical magnetic reconnection and in order to connect our theoretical models with the observed radiation signatures.

  15. Astrophysics on the Lab Bench

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2010-01-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a…

  16. Indirect methods in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.

    2016-04-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions.

  17. Condensation Processes in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Rietmeijer, Frans J. M.; Hill, Hugh G. M.

    2002-01-01

    Astrophysical systems present an intriguing set of challenges for laboratory chemists. Chemistry occurs in regions considered an excellent vacuum by laboratory standards and at temperatures that would vaporize laboratory equipment. Outflows around Asymptotic Giant Branch (AGB) stars have timescales ranging from seconds to weeks depending on the distance of the region of interest from the star and, on the way significant changes in the state variables are defined. The atmospheres in normal stars may only change significantly on several billion-year timescales. Most laboratory experiments carried out to understand astrophysical processes are not done at conditions that perfectly match the natural suite of state variables or timescales appropriate for natural conditions. Experimenters must make use of simple analog experiments that place limits on the behavior of natural systems, often extrapolating to lower-pressure and/or higher-temperature environments. Nevertheless, we argue that well-conceived experiments will often provide insights into astrophysical processes that are impossible to obtain through models or observations. This is especially true for complex chemical phenomena such as the formation and metamorphism of refractory grains under a range of astrophysical conditions. Data obtained in our laboratory has been surprising in numerous ways, ranging from the composition of the condensates to the thermal evolution of their spectral properties. None of this information could have been predicted from first principals and would not have been credible even if it had.

  18. Development of a Guide Star Search System.

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Omata, K.; Takata, T.; Kosugi, G.; Ozawa, T.; Ichikawa, S.; Sasaki, T.

    1997-03-01

    A Guide Star Search System is developed with the aid of a script language for building GUI, Tcl/Tk. Using a Data Base Management System, the authors have realized quick search for guide stars in an observational field from the Guide Star Catalog and the Smithsonian Astrophysical Observatory Star Catalog. This system has been implemented in OOPS (Okoyama Optical Polarimetry and Spectroscopy System) at Okayama Astrophysical Observatory.

  19. International Olympiad on Astronomy and Astrophysics

    ERIC Educational Resources Information Center

    Soonthornthum, B.; Kunjaya, C.

    2011-01-01

    The International Olympiad on Astronomy and Astrophysics, an annual astronomy and astrophysics competition for high school students, is described. Examples of problems and solutions from the competition are also given. (Contains 3 figures.)

  20. Symposium on Recent Results in Infrared Astrophysics

    NASA Technical Reports Server (NTRS)

    Dyal, P. (Editor)

    1977-01-01

    Abstracts of papers presented at a symposium titled Recent Results in Infrared Astrophysics are set forth. The abstracts emphasize photometric, spectroscopic, polarization, and theoretical results on a broad range of current topics in infrared astrophysics.

  1. Introducing Astrophysics Research to High School Students.

    ERIC Educational Resources Information Center

    Etkina, Eugenia; Lawrence, Michael; Charney, Jeff

    1999-01-01

    Presents an analysis of an astrophysics institute designed for high school students. Investigates how students respond cognitively in an active science-learning environment in which they serve as apprentices to university astrophysics professors. (Author/CCM)

  2. Computational Infrastructure for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Lingerfelt, E. J.; Scott, J. P.; Nesaraja, C. D.; Hix, W. R.; Bardayan, D. W.; Blackmon, J. C.; Chae, K.; Guidry, M. W.; Hard, C. C.; Sharp, J. E.; Kozub, R. L.; Meyer, R. A.

    2004-12-01

    The Computational Infrastructure for Nuclear Astrophysics is a platform-independent, online suite of computer codes developed by the ORNL Nuclear Data Project that makes a rapid connection between laboratory nuclear physics results and astrophysical models. It enables users to evaluate cross sections, process them into thermonuclear reaction rates, and parameterize (with a few percent accuracy) these rates that vary by up to 30 orders of magnitude over the temperatures of interest. Users can then properly format these rates for input into astrophysical computer simulations, create and manipulate libraries of rates, as well as run and visualize sample post-processing nucleosynthesis calculations. For example, we have developed animated nuclide charts that show how predicted abundances (represented by a user-defined color scale) change in time. With this unique suite, users can within a very short time quantify the astrophysical impact of a newly measured or calculated cross section, or a newly created customized reaction rate library, and then document and share their results with the scientific community. The suite has a straightforward interface with a "Windows Wizard" motif whereby users progress through complicated calculations in a step-by-step fashion. Users can upload their own files for processing and save their work on our server, as well as work with files that other users wish to share. These tools are currently being used to investigate novae and X-ray bursts. The suite is available through nucastrodata.org, a website that also hyperlinks available nuclear data sets relevant for nuclear astrophysics research. New features are continually being added to this software, which is funded by the U.S. Department of Energy Low Energy Nuclear Physics and Nuclear Data Programs. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  3. Toward Understanding Astrophysical Phenomena

    NASA Astrophysics Data System (ADS)

    Luan, Jing

    2015-06-01

    algorithm also has the flexibility to trigger electromagnetic (EM) observation before the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method. (Abstract shortened by UMI.).

  4. Hydrodynamic Instability, Integrated Code, Laboratory Astrophysics, and Astrophysics

    NASA Astrophysics Data System (ADS)

    Takabe, Hideaki

    2016-10-01

    This is an article for the memorial lecture of Edward Teller Medal and is presented as memorial lecture at the IFSA03 conference held on September 12th, 2003, at Monterey, CA. The author focuses on his main contributions to fusion science and its extension to astrophysics in the field of theory and computation by picking up five topics. The first one is the anomalous resisitivity to hot electrons penetrating over-dense region through the ion wave turbulence driven by the return current compensating the current flow by the hot electrons. It is concluded that almost the same value of potential as the average kinetic energy of the hot electrons is realized to prevent the penetration of the hot electrons. The second is the ablative stabilization of Rayleigh-Taylor instability at ablation front and its dispersion relation so-called Takabe formula. This formula gave a principal guideline for stable target design. The author has developed an integrated code ILESTA (ID & 2D) for analyses and design of laser produced plasma including implosion dynamics. It is also applied to design high gain targets. The third is the development of the integrated code ILESTA. The forth is on Laboratory Astrophysics with intense lasers. This consists of two parts; one is review on its historical background and the other is on how we relate laser plasma to wide-ranging astrophysics and the purposes for promoting such research. In relation to one purpose, I gave a comment on anomalous transport of relativistic electrons in Fast Ignition laser fusion scheme. Finally, I briefly summarize recent activity in relation to application of the author's experience to the development of an integrated code for studying extreme phenomena in astrophysics.

  5. Hydrodynamic Instability, Integrated Code, Laboratory Astrophysics, and Astrophysics

    NASA Astrophysics Data System (ADS)

    Takabe, Hideaki

    This is an article for the memorial lecture of Edward Teller Medal and is presented as memorial lecture at the IFSA03 conference held on September 12th, 2003, at Monterey, CA. The author focuses on his main contributions to fusion science and its extension to astrophysics in the field of theory and computation by picking up five topics. The first one is the anomalous resisitivity to hot electrons penetrating over-dense region through the ion wave turbulence driven by the return current compensating the current flow by the hot electrons. It is concluded that almost the same value of potential as the average kinetic energy of the hot electrons is realized to prevent the penetration of the hot electrons. The second is the ablative stabilization of Rayleigh-Taylor instability at ablation front and its dispersion relation so-called Takabe formula. This formula gave a principal guideline for stable target design. The author has developed an integrated code ILESTA (1D & 2D) for analyses and design of laser produced plasma including implosion dynamics. It is also applied to design high gain targets. The third is the development of the integrated code ILESTA. The forth is on Laboratory Astrophysics with intense lasers. This consists of two parts; one is review on its historical background and the other is on how we relate laser plasma to wide-ranging astrophysics and the purposes for promoting such research. In relation to one purpose, I gave a comment on anomalous transport of relativistic electrons in Fast Ignition laser fusion scheme. Finally, I briefly summarize recent activity in relation to application of the author's experience to the development of an integrated code for studying extreme phenomena in astrophysics.

  6. Laboratory Astrophysics White Paper: Summary of Laboratory Astrophysics Needs

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Laboratory Astrophysics Workshop (NASA LAW) met at NASA Ames Research Center from 1-3 May 2002 to assess the role that laboratory astrophysics plays in the optimization of NASA missions, both at the science conception level and at the science return level. Space missions provide understanding of fundamental questions regarding the origin and evolution of galaxies, stars, and planetary systems. In all of these areas the interpretation of results from NASA's space missions relies crucially upon data obtained from the laboratory. We stress that Laboratory Astrophysics is important not only in the interpretation of data, but also in the design and planning of future missions. We recognize a symbiosis between missions to explore the universe and the underlying basic data needed to interpret the data from those missions. In the following we provide a summary of the consensus results from our Workshop, starting with general programmatic findings and followed by a list of more specific scientific areas that need attention. We stress that this is a 'living document' and that these lists are subject to change as new missions or new areas of research rise to the fore.

  7. Updated THM Astrophysical Factor of the 19F(p, α)16O Reaction and Influence of New Direct Data at Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Palmerini, S.; Spitaleri, C.; Indelicato, I.; Mukhamedzhanov, A. M.; Lombardo, I.; Trippella, O.

    2015-06-01

    Fluorine nucleosynthesis represents one of the most intriguing open questions in nuclear astrophysics. It has triggered new measurements which may modify the presently accepted paradigm of fluorine production and establish fluorine as an accurate probe of the inner layers of asymptotic giant branch (AGB) stars. Both direct and indirect measurements have attempted to improve the recommended extrapolation to astrophysical energies, showing no resonances. In this work, we will demonstrate that the interplay between direct and indirect techniques represents the most suitable approach to attain the required accuracy for the astrophysical factor at low energies, {{E}c.m.}≲ 300 keV, which is of interest for fluorine nucleosynthesis in AGB stars. We will use the recently measured direct 19F{{(p,α )}16}O astrophysical factor in the 600 keV≲ {{E}c.m.}≲ 800 keV energy interval to renormalize the existing Trojan Horse Method (THM) data spanning the astrophysical energies, accounting for all identified sources of uncertainty. This has a twofold impact on nuclear astrophysics. It shows the robustness of the THM approach even in the case of direct data of questionable quality, as normalization is extended over a broad range, minimizing systematic effects. Moreover, it allows us to obtain more accurate resonance data at astrophysical energies, thanks to the improved 19F{{(p,α )}16}O direct data. Finally, the present work strongly calls for more accurate direct data at low energies, so that we can obtain a better fitting of the direct reaction mechanism contributing to the 19F{{(p,α )}16}O astrophysical factor. Indeed, this work points out that the major source of uncertainty affecting the low-energy S(E) factor is the estimate of the non-resonant contribution, as the dominant role of the 113 keV resonance is now well established.

  8. BOOK REVIEW: Astrophysics (Advanced Physics Readers)

    NASA Astrophysics Data System (ADS)

    Kibble, Bob

    2000-07-01

    Here is a handy and attractive reader to support students on post-16 courses. It covers the astrophysics, astronomy and cosmology that are demanded at A-level and offers anyone interested in these fields an interesting and engaging reference book. The author and the production team deserve credit for producing such an attractive book. The content, in ten chapters, covers what one would expect at this level but it is how it is presented that struck me as the book's most powerful asset. Each chapter ends with a summary of key ideas. Line drawings are clear and convey enough information to make them more than illustrations - they are as valuable as the text in conveying information. Full colour is used throughout to enhance illustrations and tables and to lift key sections of the text. A number of colour photographs complement the material and serve to maintain interest and remind readers that astrophysics is about real observable phenomena. Included towards the end is a set of tables offering information on physical and astronomical data, mathematical techniques and constellation names and abbreviations. This last table puzzled me as to its value. There is a helpful bibliography which includes society contacts and a website related to the text. Perhaps my one regret is that there is no section where students are encouraged to actually do some real astronomy. Astrophysics is in danger of becoming an armchair and calculator interest. There are practical projects that students could undertake either for school assessment or for personal interest. Simple astrophotography to capture star trails, observe star colours and estimate apparent magnitudes is an example, as is a simple double-star search. There are dozens more. However, the author's style is friendly and collaborative. He befriends the reader as they journey together through the ideas. There are progress questions at the end of each chapter. Their style tends to be rather closed and they emphasize factual recall

  9. Astrophysical processes on the Sun

    PubMed Central

    Parnell, Clare E.

    2012-01-01

    Over the past two decades, there have been a series of major solar space missions, namely Yohkoh, SOHO, TRACE, and in the past 5 years, STEREO, Hinode and SDO, studying various aspects of the Sun and providing images and spectroscopic data with amazing temporal, spatial and spectral resolution. Over the same period, the type and nature of numerical models in solar physics have been completely revolutionized as a result of widespread accessibility to parallel computers. These unprecedented advances on both observational and theoretical fronts have led to significant improvements in our understanding of many aspects of the Sun's behaviour and furthered our knowledge of plasma physics processes that govern solar and other astrophysical phenomena. In this Theme Issue, the current perspectives on the main astrophysical processes that shape our Sun are reviewed. In this Introduction, they are discussed briefly to help set the scene. PMID:22665891

  10. Simulations of radiative astrophysical jets

    NASA Astrophysics Data System (ADS)

    Estabrook, Kent; Remington, Bruce; Farley, Dave; Glendinning, Gail; Suter, L. J.; Harte, J. H.; Zimmerman, G. B.; London, R. A.; Stone, James M.; Wood-Vasey, Michael; Drake, R. Paul

    1998-11-01

    Astrophysical jets are poorly understood, but we know that radiation is usually important. Using the LLNL Nova laser facility, we can accelerate jets to velocities of order 10^7cm/sec with either direct laser illumination or radiation drive in either hemispheres or cones. We present 2-D LASNEX simulations of such experiments with medium and high z materials with and without radiation loses[1]. Related papers by Bruce Remington, Dave Farley, James Stone, Gail Glendinning, Paul Drake and Jave Kane are at this meeting. [1] J.M.Stone, J.J.Xu, P.E.Hardee, Astrophysical J. 483,136(1997). Auspices U.S.D.O.E. by LLNL Contract W-7405-ENG-48

  11. Theoretical Studies in Gamma-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1998-01-01

    These studies were stimulated by the reported COMPTEL detection of nuclear gamma ray line emission from the Orion star formation region. Although the observation have very recently been retracted, the detailed analyses that we carried out clearly showed that the low energy cosmic rays that would have been required to explain the reported fluxes were exceedingly restrictive and thus highly improbable. More importantly, these studies proved to be the trigger for very productive new work. In particular, they led us into carefully re-examining the problem of the origin of the light elements, Li, Be and B, where we showed that the light elements could, in fact, be produced primarily by Galactic cosmic rays and did not require an unobserved low energy cosmic ray source , as had been suggested. We further showed that the observed abundances of Be and B in old halo stars contradicted the common belief that the Galactic cosmic rays were accelerated out of the well mixed interstellar medium, and required instead that they be accelerated out of freshly synthesized matter from supernovae. This work, in turn, led us to propose a new origin of Galactic cosmic rays from the refractory grains in supernova enriched core of superbubbles, which is now the subject of our on-going research under a new grant from the Astrophysics Theory Program.

  12. Activation Experiments for Nuclear Astrophysics

    SciTech Connect

    Sonnabend, K.; Mueller, S.; Pietralla, N.; Savran, D.; Schnorrenberger, L.; Hasper, J.; Zilges, A.

    2009-01-28

    The study of ({gamma},n) reactions can be used to constrain the theoretical predictions of the neutron capture cross sections of short-lived branching points in the s process. The usability of the activation technique to study these ({gamma},n) reactions is discussed as one example of an activation experiment in nuclear astrophysics. Two photon sources using bremsstrahlung and laser-Compton backscattered photons where such experiments were carried out are compared.

  13. National Centre for Radio Astrophysics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    India's National Centre for Radio Astrophysics (NCRA), located on the Pune University Campus, is part of the TATA INSTITUTE OF FUNDAMENTAL RESEARCH. At Khodad, 80 km from Pune, NCRA has set up the Giant Metrewave Radio Telescope (GMRT), the world's largest telescope operating at meter wavelengths. GMRT consists of 30 fully steerable dishes of 45 m diameter, spread over a 25 km area. Another meter...

  14. Rounding Up the Astrophysical Weeds

    NASA Astrophysics Data System (ADS)

    McMillan, James P.

    New instruments used for astronomy such as ALMA, Herschel, and SOFIA have greatly increased the quality of available astrophysical data. These improved data contain spectral lines and features which are not accounted for in the quantum mechanical (QM) catalogs. A class of molecules has been identified as being particularly problematic, the so-called "weeds". These molecules have numerous transitions, of non-trivial intensity, which are difficult to model due to highly perturbed low lying vibrational states. The inability to properly describe the complete contribution of these weeds to the astrophysical data has led directly to the misidentification of other target molecules. Ohio State's Microwave Laboratory has developed an alternative approach to this problem. Rather than relying on complex QM calculations, we have developed a temperature dependent approach to laboratory based terahertz spectroscopy. We have developed a set of simple packages, in addition to traditional line list catalogs, that enable astronomers to successfully remove the weed signals from their data. This dissertation will detail my laboratory work and analysis of three keys weeds: methanol, methyl formate and methyl cyanide. Also, discussed will be the analytical technique I used to apply these laboratory results to astrophysical data.

  15. Astrophysics with Microarcsecond Accuracy Astrometry

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    2008-01-01

    Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.

  16. Astrophysical and terrestrial constraints on singlet Majoron models

    NASA Astrophysics Data System (ADS)

    Pilaftsis, Apostolos

    1994-03-01

    The general Lagrangian containing the couplings of the Higgs scalars to Majorana neutrinos is presented in the context of singlet Majoron models with intergenerational mixings. The analytical expressions for the coupling of the Majoron field to charged fermions are derived within these models. Astrophysical considerations imply severe restrictions on the parameters of the three-generation Majoron model if the Dirac neutrino mass matrix of the model follows a mass hierarchical pattern dictated by grand unified theories. Bounds that originate from analyzing possible charged lepton-violating decays in terrestrial experiments are also discussed. In particular, we find that experimental searches for muon decays by Majoron emission cannot generally be precluded by astrophysical requirements.

  17. Using Visual Analytics to Maintain Situation Awareness in Astrophysics

    SciTech Connect

    Aragon, Cecilia R.; Poon, Sarah S.; Aldering, Gregory S.; Thomas, Rollin C.; Quimby, Robert

    2008-07-01

    We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists needing to analyze heterogeneous, complex data under time pressure, and then make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes severalnovel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in use for over eighteen months by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture, and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley?s three levels of situation awareness.

  18. An astrophysical view of Earth-based metabolic biosignature gases.

    PubMed

    Seager, Sara; Schrenk, Matthew; Bains, William

    2012-01-01

    Microbial life on Earth uses a wide range of chemical and energetic resources from diverse habitats. An outcome of this microbial diversity is an extensive and varied list of metabolic byproducts. We review key points of Earth-based microbial metabolism that are useful to the astrophysical search for biosignature gases on exoplanets, including a list of primary and secondary metabolism gas byproducts. Beyond the canonical, unique-to-life biosignature gases on Earth (O(2), O(3), and N(2)O), the list of metabolic byproducts includes gases that might be associated with biosignature gases in appropriate exoplanetary environments. This review aims to serve as a starting point for future astrophysical biosignature gas research.

  19. Sunfall: a collaborative visual analytics system for astrophysics

    SciTech Connect

    Aragon, Cecilia R.; Aragon, Cecilia R.; Bailey, Stephen J.; Poon, Sarah; Runge, Karl; Thomas, Rollin C.

    2008-07-07

    Computational and experimental sciences produce and collect ever-larger and complex datasets, often in large-scale, multi-institution projects. The inability to gain insight into complex scientific phenomena using current software tools is a bottleneck facing virtually all endeavors of science. In this paper, we introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume supernova search currently in operation. Sunfall utilizes novel interactive visualization and analysis techniques to facilitate deeper scientific insight into complex, noisy, high-dimensional, high-volume, time-critical data. The system combines novel image processing algorithms, statistical analysis, and machine learning with highly interactive visual interfaces to enable collaborative, user-driven scientific exploration of supernova image and spectral data. Sunfall is currently in operation at the Nearby Supernova Factory; it is the first visual analytics system in production use at a major astrophysics project.

  20. Plasma phenomenology in astrophysical systems: Radio-sources and jets

    SciTech Connect

    Montani, Giovanni; Petitta, Jacopo

    2014-06-15

    We review the plasma phenomenology in the astrophysical sources which show appreciable radio emissions, namely Radio-Jets from Pulsars, Microquasars, Quasars, and Radio-Active Galaxies. A description of their basic features is presented, then we discuss in some details the links between their morphology and the mechanisms that lead to the different radio-emissions, investigating especially the role played by the plasma configurations surrounding compact objects (Neutron Stars, Black Holes). For the sake of completeness, we briefly mention observational techniques and detectors, whose structure set them apart from other astrophysical instruments. The fundamental ideas concerning angular momentum transport across plasma accretion disks—together with the disk-source-jet coupling problem—are discussed, by stressing their successes and their shortcomings. An alternative scenario is then inferred, based on a parallelism between astrophysical and laboratory plasma configurations, where small-scale structures can be found. We will focus our attention on the morphology of the radio-jets, on their coupling with the accretion disks and on the possible triggering phenomena, viewed as profiles of plasma instabilities.

  1. Laboratory astrophysics: Investigation of planetary and astrophysical maser emission

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Speirs, D. C.; Kellett, B. J.; Vorgul, I.; McConville, S. L.; Cairns, R. A.; Cross, A. W.; Phelps, A. D. R.; Ronald, K.

    This paper describes a model for cyclotron maser emission applicable to planetary auroral radio emission, the stars UV Ceti and CU Virginus, blazar jets and astrophysical shocks. These emissions may be attributed to energetic electrons moving into convergent magnetic fields that are typically found in association with dipole like planetary magnetospheres or shocks. It is found that magnetic compression leads to the formation of a velocity distribution having a horseshoe shape as a result of conservation of the electron magnetic moment. Under certain plasma conditions where the local electron plasma frequency ω pe is much less than the cyclotron frequency ω ce the distribution is found to be unstable to maser type radiation emission. We have established a laboratory-based facility that has verified many of the details of our original theoretical description and agrees well with numerical simulations. The experiment has demonstrated that the horseshoe distribution produces cyclotron emission at a frequency just below the local electron cyclotron frequency, with polarisation close to X-mode and propagating nearly perpendicularly to the electron beam motion. We discuss recent developments in the theory and simulation of the instability including addressing radiation escape problems, and relate these to the laboratory, space, and astrophysical observations. The experiments showed strong narrow band EM emissions at frequencies just below the cold-plasma cyclotron frequency as predicted by the theory. Measurements of the conversion efficiency, mode and spectral content were in close agreement with the predictions of numerical simulations undertaken using a particle-in-cell code and also with satellite observations confirming the horseshoe maser as an important emission mechanism in geophysical/astrophysical plasmas. In each case we address how the radiation can escape the plasma without suffering strong absorption at the second harmonic layer.

  2. Laboratory astrophysics: Investigation of planetary and astrophysical maser emission

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Speirs, D. C.; Kellett, B. J.; Vorgul, I.; McConville, S. L.; Cairns, R. A.; Cross, A. W.; Phelps, A. D. R.; Ronald, K.

    2013-10-01

    This paper describes a model for cyclotron maser emission applicable to planetary auroral radio emission, the stars UV Ceti and CU Virginus, blazar jets and astrophysical shocks. These emissions may be attributed to energetic electrons moving into convergent magnetic fields that are typically found in association with dipole like planetary magnetospheres or shocks. It is found that magnetic compression leads to the formation of a velocity distribution having a horseshoe shape as a result of conservation of the electron magnetic moment. Under certain plasma conditions where the local electron plasma frequency ω pe is much less than the cyclotron frequency ω ce the distribution is found to be unstable to maser type radiation emission. We have established a laboratory-based facility that has verified many of the details of our original theoretical description and agrees well with numerical simulations. The experiment has demonstrated that the horseshoe distribution produces cyclotron emission at a frequency just below the local electron cyclotron frequency, with polarisation close to X-mode and propagating nearly perpendicularly to the electron beam motion. We discuss recent developments in the theory and simulation of the instability including addressing radiation escape problems, and relate these to the laboratory, space, and astrophysical observations. The experiments showed strong narrow band EM emissions at frequencies just below the cold-plasma cyclotron frequency as predicted by the theory. Measurements of the conversion efficiency, mode and spectral content were in close agreement with the predictions of numerical simulations undertaken using a particle-in-cell code and also with satellite observations confirming the horseshoe maser as an important emission mechanism in geophysical/astrophysical plasmas. In each case we address how the radiation can escape the plasma without suffering strong absorption at the second harmonic layer.

  3. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    SciTech Connect

    Cognata, M. La; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Romano, S.; Gulino, M.; Tumino, A.; Lamia, L.

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  4. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Tumino, A.

    2014-05-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  5. Liquid xenon detectors for particle physics and astrophysics

    SciTech Connect

    Aprile, E.; Doke, T.

    2010-07-15

    This article reviews the progress made over the last 20 years in the development and applications of liquid xenon detectors in particle physics, astrophysics, and medical imaging experiments. A summary of the fundamental properties of liquid xenon as radiation detection medium, in light of the most current theoretical and experimental information is first provided. After an introduction of the different type of liquid xenon detectors, a review of past, current, and future experiments using liquid xenon to search for rare processes and to image radiation in space and in medicine is given. Each application is introduced with a survey of the underlying scientific motivation and experimental requirements before reviewing the basic characteristics and expected performance of each experiment. Within this decade it appears likely that large volume liquid xenon detectors operated in different modes will contribute to answering some of the most fundamental questions in particle physics, astrophysics, and cosmology, fulfilling the most demanding detection challenges. From detectors based solely on liquid xenon (LXe) scintillation, such as in the MEG experiment for the search of the rare ''{mu}{yields}e{gamma}'' decay, currently the largest liquid xenon detector in operation, and in the XMASS experiment for dark matter detection, to the class of time projection chambers which exploit both scintillation and ionization of LXe, such as in the XENON dark matter search experiment and in the Enriched Xenon Observatory for neutrinoless double beta decay, unrivaled performance and important contributions to physics in the next few years are anticipated.

  6. Ion irradiation of astrophysical ices

    NASA Astrophysics Data System (ADS)

    Palumbo, M. E.; Baratta, G. A.; Fulvio, D.; Garozzo, M.; Gomis, O.; Leto, G.; Spinella, F.; Strazzulla, G.

    2008-02-01

    Ices, silicates and carbonaceous materials have been detected in several astrophysical environments such as interstellar molecular clouds, comets, and planetary surfaces. These solids are continuously exposed to ion irradiation and UV photolysis. Our knowledge on the properties of solids and molecules and on the modification induced by fast ions (keV-MeV) and UV photons is mainly based on laboratory experiments and on the comparison of experimental results with observations. Here we will give a few examples of the role of laboratory experiments to our understanding of the physical and chemical properties of ices in space.

  7. Einstein Toolkit for Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  8. Astrophysics on the lab bench

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.

    2010-05-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a type II supernova explosion. In another experiment, students roll marbles up and down a double ramp in an attempt to get a marble to enter a tube halfway up the slope, which illustrates quantum tunnelling in stellar cores. The experiments are reasonably low cost to either purchase or manufacture.

  9. Astrophysics and Cosmology: International Partnerships

    NASA Astrophysics Data System (ADS)

    Blandford, Roger

    2015-04-01

    Most large projects in astrophysics and cosmology are international. This raises many challenges including: • Aligning the sequence of: proposal, planning, selection, funding, construction, deployment, operation, data mining in different countries • Managing to minimize cost growth through reconciling different practices • Communicating at all levels to ensure a successful outcome • Stabilizing long term career opportunities. There has been considerable progress in confronting these challenges. Lessons learned from past collaborations are influencing current facilities but much remains to be done if we are to optimize the scientific and public return on the expenditure of financial and human resources.

  10. Astrophysics and Cosmology: International Partnerships

    NASA Astrophysics Data System (ADS)

    Blandford, Roger

    2016-03-01

    Most large projects in astrophysics and cosmology are international. This raises many challenges including: --Aligning the sequence of: proposal, planning, selection, funding, construction, deployment, operation, data mining in different countries --Managing to minimize cost growth through reconciling different practices --Communicating at all levels to ensure a successful outcome --Stabilizing long term career opportunities. There has been considerable progress in confronting these challenges. Lessons learned from past collaborations are influencing current facilities but much remains to be done if we are to optimize the scientific and public return on the expenditure of financial and human resources.

  11. Astrophysics Source Code Library Enhancements

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.; Allen, A.; Berriman, G. B.; DuPrie, K.; Mink, J.; Nemiroff, R. J.; Schmidt, J.; Shamir, L.; Shortridge, K.; Taylor, M.; Teuben, P. J.; Wallin, J.

    2015-09-01

    The Astrophysics Source Code Library (ASCL)1 is a free online registry of codes used in astronomy research; it currently contains over 900 codes and is indexed by ADS. The ASCL has recently moved a new infrastructure into production. The new site provides a true database for the code entries and integrates the WordPress news and information pages and the discussion forum into one site. Previous capabilities are retained and permalinks to ascl.net continue to work. This improvement offers more functionality and flexibility than the previous site, is easier to maintain, and offers new possibilities for collaboration. This paper covers these recent changes to the ASCL.

  12. Low frequency gravitational wave astrophysics

    NASA Astrophysics Data System (ADS)

    Larson, Shane

    The field of low-frequency gravitational wave astronomy is evolving as the design of the Laser Interferometer Space Antenna (LISA) is in flux. Changing mission architectures naturally has an impact on the science goals and science capabilities in gravitational wave astronomy, requiring astrophysicists to pursue a deeper understanding on three fronts. (1) What astrophysical knowledge can be extracted from populations of sources based on their relative strengths in the data streams? (2) How are the science returns maximized as detector capabilities evolve? (3) How do evolving detector performance expectations alter the science that is possible with space- based gravitational wave detectors? This work proposes a series of investigations that address these questions along two broad avenues of inquiry. The first thrust of this effort is designed to examine how the population of ultra-compact galactic binaries can be better characterized by multi-messenger observations and statistical population analyses. While these investigations are astrophysical interesting in and of themselves, they are particularly relevant as detector designs evolve because the binaries are a limiting source of astrophysical noise that must be mitigated in order to maximize the science return for other sources, such as massive binary black hole inspirals and extreme mass ratio inspirals. The second thrust of this effort is geared toward characterization of the detector itself, since this ultimately fixes our ability to answer astrophysical questions. While many high-fidelity simulators exist for the original LISA mission architecture, the work proposed here will develop a new, flexible suite of prototyping tools analogous to the "Online Sensitivity Curve Generator" (which the PI authored). These tools will allow astrophysicists and data analysts alike to rapidly assess whether new proposed architectures for a space-based gravitational wave observatory will enhance or adversely impact the science

  13. High-energy spectroscopic astrophysics

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel; Walter, Roland

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  14. Asthma triggers (image)

    MedlinePlus

    ... common asthma triggers are mold, pets, dust, grasses, pollen, cockroaches, odors from chemicals, and smoke from cigarettes. ... common asthma triggers are mold, pets, dust, grasses, pollen, cockroaches, odors from chemicals, and smoke from cigarettes.

  15. The Electronic Astrophysical Journal Letters Project

    NASA Astrophysics Data System (ADS)

    Dalterio, H. J.; Boyce, P. B.; Biemesderfer, C.; Warnock, A., III; Owens, E.; Fullton, J.

    The American Astronomical Society has developed a comprehensive system for the electronic dissemination of refereed astronomical research results. Our current focus is the production of an electronic version of the Astrophysical Journal Letters. With the help of a recent National Science Foundation grant, we have developed a system that includes: LATEX-based manuscript preparation, electronic submission, peer review, production, development of a database of SGML-tagged manuscripts, collection of page charges and other fees, and electronic manuscript storage and delivery. Delivery options include World-Wide Web access through HTML browsers such as Mosaic and Netscape, an email gateway, and a stand-alone client accessible through astronomical software packages such as IRAF. Our goal is to increase the access and usefulness of the journal by providing enhanced features such as faster publication, advanced search capabilities, forward and backward referencing, links to underlying data and links to adjunct materials in a variety of media. We have based our journal on open standards and freely available network tools wherever possible.

  16. High Energy Astrophysics with the HAWC Observatory

    NASA Astrophysics Data System (ADS)

    Weisgarber, Thomas

    2014-08-01

    The High Altitude Water Cherenkov (HAWC) Observatory detects astrophysical gamma rays and cosmic rays in the energy range from 100 GeV to 100 TeV. Located at an elevation of 4100 meters on the slopes of Sierra Negra in the Mexican state of Puebla, HAWC comprises an array of 300 water Cherenkov tanks covering an area of 22000 square meters and is scheduled for completion in 2014. Using 1200 upward-facing photomultiplier tubes distributed throughout the tanks, HAWC measures the Cherenkov radiation generated by air-shower particles, from which the direction and energy of the primary particle may be determined. The detector has been taking data as a partial array for more than a year. I will highlight cosmic-ray and gamma-ray observations from this initial data set, including measurements of the cosmic-ray anisotropy and searches for transient sources. I will also discuss the expected contributions of HAWC to gamma-ray science as the detector enters full operation in the coming year.

  17. Ion irradiation of ices relevant to astrophysics

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Brunetto, R.; Leto, G.; Palumbo, M. E.; Spinella, F.; Strazzulla, G.

    Ices, silicates, and carbonaceous materials have been observed in different astrophysical environments such as the interstellar medium, circumstellar regions, comets, and solid surfaces of Solar System objects. In space these materials suffer from processing caused by cosmic rays, photons and thermal annealing. Our knowledge of the effects of processing on the evolution of solids in different astrophysical environments in mainly based on laboratory experiments. The Laboratory of Experimental Astrophysics in Catania (Italy) is equipped to study the effects of processing on astrophysical relevant materials. Here we briefly describe the experimental set up and discuss some recent results.

  18. High-Energy Astrophysics: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  19. Working Papers: Astronomy and Astrophysics Panel Reports

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Beichman, Charles A.; Canizares, Claude; Cronin, James; Heeschen, David; Houck, James; Hunten, Donald; Mckee, Christopher F.; Noyes, Robert; Ostriker, Jeremiah P.

    1991-01-01

    The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities.

  20. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  1. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angelini, L. (Editor)

    1997-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  2. Astrophysics of the 21st Century - Exploring the Extreme Universe

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.

    2006-01-01

    This paper will give an overview of the NASA Universe Division Beyond Einstein program. The Beyond Einstein program consists of a series of exploratory missions to investigate the most important and pressing problems in modern-day astrophysics - including searches for Dark Energy and studies of the earliest times in the universe, during the inflationary period after the Big Bang. A variety of new technologies are being developed both in the science instrumentation these missions will use and in the spacecraft that will carry those instruments.

  3. Large Eddy Simulations in Astrophysics

    NASA Astrophysics Data System (ADS)

    Schmidt, Wolfram

    2015-12-01

    In this review, the methodology of large eddy simulations (LES) is introduced and applications in astrophysics are discussed. As theoretical framework, the scale decomposition of the dynamical equations for neutral fluids by means of spatial filtering is explained. For cosmological applications, the filtered equations in comoving coordinates are also presented. To obtain a closed set of equations that can be evolved in LES, several subgrid-scale models for the interactions between numerically resolved and unresolved scales are discussed, in particular the subgrid-scale turbulence energy equation model. It is then shown how model coefficients can be calculated, either by dynamic procedures or, a priori, from high-resolution data. For astrophysical applications, adaptive mesh refinement is often indispensable. It is shown that the subgrid-scale turbulence energy model allows for a particularly elegant and physically well-motivated way of preserving momentum and energy conservation in adaptive mesh refinement (AMR) simulations. Moreover, the notion of shear-improved models for in-homogeneous and non-stationary turbulence is introduced. Finally, applications of LES to turbulent combustion in thermonuclear supernovae, star formation and feedback in galaxies, and cosmological structure formation are reviewed.

  4. The next century astrophysics program

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1992-01-01

    The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of flagship and intermediate missions that are presently under study for possible launch during the next 20 years. These missions and tentative schedules, referred to as the Astrotech 21 Mission Set, are summarized. The missions are in three groups corresponding to the cognizant science branch within the Astrophysics Division. Phase C/D refers to the pre-launch construction and delivery of the spacecraft, and the Operations Phase refers to the period when the mission is active in space. Approximately 1.5 years before the start of Phase C/D, a non-advocate review (NAR) is held to ensure that the mission/system concept and the requisite technology are at an appropriate stage of readiness for full scale development to begin. Therefore, technology development is frozen (usually) as of the date of a successful NAR. An overview of the technology advances required for each of the three wavelength groups is provided in the following paragraphs, along with a brief description of the individual missions.

  5. Advances IN Explosive Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Lotay, Gavin

    2016-09-01

    Breathtaking results from the Planck satellite mission and Hubble space telescope have highlighted the key role modern Astronomy is playing for our understanding of Big Bang Cosmology. However, not so widely publicized is the similar wealth of observational data now available on explosive stellar phenomena, such as X-ray bursts, novae and Supernovae. These astronomical events are responsible for the synthesis of almost all the chemical elements we find on Earth and observe in our Galaxy, as well as energy generation throughout the cosmos. Regrettably, understanding the latest collection of observational data is severely hindered by the current, large uncertainties in the underlying nuclear physics processes that drive such stellar scenarios. In order to resolve this issue, it is becoming increasingly clear that there is a need to explore the unknown properties and reactions of nuclei away from the line of stability. Consequently, state-of-the-art radioactive beam facilities have become terrestrial laboratories for the reproduction of explosive astrophysical events. In this talk, both direct and indirect methods for studying key astrophysical reactions using radioactive beams will be discussed.

  6. Status of the MACRO experiment at Gran Sasso. [Monopole Astrophysics and Cosmic Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ahlen, Steve

    1990-01-01

    The design of the MACRO (Monopole Astrophysics and Cosmic Ray Observatory) experiment is described, and the results achieved by the running of its first supermodule are summarized. Searches for magnetic monopoles and point sources of downward muons resulted in no detections. One upward moving muon was seen along with abundant data on muon bundles.

  7. General Astrophysics and Comparative Planetology with the Terrestrial Planet Finder Missions

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J. (Editor)

    2005-01-01

    This document discusses the potential of the Terrestrial Planet Finder (TPF) for general astrophysics beyond its base mission, focusing on science obtainable with no or minimal modifications to the mission design, but also exploring possible modifications of TPF with high scientific merit and no impact on the basic search for extrasolar Earth analogs.

  8. Dark matter astrophysical uncertainties and the neutrino floor

    NASA Astrophysics Data System (ADS)

    O'Hare, Ciaran A. J.

    2016-09-01

    The search for weakly interacting massive particles (WIMPs) by direct detection faces an encroaching background due to coherent neutrino-nucleus scattering. For a given WIMP mass the cross section at which neutrinos constitute a dominant background is dependent on the uncertainty on the flux of each neutrino source, principally from the Sun, supernovae or atmospheric cosmic ray collisions. However there are also considerable uncertainties with regard to the astrophysical ingredients of the predicted WIMP signal. Uncertainties in the velocity of the Sun with respect to the Milky Way dark matter halo, the local density of WIMPs, and the shape of the local WIMP speed distribution all have an effect on the expected event rate in direct detection experiments and hence will change the region of the WIMP parameter space for which neutrinos are a significant background. In this work we extend the neutrino floor calculation to account for the uncertainty in the astrophysics dependence of the WIMP signal. We show the effect of uncertainties on projected discovery limits with an emphasis on low WIMP masses (less than 10 GeV) when solar neutrino backgrounds are most important. We find that accounting for astrophysical uncertainties changes the shape of the neutrino floor as a function of WIMP mass but also causes it to appear at cross sections up to an order of magnitude larger, extremely close to existing experimental limits, indicating that neutrino backgrounds will become an issue sooner than previously thought. We also explore how neutrinos hinder the estimation of WIMP parameters and how astrophysical uncertainties impact the discrimination of WIMPs and neutrinos with the use of their respective time dependencies.

  9. Nuclear Astrophysics with the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; Lamia, L.; Pizzone, R. G.; Cherubini, S.; Gulino, M.; La Cognata, M.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.

    2016-01-01

    The Trojan Horse Method (THM) represents the indirect path to determine the bare nucleus astrophysical S(E) factor for reactions between charged particles at astrophysical energies. This is done by measuring the quasi free cross section of a suitable three body process. The basic features of the THM will be presented together with some applications to demonstrate its practical use.

  10. Proceedings of the NASA Laboratory Astrophysics Workshop

    NASA Technical Reports Server (NTRS)

    Weck, Phillippe F. (Editor); Kwong, Victor H. S. (Editor); Salama, Farid (Editor)

    2006-01-01

    This report is a collection of papers presented at the 2006 NASA Workshop on Laboratory Astrophysics held in the University of Nevada, Las Vegas (UNLV) from February 14 to 16, 2006. This workshop brings together producers and users of laboratory astrophysics data so that they can understand each other's needs and limitations in the context of the needs for NASA's missions. The last NASA-sponsored workshop was held in 2002 at Ames Research Center. Recent related meetings include the Topical Session at the AAS meeting and the European workshop at Pillnitz, Germany, both of which were held in June 2005. The former showcased the importance of laboratory astrophysics to the community at large, while the European workshop highlighted a multi-laboratory approach to providing the needed data. The 2006 NASA Workshop on Laboratory Astrophysics, sponsored by the NASA Astrophysics Division, focused on the current status of the field and its relevance to NASA. This workshop attracted 105 participants and 82 papers of which 19 were invited. A White Paper identifying the key issues in laboratory astrophysics during the break-out sessions was prepared by the Scientific Organizing Committee, and has been forwarded to the Universe Working Group (UWG) at NASA Headquarters. This White Paper, which represented the collective inputs and opinions from experts and stakeholders in the field of astrophysics, should serve as the working document for the future development of NASA's R&A program in laboratory astrophysics.

  11. Overview of NASA Astrophysics Program Analysis Groups

    NASA Astrophysics Data System (ADS)

    Sanders, Wilton T.; Sambruna, Rita M.; Perez, Mario R.; Hudgins, Douglas M.

    2015-01-01

    NASA Astrophysics Program Analysis Groups (PAGs) are responsible for facilitating and coordinating community input into the development and execution of NASAs three astrophysics science themes: Cosmic Origins (COPAG), Exoplanet Exploration (ExoPAG), and Physics of the Cosmos (PhysPAG). The PAGs provide a community-based, interdisciplinary forum for analyses that support and inform planning and prioritization of activities within the Astrophysics Division programs. Operations and structure of the PAGs are described in their Terms of Reference (TOR), which can be found on the three science theme Program Office web pages. The Astrophysics PAGs report their input and findings to NASA through the Astrophysics Subcommittee of the NASA Advisory Council, of which all the PAG Chairs are members. In this presentation, we will provide an overview of the ongoing activities of NASAs Astrophysics PAGs in the context of the opportunities and challenges currently facing the Astrophysics Division. NASA Headquarters representatives for the COPAG, ExoPAG, and PhysPAG will all be present and available to answer questions about the programmatic role of the Astrophysics PAGs.

  12. Overview of NASA Astrophysics Program Analysis Groups

    NASA Astrophysics Data System (ADS)

    Garcia, Michael R.; Hudgins, D. M.; Sambruna, R. M.

    2014-01-01

    NASA Astrophysics Program Analysis Groups (PAGs) are responsible for facilitating and coordinating community input into the developmentand execution of NASAs three astrophysics science themes: Cosmic Origins (COPAG), Exoplanet Exploration (ExoPAG), and Physics of the Cosmos (PhysPAG). The PAGs provide a community-based, interdisciplinary forum for analyses that support and inform planning and prioritization of activities within the Astrophysics Division programs. Operations and structure of the PAGs are described in the Terms of Reference (TOR) which can be found on the three science theme Program Office web pages. The Astrophysics PAGs report their input and findings to NASA through the Astrophysics Subcommittee of the NASA Advisory Council, of which all the PAG Chairs are members. In this presentation, we will provide an overview of the ongoing activities of NASAs Astrophysics PAGs in the context of the opportunities and challenges currently facing the Astrophysics Division. NASA Headquarters representatives for the COPAG, ExoPAG, and PhysPAG will all be present and available to answer questions about the programmatic role of the Astrophysics PAGs.

  13. Astrophysics at the Highest Energy Frontiers

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    I discuss recent advances being made in the physics and astrophysics of cosmic rays and cosmic gamma-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. I also discuss the connections between these topics.

  14. Flexible, Mastery-Oriented Astrophysics Sequence.

    ERIC Educational Resources Information Center

    Zeilik, Michael, II

    1981-01-01

    Describes the implementation and impact of a two-semester mastery-oriented astrophysics sequence for upper-level physics/astrophysics majors designed to handle flexibly a wide range of student backgrounds. A Personalized System of Instruction (PSI) format was used fostering frequent student-instructor interaction and role-modeling behavior in…

  15. NASA Announces 2009 Astronomy and Astrophysics Fellows

    NASA Astrophysics Data System (ADS)

    2009-02-01

    WASHINGTON -- NASA has selected fellows in three areas of astronomy and astrophysics for its Einstein, Hubble, and Sagan Fellowships. The recipients of this year's post-doctoral fellowships will conduct independent research at institutions around the country. "The new fellows are among the best and brightest young astronomers in the world," said Jon Morse, director of the Astrophysics Division in NASA's Science Mission Directorate in Washington. "They already have contributed significantly to studies of how the universe works, the origin of our cosmos and whether we are alone in the cosmos. The fellowships will serve as a springboard for scientific leadership in the years to come, and as an inspiration for the next generation of students and early career researchers." Each fellowship provides support to the awardees for three years. The fellows may pursue their research at any host university or research center of their choosing in the United States. The new fellows will begin their programs in the fall of 2009. "I cannot tell you how much I am looking forward to spending the next few years conducting research in the U.S., thanks to the fellowships," said Karin Oberg, a graduate student in Leiden, The Netherlands. Oberg will study the evolution of water and ices during star formation when she starts her fellowship at the Smithsonian Astrophysical Observatory in Cambridge, Mass. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Cosmic Heavyweights in Free-for-all Galaxies Coming of Age in Cosmic Blobs Cassiopeia A Comes Alive Across Time and Space A diverse group of 32 young scientists will work on a wide variety of projects, such as understanding supernova hydrodynamics, radio transients, neutron stars, galaxy clusters and the intercluster medium, supermassive black holes, their mergers and the associated gravitational waves, dark energy, dark matter and the reionization process. Other research topics include

  16. Modified gravity inside astrophysical bodies

    SciTech Connect

    Saito, Ryo; Langlois, David; Yamauchi, Daisuke; Mizuno, Shuntaro; Gleyzes, Jérôme E-mail: yamauchi@resceu.s.u-tokyo.ac.jp E-mail: jerome.gleyzes@cea.fr

    2015-06-01

    Many theories of modified gravity, including the well studied Horndeski models, are characterized by a screening mechanism that ensures that standard gravity is recovered near astrophysical bodies. In a recently introduced class of gravitational theories that goes beyond Horndeski, it has been found that new derivative interactions lead to a partial breaking of the Vainshtein screening mechanism inside any gravitational source, although not outside. We study the impact of this new type of deviation from standard gravity on the density profile of a spherically symmetric matter distribution, in the nonrelativistic limit. For simplicity, we consider a polytropic equation of state and derive the modifications to the standard Lane-Emden equations. We also show the existence of a universal upper bound on the amplitude of this type of modified gravity, independently of the details of the equation of state.

  17. Photohadronic Processes in Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Mücke, A.; Rachen, J. P.; Engel, Ralph; Protheroe, R. J.; Stanev, Todor

    1999-08-01

    We discuss the first applications of our newly developed Monte Carlo event generator SOPHIA to multiparticle photoproduction of relativistic protons with thermal and power-law radiation fields. The measured total cross section is reproduced in terms of excitation and decay of baryon resonances, direct pion production, diffractive scattering, and non-diffractive multiparticle production. Non-diffractive multiparticle production is described using a string fragmentation model. We demonstrate that the widely used `Δ-approximation' for the photoproduction cross section is reasonable only for a restricted set of astrophysical applications. The relevance of this result for cosmic ray propagation through the microwave background and hadronic models of active galactic nuclei and gamma-ray bursts is briefly discussed.

  18. Astrophysical applications of quasar microlensing

    NASA Astrophysics Data System (ADS)

    Mediavilla, E.; Jiménez-Vicente, J.; Muñoz, J. A.

    2017-03-01

    We present a quick overview of several examples that illustrate the application of quasar microlensing to various problems of great interest in Astrophysics and Cosmology. We start introducing the main tool for simulating quasar microlensing, the magnification map. Then, the flux magnification statistics obtained from the magnification maps is used to study the quasar accretion disk size and temperature profile with results that challenge the thin disk model. The microlensing flux magnification statistics is also useful to determine the radial slope of the dark matter distribution in lens galaxies. The extremely high microlensing magnification at caustics allows to scan with horizon scale accuracy the quasar accretion disk, spiraling around the central super massive black hole, resolving the innermost stable circular orbit. Finally, transverse peculiar velocities of the lens galaxies, of great interest in cosmology, can be inferred either counting peaks in the microlensing light curves or directly from astrometric measurements of the highly magnified relative motions between lensed quasar images.

  19. History of Astrophysics in Antarctica

    NASA Astrophysics Data System (ADS)

    Indermuehle, Balthasar T.; Burton, Michael C.; Maddison, Sarah T.

    We examine the historical development of astrophysical science in Antarctica from the early 20th century until today. We find three temporally overlapping eras with each having a rather distinct beginning. These are the astrogeological era of meteorite discovery the high energy era of particle detectors and the photon astronomy era of microwave sub-mm and infrared telescopes sidelined by a few optical niche experiments. The favourable atmospheric and geophysical conditions are briefly examined followed by an account of the major experiments and a summary of their results. A scientific effectiveness analysis of the various projects is presented quantitatively and we conclude with an outlook of what is to come in the 21st century

  20. Astrophysically Interesting Resonances; Another Approach

    NASA Astrophysics Data System (ADS)

    Austin, Roby; Jenkins, David

    2008-10-01

    R.A.E. Austin, R. Kanungo, A. Campbell, S. Colosimo, S. Reeve Saint Mary's University; D.G. Jenkins, C.Aa.Diget, A. Robinson, University of York, UK; P.J. Woods T. Davinson University of Edinburgh; C.-Y. Wu A. Hurst J.A. Becker Lawrence Livermore National Laboratory; G.C. Ball M. Djongolov G. Hackman A.C. Morton, C. Pearson, S.J. Williams TRIUMF; A.A. Phillips, M. Schumaker, University of Guelph H.Boston, A. Grint, D. Oxley, University of Liverpool; D. Cline, A. Hayes, University of Rochester; We describe a prototype experiment to measure resonances of interest in astrophysical reactions. We use the TIGRESS to detect gamma rays in coincidence with charged particles, inelastically scattered in inverse kinematics. The particles are detected with the Bambino detector modified to a δE-E silicon telescope spanning 15-40 degrees in the lab.

  1. Transfer reactions in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  2. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  3. Overview of the Astrophysics Data System

    NASA Technical Reports Server (NTRS)

    Good, John C.; Pomphrey, Richard B.

    1991-01-01

    The Astrophysics Division of NASA has built a geographically and logically distributed heterogeneous information system for the dissemination and coordinated multispectral analysis of data from astrophysics missions. The Astrophysics Data System (ADS) is a truly distributed system in which the data and the required processing are physically distributed. To accommodate the anticipated growth and changes in both requirements and technology, the ADS employs a server/client architecture which allows services and data to be added or replaced without having to change the basic architecture or interfaces. Current datasets accessible through the system include all the tabular astronomical data available at each of six existing astrophysics data centers. Additional data nodes, at both NASA data centers and academic institutions, will be added shortly. The future evolution of the system will be driven in large part by user services mounted both by the ADS project itself and by members of the astrophysics community.

  4. Overview of the Astrophysics Data System

    NASA Technical Reports Server (NTRS)

    Good, John C.; Pomphrey, Richard B.

    1990-01-01

    The Astrophysics Division of NASA has built a geographically- and logically-distributed heterogeneous information system for the dissemination and coordinated multispectral analysis of data from astrophysics missions. The Astrophysics Data System (ADS) is a truly distributed system in which the data and the required processing are physically distributed. To accommodate the anticipated growth and changes in both requirements and technology, the ADS employs a server/client architecture which allows services and data to be added or replaced without having to change the basic architecture or interfaces. Current datasets accessible through the system include all the tabular astronomical data available at each of six existing astrophysics data centers. Additional data nodes, at both NASA data centers and academic institutions, will be added shortly. The future evolution of the system will be driven in large part by user services mounted both by the ADS project itself and by members of the astrophysics community.

  5. THE XO PLANETARY SURVEY PROJECT: ASTROPHYSICAL FALSE POSITIVES

    SciTech Connect

    Poleski, Radosaw; McCullough, Peter R.; Valenti, Jeff A.; Burke, Christopher J.; Machalek, Pavel; Janes, Kenneth

    2010-07-15

    Searches for planetary transits find many astrophysical false positives as a by-product. There are four main types analyzed in the literature: a grazing-incidence eclipsing binary (EB) star, an EB star with a small radius companion star, a blend of one or more stars with an unrelated EB star, and a physical triple star system. We present a list of 69 astrophysical false positives that had been identified as candidates of transiting planets of the on-going XO survey. This list may be useful in order to avoid redundant observation and characterization of these particular candidates that have been independently identified by other wide-field searches for transiting planets. The list may be useful for those modeling the yield of the XO survey and surveys similar to it. Subsequent observations of some of the listed stars may improve mass-radius relations, especially for low-mass stars. From the candidates exhibiting eclipses, we report three new spectroscopic double-line binaries and give mass function estimations for 15 single-line spectroscopic binaries.

  6. Astrophysics Goals of the SIM PlanetQuest Mission

    NASA Astrophysics Data System (ADS)

    Unwin, S. C.

    2005-05-01

    The Space Interferometry Mission PlanetQuest (SIM PlanetQuest), will be NASA's first space-based instrument capable of microarcsecond astrometry, and it will attack a wide range of topics in extrasolar planet detection, stellar, and galactic astrophysics. Precision astrometry is one of the cornerstones of modern astrophysics. This paper serves as an introduction to a series of papers highlighting some of the science SIM PlanetQuest will be capable of. The project is currently in project Phase B, with a projected launch in 2010. SIM PlanetQuest astrometry at a level approaching 1 microarcsecond over a narrow field will enable searches for planets with close to terrestrial masses. It will fully characterize the multiple-planet systems already known to exist, and will search for planets around young stars, to help us understand their formation and evolution. At a global astrometric accuracy of around 4 microarcseconds, it will deliver very accurate distances to many interesting stellar types, including exotic systems such as black hole binaries. Precision proper motions will allow SIM PlanetQuest to probe the galactic mass distribution, and through studies of tidal tails, the formation and evolution of the galactic halo. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  7. Triggered tremor sweet spots in Alaska

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (<~0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  8. Lessons from (triggered) tremor

    USGS Publications Warehouse

    Gomberg, Joan

    2010-01-01

    I test a “clock-advance” model that implies triggered tremor is ambient tremor that occurs at a sped-up rate as a result of loading from passing seismic waves. This proposed model predicts that triggering probability is proportional to the product of the ambient tremor rate and a function describing the efficacy of the triggering wave to initiate a tremor event. Using data mostly from Cascadia, I have compared qualitatively a suite of teleseismic waves that did and did not trigger tremor with ambient tremor rates. Many of the observations are consistent with the model if the efficacy of the triggering wave depends on wave amplitude. One triggered tremor observation clearly violates the clock-advance model. The model prediction that larger triggering waves result in larger triggered tremor signals also appears inconsistent with the measurements. I conclude that the tremor source process is a more complex system than that described by the clock-advance model predictions tested. Results of this and previous studies also demonstrate that (1) conditions suitable for tremor generation exist in many tectonic environments, but, within each, only occur at particular spots whose locations change with time; (2) any fluid flow must be restricted to less than a meter; (3) the degree to which delayed failure and secondary triggering occurs is likely insignificant; and 4) both shear and dilatational deformations may trigger tremor. Triggered and ambient tremor rates correlate more strongly with stress than stressing rate, suggesting tremor sources result from time-dependent weakening processes rather than simple Coulomb failure.

  9. Proceedings of the NASA Laboratory Astrophysics Workshop

    NASA Technical Reports Server (NTRS)

    Salama, Farid (Editor)

    2002-01-01

    This document is the proceedings of the NASA Laboratory Astrophysics Workshop, convened May 1-3, 2002 at NASA's Ames Research Center. Sponsored by the NASA Office of Space Science (OSS), this programmatic workshop is held periodically by NASA to discuss the current state of knowledge in the interdisciplinary field of laboratory astrophysics and to identify the science priorities (needs) in support of NASA's space missions. An important goal of the Workshop is to provide input to OSS in the form of a white paper for incorporation in its strategic planning. This report comprises a record of the complete proceedings of the Workshop and the Laboratory Astrophysics White Paper drafted at the Workshop.

  10. Scaling Extreme Astrophysical Phenomena to the Laboratory

    SciTech Connect

    Remington, B A

    2007-11-01

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  11. Astrophysics at RIA (ARIA) Working Group

    SciTech Connect

    Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    2006-07-12

    The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities.

  12. A-STAR: The All-Sky Transient Astrophysics Reporter

    NASA Astrophysics Data System (ADS)

    Osborne, J. P.; O'Brien, P.; Evans, P.; Fraser, G. W.; Martindale, A.; Atteia, J.-L.; Cordier, B.; Mereghetti, S.

    2013-07-01

    The small mission A-STAR (All-Sky Transient Astrophysics Reporter) aims to locate the X-ray counterparts to ALIGO and other gravitational wave detector sources, to study the poorly-understood low luminosity gamma-ray bursts, and to find a wide variety of transient high-energy source types, A-STAR will survey the entire available sky twice per 24 hours. The payload consists of a coded mask instrument, Owl, operating in the novel low energy band 4-150 keV, and a sensitive wide-field focussing soft X-ray instrument, Lobster, working over 0.15-5 keV. A-STAR will trigger on ~100 GRBs/yr, rapidly distributing their locations.

  13. Causality and headache triggers

    PubMed Central

    Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.

    2013-01-01

    Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872

  14. AMY trigger system

    SciTech Connect

    Sakai, Yoshihide

    1989-04-01

    A trigger system of the AMY detector at TRISTAN e{sup +}e{sup -} collider is described briefly. The system uses simple track segment and shower cluster counting scheme to classify events to be triggered. It has been operating successfully since 1987.

  15. Two LANL laboratory astrophysics experiments

    SciTech Connect

    Intrator, Thomas P.

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.

  16. Relativistic opacities for astrophysical applications

    DOE PAGES

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; ...

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generatedmore » with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.« less

  17. Relativistic opacities for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Fontes, C. J.; Fryer, C. L.; Hungerford, A. L.; Hakel, P.; Colgan, J.; Kilcrease, D. P.; Sherrill, M. E.

    2015-09-01

    We report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generated with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.

  18. NASA Astrophysics Educator Ambassador Program

    NASA Astrophysics Data System (ADS)

    McLin, K. M.; Cominsky, L. R.

    2014-07-01

    The NASA Astrophysics Educator Ambassador (EA) Program began in 2001 as part of the GLAST (now Fermi) EPO effort at Sonoma State University. The program currently supports 15 EAs, sponsored by either Fermi (10), Swift (3), XMM-Newton (1) or NuSTAR (1). This group of master educators work with mission scientists and EPO personnel to develop curricula and train teachers; they also do workshops for students and outreach events with the general public. Every other year since 2002 the EAs assemble for a week of training at SSU. Each training has had a different focus. Additionally, time is given for the EAs to share ideas from their own workshops. In the dozen years of the program, the total number of teachers attending EA-run workshops is over 60,000, and EA workshops have received outstanding positive reviews from participants according to surveys conducted by our external evaluator, WestEd. This poster gives an overview of the program and its nationwide impact.

  19. Relativistic opacities for astrophysical applications

    SciTech Connect

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; Hakel, Peter; Colgan, James Patrick; Kilcrease, David Parker; Sherrill, Manalo Edgar

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generated with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.

  20. Mass-23 nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Fraser, P. R.; Amos, K.; Canton, L.; Karataglidis, S.; Svenne, J. P.; van der Kniff, D.

    2015-09-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22Na puzzle of ONe white dwarf novae, where the abundance of 22Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22Ne, a necessary step in studying the mass-23 nuclei mentioned above.

  1. Advances in instrumentation for nuclear astrophysics

    SciTech Connect

    Pain, S. D.

    2014-04-15

    The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

  2. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angellini, L.

    1994-01-01

    This report reviews activities performed by members of the USRA contract team during the three months of the reporting period. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics.

  3. Astrophysics teaching at Assam University, Silchar

    NASA Astrophysics Data System (ADS)

    Das, Himadri Sekhar

    The Department of Physics is established in 1996 and since, then, thirteen batches of students have completed their Master’s programmes in the subject. The Department introduced in the year 2001 Astrophysics as one special paper in PG level (in the second year). The syllabus of Astrophysics is designed to include courses from observational Astronomy to Theoretical Astrophysics and Cosmology. There are two theory papers (in third and fourth semesters), one practical paper (in third semester) and one project or dissertation paper (in fourth semester), each one carries 100 marks. The major instruments available in the department for carrying out the experimental work are Meade-16 inch telescope, Celestron-8 inch inches Telescope, Meade refracting telescopes (4 inches, 2 number), SSP-5, SSP-3 photometer, Sivo Fibre-fed Spectrometer, CCD (Meade 416 XT, ST-6), Goniometer, Limb darkening apparatus etc. The practical paper includes study of the variation of sunspots; measurement of the parallax of distant objects, on moon and on planets like Jupiter and Saturn, measurement of the magnitude of different stars, study of the light scattering properties of rough surfaces, analysis of the image by image processing software (IRAF) etc. The project papers are based on research oriented topics which covers latest trends in Astrophysics including solar system studies, Interstellar medium and star formation studies and some problems in gravito-optics. There are altogether 6 scholars who have been awarded PhD and 10 are registered for PhD in Astrophysics. Besides these, 8 scholars have been awarded M. Phil. in Astrophysics. The broad research area of Astrophysics includes light scattering properties of cosmic dust, star formation, gravito optics, polarization study of comets etc. The Astrophysics group is currently doing research in different fields and have very good publications in several peer reviewed journals of international status.

  4. Molecular equilibrium with condensation. [in astrophysics

    NASA Technical Reports Server (NTRS)

    Sharp, C. M.; Huebner, W. F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated.

  5. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  6. The data sharing advantage in astrophysics

    NASA Astrophysics Data System (ADS)

    Dorch, Bertil F.; Drachen, Thea M.; Ellegaard, Ole

    2016-10-01

    We present here evidence for the existence of a citation advantage within astrophysics for papers that link to data. Using simple measures based on publication data from NASA Astrophysics Data System we find a citation advantage for papers with links to data receiving on the average significantly more citations per paper than papers without links to data. Furthermore, using INSPEC and Web of Science databases we investigate whether either papers of an experimental or theoretical nature display different citation behavior.

  7. SNAP: An Astrophysical Camp That Flies High!

    NASA Astrophysics Data System (ADS)

    Forbes, D.; English, D.

    2010-08-01

    It has become widely recognized that there is a shortage of students coming out of provincial high schools who plan to pursue careers in scientific and technical fields. We aim to capture the interest and excite the imaginations of Grade 11 students in a three-day camp. The School for Nuclei, Astrophysics, and Particles (SNAP) will combine an introduction to astrophysics with the building and flying of a balloon-borne cosmic-ray detector to the very edge of space.

  8. LHCb Topological Trigger Reoptimization

    NASA Astrophysics Data System (ADS)

    Likhomanenko, Tatiana; Ilten, Philip; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Williams, Michael

    2015-12-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so- called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all ’interesting” decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. Methods studied include cascading, ensembling and blending techniques. Furthermore, novel boosting techniques have been implemented that will help reduce systematic uncertainties in Run 2 measurements. We demonstrate that the reoptimized topological trigger is expected to significantly improve on the Run 1 performance for a wide range of b-hadron decays.

  9. The digital trigger system for the RED-100 detector

    SciTech Connect

    Naumov, P. P. Akimov, D. Yu.; Belov, V. A.; Bolozdynya, A. I.; Efremenko, Yu. V.; Kaplin, V. A.

    2015-12-15

    The system for forming a trigger for the liquid xenon detector RED-100 is developed. The trigger can be generated for all types of events that the detector needs for calibration and data acquisition, including the events with a single electron of ionization. In the system, a mechanism of event detection is implemented according to which the timestamp and event type are assigned to each event. The trigger system is required in the systems searching for rare events to select and keep only the necessary information from the ADC array. The specifications and implementation of the trigger unit which provides a high efficiency of response even to low-energy events are considered.

  10. Distance Measurement Solves Astrophysical Mysteries

    NASA Astrophysics Data System (ADS)

    2003-08-01

    Location, location, and location. The old real-estate adage about what's really important proved applicable to astrophysics as astronomers used the sharp radio "vision" of the National Science Foundation's Very Long Baseline Array (VLBA) to pinpoint the distance to a pulsar. Their accurate distance measurement then resolved a dispute over the pulsar's birthplace, allowed the astronomers to determine the size of its neutron star and possibly solve a mystery about cosmic rays. "Getting an accurate distance to this pulsar gave us a real bonanza," said Walter Brisken, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Monogem Ring The Monogem Ring, in X-Ray Image by ROSAT satellite CREDIT: Max-Planck Institute, American Astronomical Society (Click on Image for Larger Version) The pulsar, called PSR B0656+14, is in the constellation Gemini, and appears to be near the center of a circular supernova remnant that straddles Gemini and its neighboring constellation, Monoceros, and is thus called the Monogem Ring. Since pulsars are superdense, spinning neutron stars left over when a massive star explodes as a supernova, it was logical to assume that the Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast that created the pulsar. However, astronomers using indirect methods of determining the distance to the pulsar had concluded that it was nearly 2500 light-years from Earth. On the other hand, the supernova remnant was determined to be only about 1000 light-years from Earth. It seemed unlikely that the two were related, but instead appeared nearby in the sky purely by a chance juxtaposition. Brisken and his colleagues used the VLBA to make precise measurements of the sky position of PSR B0656+14 from 2000 to 2002. They were able to detect the slight offset in the object's apparent position when viewed from opposite sides of Earth's orbit around the Sun. This effect, called parallax, provides a direct measurement of

  11. First Searches for Optical Counterparts to Gravitational-Wave Candidate Events

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Blackburn, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.; Kanner, J. B.; Cenko, S. B.

    2014-01-01

    During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type.

  12. First Searches for Optical Counterparts to Gravitational-wave Candidate Events

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Akerlof, C.; Baltay, C.; Bloom, J. S.; Cao, Y.; Cenko, S. B.; Ćwiek, A.; Ćwiok, M.; Dhillon, V.; Fox, D. B.; Gal-Yam, A.; Kasliwal, M. M.; Klotz, A.; Laas-Bourez, M.; Laher, R. R.; Law, N. M.; Majcher, A.; Małek, K.; Mankiewicz, L.; Nawrocki, K.; Nissanke, S.; Nugent, P. E.; Ofek, E. O.; Opiela, R.; Piotrowski, L.; Poznanski, D.; Rabinowitz, D.; Rapoport, S.; Richards, J. W.; Schmidt, B.; Siudek, M.; Sokołowski, M.; Steele, I. A.; Sullivan, M.; Żarnecki, A. F.; Zheng, W.

    2014-03-01

    During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type.

  13. Tran-spectral searches for transient radio pulses and gravitational waves

    NASA Astrophysics Data System (ADS)

    Torpey, Megan

    2010-02-01

    The detection of radio wavelength transients from astrophysical sources can provide external triggers for gravitational wave (GW) searches within LIGO/Virgo data. There are a variety of sources of GWs that should also produce a radio transient, such as compact object inspirals and mergers, core- collapse super- novae, and the cusps or kinks of superconducting cosmic strings. Radio polarization and spectral information can help distinguish among candidate sources. Such a pulse may be detected by a transient radio array such as the Eight-meter-wavelength Transient Array (ETA). I will present details of an ongoing effort to perform a trans- spectral comparison between data from gravitational wave detectors and radio transient arrays. )

  14. Building a Successful Teachers' Workshop in Astronomy & Astrophysics

    NASA Astrophysics Data System (ADS)

    Smecker-Hane, T. A.; Thornton, C. E.

    2005-12-01

    We discuss the Teachers' Workshop in Astronomy & Astrophysics, a 2-day long summer workshop we designed to aid K-12 grade teachers in incorporating astronomy and astrophysics into their curricula. These workshops are part of a faculty-led outreach program entitled Outreach in Astronomy & Astrophysics with the UCI Observatory, funded by an NSF FOCUS grant to the University of California, Irvine. Approximately 20 teachers from the Compton, Newport/Mesa and Santa Ana Unified School Districts attend each workshop. Our teachers realize that astronomy captures the imagination of their students, and thus lessons in astronomy can very effectively convey a number of challenging math and science concepts. Our workshop is designed to give teachers the content and instruction needed to achieve that goal. Because only a small fraction of teachers have taken a college astronomy course, an important component of the workshop is lectures on: (1) the motion of objects in the night sky, moon phases and the seasons, (2) the solar system, (3) the physics of light, and (4) interesting applications such as searching for planets around other stars and charting the expansion history of the Universe. The second important component of the workshop is the kit of material each teacher receives, which includes a introductory astronomy textbook, planetarium software, and the ASP's "Universe at Your Fingertips" and "More Universe at Your Fingertips", etc.. The latter two books give teachers many examples of creative hands-on activities and experiments they can do with their classes and instruction on how to build a coherent curriculum for their particular grade level. We also introduce teachers to Contemporary Laboratory Exercises in Astronomy (CLEA), a suite of computer lab exercises that can be used effectively in high school physics classes. For more information, see http://www.physics.uci.edu/%7Eobservat/#e&o. Funding provided by NSF grant EHR-0227202 (PI: Ronald Stern).

  15. Dark matter triggers of supernovae

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Rajendran, Surjeet; Varela, Jaime

    2015-09-01

    The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to 1.25 M⊙ rules out primordial black holes with masses ˜1019- 1020 gm as a dominant constituent of the local dark matter density. Black holes with masses as large as 1024 gm will be excluded if recent observations by the NuStar Collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range 1020- 1022 gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism proposed in this paper can constrain a variety of other dark matter scenarios such as Q balls, annihilation/collision of large composite states of dark matter and models of dark matter where the accretion of dark matter leads to the formation of compact cores within the star. White dwarfs, with their astronomical lifetimes and sizes, can thus act as large spacetime volume detectors enabling a unique probe of the properties of dark matter, especially of dark matter candidates that have low number density. This mechanism also raises the intriguing possibility that a class of supernova may be triggered through rare events induced by dark matter rather than the conventional mechanism of accreting white dwarfs that explode upon reaching the Chandrasekhar mass.

  16. Tremor, remote triggering and earthquake cycle

    NASA Astrophysics Data System (ADS)

    Peng, Z.

    2012-12-01

    Deep tectonic tremor and episodic slow-slip events have been observed at major plate-boundary faults around the Pacific Rim. These events have much longer source durations than regular earthquakes, and are generally located near or below the seismogenic zone where regular earthquakes occur. Tremor and slow-slip events appear to be extremely stress sensitive, and could be instantaneously triggered by distant earthquakes and solid earth tides. However, many important questions remain open. For example, it is still not clear what are the necessary conditions for tremor generation, and how remote triggering could affect large earthquake cycle. Here I report a global search of tremor triggered by recent large teleseismic earthquakes. We mainly focus on major subduction zones around the Pacific Rim. These include the southwest and northeast Japan subduction zones, the Hikurangi subduction zone in New Zealand, the Cascadia subduction zone, and the major subduction zones in Central and South America. In addition, we examine major strike-slip faults around the Caribbean plate, the Queen Charlotte fault in northern Pacific Northwest Coast, and the San Andreas fault system in California. In each place, we first identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. We also calculate the dynamic stress and check the triggering relationship with the Love and Rayleigh waves. Finally, we calculate the triggering potential with the local fault orientation and surface-wave incident angles. Our results suggest that tremor exists at many plate-boundary faults in different tectonic environments, and could be triggered by dynamic stress as low as a few kPas. In addition, we summarize recent observations of slow-slip events and earthquake swarms triggered by large distant earthquakes. Finally, we propose several mechanisms that could explain apparent clustering of large earthquakes around the world.

  17. Calorimetry Triggering in ATLAS

    SciTech Connect

    Igonkina, O.; Achenbach, R.; Adragna, P.; Aharrouche, M.; Alexandre, G.; Andrei, V.; Anduaga, X.; Aracena, I.; Backlund, S.; Baines, J.; Barnett, B.M.; Bauss, B.; Bee, C.; Behera, P.; Bell, P.; Bendel, M.; Benslama, K.; Berry, T.; Bogaerts, A.; Bohm, C.; Bold, T.; /UC, Irvine /AGH-UST, Cracow /Birmingham U. /Barcelona, IFAE /CERN /Birmingham U. /Rutherford /Montreal U. /Santa Maria U., Valparaiso /DESY /DESY, Zeuthen /Geneva U. /City Coll., N.Y. /Barcelona, IFAE /CERN /Birmingham U. /Kirchhoff Inst. Phys. /Birmingham U. /Lisbon, LIFEP /Rio de Janeiro Federal U. /City Coll., N.Y. /Birmingham U. /Copenhagen U. /Copenhagen U. /Brookhaven /Rutherford /Royal Holloway, U. of London /Pennsylvania U. /Montreal U. /SLAC /CERN /Michigan State U. /Chile U., Catolica /City Coll., N.Y. /Oxford U. /La Plata U. /McGill U. /Mainz U., Inst. Phys. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Queen Mary, U. of London /CERN /Rutherford /Rio de Janeiro Federal U. /Birmingham U. /Montreal U. /CERN /Kirchhoff Inst. Phys. /Liverpool U. /Royal Holloway, U. of London /Pennsylvania U. /Kirchhoff Inst. Phys. /Geneva U. /Birmingham U. /NIKHEF, Amsterdam /Rutherford /Royal Holloway, U. of London /Rutherford /Royal Holloway, U. of London /AGH-UST, Cracow /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Birmingham U. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Kirchhoff Inst. Phys. /Michigan State U. /Stockholm U. /Stockholm U. /Birmingham U. /CERN /Montreal U. /Stockholm U. /Arizona U. /Regina U. /Regina U. /Rutherford /NIKHEF, Amsterdam /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /City Coll., N.Y. /University Coll. London /Humboldt U., Berlin /Queen Mary, U. of London /Argonne /LPSC, Grenoble /Arizona U. /Kirchhoff Inst. Phys. /Birmingham U. /Antonio Narino U. /Hamburg U. /DESY /DESY, Zeuthen /Kirchhoff Inst. Phys. /Birmingham U. /Chile U., Catolica /Indiana U. /Manchester U. /Kirchhoff Inst. Phys. /Rutherford /City Coll., N.Y. /Stockholm U. /La Plata U. /Antonio Narino U. /Queen Mary, U. of London /Kirchhoff Inst. Phys. /Antonio Narino U. /Pavia U. /City Coll., N.Y. /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Pennsylvania U. /Barcelona, IFAE /Barcelona, IFAE /Chile U., Catolica /Genoa U. /INFN, Genoa /Rutherford /Barcelona, IFAE /Nevis Labs, Columbia U. /CERN /Antonio Narino U. /McGill U. /Rutherford /Santa Maria U., Valparaiso /Rutherford /Chile U., Catolica /Brookhaven /Oregon U. /Mainz U., Inst. Phys. /Barcelona, IFAE /McGill U. /Antonio Narino U. /Antonio Narino U. /Kirchhoff Inst. Phys. /Sydney U. /Rutherford /McGill U. /McGill U. /Pavia U. /Genoa U. /INFN, Genoa /Kirchhoff Inst. Phys. /Kirchhoff Inst. Phys. /Mainz U., Inst. Phys. /Barcelona, IFAE /SLAC /Stockholm U. /Moscow State U. /Stockholm U. /Birmingham U. /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /Birmingham U. /Geneva U. /Oregon U. /Barcelona, IFAE /University Coll. London /Royal Holloway, U. of London /Birmingham U. /Mainz U., Inst. Phys. /Birmingham U. /Birmingham U. /Oregon U. /La Plata U. /Geneva U. /Chile U., Catolica /McGill U. /Pavia U. /Barcelona, IFAE /Regina U. /Birmingham U. /Birmingham U. /Kirchhoff Inst. Phys. /Oxford U. /CERN /Kirchhoff Inst. Phys. /UC, Irvine /UC, Irvine /Wisconsin U., Madison /Rutherford /Mainz U., Inst. Phys. /CERN /Geneva U. /Copenhagen U. /City Coll., N.Y. /Wisconsin U., Madison /Rio de Janeiro Federal U. /Wisconsin U., Madison /Stockholm U. /University Coll. London

    2011-12-08

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2/10{sup 5} to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  18. Dealing with Asthma Triggers

    MedlinePlus

    ... smell given off by paint or gas, and air pollution. If you notice that an irritant triggers your ... or other tobacco products around you. If outdoor air pollution is a problem, running the air conditioner or ...

  19. Dealing with Asthma Triggers

    MedlinePlus

    ... reactions stuff in the air, like smoke and pollution colds or the flu weather conditions exercise continue ... given off by paint or gas, and air pollution. If you notice that an irritant triggers your ...

  20. ELECTRONIC TRIGGER CIRCUIT

    DOEpatents

    Russell, J.A.G.

    1958-01-01

    An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

  1. Tremors Triggered along the Queen Charlotte Fault

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.; Chao, K.

    2012-12-01

    In the past decade, deep tectonic tremors have been observed in numerous tectonic environments surrounding the Pacific and Caribbean plates. In these regions, tremors triggered by both regional and distant earthquakes have also been observed. Despite the ubiquitous observations of triggered tremors, tremors triggered in differing strike-slip environments are less understood. Here, we conduct a preliminary search of tremors triggered by teleseismic earthquakes along the transpressive Queen Charlotte Fault (QCF) located between the Cascadia subduction zone and Alaska. Tectonic tremors have not been previously reported along the QCF. We select teleseismic earthquakes during the 1990-2012 period as having magnitude M ≥ 6.5 and occurring at least 1,000 km away from the region. We reduce the number of mainshocks by selecting those that generate greater than 1 kPa dynamic stress estimated from surface-wave magnitude equations [e.g. van der Elst and Brodsky, 2010]. Our mainshock waveforms are retrieved from the Canadian National Seismograph Network (CNSN), processed, and filtered for triggered tremor observations. We characterize triggered tremors as high-frequency signals visible among several stations and coincident with broadband surface wave peaks. So far, we have found tremors triggered along the QCF by surface waves of five great earthquakes - the 2002/11/03 Mw7.9 Denali Fault, 2004/12/26 Mw9.0 Sumatra, 2010/02/27 Mw8.8 Chile, 2011/03/11 Mw9.0 Japan, and 2012/04/11 Mw8.6 Sumatra earthquakes. We compare our results to tremors triggered by teleseismic earthquakes on strike-slip faults in central and southern California, as well as Cuba [Peng et al., 2012]. Among strike-slip faults in these regions, we also compare triggered tremor amplitudes to peak ground velocities from the mainshocks and compute dynamic stresses to determine a triggering threshold for the QCF. We find that in most cases tremors in the QCF are triggered primarily by the Love waves, and additional

  2. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  3. The Astrophysical Plasma Emission Database: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Smith, Randall K.; Brickhouse, Nancy S.; Liedahl, Duane A.

    2005-01-01

    The Astrophysical Plasma Emission Database (APED) contains atomic data for the 14 most abundant astrophysical elements collected from the literature. Although APED was originally designed for use in calculating a collisional-equilibrium X-ray spectrum suitable for analysis of high-resolution data it is in a general format which can be efficiently used to calculate absorption spectra photoionization models and non-equilibrium collisional models. We emphasize original sources; each transition rate and energy level in APED contains a bibliographic reference. The entire APED can be downloaded from http://cxc.harvard.edu/atomdb/ or our website WebGUIDE (http://obsvis.harvard.edu/WebGUIDE/) can be used to search for individual lines or transitions. We are continually working to expand APED (current version 1.3.0) and regularly issue updated collections. I will present some new results for non-equilibrium plasmas from our upcoming release and discuss a new project AstroAtom (http://cfa-www.harvard.edu/astroatom/) a website designed to foster communication between atomic physicists and astrophysicists.

  4. The Time-of-Flight trigger at CDF

    SciTech Connect

    Bauer, G.; Mulhearn, M.J.; Paus, Ch.; Schieferdecker, P.; Tether, S.; Lewis, J.D.; Shaw, T.; Acosta, D.; Konigsberg, J.; Madorsky, A.; /Florida U.

    2006-05-01

    The Time-of-Flight (TOF) detector measures the arrival time and deposited energy of charged particles reaching scintillator bars surrounding the central tracking region of the CDF detector. Requiring high ionization in the TOF system provides a unique trigger capability, which has been used for a magnetic monopole search. Other uses, with smaller pulse height thresholds, include a high-multiplicity charged-particle trigger useful for QCD studies and a much improved cosmic ray trigger for calibrating other detector components. Although not designed as input to CDF's global Level 1 trigger, the TOF system has been easily adapted to this role by the addition of 24 cables, new firmware, and four custom TOF trigger boards (TOTRIBs). This article describes the TOF trigger.

  5. Triggered Earthquakes Following Parkfield?

    NASA Astrophysics Data System (ADS)

    Hough, S. E.

    2004-12-01

    When the M5.0 Arvin earthquake struck approximately 30 hours after the 28 September 2004 M6.0 Parkfield earthquake, it seemed likely if not obvious that the latter had triggered the former. The odds of a M5.0 or greater event occurring by random chance in a given 2-day window is low, on the order of 2%. However, previously published results suggest that remotely triggered earthquakes are observed only following much larger mainshocks, typically M7 or above. Moreover, using a standard beta-statistic approach, one finds no pervasive regional increase of seismicity in the weeks following the Parkfield mainshock. (Neither were any moderate events observed at regional distances following the 1934 and 1966 Parkfield earthquakes.) Was Arvin a remotely triggered earthquake? To address this issue further I compare the seismicity rate changes following the Parkfield mainshock with those following 14 previous M5.3-7.1 earthquakes in central and southern California. I show that, on average, seismicity increased to a distance of at least 120 km following these events. For all but the M7.1 Hector Mine mainshock, this is well beyond the radius of what would be considered a traditional aftershock zone. Average seismicity rates also increase, albeit more weakly, to a distance of about 220 km. These results suggest that even moderate mainshocks in central and southern California do trigger seismicity at distances up to 220 km, supporting the inference that Arvin was indeed a remotely triggered earthquake. In general, only weak triggering is expected following moderate (M5.5-6.5) mainshocks. However, as illustrated by Arvin and, in retrospect, the 1986 M5.5 Oceanside earthquake, which struck just 5 days after the M5.9 North Palm Springs earthquake, triggered events can sometimes be large enough to generate public interest, and anxiety.

  6. Direct search for dark matter

    SciTech Connect

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  7. Using the Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Teuben, P. J.; Berriman, G. B.; DuPrie, K.; Hanisch, R. J.; Mink, J. D.; Nemiroff, R. J.; Shamir, L.; Wallin, J. F.

    2013-01-01

    The Astrophysics Source Code Library (ASCL) is a free on-line registry of source codes that are of interest to astrophysicists; with over 500 codes, it is the largest collection of scientist-written astrophysics programs in existence. All ASCL source codes have been used to generate results published in or submitted to a refereed journal and are available either via a download site or from an identified source. An advisory committee formed in 2011 provides input and guides the development and expansion of the ASCL, and since January 2012, all accepted ASCL entries are indexed by ADS. Though software is increasingly important for the advancement of science in astrophysics, these methods are still often hidden from view or difficult to find. The ASCL (ascl.net/) seeks to improve the transparency and reproducibility of research by making these vital methods discoverable, and to provide recognition and incentive to those who write and release programs useful for astrophysics research. This poster provides a description of the ASCL, an update on recent additions, and the changes in the astrophysics community we are starting to see because of the ASCL.

  8. NASA Astrophysics EPO Community: Enhancing STEM Instruction

    NASA Astrophysics Data System (ADS)

    Bartolone, L.; Manning, J.; Lawton, B.; Meinke, B. K.; Smith, D. A.; Schultz, G.; NASA Astrophysics EPO community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enhance Science, Technology, Engineering, and Math (STEM) instruction. In 2010, the Astrophysics EPO community identified online professional development for classroom educators and multiwavelength resources as a common interest and priority for collaborative efforts. The result is NASA's Multiwavelength Universe, a 2-3 week online professional development experience for classroom educators. The course uses a mix of synchronous sessions (live WebEx teleconferences) and asynchronous activities (readings and activities that educators complete on their own on the Moodle, and moderated by course facilitators). The NASA SMD Astrophysics EPO community has proven expertise in providing both professional development and resources to K-12 Educators. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum engage the K-12 education community in these ways, including associated metrics and evaluation findings.

  9. Astromag - Particle astrophysics magnet facility for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Jones, W. Vernon

    1989-01-01

    The Astromag (for astrophysics magnet) superconducting magnet facility to be flown aboard the Space Station in the late 1990s is described together with its scientific objectives. The Astromag facility is basically a magnetic spectrometer capable of determining the momentum per unit charge and the sign of the charge of fully ionized cosmic rays. The Astromag's science goals include investigating the origin and the evolution of matter in the Galaxy by direct sampling of Galactic material, examining cosmological models by searching for antimatter and an evidence of dark matter, and studying the origin of extremely energetic particles and their effects on the dynamics and evolution of the Galaxy. The Astromag's instrumentation will include an array of particle detectors (the WIZard instrument), a large spectrometer (LISA), and a stack of passive high-resolution track detectors in the Astromag's magnetic field (the SCIN/MAGIC instrument).

  10. Results and prospects in multi-messenger particle astrophysics

    NASA Astrophysics Data System (ADS)

    Mostafa, Miguel

    2017-01-01

    In high-energy particle astrophysics the old days were certainly not better than these. Our field has thrived in the past decade with experiments covering thousands of square kilometers to measure the suppression in the flux of the highest energy cosmic rays ever observed, instrumenting a cubic kilometer of Antarctic ice to discover astrophysical neutrinos, and measuring a change in arm length as small as 10-19 m for the ground-breaking direct observation of gravitational waves. Additionally, the current generation of space-borne and ground-based gamma-ray experiments have revealed a plethora of gamma-ray sources, including pulsars, compact binaries, the galactic center, and extragalactic sources such as starburst galaxies and radio galaxies. Before the next generation of instruments bring us yet another order of magnitude in sensitivity, we can combine current observations to probe physics beyond the standard model, and to extend the high-energy frontier well above the energies accessible to laboratory accelerators. One example of this potential is the search for dark-matter annihilation and decay products. To use the multi-messenger approach effectively for probing dark-matter signatures and physics beyond the LHC energy requires understanding the origin (or acceleration mechanism) and the propagation processes. High energy protons and nuclei, neutrinos, gamma-rays, X-rays, and gravitational waves bring new and complementary views of the astrophysical sources. By comparing observations through different windows, we can use the sites of violent phenomena as a laboratory to probe the physical processes under extreme conditions throughout the Universe, and to test the fundamental laws of particle physics and gravitation. As a community we need to engage in a bold synergistic approach to understanding the violent processes that give rise to the high-energy cosmic phenomena in the Universe. In this invited talk, I will present on-going multi-messenger studies to

  11. Trigger and Readout System for the Ashra-1 Detector

    NASA Astrophysics Data System (ADS)

    Aita, Y.; Aoki, T.; Asaoka, Y.; Morimoto, Y.; Motz, H. M.; Sasaki, M.; Abiko, C.; Kanokohata, C.; Ogawa, S.; Shibuya, H.; Takada, T.; Kimura, T.; Learned, J. G.; Matsuno, S.; Kuze, S.; Binder, P. M.; Goldman, J.; Sugiyama, N.; Watanabe, Y.

    Highly sophisticated trigger and readout system has been developed for All-sky Survey High Resolution Air-shower (Ashra) detector. Ashra-1 detector has 42 degree diameter field of view. Detection of Cherenkov and fluorescence light from large background in the large field of view requires finely segmented and high speed trigger and readout system. The system is composed of optical fiber image transmission system, 64 × 64 channel trigger sensor and FPGA based trigger logic processor. The system typically processes the image within 10 to 30 ns and opens the shutter on the fine CMOS sensor. 64 × 64 coarse split image is transferred via 64 × 64 precisely aligned optical fiber bundle to a photon sensor. Current signals from the photon sensor are discriminated by custom made trigger amplifiers. FPGA based processor processes 64 × 64 hit pattern and correspondent partial area of the fine image is acquired. Commissioning earth skimming tau neutrino observational search was carried out with this trigger system. In addition to the geometrical advantage of the Ashra observational site, the excellent tau shower axis measurement based on the fine imaging and the night sky background rejection based on the fine and fast imaging allow zero background tau shower search. Adoption of the optical fiber bundle and trigger LSI realized 4k channel trigger system cheaply. Detectability of tau shower is also confirmed by simultaneously observed Cherenkov air shower. Reduction of the trigger threshold appears to enhance the effective area especially in PeV tau neutrino energy region. New two dimensional trigger LSI was introduced and the trigger threshold was lowered. New calibration system of the trigger system was recently developed and introduced to the Ashra detector

  12. Trigger mechanism for engines

    SciTech Connect

    Clark, L.R.

    1989-02-28

    A trigger mechanism is described for a blower-vacuum apparatus having a trigger mounted within a handle and a small engine comprising: a throttle; a ''L'' shaped lever having first and second legs mounted for rotation about an intermediate pivot within the handle when the trigger is depressed, interconnecting the trigger and the throttle, the second leg having first teeth defined therein, the lever further having idle, full throttle and stop positions; a normally raised latch means adapted to be rotated and axially depressed, the latch means having second teeth situated on a cam to engage the first teeth for holding the lever in an intermediate position between the idle and full throttle positions when the latch means is rotated. The latch means further are cam teeth into potential engagement with the lever teeth when the trigger is depressed, lever is biased to the stop position; and idle adjusting means means for intercepting the second leg for preventing the second leg from reaching the stop position when the latch means is raised.

  13. The CMS trigger system

    DOE PAGES

    Khachatryan, Vardan

    2017-01-24

    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during datamore » taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.« less

  14. The CMS trigger system

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Damiao, D. De Jesus; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M., Jr.; Assran, Y.; El Sawy, M.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Bacchetta, N.; Bellato, M.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Kierzkowski, K.; Konecki, M.; Krolikowski, J.; Misiura, M.; Oklinski, W.; Olszewski, M.; Pozniak, K.; Walczak, M.; Zabolotny, W.; Bargassa, P.; Silva, C. Beirão Da Cruz E.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova PANEVA, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-01-01

    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, τ lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.

  15. Atomic clocks for astrophysical measurements

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.; Mattison, E. M.

    1982-01-01

    It is noted that recently developed atomic hydrogen masers have achieved stability well into the 10 to the -16th domain for averaging time intervals beyond 1000 sec and that further improvements are in prospect. These devices are highly adaptable for space use in very high precision measurements of angle through Very Long Baseline Interferometry (VLBI) and of range and range-rate through Doppler techniques. Space missions that will use these clocks for measuring the sun's gravity field distribution and for testing gravitation and relativity (a project that will include a search for pulsed low-frequency gravitational waves) are discussed. Estimates are made of system performance capability, and the accuracy capability of relativistic measurements is evaluated in terms of the results from the 1976 NASA/SAO spaceborne clock test of the Einstein Equivalence Principle.

  16. Tau Trigger at the ATLAS Experiment

    SciTech Connect

    Benslama, K.; Kalinowski, A.; Belanger-Champange, C.; Brenner, R.; Bosman, M.; Casado, P.; Osuna, C.; Perez, E.; Vorwerk, V.; Czyczula, Z.; Dam, M.; Xella, S.; Demers, S.; Farrington, S.; Igonkina, O.; Kanaya, N.; Tsuno, S.; Ptacek, E.; Reinsch, A.; Strom, David M.; Torrence, E.; /Oregon U. /Sydney U. /Lancaster U. /Birmingham U.

    2011-11-09

    Many theoretical models, like the Standard Model or SUSY at large tan({beta}), predict Higgs bosons or new particles which decay more abundantly to final states including tau leptons than to other leptons. At the energy scale of the LHC, the identification of tau leptons, in particular in the hadronic decay mode, will be a challenging task due to an overwhelming QCD background which gives rise to jets of particles that can be hard to distinguish from hadronic tau decays. Equipped with excellent tracking and calorimetry, the ATLAS experiment has developed tau identification tools capable of working at the trigger level. This contribution presents tau trigger algorithms which exploit the main features of hadronic tau decays and describes the current tau trigger commissioning activities. Many of the SM processes being investigated at ATLAS, as well as numerous BSM searches, contain tau leptons in their final states. Being able to trigger effectively on the tau leptons in these events will contribute to the success of the ATLAS experiment. The tau trigger algorithms and monitoring infrastructure are ready for the first data, and are being tested with the data collected with cosmic muons. The development of efficiency measurements methods using QCD and Z {yields} {tau}{tau} events is well advanced.

  17. Turbulence and Magnetic Fields in Astrophysics

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.

    2004-10-01

    The juxtaposition of ``magnetic fields'' and ``turbulence'' arises in plasma dynamics in various contexts-such as the solar corona, the magnetosphere, space physics in general, cosmic ray propagation, and laboratory plasmas of both fusion and nonfusion types. In astrophysics, the impact of turbulence has arrived relatively recently but is rapidly finding importance. The present volume is a written record of topics presented at a conference, Simulations of Magnetohydrodynamic Turbulence in Astrophysics: Recent Achievements and Perspectives, held at the Institut Henri Poincare, in Paris, in July 2001. The international audience that attended this meeting heard talks on a broad range of astrophysical, space physics, and purely theoretical subjects. A wide range of physical scenarios was discussed, with many different observational data presented. However, true to the conference banner, the emphasis was on the physics of low-frequency plasma turbulence, described by magnetohydrodyamics (MHD), and investigated using numerical simulation.

  18. Astrophysical science with a spaceborne photometric telescope

    NASA Technical Reports Server (NTRS)

    Granados, Arno F. (Editor); Borucki, William J. (Editor)

    1994-01-01

    The FRESIP Project (FRequency of Earth-Sized Inner Planets) is currently under study at NASA Ames Research Center. The goal of FRESIP is the measurement of the frequency of Earth-sized extra-solar planets in inner orbits via the photometric signature of a transit event. This will be accomplished with a spaceborne telescope/photometer capable of photometric precision of two parts in 100,000 at a magnitude of m(sub v) = 12.5. To achieve the maximum scientific value from the FRESIP mission, an astrophysical science workshop was held at the SETI Institute in Mountain View, California, November 11-12, 1993. Workshop participants were invited as experts in their field of astrophysical research and discussed the astrophysical science that can be achieved within the context of the FRESIP mission.

  19. Astrophysics Source Code Library: Incite to Cite!

    NASA Astrophysics Data System (ADS)

    DuPrie, K.; Allen, A.; Berriman, B.; Hanisch, R. J.; Mink, J.; Nemiroff, R. J.; Shamir, L.; Shortridge, K.; Taylor, M. B.; Teuben, P.; Wallen, J. F.

    2014-05-01

    The Astrophysics Source Code Library (ASCl,http://ascl.net/) is an on-line registry of over 700 source codes that are of interest to astrophysicists, with more being added regularly. The ASCL actively seeks out codes as well as accepting submissions from the code authors, and all entries are citable and indexed by ADS. All codes have been used to generate results published in or submitted to a refereed journal and are available either via a download site or from an identified source. In addition to being the largest directory of scientist-written astrophysics programs available, the ASCL is also an active participant in the reproducible research movement with presentations at various conferences, numerous blog posts and a journal article. This poster provides a description of the ASCL and the changes that we are starting to see in the astrophysics community as a result of the work we are doing.

  20. PREFACE: Nuclear Physics in Astrophysics III

    NASA Astrophysics Data System (ADS)

    Bemmerer, D.; Grosse, E.; Junghans, A. R.; Schwengner, R.; Wagner, A.

    2008-01-01

    The Europhysics Conference `Nuclear Physics in Astrophysics III' (NPA3) took place from 26 31 March 2007 in Dresden, Germany, hosted by Forschungszentrum Dresden-Rossendorf. The present special issue of Journal of Physics G: Nuclear and Particle Physics contains all peer-reviewed contributions to the proceedings of this conference. NPA3 is the third conference in the Nuclear Physics in Astrophysics series of conferences devoted to the interplay between nuclear physics and astrophysics. The first and second editions of the series were held in 2002 and 2005 in Debrecen, Hungary. NPA3 has been organized under the auspices of the Nuclear Physics Board of the European Physical Society as its XXI Divisional Conference. The conference marks the 50th anniversary of the landmark paper B2FH published in 1957 by E M Burbidge, G R Burbidge, W A Fowler and F Hoyle. A public lecture by Claus Rolfs (Ruhr-Universität Bochum, Germany) commemorated the progress achieved since 1957. NPA3 aimed to bring together experimental and theoretical nuclear physicists, astrophysicists and astronomers to address the important part played by nuclear physics in current astrophysical problems. A total of 130 participants from 71 institutions in 26 countries attended the conference, presenting 33 invited and 38 contributed talks and 25 posters on six subject areas. The astrophysical motivation and the nuclear tools employed to address it are highlighted by the titles of the subject areas: Big Bang Nucleosynthesis Stellar Nucleosynthesis and Low Cross Section Measurement Explosive Nucleosynthesis and Nuclear Astrophysics with Photons Nuclei far from Stability and Radioactive Ion Beams Dense Matter in Neutron Stars and Relativistic Nuclear Collisions Neutrinos in Nuclear Astrophysics The presentations and discussions proved that Nuclear Astrophysics is a truly interdisciplinary subject. The remarkable progress in astronomical observations achieved in recent years is matched by advances in

  1. Review of Astrophysics Experiments on Intense Lasers

    SciTech Connect

    Remington, B A; Drake, R P; Takabe, H; Arnett, D

    2000-01-19

    Astrophysics has traditionally been pursued at astronomical observatories and on theorists' computers. Observations record images from space, and theoretical models are developed to explain the observations. A component often missing has been the ability to test theories and models in an experimental setting where the initial and final states are well characterized. Intense lasers are now being used to recreate aspects of astrophysical phenomena in the laboratory, allowing the creation of experimental testbeds where theory and modeling can be quantitatively tested against data. We describe here several areas of astrophysics--supernovae, supernova remnants, gamma-ray bursts, and giant planets--where laser experiments are under development to test our understanding of these phenomena.

  2. The Astrophysics Science Division Annual Report 2008

    NASA Technical Reports Server (NTRS)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  3. Neutrino astrophysics with Hyper-Kamiokande

    NASA Astrophysics Data System (ADS)

    Yano, Takatomi; Hyper-Kamiokande proto Collaboration

    2016-05-01

    Hyper-Kamiokande (Hyper-K) is a proposed next generation underground large water Cherenkov detector. The detector consists of 1 Mt pure water tank with surrounding 99,000 newly developed photo sensors, providing fiducial volume of 0.56 Mt. The energies, positions and directions of charged particles produced by neutrino interactions are detected using its Cherenkov light in water. Our detector will be located at deep underground to reduce the cosmic muon flux and its spallation products, which is a dominant background at the low energy analysis. Hyper-K will play a considerable role in the next neutrino physics frontier, even in the neutrino astrophysics. The detection with large statistics of astrophysical neutrons, i.e., solar neutrino, supernova burst neutrino and supernova relic neutrino, will be remarkable information for both of particle physics and astrophysics.

  4. Axion dark matter searches

    DOE PAGES

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less

  5. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.; Collaboration: ADMX Collaboration; ADMX-HF Collaboration

    2014-06-24

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  6. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  7. Investigation of Remotely Triggered Tremor and Earthquakes in Latin America

    NASA Astrophysics Data System (ADS)

    Gonzalez-Huizar, H.; Velasco, A. A.

    2014-12-01

    It has been shown that non-volcanic tremor (NVT) as well as small to moderate size earthquakes can be triggered by the seismic waves from distant earthquakes; however, little is understood about the triggering mechanisms. Investigating cases of remote triggering offers the opportunity to improve our knowledge about the physical mechanisms of earthquake interaction and nucleation. Furthermore, the similarities observed between remotely triggered NVT and those related to slow slip events, suggest that investigating triggered NVT may give us important insights into the mechanisms involved in slow slip events and their potential role in the earthquake cycle. In this work we present new results and the techniques we employ in identifying, locating and modeling cases of triggered earthquakes and NVT in Latin America and the Caribbean. In particular, we use global and regional seismic networks to perform an intensive search for triggered seismicity in Mexico, Cuba, Nicaragua, Costa Rica, Colombia, Ecuador, Peru, Bolivia, and Chile. Our results suggest that seismicity can be triggered in a broad variety of tectonic environments, depending strongly on the triggering dynamic stress amplitude and orientation. This investigation will help to define the regions where remote triggering occurs and their susceptibility to undergo an important increase in seismicity after the occurrence of a distant large earthquake.

  8. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  9. Laboratory Astrophysics Division of The AAS (LAD)

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-10-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  10. Laboratory Astrophysics Division of the AAS (LAD)

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  11. An International Asteroid Search Campaign

    NASA Astrophysics Data System (ADS)

    Miller, J. Patrick; Davis, Jeffrey W.; Holmes, Robert E., Jr.; Devore, Harlan; Raab, Herbert; Pennypacker, Carlton R.; White, Graeme L.; Gould, Alan

    The International Asteroid Search Campaign (IASC, fondly nicknamed "Isaac") is an Internet- based program for high schools and colleges. Within hours of acquisition, astronomical CCD images are made available via the Internet to participating schools around the world. Under the guidance of their teachers, students analyze the images with free software tools, searching for new asteroids and confirmations of near- Earth objects (NEOs). These discoveries are reported to the Minor Planet Center (MPC; Smithsonian Astrophysical Observatory, Harvard), which gives the students published recognition in its MPC circulars. To date, 36 new Main Belt asteroids have been found in one year, and 197 NEOs confirmed.

  12. Cooperative research in high energy astrophysics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Details of the activities conducted under the joint effort of the University of Maryland and NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics are detailed for the period July 1989 through April 1994. The research covered a variety of topics including: (1) detection of cosmic rays and studies of the solar modulation of galactic cosmic rays; (2) support work for several x-ray satellites; (3) high resolution gamma-ray spectroscopy of celestial sources; (4)theoretical astrophysics; and (5) active galaxies.

  13. Astrophysics experiments with radioactive beams at ATLAS

    SciTech Connect

    Back, B. B.; Clark, J. A.; Pardo, R. C.; Rehm, K. E. Savard, G.

    2014-04-15

    Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

  14. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  15. NASA's Astrophysics Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima

    2011-05-01

    NASA conducts a balanced Astrophysics Education and Public Outreach program over K-12, higher education, informal education and public outreach, with the goal of taking excitement of NASA's scientific discoveries to the public, and generating interest in students in the area of Science, Technology, Education and Mathematics (STEM). Examples of classroom material, innovative research programs for teachers and students, collaborative programs with libraries, museums and planetaria, and programs for special needs individuals are presented. Information is provided on the competitive opportunities provided by NASA for participation in Astrophysics educational programs.

  16. Triggered Nanoparticles as Therapeutics

    PubMed Central

    Kim, Chang Soo; Duncan, Bradley; Creran, Brian; Rotello, Vincent M.

    2013-01-01

    Summary Drug delivery systems (DDSs) face several challenges including site-specific delivery, stability, and the programmed release of drugs. Engineered nanoparticle (NP) surfaces with responsive moieties can enhance the efficacy of DDSs for in vitro and in vivo systems. This triggering process can be achieved through both endogenous (biologically controlled release) and exogenous (external stimuli controlled release) activation. In this review, we will highlight recent examples of the use of triggered release strategies of engineered nanomaterials for in vitro and in vivo applications. PMID:24159362

  17. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    SciTech Connect

    Arcones, Almudena; Escher, Jutta E.; Others, M.

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  18. FAME's Search for Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Johnston, K.

    FAME is a five year survey mission to observe the positions, proper motions, and parallaxes of 40,000,000 stars down to 15th magnitude with accuracies of 50 microarcseconds at 9th magnitude. In addition to producing an astrometric and photometric catalog unparalleled for its accuracy and size, the survey will provide significant astrophysics results and search for extrasolar planet candidates.

  19. Trigger Circuit for Marx Generators

    DTIC Science & Technology

    2001-02-08

    A trigger circuit is provided for a trigger system for a Marx generator column. The column includes a plurality of metal electrode pairs wherein the...electrode (trigatron) spark gap switch forming the first spark gap of the Marx generator column. The triggering circuit includes a trigger

  20. AIDS radio triggers.

    PubMed

    Elias, A M

    1991-07-01

    In April 1991, the Ethnic Communities' Council of NSW was granted funding under the Community AIDS Prevention and Education Program through the Department of Community Services and Health, to produce a series of 6x50 second AIDS radio triggers with a 10-second tag line for further information. The triggers are designed to disseminate culturally-sensitive information about HIV/AIDS in English, Italian, Greek, Spanish, Khmer, Turkish, Macedonian, Serbo-Croatian, Arabic, Cantonese, and Vietnamese, with the goal of increasing awareness and decreasing the degree of misinformation about HIV/AIDS among people of non-English-speaking backgrounds through radio and sound. The 6 triggers cover the denial that AIDS exists in the community, beliefs that words and feelings do not protect one from catching HIV, encouraging friends to be compassionate, compassion within the family, AIDS information for a young audience, and the provision of accurate and honest information on HIV/AIDS. The triggers are slated to be completed by the end of July 1991 and will be broadcast on all possible community, ethnic, and commercial radio networks across Australia. They will be available upon request in composite form with an information kit for use by health care professionals and community workers.

  1. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W.

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  2. SciDAC Computational Astrophysics Consortium

    SciTech Connect

    Burrows, Adam

    2008-06-18

    Supernova explosions are the central events in nuclear astrophysics. The core-collapse variety is a major source for the universe's heavy elements. The neutron stars, pulsars, and stellar-mass black holes of high-energy astrophysics are their products. Given their prodigious explosion energies, they are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the birthplaces of the cosmic rays. Such is their brightness that they can be used as standard candles to measure the size and geometry of the universe. Recently, there is evidence that gamma-ray bursts (GRBs) originate in a small fraction of core collapses, thereby connecting two of the most energetic phenomena in the universe. However, the mechanism by which core-collapse supernovae explode has not yet been unambiguously determined. Arguably, this is one of the great unsolved problems in modern astrophysics and its investigation draws on nuclear physics, particle physics, radiative transfer, kinetic theory, gravitational physics, thermodynamics, and the numerical arts. Hence, supernovae are unrivaled astrophysical laboratories. It is the quest for the mechanism and new insights our team has recently had that motivate this proposal.

  3. THE COSMIC BATTERY IN ASTROPHYSICAL ACCRETION DISKS

    SciTech Connect

    Contopoulos, Ioannis; Nathanail, Antonios; Katsanikas, Matthaios

    2015-06-01

    The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large-scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows, ADAFs. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large-scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysically relevant timescales. We confirm that there exists a critical value of the magnetic Prandtl number between unity and 10 in the outer disk above which the Cosmic Battery mechanism is suppressed.

  4. Introduction to High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Rosswog, Stephan; Bruggen, Marcus

    2003-04-01

    High-energy astrophysics covers cosmic phenomena that occur under the most extreme physical conditions. It explores the most violent events in the Universe: the explosion of stars, matter falling into black holes, and gamma-ray bursts - the most luminous explosions since the Big Bang. Driven by a wealth of new observations, the last decade has seen a large leap forward in our understanding of these phenomena. Exploring modern topics of high-energy astrophysics, such as supernovae, neutron stars, compact binary systems, gamma-ray bursts, and active galactic nuclei, this textbook is ideal for undergraduate students in high-energy astrophysics. It is a self-supporting, timely overview of this exciting field of research. Assuming a familiarity with basic physics, it introduces all other concepts, such as gas dynamics or radiation processes, in an instructive way. An extended appendix gives an overview of some of the most important high-energy astrophysics instruments, and each chapter ends with exercises.• New, up-to-date, introductory textbook providing a broad overview of high-energy phenomena and the many advances in our knowledge gained over the last decade • Written especially for undergraduate teaching use, it introduces the necessary physics and includes many exercises • This book fills a valuable niche at the advanced undergraduate level, providing professors with a new modern introduction to the subject

  5. Progress in Astrophysics of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Moskalenko, Igor

    2017-01-01

    I will review recent progress in Astrophysics of Cosmic Rays and new challenges. I will discuss measurements that have to be done to address these challenges and to further advance our understanding of the phenomenon of cosmic rays, mechanisms of their acceleration and interactions with interstellar medium. Partial support from NASA Grant No. NNX13AC47G is greatly acknowledged.

  6. Nuclear astrophysics and the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Spitaleri, C.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A. M.; Pizzone, R. G.

    2016-04-01

    In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach.

  7. Examples from Astrophysics in undergraduate teaching

    NASA Astrophysics Data System (ADS)

    Rastogi, Shantanu

    Physics teaching requires frequent alluding to examples and real situation where a certain concept is applicable. Astrophysics provides a variety and range of phenomena that can be recalled and explained during teaching of nearly all undergraduate branches. Sometimes these examples are the only relevant examples. To make astrophysics more accessible and attractive as a future study option, incorporating examples from astronomy and astrophysics in undergraduate Physics syllabus could be of importance. Besides common examples from mechanics and gravitation some relevant examples are enumerated that can easily be used in the classroom to both explain a concept and simultaneously introduce some astrophysical phenomenon. Some examples that could be explained or outlined are Expanding Universe in Doppler effect; stellar temperature-luminosity in blackbody radiation; gravitational lensing in image formation by converging lens; Faraday effect in polarization; Auroras and Pulsars in cyclotron; Saha’s ionization theory; Chandrasekhar’s mass Limit; Fraunhoeffer absorption lines; Forbidden spectral lines etc. The existing curriculum need not be modified - atmost some tutorials may be added. Few of these are already mentioned in the syllabus of few universities.

  8. Overview of the NASA astrophysics data system

    NASA Technical Reports Server (NTRS)

    Pomphrey, Rick B.

    1991-01-01

    Overview of the NASA Astrophysics Data Systems (ADS) is presented in the form of view graphs. The following subject areas are covered: The problem; the ADS project; architectural approach; elements of the solution; status of the effort; and the future plans.

  9. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect

    Balantekin, A. B.

    2014-05-02

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  10. Baryon and lepton violation in astrophysics.

    NASA Astrophysics Data System (ADS)

    Kolb, E. W.

    The cosmological and astrophysical significance of baryon and lepton number violating process is the subject of this paper. The possibility of baryon-number violating processes in the electroweak transition in the early universe is reviewed. The implications of lepton-number violation via Nambu-Goldstone bosons are discussed in detail.

  11. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  12. Minicourses in Astrophysics, Modular Approach, Vol. II.

    ERIC Educational Resources Information Center

    Illinois Univ., Chicago.

    This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…

  13. Three dimensional reconnection in astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.

    1990-01-01

    Theoretical issues related to three-dimensional reconnection and its application to the space and astrophysical environment are reviewed. Consideration is given to the meaning of reconnection in three dimensions, the way in which periodic and nonperiodic magnetic topologies alter the physics of reconnections, and the effects of chaotic magnetic fields on the reconnection process.

  14. ASTROPHYSICS: Astronomers Spot Their First Carbon Bomb.

    PubMed

    Irion, R

    2000-11-17

    Carbon on the surface of an ultradense star detonated in a 3-hour thermonuclear explosion, according to a report at a meeting here last week of the American Astronomical Society's High Energy Astrophysics Division. If confirmed, the burst would be the first known cosmic explosion fueled solely by carbon rather than hydrogen or helium and could verify or revise models of carbon combustion.

  15. The Astrophysics Simulation Collaboratory portal: A framework foreffective distributed research

    SciTech Connect

    Bondarescu, Ruxandra; Allen, Gabrielle; Daues, Gregory; Kelly,Ian; Russell, Michael; Seidel, Edward; Shalf, John; Tobias, Malcolm

    2003-03-03

    We describe the motivation, architecture, and implementation of the Astrophysics Simulation Collaboratory (ASC) portal. The ASC project provides a web-based problem solving framework for the astrophysics community that harnesses the capabilities of emerging computational grids.

  16. Some Directions of Development of Theoretical Astrophysics in Byurakan Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Nikoghossian, A. G.

    2016-09-01

    The report sketches the most important achievements of BAO in the area of theoretical astrophysics. It involves investigations aimed at both interpretation of observational data and the development of the theory itself.

  17. Investigation of Triggered Non-Volcanic Tremor in Latin America

    NASA Astrophysics Data System (ADS)

    Gonzalez-Huizar, H.; Velasco, A. A.; Ruiz, M.; Minaya, E.; Moreno Toiran, B.; Castro, R. R.; Peng, Z.; Talavera, E.; Escudero, C. R.; García, L. C.; Quiroz, W.

    2013-05-01

    Non-volcanic tremor (NVT) is an episodic, small amplitude, non impulsive and high-frequency seismic signal that occurs just beneath the seismogenic zones of large faults. Little is understood about the processes that generate NVT, and little can be assessed about its potential role in the earthquake cycle. The similarities observed between remotely triggered NVT and slow slip events suggest that investigating triggered NVT may give us important insights into the mechanism evolved in slow slip events. Furthermore, understanding the physics behind triggered NVT may also improve our understanding of the physics of earthquake triggering. Thus, investigating triggered NVT constitutes an important tool for studying these and other related phenomena. In this work we present some of the results and techniques we employ in identifying potential cases of triggered NVT in Latin America. We use global and regional seismic networks to perform an intensive search of triggered NVT in Mexico, Cuba, Nicaragua, Costa Rica, Colombia, Ecuador, Peru, Bolivia and Chile. Our results suggest that NVT can be dynamically triggered in a broad variety of tectonic environments, depending strongly on the dynamic stress amplitude and orientation. Investigating remotely triggered tremor offers the opportunity to improve our knowledge about deformation mechanisms and the physics of rupture.

  18. Triggering on New Physics with the CMS Detector

    SciTech Connect

    Bose, Tulika

    2016-07-29

    The BU CMS group led by PI Tulika Bose has made several significant contributions to the CMS trigger and to the analysis of the data collected by the CMS experiment. Group members have played a leading role in the optimization of trigger algorithms, the development of trigger menus, and the online operation of the CMS High-Level Trigger. The group’s data analysis projects have concentrated on a broad spectrum of topics that take full advantage of their strengths in jets and calorimetry, trigger, lepton identification as well as their considerable experience in hadron collider physics. Their publications cover several searches for new heavy gauge bosons, vector-like quarks as well as diboson resonances.

  19. Astrophysical Magnetic Fields and Topics in Galaxy Formation

    NASA Technical Reports Server (NTRS)

    Field, George B.

    1997-01-01

    The grant was used to support theoretical research on a variety of astro-physical topics falling broadly into those described by the proposal: galaxy formation, astrophysical magnetic fields, magnetized accretion disks in AGN, new physics, and other astrophysical problems. Work accomplished; references are to work authored by project personel.

  20. A multidisciplinary study of planetary, solar and astrophysical radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.

    1986-01-01

    Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.

  1. High Energy Studies of Astrophysical Dust

    NASA Astrophysics Data System (ADS)

    Corrales, Lia Racquel

    Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how

  2. Optically triggered infrared photodetector.

    PubMed

    Ramiro, Íñigo; Martí, Antonio; Antolín, Elisa; López, Esther; Datas, Alejandro; Luque, Antonio; Ripalda, José M; González, Yolanda

    2015-01-14

    We demonstrate a new class of semiconductor device: the optically triggered infrared photodetector (OTIP). This photodetector is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. Our experimental device, fabricated using InAs/AlGaAs quantum-dot technology, demonstrates normal incidence infrared detection in the 2-6 μm range. The detection is optically triggered by a 590 nm light-emitting diode. Furthermore, the detection gain is achieved in our device without an increase of the noise level. The novel characteristics of OTIPs open up new possibilities for third generation infrared imaging systems ( Rogalski, A.; Antoszewski, J.; Faraone, L. J. Appl. Phys. 2009, 105 (9), 091101).

  3. Trigger developments for ARA

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Yuan

    2013-04-01

    The Askaryan Radio Array (ARA) is a planned large-scale neutrino detector at the South Pole aiming at observing ultra-high-energy cosmogenic neutrinos via detecting radio Cherenkov radiation from neutrinos' interaction with Antarctic ice. By the end of the austral summer of 2012/13 three detector stations have been deployed at depths of up to 200 m. A prototype detector station has been taking data for two years. The final array is planned to consist of 37 stations with a 200 km^2 coverage, and provide high sensitivity in the range of 10 PeV to 10 EeV. In order to increase the discover potential of the stations, advanced triggering schemes are in development which take into account the topology of signal events. Here a brief status and the triggering schemes in development will be presented, and based on simulations their improvements to ARA neutrino sensitivity will be discussed.

  4. Neural networks for triggering

    SciTech Connect

    Denby, B. ); Campbell, M. ); Bedeschi, F. ); Chriss, N.; Bowers, C. ); Nesti, F. )

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  5. GLAST's GBM Burst Trigger

    NASA Technical Reports Server (NTRS)

    Band, D.; Briggs, M.; Connaughton, V.; Kippen, M.; Preece, R.

    2003-01-01

    The GLAST Burst Monitor (GBM) will detect and localize bursts for the GLAST mission, and provide the spectral and temporal context in the traditional 10 keV to 25 MeV band for the high energy observations by the Large Area Telescope (LAT). The GBM will use traditional rate triggers in up to three energy bands, and on a variety of timescales between 16 ms and 16 s.

  6. TIME-OF-FLIGHT MASS MEASUREMENTS AND THEIR IMPORTANCE FOR NUCLEAR ASTROPHYSICS

    SciTech Connect

    Matos, M.; Shapira, Dan

    2009-01-01

    Atomic masses play an important role in nuclear astrophysics. The lack of experimental values for nuclides of interest has triggered a rapid development of new mass measurement devices around the world, including Time-of-Flight (TOF) mass measurements offering an access to the most exotic nuclides. Recently, the TOF-B rho technique that includes a position measurement for magnetic rigidity correction has been implemented at the NSCL. An experiment with a similar TOF-B rho technique is approved and planned at the next generation radioactive beam facility (RIBF) at RIKEN.

  7. Time-of-Flight Mass Measurements and Their Importance for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Matoš, M.; Estrade, A.; Amthor, A. M.; Bazin, D.; Becerril, A.; Elliot, T.; Famiano, M.; Gade, A.; Galaviz, D.; Lorusso, G.; Pereira, J.; Portillo, M.; Rogers, A.; Schatz, H.; Shapira, D.; Smith, E.; Stolz, A.; Wallace, M.

    2009-03-01

    Atomic masses play an important role in nuclear astrophysics. The lack of experimental values for nuclides of interest has triggered a rapid development of new mass measurement devices around the world, including Time-of-Flight (TOF) mass measurements offering an access to the most exotic nuclides. Recently, the TOF-Brho technique that includes a position measurement for magnetic rigidity correction has been implemented at the NSCL. An experiment with a similar TOF-Brho technique is approved and planned at the next generation radioactive beam facility (RIBF) at RIKEN.

  8. Search Cloud

    MedlinePlus

    ... this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this page, ... chest pa and lateral Share the MedlinePlus search cloud with your users by embedding our search cloud ...

  9. Hydrodynamic Scalings: from Astrophysics to Laboratory

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Remington, B. A.

    2000-05-01

    A surprisingly general hydrodynamic similarity has been recently described in Refs. [1,2]. One can call it the Euler similarity because it works for the Euler equations (with MHD effects included). Although the dissipation processes are assumed to be negligible, the presence of shocks is allowed. For the polytropic medium (i.e., the medium where the energy density is proportional to the pressure), an evolution of an arbitrarily chosen 3D initial state can be scaled to another system, if a single dimensionless parameter (the Euler number) is the same for both initial states. The Euler similarity allows one to properly design laboratory experiments modeling astrophysical phenomena. We discuss several examples of such experiments related to the physics of supernovae [3]. For the problems with a single spatial scale, the condition of the smallness of dissipative processes can be adequately described in terms of the Reynolds, Peclet, and magnetic Reynolds numbers related to this scale (all three numbers must be large). However, if the system develops small-scale turbulence, dissipation may become important at these smaller scales, thereby affecting the gross behavior of the system. We analyze the corresponding constraints. We discuss also constraints imposed by the presence of interfaces between the substances with different polytropic index. Another set of similarities governs evolution of photoevaporation fronts in astrophysics. Convenient scaling laws exist in situations where the density of the ablated material is very low compared to the bulk density. We conclude that a number of hydrodynamical problems related to such objects as the Eagle Nebula can be adequately simulated in the laboratory. We discuss also possible scalings for radiative astrophysical jets (see Ref. [3] and references therein). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48

  10. NASA Astrophysics Funds Strategic Technology Development

    NASA Astrophysics Data System (ADS)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and

  11. Search for Higgs shifts in white dwarfs

    SciTech Connect

    Onofrio, Roberto; Wegner, Gary A. E-mail: gary.a.wegner@dartmouth.edu

    2014-08-20

    We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from high-energy physics or table-top experiments.

  12. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    DOE PAGES

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; ...

    2016-12-28

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012more » Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.« less

  13. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    SciTech Connect

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; Bernstein, Lee A.; Blackmon, Jeffrey C.; Messer, Bronson; Brown, B. Alex; Brown, Edward F.; Brune, Carl R.; Champagne, Art E.; Chieffi, Alessandro; Couture, Aaron J.; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib; Escher, Jutta E.; Fields, Brian D.; Fröhlich, Carla; Herwig, Falk; Hix, William Raphael; Iliadis, Christian; Lynch, William G.; McLaughlin, Gail C.; Meyer, Bradley S.; Mezzacappa, Anthony; Nunes, Filomena; O’Shea, Brian W.; Prakash, Madappa; Pritychenko, Boris; Reddy, Sanjay; Rehm, Ernst; Rogachev, Grigory; Rutledge, Robert E.; Schatz, Hendrik; Smith, Michael S.; Stairs, Ingrid H.; Steiner, Andrew W.; Strohmayer, Tod E.; Townsley, Dean M.; Wiescher, Michael; Zegers, Remco G. T.; Zingale, Michael

    2016-12-28

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.

  14. Exploring Astrophysical Magnetohydrodynamics in the Laboratory

    NASA Astrophysics Data System (ADS)

    Manuel, Mario

    2014-10-01

    Plasma evolution in many astrophysical systems is dominated by magnetohydrodynamics. Specifically of interest to this talk are collimated outflows from accretion systems. Away from the central object, the Euler equations can represent the plasma dynamics well and may be scaled to a laboratory system. We have performed experiments to investigate the effects of a background magnetic field on an otherwise hydrodynamically collimated plasma. Laser-irradiated, cone targets produce hydrodynamically collimated plasma jets and a pulse-powered solenoid provides a constant background magnetic field. The application of this field is shown to completely disrupt the original flow and a new magnetically-collimated, hollow envelope is produced. Results from these experiments and potential implications for their astrophysical analogs will be discussed.

  15. Weeding the Astrophysical Garden: Ethyl Cyanide

    NASA Astrophysics Data System (ADS)

    De Lucia, F. C.; Fortman, S. M.; Medvedev, I. R.; Neese, C. F.

    2009-12-01

    It is well known that many, if not most, of the unidentified features in astrophysical spectra arise from relatively low lying excited vibrational and torsional states of a relatively small number of molecular species— the astrophysical weeds. It is also well known that the traditional quantum mechanical assignment and fitting of these excited state spectra is a formidable task, one that is made harder by the expected perturbations and interactions among these states. We have previously proposed an alternative fitting and analysis approach based on experimental, intensity calibrated spectra taken at many temperatures. In this paper we discuss the implementation of this approach and provide details in the context of one of these weeds, ethyl cyanide.

  16. 25th Texas Symposium on Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Rieger, Frank M.; van Eldik, Christopher; Hofmann, Werner

    The 25th Texas Symposium on Relativistic Astrophysics (TEXAS 2010) was held in Heidelberg, Germany, during December, 6-10, 2010. More than 350 astrophysicists attended a very interesting meeting, designed to exchange ideas and results, and to discuss future directions in Relativistic Astrophysics. A wide range of scientific results were discussed in about 100 oral and about 200 poster contributions during nine parallel afternoon sessions and one highlight evening session. Further information, including the full program, can be found on the conference webpage: http://www.mpi-hd.mpg.de/texas2010/. The papers published here in these proceedings represent the contributions accepted for the parallel sessions and the main poster session at TEXAS 2010.

  17. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    SciTech Connect

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  18. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  19. The Gaia-ESO Survey Astrophysical Calibration

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Gaia-ESO Survey Consortium

    2016-05-01

    The Gaia-ESO Survey is a wide field spectroscopic survey recently started with the FLAMES@VLT in Cerro Paranal, Chile. It will produce radial velocities more accurate than Gaia's for faint stars (down to V ≃ 18), and astrophysical parameters and abundances for approximately 100 000 stars, belonging to all Galactic populations. 300 nights were assigned in 5 years (with the last year subject to approval after a detailed report). In particular, to connect with other ongoing and planned spectroscopic surveys, a detailed calibration program — for the astrophysical parameters derivation — is planned, including well known clusters, Gaia benchmark stars, and special equatorial calibration fields designed for wide field/multifiber spectrographs.

  20. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.

  1. Laboratory Spectroscopy for Interpreting Astrophysical Spectra

    NASA Astrophysics Data System (ADS)

    Brown, Greg

    2011-06-01

    We have been using electron beam ion traps and a variety of spectrometers to isolate and study atomic processes taking place in astrophysical sources and to provide calibrated X-ray line emission and absorption diagnostics for use by the astrophysics community. Studies of electron impact excitation and photoexcitation and ionization cross sections and transition energies have been conducted. Photoexcitation and ionization studies have been completed by employing a transportable electron beam ion trap, provided by the Max-Plank-Institute for Kernphysik, at various advanced light sources including the BESSY-II synchrotron, the FLASH free electron laser, and most recently, the Linac Coherent Light Source free electron laser. Various recent results will be discussed. [4pt] This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. NASA's Astrophysics Education and Public Outreach Portfolio

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D. A.

    2013-01-01

    NASA’s Astrophysics Education and Public Outreach (E/PO) portfolio can be classified into four entities - Astrophysics Science Education and Public Outreach Forum (SEPOF), Program Offices, flight missions, smaller competed opportunities - through which different aspects of the E/PO program is conducted. These work together to produce a unified program, which reaches diverse audiences in the areas of K-12 formal education, higher education, informal education and public outreach. An overview of the portfolio will be presented, together with information on how astronomers can engage in NASA E/PO activities and take the excitement of science conducted by NASA flight missions into their local communities. Recent highlights will be presented as examples of the wide reach of NASA E/PO and its role in inspiring students to undertake scientific careers and enhancing public understanding of science and technology.

  3. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    SciTech Connect

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  4. Astrophysical payload accommodation on the space station

    NASA Technical Reports Server (NTRS)

    Woods, B. P.

    1985-01-01

    Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.

  5. Astrophysical data analysis with information field theory

    SciTech Connect

    Enßlin, Torsten

    2014-12-05

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  6. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  7. Laboratory Astrophysics: Enabling Scientific Discovery and Understanding

    NASA Technical Reports Server (NTRS)

    Kirby, K.

    2006-01-01

    NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.

  8. Astrophysics at n_TOF Facility

    NASA Astrophysics Data System (ADS)

    Tagliente, G.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Heil, M.; Herrera-Martinez, A.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2010-08-01

    Heavy elements with Z>=30 are made by neutron capture reactions during stellar He burning and presumably in supernovae. This contribution deals mainly with the slow neutron capture (s) process which is responsible for about one half of the abundances in the mass region between Fe and Bi. The slow time scale implies that the reaction path of this process involves mostly stable isotopes which can be studied in detail in laboratory experiments. The neutron time of flight (n_TOF) facility at CERN is a neutron spallation source, its white neutron energy spectrum ranges from thermal to several MeV, covering the full energy range of interest for nuclear astrophysics, in particular for measurements of the neutron capture cross section required in s-process nucleosynthesis. This contribution gives an overview on the astrophysical program made at n_TOF facility, the results and the implications will be considered.

  9. Nuclear Astrophysics with the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Spitaleri, Claudio

    2015-04-01

    In stars nuclear reactions take place at physical conditions that make very hard their measurements in terrestrial laboratories. Indeed in astrophysical environments nuclear reactions between charged nuclei occur at energies much lower than the Coulomb barrier and the corresponding cross section values lie in the nano or picobarn regime, that makes their experimental determination extremely difficult. This is due to the very small barrier Coulomb penetration factor, which produces an exponential fall off of the cross section as a function of energy. Additionally, the presence of the electron screening needs to be properly taken into account when dealing with cross section measurements at low-energies. The Trojan Horse Method (THM) represents an independent experimental technique, allowing one to measure astrophysical S(E)-factor bared from both Coulomb penetration and electron screening effects. The main advantages and the most recent results are here shown and discussed.

  10. Cooperative Research in High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Trasco, John D.

    1997-01-01

    A joint agreement between NASA/Goddard and The University of Maryland currently supports cooperative research in Satellite Based Studies of Photons and Charged Particles in the following areas: 1) Detection of cosmic rays and studies of the solar modulation of galactic cosmic rays; 2) Research with several past and upcoming X-ray satellites; 3) High resolution gamma-ray spectroscopy of celestial sources; 4) Theoretical astrophysics.

  11. Constraining Unparticle Physics with Cosmology and Astrophysics

    SciTech Connect

    Davoudiasl, Hooman

    2007-10-05

    It has recently been suggested that a scale-invariant 'unparticle' sector with a nontrivial infrared fixed point may couple to the standard model (SM) via higher-dimensional operators. The weakness of such interactions hides the unparticle phenomena at low energies. We demonstrate how cosmology and astrophysics can place significant bounds on the strength of unparticle-SM interactions. We also discuss the possibility of a having a non-negligible unparticle relic density today.

  12. Constraining unparticle physics with cosmology and astrophysics.

    PubMed

    Davoudiasl, Hooman

    2007-10-05

    It has recently been suggested that a scale-invariant "unparticle" sector with a nontrivial infrared fixed point may couple to the standard model (SM) via higher-dimensional operators. The weakness of such interactions hides the unparticle phenomena at low energies. We demonstrate how cosmology and astrophysics can place significant bounds on the strength of unparticle-SM interactions. We also discuss the possibility of a having a non-negligible unparticle relic density today.

  13. Questions in Cosmology and Particle Astrophysics

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. Pauchy

    2002-09-01

    In this brief review, I wish to first flash some key elements of the standard hot big bang model as the basic language, then move on to report on some of the activities and progresses associated with the subproject on the theoretical studies on cosmology and particle astrophysics, and finally try to conclude by illustrating, as an example, the problem of phase transitions in the early universe.

  14. Sorption cooling of astrophysics science instruments

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Levy, Alan R.

    1996-01-01

    The current status of continuous and periodic operation sorption cryocooler development for astrophysics missions requiring refrigeration to 4 K and below, is reviewed. These coolers are suited for the cooling of detectors in planned astrophysics missions such as the exploration of neighboring planetary systems planet finder array (ExNPS PFA). The cooler requirements imposed by these missions include a ten-year life, zero vibration, zero electromagnetic interference and electromagnetic charging operation, and the ability to scale designs to provide low refrigeration capability with low power consumption. Spaceflight test results are summarized for the brilliant eyes 10 K sorption cryocooler experiment. This experiment successfully validated flight cooler performance and provided characterization of all sorption cooler design parameters which may have shown sensitivity to microgravity effects. Ground test results from a continuous 25 K cooler planned for use in a long duration airborne balloon experiment are presented. A NASA program to develop 30 K, 10 K and 4 K vibration-free coolers for astrophysics missions is outlined.

  15. Simple analytic model for astrophysical S factors

    SciTech Connect

    Yakovlev, D. G.; Beard, M.; Gasques, L. R.; Wiescher, M.

    2010-10-15

    We propose a physically transparent analytic model of astrophysical S factors as a function of a center-of-mass energy E of colliding nuclei (below and above the Coulomb barrier) for nonresonant fusion reactions. For any given reaction, the S(E) model contains four parameters [two of which approximate the barrier potential, U(r)]. They are easily interpolated along many reactions involving isotopes of the same elements; they give accurate practical expressions for S(E) with only several input parameters for many reactions. The model reproduces the suppression of S(E) at low energies (of astrophysical importance) due to the shape of the low-r wing of U(r). The model can be used to reconstruct U(r) from computed or measured S(E). For illustration, we parametrize our recent calculations of S(E) (using the Sao Paulo potential and the barrier penetration formalism) for 946 reactions involving stable and unstable isotopes of C, O, Ne, and Mg (with nine parameters for all reactions involving many isotopes of the same elements, e.g., C+O). In addition, we analyze astrophysically important {sup 12}C+{sup 12}C reaction, compare theoretical models with experimental data, and discuss the problem of interpolating reliably known S(E) values to low energies (E < or approx. 2-3 MeV).

  16. [Petrological Analysis of Astrophysical Dust Analog Evolution

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1997-01-01

    This project "Petrological analysis of astrophysical dust analog evolution" was initiated to try to understand the vapor phase condensation, and the nature of the reaction products, in circumstellar environments, such as the solar nebula 4,500 Myrs ago, and in the interstellar medium. Telescope-based infrared [IR] spectroscopy offers a broad-scale inventory of the various types of dust in these environments but no details on small-scale variations in terms of chemistry and morphology and petrological phase relationships. Vapor phase condensation in these environments is almost certainly a non-equilibrium process. The main challenge to this research was to document the nature of this process that, based on astrophysical observations, seems to yield compositionally consistent materials. This observation may suggest a predictable character during non-equilibrium condensation. These astrophysical environments include two chemically distinct, that is, oxygen-rich and carbon-rich environments. The former is characterized by silicates the latter by carbon-bearing solids. According to cosmological models of stellar evolution circumstellar dust accreted into protoplanets wherein thermal and/or aqueous processes will alter the dust under initially, non-equilibrium conditions.

  17. The Astrophysics Source Code Library: An Update

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Nemiroff, R. J.; Shamir, L.; Teuben, P. J.

    2012-01-01

    The Astrophysics Source Code Library (ASCL), founded in 1999, takes an active approach to sharing astrophysical source code. ASCL's editor seeks out both new and old peer-reviewed papers that describe methods or experiments that involve the development or use of source code, and adds entries for the found codes to the library. This approach ensures that source codes are added without requiring authors to actively submit them, resulting in a comprehensive listing that covers a significant number of the astrophysics source codes used in peer-reviewed studies. The ASCL moved to a new location in 2010, and has over 300 codes in it and continues to grow. In 2011, the ASCL (http://asterisk.apod.com/viewforum.php?f=35) has on average added 19 new codes per month; we encourage scientists to submit their codes for inclusion. An advisory committee has been established to provide input and guide the development and expansion of its new site, and a marketing plan has been developed and is being executed. All ASCL source codes have been used to generate results published in or submitted to a refereed journal and are freely available either via a download site or from an identified source. This presentation covers the history of the ASCL and examines the current state and benefits of the ASCL, the means of and requirements for including codes, and outlines its future plans.

  18. Goddard's Astrophysics Science Division Annual Report 2011

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  19. Inverse Bremsstrahlung in Shocked Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2000-01-01

    There has recently been interest in the role of inverse bremsstrahlung, the emission of photons by fast suprathermal ions in collisions with ambient electrons possessing relatively low velocities, in tenuous plasmas in various astrophysical contexts. This follows a long hiatus in the application of suprathermal ion bremsstrahlung to astrophysical models since the early 1970s. The potential importance of inverse bremsstrahlung relative to normal bremsstrahlung, i.e. where ions are at rest, hinges upon the underlying velocity distributions of the interacting species. In this paper, we identify the conditions under which the inverse bremsstrahlung emissivity is significant relative to that for normal bremsstrahlung in shocked astrophysical plasmas. We determine that, since both observational and theoretical evidence favors electron temperatures almost comparable to, and certainly not very deficient relative to proton temperatures in shocked plasmas, these environments generally render inverse bremsstrahlung at best a minor contributor to the overall emission. Hence inverse bremsstrahlung can be safely neglected in most models invoking shock acceleration in discrete sources such as supernova remnants. However, on scales approximately > 100 pc distant from these sources, Coulomb collisional losses can deplete the cosmic ray electrons, rendering inverse bremsstrahlung, and perhaps bremsstrahlung from knock-on electrons, possibly detectable.

  20. Astrophysically relevant hydrodynamics experiments using intense lasers

    NASA Astrophysics Data System (ADS)

    Remington, B. A.; Budil, K. S.; Estabrook, K.; Glendinning, S. G.; Gold, D.; Ryutov, D.; Kane, J.; Arnett, D.; Drake, R. P.; Smith, T.; Carroll, J.; McCray, R.; Liang, E.; Keilty, K.; Rubenchik, A.

    1998-04-01

    In a broad-based collaboration, we are developing a series of astrophysically relevant hydrodynamics experiments on the Nova and PetaWatt lasers at Lawrence Livermore National Laboratory. Issues that we are or planning to investigate are deep nonlinear hydrodynamic instabilities in 2D versus 3D, relevant to core-collapse supernova explosions [J. Kane et al., Ap. J. (1997); B.A. Remington et al., Phys. Plasmas (1997).]; strong-shock hydrodynamics relevant to supernova remnant formation [R.P. Drake et al., submitted, Ap. J. (1997).]; radiative blast wave development, of potential interest to gamma-ray burst models [E. Liang et al., 2nd Int. Workshop on LaboratoryAstrophysics using Intense Lasers, Mar. 19-21, 1998, Univ. of AZ.]; and cratering experiments, of possible interest to hypervelocity meteoroid impacts [A. Rubenchik et al., 2nd Int. Workshop on Laboratory Astrophysics using Intense Lasers, Mar. 19-21, 1998, Univ. of AZ.]. An overview of this work will be given, and the issue of scaling will be addressed [D. Ryutov et al., in preparation for submittal to Ap. J. (1998).].

  1. Current Perspectives in High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Ormes, Jonathan F. (Editor)

    1996-01-01

    High energy astrophysics is a space-age discipline that has taken a quantum leap forward in the 1990s. The observables are photons and particles that are unable to penetrate the atmosphere and can only be observed from space or very high altitude balloons. The lectures presented as chapters of this book are based on the results from the Compton Gamma-Ray Observatory (CGRO) and Advanced Satellite for Cosmology and Astrophysics (ASCA) missions to which the Laboratory for High Energy Astrophysics at NASA's Goddard Space Flight Center made significant hardware contributions. These missions study emissions from very hot plasmas, nuclear processes, and high energy particle interactions in space. Results to be discussed include gamma-ray beaming from active galactic nuclei (AGN), gamma-ray emission from pulsars, radioactive elements in the interstellar medium, X-ray emission from clusters of galaxies, and the progress being made to unravel the gamma-ray burst mystery. The recently launched X-ray Timing Explorer (XTE) and prospects for upcoming Astro-E and Advanced X-ray Astronomy Satellite (AXAF) missions are also discussed.

  2. Reaction Rate Parameterization for Nuclear Astrophysics Research

    NASA Astrophysics Data System (ADS)

    Scott, J. P.; Lingerfelt, E. J.; Smith, M. S.; Hix, W. R.; Bardayan, D. W.; Sharp, J. E.; Kozub, R. L.; Meyer, R. A.

    2004-11-01

    Libraries of thermonuclear reaction rates are used in element synthesis models of a wide variety of astrophysical phenomena, such as exploding stars and the inner workings of our sun. These computationally demanding models are more efficient when libraries, which may contain over 60000 rates and vary by 20 orders of magnitude, have a uniform parameterization for all rates. We have developed an on-line tool, hosted at www.nucastrodata.org, to obtain REACLIB parameters (F.-K. Thielemann et al., Adv. Nucl. Astrophysics 525, 1 (1987)) that represent reaction rates as a function of temperature. This helps to rapidly incorporate the latest nuclear physics results in astrophysics models. The tool uses numerous techniques and algorithms in a modular fashion to improve the quality of the fits to the rates. Features, modules, and additional applications of this tool will be discussed. * Managed by UT-Battelle, LLC, for the U.S. D.O.E. under contract DE-AC05-00OR22725 + Supported by U.S. D.O.E. under Grant No. DE-FG02-96ER40955

  3. General-relativistic astrophysics. [gravitational wave astronomy

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1978-01-01

    The overall relevance of general relativity to astrophysics is considered, and some of the knowledge about the ways in which general relativity should influence astrophysical systems is reviewed. Attention is focused primarily on finite-sized astrophysical systems, such as stars, globular clusters, galactic nuclei, and primordial black holes. Stages in the evolution of such systems and tools for studying the effects of relativistic gravity in these systems are examined. Gravitational-wave astronomy is discussed in detail, with emphasis placed on estimates of the strongest gravitational waves that bathe earth, present obstacles and future prospects for detection of the predicted waves, the theory of small perturbations of relativistic stars and black holes, and the gravitational waves such objects generate. Characteristics of waves produced by black-hole events in general, pregalactic black-hole events, black-hole events in galactic nuclei and quasars, black-hole events in globular clusters, the collapse of normal stars to form black holes or neutron stars, and corequakes in neutron stars are analyzed. The state of the art in gravitational-wave detection and characteristics of various types of detector are described.

  4. Plasma physics of extreme astrophysical environments

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri A.; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)—the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  5. Plasma physics of extreme astrophysical environments.

    PubMed

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  6. Goddard's Astrophysics Science Divsion Annual Report 2014

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2015-01-01

    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS

  7. Subnanosecond trigger system for ETA

    SciTech Connect

    Cook, E.G.; Lauer, E.J.; Reginato, L.L.; Rogers D.; Schmidt, J.A.

    1980-05-30

    A high-voltage trigger system capable of triggering 30, 250 kV spark gaps; each with less than +- 1 ns jitter has been constructed. In addition to low jitter rates, the trigger system must be capable of delivering the high voltage pulses to the spark gaps either simultaneously or sequentially as determined by other system requirements. The trigger system consists of several stages of pulse amplification culminating in 160 kV pulses having 30 ns risetime. The trigger system is described and test data provided.

  8. Talent Searches.

    ERIC Educational Resources Information Center

    Silverman, Linda Kreger, Ed.

    1994-01-01

    Talent searches are discussed in this journal theme issue, with two feature articles and several recurring columns. "Talent Search: A Driving Force in Gifted Education," by Paula Olszewski-Kubilius, defines what a talent search is, how the Talent Search was developed by Dr. Julian Stanley at Johns Hopkins University in Maryland, the…

  9. Protons Trigger Mitochondrial Flashes.

    PubMed

    Wang, Xianhua; Zhang, Xing; Huang, Zhanglong; Wu, Di; Liu, Beibei; Zhang, Rufeng; Yin, Rongkang; Hou, Tingting; Jian, Chongshu; Xu, Jiejia; Zhao, Yan; Wang, Yanru; Gao, Feng; Cheng, Heping

    2016-07-26

    Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism.

  10. Nuclear Astrophysics Animations from the Nuclear Astrophysics Group at Clemson University

    DOE Data Explorer

    Meyer, Bradley; The, Lih-Sin

    The nuclear astrophysics group at Clemson University in South Carolina develops on-line tools and computer programs for astronomy, nuclear physics, and nuclear astrophysics. They have also done short animations that illustrate results from research with some of their tools. The animations are organized into three sections. The r-Process Movies demonstrate r-Process network calculations from the paper "Neutrino Capture and the R-Process" Meyer, McLaughlin, and Fuller, Phys. Rev. C, 58, 3696-3710 (1998). The Alpha-Rich Freezeout Movies are related to the reference: Standard alpha-rich freezeout calculation from The, Clayton, Jin, and Meyer 1998, Astrophysical Journal, "Reaction Rates Governing the Synthesis of 44Ti" At the current writing, the category for Low Metallicity s-Process Movies has only one item called n, p, 13C, 14N, 54Fe, and 88Sr Time evolution in convective zone.

  11. Dark matter searches

    NASA Astrophysics Data System (ADS)

    Bettini, Alessandro

    These lectures begin with a brief survey of the astrophysical and cosmological evidence for dark matter. We then consider the three principal theoretically motivated types of dark matter, sterile neutrinos, axions and SUSY WIMPs. In chapter 4 we discuss the motivations for the so-called neutrino minimal standard model, nuMSM, an extension of the SM with three sterile neutrinos with masses similar to the charged fermions. In chapter 5 we briefly recall the strong CP problem of the SM and the solution proposed by Peccei and Quinn leading to the prediction of axions and of their characteristics. We then discuss the experimental status and perspectives. In chapter 6 we assume that the reader to be acquainted with the theoretical motivations for SUSY and move directly to the direct search for dark matter and the description of the principal detector techniques: scintillators, noble fluids and bolometers. We conclude with an outlook on the future perspectives.

  12. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations

    NASA Astrophysics Data System (ADS)

    Ageron, Michel; Al Samarai, Imen; Akerlof, Carl; Basa, Stéphane; Bertin, Vincent; Boer, Michel; Brunner, Juergen; Busto, Jose; Dornic, Damien; Klotz, Alain; Schussler, Fabian; Vallage, Bertrand; Vecchi, Manuela; Zheng, Weikang

    2012-11-01

    The ANTARES telescope is well suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all the times with a duty cycle close to unity and an angular resolution better than 0.5°. Potential sources include gamma-ray bursts (GRBs), core collapse supernovae (SNe), and flaring active galactic nuclei (AGNs). To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated one or two times per month for special events such as two or more neutrinos coincident in time and direction or single neutrinos of very high energy. Since February 2009, ANTARES has sent 37 alert triggers to the TAROT and ROTSE telescope networks, 27 of them have been followed. First results on the optical images analysis to search for GRBs are presented.

  13. Canada's Dominion Astrophysical Observatory and the rise of 20th Century Astrophysics and Technology

    NASA Astrophysics Data System (ADS)

    Hesser, James E.; Bohlender, David; Crabtree, Dennis

    2016-10-01

    Construction of Canada's Dominion Astrophysical Observatory (DAO) commenced in 1914 with first light on 6 May 1918. As distinct from the contemporaneous development with private funding of major observatories in the western United States, DAO was (and remains) funded by the federal government. Canada's initial foray into `big science', creation of DAO during the First World War was driven by Canada's desire to contribute significantly to the international rise of observational astrophysics enabled by photographic spectroscopy. In 2009 the Observatory was designated a National Historic Site. DAO's varied, rich contributions to the astronomical heritage of the 20th century continue in the 21st century, with particularly strong ties to Maunakea.

  14. Gravity triggered neutrino condensates

    SciTech Connect

    Barenboim, Gabriela

    2010-11-01

    In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.

  15. Hadronic-to-Quark-Matter Phase Transition: Astrophysical Implications

    NASA Astrophysics Data System (ADS)

    Niebergal, Brian

    There are three Parts to this Thesis; the first gives an introduction to the search for quark-gluon plasmas, both in theory and experiment, and provides motivation for using astrophysics to complement this search. The second explores the phase transition from hadronic matter to a quark-gluon plasma in an astrophysical setting, through the conversion of u,d - to u,d,s-quarks via weak reactions. This transition is formulated in terms of a reactive-diffusive-hydrodynamical problem with the effects of neutrino cooling included, as well as the entropy change due to heat released in forming the stable quark phase. These equations are solved numerically with my newly developed, freely-available, numerical code (the BURN-UD CODE) - which is then applied to the problem of neutron matter inside a cold neutron star burning into stable u,d,s-quark matter. Analytic solutions to the equation set are found and used to verify the BURN-UD code and its findings. The most important findings are as follows; (i) the laminar speed of the combustion interface is 0.002 - 0.04 times the speed of light, much faster than previous estimates derived without hydrodynamic considerations, (ii) neutrino cooling (deleptonization) is essential as it results in the unexpected destabilization of the combustion interface, which causes it to halt at lower densities (≈ 2 times nuclear saturation density). Also, (iii) by appealing to this newly discovered deleptonization instability it is shown for the first time exactly why the transition from a neutron star to a u,d,s-quark star must be explosive; these results validate the Quark-Nova model. Instructions are then given on how the BURN-UD code may be used to model relativistic heavy-ion collision experiments as well as the reverse transition, which is expected to have occurred in the first few moments following the Big-Bang. The last Part of this Thesis concerns the phenomenology of color-superconductivity in compact stars, which occurs much later than

  16. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA)

    SciTech Connect

    Paxton, Bill; Bildsten, Lars; Dotter, Aaron; Herwig, Falk; Lesaffre, Pierre; Timmes, Frank

    2011-01-15

    Stellar physics and evolution calculations enable a broad range of research in astrophysics. Modules for Experiments in Stellar Astrophysics (MESA) is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics. A one-dimensional stellar evolution module, MESAstar, combines many of the numerical and physics modules for simulations of a wide range of stellar evolution scenarios ranging from very low mass to massive stars, including advanced evolutionary phases. MESAstar solves the fully coupled structure and composition equations simultaneously. It uses adaptive mesh refinement and sophisticated timestep controls, and supports shared memory parallelism based on OpenMP. State-of-the-art modules provide equation of state, opacity, nuclear reaction rates, element diffusion data, and atmosphere boundary conditions. Each module is constructed as a separate Fortran 95 library with its own explicitly defined public interface to facilitate independent development. Several detailed examples indicate the extensive verification and testing that is continuously performed and demonstrate the wide range of capabilities that MESA possesses. These examples include evolutionary tracks of very low mass stars, brown dwarfs, and gas giant planets to very old ages; the complete evolutionary track of a 1 M {sub sun} star from the pre-main sequence (PMS) to a cooling white dwarf; the solar sound speed profile; the evolution of intermediate-mass stars through the He-core burning phase and thermal pulses on the He-shell burning asymptotic giant branch phase; the interior structure of slowly pulsating B Stars and Beta Cepheids; the complete evolutionary tracks of massive stars from the PMS to the onset of core collapse; mass transfer from stars undergoing Roche lobe overflow; and the evolution of helium accretion onto a neutron star. MESA can be downloaded from the project Web site (http://mesa.sourceforge.net/).

  17. Simulating Astrophysical Jets in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2004-11-01

    A laboratory plasma configuration based on spheromak [1] magnetic fusion plasma physics technology is used to simulate many important features of magnetically driven astrophysical jets. The experimental sequence starts with a quasi-static seed poloidal magnetic field that links a central disk electrode to a co-planar bounding annular electrode; this arrangement provides a topology analogous to the poloidal magnetic field of a star linking a surrounding accretion disk. After puffing neutral gas from nozzles mounted on the electrodes, plasma is created via application of a large emf between the central disk and the bounding annular electrode. The emf then drives a large poloidal electric current flowing from the central disk electrode (star) to the annulus (accretion disk) along the bias poloidal magnetic field. This electric current produces large magnetohydrodynamic forces which result in dynamics analogous to the dynamics of an astrophysical jet. In particular, the laboratory "astrophysical jet" is observed [2,3] to evolve through a distinct, reproducible sequence consisting of jet formation, collimation, kink instability, and for appropriate parameters, detachment into an unbounded, expanding spheromak-like plasmoid. These observations and related observations on a solar prominence simulation experiment [4] have motivated an analytic model [5] for the collimation physics whereby stagnation of convected, frozen-in toroidal magnetic flux amplifies the toroidal magnetic flux density and then, since the toroidal magnetic field (i.e., toroidal flux density) provides the pinch force, the pinch force is increased, collimating the jet. The following talk (You, Bellan, Yun) will present detailed measurements of the jet formation, acceleration, and collimation process. [1] P. M. Bellan, Spheromaks (Imperial College Press, London, 2000). [2] S. C. Hsu and P. M. Bellan, Mon. Not. R. Astron. Soc. 334, 257 (2002). [3] S. C. Hsu and P. M. Bellan, Phys. Rev. Letters 90, article

  18. BOOK REVIEW: Particle Astrophysics (Second Edition)

    NASA Astrophysics Data System (ADS)

    Bell, Nicole

    2009-07-01

    Particle astrophysics, the interface of elementary particle physics with astrophysics and cosmology, is a rapidly evolving field. Perkins' book provides a nice introduction to this field, at a level appropriate for senior undergraduate students. Perkins develops the foundations underlying both the particle and astrophysics areas, and also covers some of the most recent developments in this field. The latter is an appealing feature, as students rarely encounter topics of current research in their undergraduate textbooks. Part 1 of the text introduces the elementary particle content, and interactions, of the standard model of particle physics. Relativity is addressed at the level of special relativistic kinematics, the equivalence principle and the Robertson-Walker metric. Part 2 covers cosmology, starting with the expansion of the Universe and basic thermodynamics. It then moves on to primordial nucleosynthesis, baryogenesis, dark matter, dark energy, structure formation and the cosmic microwave background. Part 3 covers cosmic rays, stellar evolution, and related topics. Cutting edge topics include the use of the cosmological large scale structure power spectrum to constrain neutrino mass, the creation of the baryon asymmetry via leptogenesis, and the equation of state for dark energy. While the treatment of many topics is quite brief, the level of depth is about right for undergraduates who are being exposed to these topics for the first time. The breadth of topics spanned is excellent. Perkins does a good job connecting theory with the experimental underpinnings, and of simplifying the theoretical presentation of complex subjects to a level that senior undergraduate students should find accessible. Each chapter includes a number of exercises. Brief solutions are provided for all the exercises, while fully worked solutions are provided for a smaller subset.

  19. Alpha resonant scattering for astrophysical reaction studies

    SciTech Connect

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-05-02

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.

  20. 3D Immersive Visualization with Astrophysical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2017-01-01

    We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.

  1. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approximately 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  2. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approx. 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters, through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  3. The History of Astrophysics in Antarctica

    NASA Astrophysics Data System (ADS)

    Indermuehle, Balthasar T.; Burton, Michael G.; Maddison, Sarah T.

    We examine the historical development of astrophysical science in Antarctica from the early 20th century until today. We find three temporally overlapping eras, each having a rather distinct beginning. These are the astrogeological era of meteorite discovery, the high energy era of particle detectors, and the photon astronomy era of microwave, submillimetre, and infrared telescopes, sidelined by a few niche experiments at optical wavelengths. The favourable atmospheric and geophysical conditions are briefly examined, followed by an account of the major experiments and a summary of their results.

  4. Nonlinear evolution of astrophysical Alfven waves

    SciTech Connect

    Spangler, S.R.

    1984-11-01

    Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth. (ESA)

  5. Physics, Astrophysics and Cosmology with Gravitational Waves.

    PubMed

    Sathyaprakash, B S; Schutz, Bernard F

    2009-01-01

    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  6. High energy particles and quanta in astrophysics

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B. (Editor); Fichtel, C. E.

    1974-01-01

    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  7. Relativistic astrophysics with resonant multiple inspirals

    SciTech Connect

    Seto, Naoki; Muto, Takayuki

    2010-05-15

    We show that a massive black hole binary might resonantly trap a small third body (e.g. a neutron star) down to a stage when the binary becomes relativistic due to its orbital decay by gravitational radiation. The final fate of the third body would be quite interesting for relativistic astrophysics. For example, the parent binary could expel the third body with a velocity more than 10% of the speed of light. We also discuss the implications of this three-body system for direct gravitational wave observation.

  8. Advanced astroorientation system for astrophysical balloon experiments

    NASA Astrophysics Data System (ADS)

    Filipov, L.; Petrov, P.; Lukarski, Kh.; Grancharov, P.; Dimitrov, N.; Iliev, K.

    1993-02-01

    This paper discusses a perspective system for astroorientation in the visible range developed for the guidance system of an universal scientific platform for balloon experiments. The architecture of the system is examined. The application of CCD matrix and onboard digital processing of the obtained image enables the permanent control of the triaxial platform orientation when different astrophysical experiments are made. The availability of an onboard stellar catalog provides real-time identification of the observed stellar field. The possibility for joint operation of two stars trackers on the platform ensures higher speed of identification and higher reliability of orientation.

  9. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2016-12-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts.

  10. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  11. Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; IceCube Collaboration

    2015-01-01

    The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV-PeV) neutrinos produced in distant astrophysical objects. A search for ≳100 TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1 TeV and 1 PeV in 641 days of data taken from 2010-2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to a deposited energy of 10 TeV. From these data we derive new constraints on the diffuse astrophysical neutrino spectrum, Φν=2.0 6-0.3+0.4×1 0-18(Eν/1 05 GeV ) -2.46 ±0.12GeV-1 cm-2 sr-1 s-1 for 25 TeV

  12. The CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Trocino, Daniele

    2014-06-01

    The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger, implemented in custom-designed electronics, and the High-Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a tradeoff between the complexity of the algorithms running with the available computing power, the sustainable output rate, and the selection efficiency. We present the performance of the main triggers used during the 2012 data taking, ranging from simple single-object selections to more complex algorithms combining different objects, and applying analysis-level reconstruction and selection. We discuss the optimisation of the trigger and the specific techniques to cope with the increasing LHC pile-up, reducing its impact on the physics performance.

  13. Making your code citable with the Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, Alice; DuPrie, Kimberly; Schmidt, Judy; Berriman, G. Bruce; Hanisch, Robert J.; Mink, Jessica D.; Nemiroff, Robert J.; Shamir, Lior; Shortridge, Keith; Taylor, Mark B.; Teuben, Peter J.; Wallin, John F.

    2016-01-01

    The Astrophysics Source Code Library (ASCL, ascl.net) is a free online registry of codes used in astronomy research. With nearly 1,200 codes, it is the largest indexed resource for astronomy codes in existence. Established in 1999, it offers software authors a path to citation of their research codes even without publication of a paper describing the software, and offers scientists a way to find codes used in refereed publications, thus improving the transparency of the research. It also provides a method to quantify the impact of source codes in a fashion similar to the science metrics of journal articles. Citations using ASCL IDs are accepted by major astronomy journals and if formatted properly are tracked by ADS and other indexing services. The number of citations to ASCL entries increased sharply from 110 citations in January 2014 to 456 citations in September 2015. The percentage of code entries in ASCL that were cited at least once rose from 7.5% in January 2014 to 17.4% in September 2015. The ASCL's mid-2014 infrastructure upgrade added an easy entry submission form, more flexible browsing, search capabilities, and an RSS feeder for updates. A Changes/Additions form added this past fall lets authors submit links for papers that use their codes for addition to the ASCL entry even if those papers don't formally cite the codes, thus increasing the transparency of that research and capturing the value of their software to the community.

  14. An examination of astrophysical habitats for targeted SETI

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.; Mckay, Christopher P.; Reynolds, Ray T.; Whitmire, Daniel P.; Matese, John J.

    1991-01-01

    Planetary atmospheric radiative transfer models have recently given valuable insights into the definition of the solar system's ecoshell. In addition, however, results have indicated that constraints on solar evolution also need to be addressed, with even minor solar variations, (mass loss, for example), having important consequences from an exobiological standpoint. Following the definition of the solar system's ecoshell evolution, the ecoshells around different stellar spectral types can then be modeled. In this study the astrophysical constraints on the definition of ecoshells and possible exobiological habitats includes: (1) the investigation of the evolution of the solar system's ecoshell under different initial solar/stellar model conditions as indicated by both solar abundance considerations as well as planetary evidence; (2) an outline of considerations necessary to define the ecoshells around the most abundant spectral-type stars, the K and M stars looking at the effects on exobiological habitats of planetary rotational tidal locking effects, and stellar flare/chromospheric-activity cycles, among other effects; (3) a preliminary examination of the factors defining the expected ecoshells around binary stars determining the of regular stellar eclipses, and the expected shortening of the semi-major axis. These results can then be applied to the targeted microwave search for extraterrestrial intelligent signals by constraining the ecoshell space in the solar neighborhood.

  15. Research in Neutrino Physics and Particle Astrophysics: Final Technical Report

    SciTech Connect

    Kearns, Edward

    2016-06-30

    The Boston University Neutrino Physics and Particle Astrophysics Group investigates the fundamental laws of particle physics using natural and man-made neutrinos and rare processes such as proton decay. The primary instrument for this research is the massive Super-Kamiokande (SK) water Cherenkov detector, operating since 1996 at the Kamioka Neutrino Observatory, one kilometer underground in a mine in Japan. We study atmospheric neutrinos from cosmic rays, which were first used to discover that neutrinos have mass, as recognized by the 2015 Nobel Prize in Physics. Our latest measurements with atmospheric neutrinos are giving valuable information, complementary to longbaseline experiments, on the ordering of massive neutrino states and as to whether neutrinos violate CP symmetry. We have studied a variety of proton decay modes, including the most frequently predicted modes such as p → e+π0 and p → ν K+, as well as more exotic baryon number violating processes such as dinucleon decay and neutronantineutron oscillation. We search for neutrinos from dark matter annihilation or decay in the universe. Our group has made significant contributions to detector operation, particularly in the area of electronics. Most recently, we have contributed to planning for an upgrade to the SK detector by the addition of gadolinium to the water, which will enable efficient neutron capture detection.

  16. SPACE PHYSICS: Developing resources for astrophysics at A-level: the TRUMP Astrophysics project

    NASA Astrophysics Data System (ADS)

    Swinbank, Elizabeth

    1997-01-01

    After outlining the astrophysical options now available in A-level physics syllabuses, this paper notes some of the particular challenges facing A-level teachers and students who chose these options and describes a project designed to support them. The paper highlights some key features of the project that could readily be incorporated into other areas of physics curriculum development.

  17. Lecture Notes and Essays in Astrophysics I. I Astrophysics Symposium of the GEA-RSEF.

    NASA Astrophysics Data System (ADS)

    Ulla, Ana; Manteiga, Minia

    2004-12-01

    This volume entittled "Lecture Notes and Essays in Astrophysics" is the first of a series containing the invited reviews and lectures presented during the biannual meetings of the Astrophysics Group of the spanish RSEF ("Real Sociedad Española de Física"). In particular, it includes the conferences and reviews presented during the meeting held at Madrid (Spain) on July 2003 during the First Centennial of the Spanish RSEF. The book is aimed to offer the specialized public, and particularly the astrophysics postgraduate students, selected comprehensive reviews on hot topics lectured by relevant speakers on the subject ("Lecture Notes"). The issue is complemented by a set of chapters on more specific topics ("Essays"). The turn of century has been rich with new discoveries, from the detections of extrasolar planets to the discovery of the the farthest galaxies ever seen or the detection of acceleration in the expansion of the Universe. Spain is leaving her imprint in the telescope making revolution and is promoting the construction of a 10.4 metre telescope in the ``Roque de Los Muchachos" observatory, in the Island of La Palma, Spain. This book provides an interesting insight on selected topics of modern Astrophysics as developped by Spanish astronomers.

  18. A programmable systolic trigger processor for FERA-bus data

    NASA Astrophysics Data System (ADS)

    Appelquist, G.; Hovander, B.; Sellden, B.; Bohm, C.

    1992-09-01

    A generic CAMAC based trigger processor module for fast processing of large amounts of Analog to Digital Converter (ADC) data was designed. This module was realized using complex programmable gate arrays. The gate arrays were connected to memories and multipliers in such a way that different gate array configurations can cover a wide range of module applications. Using this module, it is possible to construct complex trigger processors. The module uses both the fast ECL FERA bus and the CAMAC bus for inputs and outputs. The latter is used for set up and control but may also be used for data output. Large numbers of ADC's can be served by a hierarchical arrangement of trigger processor modules which process ADC data with pipeline arithmetics and produce the final result at the apex of the pyramid. The trigger decision is transmitted to the data acquisition system via a logic signal while numeric results may be extracted by the CAMAC controller. The trigger processor was developed for the proposed neutral particle search. It was designed to serve as a second level trigger processor. It was required to correct all ADC raw data for efficiency and pedestal, calculate the total calorimeter energy, obtain the optimal time of flight data, and calculate the particle mass. A suitable mass cut would then deliver the trigger decision.

  19. Confidential Searches.

    ERIC Educational Resources Information Center

    Kenney, Linda Chion

    2003-01-01

    Will the stealth superintendent hunt in Cincinnati become tomorrow's standard approach? Search consultants and superintendents offer their views on how far confidentiality should go. Also includes a search firm's process for shielding identities and a confidentiality pledge. (MLF)

  20. Neutrinos from supernovae as a trigger for gravitational wave search.

    PubMed

    Pagliaroli, G; Vissani, F; Coccia, E; Fulgione, W

    2009-07-17

    Exploiting an improved analysis of the nue signal from the explosion of a galactic core collapse supernova, we show that it is possible to identify within about 10 ms the time of the bounce, which is strongly correlated to the time of the maximum amplitude of the gravitational signal. This allows us to precisely identify the gravitational wave burst timing.

  1. Performance characteristics of CCDs for the ACIS experiment. [Advanced X-ray Astrophysics Facility CCD Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Garmire, Gordon P.; Nousek, John; Burrows, David; Ricker, George; Bautz, Mark; Doty, John; Collins, Stewart; Janesick, James

    1988-01-01

    The search for the optimum CCD to be used at the focal surface of the Advanced X-ray Astrophysics Facility (AXAF) is described. The physics of the interaction of X-rays in silicon through the photoelectric effect is reviewed. CCD technology at the beginning of the AXAF definition phase is summarized, and the results of the CCD enhancement program are discussed. Other sources of optimum CCDs are examined, and CCD enhancements made at MIT Lincoln Laboratory are addressed.

  2. A Bubble Chamber Revival: Superheated Liquid Detectors for Dark Matter Searches and Other Applications

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Andrew

    2012-10-01

    Bubble chambers were recently deemed to be obsolete, of interest only to historians, but a few new applications have unexpectedly emerged in nuclear and particle astrophysics. These include the search for WIMP dark matter and the measurement of a few otherwise intractable nuclear cross sections. The new bubble chambers exploit features of the bubble nucleation process that were unappreciated or irrelevant in the 1950s-1970s when the technology was known for its capability to provide fine-grained tracking of high energy particles in a dense target medium. By carefully tuning the temperature and pressure, a liquid can be made selectively sensitive to particles on the basis of their specific rate of energy loss, enabling a high degree of background rejection power when searching for rare heavily-ionizing tracks. Surprisingly, additional information on the microstructure of particle tracks can be extracted from the acoustic noise produce by bubble nucleation. Other novel features of the new bubble chambers include the use of digital photography, self-triggering, and the achievement of nearly continuous sensitivity by the avoidance of bubble nucleation on internal wetted surfaces.

  3. ‘Firewall’ phenomenology with astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Afshordi, Niayesh; Yazdi, Yasaman K.

    2016-12-01

    One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, ‘firewalls’ have been proposed as an alternative to black hole event horizons. In this paper, we explore the phenomenological implications of black holes possessing a surface or ‘firewall’, and predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. This opens up a new area of research, bridging the non-perturbative physics of quantum gravity with the observational black hole and high energy astrophysics.

  4. Communicating the Science from NASA's Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  5. Status of the Wisconsin Plasma Astrophysics Laboratory

    NASA Astrophysics Data System (ADS)

    Wallace, John; Clark, Mike; Endrizzi, Doug; Flanagan, Ken; Milhone, Jason; Peterson, Ethan; Olson, Joseph; Stemo, Aaron; Weisberg, Dave; Egedal, Jan; Forest, Cary

    2015-11-01

    The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a facility that now encompasses a collection of novel plasma astrophysics experimental configurations. In the MPDX configuration large, un-magnetized, fast flowing, hot plasma is being used to investigate a variety of flow driven MHD instabilities. The experiment is 3 meters in diameter and utilizes a permanent magnet multicusp plasma confinement. Five 20KW, 2.45 GHz, CW magnetrons produce electron cyclotron heating for plasma generation. Ten lanthanum hexaboride (LaB6) stirring rods and molybdenum anodes are inserted into the vessel to produce JxB flows. The chamber has a variety of multiuse ports, and is able to split open to allow experimental apparatus to be inserted. This poster will describe recent improvements to the laboratory. We will also provide an overview of existing and future experimental configurations including: reconnection (TREX); acoustic and Alfven wave propagation in connection with helioseismology; pulsar and stellar wind launching from a rotating dipolar magnetosphere; jet formation and propagation into background plasma; and small-scale, high power helicity injection. Construction was funded by the NSF Major Research Instrumentation program (ARRA), DOE, and CMSO.

  6. Observational Manifestation of Chaos in Astrophysical Objects

    NASA Astrophysics Data System (ADS)

    Fridman, A.; Marov, M.; Miller, R.

    2002-12-01

    This book addresses a broad range of problems related to observed manifestations of chaotic motions in galactic and stellar objects, by invoking basic theory, numerical modeling, and observational evidence. For the first time, methods of stochastic dynamics are applied to actually observed astronomical objects, e.g. the gaseous disc of the spiral galaxy NGC 3631. In the latter case, the existence of chaotic trajectories in the boundary of giant vortices was recently found by the calculation of the Lyapunov characteristic number of these trajectories. The reader will find research results on the peculiarities of chaotic system behaviour; a study of the integrals of motion in self-consistent systems; numerical modeling results of the evolution process of disk systems involving resonance excitation of the density waves in spiral galaxies; a review of specific formations in stars and high-energy sources demonstrating their stochastic nature; a discussion of the peculiarities of the precessional motion of the accretion disk and relativistic jets in the double system SS 433; etc. This book stands out as the first one that deals with the problem of chaos in real astrophysical objects. It is intended for graduate and post-graduate students in the fields of non-linear dynamics, astrophysics, planetary and space physics; specifically for those dealing with computer modeling of the relevant processes. Link: http://www.wkap.nl/prod/b/1-4020-0935-6

  7. Astrophysical Boundary Layers: A New Picture

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail; Rafikov, Roman R.; Mclellan Stone, James

    2016-04-01

    Accretion is a ubiquitous process in astrophysics. In cases when the magnetic field is not too strong and a disk is formed, accretion can proceed through the mid plane all the way to the surface of the central compact object. Unless that compact object is a black hole, a boundary layer will be formed where the accretion disk touches its surfaces. The boundary layer is both dynamically and observationally significant as up to half of the accretion energy is dissipated there.Using a combination of analytical theory and computer simulations we show that angular momentum transport and accretion in the boundary layer is mediated by waves. This breaks with the standard astrophysical paradigm of an anomalous turbulent viscosity that drives accretion. However, wave-mediated angular momentum transport is a natural consequence of "sonic instability." The sonic instability, which we describe analytically and observe in our simulations, is a close cousin of the Papaloizou-Pringle instability. However, it is very vigorous in the boundary layer due to the immense radial velocity shear present at the equator.Our results are applicable to accreting neutron stars, white dwarfs, protostars, and protoplanets.

  8. ZAPP: The Z Astrophysical Plasma Properties collaboration

    SciTech Connect

    Rochau, G. A.; Bailey, J. E.; Falcon, R. E.; Loisel, G. P.; Nagayama, T.; Mancini, R. C.; Hall, I.; Winget, D. E.; Montgomery, M. H.; Liedahl, D. A.

    2014-05-15

    The Z Facility at Sandia National Laboratories [Matzen et al., Phys. Plasmas 12, 055503 (2005)] provides MJ-class x-ray sources that can emit powers >0.3 PW. This capability enables benchmark experiments of fundamental material properties in radiation-heated matter at conditions previously unattainable in the laboratory. Experiments on Z can produce uniform, long-lived, and large plasmas with volumes up to 20 cc, temperatures from 1–200 eV, and electron densities from 10{sup 17–23} cc{sup −1}. These unique characteristics and the ability to radiatively heat multiple experiments in a single shot have led to a new effort called the Z Astrophysical Plasma Properties (ZAPP) collaboration. The focus of the ZAPP collaboration is to reproduce the radiation and material characteristics of astrophysical plasmas as closely as possible in the laboratory and use detailed spectral measurements to strengthen models for atoms in plasmas. Specific issues under investigation include the LTE opacity of iron at stellar-interior conditions, photoionization around active galactic nuclei, the efficiency of resonant Auger destruction in black-hole accretion disks, and H-Balmer line shapes in white dwarf photospheres.

  9. X-ray monitoring for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Burrows, D.; Cash, W.; Cerna, D.; Gorenstein, P.; Hudec, R.; Inneman, A.; Jakubek, J.; Marsikova, V.; Sieger, L.; Tichy, V.

    2014-09-01

    This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system could be used in a student rocket experiment at University of Colorado. Ideal opportunity is to extend the CubeSat of Pennsylvania State University with the hard X-ray telescope demonstrator consisting of an optical module and Timepix detector.

  10. Laboratory Plasma Astrophysics Research with Intense Lasers

    NASA Astrophysics Data System (ADS)

    Takabe, Hideaki; Kato, Tsunehiko; Kuramitsu, Yasuhiro; Sakawa, Yuichi

    2008-12-01

    Large scale laser facilities mainly constructed for fusion research can be used to produce high-energy-density plasmas like the interior of stars and planets. They can be also used to reproduce the extreme phenomena of explosion and high Mach number flow in mimic scale in laboratory. With advanced diagnostic technique, we can study the physics of plasma phenomena expected to control a variety of phenomena in Universe. The subjects studied so far are reviewed, for example, in [1], [2]. The project to promote the laboratory astrophysics with Gekko XII laser facility has been initiated from April 1st this year as a project of our institute. It consists of four sub-projects. They are 1. Physics of collisionless shock and particle acceleration, 2. Physics of Non LTE (local thermodynamic equilibrium) photo-ionized plasma, 3. Physics of planets and meteor impact, 4. Development of superconducting Terahertz device. I will briefly explain what the laser astrophysics means and introduce what are the targets of our project. Regarding the first sub-project, we have carried out hydrodynamic and PIC simulation to design the experiments with intense laser. We clarified the physical mechanism of generation of the magnetic field in non-magnetized plasma and the collsionless shock formation caused by the ion orbit modifications by the magnetic fields generated as the result of plasma instability. Note from Publisher: This article contains the abstract only.

  11. Art as a Vehicle for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Kilburn, Micha

    2013-04-01

    One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.

  12. NASA's Laboratory Astrophysics Workshop: Opening Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2002-01-01

    The Astronomy and Physics Division at NASA Headquarters has an active and vibrant program in Laboratory Astrophysics. The objective of the program is to provide the spectroscopic data required by observers to analyze data from NASA space astronomy missions. The program also supports theoretical investigations to provide those spectroscopic parameters that cannot be obtained in the laboratory; simulate space environment to understand formation of certain molecules, dust grains and ices; and production of critically compiled databases of spectroscopic parameters. NASA annually solicits proposals, and utilizes the peer review process to select meritorious investigations for funding. As the mission of NASA evolves, new missions are launched, and old ones are terminated, the Laboratory Astrophysics program needs to evolve accordingly. Consequently, it is advantageous for NASA and the astronomical community to periodically conduct a dialog to assess the status of the program. This Workshop provides a forum for producers and users of laboratory data to get together and understand each others needs and limitations. A multi-wavelength approach enables a cross fertilization of ideas across wavelength bands.

  13. Bubble chambers for experiments in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    DiGiovine, B.; Henderson, D.; Holt, R. J.; Raut, R.; Rehm, K. E.; Robinson, A.; Sonnenschein, A.; Rusev, G.; Tonchev, A. P.; Ugalde, C.

    2015-05-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with γ-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross-sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross-sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross-sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the γ-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.

  14. Astrophysical Model Selection in Gravitational Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.

    2012-01-01

    Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.

  15. Highlights of the NASA Particle Astrophysics Program

    NASA Astrophysics Data System (ADS)

    Jones, William Vernon

    2014-10-01

    The NASA Particle Astrophysics Program covers Origin of the Elements, Nearest Sources of Cosmic Rays, How Cosmic Particle Accelerators Work, The Nature of Dark Matter, and Neutrino Astrophysics. Progress in each of these topics has come from sophisticated instrumentation flown on long duration balloon (LDB) flights around Antarctica over the past two decades. New opportunities including Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging for the next major step. Stable altitudes and long durations enabled by SPB flights ensure ultra-long duration balloon (ULDB) missions that can open doors to new science opportunities. The Alpha Magnetic Spectrometer (AMS) has been operating on the ISS since May 2011. The CALorimetric Electron Telescope (CALET) and Cosmic Ray Energetics And Mass (CREAM) experiments are being developed for launch to the Japanese Experiment Module Exposed Facility (JEM-EF) in 2014. And, the Extreme Universe Space Observatory (EUSO) is planned for launch to the ISS JEM-EF after 2017. Collectively, these four complementary ISS missions covering a large portion of the cosmic ray energy spectrum serve as a cosmic ray observatory.

  16. Ultraviolet and Visible Emission Mechanisms in Astrophysics

    NASA Technical Reports Server (NTRS)

    Stancil, Phillip C.; Schultz, David R.

    2003-01-01

    The project involved the study of ultraviolet (UV) and visible emission mechanisms in astrophysical and atmospheric environments. In many situations, the emission is a direct consequence of a charge transferring collision of an ion with a neutral with capture of an electron to an excited state of the product ion. The process is also important in establishing the ionization and thermal balance of an astrophysical plasma. As little of the necessary collision data are available, the main thrust of the project was the calculation of total and state-selective charge transfer cross sections and rate coefficients for a very large number of collision systems. The data was computed using modern explicit techniques including the molecular-orbital close-coupling (MOCC), classical trajectory Monte Carlo (CTMC), and continuum distorted wave (CDW) methods. Estimates were also made in some instances using the multichannel Landau-Zener (MCLZ) and classical over-the-barrier (COB) models. Much of the data which has been computed has been formatted for inclusion in a charge transfer database on the World Wide Web (cfadc.phy.ornl.gov/astro/ps/data/). A considerable amount of data has been generated during the lifetime of the grant. Some of it has not been analyzed, but it will be as soon as possible, the data placed on our website, and papers ultimately written.

  17. Magnetic field amplification in turbulent astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph

    2016-12-01

    Magnetic fields play an important role in astrophysical accretion discs and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here, I start by reviewing recent advances in the numerical and theoretical modelling of the turbulent dynamo, which may explain the origin of galactic and intergalactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simulations from which I determine the growth of the turbulent (un-ordered) magnetic field component ( turb$ ) in the presence of weak and strong guide fields ( 0$ ). I vary 0$ over five orders of magnitude and find that the dependence of turb$ on 0$ is relatively weak, and can be explained with a simple theoretical model in which the turbulence provides the energy to amplify turb$ . Finally, I discuss some important implications of magnetic fields for the structure of accretion discs, the launching of jets and the star-formation rate of interstellar clouds.

  18. Suspicionless Searches.

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2000-01-01

    In a federal case involving a vice-principal's pat-down search of middle-school students in a cafeteria (for a missing pizza knife), the court upheld the search, saying it was relatively unintrusive and met "TLO's" reasonable-suspicion standards. Principals need reasonable justification for searching a group. (Contains 18 references.)…

  19. Partition search

    SciTech Connect

    Ginsberg, M.L.

    1996-12-31

    We introduce a new form of game search called partition search that incorporates dependency analysis, allowing substantial reductions in the portion of the tree that needs to be expanded. Both theoretical results and experimental data are presented. For the game of bridge, partition search provides approximately as much of an improvement over existing methods as {alpha}-{beta} pruning provides over minimax.

  20. NASA Laboratory Astrophysics Workshop 2006 Introductory Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2006-01-01

    NASA Laboratory Astrophysics Workshop 2006, is the fourth in a series of workshops held at four year intervals, to assess the laboratory needs of NASA's astrophysics missions - past, current and future. Investigators who need laboratory data to interpret their observations from space missions, theorists and modelers, experimentalists who produce the data, and scientists who compile databases have an opportunity to exchange ideas and understand each other's needs and limitations. The multi-wavelength character of these workshops allows cross-fertilization of ideas, raises awareness in the scientific community of the rapid advances in other fields, and the challenges it faces in prioritizing its laboratory needs in a tight budget environment. Currently, we are in the golden age of Space Astronomy, with three of NASA s Great Observatories, Hubble Space Telescope (HST), Chandra X-Ray Observatory (CXO), and Spitzer Space Telescope (SST), in operation and providing astronomers and opportunity to perform synergistic observations. In addition, the Far Ultraviolet Spectroscopic Explorer (FUSE), XMM-Newton, HETE-2, Galaxy Evolution Explorer (GALEX), INTEGRAL and Wilkinson Microwave Anisotropy Probe (WMAP), are operating in an extended phase, while Swift and Suzaku are in their prime phase of operations. The wealth of data from these missions is stretching the Laboratory Astrophysics program to its limits. Missions in the future, which also need such data include the James Webb Space Telescope (JWST), Space Interferometry Mission (SIM), Constellation-X (Con-X), Herschel, and Planck. The interpretation of spectroscopic data from these missions requires knowledge of atomic and molecular parameters such as transition probabilities, f-values, oscillator strengths, excitation cross sections, collision strengths, which have either to be measured in the laboratory by simulating space plasma and interactions therein, or by theoretical calculations and modeling. Once the laboratory

  1. Search for the H-dibaryon. A proposal to E871

    SciTech Connect

    Fitch, V.; Klein, J.; May, M.

    1998-10-01

    This report consists of vugraphs for a lecture on the search for the H-dibaryon. The physics importance of this search are: (1) low energy test of QCD; (2) new form of matter; (3) missing link between normal hadronic matter and strange matter; (4) astrophysical explanations; and (5) cosmology and dark matter. The author reviews past experiments searching for H-dibaryon. Finally he discusses search methods at E871.

  2. A Search for Dark Higgs Bosons

    SciTech Connect

    Lees, J.P.

    2012-06-08

    Recent astrophysical and terrestrial experiments have motivated the proposal of a dark sector with GeV-scale gauge boson force carriers and new Higgs bosons. We present a search for a dark Higgs boson using 516 fb{sup -1} of data collected with the BABAR detector. We do not observe a significant signal and we set 90% confidence level upper limits on the product of the Standard Model-dark sector mixing angle and the dark sector coupling constant.

  3. Pentaquark searches at CDF

    SciTech Connect

    Litvintsev, Dmitry O.; Fermilab

    2004-10-01

    Recently there has been revival of interest in exotic baryon spectroscopy triggered by experimental evidence for pentaquarks containing u, d, s and c-quarks. They report results of the searches for pentaquark states in decays to pK{sub S}{sup 0}, {Xi}{sup -} {pi}{sup {+-}} and D*{sup -} p performed at CDF detector using 220 pb{sup -1} sample of p{bar p} interactions at {radical}s of 1.96 TeV. No evidence for narrow resonances were found in either mode.

  4. Distributed Search and Pattern Matching

    NASA Astrophysics Data System (ADS)

    Ahmed, Reaz; Boutaba, Raouf

    Peer-to-peer (P2P) technology has triggered a wide range of distributed applications including file-sharing, distributed XML databases, distributed computing, server-less web publishing and networked resource/service sharing. Despite of the diversity in application, these systems share common requirements for searching due to transitory nodes population and content volatility. In such dynamic environment, users do not have the exact information about available resources. Queries are based on partial information. This mandates the search mechanism to be emphflexible. On the other hand, the search mechanism is required to be bandwidth emphefficient to support large networks. Variety of search techniques have been proposed to provide satisfactory solution to the conflicting requirements of search efficiency and flexibility. This chapter highlights the search requirements in large scale distributed systems and the ability of the existing distributed search techniques in satisfying these requirements. Representative search techniques from three application domains, namely, P2P content sharing, service discovery and distributed XML databases, are considered. An abstract problem formulation called Distributed Pattern Matching (DPM) is presented as well. The DPM framework can be used as a common ground for addressing the search problem in these three application domains.

  5. The TOTEM modular trigger system

    NASA Astrophysics Data System (ADS)

    Bagliesi, M. G.; Berretti, M.; Cecchi, R.; Greco, V.; Lami, S.; Latino, G.; Oliveri, E.; Pedreschi, E.; Scribano, A.; Spinella, F.; Turini, N.

    2010-05-01

    The TOTEM experiment will measure the total cross-section with the luminosity independent method and study elastic and diffractive scattering at the LHC. We are developing a modular trigger system, based on programmable logic, that will select meaningful events within 2.5 μs. The trigger algorithm is based on a tree structure in order to obtain information compression. The trigger primitive is generated directly on the readout chip, VFAT, that has a specific fast output that gives low resolution hits information. In two of the TOTEM detectors, Roman Pots and T2, a coincidence chip will perform track recognition directly on the detector readout boards, while for T1 the hits are transferred from the VFATs to the trigger hardware. Starting from more than 2000 bits delivered by the detector electronics, we extract, in a first step, six trigger patterns of 32 LVDS signals each; we build, then, on a dedicated board, a 1-bit (L1) trigger signal for the TOTEM experiment and 16 trigger bits to the CMS experiment global trigger system for future common data taking.

  6. Triggering requirements for SSC physics

    SciTech Connect

    Gilchriese, M.G.D.

    1989-04-01

    Some aspects of triggering requirements for high P{sub T} physics processes at the Superconducting Super Collider (SSC) are described. A very wide range of trigger types will be required to enable detection of the large number of potential physics signatures possible at the SSC. Although in many cases trigger rates are not now well understood, it is possible to conclude that the ability to trigger on transverse energy, number and energy of jets, number and energy of leptons (electrons and muons), missing energy and combinations of these will be required. An SSC trigger system must be both highly flexible and redundant to ensure reliable detection of many new physics processes at the SSC.

  7. Cosmological and astrophysical implications of sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Petraki, Kalliopi

    The discovery of neutrino masses suggests that the Standard Model should be supplemented with new gauge-singlet fermions, often called sterile neutrinos. The interplay among the new couplings introduced in the Standard Model can accommodate the neutrino oscillation data for a variety of choices: the new particles can be extremely heavy and practically unobservable, or they can be light, in which case they can solve several long-standing puzzles. It has been shown, for example, that sterile neutrinos in some range of masses can account for dark matter, their emission from a supernova can explain pulsar kicks, arid their decays can play an important role in the formation of the first stars. Though indirect, these clues indicate that sterile neutrinos can be the minimal solution to a variety of unsolved problems. This emphasizes the importance of investigating further the consequences of these new degrees of freedom for cosmology and astrophysics. In this dissertation, I explore the possible role of sterile neutrinos of different mass scales in some cosmological and astrophysical phenomena. A minimal extension of the Higgs sector of the Standard Model, with a gauge- singlet boson coupled to sterile neutrinos, can provide a consistent framework for the theory of neutrino masses, and can produce a relic population of keV sterile neutrinos via decays of the singlet Higgs. The latter can account for the dark matter of the universe. The mechanism operates around the electroweak scale, and has interesting consequences for the electroweak phase transition. Relic sterile neutrinos produced via decays at the electroweak scale constitute colder dark matter than those produced via other previously suggested mechanisms. The primordial thermal content of dark matter has important implications for the formation of cosmic structures, such as clusters and galaxies. The assessment of the relevant properties suggests that sterile neutrinos produced at the electroweak scale are a

  8. MHD scaling: from astrophysics to the laboratory

    NASA Astrophysics Data System (ADS)

    Ryutov, Dmitri

    2000-10-01

    During the last few years, considerable progress has been made in simulating astrophysical phenomena in laboratory experiments with high power lasers [1]. Astrophysical phenomena that have drawn particular interest include supernovae explosions; young supernova remnants; galactic jets; the formation of fine structures in late supernova remnants by instabilities; and the ablation driven evolution of molecular clouds illuminated by nearby bright stars, which may affect star formation. A question may arise as to what extent the laser experiments, which deal with targets of a spatial scale 0.01 cm and occur at a time scale of a few nanoseconds, can reproduce phenomena occurring at spatial scales of a million or more kilometers and time scales from hours to many years. Quite remarkably, if dissipative processes (like, e.g., viscosity, Joule dissipation, etc.) are subdominant in both systems, and the matter behaves as a polytropic gas, there exists a broad hydrodynamic similarity (the ``Euler similarity" of Ref. [2]) that allows a direct scaling of laboratory results to astrophysical phenomena. Following a review of relevant earlier work (in particular, [3]-[5]), discussion is presented of the details of the Euler similarity related to the presence of shocks and to a special case of a strong drive. After that, constraints stemming from possible development of small-scale turbulence are analyzed. Generalization of the Euler similarity to the case of a gas with spatially varying polytropic index is presented. A possibility of scaled simulations of ablation front dynamics is one more topic covered in this paper. It is shown that, with some additional constraints, a simple similarity exists. This, in particular, opens up the possibility of scaled laboratory simulation of the aforementioned ablation (photoevaporation) fronts. A nonlinear transformation [6] that establishes a duality between implosion and explosion processes is also discussed in the paper. 1. B.A. Remington et

  9. Final Report for "Verification and Validation of Radiation Hydrodynamics for Astrophysical Applications"

    SciTech Connect

    Zingale, M; Howell, L H

    2010-03-17

    The motivation for this work is to gain experience in the methodology of verification and validation (V&V) of astrophysical radiation hydrodynamics codes. In the first period of this work, we focused on building the infrastructure to test a single astrophysical application code, Castro, developed in collaboration between Lawrence Livermore National Laboratory (LLNL) and Lawrence Berkeley Laboratory (LBL). We delivered several hydrodynamic test problems, in the form of coded initial conditions and documentation for verification, routines to perform data analysis, and a generalized regression test suite to allow for continued automated testing. Astrophysical simulation codes aim to model phenomena that elude direct experimentation. Our only direct information about these systems comes from what we observe, and may be transient. Simulation can help further our understanding by allowing virtual experimentation of these systems. However, to have confidence in our simulations requires us to have confidence in the tools we use. Verification and Validation is a process by which we work to build confidence that a simulation code is accurately representing reality. V&V is a multistep process, and is never really complete. Once a single test problem is working as desired (i.e. that problem is verified), one wants to ensure that subsequent code changes do not break that test. At the same time, one must also search for new verification problems that test the code in a new way. It can be rather tedious to manually retest each of the problems, so before going too far with V&V, it is desirable to have an automated test suite. Our project aims to provide these basic tools for astrophysical radiation hydrodynamics codes.

  10. Measuring Stellar Temperatures: An Astrophysical Laboratory for Undergraduate Students

    ERIC Educational Resources Information Center

    Cenadelli, D.; Zeni, M.

    2008-01-01

    While astrophysics is a fascinating subject, it hardly lends itself to laboratory experiences accessible to undergraduate students. In this paper, we describe a feasible astrophysical laboratory experience in which the students are guided to take several stellar spectra, using a telescope, a spectrograph and a CCD camera, and perform a full data…

  11. Interface between astrophysical datasets and distributed database management systems (DAVID)

    NASA Technical Reports Server (NTRS)

    Iyengar, S. S.

    1988-01-01

    This is a status report on the progress of the DAVID (Distributed Access View Integrated Database Management System) project being carried out at Louisiana State University, Baton Rouge, Louisiana. The objective is to implement an interface between Astrophysical datasets and DAVID. Discussed are design details and implementation specifics between DAVID and astrophysical datasets.

  12. Review of the Second School on Cosmic Rays and Astrophysics

    NASA Astrophysics Data System (ADS)

    Martínez, Humberto

    2009-04-01

    The Second School on Cosmic Rays and Astrophysics was held in Puebla, Mexico, on August 30 to September 8, 2006. It included subjects like experimental techniques, primary spectrum and composition of cosmic rays, high-energy interactions, gamma ray astronomy, neutrino astrophysics, cosmic ray detectors, etc. I present a very short review of some of the lectures given there.

  13. Review of dark photon searches

    NASA Astrophysics Data System (ADS)

    Denig, Achim

    2016-11-01

    Dark Photons are hypothetical extra-U(1) gauge bosons, which are motivated by a number of astrophysical anomalies as well as the presently seen deviation between the Standard Model prediction and the direct measurement of the anomalous magnetic moment of the muon, (g - 2)μ. The Dark Photon does not serve as the Dark Matter particle itself, but acts as a messenger particle of a hypothetical Dark Sector with residual interaction to the Standard Model. We review recent Dark Photon searches, which were carried out in a global effort at various hadron and particle physics facilities. We also comment on the perspectives for future invisble searches, which directly probe the existence of Light Dark Matter particles.

  14. Protection of the Guillermo Haro Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Carraminana, A. P.

    The Guillermo Haro Astrophysical Observatory, with a 2m telescope, is one of only two professional observatories in Mexico. The observatory, run by the InstitutoNacional de Astrofisica, Optica y Electronica (INAOE), is located in the north of Mexico, in Cananea, Sonora. Since 1995 the observatory has faced the potential threat of pollution by an open cast mine to be opened at 3kms from the observatory. In the absence of national or regional laws enforcing protection to astronomical sites in Mexico, considerable effort has been needed to guarantee the conditions of the site. We present the studies carried out to ensure the protection of the Guillermo Haro Observatory from pollution due to dust, light and vibrations.

  15. A laser application to nuclear astrophysics

    SciTech Connect

    Barbui, M.; Hagel, K.; Schmidt, K.; Zheng, H.; Burch, R.; Barbarino, M.; Natowitz, J. B.; Bang, W.; Dyer, G.; Quevedo, H. J.; Gaul, E.; Bernstein, A. C.; Donovan, M.; Bonasera, A.; Kimura, S.; Mazzocco, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Ditmire, T.

    2014-05-09

    In the last decade, the availability in high-intensity laser beams capable of producing plasmas with ion energies large enough to induce nuclear reactions has opened new research paths in nuclear physics. We studied the reactions {sup 3}He(d,p){sup 4}He and d(d,n){sup 3}He at temperatures of few keV in a plasma, generated by the interaction of intense ultrafast laser pulses with molecular deuterium or deuterated-methane clusters mixed with {sup 3}He atoms. The yield of 14.7 MeV protons from the {sup 3}He(d,p){sup 4}He reaction was used to extract the astrophysical S factor. Results of the experiment performed at the Center for High Energy Density Science at The University of Texas at Austin will be presented.

  16. Export Controls on Astrophysical Simulation Codes

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel

    2015-01-01

    Amidst concerns about nuclear proliferation, the US government has established guidelines on what types of astrophysical simulation codes can be run and disseminated on open systems. I will review the basic export controls that have been enacted by the federal government to slow the pace of software acquisition by potential adversaries who seek to develop weapons of mass destruction. The good news is that it is relatively simple to avoid ITAR issues with the Department of Energy if one remembers a few simple rules. I will discuss in particular what types of algorithm development can get researchers into trouble if they are not aware of the regulations and how to avoid these pitfalls while doing world class science.

  17. Study of astrophysical collisionless shocks at NIF

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Higginson, D. P.; Huntington, C. M.; Pollock, B. B.; Remington, B. A.; Rinderknecht, H.; Ross, J. S.; Ryutov, D. D.; Swadling, G. F.; Wilks, S. C.; Sakawa, Y.; Spitkovsky, A.; Petrasso, R.; Li, C. K.; Zylstra, A. B.; Lamb, D.; Tzeferacos, P.; Gregori, G.; Meinecke, J.; Manuel, M.; Froula, D.; Fiuza, F.

    2016-10-01

    High Mach number astrophysical plasmas can create collisionless shocks via plasma instabilities and turbulence that are responsible for magnetic field generations and cosmic ray acceleration. Recently, many laboratory experiments were successful to observe the Weibel instabilities and self-generated magnetic fields using high-power lasers that generated interpenetrating plasma flows. In order to create a fully formed shock, a series of NIF experiments have begun. The characteristics of flow interaction have been diagnosed by the neutrons and protons generated via beam-beam deuteron interactions, the x-ray emission from the hot plasmas and proton probe generated by imploding DHe3 capsules. This paper will present the latest results from the NIF collisionless shock experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.

  18. Teaching the Doppler effect in astrophysics

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.; Cowley, Michael

    2017-03-01

    The Doppler effect is a shift in the frequency of waves emitted from an object moving relative to the observer. By observing and analysing the Doppler shift in electromagnetic waves from astronomical objects, astronomers gain greater insight into the structure and operation of our Universe. In this paper, a simple technique is described for teaching the basics of the Doppler effect to undergraduate astrophysics students using acoustic waves. An advantage of the technique is that it produces a visual representation of the acoustic Doppler shift. The equipment comprises a 40 kHz acoustic transmitter and a microphone. The sound is bounced off a computer fan and the signal collected by a DrDAQ ADC and processed by a spectrum analyser. Widening of the spectrum is observed as the fan power supply potential is increased from 4 to 12 V.

  19. Astrophysical black holes in screened modified gravity

    SciTech Connect

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth E-mail: r.a.w.gregory@durham.ac.uk E-mail: jlmuir@umich.edu

    2014-08-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.

  20. Some nuclear data needs in astrophysics

    SciTech Connect

    Mathews, G.J.; Bauer, R.W.; Bloom, S.D.; Haight, R.C.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1985-05-01

    In this paper we discuss a number of astrophysical environments and how improved nuclear data could facilitate a better understanding of them. One area of interest includes proton and alpha-particle reactions with unstable nuclei which are necessary for understanding the nucleosynthesis and energy generation in hot hydrogen-burning environments. Efforts underway at LLNL and elsewhere to develop the technology for the measurement of these reaction rates are discussed. Heavy-element nucleosynthesis in the late stages of red-giant stars and supernovae requires a complete network of neutron capture rates and beta-decay rates for nuclei near and far from stability. Experimental and theoretical efforts at LLNL to supply the input data and to model the nucleosynthetic environments will be outlined. Suggestions are made as to which nuclear data are most critical for the various scenarios. 42 refs., 11 figs., 1 tab.

  1. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, Hannes

    1986-01-01

    A simple circuit is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from earth. Double layers in space should be classified as a new type of celestial object. It is suggested that X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). The way the most used textbooks in astrophysics treat concepts like double layers, critical velocity, pinch effects and circuits was studied. It is found that students using these textbooks remain essentially ignorant of even the existence of these, although some of the phenomena were discovered 50 yr ago.

  2. Antenna-Coupled Bolometer Arrays for Astrophysics

    NASA Astrophysics Data System (ADS)

    Bock, James

    Bolometers offer the best sensitivity in the far-infrared to millimeter-wave region of the electromagnetic spectrum. We are developing arrays of feedhorn-coupled bolometers for the ESA/NASA Planck Surveyor and Herschel Space Observatory. Advances in the format and sensitivity of bolometric focal plane array enables future astrophysics mission opportunities, such as CMB polarimetry and far-infrared/submillimeter spectral line surveys. Compared to bolometers with extended area radiation absorbers, antenna-coupled bolometers offer active volumes that are orders of magnitude smaller. Coupled to lithographed micro-strip filters and antennas, antenna-coupled bolometer arrays allow flexible focal plane architectures specialized for imaging, polarimetry, and spectroscopy. These architectures greatly reduce the mass of sub-Kelvin bolometer focal planes that drive the design of bolometric instrumentation.

  3. Chaotic Phenomena in Astrophysics and Cosmology

    NASA Astrophysics Data System (ADS)

    Gurzadyan, V. G.

    2003-06-01

    Chaos is a typical property of many-dimensional nonlinear systems and is revealed in a number of problems of astrophysics and cosmology. Particularly, chaos made to revise the two-hundred year old views on the evolution of Solar system, while the theory of interstellar matter, dynamics of stellar systems cannot be considered neglecting the chaotic effects. The lectures notes cover the following topics: dynamics of the Solar system, relaxation of galaxies and star clusters, the substructure of galaxy clusters, hyperbolicity in the Wheeler-DeWitt superspace and the stability of cosmological solutions. Thus we aimed to cover as broad topics as possible, at the same time showing the diversity of approaches and mathematical tools. For pedagogical reasons, the techniques such as the estimation Kolmogorov-Sinai entropy, the hyperbolicity in pseudo-Riemannian spaces are described in some detail, so that they can be applied in various problems.

  4. The High-Energy Astrophysics Learning Center

    NASA Astrophysics Data System (ADS)

    Whitlock, L. A.; Lochner, J. C.; Allen, J. S.

    1996-12-01

    As part of the education outreach efforts of the HEASARC (High Energy Astrophysics Science Archive Research Center), we have developed a cosmic X-ray and gamma-ray astronomy World Wide Web site which contains information and activities for all ages and education levels. Additional associated sites are now being added, such as StarChild, which broaden the range of topics to cover other astronomy issues. Also included is a "Teacher's Corner", which contains educator-prepared Study Guides for the site and multi-level, multi-disciplinary Lesson Plans based on actual satellite data and analyses. We intend to provide high visibility and easy access to the site for teachers and students by exhibiting it at NSTA (and other) conventions, giving mini-workshops at such conventions, and distributing a CD-ROM version of the site. The development, growth, and use of the site are presented.

  5. Testing conformal gravity with astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Cao, Zheng; Modesto, Leonardo

    2017-03-01

    Weyl conformal symmetry can solve the problem the spacetime singularities present in Einstein's gravity. In a recent paper, two of us have found a singularity-free rotating black hole solution in conformal gravity. In addition to the mass M and the spin angular momentum J of the black hole, the new solution has a new parameter, L , which here we consider to be proportional to the black hole mass. Since the solution is conformally equivalent to the Kerr metric, photon trajectories are unchanged, while the structure of an accretion disk around a black hole is affected by the value of the parameter L . In this paper, we show that x-ray data of astrophysical black holes require L /M <1.2 .

  6. Astrophysics for Older adults in Chicago.

    NASA Astrophysics Data System (ADS)

    Grin, Daniel; Landsberg, Randall H.; Flude, Karen

    2017-01-01

    Gerontology research continues to show that the adage "Use it or Lose it" is a clinical fact when it comes to cognitive engagement post-retirement. Here, I'll discuss a new program developed at the Kavli Institute for Cosmological Physics, bringing classes on astrophysics to older adults throughout the city, at retirement homes, at senior center, and at public libraries, bookended by an engaging trip to the Adler Planetarium. In my presentation, I'll present the gerontological and policy motivations for this program, the presenter training techniques, our partner collaboration strategy, and the results of our effort, which engaged hundreds of older adults throughout Chicago from a variety of socioeconomic strata.

  7. Nonequilibrium Route to Nanodiamond with Astrophysical Implications

    NASA Astrophysics Data System (ADS)

    Marks, N. A.; Lattemann, M.; McKenzie, D. R.

    2012-02-01

    Nanometer-sized diamond grains are commonly found in primitive chondritic meteorites, but their origin is puzzling. Using evidence from atomistic simulation, we establish a mechanism by which nanodiamonds form abundantly in space in a two-stage process involving condensation of vapor to form carbon onions followed by transformation to nanodiamond in an energetic impact. This nonequilibrium process is consistent with common environments in space and invokes the fewest assumptions of any proposed model. Accordingly, our model can explain nanodiamond formation in both presolar and solar environments. The model provides an attractive framework for understanding noble gas incorporation and explains all key features of meteoritic nanodiamond, including size, shape, and polytype. By understanding the creation of nanodiamonds, new opportunities arise for their exploitation as a powerful astrophysical probe.

  8. Astrophysical fractals - An overview and prospects

    NASA Technical Reports Server (NTRS)

    Perdang, J.

    1990-01-01

    Different astrophysical circumstances under which fractal structures have been identified so far, or are likely to be identified in the future, are reviewed. The observed fractals can be classified into 2 main groups: (1) fractal configurations in space-time, materializing as fractals defined over the time axis at a given position in space, or over the physical configuration space at a fixed instant in time; and (2) fractals in parameter spaces. The theoretical interpretation of the origin of the spatial fractal geometry of the most conspicuous 'irregular' astronomical bodies is still wanting in the context of standard continuum models. In contrast, the less conventional discrete models (cellular automata) naturally produce such spatially fractal structures.

  9. Astrophysical constraints on Planck scale dissipative phenomena.

    PubMed

    Liberati, Stefano; Maccione, Luca

    2014-04-18

    The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles.

  10. Nuclear Astrophysics at IFIN-HH

    NASA Astrophysics Data System (ADS)

    Livius, Trache

    2016-04-01

    I will present the possibilities and some results of doing nuclear astrophysics research in IFIN-HH Bucharest-Magurele. There are basically two lines of experimental activities: (1) direct measurements with beams from the local accelerators, in particular with the new 3 MV Tandetron accelerator. This facility turns out to be competitive for reactions induced by a-particles and light ions. Extra capabilities are given by the ultra-low background laboratory we have in a salt mine about 2.5 hrs. driving north of Bucharest; (2) indirect measurements done with beams at international facilities, in particular at those providing Rare Ion Beams. Completely new and unique opportunities will be provided by ELI-NP, under construction in our institute.

  11. Information technologies for astrophysics circa 2001

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1991-01-01

    It is easy to extrapolate current trends to see where technologies relating to information systems in astrophysics and other disciplines will be by the end of the decade. These technologies include miniaturization, multiprocessing, software technology, networking, databases, graphics, pattern computation, and interdisciplinary studies. It is less easy to see what limits our current paradigms place on our thinking about technologies that will allow us to understand the laws governing very large systems about which we have large data sets. Three limiting paradigms are as follows: saving all the bits collected by instruments or generated by supercomputers; obtaining technology for information compression, storage, and retrieval off the shelf; and the linear model of innovation. We must extend these paradigms to meet our goals for information technology at the end of the decade.

  12. Information technologies for astrophysics circa 2001

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1990-01-01

    It is easy to extrapolate current trends to see where technologies relating to information systems in astrophysics and other disciplines will be by the end of the decade. These technologies include mineaturization, multiprocessing, software technology, networking, databases, graphics, pattern computation, and interdisciplinary studies. It is easy to see what limits our current paradigms place on our thinking about technologies that will allow us to understand the laws governing very large systems about which we have large datasets. Three limiting paradigms are saving all the bits collected by instruments or generated by supercomputers; obtaining technology for information compression, storage and retrieval off the shelf; and the linear mode of innovation. We must extend these paradigms to meet our goals for information technology at the end of the decade.

  13. Improving general relativistic astrophysics workflows with ADIOS

    NASA Astrophysics Data System (ADS)

    Bode, Tanja; Slawinska, Magdalena; Logan, Jeremy; Clark, Michael; Kinsey, Matthew; Wolf, Matthew; Klasky, Scott; Laguna, Pablo

    2013-04-01

    There are many challenges in analyzing and visualizing data from current cutting-edge general relativistic astrophysics simulations. Many of the associated tasks are time-consuming, with large performance degradation due to the magnitude and complexity of the data. The Adaptable IO System (ADIOS) is a componentization of the IO layer that has demonstrated remarkable IO performance improvements on applications running on leadership class machines while also offering new in-memory ``staging'' operations for transforming data in situ. We have incorporated ADIOS staging technologies into our Maya numerical relativity code based on Cactus infrastructure and Carpet mesh refinement. We present results that demonstrate how ADIOS yields significant gains on IO performance while utilizing leveraged investments in ADIOS plugins for visualization tools such as VisIt.

  14. Few-body models for nuclear astrophysics

    SciTech Connect

    Descouvemont, P.; Baye, D.; Aoyama, S.; Arai, K.

    2014-04-15

    We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  15. Interstellar Polycyclic Aromatic Compounds and Astrophysics

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role polycyclic aromatic compounds (PAC) in the interstellar medium (ISM). Twenty years ago, the notion of an abundant population of large, carbon rich molecules in the ISM was considered preposterous. Today, the unmistakable spectroscopic signatures of PAC - shockingly large molecules by previous interstellar chemistry standards - are recognized throughout the Universe. In this paper, we will examine the interstellar PAC model and its importance to astrophysics, including: (1) the evidence which led to inception of the model; (2) the ensuing laboratory and theoretical studies of the fundamental spectroscopic properties of PAC by which the model has been refined and extended; and (3) a few examples of how the model is being exploited to derive insight into the nature of the interstellar PAC population.

  16. Fundamental Interactions, Nuclear Masses, Astrophysics, and QCD

    SciTech Connect

    Gagliardi, C. A.

    2008-01-24

    During his long and varied career, Robert Tribble has made important contributions in many areas of nuclear physics. He has set new limits on the existence of second-class currents, lepton-flavor violation, and right-handed interactions. He optimized the use of the ({sup 4}He,{sup 8}He) reaction to determine nuclear masses and study charge-dependent effects in nuclei. He has developed a new indirect procedure to determine astrophysical reaction rates and applied it to study important nuclear reactions that occur in our sun, in massive stars, and in novae. He has explored anti-quark distributions in nucleons and nuclei, and the polarization of gluons in the nucleon. A brief overview of Bob Tribble's many accomplishments is presented.

  17. Studies of High Energy Particle Astrophysics

    SciTech Connect

    Nitz, David F; Fick, Brian E

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  18. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1986-01-01

    A simple circuit is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object. It is suggested that X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). The way the most used textbooks in astrophysics treat concepts like double layers, critical velocity, pinch effects and circuits was studied. It is found that students using these textbooks remain essentially ignorant of even the existence of these, although some of the phenomena were discovered 50 yr ago.

  19. Kinetic simulaitons of astrophysical collisionless shocks (Invited)

    NASA Astrophysics Data System (ADS)

    Spitkovsky, A.

    2009-12-01

    Nonthermal emission from a variety of astrophysical sources, including relativistic jets and supernova remnants, is often attributed to collisionless shocks. These shocks are inferred to accelerate particles and in some cases strongly amplify magnetic fields. How this happens remains to be clarified through both theory and observations. In this talk, I will present a summary of recent progress in kinetic modeling of collisionless shocks using particle-in-cell simulations. I will discuss the internal structure of relativistic and non-relativistic shocks, concentrating on the conditions necessary for particle acceleration. Large-scale shock simulations show ab-initio Fermi acceleration of particles from the thermal pool to power-law distributions and can set constraints on the shock acceleration efficiency and geometry. Other results that will be discussed include the amplification of magnetic fields by accelerated particles through streaming instabilities, and the electron-ion temperature equilibration in collisionless shocks.

  20. Theoretically Palatable Flavor Combinations of Astrophysical Neutrinos.

    PubMed

    Bustamante, Mauricio; Beacom, John F; Winter, Walter

    2015-10-16

    The flavor composition of high-energy astrophysical neutrinos can reveal the physics governing their production, propagation, and interaction. The IceCube Collaboration has published the first experimental determination of the ratio of the flux in each flavor to the total. We present, as a theoretical counterpart, new results for the allowed ranges of flavor ratios at Earth for arbitrary flavor ratios in the sources. Our results will allow IceCube to more quickly identify when their data imply standard physics, a general class of new physics with arbitrary (incoherent) combinations of mass eigenstates, or new physics that goes beyond that, e.g., with terms that dominate the Hamiltonian at high energy.

  1. Electromagnetotoroid Structures in Propulsion and Astrophysics

    NASA Astrophysics Data System (ADS)

    Pinheiro, Mario J.

    2010-01-01

    We introduce the concept of electromagnetotoroid in astrophysics and its role in polar jets, showing that it represents the onset of Abraham's force driven by some external source, such for example, gas fall to star center. We have shown in this paper that the Abraham's force term is the analogue of the Magnus force, and thus represents the formation of vortex structures, of electromagnetic nature, in the fabric of space-time. The proposed concept can be transposed for spaceship propulsion. This study points to prove that major processes for propulsion on Earth (e.g., birds, fishes) and in the Universe (e.g., HH objects) have all the same underlying nature, the formation of vortical structures being at their basis.

  2. Astrophysical Constraints on Planck Scale Dissipative Phenomena

    NASA Astrophysics Data System (ADS)

    Liberati, Stefano; Maccione, Luca

    2014-04-01

    The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles.

  3. Theoretically Palatable Flavor Combinations of Astrophysical Neutrinos

    NASA Astrophysics Data System (ADS)

    Bustamante, Mauricio; Beacom, John F.; Winter, Walter

    2015-10-01

    The flavor composition of high-energy astrophysical neutrinos can reveal the physics governing their production, propagation, and interaction. The IceCube Collaboration has published the first experimental determination of the ratio of the flux in each flavor to the total. We present, as a theoretical counterpart, new results for the allowed ranges of flavor ratios at Earth for arbitrary flavor ratios in the sources. Our results will allow IceCube to more quickly identify when their data imply standard physics, a general class of new physics with arbitrary (incoherent) combinations of mass eigenstates, or new physics that goes beyond that, e.g., with terms that dominate the Hamiltonian at high energy.

  4. New Prospects in High Energy Astrophysics

    SciTech Connect

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  5. Early Formed Astrophysical Objects and Cosmological Antimatter

    NASA Astrophysics Data System (ADS)

    Dolgov, Alexander D.

    Astronomical observations of recent years show that the universe at high redshifts (about ten) is densely populated by early formed objects: bright galaxies, quasars, gamma-bursters, and it contains a lot of metals and dust. Such a rich variety of early formed objects have not been expected in the standard model of formation of astrophysical objects. There is serious tension between the standard theory and the observations. We describe the model which relaxes this tension and nicely fits the data. The model naturally leads to the creation of cosmologically significant antimatter which may be abundant even in the Galaxy. Phenomenological consequences of our scenario and the possibility of distant registration of antimatter are discussed.

  6. Strange quark matter fragmentation in astrophysical events

    NASA Astrophysics Data System (ADS)

    Paulucci, L.; Horvath, J. E.

    2014-06-01

    The conjecture of Bodmer-Witten-Terazawa suggesting a form of quark matter (Strange Quark Matter) as the ground state of hadronic interactions has been studied in laboratory and astrophysical contexts by a large number of authors. If strange stars exist, some violent events involving these compact objects, such as mergers and even their formation process, might eject some strange matter into the interstellar medium that could be detected as a trace signal in the cosmic ray flux. To evaluate this possibility, it is necessary to understand how this matter in bulk would fragment in the form of strangelets (small lumps of strange quark matter in which finite effects become important). We calculate the mass distribution outcome using the statistical multifragmentation model and point out several caveats affecting it. In particular, the possibility that strangelets fragmentation will render a tiny fraction of contamination in the cosmic ray flux is discussed.

  7. Nuclear astrophysics with radioactive ions at FAIR

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  8. Laboratory Astrophysics on High Power Lasers and Pulsed Power Facilities

    SciTech Connect

    Remington, B A

    2002-02-05

    Over the past decade a new genre of laboratory astrophysics has emerged, made possible by the new high energy density (HED) experimental facilities, such as large lasers, z-pinch generators, and high current particle accelerators. (Remington, 1999; 2000; Drake, 1998; Takabe, 2001) On these facilities, macroscopic collections of matter can be created in astrophysically relevant conditions, and its collective properties measured. Examples of processes and issues that can be experimentally addressed include compressible hydrodynamic mixing, strong shock phenomena, radiative shocks, radiation flow, high Mach-number jets, complex opacities, photoionized plasmas, equations of state of highly compressed matter, and relativistic plasmas. These processes are relevant to a wide range of astrophysical phenomena, such as supernovae and supernova remnants, astrophysical jets, radiatively driven molecular clouds, accreting black holes, planetary interiors, and gamma-ray bursts. These phenomena will be discussed in the context of laboratory astrophysics experiments possible on existing and future HED facilities.

  9. The Center for Astrophysical Research in Antarctica

    NASA Astrophysics Data System (ADS)

    Harper, D. A.

    1998-09-01

    The Antarctic Plateau is the coldest, driest place on earth. Instruments deployed there enjoy unique advantages for observations requiring (1) the lowest possible thermal background emission, (2) the high transparency and extreme stablity of the Antarctic atmosphere at wavelengths sensitive to water vapor absorption, or (3) continuous access to the polar sky. The Center for Astrophysical Research in Antarctica (CARA) was formed in 1991 to establish observatory at the South Pole and to pursue a set of research projects which can exploit the unique advantages of the site. The projects are knit together by overlapping scientific questions being approached with instruments sensitive to wavelengths from one micron to one millimeter; by the logistical aspects of running a common observatory at a remote site; and by a common type of experiment which places emphasis on large scale, uniform, high sensitivity observations. Center projects study the spatial structure of the cosmic microwave background, star and planet formation, galaxy structure and evolution, and the physics and chemistry of the interstellar medium. During the past seven years, CARA has established a year-round observatory at the South Pole; confirmed the transparency, darkness, and stability of the Antarctic sky; installed four major telescope facilities, and used them to conduct scientific investigations. Now, with facilities in place, with established methods of operating equipment in the antarctic environment, with a knowledge of the site characteristics in hand, and with a major modernization program underway at the Amundsen-Scott South Pole Station, the potential of the South Pole site for astrophysical research is only beginning to be realized. Future instruments of exceptional resolution and sensitivity are possible and would provide a valuable complement to airborne and space-based telescopes which will be deployed during the first decades of the new century.

  10. Investigating High Field Gravity using Astrophysical Techniques

    SciTech Connect

    Bloom, Elliott D.; /SLAC

    2008-02-01

    The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and

  11. Atomic Data in X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.

    2000-01-01

    With the launches of the Chandra X-ray Observatory (CXO) and the X-ray Multimirror Mission (XMM) and the upcoming launch of the Japanese mission ASTRO-E, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for the atomic data under collisional equilibrium conditions. Analysis of the Chandra X-ray Observatory data, and data from other telescopes taken simultaneously, for these stars is ongoing as part of the Emission Line Project. Goals of the Emission Line Project are: (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. The Astrophysical Plasma Emission Database will be described in some detail, as it is introducing standardization and flexibility into X-ray spectral modeling. Spectral models of X-ray astrophysical plasmas can be generally classified as dominated by either collisional ionization or by X-ray photoionization. While the atomic data needs for spectral models under these two types of ionization are significantly different, there axe overlapping data needs, as I will describe. Early results from the Emission Line Project benchmarks are providing an invaluable starting place, but continuing work to improve the accuracy and completeness of atomic data is needed. Additionally, we consider the possibility that some sources will require that both collisional ionization and photoionization be taken into account, or that time-dependent ionization be considered. Thus plasma spectral models of general use need to be computed over a wide range of physical conditions.

  12. Intermittent Astrophysical Radiation Sources and Terrestrial Life

    NASA Astrophysics Data System (ADS)

    Melott, Adrian

    2013-04-01

    Terrestrial life is exposed to a variety of radiation sources. Astrophysical observations suggest that strong excursions in cosmic ray flux and spectral hardness are expected. Gamma-ray bursts and supernovae are expected to irradiate the atmosphere with keV to GeV photons at irregular intervals. Supernovae will produce large cosmic ray excursions, with time development varying with distance from the event. Large fluxes of keV to MeV protons from the Sun pose a strong threat to electromagnetic technology. The terrestrial record shows cosmogenic isotope excursions which are consistent with major solar proton events, and there are observations of G-stars suggesting that the rate of such events may be much higher than previously assumed. In addition there are unknown and unexplained astronomical transients which may indicate new classes of events. The Sun, supernovae, and gamma-ray bursts are all capable of producing lethal fluences, and some are expected on intervals of 10^8 years or so. The history of life on Earth is filled with mass extinctions at a variety of levels of intensity. Most are not understood. Astrophysical radiation may play a role, particularly from large increases in muon irradiation on the ground, and changes in atmospheric chemistry which deplete ozone, admitting increased solar UVB. UVB is strongly absorbed by DNA and proteins, and breaks the chemical bonds---it is a known carcinogen. High muon fluxes will also be damaging to such molecules, but experiments are needed to pin down the rate. Solar proton events which are not directly dangerous for the biota may nevertheless pose a major threat to modern electromagnetic technology through direct impact on satellites and magnetic induction of large currents in power grids, disabling transformers. We will look at the kind of events that are expected on timescales from human to geological, and their likely consequences.

  13. Texas Symposium on Relativistic Astrophysics, 11th, Austin, TX, December 12-17, 1982, Proceedings

    NASA Technical Reports Server (NTRS)

    Evans, D. S. (Editor)

    1984-01-01

    Various papers on relativistic astrophysics are presented. The general subjects addressed include: particle physics and astrophysics, general relativity, large-scale structure, big bang cosmology, new-generation telescopes, pulsars, supernovae, high-energy astrophysics, and active galaxies.

  14. 76 FR 5405 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --Update from the James Webb...

  15. 75 FR 13597 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA... following topics: --Astrophysics Division Update. --Kepler Data Release Policy. It is imperative that...

  16. 76 FR 14106 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topic: --Astrophysics Division Update. It is imperative that the meeting...

  17. Prospect for Relic Neutrino Searches

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.

    2006-03-01

    Neutrinos from the Big Bang are theoretically expected to be the most abundant particles in the Universe after the photons of the Cosmic Microwave Background (CMB). Unlike the relic photons, relic neutrinos have not so far been observed. The Cosmic Neutrino Background (CνB) is the oldest relic from the Big Bang, produced a few seconds after the Bang itself. Due to their impact in cosmology, relic neutrinos may be revealed indirectly in the near future through cosmological observations. In this talk we concentrate on other proposals, made in the last 30 years, to try to detect the CνB directly, either in laboratory searches (through tiny accelerations they produce on macroscopic targets) or through astrophysical observations (looking for absorption dips in the flux of Ultra-High Energy (UHE) neutrinos, due to the annihilation of these neutrinos with relic neutrinos at the Z-resonance). We concentrate mainly on the first possibility. We show that, given present bounds on neutrino masses, lepton number in the Universe and gravitational clustering of neutrinos, all expected laboratory effects of relic neutrinos are far from observability, awaiting future technological advances to reach the necessary sensitivity. The problem for astrophysical searches is that sources of UHE neutrinos at the extreme energies required may not exist. If they do exist, we could reveal the existence, and possibly the mass spectrum, of relic neutrinos, with detectors of UHE neutrinos (such as ANITA, Auger, EUSO, OWL, RICE and SalSA).

  18. Higher Education Resources from the NASA SMD Astrophysics Forum

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Schultz, Gregory R.; Manning, James; Smith, Denise A.; Bianchi, Luciana; Blair, William P.; Fraknoi, Andrew

    2014-06-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams into a coherent, effective, efficient, and sustainable effort. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO and makes SMD E/PO resources and expertise accessible to the science and education communities. Here we describe how the Astrophysics Forum and the Astrophysics E/PO community have focused efforts to support and engage the higher education community on enhancing awareness of the resources available to them. To ensure Astrophysics higher education efforts are grounded in audience needs, we held informal conversations with instructors of introductory astronomy courses, convened sessions with higher education faculty and E/PO professionals at conferences, and examined existing literature and findings of the SMD Higher Education Working Group. To address the expressed needs, the Astrophysics Forum collaborated with the Astrophysics E/PO community, researchers, and Astronomy 101 instructors to place individual science discoveries and learning resources into context for higher education audiences. Among these resources are two Resource Guides on the topics of cosmology and exoplanets. These fields are ripe with scientific developments that college instructors have told us they find challenging to stay current. Each guide includes a wide variety of sources and is available through the ASP website: http://www.astrosociety.org/education/astronomy-resource-guides/ To complement the resource guides, we are developing a series of slide sets to help Astronomy 101 instructors incorporate new discoveries from individual SMD Astrophysics missions in their classrooms. The “Astro 101 slide sets” are 5-7 slide presentations on a new development or discovery from a NASA SMD Astrophysics mission relevant to an Astronomy 101 topic. We intend for

  19. Digital trigger system for the RED-100 detector based on the unit in VME standard

    NASA Astrophysics Data System (ADS)

    Akimov, D. Yu; Belov, V. A.; Bolozdynya, A. I.; Efremenko, Yu V.; Kaplin, V. A.; Naumov, P. P.

    2016-02-01

    The system for forming a trigger for the RED-100 liquid xenon detector has been developed. The trigger can be generated for all types of events required to calibrate the detector and data acquisition, including events with one ionization electron. The system has an event detection mechanism where each event is assigned with the timestamp and event type. The trigger system is required in the systems searching for rare events to keep only the necessary information from the ADC array. The characteristics and implementation of the trigger system that provides high efficiency operation even at low-energy events have been described.

  20. The CMS electron and photon trigger for the LHC Run 2

    NASA Astrophysics Data System (ADS)

    Dezoort, Gage; Xia, Fan

    2017-01-01

    The CMS experiment implements a sophisticated two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High-Level-Trigger. A new Level-1 trigger architecture with improved performance is now being used to maintain the thresholds that were used in LHC Run I for the more challenging luminosity conditions experienced during Run II. The upgrades to the calorimetry trigger will be described along with performance data. The algorithms for the selection of final states with electrons and photons, both for precision measurements and for searches of new physics beyond the Standard Model, will be described in detail.

  1. 22nd SLAC Summer Institute on Particle Physics: Particle physics, astrophysics and cosmology

    NASA Astrophysics Data System (ADS)

    Chan, J.; Deporcel, L.

    The seven-day school portion of the Institute revolved around the question of dark matter: where is it and what is it? Reviews were given of microlensing searches for baryonic dark matter, of dark matter candidates in the form of neutrinos and exotic particles, and of low-noise detection techniques used to search for the latter. The history of the universe, from the Big Bang to the role of dark matter in the formation of large-scale structure, was also covered. Other lecture series described the astrophysics that might be done with x-ray timing experiments and through the detection of gravitational radiation. As in past years, the lectures each morning were followed by stimulating afternoon discussion sessions, in which students could pursue with the lecturers the topics that most interested them. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment. Highlights from the astrophysical and cosmological arenas included observations of anisotropy in the cosmic microwave background, and of the mysterious gamma-ray bursters. From terrestrial accelerators came tantalizing hints of the top quark and marked improvements in precision electroweak measurements, among many other results. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    SciTech Connect

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  3. Triggered Release from Polymer Capsules

    SciTech Connect

    Esser-Kahn, Aaron P.; Odom, Susan A.; Sottos, Nancy R.; White, Scott R.; Moore, Jeffrey S.

    2011-07-06

    Stimuli-responsive capsules are of interest in drug delivery, fragrance release, food preservation, and self-healing materials. Many methods are used to trigger the release of encapsulated contents. Here we highlight mechanisms for the controlled release of encapsulated cargo that utilize chemical reactions occurring in solid polymeric shell walls. Triggering mechanisms responsible for covalent bond cleavage that result in the release of capsule contents include chemical, biological, light, thermal, magnetic, and electrical stimuli. We present methods for encapsulation and release, triggering methods, and mechanisms and conclude with our opinions on interesting obstacles for chemically induced activation with relevance for controlled release.

  4. Seismology: dynamic triggering of earthquakes.

    PubMed

    Gomberg, Joan; Johnson, Paul

    2005-10-06

    After an earthquake, numerous smaller shocks are triggered over distances comparable to the dimensions of the mainshock fault rupture, although they are rare at larger distances. Here we analyse the scaling of dynamic deformations (the stresses and strains associated with seismic waves) with distance from, and magnitude of, their triggering earthquake, and show that they can cause further earthquakes at any distance if their amplitude exceeds several microstrain, regardless of their frequency content. These triggering requirements are remarkably similar to those measured in the laboratory for inducing dynamic elastic nonlinear behaviour, which suggests that the underlying physics is similar.

  5. The Cherenkov Telescope Array For Very High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2015-08-01

    The field of very high energy (VHE) astrophysics had been revolutionized by the results from ground-based gamma-ray telescopes, including the current imaging atmospheric Cherenkov telescope (IACT) arrays: HESS, MAGIC and VERITAS. A worldwide consortium of scientists from 29 countries has formed to propose the Cherenkov Telescope Array (CTA) that will capitalize on the power of this technique to greatly expand the scientific reach of ground-based gamma-ray telescopes. CTA science will include key topics such as the origin of cosmic rays and cosmic particle acceleration, understanding extreme environments in regions close to neutron stars and black holes, and exploring physics frontiers through, e.g., the search for WIMP dark matter, axion-like particles and Lorentz invariance violation. CTA is envisioned to consist of two large arrays of Cherenkov telescopes, one in the southern hemisphere and one in the north. Each array will contain telescopes of different sizes to provide a balance between cost and array performance over an energy range from below 100 GeV to above 100 TeV. Compared to the existing IACT arrays, CTA will have substantially better angular resolution and energy resolution, will cover a much wider energy range, and will have up to an order of magnitude better sensitivity. CTA will also be operated as an open observatory and high-level CTA data will be placed into the public domain; these aspects will enable broad participation in CTA science from the worldwide scientific community to fully capitalize on CTA's potential. This talk will: 1) review the scientific motivation and capabilities of CTA, 2) provide an overview of the technical design and the status of prototype development, and 3) summarize the current status of the project in terms of its proposed organization and timeline. The plans for access to CTA data and opportunities to propose for CTA observing time will be highlighed.Presented on behalf of the CTA Consortium.

  6. Dark matter search with PICASSO

    NASA Astrophysics Data System (ADS)

    Zacek, V.; Archambault, S.; Behnke, E.; Behnke, J.; Das, M.; Davour, A.; Debris, F.; Dhungana, N.; Farine, J.; Gagnebin, S.; Hinnefeld, H.; Jackson, C. M.; Kamaha, A.; Krauss, C.; Lafrenière, M.; Laurin, M.; Lawson, I.; Lévy, C.; Lessard, L.; Levine, I.; Marlisov, D.; Martin, J.-P.; Kumaratunga, S.; MacDonald, R.; Mitra, P.; Nadeau, P.; Noble, A.; Piro, M.-C.; Plante, A.; Podviyaniuk, R.; Pospisil, S.; Seth, S.; Scallon, O.; Starinski, N.; Stekl, I.; Vander Werf, N.; Wichoski, U.; Xie, T.

    2012-07-01

    PICASSO at SNOLAB searches primarily for spin-dependent WIMP interactions on 19F using the superheated droplet technique. This technique is based on the bubble chamber principle, where phase transitions in superheated liquid droplets can be triggered by WIMP induced nuclear recoils. The physics of the detection process allows a highly efficient suppression of backgrounds from cosmic muons, γ- and β-rays. We will discuss qualitatively recent progress in PICASSO and its sensitivity reach for spin-dependent and spin-independent WIMP searches.

  7. Magnetic Reconnection in Extreme Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri A.

    2011-10-01

    Magnetic reconnection is a fundamental plasma physics process in which ideal-MHD's frozen-in constraints are broken and the magnetic field topology is dramatically re-arranged, which often leads to a violent release of the free magnetic energy. Most of the magnetic reconnection research done to date has been motivated by the applications to systems such as the solar corona, Earth's magnetosphere, and magnetic confinement devices for thermonuclear fusion. These environments have relatively low energy densities and the plasma is adequately described as a mixture of equal numbers of electrons and ions and where the dissipated magnetic energy always stays with the plasma. In contrast, in this paper I would like to introduce a different, new direction of research—reconnection in high energy density radiative plasmas, in which photons play as important a role as electrons and ions; in particular, in which radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. This research is motivated in part by rapid theoretical and experimental advances in High Energy Density Physics, and in part by several important problems in modern high-energy astrophysics. I first discuss some astrophysical examples of high-energy-density reconnection and then identify the key physical processes that distinguish them from traditional reconnection. Among the most important of these processes are: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and radiative resistivity); and, at the most extreme end—QED effects, including pair creation. The most notable among the astrophysical applications are situations involving magnetar-strength fields (1014-1015 G, exceeding the quantum critical field B ∗≃4×1013 G). The most important examples are giant flares in soft gamma repeaters (SGRs) and magnetic models of the central engines and relativistic jets of Gamma Ray Bursts (GRBs). The magnetic energy density in

  8. Power Search.

    ERIC Educational Resources Information Center

    Haskin, David

    1997-01-01

    Compares six leading Web search engines (AltaVista, Excite, HotBot, Infoseek, Lycos, and Northern Light), looking at the breadth of their coverage, accuracy, and ease of use, and finds a clear favorite of the six. Includes tips that can improve search results. (AEF)

  9. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    digitally reconstructed in the databanks! The richness and complexity of data and information available to the astronomers is overwhelming. This has created a major problem as to how astronomers can manage, distribute and analyse this great wealth of data . The Astrophysical Virtual Observatory (AVO) will allow astronomers to overcome the challenges and enable them to "put the Universe online". AVO is supported by the European Commission The AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The European Commission awarded a contract valued at 4 million Euro for the AVO project , starting 15 November 2001. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the 'real' sky would, in comparison, be both costly and take far too long. Towards a Global Virtual Observatory The need for virtual observatories has also been recognised by other astronomical communities. The National Science Foundation in the USA has awarded 10 million Dollar (approx. 11.4 million Euro) for a National Virtual Observatory (NVO). The AVO project team has formed a close alliance with the NVO and both teams have representatives on their respective committees. It is clear to the NVO and AVO communities that there are no intrinsic boundaries to the virtual observatory concept and that all astronomers should be working towards a truly global virtual observatory that will enable new science to be carried out on the wealth of astronomical data held in the growing number of first class international astronomical archives. The AVO involves six partner organisations led by the European Southern Observatory (ESO) in Munich (Germany). The other partner

  10. A Scalable, Reconfigurable, and Dependable Time-Triggered Architecture

    DTIC Science & Technology

    2003-07-01

    Davis and Hilary Putnam . A computing procedure for quantification theory. Journal of the ACM, 7(3):201–215, 1960. 10. Leonardo de Moura, Harald Rueß...resolution(cc) then return unsatisfiable Figure 5. Davis- Putnam procedure. the logical context of the $ -sat triggers backtracking in the search for vari- able...the main loop of the Davis- Putnam procedure found in most Boolean SAT solvers [17]. The algorithm starts with an empty boolean assignment, and

  11. Nuclear Mass Measurement and Evaluation Relevant to Astrophysics

    NASA Astrophysics Data System (ADS)

    Wang, Meng

    Nuclear mass data are crucial input for the astrophysics models. Thanks to the developments of radioactive nuclear beam facilities and novel mass spectrometers, the experimental knowledge of nuclear masses has been continuously expanding to the exotic nuclei far from the stability which play a critical role in astrophysics. The recent progress and future perspective of mass measurement relevant to astrophysics will be discussed. By evaluating all available experimental data from nuclear reactions, radioactive decays and direct mass measurements, the Atomic Mass Evaluation (AME) serve the research community with reliable source for comprehensive information related to the nuclear masses. The next AME version is envisioned to be published at the end of 2016.

  12. Astronomy education and the Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Nemiroff, Robert J.

    2016-01-01

    The Astrophysics Source Code Library (ASCL) is an online registry of source codes used in refereed astrophysics research. It currently lists nearly 1,200 codes and covers all aspects of computational astrophysics. How can this resource be of use to educators and to the graduate students they mentor? The ASCL serves as a discovery tool for codes that can be used for one's own research. Graduate students can also investigate existing codes to see how common astronomical problems are approached numerically in practice, and use these codes as benchmarks for their own solutions to these problems. Further, they can deepen their knowledge of software practices and techniques through examination of others' codes.

  13. Transition regions in solar system and astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1990-01-01

    A brief review is presented of basic particle and field characteristics of plasmas observed within the solar system, especially near transition regions, and their parameter ranges are compared with those inferred for stellar winds and the interstellar medium. Parameter ranges for solar system and astrophysical plasmas are found to have considerable overlap. In addition, astrophysics provides unique, global perspectives of large-scale systems, whereas solar-system space physics provides for direct quantitative testing of physical processes. Astrophysics and solar-system space physics studies thus have complementary and synergistic roles.

  14. Studying the stars on earth: astrophysics on intense lasers

    SciTech Connect

    Remington, B A

    1999-03-10

    Lawrence Livermore National Laboratory in Livermore, California, is now performing significant astrophysics experiments on its huge Nova laser facility, and a similar effort has started at the Gekko laser facility at Osaka University in Japan. Our experiments on the Nova and Gekko lasers so far encourage us that our astrophysics work is already leading to a better understanding of the hydrodynamics of supernovae and astrophysical jets. The ability of large inertial confinement fusion lasers to recreate star-like conditions in the laboratory greatly improves our understanding of the heavens; for the first time in our history, we can study the stars up close on Earth.

  15. Cooperative Research in High Energy Astrophysics between JHU and GSFC

    NASA Technical Reports Server (NTRS)

    Vishniac, Ethan

    2004-01-01

    This grant was awarded to establish and support cooperative research programs between the Center of Astrophysical Sciences (CAS) at the Johns Hopkins University and the Laboratory for High Energy Astrophysics (LHEA) at the NASA/Goddard Space Flight Center (GSFC). The goals o f the program are to facilitate, encourage and initiate: (1) sharing of resources, knowledge and expertise in the general astrophysics, and relevant databases; (2) new collaborations and projects between the two institutions and its scientists, (3) training and mentoring of JHU students and junior researchers by way of connecting them with appropriate researchers and experts at the LHEA.

  16. Recent Nuclear Astrophysics Data Activities in the US

    SciTech Connect

    Bardayan, D.W.; Blackmon, J.C.; Browne, E.; Firestone, R.B.; Hale, G.M.; Hoffman, R.D.; Ma, Z.; McLane, V.; Norman, E.B.; Shu, N.; Smith, D.L.; Smith, M.S.; Van Wormer, L.A.; Woosley, S.E.; Wu, S.-C.

    1999-08-30

    Measurements in nuclear physics laboratories form the empirical foundation for new, realistic, sophisticated theoretical models of a wide variety of astrophysical systems. The predictive power of these models has, in many instances, a strong dependence on the input nuclear data, and more extensive and accurate nuclear data is required for these models than ever before. Progress in astrophysics can be aided by providing scientists with more usable, accurate, and significant amounts of nuclear data in a timely fashion in formats that can be easily incorporated into their models. A number of recent data compilations, evaluations, calculations, and disseminations that address nuclear astrophysics data needs will be described.

  17. The Million-Body Problem: Particle Simulations in Astrophysics

    ScienceCinema

    Rasio, Fred [Northwestern University

    2016-07-12

    Computer simulations using particles play a key role in astrophysics. They are widely used to study problems across the entire range of astrophysical scales, from the dynamics of stars, gaseous nebulae, and galaxies, to the formation of the largest-scale structures in the universe. The 'particles' can be anything from elementary particles to macroscopic fluid elements, entire stars, or even entire galaxies. Using particle simulations as a common thread, this talk will present an overview of computational astrophysics research currently done in our theory group at Northwestern. Topics will include stellar collisions and the gravothermal catastrophe in dense star clusters.

  18. An Android application for receiving notifications of astrophysical transient events

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Bond, I. A.; Sweatman, W. L.

    2014-10-01

    We describe an application written for the Android platform for receiving real-time notifications of astrophysical transient events. The key feature of our application is the use of message oriented middleware as a message broker, with the messages in VOEvent format. We describe the design features and implementation details of our application. In particular, it was necessary to implement support for the Simple Text Oriented Messaging Protocol (STOMP) to allow communication with the broker. Our application is designed around VOEvent alerts from the Microlensing Observations in Astrophysics (MOA) project, but could easily be adapted for other surveys that issue VOEvent notices of astrophysical transients.

  19. Shape: A 3D Modeling Tool for Astrophysics.

    PubMed

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  20. Astrophysical Parameter Estimation for Gaia using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Tiede, C.; Smith, K.; Bailer-Jones, C. A. L.

    2008-08-01

    Gaia is the next astrometric mission from ESA and will measure objects up to a magnitude of about G=20. Depending on the kind of object (which will be determined automatically because Gaia does not hold an input catalogue), the specific astrophysical parameters will be estimated. The General Stellar Parametrizer (GSP-phot) estimates the astrophysical parameters based on low-dispersion spectra and parallax information for single stars. We show the results of machine learning algorithms trained on simulated data and further developments of the core algorithms which improve the accuracy of the estimated astrophysical parameters.