Sample records for astrophysics research program

  1. Cooperative Research in High Energy Astrophysics between JHU and GSFC

    NASA Technical Reports Server (NTRS)

    Vishniac, Ethan

    2004-01-01

    This grant was awarded to establish and support cooperative research programs between the Center of Astrophysical Sciences (CAS) at the Johns Hopkins University and the Laboratory for High Energy Astrophysics (LHEA) at the NASA/Goddard Space Flight Center (GSFC). The goals o f the program are to facilitate, encourage and initiate: (1) sharing of resources, knowledge and expertise in the general astrophysics, and relevant databases; (2) new collaborations and projects between the two institutions and its scientists, (3) training and mentoring of JHU students and junior researchers by way of connecting them with appropriate researchers and experts at the LHEA.

  2. NASA funding opportunities for optical fabrication and testing technology development

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  3. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs

  4. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.

  5. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal

    2015-12-01

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the ability to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d'Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.

  6. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chardonnet, Pascal; LAPTh, Université de Savoie, CNRS, B.P. 110, Annecy-le-Vieux F-74941; ICRANet, Piazza della Repubblica 10, 65122 Pescara

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the abilitymore » to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d’Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.« less

  7. Building a visionary astrophysics program from the ground up

    NASA Astrophysics Data System (ADS)

    Mathews, Geoffrey S.; Barnes, Joshua Edward; Coleman, Paul; Gal, Roy R.; Meech, Karen J.; Mendez, Roberto Hugo; Nassir, Michael A.; Sanders, David B.

    2015-08-01

    The University of Hawaii’s Institute for Astronomy is in the process of implementing a new Bachelor of Science in Astrophysics at UH Manoa. This requires a significant adjustment in the role of the IfA, which has long been at the forefront of modern astronomy in Hawaii and is now broadening its educational mission. The IfA’s history of excellence in research and access to observational resources are expected to draw students from around the nation and the world. These factors have inspired our programmatic focus culminating in a senior year research experience. We expect that the program will produce many undergraduate astrophysics majors, making it an ideal testbed to apply modern theories of learning to the teaching of astrophysics. We have explicitly designed the major around three pillars: physical theory, the application of physics to astrophysical phenomena, and the development of core observational astronomy skills. We describe our cooperative approach to developing a program-level curriculum map of key concepts and skills, as well as descriptors of student success throughout the program. These are central tools for course design, program assessment, and professional development.

  8. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  9. Research in particle and gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1988-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. Each activity is described, followed by a bibliography. The research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the earth and other planets. These investigations were performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  10. Astronomy and astrophysics for the 1980's, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  11. Astronomy and astrophysics for the 1980's, volume 1

    NASA Astrophysics Data System (ADS)

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  12. NASA's Physics of the Cosmos and Cosmic Origins programs manage Strategic Astrophysics Technology (SAT) development

    NASA Astrophysics Data System (ADS)

    Pham, Thai; Thronson, Harley; Seery, Bernard; Ganel, Opher

    2016-07-01

    The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" "How did galaxies, stars, and planets come to be?" and "Are we alone?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos2 (PCOS), Cosmic Origins3 (COR), and Exoplanet Exploration Program4 (ExEP) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the Astrophysics Division's main investment method to mature technologies that will be identified by study teams set up to inform the 2020 Decadal Survey process on several large astrophysics mission concepts.

  13. The astrophysics program at the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J.

    1990-01-01

    Three broad themes characterize the goals of the Astrophysics Division at NASA. These are obtaining an understanding of the origin and evolution of the universe, the fundamental laws of physics, and the birth and evolutionary cycle of galaxies, stars, planets and life. These goals are pursued through contemporaneous observations across the electromagnetic spectrum with high sensitivity and resolution. The strategy to accomplish these goals is fourfold: the establishment of long term space based observatories implemented through the Great Observatories program; attainment of crucial bridging and supporting measurements visa missions of intermediate and small scope conducted within the Explorer, Spacelab, and Space Station Attached Payload Programs; enhancement of scientific access to results of space based research activities through an integrated data system; and development and maintenance of the scientific/technical base for space astrophysics programs through the research and analysis and suborbital programs. The near term activities supporting the first two objectives are discussed.

  14. Using the Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Teuben, P. J.; Berriman, G. B.; DuPrie, K.; Hanisch, R. J.; Mink, J. D.; Nemiroff, R. J.; Shamir, L.; Wallin, J. F.

    2013-01-01

    The Astrophysics Source Code Library (ASCL) is a free on-line registry of source codes that are of interest to astrophysicists; with over 500 codes, it is the largest collection of scientist-written astrophysics programs in existence. All ASCL source codes have been used to generate results published in or submitted to a refereed journal and are available either via a download site or from an identified source. An advisory committee formed in 2011 provides input and guides the development and expansion of the ASCL, and since January 2012, all accepted ASCL entries are indexed by ADS. Though software is increasingly important for the advancement of science in astrophysics, these methods are still often hidden from view or difficult to find. The ASCL (ascl.net/) seeks to improve the transparency and reproducibility of research by making these vital methods discoverable, and to provide recognition and incentive to those who write and release programs useful for astrophysics research. This poster provides a description of the ASCL, an update on recent additions, and the changes in the astrophysics community we are starting to see because of the ASCL.

  15. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  16. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; hide

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  17. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, L.

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  18. Astronomy and astrophysics for the 1980's. Volume 1 - Report of the Astronomy Survey Committee. Volume 2 - Reports of the Panels

    NASA Astrophysics Data System (ADS)

    Recommended priorities for astronomy and astrophysics in the 1980s are considered along with the frontiers of astrophysics, taking into account large-scale structure in the universe, the evolution of galaxies, violent events, the formation of stars and planets, solar and stellar activity, astronomy and the forces of nature, and planets, life, and intelligence. Approved, continuing, and previously recommended programs are related to the Space Telescope and the associated Space Telescope Science Institute, second-generation instrumentation for the Space Telescope, and Gamma Ray Observatory, facilities for the detection of solar neutrinos, and the Shuttle Infrared Telescope Facility. Attention is given to the prerequisites for new research initiatives, new programs, programs for study and development, high-energy astrophysics, radio astronomy, theoretical and laboratory astrophysics, data processing and computational facilities, organization and education, and ultraviolet, optical, and infrared astronomy.

  19. Research studies with the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The IUE research studies comprises 118 separate research programs involving observations, data analysis, and research conducted of the IUE satellite and the NASA Astrophysics Data Program. Herein are presented 92 programs. For each program there is a title, program ID, name of the investigator, statement of work, summary of results, and list of publications.

  20. AstroCom NYC: A Partnership to Support Underrepresented Minorities in Astronomy and Astrophysics Research and Education

    NASA Astrophysics Data System (ADS)

    Ford, K. E. Saavik; Paglione, Timothy; Robbins, Dennis; Mac Low, Mordecai-Mark; Agueros, Marcel A.

    2015-01-01

    AstroCom NYC is an NSF-funded partnership between astronomers at The City University of New York (CUNY), The American Museum of Natural History (AMNH) and Columbia University, designed to increase recruitment and retention of underrepresented minorities in astronomy and astrophysics. I will discuss the major program elements, including: recruitment, student selection, a 'Methods of Scientific Research' (MSR) course, summer research experience and ongoing structured mentoring. I will also discuss how the programs are integrated into each institution and present progress updates from our first two years.

  1. Astrophysical Connections to Collapsing Radiative Shock Experiments

    NASA Astrophysics Data System (ADS)

    Reighard, A. B.; Hansen, J. F.; Bouquet, S.; Koenig, M.

    2005-10-01

    Radiative shocks occur in many high-energy density explosions, but prove difficult to create in laboratory experiments or to fully model with astrophysical codes. Low astrophysical densities combined with powerful explosions provide ideal conditions for producing radiative shocks. Here we describe an experiment significant to astrophysical shocks, which produces a driven, planar radiative shock in low density Xe gas. Including radiation effects precludes scaling experiments directly to astrophysical conditions via Euler equations, as can be done in purely hydrodynamic experiments. We use optical depth considerations to make comparisons between the driven shock in xenon and specific astrophysical phenomena. This planar shock may be subject to thin shell instabilities similar to those affecting the evolution of astrophysical shocks. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.

  2. NASA's Physics of the Cosmos and Cosmic Origins Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Pham, Thai; Seery, Bernard; Ganel, Opher

    2016-01-01

    The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the Astrophysics Division's main investment method to mature technologies that will be identified by study teams set up to inform the 2020 Decadal Survey process on several large astrophysics mission concepts.

  3. Policy opportunities

    NASA Technical Reports Server (NTRS)

    Mccray, Richard; Ostriker, Jeremiah P.; Acton, Loren W.; Bahcall, Neta A.; Bless, Robert C.; Brown, Robert A.; Burbidge, Geoffrey; Burke, Bernard F.; Clark, George W.; Cordova, France A.

    1991-01-01

    Recommendations are given regarding National Science Foundation (NSF) astronomy programs and the NASA Space Astrophysics program. The role of ground based astronomy is reviewed. The role of National Optical Astronomy Observatories (NOAO) in ground-based night-time astronomical research is discussed. An enhanced Explored Program, costs and management of small and moderate space programs, the role of astrophysics within NASA's space exploration initiative, suborbital and airborne astronomical research, the problems of the Hubble Space Telescope, and astronomy education are discussed. Also covered are policy issues related to the role of science advisory committees, international cooperation and competition, archiving and distribution of astronomical data, and multi-wavelength observations of variable sources.

  4. Large-Scale Astrophysical Visualization on Smartphones

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  5. Cornell Astronomy REU: Casting a Wide Net to Increase Access to Research Opportunities

    NASA Astrophysics Data System (ADS)

    Fernandez de Castro, Patricia; Haynes, Martha P.

    2018-01-01

    We describe a Research Experience for Undergraduates program in astrophysics and planetary science hosted in a major university setting that is geared especially but not exclusively to students who matriculate at smaller colleges and universities without major astronomy research programs, have not previously had off-campus research experiences and/or have non-traditional academic backgrounds.Individual research projects which students undertake with faculty mentors and their research groups are the keystone of the program. Built around this central activity are a set of other components that aim to expose students to the broad areas of astrophysical and planetary science research and to foster their appreciation of the research enterprise and their possible place within it. We describe the professional development activities that are offered to students, including lectures and workshops on a broad range of topics in astrophysics and planetary science, research group meetings, tutorials on research and scientific presentation skills, participation in outreach, education on the graduate school experience and application process, and discussions of the scientific enterprise, career paths and options in astronomy and related fields as well as the role REU group meetings with the program director (which complement meetings students attend within the context of their research group) play in developing students’ scientific competencies and pre-professional development. Also described are program elements that aim to make the program accessible to all students, including older students, those in relationships or with children as well as cohort building. Finally, we discuss lessons learned on how recruiting on merit and suitability to the research projects on offer, with a strong emphasis on smaller colleges and universities without major astronomy research programs can work towards a broader and more inclusive recruitment.This work was supported by NSF award AST-1156780.

  6. IGPP-LLNL 1998 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J; Cook, K H; Tweed, J

    1999-11-19

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics,more » which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in tectonics, geochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Kem Cook, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics Directorate's astrophysics efforts. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. Additional information regarding IGPP-LLNL projects and people may be found at http://wwwigpp.llnl.gov/. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $30,000. Funds are used for a variety of purposes, such as salary support for UC graduate students, postdoctoral fellows, and faculty; and costs for experimental facilities. A statistical overview of IGPP-LLNL's UCRP (colloquially known as the mini-grant program) is presented in Figures 1 and 2. Figure 1 shows the distribution of UCRP awards among the UC campuses, by total amount awarded and by number of proposals funded. Figure 2 shows the distribution of awards by center.« less

  7. The Distance-learning Part-time Masters and Doctoral Internet Programs in Astronomy at James Cook University, Australia

    NASA Astrophysics Data System (ADS)

    White, G. L.; Hons, A.; Orchiston, W.; Blank, D.

    2006-08-01

    The Centre for Astronomy at James Cook University (Townsville, Australia) specializes in the delivery of postgraduate distance-learning programs. In this paper, we report on the development of Internet-based Masters and Doctoral level degrees in Astrophysics, History of Astronomy and Astronomy Education that are offered by JCU. The Doctor of Astronomy (D.Astro.) degree is the world's only professional doctoral level program that is delivered over the Internet, and students can specialise in the areas of Astronomy Education, History of Astronomy or Astrophysics. An Internet-delivered Ph.D. is also available. There are two Masters level programs: the Master of Astronomy Education (M.Astro.Ed.), and the Master of Astronomy (M.Astro.), which incorporates a major in Astrophysics or History of Astronomy. There are also Internet-delivered Graduate Certificates and Graduate Diplomas in Astronomy. Instruments are being developed on-campus to support these programs (partially in collaboration with the Global Hands-On-Universe Consortium), however, most of the astrophysics research is undertaken using national and international facilities.

  8. User needs as a basis for advanced technology. [U.S. civil space program

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Reck, Gregory M.

    1992-01-01

    The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.

  9. Research in particle and gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1988-01-01

    This research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the Earth and other planets. The emphasis was on precice measurements with high resolution in charge, mass and energy. These investigations were carried out by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  10. Improved Simulations of Astrophysical Plasmas: Computation of New Atomic Data

    NASA Technical Reports Server (NTRS)

    Gorczyca, Thomas W.; Korista, Kirk T.

    2005-01-01

    Our research program is designed to carry out state-of-the-art atomic physics calculations crucial to advancing our understanding of fundamental astrophysical problems. We redress the present inadequacies in the atomic data base along two important areas: dielectronic recombination and inner-shell photoionization and multiple electron ejection/Auger fluorescence therefrom. All of these data are disseminated to the astrophysical community in the proper format for implementation in spectral simulation code.

  11. Applied Information Systems Research Program Workshop

    NASA Technical Reports Server (NTRS)

    Bredekamp, Joe

    1991-01-01

    Viewgraphs on Applied Information Systems Research Program Workshop are presented. Topics covered include: the Earth Observing System Data and Information System; the planetary data system; Astrophysics Data System project review; OAET Computer Science and Data Systems Programs; the Center of Excellence in Space Data and Information Sciences; and CASIS background.

  12. Physics of the Cosmos Program Annual Technology Report

    NASA Technical Reports Server (NTRS)

    Pham, Bruce Thai; Cardiff, Ann H.

    2015-01-01

    What's in this Report? What's New? This fifth Program Annual Technology Report (PATR) summarizes the Programs technology development activities for fiscal year (FY) 2015. The PATR serves four purposes.1. Summarize the technology gaps identified by the astrophysics community;2. Present the results of this years technology gap prioritization by the PCOS Technology Management Board (TMB);3. Report on newly funded PCOS Strategic Astrophysics Technology (SAT) projects; and4. Detail progress, current status, and activities planned for the coming year for all technologies supported by PCOS Supporting Research and Technology (SRT) funding in FY 2015. .

  13. IGPP 1999-2000 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J; Cook, K; Hitchcock, B

    2003-01-27

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and related fields. The Institute now has branches at UC campuses in Irvine, Los Angeles, San Diego, Santa Cruz and Riverside, and at Los Alamos National Laboratory and Lawrence Livermore National Laboratory. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields ofmore » physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important inter-institutional consortia in the earth and planetary sciences. Each of the seven branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in tectonics, geochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL was directed by Charles Alcock during this period and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Kem Cook, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics Directorate's astrophysics efforts. At the end of the period covered by this report, Alcock left for the University of Pennsylvania. Cook became Acting Director of IGPP, the Physics Direcorate merged with portions of the old Lasers Direcorate to become Physics and Advanced Technologies. Energy Programs and Earth and Environmental Sciences Directorate became Energy and Environment Sciences Directorate. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. Additional information regarding IGPP-LLNL projects and people may be found at http://wwwigpp. llnl.gov/. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $30,000. Funds are used for a variety of purposes, such as salary support for UC graduate students, postdoctoral fellows; and costs for experimental facilities. A statistical overview of IGPP-LLNL's UCRP (colloquially known as the mini-grant program) is presented in Figures 1 and 2. Figure 1 shows the distribution of UCRP awards among the UC campuses, by total amount awarded and by number of proposals funded. Figure 2 shows the distribution of awards by center. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about 8 full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions). To focus attention on areas of topical interest in the geosciences and astrophysics, IGPP--LLNL hosts conferences and workshops and also organizes seminars in astrophysics and geosciences.« less

  14. NITARP: Bridging the Gap Between the Traditional Science Classroom and Authentic Research

    NASA Astrophysics Data System (ADS)

    Stalnaker, Olivia K.; Evans, Sam; Rutherford, Thomas; Taylor, John; Rebull, Luisa

    2018-01-01

    In this poster, the differences between what occurs in the traditional secondary science classroom and what happens in the actual research world is examined. Secondary classroom teachers generally have limited, if any, research experience beyond what is presented through their undergraduate college lab coursework. A disparity exists between classroom laboratory work and professional research. Opportunities like NITARP provide research elements that bridge this gap. NITARP teams are in a unique situation, joining a small team working alongside Caltech researchers on cutting edge investigations in astrophysics. In this poster it is shown how the NITARP program provides key components and experiences to expand the skill sets that teachers bring to their classrooms, bridging the gap between the typical secondary classroom and the world of the professional researcher. The NASA/IPAC program immerses participating teachers into a year-long training experience via online and face-to-face learning that translates into enhanced instruction at the secondary level. This work was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  15. Research in particles and fields

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1987-01-01

    Discussed are the research activities in Cosmic Rays, Gamma Rays, and Astrophysical Plasmas supported under NASA Grant NGR 05-002-160. The report is divided into sections which describe the activities, followed by a bibliography. This research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the Earth and other planets. These investigations are carried out by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  16. Research in particles and fields

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1985-01-01

    Research activities in Cosmic Rays, Gamma Rays, and Astrophysical Plasmas supported under NASA Grant NGR 05-002-160 are discussed. The report is divided into sections which describe the activities, followed by a bibliography. This group's research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the Earth and other planets. These investigations are carried out by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  17. Pushing to the Edge: Rutgers Astrophysics Institute Motivates Talented High School Students

    ERIC Educational Resources Information Center

    Etkina, Eugenia; Matilsky, Terry; Lawrence, Michael

    2003-01-01

    The Rutgers Astrophysics Institute is a program in which gifted high school students learn about contemporary science and its methods, and conduct independent authentic research using real-time data. The students use the processes of science to acquire knowledge, and serve as cognitive apprentices to an expert astrophysicist. A variety of…

  18. Distributed Access View Integrated Database (DAVID) system

    NASA Technical Reports Server (NTRS)

    Jacobs, Barry E.

    1991-01-01

    The Distributed Access View Integrated Database (DAVID) System, which was adopted by the Astrophysics Division for their Astrophysics Data System, is a solution to the system heterogeneity problem. The heterogeneous components of the Astrophysics problem is outlined. The Library and Library Consortium levels of the DAVID approach are described. The 'books' and 'kits' level is discussed. The Universal Object Typer Management System level is described. The relation of the DAVID project with the Small Business Innovative Research (SBIR) program is explained.

  19. Flight opportunities for science teacher enrichment

    NASA Technical Reports Server (NTRS)

    Devore, Edna; Gillespie, Carlton, Jr.; Hull, Garth; Koch, David

    1995-01-01

    NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program will expand nation-wide to serve fifty teachers per year on board the Kuiper Airborne Observatory. In the future, the Stratospheric Observatory for Infrared Astronomy (SOFIA) will bring more than one-hundred teachers per year on board for astronomical research mission. FOSTER is supported by a grant to the SETI Institute from the NASA Astrophysics Division, NAGW-3291.

  20. NASA Astrophysics Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Strategic Technology Development Program

    NASA Astrophysics Data System (ADS)

    Pham, Thai; Seery, Bernard D.

    2015-01-01

    The COR and PCOS Program Offices (PO) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions.The PO is guided by the National Research Council's 'New Worlds, New Horizons in Astronomy and Astrophysics' Decadal Survey report, and NASA's Astrophysics Implementation Plan. Strategic goals include dark energy; gravitational waves; X-ray observatories, e.g., US participation in ATHENA; Inflation probe; and a large UV/Visible telescope.To date, 51 COR and 65 PCOS SAT proposals have been received, of which 11 COR and 18 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2 that allowed measurement of B-mode polarization in the CMB signal, a possible signature of Inflation; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects. These include five newly selected projects, kicking off in FY 2015.For more information, visit the COR Program website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  1. What can the programming language Rust do for astrophysics?

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, Sergi; Bolmont, Emeline

    2017-06-01

    The astrophysics community uses different tools for computational tasks such as complex systems simulations, radiative transfer calculations or big data. Programming languages like Fortran, C or C++ are commonly present in these tools and, generally, the language choice was made based on the need for performance. However, this comes at a cost: safety. For instance, a common source of error is the access to invalid memory regions, which produces random execution behaviors and affects the scientific interpretation of the results. In 2015, Mozilla Research released the first stable version of a new programming language named Rust. Many features make this new language attractive for the scientific community, it is open source and it guarantees memory safety while offering zero-cost abstraction. We explore the advantages and drawbacks of Rust for astrophysics by re-implementing the fundamental parts of Mercury-T, a Fortran code that simulates the dynamical and tidal evolution of multi-planet systems.

  2. 2011 Einstein Fellows Chosen

    NASA Astrophysics Data System (ADS)

    2011-03-01

    ASA has announced the selection of the 2011 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2011. The new Einstein Fellows and their host institutions are listed below: * Akos Bogdan (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Samuel Gralla (University of Maryland, College Park, Md.) * Philip Hopkins (University of California at Berkeley) * Matthew Kunz (Princeton University, Princeton, N.J.) * Laura Lopez (Massachusetts Institute of Technology, Cambridge, Mass.) * Amy Reines (National Radio Astronomy Observatory, Charlottesville, Virg.) * Rubens Reis (University of Michigan, Ann Arbor) * Ken Shen (Lawrence Berkeley National Laboratory, Berkeley, Calif.) * Jennifer Siegal-Gaskins (California Institute of Technology, Pasadena) * Lorenzo Sironi (Harvard University, Cambridge, Mass.) NASA has two other astrophysics theme-based fellowship programs: the Sagan Fellowship Program, which supports research into exoplanet exploration, and the Hubble Fellowship Program, which supports research into cosmic origins. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/

  3. Overview of the SAMSI year-long program on Statistical, Mathematical and Computational Methods for Astronomy

    NASA Astrophysics Data System (ADS)

    Jogesh Babu, G.

    2017-01-01

    A year-long research (Aug 2016- May 2017) program on `Statistical, Mathematical and Computational Methods for Astronomy (ASTRO)’ is well under way at Statistical and Applied Mathematical Sciences Institute (SAMSI), a National Science Foundation research institute in Research Triangle Park, NC. This program has brought together astronomers, computer scientists, applied mathematicians and statisticians. The main aims of this program are: to foster cross-disciplinary activities; to accelerate the adoption of modern statistical and mathematical tools into modern astronomy; and to develop new tools needed for important astronomical research problems. The program provides multiple avenues for cross-disciplinary interactions, including several workshops, long-term visitors, and regular teleconferences, so participants can continue collaborations, even if they can only spend limited time in residence at SAMSI. The main program is organized around five working groups:i) Uncertainty Quantification and Astrophysical Emulationii) Synoptic Time Domain Surveysiii) Multivariate and Irregularly Sampled Time Seriesiv) Astrophysical Populationsv) Statistics, computation, and modeling in cosmology.A brief description of each of the work under way by these groups will be given. Overlaps among various working groups will also be highlighted. How the wider astronomy community can both participate and benefit from the activities, will be briefly mentioned.

  4. The Airborne Astronomy Ambassadors (AAA) Program and NASA Astrophysics Connections

    NASA Astrophysics Data System (ADS)

    Backman, Dana Edward; Clark, Coral; Harman, Pamela

    2018-01-01

    The NASA Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content delivery, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong’s B703 science research aircraft facility in Palmdale, California, including interactions with NASA astrophysics & planetary science Subject Matter Experts (SMEs) during science flights on SOFIA, and (3) continuing post-flight opportunities for teacher & student connections with SMEs.

  5. NASA's Physics of the Cosmos and Cosmic Origins technology development programs

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Pham, Thai

    2014-07-01

    NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices, established in 2011, reside at the NASA Goddard Space Flight Center (GSFC). The offices serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the programs' technology development activities and technology investment portfolio, funded by NASA's Strategic Astrophysics Technology (SAT) program. We currently fund 19 technology advancements to enable future PCOS and COR missions to help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The programs' goal is to promote and support technology development needed to enable missions envisioned by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) Decadal Survey report [1] and the Astrophysics Implementation Plan (AIP) [2]. These include technology development for dark energy, gravitational waves, X-ray and inflation probe science, and a 4m-class UV/optical telescope to conduct imaging and spectroscopy studies, as a post-Hubble observatory with significantly improved sensitivity and capability.

  6. NASA's Physics of the Cosmos and Cosmic Origins Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Pham, Thai

    2014-01-01

    NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices, established in 2011, reside at the NASA Goddard Space Flight Center (GSFC). The offices serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the programs' technology development activities and technology investment portfolio, funded by NASA's Strategic Astrophysics Technology (SAT) program. We currently fund 19 technology advancements to enable future PCOS and COR missions to help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The programs' goal is to promote and support technology development needed to enable missions envisioned by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) Decadal Survey report [1] and the Astrophysics Implementation Plan (AIP) [2]. These include technology development for dark energy, gravitational waves, X-ray and inflation probe science, and a 4m-class UV/optical telescope to conduct imaging and spectroscopy studies, as a post-Hubble observatory with significantly improved sensitivity and capability.

  7. NASA Astrophysics EPO Community: Increasing and Sustaining Youth and Public Engagement in STEM

    NASA Astrophysics Data System (ADS)

    Lawton, B.; Smith, D. A.; Bartolone, L.; Meinke, B. K.; Schultz, G.; Manning, J.; NASA Astrophysics EPO Community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enable youth to engage directly in doing Science, Technology, Engineering, and Mathematics (STEM) inside and outside of school. The NASA SMD Astrophysics EPO community has proven expertise in providing student opportunities that reinforce research skills; exhibits, multimedia shows, and visualizations that inspire and engage; professional development for informal educators; and partnerships that provide local, regional, and national reach. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum support youth and public engagement in STEM in these ways, including associated metrics and evaluation findings.

  8. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  9. NASA Astrophysics Funds Strategic Technology Development

    NASA Astrophysics Data System (ADS)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects.

  10. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  11. Low-energy nuclear astrophysics studies at the Multicharged Ion Research Facility

    NASA Astrophysics Data System (ADS)

    Febbraro, Michael; Pain, Steven; Bannister, Mark; Deboer, Richard; Chipps, Kelly; Havener, Charles; Peters, Willan; Ummel, Chad; Smith, Michael; Temanson, Eli; Toomey, Rebecca; Walter, David

    2017-09-01

    As low-energy nuclear astrophysics progresses toward measuring reaction cross sections in the stellar burning regimes, a worldwide effort is underway to continue these measurements at underground laboratories to achieve the requisite ultra-low-background environment. These facilities are crucial for providing the required low-background environments to perform such measurements of astrophysical importance. While advances have been made in the use of accelerators underground, of equal importance is the detectors, high-current targets, and techniques required to perform such measurements. With these goals in mind, a newly established astrophysics beamline has been built at the Multicharged Ion Research Facility (MIRF) located at Oak Ridge National Laboratory. The unique capabilities of MIRF will be demonstrated through two recent low-energy above-ground measurements of the dominant s-process neutron source 13C(α,n)16O and associated beam-induced background source 13C(d,n)14N. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U.S. DOE.

  12. Research in cosmic and gamma ray astrophysics: Cosmic physics portion

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen

    1993-01-01

    Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.

  13. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  14. The IceCube MasterClass: providing high school students an authentic research experience

    NASA Astrophysics Data System (ADS)

    Bravo Gallart, Silvia; Bechtol, Ellen; Schultz, David; Madsen, Megan; Demerit, Jean; IceCube Collaboration

    2017-01-01

    In May 2014, the first one-day long IceCube Masterclass for high school students was offered. The program was inspired by the masterclasses started in 2005 by the International Particle Physics Outreach Group and supported in the U.S. by QuarkNet. Participation in the IceCube masterclasses has grown each year, with a total of over 500 students in three U.S states and three European countries after three editions. In a masterclass, students join an IceCube research team to learn about astrophysics and replicate the results of a published paper, such as the discovery of astrophysical neutrinos or a measurement of the cosmic ray flux. We will discuss both the scientific and educational goals of the program as well as the organizational challenges. Data from the program evaluation will be used to support the need of educational activities based on actual research as a powerful approach for motivating more students to pursue STEM college programs, making science and scientists more approachable to teenagers, and helping students envision a career in science.

  15. Flight Opportunities for Science Teacher EnRichment

    NASA Astrophysics Data System (ADS)

    Koch, D.; Devore, E.; Gillespie, C., Jr.; Hull, G.

    1994-12-01

    The Kuiper Airborne Observatory (KAO) is NASA's unique stratospheric infrared observatory. Science on board the KAO involves many disciplines and technologies. NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program is designed to nation-wide to serve fifty teachers per year on board the KAO. FOSTER is a pilot program for K-12 educational outreach for NASA's future Stratospheric Observatory for Infrared Astronomy (SOFIA) which will directly involve more than one-hundred teachers each year in airborne astronomical research missions. FOSTER aims to enrich precollege teachers' experiences and understanding of science, mathematics and technology. Teachers meet at NASA Ames Research Center for summer workshops on astronomy and contemporary astrophysics, and to prepare for flights. Further, teachers receive Internet training and support to create a FOSTER teacher network across the country, and to sustain communication with the airborne astronomy community. Each research flight of the KAO is a microcosm of the scientific method. Flying teachers obtain first-hand, real-time experiences of the scientific process: its excitement, hardships, challenges, discoveries, teamwork, and educational value. The FOSTER experience gives teachers pride and a sense of special achievement. They bring the excitement and adventure of doing first-class science to their students and communities. Flight Opportunities for Science Teacher EnRichment is funded by a NASA's Astrophysics Division grant, NAGW 3291, and supported by the SETI Institute and NASA Ames Research Center.

  16. The research program of the Liquid Scintillation Detector (LSD) in the Mont Blanc Laboratory

    NASA Technical Reports Server (NTRS)

    Dadykin, V. L.; Yakushev, V. F.; Korchagin, P. V.; Korchagin, V. B.; Malgin, A. S.; Ryassny, F. G.; Ryazhskaya, O. G.; Talochkin, V. P.; Zatsepin, G. T.; Badino, G.

    1985-01-01

    A massive (90 tons) liquid scintillation detector (LSD) has been running since October 1984 in the Mont Blanc Laboratory at a depth of 5,200 hg/sq cm of standard rock. The research program of the experiment covers a variety of topics in particle physics and astrophysics. The performance of the detector, the main fields of research are presented and the preliminary results are discussed.

  17. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1982-01-01

    Progress in the development and operations of the Deep Space Network is reported. Developments in Earth-based radio technology as applied to other research programs are also reported. These programs include geodynamics, astrophysics, and radio searching for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  18. The Telecommunications and Data Acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported including develoments in Earth-based radio technology as applied to other research programs. These programs are: geodynamics, astrophysics, and the radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  19. Physics through the 1990s: Plasmas and fluids

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

  20. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Deep Space Network operations, engineering, and implementation are reported. Developments in Earth-based radiotechnology as applied to other research programs in the fields of Geodynamics, Astrophysics, and programs related to radio searchers (instrumentation and methods) in extraterrestrial areas in the microwave region of the electromagnetic spectrum are also presented.

  1. Astrotech 21: A technology program for future astrophysics missions

    NASA Technical Reports Server (NTRS)

    Cutts, James A.; Newton, George P.

    1991-01-01

    The Astrotech 21 technology program is being formulated to enable a program of advanced astrophysical observatories in the first decade of the 21st century. This paper describes the objectives of Astrotech 21 and the process that NASA is using to plan and implement it. It also describes the future astrophysical mission concepts that have been defined for the twenty-first century and discusses some of the requirements that they will impose on information systems for space astrophysics.

  2. Astrophysics for Older adults in Chicago.

    NASA Astrophysics Data System (ADS)

    Grin, Daniel; Landsberg, Randall H.; Flude, Karen

    2017-01-01

    Gerontology research continues to show that the adage "Use it or Lose it" is a clinical fact when it comes to cognitive engagement post-retirement. Here, I'll discuss a new program developed at the Kavli Institute for Cosmological Physics, bringing classes on astrophysics to older adults throughout the city, at retirement homes, at senior center, and at public libraries, bookended by an engaging trip to the Adler Planetarium. In my presentation, I'll present the gerontological and policy motivations for this program, the presenter training techniques, our partner collaboration strategy, and the results of our effort, which engaged hundreds of older adults throughout Chicago from a variety of socioeconomic strata.

  3. Sitting with the scientists: a collaborative approach to STEM content development

    NASA Astrophysics Data System (ADS)

    Mattson, Barbara

    2018-01-01

    For over two decades, the Goddard Astrophysics Education Team has been an integrated part of NASA Goddard’s Astrophysics Science Division. As part of NASA’s largest astrophysics organization, our team is in a unique position to collaborate with the division’s scientists, engineers, and technical personnel - our subject matter experts (SMEs) - in a variety of capacities. We often seek input from our SMEs to help implement our education programs - to ensure our programs’ scientific accuracy, to help us employ cutting-edge topics, and to promote authentic science processes. At the same time, we act as education experts for our SMEs to help them implement their ideas. We see this as a true partnership, with many opportunities for SME participation. Our current STEM Activation programs, Afterschool Universe and NASA Family Science Night, were created with strong involvement from division scientists, and our latest sessions on galaxies were developed in collaboration with an active researcher. In addition to our own programming, we have been tasked with providing NASA astrophysics content and expertise to the Goddard Office of Education, the Heliophysics Education Consortium (and their cross-division efforts), and the NASA Science Mission Directorate STEM Activation Community. This talk will provide an overview of our team’s current efforts and the ways in which we partner with our division’s SMEs.

  4. NASA's Initiative to Develop Education through Astronomy (IDEA)

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-04-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitrnent by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) — a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  5. NASA's initiative to develop education through astronomy (IDEA)

    NASA Technical Reports Server (NTRS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-01-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitment by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) - a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  6. An Account of Stellar Spectroscopy and John S. Plaskett’s Leadership within Early 20th-Century Astrophysics in Canada

    NASA Astrophysics Data System (ADS)

    Ihor Oakes, Andrew

    2017-01-01

    From the perspective of the science of astronomy, the interpretation of the light spectrum was a fundamental development in the chemical analysis of celestial starlight. The breakthrough discovery with the application of spectroscopy in 1859, inaugurated a new period in astronomy that evolved into astrophysics. It launched a continuing episode of new astronomy that was later embraced in early 20th-century Canada where it was spearheaded by Canadian physicist and scientist, John S. Plaskett (1865-1941). The research work of John Plaskett at the Dominion Observatory in Ottawa, Ontario, from 1903 and, later, the Dominion Astrophysical Observatory in Victoria, British Columbia, from 1918, brought international recognition to Canada’s early efforts in astrophysics. Plaskett’s determination and personal boldness led to the establishment of a small cadre of Canadian astronomers who worked on their astrophysical research programs under Plaskett as their supervisor. Despite its small population at the time and a relatively infinitesimal number of professional astronomers, Canada did become recognized for its early spectrographic work in astrophysics, which was due to developing a professional status equal to its international colleagues. Plaskett improved the techniques of celestial spectroscopy during his scientific work at the Dominion Observatory and, again later, at its newly-built sister facility, the Dominion Astrophysical Observatory. Historically, Plaskett found himself to be the right person, in the right place, at the right time, and with the right temperament during the review period spanning 1903 to 1935.

  7. AstroCom NYC: A City Partnership for the Next Generation of Astrophysicists

    NASA Astrophysics Data System (ADS)

    Paglione, Timothy; Ford, K. E. Saavik; Robbins, Dennis; Mac Low, Mordecai; Agüeros, Marcel; Anchordoqui, Luis; Acquaviva, Viviana; Bellovary, Jillian; Cruz, Kelle; Liu, Charles; Maller, Ari; McKernan, Barry; Minor, Quinn; O'Dowd, Matthew; Rice, Emily; Sheffield, Allyson

    2018-01-01

    AstroCom NYC is an undergraduate mentoring program designed to improve urban minority student access to opportunities in astrophysical research by greatly enhancing partnerships between research astronomers in New York City (City University of New York – an MSI, American Museum of Natural History, and Columbia). AstroCom NYC also partnered this past year with the Flatiron Institute Center for Computational Astrophysics to provide new and exciting midtown opportunities for students, and foster an expanding mentor network through the city. We provide centralized, personalized mentoring as well as financial and academic support, to CUNY undergraduates throughout their studies, plus the resources and opportunities to further CUNY faculty research with students. The goal is that students’ residency in the unique research environments at AMNH and the CCA helps them build a sense of belonging in the field, and readies and inspires them for graduate study. We welcomed our fifth and largest cohort last year, and had some of our first graduates accepted to grad school and bridge programs.

  8. TESS SpaceX Fairing Halves Lift to Vertical; Payload Encapsulation

    NASA Image and Video Library

    2018-04-08

    Technicians prepare NASA's Transiting Exoplanet Survey Satellite (TESS) for encapsulation in the SpaceX payload fairing inside the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  9. TESS Spacecraft Arrival

    NASA Image and Video Library

    2018-02-12

    NASA's Transiting Exoplanet Survey Satellite (TESS), inside its shipping container, is moved into Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  10. TESS Spacecraft Solar Panel Array Deployment Testing

    NASA Image and Video Library

    2018-02-21

    Inside the Payload Hazardous Servicing Facility at the NASA's Kennedy Space Center in Florida, both solar panels are deployed on the agency's Transiting Exoplanet Survey Satellite (TESS). The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  11. TESS Spacecraft Arrival

    NASA Image and Video Library

    2018-02-12

    The shipping container with NASA's Transiting Exoplanet Survey Satellite (TESS) inside, is moved into the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  12. KSC-20180409-PH_KLS01_0043

    NASA Image and Video Library

    2018-04-09

    Technicians prepare NASA's Transiting Exoplanet Survey Satellite (TESS) for encapsulation in the SpaceX payload fairing inside the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  13. KSC-20180409-PH_KLS01_0004

    NASA Image and Video Library

    2018-04-09

    The SpaceX payload fairing that will surround and encapsulate NASA's Transiting Exoplanet Survey Satellite (TESS) is inside the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  14. KSC-20180409-PH_KLS01_0107

    NASA Image and Video Library

    2018-04-09

    Technicians prepare NASA's Transiting Exoplanet Survey Satellite (TESS) for encapsulation in the SpaceX payload fairing inside the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  15. TESS Spacecraft Uncrating

    NASA Image and Video Library

    2018-02-12

    The shipping container with NASA's Transiting Exoplanet Survey Satellite (TESS) arrives inside the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. Inside the PHSF, TESS will be unpacked, lifted up and moved to a test stand for processing. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  16. TESS Spacecraft Solar Panel Array Deployment Testing

    NASA Image and Video Library

    2018-02-21

    Inside the Payload Hazardous Servicing Facility at the NASA's Kennedy Space Center in Florida, the first of two solar panels is being deployed on the agency's Transiting Exoplanet Survey Satellite (TESS). The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  17. TESS Spacecraft Arrival

    NASA Image and Video Library

    2018-02-12

    NASA's Transiting Exoplanet Survey Satellite (TESS), inside its shipping container, is backed in on flatbed truck to the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  18. TESS Spacecraft Solar Panel Array Deployment Testing

    NASA Image and Video Library

    2018-02-21

    Inside the Payload Hazardous Servicing Facility at the NASA's Kennedy Space Center in Florida, one of the solar panels is being deployed on the agency's Transiting Exoplanet Survey Satellite (TESS). Technicians are preparing to deploy the second solar array. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  19. SpaceX TESS Fairing Move

    NASA Image and Video Library

    2018-04-03

    The payload fairing for NASA's Transiting Exoplanet Survey Satellite (TESS) is moved inside the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. Inside the facility, TESS will be encapsulated in the payload fairing. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  20. TESS Spacecraft Solar Panel Array Deployment Testing

    NASA Image and Video Library

    2018-02-21

    Preparations are underway for solar panel deployment on NASA's Transiting Exoplanet Survey Satellite (TESS) inside the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  1. KSC-20180409-PH_KLS01_0073

    NASA Image and Video Library

    2018-04-09

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, NASA's Transiting Exoplanet Survey Satellite (TESS) is being prepared for encapsulation in the SpaceX payload fairing. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  2. TESS Solar Array Deploy

    NASA Image and Video Library

    2018-02-21

    Inside the Payload Hazardous Servicing Facility at the NASA's Kennedy Space Center in Florida, technicians test the solar array deploy panels on the agency's Transiting Exoplanet Survey Satellite (TESS). The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  3. TESS Spacecraft Arrival

    NASA Image and Video Library

    2018-02-12

    NASA's Transiting Exoplanet Survey Satellite (TESS) container is pressure washed at the Multi-Payload Processing Facility at the agency's Kennedy Space Center in Florida. Tess will be moved to the Payload Hazardous Servicing Facility to be processed and prepared for flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  4. SpaceX TESS Fairing Move

    NASA Image and Video Library

    2018-04-03

    The payload fairing for NASA's Transiting Exoplanet Survey Satellite (TESS) is being moved to the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. Inside the facility, TESS will be encapsulated in the payload fairing. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  5. TESS Spacecraft Arrival

    NASA Image and Video Library

    2018-02-12

    NASA's Transiting Exoplanet Survey Satellite (TESS), inside its shipping container arrives at the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  6. Measuring the Optical Properties of Astrophysical Dust Analogues: Instrumentation and Methods

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Benford, D. J.; Cataldo, G.; Dwek, E.; Henry, R.; Kinzer, R. E., Jr.; Nuth, J.; Silverberg, R.; Wheeler, C.; Wollack, E.

    2011-01-01

    Dust is found throughout the universe and plays an important role for a wide range of astrophysical phenomena. In recent years, new infrared facilities have provided powerful new data for understanding these phenomena. However, interpretation of these data is often complicated by a lack of complementary information about the optical properties of astronomically relevant materials. The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program at NASA's Goddard Space Flight Center is designed to provide new high-quality laboratory data from which we can derive the optical properties of astrophysical dust analogues. This program makes use of multiple instruments, including new equipment designed and built specifically for this purpose. The suite of instruments allows us to derive optical properties over a wide wavelength range, from the near-infrared through the millimeter, also providing the capability for exploring how these properties depend upon the temperature of the sample. In this paper, we discuss the overall structure of the research program, describe the new instruments that have been developed to meet the science goals, and demonstrate the efficacy of these tools.

  7. Space astronomy and astrophysics program by NASA

    NASA Astrophysics Data System (ADS)

    Hertz, Paul L.

    2014-07-01

    The National Aeronautics and Space Administration recently released the NASA Strategic Plan 20141, and the NASA Science Mission Directorate released the NASA 2014 Science Plan3. These strategic documents establish NASA's astrophysics strategic objectives to be (i) to discover how the universe works, (ii) to explore how it began and evolved, and (iii) to search for life on planets around other stars. The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. NASA uses the prioritized recommendations and decision rules of the National Research Council's 2010 decadal survey in astronomy and astrophysics2 to set the priorities for its investments. The NASA Astrophysics Division has laid out its strategy for advancing the priorities of the decadal survey in its Astrophysics 2012 Implementation Plan4. With substantial input from the astrophysics community, the NASA Advisory Council's Astrophysics Subcommittee has developed an astrophysics visionary roadmap, Enduring Quests, Daring Visions5, to examine possible longer-term futures. The successful development of the James Webb Space Telescope leading to a 2018 launch is an Agency priority. One important goal of the Astrophysics Division is to begin a strategic mission, subject to the availability of funds, which follows from the 2010 decadal survey and is launched after the James Webb Space Telescope. NASA is studying a Wide Field Infrared Survey Telescope as its next large astrophysics mission. NASA is also planning to partner with other space agencies on their missions as well as increase the cadence of smaller Principal Investigator led, competitively selected Astrophysics Explorers missions.

  8. Proceedings of the NASA Laboratory Astrophysics Workshop

    NASA Technical Reports Server (NTRS)

    Weck, Phillippe F. (Editor); Kwong, Victor H. S. (Editor); Salama, Farid (Editor)

    2006-01-01

    This report is a collection of papers presented at the 2006 NASA Workshop on Laboratory Astrophysics held in the University of Nevada, Las Vegas (UNLV) from February 14 to 16, 2006. This workshop brings together producers and users of laboratory astrophysics data so that they can understand each other's needs and limitations in the context of the needs for NASA's missions. The last NASA-sponsored workshop was held in 2002 at Ames Research Center. Recent related meetings include the Topical Session at the AAS meeting and the European workshop at Pillnitz, Germany, both of which were held in June 2005. The former showcased the importance of laboratory astrophysics to the community at large, while the European workshop highlighted a multi-laboratory approach to providing the needed data. The 2006 NASA Workshop on Laboratory Astrophysics, sponsored by the NASA Astrophysics Division, focused on the current status of the field and its relevance to NASA. This workshop attracted 105 participants and 82 papers of which 19 were invited. A White Paper identifying the key issues in laboratory astrophysics during the break-out sessions was prepared by the Scientific Organizing Committee, and has been forwarded to the Universe Working Group (UWG) at NASA Headquarters. This White Paper, which represented the collective inputs and opinions from experts and stakeholders in the field of astrophysics, should serve as the working document for the future development of NASA's R&A program in laboratory astrophysics.

  9. 78 FR 66384 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...: --Astrophysics Division Update --Presentation of Astrophysics Roadmap --Reports from Program Analysis Groups...

  10. Using Data-Collection Sensors to Improve Reasoning About Experiment Design and Hypothesis Testing: An Undergraduate Course for Underrepresented Minorities Pursuing Careers Astrophysics Research

    NASA Astrophysics Data System (ADS)

    Robbins, Dennis M.; Ford, K. E. Saavik

    2015-01-01

    Strategies to improve the retention of underrepresented students in STEM fields include directly targeted programs and specialized courses. The NSF-supported 'AstroCom NYC' program, a collaboration of the City University of New York, American Museum of Natural History (AMNH), and Columbia University is one example of such a program with the explicit goal of increasing the participation of underrepresented minorities in astronomy and astrophysics through pedagogical mentoring and research experiences for undergraduate students. In addition, 'AstroCom NYC' provides students with a semester-long specialized course emphasizing scientific reasoning and mathematical modeling. The course curriculum uses computers and interfaced digital probeware (sensors) in a laboratory environment that encourages collaborative and active learning.We share course materials on preparing students to reason about control of variable experiment design and hypothesis testing and provide course data on student understanding of scientific reasoning, mathematical modeling and views about science.

  11. NASA’s Universe of Learning: Connecting Scientists, Educators, and Learners

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Lestition, Kathleen; Squires, Gordon K.; Greene, W. M.; Biferno, Anya A.; Cominsky, Lynn R.; Goodman, Irene; Walker, Allyson; Universe of Learning Team

    2017-01-01

    NASA’s Universe of Learning (UoL) is one of 27 competitively awarded education programs selected by NASA’s Science Mission Directorate (SMD) in its newly restructured education effort. Through these 27 programs, SMD aims to infuse NASA science experts and content more effectively and efficiently into learning environments serving audiences of all ages. UoL is a unique partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University that will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of partners to advance SMD education objectives. External evaluation is provided through a partnership with Goodman Research Group and Cornerstone Evaluation Associates. The multi-institutional team is working to develop and deliver a unified, consolidated and externally evaluated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Cosmic Origins, Physics of the Cosmos, and Exoplanet Exploration themes. Products and programs focus on out-of-school-time learning environments and include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; and producing resources for special needs and underserved/underrepresented audiences. The UoL team also works with a network of partners to provide professional learning experiences for informal educators, pre-service educators, and undergraduate instructors. This presentation will provide an overview of the UoL team’s approach to partnering scientists and educators to engage learners in Astrophysics discoveries and data; progress to date; and pathways for science community involvement.

  12. Astrophysics Source Code Library: Incite to Cite!

    NASA Astrophysics Data System (ADS)

    DuPrie, K.; Allen, A.; Berriman, B.; Hanisch, R. J.; Mink, J.; Nemiroff, R. J.; Shamir, L.; Shortridge, K.; Taylor, M. B.; Teuben, P.; Wallen, J. F.

    2014-05-01

    The Astrophysics Source Code Library (ASCl,http://ascl.net/) is an on-line registry of over 700 source codes that are of interest to astrophysicists, with more being added regularly. The ASCL actively seeks out codes as well as accepting submissions from the code authors, and all entries are citable and indexed by ADS. All codes have been used to generate results published in or submitted to a refereed journal and are available either via a download site or from an identified source. In addition to being the largest directory of scientist-written astrophysics programs available, the ASCL is also an active participant in the reproducible research movement with presentations at various conferences, numerous blog posts and a journal article. This poster provides a description of the ASCL and the changes that we are starting to see in the astrophysics community as a result of the work we are doing.

  13. Marshal Wrubel and the Electronic Computer as an Astronomical Instrument

    NASA Astrophysics Data System (ADS)

    Mutschlecner, J. P.; Olsen, K. H.

    1998-05-01

    In 1960, Marshal H. Wrubel, professor of astrophysics at Indiana University, published an influential review paper under the title, "The Electronic Computer as an Astronomical Instrument." This essay pointed out the enormous potential of the electronic computer as an instrument of observational and theoretical research in astronomy, illustrated programming concepts, and made specific recommendations for the increased use of computers in astronomy. He noted that, with a few scattered exceptions, computer use by the astronomical community had heretofore been "timid and sporadic." This situation was to improve dramatically in the next few years. By the late 1950s, general-purpose, high-speed, "mainframe" computers were just emerging from the experimental, developmental stage, but few were affordable by or available to academic and research institutions not closely associated with large industrial or national defense programs. Yet by 1960 Wrubel had spent a decade actively pioneering and promoting the imaginative application of electronic computation within the astronomical community. Astronomy upper-level undergraduate and graduate students at Indiana were introduced to computing, and Ph.D. candidates who he supervised applied computer techniques to problems in theoretical astrophysics. He wrote an early textbook on programming, taught programming classes, and helped establish and direct the Research Computing Center at Indiana, later named the Wrubel Computing Center in his honor. He and his students created a variety of algorithms and subroutines and exchanged these throughout the astronomical community by distributing the Astronomical Computation News Letter. Nationally as well as internationally, Wrubel actively cooperated with other groups interested in computing applications for theoretical astrophysics, often through his position as secretary of the IAU commission on Stellar Constitution.

  14. Fundamental Science with Pulsed Power: Research Opportunities and User Meeting.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattsson, Thomas Kjell Rene; Wootton, Alan James; Sinars, Daniel Brian

    The fifth Fundamental Science with Pulsed Power: Research Opportunities and User Meeting was held in Albuquerque, NM, July 20-­23, 2014. The purpose of the workshop was to bring together leading scientists in four research areas with active fundamental science research at Sandia’s Z facility: Magnetized Liner Inertial Fusion (MagLIF), Planetary Science, Astrophysics, and Material Science. The workshop was focused on discussing opportunities for high-­impact research using Sandia’s Z machine, a future 100 GPa class facility, and possible topics for growing the academic (off-Z-campus) science relevant to the Z Fundamental Science Program (ZFSP) and related projects in astrophysics, planetary science, MagLIF-more » relevant magnetized HED science, and materials science. The user meeting was for Z collaborative users to: a) hear about the Z accelerator facility status and plans, b) present the status of their research, and c) be provided with a venue to meet and work as groups. Following presentations by Mark Herrmann and Joel Lash on the fundamental science program on Z and the status of the Z facility where plenary sessions for the four research areas. The third day of the workshop was devoted to breakout sessions in the four research areas. The plenary-­ and breakout sessions were for the four areas organized by Dan Sinars (MagLIF), Dylan Spaulding (Planetary Science), Don Winget and Jim Bailey (Astrophysics), and Thomas Mattsson (Material Science). Concluding the workshop were an outbrief session where the leads presented a summary of the discussions in each working group to the full workshop. A summary of discussions and conclusions from each of the research areas follows and the outbrief slides are included as appendices.« less

  15. Fusion/Astrophysics Teacher Research Academy

    NASA Astrophysics Data System (ADS)

    Correll, Donald

    2005-10-01

    In order to engage California high school science teachers in the area of plasma physics and fusion research, LLNL's Fusion Energy Program has partnered with the UC Davis Edward Teller Education Center, ETEC (http://etec.ucdavis.edu), the Stanford University Solar Center (http://solar-center.stanford.edu) and LLNL's Science / Technology Education Program, STEP (http://education.llnl.gov). A four-level ``Fusion & Astrophysics Research Academy'' has been designed to give teachers experience in conducting research using spectroscopy with their students. Spectroscopy, and its relationship to atomic physics and electromagnetism, provides for an ideal plasma `bridge' to the CA Science Education Standards (http://www.cde.ca.gov/be/st/ss/scphysics.asp). Teachers attend multiple-day professional development workshops to explore new research activities for use in the high school science classroom. A Level I, 3-day program consists of two days where teachers learn how plasma researchers use spectrometers followed by instructions on how to use a research grade spectrometer for their own investigations. A 3rd day includes touring LLNL's SSPX (http://www.mfescience.org/sspx/) facility to see spectrometry being used to measure plasma properties. Spectrometry classroom kits are made available for loaning to participating teachers. Level I workshop results (http://education.llnl.gov/fusion&_slash;astro/) will be presented along with plans being developed for Level II (one week advanced SKA's), Level III (pre-internship), and Level IV (summer internship) research academies.

  16. NASA's Ultraviolet Astrophysics Branch: Present and future detector program

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.

    1992-01-01

    The various concepts in ultraviolet detector technology currently being funded by NASA's Astrophysics Division to carry out observations in the 100 to 3000 A region are reviewed. In order to match the science objectives of future space missions with new observational techniques, critical detector technology needs in the ultraviolet regime have been identified. The attempt by NASA's Astrophysics Division Advanced Programs Branch to formulate an integrated detector technology plan as part of the ongoing 'Astrotech 21' program in order to provide the technology base for these astrophysics missions of the 21st century is described.

  17. FOSTER-Flight Opportunities for Science Teacher EnRichment, A New IDEA Program From NASA Astrophysics

    NASA Astrophysics Data System (ADS)

    Devore, E.; Gillespie, C.; Hull, G.; Koch, D.

    1993-05-01

    Flight Opportunities for Science Teacher EnRichment (FOSTER) is a new educational program from the Imitative to Develop Education through Astronomy in the Astrophysics Division at NASA Headquarters. Now in its first year of the pilot program, the FOSTER project brings eleven Bay Area teaaaachers to NASA Ames to participate in a year-long program of workshops, educational programs at their schools and the opportunity to fly aboard the Kuiper Airborne Observatory (KAO) on research missions. As science and math educators, FOSTER teachers get a close-up look at science in action and have the opportunity to interact with the entire team of scientists, aviators and engineers that support the research abord the KAO. In June, a second group of FOSTER teachers will participate in a week-long workshop at ASes to prepare for flights during the 1993-94 school year. In addition, the FOSTER project trains teachers to use e-mail for ongoing communication with scientists and the KAO team, develops educational materials and supports opportunities for scientists to become directly involved in local schools. FOSTER is supported by a NASA grant (NAGW 3291).

  18. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  19. Study Astrophysics in Split!

    NASA Astrophysics Data System (ADS)

    Krajnovic, D.

    2006-08-01

    Beginning in autumn 2008 the first generation of astronomy master students will start a 2 year course in Astrophysics offered by the Physics department of the University of Split, Croatia (http://fizika.pmfst.hr/ astro/english/index.html). This unique master course in South-Eastern Europe, following the Bologna convention and given by astronomers from international institutions, offers a series of comprehensive lectures designed to greatly enhance students' knowledge and skills in astrophysics, and prepare them for a scientific career. An equally important aim of the course is to recognise the areas in which astronomy and astrophysics can serve as a national asset and to use them to prepare young people for real life challenges, enabling graduates to enter the modern society as a skilled and attractive work-force. I will present an example of a successful organisation of international astrophysics studies in a developing country, which aims to become a leading graduate program in astrophysics in the broader region. I will focus on the goals of the project showing why and in what way astronomy can be interesting for third world countries, what are the benefits for the individual students, nation and region, but also research, science and the astronomical community in general.

  20. Research and technology 1989

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.

  1. The decade of discovery in astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A survey of astronomy and astrophysics in the 1990s is presented and a prioritized agenda is offered for space- and ground-based research into the 21st century. In addition to proposing new telescopes for ground and space, the research infrastructure is discussed. The urgent need is emphasized for increased support of individual investigators, for appropriate maintenance and refurbishment of existing facilities, and for a balanced program of space astronomy. The scientific and the technical opportunities of the 1990s are summarized and the technological development is described needed for instruments to be built in the first years of the next century. Also addressed is the suitability of the Moon as an observation site.

  2. NASA Announces 2009 Astronomy and Astrophysics Fellows

    NASA Astrophysics Data System (ADS)

    2009-02-01

    WASHINGTON -- NASA has selected fellows in three areas of astronomy and astrophysics for its Einstein, Hubble, and Sagan Fellowships. The recipients of this year's post-doctoral fellowships will conduct independent research at institutions around the country. "The new fellows are among the best and brightest young astronomers in the world," said Jon Morse, director of the Astrophysics Division in NASA's Science Mission Directorate in Washington. "They already have contributed significantly to studies of how the universe works, the origin of our cosmos and whether we are alone in the cosmos. The fellowships will serve as a springboard for scientific leadership in the years to come, and as an inspiration for the next generation of students and early career researchers." Each fellowship provides support to the awardees for three years. The fellows may pursue their research at any host university or research center of their choosing in the United States. The new fellows will begin their programs in the fall of 2009. "I cannot tell you how much I am looking forward to spending the next few years conducting research in the U.S., thanks to the fellowships," said Karin Oberg, a graduate student in Leiden, The Netherlands. Oberg will study the evolution of water and ices during star formation when she starts her fellowship at the Smithsonian Astrophysical Observatory in Cambridge, Mass. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Cosmic Heavyweights in Free-for-all Galaxies Coming of Age in Cosmic Blobs Cassiopeia A Comes Alive Across Time and Space A diverse group of 32 young scientists will work on a wide variety of projects, such as understanding supernova hydrodynamics, radio transients, neutron stars, galaxy clusters and the intercluster medium, supermassive black holes, their mergers and the associated gravitational waves, dark energy, dark matter and the reionization process. Other research topics include searching for transits among hot Neptunes and super-Earths, microlensing planets through modeling algorithms, conducting high-contrast imaging surveys to detect planetary-mass companions, interferometrically imaging of the inner regions of protoplanetary disks, and modeling of super-Earth planetary atmospheres. The 10 fellows in the Einstein program conduct research broadly related to the mission of NASA's Physics of the Cosmos Program. Its science goals include understanding the origin and destiny of the universe, the nature of gravity, phenomena near black holes, and extreme states of matter. The Chandra X-ray Center in Cambridge, Mass., administers the Einstein Fellowships for NASA. The 17 awardees of the Hubble Fellowship pursue research associated with NASA's Cosmic Origins Program. The missions in this program examine the origins of galaxies, stars, and planetary systems, and the evolution of these structures with cosmic time. The Space Telescope Science Institute in Baltimore, Md., administers the Hubble Fellowships for NASA. The Sagan Fellowship, created in September 2008, supports five scientists whose research is aligned with NASA's Exoplanet Exploration Program. The primary goal of this program is to discover and characterize planetary systems and Earth-like planets around other stars. The NASA Exoplanet Science Institute, which is operated at the California Institute of Technology in coordination with NASA's Jet Propulsion Laboratory in Pasadena, Calif., administers the Sagan Fellowship Program

  3. Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.

  4. Workshop Proceedings: Sensor Systems for Space Astrophysics in the 21st Century, Volume 2

    NASA Technical Reports Server (NTRS)

    Wilson, Barbara A. (Editor)

    1991-01-01

    In 1989, the Astrophysics Division of the Office of Space Science and Applications initiated the planning of a technology development program, Astrotech 21, to develop the technological base for the Astrophysics missions developed in the period 1995 to 2015. The Sensor Systems for Space Astrophysics in the 21st Century Workshop was one of three Integrated Technology Planning workshops. Its objectives were to develop an understanding of the future comprehensive development program to achieve the required capabilities. Program plans and recommendations were prepared in four areas: x ray and gamma ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.

  5. TESS Spacecraft Lift to Work Stand

    NASA Image and Video Library

    2018-02-12

    Technicians dressed in clean room suits monitor the progress as a crane lowers NASA's Transiting Exoplanet Survey Satellite (TESS) onto a test stand inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  6. TESS: Spacecraft Arrival

    NASA Image and Video Library

    2018-02-13

    In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the agency's Transiting Exoplanet Survey Satellite, or TESS, has been uncreated from its shipping container for inspections and preflight processing. The satellite is NASA's next step in the search for planets outside of the solar system also known as "exoplanets." TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, and the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management. SpaceX of Hawthorne, California, is the provider of the Falcon 9 launch service. TESS is scheduled to launch atop a Falcon 9 rocket no earlier than April 16, 2018 from Space Launch Complex 41 at Cape Canaveral Air Force Station.

  7. SpaceX TESS Fairing Move

    NASA Image and Video Library

    2018-04-03

    The payload fairing for NASA's Transiting Exoplanet Survey Satellite (TESS) is moved to the entrance of the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. Inside the facility, TESS will be encapsulated in the payload fairing. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  8. SpaceX TESS Fairing Move

    NASA Image and Video Library

    2018-04-03

    The payload fairing for NASA's Transiting Exoplanet Survey Satellite (TESS) is being prepared for the move to the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. Inside the facility, TESS will be encapsulated in the payload fairing. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  9. TESS Spacecraft Move to Clean Room

    NASA Image and Video Library

    2018-02-12

    NASA's Transiting Exoplanet Survey Satellite (TESS), secured on a test stand, is moved into a clean room tent inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  10. SpaceX TESS Payload Lift to Trailer; Prep for Transport to LC 40

    NASA Image and Video Library

    2018-04-11

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is secured onto a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is scheduled to launch on the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  11. TESS Spacecraft Lift to Work Stand

    NASA Image and Video Library

    2018-02-12

    NASA's Transiting Exoplanet Survey Satellite (TESS) is lifted up from the base of its shipping container and will be lowered onto a test stand for processing inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  12. SpaceX TESS Payload Lift to Trailer; Prep for Transport to LC 40

    NASA Image and Video Library

    2018-04-11

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians assist as the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is lifted for the move to a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. The satellite is scheduled to launch atop the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  13. TESS SpaceX Payload Fairing Move to PHSF

    NASA Image and Video Library

    2018-04-03

    The payload fairing for NASA's Transiting Exoplanet Survey Satellite (TESS) is moved to the entrance of the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. Inside the facility, TESS will be encapsulated in the payload fairing. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  14. TESS Spacecraft Solar Panel Array Deployment Testing

    NASA Image and Video Library

    2018-02-21

    Technicians dressed in clean room suits monitor the progress as both solar panels are deployed on NASA's Transiting Exoplanet Survey Satellite (TESS) inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite is being processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  15. TESS Spacecraft Move to Clean Room

    NASA Image and Video Library

    2018-02-12

    Technician dressed in clean room suits move NASA's Transiting Exoplanet Survey Satellite (TESS) on a test stand to a clean room tent inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  16. SpaceX TESS Payload Lift to Trailer; Prep for Transport to LC 40

    NASA Image and Video Library

    2018-04-11

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians assist as the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is lowered by crane onto a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is scheduled to launch on the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  17. TESS Spacecraft Solar Panel Array Deployment Testing

    NASA Image and Video Library

    2018-02-21

    Technicians dressed in clean room suits check the solar panels, which have been deployed, on NASA's Transiting Exoplanet Survey Satellite (TESS) inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite is being processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  18. SpaceX TESS Payload Lift to Trailer; Prep for Transport to LC 40

    NASA Image and Video Library

    2018-04-11

    The SpaceX payload fairing containing NASA's Transiting Exoplanet Survey Satellite (TESS) is prepared for the move from the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida to Space Launch Complex 40 at Cape Canaveral Air Force Station. The satellite is scheduled to launch atop the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  19. TESS Spacecraft Move to Clean Room

    NASA Image and Video Library

    2018-02-12

    Technicians dressed in clean room suits move NASA's Transiting Exoplanet Survey Satellite (TESS) on a test stand inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  20. SpaceX TESS Payload Lift to Trailer; Prep for Transport to LC 40

    NASA Image and Video Library

    2018-04-11

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians assist as the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is moved by crane to a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is scheduled to launch on the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  1. TESS Spacecraft Move to Clean Room

    NASA Image and Video Library

    2018-02-12

    Technicians dressed in clean room suits move NASA's Transiting Exoplanet Survey Satellite (TESS) secured on a test stand inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  2. TESS Spacecraft Uncrating

    NASA Image and Video Library

    2018-02-12

    The top of the shipping container is lifted up by crane from NASA's Transiting Exoplanet Survey Satellite (TESS) inside the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. TESS will be unpacked, lifted up by crane and moved to a test stand for processing. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  3. TESS Spacecraft Move to Clean Room

    NASA Image and Video Library

    2018-02-12

    Technician dressed in clean room suits move NASA's Transiting Exoplanet Survey Satellite (TESS) on a test stand into a clean room tent inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  4. TESS Spacecraft Lift to Work Stand

    NASA Image and Video Library

    2018-02-12

    A technician dressed in a clean room suit closely monitors the progress as a crane lowers NASA's Transiting Exoplanet Survey Satellite (TESS) onto a test stand inside the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  5. TESS-Transport to Pad Activities - Lift to Transport Trailer

    NASA Image and Video Library

    2018-04-11

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is secured onto a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is scheduled to launch on the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  6. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported including developments in Earth based radio technology as applied to other research programs. These programs include application of radio interferometry at microwave frequencies to geodetic measurements and geodynamics, use of deep space stations individually and in pairs as an interferometer by radio astronomers for astrophysics research by direct observations of radio sources, and radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  7. NSF's Career-Life Balance Initiative and the NSF Astronomy and Astrophysics Postdoctoral Fellowships

    NASA Astrophysics Data System (ADS)

    Ajhar, Edward A.

    2013-01-01

    In the fall of 2011, the National Science Foundation (NSF) began the Career-Life Balance Initiative to support graduate students, postdoctoral students, and early-career researchers in STEM fields. NSF is focusing first on its most prestigious programs for early-career scientists---the CAREER program and the postdoctoral programs, including the NSF Astronomy and Astrophysics Postdoctoral Fellowships (AAPF)---where career-life balance opportunities can help retain a significant fraction of early career talent. Subject to budget constraints, NSF plans to further integrate and enhance career-life balance opportunities over time through other programs, like the Graduate Research Fellowships Program and ADVANCE, and subsequently through the broader portfolio of NSF activities. In addition, to comply with Title IX, NSF has regulations to ensure that educational programs that receive NSF funds are free of gender discrimination and harassment. A primary goal of this presentation is to put facts about NSF into the hands of students, faculty, staff, administrators and other policy makers to benefit the advancement of career-life balance in the astronomical community. The presentation focus areas will (1) address common misconceptions about NSF rules regarding parental leave; (2) discuss benefits already available through the AAPF program, Graduate Research Fellowships, and other programs; and (3) listen to community concerns and issues to bring these back to the foundation for consideration. Did you know that NSF allows paid parental leave under many circumstances? For example, the AAPF program currently allows two months of paid parental leave during the fellow's tenure. What are the rules for NSF Graduate Research Fellowships? Come to the session and find out; the answers to such questions might surprise you.

  8. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm-hot intergalactic medium filament. Our goal is to continue the Faculty Fellowship effort with Center funds in succeeding summers.

  9. FASAC Technical Assessment Report: Soviet Space Science Research

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Henry, Richard C.; Klein, Harold P.; Masursky, Harold; Paulikas, George A.; Scaf, Frederick L.; Soffen, Gerald A.; Terzian, Yervant

    1986-01-01

    This report is the work of a panel of eight US scientists who surveyed and assessed Soviet research in the spare sciences. All of the panelists were very familiar with Soviet research through their knowledge of the published scientific literature and personal contacts with Soviet and other foreign colleagues. In addition, all of the panelists reviewed considerable additional open literature--scientific, and popular, including news releases. The specific disciplines of Soviet space science research examined in detail for the report were: solar-terrestrial research, lunar and planetary research, space astronomy and astrophysics, and, life sciences. The Soviet Union has in the past carried out an ambitious program in lunar exploration and, more recently, in studies of the inner planets, Mars and especially Venus. The Soviets have provided scientific data about the latter planet which has been crucial for studies of the planet's evolution. Future programs envision an encounter with Halley's Comet, in March 1986, and missions to Mars and asteroids. The Soviet programs in the life sciences and solar-terrestrial research have been long-lasting and systematically pursued. Much of the ground-based and space-based research in these two disciplines appears to be motivated by the requirement to establish long-term human habitation in near-Earth space. The Soviet contributions to new discoveries and understanding in observational space astronomy and astrophysics have been few. This is in significant contrast to the very excellent theoretical work contributed by Soviet scientists in this discipline.

  10. NASA's Astronomy Education Program: Reaching Diverse Audiences

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise Anne; Hertz, Paul; Meinke, Bonnie

    2015-08-01

    An overview will be given of the rich programs developed by NASA to inject the science from it's Astrophysics missions into STEM activities targeted to diverse audiences. For example, Astro4Girls was started as a pilot program during IYA2009. This program partners NASA astrophysics education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families, and has been executed across the country. School curricula and NASA websites have been translated in Spanish; Braille books have been developed for the visually impaired; programs have been developed for the hearing impaired. Special effort has been made to reach underrepresented minorities. Audiences include students, teachers, and the general public through formal and informal education settings, social media and other outlets. NASA Astrophysics education providers include teams embedded in its space flight missions; professionals selected though peer reviewed programs; as well as the Science Mission Directorate Astrophysics Education forum. Representative examples will be presented to demonstrate the reach of NASA education programs, as well as an evaluation of the effectiveness of these programs.

  11. Unique collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Lepine, S.; Nadeau, P.; Flores, K.; Sessa, J.; Zirakparvar, N.; Ustunisik, G.; Kinzler, R.; Macdonald, M.; Contino, J.; Cooke-Nieves, N.; Zachowski, M.

    2013-01-01

    Abstract: The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The dearth of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and real-world teaching experience in local urban classrooms. The program is part of New York State’s Race to the Top initiative and particularly targets high-needs schools with diverse student populations. Because of this, the MAT program has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of teacher candidates entered the MAT program in June of 2012. They represent diverse scientific expertise levels, geographic backgrounds, and career stages. We report on the first six months of this pilot program as well as the future plans and opportunities for prospective teacher candidates.

  12. Astrophysics and Space Science

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy; Brinks, Elias; Khanna, Ramon

    2015-08-01

    Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science, and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis, and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will not longer be considered.The journal also publishes topical collections consisting of invited reviews and original research papers selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers.Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.Astrophysics and Space Science has an Impact Factor of 2.4 and features short editorial turnaround times as well as short publication times after acceptance, and colour printing free of charge. Published by Springer the journal has a very wide online dissemination and can be accessed by researchers at a very large number of institutes worldwide.

  13. The RIB facility EXOTIC and its experimental program at INFN-LNL

    NASA Astrophysics Data System (ADS)

    Parascandolo, Concetta

    2018-05-01

    In this contribution, I will present a review about the EXOTIC facility and the research field accessible by using its Radioactive Ion Beams. The EXOTIC facility, installed at the INFN-Laboratori Nazionali di Legnaro, is devoted to the in-flight production of light Radioactive Ion Beams in the energy range between 3-5 MeV/nucleon. The scientific activity performed at EXOTIC concerns different aspects of nuclear physics and nuclear astrophysics, such as, the investigation of reaction mechanisms and nuclear structure, resonant scattering experiments and measurements of nuclear reaction cross sections of astrophysical interest.

  14. NASA's Exobiology Program.

    PubMed

    DeVincenzi, D L

    1984-01-01

    The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life, and life-related molecules, on Earth and throughout the universe. Emphasis is focused on determining how the rate and direction of these processes were affected by the chemical and physical environment of the evolving planet, as well as by planetary, solar, and astrophysical phenomena. This is accomplished by a multi-disciplinary program of research conducted by over 60 principal investigators in both NASA and university laboratories. Major program thrusts are in the following research areas: biogenic elements; chemical evolution; origin of life; organic geochemistry; evolution of higher life forms; solar system exploration; and the search for extraterrestrial intelligence (SETI).

  15. United States Air Force Summer Faculty Research Program (1983). Program Management Report.

    DTIC Science & Technology

    1983-12-01

    845-5011 Dr. John Eoll Degree: Ph.D., Astrophysics, 1976 Assistant Professor Specialty: Radiaton Transport , Fluid Lernir-Rhyne College Dynamics...Applications Newark, DE 19711 Assigned: RADC (302) 738-8173 Dr. Gregory Jones Degree: Ph.D., Mathematics, 1972 Associate Professor Specialty: Computability...1965 Associate Professor Specialty: Magnetic Resonance, University of Dayton Transport Properties Physics Department Assigned: ML Dayton, OH 45469 5

  16. The NASA Suborbital Program: A status review

    NASA Technical Reports Server (NTRS)

    Teeter, R.; Reynolds, B.

    1983-01-01

    The status of the NASA suborbital program is reviewed and its importance to astrophysical and geophysical programs is assessed. A survey of past scientific and developmental accomplishments, an examination of the trends in program costs, and an analysis of current and future program roles are included. The technical disciplines examined are primarily those of astronomy/astrophysics/solar physics and magnetospheric/ionospheric/ atmospheric physics.

  17. Collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  18. Ultraviolet, visible, and gravity astrophysics: A plan for the 1990's

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Space Science and Applications (OSSA) receives advice on scientific strategy and priorities from the U.S. National Academy of Sciences. Guidance to the OSSA Astrophysics Division, in particular, is provided by dedicated academy committees, ad hoc study groups, and, at ten-year intervals, by broadly mandated astronomy and astrophysics survey committees charged with making recommendations for the coming decade. Many of the academy's recommendations have important implications for the conduct of ultraviolet and visible-light astronomy from space. Moreover, these areas are now poised for an era of rapid growth. Through technological progress, ultraviolet astronomy has already risen from a novel observational technique four decades ago to the mainstream of astronomical research today. Recent developments in space technology and instrumentation have the potential to generate comparably dramatic strides in observational astronomy within the next ten years. In 1989, the Ultraviolet and Visible Astrophysics Branch of the OSSA Astrophysics Division recognized the need for a new, long-range plan that would implement the academy's recommendations in a way that yielded the most advantageous use of new technology. NASA's Ultraviolet, Visible, and Gravity Astrophysics Management Operations Working Group was asked to develop such a plan for the 1990's. Since the branch holds programmatic responsibility for space research in gravitational physics and relativity, as well as for ultraviolet and visible-light astrophysics, missions in those areas were also included. The working group met throughout 1989 and 1990 to survey current astrophysical problems, assess the potential of new technologies, examine prior academy recommendations, and develop the implementation plan. The present report is the product of those deliberations. Key astrophysical questions to be addressed cover topics such as the structure and evolution of the early universe, energetics of active galactic nuclei, stellar winds in massive stars, sources powered by accretion, composition and state of the interstellar medium, nature of the galactic halo, chromospheric activity in cool stars, and formation of stars and planetary systems. This document provides a review of these questions, program concerns, and the recommended implementation plan for the 1990's.

  19. Evolution of NASA Scientific Ballooning and Particle Astrophysics Research

    NASA Astrophysics Data System (ADS)

    Jones, William Vernon

    2017-01-01

    Particle astrophysics research has a history in ballooning that spans over 100 years, ever since Victor Hess discovered cosmic rays on a manned balloon in 1912. The NASA Particle Astrophysics Program currently covers the origin, acceleration and transport of Galactic cosmic rays, plus the Nature of Dark Matter and Ultrahigh Energy Neutrinos. Progress in each of these topics has come from sophisticated instrumentation flown on Long Duration Balloon (LDB) flights around Antarctica for more than two decades. Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging opportunities that promise major steps forward for these and other objectives. NASA has continued development and qualification flights leading to SPB flights capable of supporting 1000 kg science instruments to 33 km for upwards of hundred day missions, with plans for increasing the altitude to 38 km. This goal is even more important now, in view of the Astro2010 Decadal Study recommendation that NASA should support Ultra-Long Duration Balloon (ULDB) flight development for studies of particle astrophysics, cosmology and indirect detection of dark matter. The mid-latitude test flight of an 18.8 MCF SPB launched from Wanaka, NZ in 2015 achieved 32 days of nearly constant altitude exposure, and an identical SPB launched from Wanaka in 2016 with a science payload flew for 46 days. Scientific ballooning as a vital infrastructure component for cosmic ray and general astrophysics investigations, including training for young scientists, graduate and undergraduate students, leading up to the 2020 Decadal Study and beyond, will be presented and discussed.

  20. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  1. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  2. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  3. A visiting scientist program for the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Kerr, Frank J.

    1995-01-01

    During this project, Universities Space Research Association provided program management and the administration for overseeing the performance of the total contractual effort. The program director and administrative staff provided the expertise and experience needed to efficiently manage the program.USRA provided a program coordinator and v visiting scientists to perform scientific research with Burst and Transient Source Experiment (BATSE) data. This research was associated with the primary scientific objectives of BATSE and with the various BATSE collaborations which were formed in response to the Compton Gamma Ray Observatory Guest Investigator Program. USRA provided administration for workshops, colloquia, the preparation of scientific documentation, etc. and also provided flexible program support in order to meet the on-going needs of MSFC's BATSE program. USRA performed tasks associated with the recovery, archiving, and processing of scientific data from BATSE. A bibliography of research in the astrophysics discipline is attached as Appendix 1. Visiting Scientists and Research Associates performed activities on this project, and their technical reports are attached as Appendix 2.

  4. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  5. Technical Reports: Langley Aerospace Research Summer Scholars. Part 1

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  6. Development of Short Wavelength Infrared Array Detectors for Space Astronomy Application

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1997-01-01

    The Smithsonian Astrophysical Observatory (SAO) and its team - the University of Arizona (UA), the University of Rochester (UR), Santa Barbara Research Center (SBRC), Ames Research Center (ARC), and Goddard Space Flight Center (GSFC) - are carrying out a research program with the goal of developing and optimizing infrared arrays in the 2-27 micron range for space infrared astronomy. This report summarizes research results for the entire grant period 1 January 1992 through 30 June 1996.

  7. Practices in source code sharing in astrophysics

    NASA Astrophysics Data System (ADS)

    Shamir, Lior; Wallin, John F.; Allen, Alice; Berriman, Bruce; Teuben, Peter; Nemiroff, Robert J.; Mink, Jessica; Hanisch, Robert J.; DuPrie, Kimberly

    2013-02-01

    While software and algorithms have become increasingly important in astronomy, the majority of authors who publish computational astronomy research do not share the source code they develop, making it difficult to replicate and reuse the work. In this paper we discuss the importance of sharing scientific source code with the entire astrophysics community, and propose that journals require authors to make their code publicly available when a paper is published. That is, we suggest that a paper that involves a computer program not be accepted for publication unless the source code becomes publicly available. The adoption of such a policy by editors, editorial boards, and reviewers will improve the ability to replicate scientific results, and will also make computational astronomy methods more available to other researchers who wish to apply them to their data.

  8. Hera - The HEASARC's New Data Analysis Service

    NASA Technical Reports Server (NTRS)

    Pence, William

    2006-01-01

    Hera is the new computer service provided by the HEASARC at the NASA Goddard Space Flight Center that enables qualified student and professional astronomical researchers to immediately begin analyzing scientific data from high-energy astrophysics missions. All the necessary resources needed to do the data analysis are freely provided by Hera, including: * the latest version of the hundreds of scientific analysis programs in the HEASARC's HEASOFT package, as well as most of the programs in the Chandra CIAO package and the XMM-Newton SAS package. * high speed access to the terabytes of data in the HEASARC's high energy astrophysics Browse data archive. * a cluster of fast Linw workstations to run the software * ample local disk space to temporarily store the data and results. Some of the many features and different modes of using Hera are illustrated in this poster presentation.

  9. NASA's ultraviolet astrophysics branch - The next decade

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Kaplan, Michael

    1992-01-01

    We review some of the mission concepts currently being considered by NASA's Astrophysics Division to carry out future observations in the 100-3000 Angstrom region. Examples of possible future missions include UV and visible interferometric experiments, a next generation Space Telescope and lunar-based UV instrumentation. In order to match the science objectives of these future missions with new observational techniques, critical technology needs in the ultraviolet regime have been identified. Here we describe how NASA's Astrophysics Division Advanced Programs Branch is attempting to formulate an integrated technology plan called the 'Astrotech 21' program in order to provide the technology base for these astrophysics missions of the 21st century.

  10. Balance in the NASA Astrophysics Program

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2017-08-01

    The Decadal studies are usually instructed to come up with a “balanced program” for the coming decade of astrophysics initiatives, both on the ground and in space. The meaning of “balance” is left up to the Decadal panels. One meaning is that there should be a diversity of mission costs in the portfolio. Another that there should be a diversity of science questions addressed. A third is that there should be a diversity of signals (across electromagnetic wavebands, and of non-em carriers). It is timely for the astronomy community to debate the meaning of balance in the NASA astrophysics program as the “Statement of Task” (SoT) that defines the goals and process of the 2020 Astrophysics Decadal review are now being formulated.Here I propose some ways in which the Astro2020 SoT could be made more specific in order to make balance more evident and so avoid the tendency for a single science question, and a single mission to answer that question, to dominate the program. As an example of an alternative ambitious approach, I present a proof-of-principle program of 6, mostly “probe-class” missions, that would fit the nominal funding profile for the 2025-2035 NASA Astrophysics Program, while being more diverse in ambitious science goals and in wavelength coverage.

  11. Overview of NASA's Universe of Learning: An Integrated Astrophysics STEM Learning and Literacy Program

    NASA Astrophysics Data System (ADS)

    Smith, Denise; Lestition, Kathleen; Squires, Gordon; Biferno, Anya A.; Cominsky, Lynn; Manning, Colleen; NASA's Universe of Learning Team

    2018-01-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. Together we develop and disseminate data tools and participatory experiences, multimedia and immersive experiences, exhibits and community programs, and professional learning experiences that meet the needs of our audiences, with attention to underserved and underrepresented populations. In doing so, scientists and educators from the partner institutions work together as a collaborative, integrated Astrophysics team to support NASA objectives to enable STEM education, increase scientific literacy, advance national education goals, and leverage efforts through partnerships. Robust program evaluation is central to our efforts, and utilizes portfolio analysis, process studies, and studies of reach and impact. This presentation will provide an overview of NASA's Universe of Learning, our direct connection to NASA Astrophysics, and our collaborative work with the NASA Astrophysics science community.

  12. Astrophysically Relevant Dipole Studies at WiPAL

    NASA Astrophysics Data System (ADS)

    Endrizzi, Douglass; Forest, Cary; Wallace, John; WiPAL Team

    2015-11-01

    A novel terrella experiment is being developed to immerse a dipole magnetic field in the large, unmagnetized, and fully ionized background plasma of WiPAL (Wisconsin Plasma Astrophysics Lab). This allows for a series of related experiments motivated by astrophysical processes, including (1) inward transport of plasma into a magnetosphere with focus on development of Kelvin-Helmholtz instabilities from boundary shear flow; (2) helicity injection and simulation of solar eruptive events via electrical breakdown along dipole field lines; (3) interaction of Coronal Mass Ejection-like flows with a target magnetosphere and dependence on background plasma pressure; (4) production of a centrifugally driven wind to study how dipolar magnetic topology changes as closed field lines open. A prototype has been developed and preliminary results will be presented. An overview of the final design and construction progress will be given. This material is based upon work supported by the NSF Graduate Research Fellowship Program.

  13. Scientist-Educator Partnerships: the Cornerstone of Astrophysics E/PO

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Smith, Denise A.; Lawton, Brandon; Eisenhamer, Bonnie; Jirdeh, Hussein

    2015-11-01

    For nearly two decades, NASA has partnered scientists and educators by embedding Education and Public Outreach (E/PO) programs and funding in its science missions and research activities. This enables scientist and educators to work side-by-side in translating cutting-edge NASA science and technology for classrooms, museums, and public venues.The Office of Public Outreach at the Space Telescope Science Institute (STScI) is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As home to both Hubble Space Telescope and the future James Webb Space Telescope, STScI leverages the expertise of its scientists to create partnerships with its collocated Education Team to translate cutting-edge NASA science into new and effective learning tools. In addition, STScI is home of the NASA Science Mission Directorate (SMD) Astrophysics Science E/PO Forum, which facilitates connections both within the SMD E/PO community and beyond to scientists and educators across all NASA Astrophysics missions. These collaborations strengthen partnerships, build best practices, and enhance coherence for NASA SMD-funded E/PO missions and programs.We will present examples of astronomers’ engagement in our E/PO efforts, such as NASA Science4Girls.

  14. Results from a Pilot REU Program: Exploring the Cosmos Using Sloan Digital Sky Survey Data

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Holley-Bockelmann, Kelly; Holtzman, Jon A.

    2017-01-01

    In the Summer of 2016 we conducted a 10-week pilot Research Experience for Undergraduates (REU) program aimed at increasing the participation of underrepresented minority undergraduate students in research using data from the Sloan Digital Sky Survey (SDSS). This program utilized a distributed REU model, whereby students worked with SDSS scientists on exciting research projects while serving as members of a geographically distributed research community. The format of this REU is similar to that of the SDSS collaboration itself, and since this collaboration structure has become a model for the next generation of large scale astronomical surveys, the students participating in the SDSS REU received early exposure and familiarity with this approach to collaborative scientific research. The SDSS REU also provided the participants with a low-risk opportunity to audition for graduate schools and to explore opportunities afforded by a career as a research scientist. The six student participants were placed at SDSS REU host sites at the Center for Astrophysics at Harvard University, University of Wisconsin-Madison, Vanderbilt University, and the University of Portsmouth. Their research projects covered a broad range of topics related to stars, galaxies, and quasars, all making use of SDSS data. At the start of the summer the REU students participated in a week-long Boot Camp at NMSU, which served as a program orientation, an introduction to skills relevant to their research projects, and an opportunity for team-building and cohort-forming. To foster a sense of community among our distributed students throughout the summer, we conducted a weekly online meeting for all students in the program via virtual meeting tools. These virtual group meetings served two purposes: as a weekly check-in to find out how their projects were progressing, and to conduct professional development seminars on topics of interest and relevance to the REU participants. We discuss the outcomes of this pilot REU program and future plans for involving underrepresented minority undergraduate students in SDSS-related research. This work was supported by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  15. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience

    NASA Technical Reports Server (NTRS)

    Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Colangeli, L.; Mennella, V.; Dell'Aversana, P.; Mirra, C.

    1993-01-01

    The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.

  16. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience.

    PubMed

    Ferguson, F; Lilleleht, L U; Nuth, J; Stephens, J R; Bussoletti, E; Colangeli, L; Mennella, V; Dell'Aversana, P; Mirra, C

    1993-01-01

    The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.

  17. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  18. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angelini, L. (Editor)

    1997-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  19. BridgeUP: STEM and Learning Astrophysics Interactively

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Geogdzhayeva, Maria; Beltre, Chasity; Ocasio, Adrienne; Skarbinski, Maya; Zbib, Daniela; Swar, Prachi; Mac Low, Mordecai

    2018-01-01

    BridgeUP: STEM is an initiative responding to the gender and opportunity gaps that exist in the STEM pipeline for women, girls, and under-resourced youth. The program engages high school girls in experiences at the intersection of computer science, scientific research, and visualization that will position them to succeed and lead in these fields. Students work on projects closely aligned with research taking place at the American Museum of Natural History. One of the current astronomy research projects at the museum simulates migration of black holes in active galactic nucleus disks using the Pencil Code. The work presented here focuses on interactive tools used to teach dynamical concepts pertaining to this project. These include Logger Pro, along with Vernier equipment, PhET Interactive Simulations, and Python. Throughout the internship, students also learn qualitative astrophysics via presentations, animations and videos. We discuss the success of utilizing the aforementioned tools in teaching, as well as showing work conducted by the six current students participating in this Astronomy research project.

  20. The Next Century Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1991-01-01

    The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.

  1. Satellite-tracking and earth-dynamics research programs

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The activities carried out by the Smithsonian Astrophysical Observatory (SAO) for the National Aeronautics and Space Administration (NASA) during the period 1 July to 31 December 1978 are described. All four SAO laser sites were in routine operation during the reporting period; they obtained a 6-month total of 182,529 range observations on 3610 passes.

  2. Suggestions for Evaluating the Quality of the Army’s Science and Technology Program: The Portfolio and Its Execution

    DTIC Science & Technology

    2013-01-01

    definition of 6.1 research apply. Namely, the work is curiosity work with no specific application in mind. The two extramural categories include...direct interest in relativity and gravitation, cosmology , elementary particles, nuclear physics, astronomy, or astrophysics, since they generally have

  3. George Ellery Hale, Caltech Astrophysics, and the Hale 200-inch Telescope, 1920-1948

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1998-05-01

    Caltech and the 200-inch Hale telescope on Palomar are two of George Ellery Hale's many creations in Southern California. He brought the California Institute of Technology into existence in 1920; Palomar Observatory was built for it. However, even before Hale had "secured" the funds for the 200-inch, astrophysical research had been underway on the Caltech campus in Pasadena, and it intensified after the Rockefeller grant came through. Interactions between the campus, Palomar Mountain, and Mount Wilson Obervatory (one of Hale's earlier creations) played important roles in determining the course of Caltech astrophysics. Changing funding patterns (from private philanthropy to drought, then "defense" weapons-development programs, and then governmental agencies designed to support scientific research) will be briefly described. The 18-inch Schmidt, built at the Caltech (200-inch Telescope) Shop, went into operation in 1936, the first research telescope on Palomar. The 200-inch, essentially completed, was dedicated in 1948 and went into operation for regularly scheduled research observations near the end of 1949. Its coude spectrograph was completed and put into regular use in stages from 1950 to 1952, Among the most important leaders of Caltech astrophysics up to 1948 and the years immediately after it when the 200-inch went into full operation were Robert A. Millikan, Max Mason, and Lee A. DuBridge. Some of the astrophysicists who worked at Caltech and Palomar were Albert Einstein, Richard C. Tolman, Fritz Zwicky, Ira S. Bowen, John A. Anderson, Sinclair Smith, John Strong, William A. Fowler and, just at the end of this period, Jesse L. Greenstein. Some of the key staff personnel were Russell W. Porter, Don O. Hendrix (on loan), and Byron Hill.

  4. How Does The Universe Work? The Physics Of The Cosmos Program (PCOS)

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita M.

    2011-09-01

    The Physics of the Cosmos (PCOS) program incorporates cosmology, high-energy astrophysics, and fundamental physics projects aimed at addressing central questions about the nature of complex astrophysical phenomena such as black holes, neutron stars, dark energy, and gravitational waves. Its overarching theme is, How does the Universe work? PCOS includes a suite of operating (Chandra, Fermi, Planck, XMM-Newton, INTEGRAL) and future missions across the electromagnetic spectrum and beyond, which are in concept development and/or formulation. The PCOS program directly supports development of intermediate TRL (4-6) technology relevant to future missions through the Strategic Astrophysics Technology (SAT) program, as well as data analysis, theory, and experimental astrophysics via other R&A avenues (e.g., ADAP, ATP). The Einstein Fellowship is a vital and vibrant PCOS component funded by the program. PCOS receives community input via its Program Analysis Group, the PhysPAG (www.pcos.gsfc.nasa.gov/physpag.php), whose membership and meetings are open to the community at large. In this poster, we describe the detailed science questions addressed within PCOS, with special emphasis on future opportunities. Details about the PhysPAG operations and functions will be provided, as well as an update on future meetings.

  5. A long-term space astrophysics research program: An x-ray perspective of the components and structure of galaxies

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.

    1995-01-01

    X-ray studies of galaxies by the Smithsonian Astrophysical Observatory (SAO) and MIT are described. Activities at SAO include ROSAT PSPC x-ray data reduction and analysis pipeline; x-ray sources in nearby Sc galaxies; optical, x-ray, and radio study of ongoing galactic merger; a radio, far infrared, optical, and x-ray study of the Sc galaxy NGC247; and a multiparametric analysis of the Einstein sample of early-type galaxies. Activities at MIT included continued analysis of observations with ROSAT and ASCA, and continued development of new approaches to spectral analysis with ASCA and AXAF. Also, a new method for characterizing structure in galactic clusters was developed and applied to ROSAT images of a large sample of clusters. An appendix contains preprints generated by the research.

  6. RoboPol: blazar astrophysics from Skinakas with a unique optical

    NASA Astrophysics Data System (ADS)

    Pavlidou, V.

    2013-09-01

    Blazars are the most active galaxies known. They are powered by relativistic jets of matter speeding towards us almost head-on at the speed of light, radiating exclusively through extreme, non-thermal particle interactions, energized by accretion onto supermassive black holes. Despite intensive observational and theoretical efforts over the last four decades, the details of blazar astrophysics remain elusive. The launch of NASA's Fermi Gamma-ray Space Telescope in 2008 has provided an unprecedented opportunity for the systematic study of blazar jets and has prompted large-scale blazar monitoring efforts across wavelengths. In such a multi-wavelength campaign, a novel effect was discovered: fast changes in the optical polarization during gamma-ray flares. Such events probe the magnetic field structure in the jet and the evolution of disturbances responsible for blazar flares. Their systematic study can answer long-standing questions in our theoretical understanding of jets; however, until recently, optical polarimetry programs in operation were not adequate to find and follow similar events with the efficiency and time-resolution needed. RoboPol is a massive program of optical polarimetric monitoring of over 100 blazars, using an innovative, specially-designed and built polarimeter mounted on the 1.3 m telescope at Skinakas Observatory, a dynamical observing schedule, and a large amount of dedicated telescope time. The program is a collaboration between the University of Crete and the Foundation for Research and Technology - Hellas in Greece, the Max-Planck Institute for Radioastronomy in Germany, Caltech in the US, the Nicolaus Copernicus University in Poland, and the Inter-University Centre for Astronomy and Astrophysics in India. The instrument was successfully commissioned in March of 2013 and has been taking data since. In this talk we will review the RoboPol program, its potential for discovery in blazar astrophysics, and we will present results from its first three months of operation.

  7. 2016 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs.

  8. Engaging Scientists in Meaningful E/PO: How the NASA SMD E/PO Community Addresses the Needs of the Higher Ed Community

    NASA Astrophysics Data System (ADS)

    Manning, James; Meinke, Bonnie K.; Schultz, Gregory R.; Smith, Denise A.; Lawton, Brandon L.; Gurton, Suzanne; NASA Astrophysics E/PO Community

    2015-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring cutting-edge discoveries of NASA missions to the introductory astronomy college classroom. The Astrophysics Forum assists scientist and educator involvement in SMD E/PO (uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. We present three new opportunities for college instructors to bring the latest NASA discoveries in Astrophysics into their classrooms.To address the expressed needs of the higher education community, the Astrophysics Forum collaborated with the Astrophysics E/PO community, researchers, and Astronomy 101 instructors to place individual science discoveries and learning resources into context for higher education audiences. Among these resources are two Resource Guides on the topics of cosmology and exoplanets, each including a variety of accessible sources.The Astrophysics Forum also coordinates the development of the Astro 101 slide set series--5 to 7-slide presentations on new discoveries from NASA Astrophysics missions relevant to topics in introductory astronomy courses. These sets enable Astronomy 101 instructors to include new discoveries not yet in their textbooks into the broader context of the course: http://www.astrosociety.org/education/astronomy-resource-guides/.The Astrophysics Forum also coordinated the development of 12 monthly Universe Discovery Guides, each featuring a theme and a representative object well-placed for viewing, with an accompanying interpretive story, strategies for conveying the topics, and supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs: http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.These resources help enhance the Science, Technology, Engineering, and Mathematics (STEM) experiences of undergraduates.

  9. Teaching radio astrophysics the hand-on way

    NASA Astrophysics Data System (ADS)

    Joshi, Bhal Chandra

    Astronomy and space sciences have always been instrumental in attracting young students to physical sciences. While the lectures/demonstrations and exhibitions pertaining to space sci-ences capture the imagination of young students, these alone are not sufficient to induce them to join scientific research. In countries like India, where a large number of students take to physical sciences for under-graduate education, complex sociological factors are key issues in translating this large body of students to potential researchers. While lectures and exhibition lead to an increase in scientific awareness for these students, these do not give a feel for scien-tific research and bridge the gap between high school/college science education and high end research. In this context, a hands-on approach to astronomy education, in science research environments or closely connected to scientific institutions, offers a promising alternative. This approach has been used in optical astronomy, where inexpensive small telescopes are available, often coupling a vast network of amateur astronomy clubs to leading astronomy institutes. The non-visual and relatively more technical nature of radio astronomy has limited a similar approach in past for connecting students to space sciences using radio waveband. The tech-nological explosion in communication industry and radio connectivity in the last decade along with an expansion in engineering education makes this possible now using a hands-on approach in teaching radio astrophysics. In this presentation, the sociological factors affecting the student choice are discussed followed by a review of the efforts to bridge the above mentioned gap by various groups in the world in the last decade with a view to enumerate the best practices in a hands-on approach. A program using this approach at National Center for Radio Astrophysics is described, where the students are exposed to simple hands-on radio astronomy experiments such as spectral line observations of neutral hydrogen from Milky Way and solar flux moni-toring. Such experiments are also useful to familiarize the students with astronomy jargon, which many times becomes an impediment in connecting them with research. This program also aims to develop low cost radio telescopes with involvement of engineering students and the presentation aims at sharing the experience in this program. Future possibilities bridging the gap between the research institutions, such as ours, and the student population at large are also discussed.

  10. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  11. High altitude perspective. [cost-reimbursable services using NASA U-2 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The capabilities of the NASA Ames Center U-2 aircraft for research or experimental programs are described for such areas as Earth resources inventories; remote sensing data interpretation, electronic sensor research and development; satellite investigative support; stratospheric gas studies; and astronomy and astrophysics. The availability of this aircraft on a cost-reimbursable basis for use in high-altitude investigations that cannot be performed by the private sector is discussed.

  12. Record Number of Summer Students Work at Ames in 2014

    NASA Image and Video Library

    2014-09-16

    NASA's Ames Research Center concluded the 2014 summer student program session that featured a record number of participants from around the globe. More than 1,100 students with high school- to graduate-level education took part in a wide variety of science activities. Some of the activities included robotics, aeronautics, biology, computer science, engineering and astrophysics.

  13. The NASA Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  14. The NASA/IPAC Teacher Archive Research Program (NITARP) at Pierce College

    NASA Astrophysics Data System (ADS)

    Mallory, Carolyn R.; Feig, M.; Mahmud, N.; Silic, T.; Rebull, L.; Hoette, V.; Johnson, C.; McCarron, K.

    2011-01-01

    Our team from Pierce Community College, Woodland Hills, CA, participated in the NASA/IPAC Teacher Archive Research Program (NITARP) this past year (2010). (NITARP is described in another poster, Rebull et al.) Our team worked with archival Spitzer, 2MASS, and optical data to look for young stars in CG4, part of the Gum Nebula; our scientific results are described in a companion poster, Johnson et al. In this poster, we describe more about what we learned and how we incorporated our NITARP experiences into the Pierce College environment. Students developed critical thinking skills and an ability to organize their data analysis and develop a mental "big picture" of what is going on in the CG4 region. The NITARP program is one of several "Active Learning" programs going on at Pierce, and the other programs are briefly summarized in this poster as well. This program was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.

  15. Collapsing Radiative Shocks in Xenon Gas on the Omega Laser

    NASA Astrophysics Data System (ADS)

    Reighard, A. B.; Glendinning, S. G.; Knauer, J.; Bouquet, S.; Koenig, M.

    2005-10-01

    A number of astrophysical systems involve radiative shocks that collapse spatially in response to energy lost through radiation, producing thin shells believed to be Vishniac unstable. We report experiments intended to study such collapsing shocks. The Omega laser drives a thin slab of material at >100 km/s through Xe gas. Simulations predict a collapsed layer in which the density reaches 45 times initial density. X-ray backlighting techniques have yielded images of a collapsed shock compressed to <1/25 its initial thickness (45 μm) at a speed of ˜100 km/s when the shock has traveled 1.3 mm. Optical depth before and behind the shock is important for comparison to astrophysical systems. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.

  16. Laboratory-directed research and development: FY 1996 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less

  17. ASTERIA: Arcsecond Space Telescope Enabling Research in Astrophysics

    NASA Astrophysics Data System (ADS)

    Knapp, M.; Seager, S.; Smith, M. W.; Pong, C. M.

    2017-12-01

    ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics) is a technology demonstration and opportunistic science mission to advance the state of the art in CubeSat capabilities for astrophysical measurements. The goal of ASTERIA is to achieve arcsecond-level line of sight pointing error and highly stable focal plane temperature control. These technologies will enable precision photometry, i.e. the careful measurement of stellar brightness over time. This in turn provides a way to study stellar activity, transiting exoplanets, and other astrophysical phenomena, both during the ASTERIA mission and in future CubeSat constellations. ASTERIA is a 6U CubeSat (roughly 10 x 20 x 30 cm, 12 kg) that will operate in low-Earth orbit. The payload consists of a lens and baffle assembly, a CMOS imager, and a two-axis piezoelectric positioning stage on which the focal plane is mounted. A set of commercial reaction wheels provides coarse attitude control. Fine pointing control is achieved by tracking a set of guide stars on the CMOS sensor and moving the piezoelectric stage to compensate for residual pointing errors. Precision thermal control is achieved by isolating the payload from the spacecraft bus, passively cooling the detector, and using trim heaters to perform small temperature corrections over the course of an observation. The ASTERIA project is a collaboration with MIT and is funded at JPL through the Phaeton Program for training early career employees. Flight hardware was delivered in June 2017, with launch expected in August 2017 and deployment targeted for October 2017.

  18. Promoting the Understanding of Scientific Reasoning, Mathematical Modeling and Data Analysis: A Course for Astrophysics Majors

    NASA Astrophysics Data System (ADS)

    Robbins, Dennis; Ford, S.

    2014-01-01

    The NSF-supported “AstroCom NYC” program, a collaboration of the City University of New York, American Museum of Natural History (AMNH), and Columbia University has the explicit goal of increasing the participation of underrepresented minorities in astronomy and astrophysics by providing pedagogical mentoring and research experiences to undergraduate students. To supplement AstroCom scholars' undergraduate course work, and as a gateway to summer astrophysics research opportunities, we implemented a course called “Methods of Scientific Research” (MSR). The semester-long MSR course emphasizes the study of data using computers and other digital tools in a laboratory environment that encourages collaborative and active learning. We enroll early physical science majors and deliberately seek to inculcate habits of mind needed for science research, including assigning physical meaning to variables and measurements; engaging in mathematical modeling; quantifying error; eliminating bias; proposing hypotheses; creating predictions; testing predictions. Using laptop computers interfaced with probeware, students collect and analyze data using graphing software. Students study concepts such as motion, temperature, magnetism, electricity, gas pressure, and force with open-ended investigations where large data sets can be readily collected and replicated during a course meeting. Students are guided to examine data for patterns and trends, to make meaning of descriptive statistics such as means, standard deviations, maximum and minimum values, correlation coefficients and root mean square error values, and in general to understand, judge, and describe the studied phenomena based on data. A secondary goal of the course is to familiarize students with the facilities at AMNH, where they will do summer research as part of AstroCom NYC, in an effort to build a sense of belonging and to help them begin to self-identify as a scientist. We will discuss some our activities and present our ideas on encouraging habits of mind needed in astrophysics research.

  19. Vision Forward for NASA's Astrophysics Education Program

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Sheth, Kartik J.

    2016-01-01

    NASA has recently re-structured its Science Education program with the competitive selection of twenty-seven programs. Of these, ~60% are relevant to Astrophysics, and three have primarily Astrophysics content. A brief overview of the rationale for re-structuring will be presented. We have taken a strategic approach, building on our science-discipline based legacy and looking at new approaches given Stakeholder priorities. We plan to achieve our education goals with the selection of organizations that utilize NASA data, products, or processes to meet NASA's education objectives; and by enabling our scientists and engineers with education professionals, tools, and processes to better meet user needs. Highlights of the selected programs will be presented, and how they enable the vision going forward of achieving the goal of enabling NASA scientists and engineers to engage more effectively with learners of all ages.

  20. Herzberg Institute of Astrophysics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Herzberg Institute of Astrophysics (HIA) is the Institute within the NATIONAL RESEARCH COUNCIL of Canada responsible for providing astronomical facilities, and developing related instrumentation and software for Canadian researchers. The Institute was established in 1975, and now operates 1.8 m and 1.2 m optical telescopes at the DOMINION ASTROPHYSICAL OBSERVATORY close to Victoria, BC, as we...

  1. Cosmic Origins (COR) Technology Development Program Overview

    NASA Astrophysics Data System (ADS)

    Werneth, Russell; Pham, B.; Clampin, M.

    2014-01-01

    The Cosmic Origins (COR) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for COR Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the COR Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report includes a 4m-class UV/optical telescope that would conduct imaging and spectroscopy as a post-Hubble observatory with significantly improved sensitivity and capability, a near-term investigation of NASA participation in the Japanese Aerospace Exploration Agency/Institute of Space and Astronautical Science (JAXA/ISAS) Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission, and future Explorers.

  2. Thin Mirror Shaping Technology for High-Throughput X-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Schattenburg, Mark

    This proposal is submitted to the NASA Research Opportunities in Space and Earth Sciences program (ROSES-2012) in response to NASA Research Announcement NNH12ZDA001N- APRA. It is targeted to the Astronomy and Astrophysics Research and Analysis (APRA) program element under the Supporting Technology category. Powerful x-ray telescope mirrors are critical components of a raft of small-to-large mission concepts under consideration by NASA. The science questions addressed by these missions have certainly never been more compelling and the need to fulfill NASA s core missions of exploring the universe and strengthening our nation s technology base has never been greater. Unfortunately, budgetary constraints are driving NASA to consider the cost/benefit and risk factors of new missions more carefully than ever. New technology for producing x-ray telescopes with increased resolution and collecting area, while holding down cost, are key to meeting these goals and sustaining a thriving high-energy astrophysics enterprise in the US. We propose to develop advanced technology which will lead to thin-shell x-ray telescope mirrors rivaling the Chandra x-ray telescope in spatial resolution but with 10-100X larger area all at significantly reduced weight, risk and cost. The proposed effort builds on previous research at MIT and complements NASA-supported research at other institutions. We are currently pursuing two thin-mirror technology development tracks which we propose to extend and accelerate with NASA support. The first research track utilizes rapidly-maturing thermal glass slumping technology which uses porous ceramic air-bearing mandrels to shape glass mirrors without touching, thus avoiding surface-induced mid-range spatial frequency ripples. A second research track seeks to remove any remaining mid- to long-range errors in mirrors by using scanning ion-beam implant to impart small, highly deterministic and very stable amounts of stress into thin glass, utilizing local bending moments to correct mirror shape. Preliminary results from our lab demonstrate the simplicity, specificity, and exquisite sensitivity of this technique on silicon and glass wafers. We believe that the combination of these new technologies has the potential to revolutionize thin mirror shaping technology and will enable a renaissance in high-energy astrophysics.

  3. POCA Update: An NSF PAARE Project

    NASA Astrophysics Data System (ADS)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M., Jr.

    2011-01-01

    We report on the status of "A Partnership in Observational and Computational Astronomy (POCA)” under the NSF's "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. This partnership includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) and the National Optical Astronomy Observatory. We have reached the midpoint of this 5-year award and discuss the successes, challenges and obstacles encountered to date. Included is a summary of our summer REU program, the POCA graduate fellowship program, faculty research capacity building, outreach activities, increased use of NSF facilities and shared resources. Additional POCA research presentations by the authors are described elsewhere in these proceedings. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory.

  4. Role of theory in space science

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The goal of theory is to understand how the fundamental laws of physics laws of physics and chemistry give rise to the features of the universe. It is recommended that NASA establish independent theoretical research programs in planetary sciences and in astrophysics similar to the solar-system plasma-physics theory program, which is characterized by stable, long-term support for theorists in university departments, NASA centers, and other organizations engaged in research in topics relevant to present and future space-derived data. It is recommended that NASA keep these programs under review to full benefit from the resulting research and to assure opportunities for inflow of new ideas and investigators. Also, provisions should be made by NASA for the computing needs of the theorists in the programs. Finally, it is recommended that NASA involve knowledgeable theorists in mission planning activities at all levels, from the formulation of long-term scientific strategies through the planning and operation of specific missions.

  5. 77 FR 4370 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... persons, scientific and technical information relevant to program planning. DATES: Thursday, February 23... topics: --Astrophysics Division Update --Update on Balloons Return to Flight Changes --James Webb Space...

  6. Enhancing Undergraduate Education with NASA Resources

    NASA Astrophysics Data System (ADS)

    Manning, James G.; Meinke, Bonnie; Schultz, Gregory; Smith, Denise Anne; Lawton, Brandon L.; Gurton, Suzanne; Astrophysics Community, NASA

    2015-08-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring cutting-edge discoveries of NASA missions to the introductory astronomy college classroom. Uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogical expertise, the Forum has coordinated the development of several resources that provide new opportunities for college and university instructors to bring the latest NASA discoveries in astrophysics into their classrooms.To address the needs of the higher education community, the Astrophysics Forum collaborated with the astrophysics E/PO community, researchers, and introductory astronomy instructors to place individual science discoveries and learning resources into context for higher education audiences. The resulting products include two “Resource Guides” on cosmology and exoplanets, each including a variety of accessible resources. The Astrophysics Forum also coordinates the development of the “Astro 101” slide set series. The sets are five- to seven-slide presentations on new discoveries from NASA astrophysics missions relevant to topics in introductory astronomy courses. These sets enable Astronomy 101 instructors to include new discoveries not yet in their textbooks in their courses, and may be found at: https://www.astrosociety.org/education/resources-for-the-higher-education-audience/.The Astrophysics Forum also coordinated the development of 12 monthly “Universe Discovery Guides,” each featuring a theme and a representative object well-placed for viewing, with an accompanying interpretive story, strategies for conveying the topics, and supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. These resources are adaptable for use by instructors and may be found at: http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.These resources help enhance the Science, Technology, Engineering, and Mathematics (STEM) experiences of undergraduates, and will be described with access information provided.

  7. The development of composite materials for spacecraft precision reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.

    1990-01-01

    One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.

  8. Final Report for DOE Grant Number DE-SC0001481

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Edison

    2013-12-02

    This report covers research activities, major results and publications supported by DE-SC-000-1481. This project was funded by the DOE OFES-NNSA HEDLP program. It was a joint research program between Rice University and the University of Texas at Austin. The physics of relativistic plasmas was investigated in the context of ultra-intense laser irradiation of high-Z solid targets. Laser experiments using the Texas Petawatt Laser were performed in the summers of 2011, 2012 and 2013. Numerical simulations of laser-plasma interactions were performed using Monte Carlo and Particle-in-Cell codes to design and support these experiments. Astrophysical applications of these results were also investigated.

  9. Smoot Astrophysics Research Program

    Science.gov Websites

    the same basic force and have frozen out to different forces in the cooler present Universe. We see Implications of the COBE DMR Map of the Early Universe What COBE DMR saw: The COBE DMR (Cosmic Background Explorer Differential Microwave Radiometer) mapped the microwave (wavelengths of 9, 5,6, and 3.3

  10. The joint NASA/Goddard-University of Maryland research program in charged particle and high energy photon detector technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Progress made in the following areas is discussed: low energy ion and electron experiments; instrument design for current experiments; magnetospheric measurement of particles; ion measurement in the earth plasma sheet; abundance measurement; X-ray data acquisition; high energy physics; extragalactic astronomy; compact object astrophysics; planetology; and high energy photon detector technology.

  11. Goddard's Astrophysics Science Divsion Annual Report 2014

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2015-01-01

    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS) Explorer mission, in collaboration with MIT (Ricker, PI); the Soft X-ray Spectrometer (SXS) for the Astro-H mission in collaboration with JAXA, and the James Webb Space Telescope (JWST). The Wide-Field Infrared Survey Telescope (WFIRST), the highest ranked mission in the 2010 decadal survey, is in a pre-phase A study, and we are supplying study scientists for that mission.

  12. An Undergraduate Research Experience on Studying Variable Stars

    NASA Astrophysics Data System (ADS)

    Amaral, A.; Percy, J. R.

    2016-06-01

    We describe and evaluate a summer undergraduate research project and experience by one of us (AA), under the supervision of the other (JP). The aim of the project was to sample current approaches to analyzing variable star data, and topics related to the study of Mira variable stars and their astrophysical importance. This project was done through the Summer Undergraduate Research Program (SURP) in astronomy at the University of Toronto. SURP allowed undergraduate students to explore and learn about many topics within astronomy and astrophysics, from instrumentation to cosmology. SURP introduced students to key skills which are essential for students hoping to pursue graduate studies in any scientific field. Variable stars proved to be an excellent topic for a research project. For beginners to independent research, it introduces key concepts in research such as critical thinking and problem solving, while illuminating previously learned topics in stellar physics. The focus of this summer project was to compare observations with structural and evolutionary models, including modelling the random walk behavior exhibited in the (O-C) diagrams of most Mira stars. We found that the random walk could be modelled by using random fluctuations of the period. This explanation agreed well with observations.

  13. Satellite-tracking and earth-dynamics research programs. [NASA Programs on satellite orbits and satellite ground tracks of geodetic satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.

  14. Astrophysical Magnetic Fields and Topics in Galaxy Formation

    NASA Technical Reports Server (NTRS)

    Field, George B.

    1997-01-01

    The grant was used to support theoretical research on a variety of astro-physical topics falling broadly into those described by the proposal: galaxy formation, astrophysical magnetic fields, magnetized accretion disks in AGN, new physics, and other astrophysical problems. Work accomplished; references are to work authored by project personel.

  15. Modeling Laser-Driven Laboratory Astrophysics Experiments Using the CRASH Code

    NASA Astrophysics Data System (ADS)

    Grosskopf, Michael; Keiter, P.; Kuranz, C. C.; Malamud, G.; Trantham, M.; Drake, R.

    2013-06-01

    Laser-driven, laboratory astrophysics experiments can provide important insight into the physical processes relevant to astrophysical systems. The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density laboratory astrophysics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. The CRASH model has been used on many applications including: radiative shocks, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL) collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  16. The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans

    NASA Astrophysics Data System (ADS)

    Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).

  17. NASA Laboratory Astrophysics Workshop 2006 Introductory Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2006-01-01

    NASA Laboratory Astrophysics Workshop 2006, is the fourth in a series of workshops held at four year intervals, to assess the laboratory needs of NASA's astrophysics missions - past, current and future. Investigators who need laboratory data to interpret their observations from space missions, theorists and modelers, experimentalists who produce the data, and scientists who compile databases have an opportunity to exchange ideas and understand each other's needs and limitations. The multi-wavelength character of these workshops allows cross-fertilization of ideas, raises awareness in the scientific community of the rapid advances in other fields, and the challenges it faces in prioritizing its laboratory needs in a tight budget environment. Currently, we are in the golden age of Space Astronomy, with three of NASA s Great Observatories, Hubble Space Telescope (HST), Chandra X-Ray Observatory (CXO), and Spitzer Space Telescope (SST), in operation and providing astronomers and opportunity to perform synergistic observations. In addition, the Far Ultraviolet Spectroscopic Explorer (FUSE), XMM-Newton, HETE-2, Galaxy Evolution Explorer (GALEX), INTEGRAL and Wilkinson Microwave Anisotropy Probe (WMAP), are operating in an extended phase, while Swift and Suzaku are in their prime phase of operations. The wealth of data from these missions is stretching the Laboratory Astrophysics program to its limits. Missions in the future, which also need such data include the James Webb Space Telescope (JWST), Space Interferometry Mission (SIM), Constellation-X (Con-X), Herschel, and Planck. The interpretation of spectroscopic data from these missions requires knowledge of atomic and molecular parameters such as transition probabilities, f-values, oscillator strengths, excitation cross sections, collision strengths, which have either to be measured in the laboratory by simulating space plasma and interactions therein, or by theoretical calculations and modeling. Once the laboratory data are obtained, a key step to making them available to the observer is the creation and maintenance of critically compiled databases. Other areas of study, that are important for understanding planet formation, and for detection of molecules that are indicators of life, are also supported by the Laboratory Astrophysics program. Some examples are: studies of ices and dust grains in a space environment; nature and evolution of interstellar carbon-rich dust; and polycyclic aromatic hydrocarbons. In addition, the program provides an opportunity for the investigation of novel ideas, such as simulating radiative shock instabilities in plasmas, in order to understand jets observed in space. A snapshot of the currently funded program, mission needs, and relevance of laboratory data to interpreting observations, will be obtained at this workshop through invited and contributed talks and poster papers. These will form the basis for discussions in splinter groups. The Science Organization Committee will integrate the results of the discussions into a coherent White Paper, which will provide guidance to NASA in structuring the Laboratory Astrophysics program in subsequent years, and also to the scientific community in submitting research proposals to NASA for funding.

  18. Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Benson, Scott W.; Falck, Robert D.; Fixsen, Dale J.; Gardner, Joseph P.; Garvin, James B.; Kruk, Jeffrey W.; Oleson, Stephen R.; Thronson, Harley A.

    2012-01-01

    We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. This new capability enables up to 13X increased photometric sensitivity and 160X increased observing speed relative to a Sun- Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRL-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the science performance of much larger long development time systems; thus, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions. SEP is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

  19. What Can Science Do for Me? Engaging Urban Teens in the Chandra Astrophysics Institute

    NASA Astrophysics Data System (ADS)

    Hartman, M.; Porro, I.; Baganoff, F.

    2008-06-01

    We present three years of longitudinal data showing how we can engage underrepresented high-school youth in out-of-school time research science. Over three years our participant population has evolved to be more reflective of the Boston student population as a result of changes in our recruitment strategy. In addition, changes in 4 major program areas helped all participant populations move toward our intended outcome of better understanding of the process of research science.

  20. VI European Summer School on Experimental Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    The European Summer School on Experimental Nuclear Astrophysics has reached the sixth edition, marking the tenth year's anniversary. The spirit of the school is to provide a very important occasion for a deep education of young researchers about the main topics of experimental nuclear astrophysics. Moreover, it should be regarded as a forum for the discussion of the last-decade research activity. Lectures are focused on various aspects of primordial and stellar nucleosynthesis, including novel experimental approaches and detectors, indirect methods and radioactive ion beams. Moreover, in order to give a wide educational offer, some lectures cover complementary subjects of nuclear astrophysics such as gamma ray astronomy, neutron-induced reactions, short-lived radionuclides, weak interaction and cutting-edge facilities used to investigate nuclear reactions of interest for astrophysics. Large room is also given to young researcher oral contributions. Traditionally, particular attention is devoted to the participation of students from less-favoured countries, especially from the southern coast of the Mediterranean Sea. The school is organised by the Catania Nuclear Astrophysics research group with the collaboration of Dipartimento di Fisica e Astromomia - Università di Catania and Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare.

  1. Activities of the Space Studies Board of the National Research Council

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This 1993 annual report of the Space Studies Board of the National Research Council chronicles the activities of the board during a year filled with questioning and change in the country's civil space program. The brief accounts contained herein of the activities of the board and of its committees, together with summaries of two major reports and the complete texts of three letter reports, sketch out major space research issues that faced the nation's space scientists and engineers during the year, including scientific prerequisites for the human exploration of space, improving NASA's technology for space science, the space station and prerequisites for the human exploration program, several issues in the space life sciences, and the Advanced X-ray Astrophysics Facility.

  2. Ge Detector Data Classification with Neural Networks

    NASA Astrophysics Data System (ADS)

    Wilson, Carly; Martin, Ryan; Majorana Collaboration

    2014-09-01

    The Majorana Demonstrator experiment is searching for neutrinoless double beta-decay using p-type point contact PPC germanium detectors at the Sanford Underground Research Facility, in South Dakota. Pulse shape discrimination can be used in PPC detectors to distinguish signal-like events from backgrounds. This research program explored the possibility of building a self-organizing map that takes data collected from germanium detectors and classifies the events as either signal or background. Self organizing maps are a type of neural network that are self-learning and less susceptible to being biased from imperfect training data. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle and Nuclear Astrophysics Program of the National Science Foundation and the Russian Foundation for Basic Research.

  3. NASA's Laboratory Astrophysics Workshop: Opening Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2002-01-01

    The Astronomy and Physics Division at NASA Headquarters has an active and vibrant program in Laboratory Astrophysics. The objective of the program is to provide the spectroscopic data required by observers to analyze data from NASA space astronomy missions. The program also supports theoretical investigations to provide those spectroscopic parameters that cannot be obtained in the laboratory; simulate space environment to understand formation of certain molecules, dust grains and ices; and production of critically compiled databases of spectroscopic parameters. NASA annually solicits proposals, and utilizes the peer review process to select meritorious investigations for funding. As the mission of NASA evolves, new missions are launched, and old ones are terminated, the Laboratory Astrophysics program needs to evolve accordingly. Consequently, it is advantageous for NASA and the astronomical community to periodically conduct a dialog to assess the status of the program. This Workshop provides a forum for producers and users of laboratory data to get together and understand each others needs and limitations. A multi-wavelength approach enables a cross fertilization of ideas across wavelength bands.

  4. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  5. Engaging Scientists in Meaningful E/PO: How the NASA SMD E/PO Community Addresses the needs of Underrepresented Audiences through NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Smith, Denise A.; Bleacher, Lora; Hauck, Karin; Soeffing, Cassie; NASA SMD E/PO Community

    2015-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring the NASA science education resources and expertise to libraries nationwide. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO (which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. The NASA Science4Girls and Their Families initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging this particular underserved and underrepresented audience in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  6. Introducing Astrophysics Research to High School Students.

    ERIC Educational Resources Information Center

    Etkina, Eugenia; Lawrence, Michael; Charney, Jeff

    1999-01-01

    Presents an analysis of an astrophysics institute designed for high school students. Investigates how students respond cognitively in an active science-learning environment in which they serve as apprentices to university astrophysics professors. (Author/CCM)

  7. The Caltech Concurrent Computation Program - Project description

    NASA Technical Reports Server (NTRS)

    Fox, G.; Otto, S.; Lyzenga, G.; Rogstad, D.

    1985-01-01

    The Caltech Concurrent Computation Program wwhich studies basic issues in computational science is described. The research builds on initial work where novel concurrent hardware, the necessary systems software to use it and twenty significant scientific implementations running on the initial 32, 64, and 128 node hypercube machines have been constructed. A major goal of the program will be to extend this work into new disciplines and more complex algorithms including general packages that decompose arbitrary problems in major application areas. New high-performance concurrent processors with up to 1024-nodes, over a gigabyte of memory and multigigaflop performance are being constructed. The implementations cover a wide range of problems in areas such as high energy and astrophysics, condensed matter, chemical reactions, plasma physics, applied mathematics, geophysics, simulation, CAD for VLSI, graphics and image processing. The products of the research program include the concurrent algorithms, hardware, systems software, and complete program implementations.

  8. At the origins of the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Lattuada, Marcello

    2018-01-01

    During the seventies and eighties a long experimental research program on the quasi-free reactions at low energy was carried out by a small group of nuclear physicists, where Claudio Spitaleri was one of the main protagonists. Nowadays, a posteriori, the results of these studies can be considered an essential step preparatory to the application of the Trojan Horse Method (THM) in Nuclear Astrophysics.

  9. The ARC (Astrophysical Research Consortium) telescope project.

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.

    A consortium of universities intends to construct a 3.5 meter optical-infrared telescope at a site in south-central New Mexico. The use of innovative mirror technology, a fast primary, and an alt-azimuth mounting results in a compact and lightweight instrument. This telescope will be uniquely well-suited for addressing certain observational programs by virtue of its capability for fully remote operation and rapid instrument changes.

  10. Center for Theoretical Underground Physics and Related Areas - CETUP*2013 Summer Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczerbinska, Barbara

    In response to an increasing interest in experiments conducted at deep underground facilities around the world, in 2010 the theory community has proposed a new initiative - a Center for Theoretical Underground Physics and Related Areas (CETUP*). The main goal of CETUP* is to bring together people with different talents and skills to address the most exciting questions in particle and nuclear physics, astrophysics, geosciences, and geomicrobiology. Scientists invited to participate in the program do not only provide theoretical support to the underground science, they also examine underlying universal questions of the 21 st century including: What is dark matter?,more » What are the masses of neutrinos?, How have neutrinos shaped the evolution of the universe?, How were the elements from iron to uranium made?, What is the origin and thermal history of the Earth? The mission of the CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science via individual and collaborative research in dynamic atmosphere of intense scientific interactions. Our main goal is to bring together scientists scattered around the world, promote the deep underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities. CETUP*2014 included 5 week long program (June 24 – July 26, 2013) covering various theoretical and experimental aspects of Dark Matter, Neutrino Physics and Astrophysics. Two week long session focused on Dark Matter (June 24-July 6) was followed by two week long program on Neutrino Physics and Astrophysics (July 15-26). The VII th International Conference on Interconnections between Particle Physics and Cosmology (PPC) was sandwiched between these sessions (July 8-13) covering the subjects of dark matter, neutrino physics, gravitational waves, collider physics and other from both theoretical end experimental aspects. PPC was initiated at Texas A&M University in 2007 and travelled to many places which include Geneva, Turin, Seoul (S. Korea) etc. during the last 5 years before coming back to USA. The objectives of CETUP* and PPC were to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results and predictions for possible experiments, develop a theoretical understanding of the three-neutrino oscillation parameters, provide a stimulating venue for exchange of scientific ideas among experts in neutrino physics and unification, connect with venues for public education outreach to communicate the importance of dark matter, neutrino research, and support of investment in science education, support mission of the Snowmass meeting and allow for extensive discussions of the ideas crucial for the future of high energy physics. The selected subjects represented the forefront of research topics in particle and nuclear physics, for example: recent precise measurements of all the neutrino mixing angles (that necessitate a theoretical roadmap for future experiments) or understanding of the nature of dark matter (that allows us to comprehend the composition of the cosmos better). All the covered topics are considered as a base for new physics beyond the Standard Model of particle physics.« less

  11. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  12. Art as a Vehicle for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Kilburn, Micha

    2013-04-01

    One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.

  13. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Using Real NASA Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.

  14. Nasa Program Plan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

  15. The EB Factory: Fundamental Stellar Astrophysics with Eclipsing Binary Stars Discovered by Kepler

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan

    Eclipsing binaries (EBs) are key laboratories for determining the fundamental properties of stars. EBs are therefore foundational objects for constraining stellar evolution models, which in turn are central to determinations of stellar mass functions, of exoplanet properties, and many other areas. The primary goal of this proposal is to mine the Kepler mission light curves for: (1) EBs that include a subgiant star, from which precise ages can be derived and which can thus serve as critically needed age benchmarks; and within these, (2) long-period EBs that include low-mass M stars or brown dwarfs, which are increa-singly becoming the focus of exoplanet searches, but for which there are the fewest available fundamental mass- radius-age benchmarks. A secondary goal of this proposal is to develop an end-to-end computational pipeline -- the Kepler EB Factory -- that allows automatic processing of Kepler light curves for EBs, from period finding, to object classification, to determination of EB physical properties for the most scientifically interesting EBs, and finally to accurate modeling of these EBs for detailed tests and benchmarking of theoretical stellar evolution models. We will integrate the most successful algorithms into a single, cohesive workflow environment, and apply this 'Kepler EB Factory' to the full public Kepler dataset to find and characterize new "benchmark grade" EBs, and will disseminate both the enhanced data products from this pipeline and the pipeline itself to the broader NASA science community. The proposed work responds directly to two of the defined Research Areas of the NASA Astrophysics Data Analysis Program (ADAP), specifically Research Area #2 (Stellar Astrophysics) and Research Area #9 (Astrophysical Databases). To be clear, our primary goal is the fundamental stellar astrophysics that will be enabled by the discovery and analysis of relatively rare, benchmark-grade EBs in the Kepler dataset. At the same time, to enable this goal will require bringing a suite of extant and new custom algorithms to bear on the Kepler data, and thus our development of the Kepler EB Factory represents a value-added product that will allow the widest scientific impact of the in-formation locked within the vast reservoir of the Kepler light curves.

  16. Astrobites: Engaging Undergraduate Science Majors with Current Astrophysical Research

    NASA Astrophysics Data System (ADS)

    Zevin, Michael; Astrobites

    2017-01-01

    Astrobites is a graduate-student organization that publishes an online astrophysical literature blog (astrobites.com). The purpose of the site is to make current astrophysical research accessible to and exciting for undergraduate physical science majors and astronomy enthusiasts, and the site now hosts an archive of over 1300 posts summarizing recent astrophysical research. In addition, Astrobites presents posts on career guidance, practical 'how-to' articles, conference summaries, and astronomy news. Astrobites has an average of more than 1000 pageviews per day and reaches not only its target audience of undergraduates, but also graduate students and professionals within astronomy, astronomy enthusiasts, and educators. As we enter our seventh year of successful blogging, we share here the most up-to-date summary of our organization, readership, and growth.

  17. NASA's Universe of Learning: Engaging Learners in Discovery

    NASA Astrophysics Data System (ADS)

    Cominsky, L.; Smith, D. A.; Lestition, K.; Greene, M.; Squires, G.

    2016-12-01

    NASA's Universe of Learning is one of 27 competitively awarded education programs selected by NASA's Science Mission Directorate (SMD) to enable scientists and engineers to more effectively engage with learners of all ages. The NASA's Universe of Learning program is created through a partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University. The program will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of over 500 partners to advance the objectives of SMD's newly restructured education program. The multi-institutional team will develop and deliver a unified, consolidated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Exoplanet Exploration theme. Program elements include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; providing professional development for pre-service educators, undergraduate instructors, and informal educators; and, producing resources for special needs and underserved/underrepresented audiences. This presentation will provide an overview of the program and process for mapping discoveries to products and programs for informal, lifelong, and self-directed learning environments.

  18. Astrobites: The Online Astronomy Research Digest for Undergraduates

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher; Astrobites Collaboration

    2013-06-01

    Astrobites (http://astrobites.org) is an innovative science education initiative developed by graduate students in astrophysics for an undergraduate audience. Our goal is to help undergraduates make the transition from the classroom to careers in research by introducing them to the astronomical literature in a pedagogical, approachable, and comprehensible way. Every day we select one new journal article posted to the astrophysics preprint server (http://arXiv.org/astro-ph) and prepare a brief summary describing methods and results, explaining jargon, and providing context. We also write regular blog posts containing career advice, such as tips for applying for graduate school, how to install astronomical software, or demystifying the publishing process. The articles are written by a team of about 30 graduate students in astrophysics from throughout the US and Europe. Since its founding in 2010, Astrobites has grown dramatically, now reaching more than 1000 daily readers in over 100 countries worldwide. Our audience includes not only undergraduates, but also interested non-scientists, educators, and professional researchers. More broadly, Astrobites is interested in fostering the development of vital communication skills that are crucial to a successful science career, yet not formally taught in most astronomy PhD programs. In addition to providing our graduate student authors with valuable opportunities to practice these skills through writing and editing articles, we organize events such as the upcoming workshop Communicating Science 2013, at which graduate students in all science fields from around the country will learn from and interact with panelists who are experts in science communication.

  19. Building Effective Scientist-Educator Communities of Practice: NASA's Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Peticolas, L. M.; Shipp, S. S.; Smith, D. A.

    2014-12-01

    Since 1993, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The result is significant, evaluated EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advance STEM education and literacy, and enable students and educators to participate in the practices of science and engineering as embodied in the 2013 Next Generation Science Standards. This presentation by the leads of the four NASA SMD Science EPO Forums provides big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting tools that were developed to foster a collaborative community and examples of program effectiveness and impact. The Forums are led by: Astrophysics - Space Telescope Science Institute (STScI); Earth Science - Institute for Global Environmental Strategies (IGES); Heliophysics - University of California, Berkeley; and Planetary Science - Lunar and Planetary Institute (LPI).

  20. AS12-AS101-3 Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew; Benson, S.; Falck, R.; Fixsen, D.; Gardner, J.; Garvin, J.; Kruk, J.; Oleson, S.; Thronson, H.

    2011-01-01

    We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. Over the above wavelength range, observatory performance is limited by zodiacal light. This new capability enables up to 10X increased photometric sensitivity and 160X increased observing speed relative to a Sun-Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRl-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the Science performance of much larger long development time systems; thuS, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions and is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

  1. NASA Astrophysics EPO Community: Enhancing STEM Experience of Undergraduates

    NASA Astrophysics Data System (ADS)

    Manning, J.; Meinke, B. K.; Lawton, B.; Smith, D. A.; Bartolone, L.; Schultz, G.; NASA Astrophysics EPO Community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enhance the Science, Technology, Engineering, and Math (STEM) experience of undergraduates. The NASA SMD Astrophysics EPO community has proven expertise in providing both professional development and resources to faculty at two- and four-year institutions and in offering internships and student collaboration opportunities. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum engage the higher education community in these ways, including associated metrics and evaluation findings.

  2. NRL SSD Research Achievements: 20002010. Volume 5

    DTIC Science & Technology

    2015-10-30

    monochromatic spectral images of the solar corona at unprecedented spatial and spectral resolution, allowing the physical properties of the corona to be...launch, is a tremendous astrophysical mission that is opening up the gamma ray sky. NRL SSD has played leading roles in the development of GLAST...experimentation program to study the atmospheres of the Sun and the Earth, the physics and properties of high-energy space environments, and solar

  3. Statistics and Informatics in Space Astrophysics

    NASA Astrophysics Data System (ADS)

    Feigelson, E.

    2017-12-01

    The interest in statistical and computational methodology has seen rapid growth in space-based astrophysics, parallel to the growth seen in Earth remote sensing. There is widespread agreement that scientific interpretation of the cosmic microwave background, discovery of exoplanets, and classifying multiwavelength surveys is too complex to be accomplished with traditional techniques. NASA operates several well-functioning Science Archive Research Centers providing 0.5 PBy datasets to the research community. These databases are integrated with full-text journal articles in the NASA Astrophysics Data System (200K pageviews/day). Data products use interoperable formats and protocols established by the International Virtual Observatory Alliance. NASA supercomputers also support complex astrophysical models of systems such as accretion disks and planet formation. Academic researcher interest in methodology has significantly grown in areas such as Bayesian inference and machine learning, and statistical research is underway to treat problems such as irregularly spaced time series and astrophysical model uncertainties. Several scholarly societies have created interest groups in astrostatistics and astroinformatics. Improvements are needed on several fronts. Community education in advanced methodology is not sufficiently rapid to meet the research needs. Statistical procedures within NASA science analysis software are sometimes not optimal, and pipeline development may not use modern software engineering techniques. NASA offers few grant opportunities supporting research in astroinformatics and astrostatistics.

  4. Studying Turbulence Using Numerical Simulation Databases, 8. Proceedings of the 2000 Summer Program

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The eighth Summer Program of the Center for Turbulence Research took place in the four-week period, July 2 to July 27, 2000. This was the largest CTR Summer Program to date, involving forty participants from the U. S. and nine other countries. Twenty-five Stanford and NASA-Ames staff members facilitated and contributed to most of the Summer projects. Several new topical groups were formed, which reflects a broadening of CTR's interests from conventional studies of turbulence to the use of turbulence analysis tools in applications such as optimization, nanofluidics, biology, astrophysical and geophysical flows. CTR's main role continues to be in providing a forum for the study of turbulence and other multi-scale phenomena for engineering analysis. The impact of the summer program in facilitating intellectual exchange among leading researchers in turbulence and closely related flow physics fields is clearly reflected in the proceedings.

  5. Investigations in γ-Ray Astrophysics and Astroparticle Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krennrich, Frank

    This report describes the status of data analysis efforts, results and publications of research grant DE-SC0009917. The research is focused on TeV gamma-ray studies of astrophysical sources and related particle physics questions.

  6. Space Studies Board Annual Report 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The following summaries of major reports are presented: (1) 'Scientific Opportunities in the Human Exploration of Space;' (2) 'A Space Physics Paradox;' (3) 'An Integrated Strategy for the Planetary Sciences;' and (4) 'ONR (Office of Naval Research) Research Opportunities in Upper Atmospheric Sciences.' Short reports on the following topics are also presented: life and microgravity sciences and the Space Station Program, the Space Infrared Telescope Facility and the Stratospheric Observatory for infrared astronomy, the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe, and the utilization of the Space Station.

  7. Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    NASA Technical Reports Server (NTRS)

    Cutts, James (Editor); Ng, Edward (Editor)

    1991-01-01

    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization.

  8. Early Spacelab physics and astronomy missions

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.

    1976-01-01

    Some of the scientific problems which will be investigated during the early Spacelab physics and astronomy missions are reviewed. The Solar Terrestrial Programs will include the Solar Physics Spacelab Payloads (SPSP) and the Atmospheres, Magnetospheres and Plasmas in Space (AMPS) missions. These missions will study the sun as a star and the influence of solar phenomena on the earth, including sun-solar wind interface, the nature of the solar flares, etc. The Astrophysics Spacelab Payloads (ASP) programs are divided into the Ultraviolet-Optical Astronomy and the High Energy Astrophysics areas. The themes of astrophysics Spacelab investigations will cover the nature of the universe, the fate of matter and the life cycles of stars. The paper discusses various scientific experiments and instruments to be used in the early Spacelab missions.

  9. Workshop Proceedings: Optical Systems Technology for Space Astrophysics in the 21st Century, volume 3

    NASA Technical Reports Server (NTRS)

    Ayon, Juan A. (Editor)

    1992-01-01

    A technology development program, Astrotech 21, is being proposed by NASA to enable the launching of the next generation of space astrophysical observatories during the years 1995-2015. Astrotech 21 is being planned and will ultimately be implemented jointly by the Astrophysics Division of the Office of Space Science and Applications and the Space Directorate of the Office of Aeronautics and Space Technology. A summary of the Astrotech 21 Optical Systems Technology Workshop is presented. The goal of the workshop was to identify areas of development within advanced optical systems that require technology advances in order to meet the science goals of the Astrotech 21 mission set, and to recommend a coherent development program to achieve the required capabilities.

  10. Center for Theoretical Underground Physics and Related Areas – CETUP*2016 Summer Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczerbinska, Barbara

    For last six years Center for Theoretical Underground Physics and Related Areas (CETUP*) successfully provided a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. CETUP*2016 was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle and nuclear physics, astrophysics and cosmology from around the world. Scientists invited to participate in the program not only provided theoretical support to the underground science,more » but they also examined core questions including: What is the nature of dark matter?, What is the origin of the neutrino masses?, How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, , What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? and many others. The 2016 CETUP* summer program consisted of three sessions (June 6 – July 16, 2016) covering various aspects of theoretical and experimental neutrino physics, unification and dark matter. The two week long session on Physics and Instrumentation of the Near Detector for the Long-Baseline Neutrino Experiments (June 6 – June 16) was followed by the two week long Neutrino Physics/Unification session: “From Grand Unification to String Theory and Back” (June 20 – July 2). The program ended with two week long session on Dark Matter Physics (July 4 – July 16). This six-week long program allowed for thorough discussions and an effective and comprehensive analysis of topics related to Dark Matter, Dark Energy, Neutrino Physics including astrophysical neutrinos, near and far detector physics, neutrino interactions, Higgs Boson, Inflation, Leptogenesis and many others that will advance the knowledge in particle and nuclear physics, astrophysics and cosmology. The scientific program usually consisted of 2-3 hour-long talks on selected subjects in dark matter and neutrino physics from both theoretical and experimental perspective and followed by extended in depth discussions. The format of the program accommodated separate discussion sessions where the outstanding issues of the disciplines were explored, for example: The Future of Large Physics Projects in the US, and the Role of Theory in the Future of US Physics. 2016 CETUP* summer program was attended by over 70 national and international scientists (including 17 graduate students, 16 postdocs and 39 senior scientists) from over 48 different universities and laboratories. CETUP* participants were very active senior and junior members of the community in order to make the discussions informative and productive. CETUP* 2016 provided a stimulating venue for the exchange of scientific ideas among experts in dark matter, neutrino physics, particle physics, astrophysics and cosmology. During Dark Matter session thirty-seven scientific talks and extended discussions were presented. Twenty-nine talks and discussions were conducted during the Neutrino Physics sessions by international Neutrino Physics experts. The power point presentations for the talks and discussions can be found on the CETUP* website: http://research.dsu.edu/cetup/agenda.aspx. Based on the collaborations established during CETUP* already ten preprints were published and many more are in preparation: https://research.dsu.edu/cetup/preprints.aspx?cetupYear=2016. The proceedings from CETUP*2016 are in preparation to be published by American Institute of Physics in summer 2017. Multiple outreach efforts aimed to share the excitement of the research with K-12, teachers, undergraduate and graduate students as well as the general public.« less

  11. Theory and laboratory astrophysics

    NASA Technical Reports Server (NTRS)

    Schramm, David N.; Mckee, Christopher F.; Alcock, Charles; Allamandola, Lou; Chevalier, Roger A.; Cline, David B.; Dalgarno, Alexander; Elmegreen, Bruce G.; Fall, S. Michael; Ferland, Gary J.

    1991-01-01

    Science opportunities in the 1990's are discussed. Topics covered include the large scale structure of the universe, galaxies, stars, star formation and the interstellar medium, high energy astrophysics, and the solar system. Laboratory astrophysics in the 1990's is briefly surveyed, covering such topics as molecular, atomic, optical, nuclear and optical physics. Funding recommendations are given for the National Science Foundation, NASA, and the Department of Energy. Recommendations for laboratory astrophysics research are given.

  12. ASON: An OWL-S based ontology for astrophysical services

    NASA Astrophysics Data System (ADS)

    Louge, T.; Karray, M. H.; Archimède, B.; Knödlseder, J.

    2018-07-01

    Modern astrophysics heavily relies on Web services to expose most of the data coming from many different instruments and researches worldwide. The virtual observatory (VO) has been designed to allow scientists to locate, retrieve and analyze useful information among those heterogeneous data. The use of ontologies has been studied in the VO context for astrophysical concerns like object types or astrophysical services subjects. On the operative point of view, ontological description of astrophysical services for interoperability and querying still has to be considered. In this paper, we design a global ontology (Astrophysical Services ONtology, ASON) based on web Ontology Language for Services (OWL-S) to enhance existing astrophysical services description. By expressing together VO specific and non-VO specific services design, it will improve the automation of services queries and allow automatic composition of heterogeneous astrophysical services.

  13. Developing Astronomy Research and Education in the Philippines

    NASA Astrophysics Data System (ADS)

    Sese, R. M. D.; Kouwenhoven, M. B. N. Thijs

    2015-03-01

    In the past few years, the Philippines has been gradually developing its research and educational capabilities in astronomy and astrophysics. In terms of astronomy development, it is still lagging behind several neighboring Southeast Asian countries such as Indonesia, Thailand and Malaysia, while it is advanced with respect to several others. One of the main issues hampering progress is the scarcity of trained professional Filipino astronomers, as well as long-term visions for astronomy development. Here, we will be presenting an overview of astronomy education and research in the country. We will discuss the history and current status of astronomy in the Philippines, including all levels of education, outreach and awareness activities, as well as potential areas for research and collaborations. We also discuss issues that need to be addressed to ensure sustainable astronomy development in the Philippines. Finally, we discuss several ongoing and future programs aimed at promoting astronomy research and education. In essence, the work is a precursor of a possible white paper which we envision to submit to the Department of Science and Technology (DOST) in the near future, with which we aim to further convince the authorities of the importance of astrophysics. With the support of the International Astronomical Union (IAU), this may eventually lead to the creation of a separate astronomy agency in the Philippines.

  14. Telescience testbed pilot program, volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, is the executive summary.

  15. The Origin of the Galaxy and Local Group

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, Joss; Freeman, Ken; Matteucci, Francesca

    This volume contains the updated and expanded lecture notes of the 37th Saas-Fee Advanced Course organised by the Swiss Society for Astrophysics and Astronomy. It offers the most comprehensive and up to date review of one of the hottest research topics in astrophysics - how our Milky Way galaxy formed. Joss Bland-Hawthorn & Ken Freeman lectured on Near Field Cosmology - The Origin of the Galaxy and the Local Group. Francesca Matteucci's chapter is on Chemical evolution of the Milky Way and its Satellites. As designed by the SSAA, books in this series - and this one too - are targeted at graduate and PhD students and young researchers in astronomy, astrophysics and cosmology. Lecturers and researchers entering the field will also benefit from the book. *%K Physics, Astrophysics, Near Field Cosmology, Galaxy, Local Group *%O Milky Way

  16. PREFACE: The Third 21COE Symposium: Astrophysics as Interdisciplinary Science

    NASA Astrophysics Data System (ADS)

    Maeda, Kei-ichi; Yamada, Shoichi; Daishido, Tsuneaki

    2006-03-01

    In the last decade, we have seen a remarkable progress in observations by air-borne and satellite-loaded detectors as well as large ground-based telescopes. Cosmological parameters have been precisely determined. For example, the age of the Universe is about 14 Gyrs and the curvature of our 3-space is almost zero. We have also recognized that most of the matter content of the Universe is unknown, the mystery of Dark Energy and Dark Matter. When we look at compact objects in the Universe, recent observations of supernovae and gamma ray bursts (up to cosmological distances) have revealed a variety of high energy astrophysical phenomena much beyond our expectations. Also found are quite exotic astrophysical objects such as magnetars and probably quark stars. Now we have a lot of new observational data. The present theoretical understanding, on the other hand, is far behind such observational advances. We may need new ideas to solve such problems. In the late 20th century, astrophysicists have learned much from particle physics and nuclear physics, resulting in the deeper understanding of how the big bang universe expands and stars evolve. Then we would like to extend this practice in different directions. This volume contains lectures and contributed papers presented at ``The Third 21COE Symposium: Astrophysics as Interdisciplinary Science'', which was held at Waseda University, Tokyo, Japan, on September 1 3, 2005. The aim of the symposium is to obtain new insights into the important themes mentioned above by bringing together the latest ideas from various fields. In the symposium, we have discussed not only such mysterious and important astrophysical or cosmological objects but also some subjects closely related with other fields such as nonlinear dynamics, statistical physics and condensed matter physics. Hence the main topics in the symposium have included formations of large-scale structures, galaxies, stellar clusters as well as the nature of condensed matter in high energy compact objects, and that of dark matter and dark energy of the universe. This is in accord with the purpose of The 21st century COE program, "Holistic Research and Education Center for Physics of Self-organization Systems". We hope that the symposium and the discussions therein will be the first step for the productive collaborations in the 21st century. The symposium was sponsored by the Waseda University Grant for International Conference Operation and the 21st century COE program of Waseda University, "the Holistic Research and Education Center for Physics of Self-organization Systems". Tokyo, January, 2006

  17. Astronomy education and the Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Nemiroff, Robert J.

    2016-01-01

    The Astrophysics Source Code Library (ASCL) is an online registry of source codes used in refereed astrophysics research. It currently lists nearly 1,200 codes and covers all aspects of computational astrophysics. How can this resource be of use to educators and to the graduate students they mentor? The ASCL serves as a discovery tool for codes that can be used for one's own research. Graduate students can also investigate existing codes to see how common astronomical problems are approached numerically in practice, and use these codes as benchmarks for their own solutions to these problems. Further, they can deepen their knowledge of software practices and techniques through examination of others' codes.

  18. The NASA Astrophysics Data System

    Science.gov Websites

    a digital library for researchers in astronomy and astrophysics. It also covers other subject areas related to astronomy and astrophysics. This data system is a NASA funded project and access to all ADS Eichhorn, Project Scientist for ADS, received the Physics, Astronomy and Mathematics Division Award from

  19. NASA Astrophysics E/PO Impact: NASA SOFIA AAA Program Evaluation Results

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; Backman, Dana E.; Clark, Coral; Inverness Research Sofia Aaa Evaluation Team, Wested Sofia Aaa Evaluation Team

    2015-01-01

    SOFIA is an airborne observatory, studying the universe at infrared wavelengths, capable of making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA also inspires the development of new scientific instrumentation and fosters the education of young scientists and engineers.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters (100 inches). The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program and Outreach Offices are located at NASA Ames Research center. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division.Data will be collected to study many different kinds of astronomical objects and phenomena, including star cycles, solar system formation, identification of complex molecules in space, our solar system, galactic dust, nebulae and ecosystems.Airborne Astronomy Ambassador (AAA) Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to elevate public scientific and technical literacy.The AAA effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Evaluation has confirmed the program's positive impact on the teacher participants, on their students, and in their communities. The inspirational experience has positively impacted their practice and career trajectory. AAAs have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and implemented teacher professional development workshops. Their efforts have impacted thousands of students and teachers.

  20. SKYZOME: Public Art to Promote Science

    NASA Astrophysics Data System (ADS)

    Landsberg, Randall H.; Pancoast, D.; Frieman, J. A.; Kravtsov, A. V.; Manning, J.

    2007-12-01

    SkyZome is the joint creation of artists from the Departments of Architecture, Interior Architecture & Designed Objects and Art & Technology at the School of the Art Institute of Chicago, and scientists from the Department of Astronomy & Astrophysics and Kavli Institute for Cosmological Physics at the University of Chicago. SkyZome is urban-sized, outdoor, environmental installation that gives figurative form to astrophysical research. The installation contains 10,000 interconnected programmable light elements filling a (45'x35'x120') volumetric display that is located in Chicago's Millennium Park. This 3-dimensional display instrument is capable of "playing” a variety of light and time based diagrammatic forms including visual descriptions of cosmological data. This evocative environment focuses on three science narratives: the Large Scale Structure of the Universe (SDSS data), Evolution of Dark Matter (A. Kravtsov simulations), and Ultra High Energy Cosmic Rays UHECRs (Pierre Auger Observatory & Veritas). Public programming, on site signage, and a companion website provide opportunities for more in-depth explorations. Skyzome is a new means for engaging the public in current research. It is an art installation that uses dynamic materials, media and technology to give didactic form to the astrophysical research. As an environmental exhibit inspired by real data, it allows people to richly experience, to participate in, and to more fully connect with fantastic observational science. (see www.skyzome.com ) This research was carried out at the University of Chicago, Kavli Institute for Cosmological Physics and at the School of the Art Institute of Chicago. It was supported (in part) by grant NSF PHY-0114422 and by the Festival of Maps: Chicago. KICP is a NSF Physics Frontier Center.

  1. AXAF: The Advanced X-Ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Pellerin, Charles J.; Weisskopf, Martin C.; Neal, Valerie

    2005-01-01

    X-rays are produced by violent, energetic, and explosive phenomena in the universe. The Advanced X-Ray Astrophysics Facility (AXAF) is an orbiting observatory designed to view these X-rays. The National Academy of Sciences Survey Committee on Astronomy and Astrophysics has recommended AXAF as the #1 priority among all major new astronomy programs. The scientific importance of AXAF was also highlighted by the Academy's Survey Committee on Physics. Why has AXAF earned such enthusiastic support, not only among astronomers, but also broadly within the nation's scientific community?

  2. Cooperative research in high energy astrophysics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Details of the activities conducted under the joint effort of the University of Maryland and NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics are detailed for the period July 1989 through April 1994. The research covered a variety of topics including: (1) detection of cosmic rays and studies of the solar modulation of galactic cosmic rays; (2) support work for several x-ray satellites; (3) high resolution gamma-ray spectroscopy of celestial sources; (4)theoretical astrophysics; and (5) active galaxies.

  3. Big Data as catalyst for change in Astronomy Libraries - Indian Scenario

    NASA Astrophysics Data System (ADS)

    Birdie, Christina

    2015-08-01

    Research in Astronomy fosters exciting missions and encourages libraries to engage themselves in big budget astronomy programs which are the flagship projects for most of the astronomers. The scholarly communication resulting from analyzing Big Data has led to new opportunities for Astronomy librarians to become involved in the management of publications more intelligently. In India the astronomers have committed their participation in the mega ‘TMT’ (Thirty Meter Telescope) project, which is an international partnership science program between Caltech, University of California, Canada, Japan, China and India. Participation in the TMT project will provide Indian astronomers an opportunity to carryout frontline research in astronomy. Within India, there are three major astronomy research institutes, namely, Indian Institute of Astrophysics (IIA), Inter-University center for Astronomy & Astrophysics (IUCAA), & Aryabhatta Research Institute of Observational sciences (ARIES) are stake holders in this program along with Indian Government as veuture capitalist. This study will examine the potential publishing pattern of those astronomers and technologists within India, with special focus to those three institutes. The indications of already existing collaborations among them, the expertise in instrument building, display of software development skills and cutting edge research capability etc. can be derived from analyzing their publications for the last ten years. Attempt also will be made to examine the in-house technical reports, newsletters,conference presentations etc. from these three institutes with a view to highlight the hidden potential skills and the possible collaboration among the Indian astronomers expressed from the grey literature.The incentive to make the astronomy libraries network stronger within India, may evolve from the findings and future requirements. As this project is deemed to be the national project with the financial support from science & technology department of Government of India, the libraries participating have excellent opportunity to showcase their capabilities and make an impact in the national level.

  4. An astrophysics data program investigation of a synoptic study of quasar continua

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    1991-01-01

    A summary of the program is presented. The major product of the program, an atlas of quasar energy distributions, is presented in the appendices along with papers written as a result of this research. The topics covered in the papers include: (1) accurate galactic N(sub h) values toward quasars and active galactic nuclei (AGN); (2) weak bump quasars; (3) millimeter measurements of hard x ray selected active galaxies- implications for the nature of the continuous spectrum; (3) persistence and change in the soft x ray spectrum of the quasar PG1211+143; (4) the soft x ray excess in einstein quasar spectra; and (5) EXOSAT x ray spectra of quasars.

  5. Providing Real Research Opoportunities to Undergraduates

    NASA Astrophysics Data System (ADS)

    Ragozzine, Darin

    2016-01-01

    The current approach to undergraduate education focuses on teaching classes which provide the foundational knowledge for more applied experiences such as scientific research. Like most programs, Florida Institute of Technology (Florida Tech or FIT) strongly encourages undergraduate research, but is dominated by content-focused courses (e.g., "Physical Mechanics"). Research-like experiences are generally offered through "lab" classes, but these are almost always reproductions of past experiments: contrived, formulaic, and lacking the "heart" of real (i.e., potentially publishable) scientific research. Real research opportunities 1) provide students with realistic insight into the actual scientific process; 2) excite students far more than end-of-chapter problems; 3) provide context for the importance of learning math, physics, and astrophysics concepts; and 4) allow unique research progress for well-chosen problems. I have provided real research opportunities as an "Exoplanet Lab" component of my Introduction to Space Science (SPS1020) class at Florida Tech, generally taken by first-year majors in our Physics, Astronomy & Astrophysics, Planetary Science, and Astrobiology degree programs. These labs are a hybrid between citizen science (e.g., PlanetHunters) and simultaneously mentoring ~60 undergraduates in similar small research projects. These projects focus on problems that can be understood in the context of the course, but which benefit from "crowdsourcing". Examples include: dividing up the known planetary systems and developing a classification scheme and organizing them into populations (Fall 2013); searching through folded light curves to discover new exoplanets missed by previous pipelines (Fall 2014); and fitting n-body models to all exoplanets with known Transit Timing Variations to estimate planet masses (Fall 2015). The students love the fact that they are doing real potentially publishable research: not many undergraduates can claim to have discovered new exoplanets! Based on these experiences, I will present practical insights into successfully organizing real research opportunities. By employing some of these best practices, we can truly educate students and make scientific progress.

  6. Okayama Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Okayama Astrophysical Observatory (OAO) is a branch Observatory of the NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN. Its main facilities are 188 cm and 91 cm telescopes, equipped with newly built instruments with CCD/IR cameras (e.g. OASIS). OAO accepts nearly 300 astronomers a year, according to the observation program scheduled by the committee....

  7. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  8. Best Practices in NASA's Astrophysics Education and Public Outreach Projects

    NASA Astrophysics Data System (ADS)

    Hasan, H.; Smith, D.

    2015-11-01

    NASA's Astrophysics Education and Public Outreach (EPO) program has partnered scientists and educators since its inception almost twenty years ago, leading to authentic STEM experiences and products widely used by the education and outreach community. We present examples of best practices and representative projects. Keys to success include effective use of unique mission science/technology, attention to audience needs, coordination of effort, robust partnerships and publicly accessible repositories of EPO products. Projects are broadly targeted towards audiences in formal education, informal education, and community engagement. All NASA programs are evaluated for quality and impact. New technology is incorporated to engage young students being raised in the digital age. All projects focus on conveying the excitement of scientific discoveries from NASA's Astrophysics missions, advancing scientific literacy, and engaging students in science and technology careers.

  9. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    NASA Astrophysics Data System (ADS)

    Bautz, Marshall

    2017-01-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes participation in a space mission to measure gravitational waves from a variety of astrophysical sources, including binary black holes, throughout most of cosmic history, and in another to map the evolution of black hole accretion by means of the accompanying X-ray emission. These missions are envisioned as collaborations with the European Space Agency's Large 3 (L3) and Athena programs, respectively. It also features definition of a large, NASA-led X-ray Observatory capable of tracing the surprisingly rapid growth of supermassive black holes during the first billion years of cosmic history. The program also includes the study of cosmic rays and high-energy gamma-ray photons resulting from range of physical processes, and efforts to characterize both the physics of inflation associated with the birth of the universe and the nature of the dark energy that dominates its mass-energy content today. Finally, we describe the activities of the Physics of the Cosmos Program Analysis Group, which serves as a forum for community analysis and input to NASA.

  10. Space Science Division cumulative bibliography: 1989-1994

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1995-01-01

    The Space Science Division at NASA's Ames Research Center is dedicated to research in astrophysics, exobiology, and planetary science. These research programs are structured around the study of origins and evolution of stars, planets, planetary atmospheres, and life, and address some of the most fundamental questions pursued by science; questions that examine the origin of life and of our place in the universe. This bibliography is the accumulation of peer-reviewed publications authored by Division scientists for the years 1989 through 1994. The list includes 777 papers published in over 5 dozen scientific journals representing the high productivity and interdisciplinary nature of the Space Science Division.

  11. Physics division annual report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways tomore » address this mission.« less

  12. Future Professional Communication in Astronomy II

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto

    The present volume gathers together the talks presented at the second colloquium on the Future Professional Communication in Astronomy (FPCAII), held at the Harvard-Smithsonian Center for Astrophysics (Cambridge, MA) on 13-14 April 2010. This meeting provided a forum for editors, publishers, scientists, librarians and officers of learned societies to discuss the future of the field. The program included talks from leading researchers and practitioners and drew a crowd of approximately 50 attendees from 10 countries. These proceedings contain contributions from invited and contributed talks from leaders in the field, touching on a number of topics. Among them: The role of disciplinary repositories such as ADS and arXiv in astronomy and the physical sciences; Current status and future of Open Access Publishing models and their impact on astronomy and astrophysics publishing; Emerging trends in scientific article publishing: semantic annotations, multimedia content, links to data products hosted by astrophysics archives; Novel approaches to the evaluation of facilities and projects based on bibliometric indicators; Impact of Government mandates, Privacy laws, and Intellectual Property Rights on the evolving digital publishing environment in astronomy; Communicating astronomy to the public: the experience of the International Year of Astronomy 2009.

  13. Promising lines of investigations in the realms of laboratory astrophysics with the aid of powerful lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Batishchev, P. A.; Bolshakov, V. V.

    The results of work on choosing and substantiating promising lines of research in the realms of laboratory astrophysics with the aid of powerful lasers are presented. These lines of research are determined by the possibility of simulating, under laboratory conditions, problematic processes of presentday astrophysics, such as (i) the generation and evolution of electromagnetic fields in cosmic space and the role of magnetic fields there at various spatial scales; (ii) the mechanisms of formation and evolution of cosmic gamma-ray bursts and relativistic jets; (iii) plasma instabilities in cosmic space and astrophysical objects, plasma jets, and shock waves; (iv) supernova explosionsmore » and mechanisms of the explosion of supernovae featuring a collapsing core; (v) nuclear processes in astrophysical objects; (vi) cosmic rays and mechanisms of their production and acceleration to high energies; and (vii) astrophysical sources of x-ray radiation. It is shown that the use of existing powerful lasers characterized by an intensity in the range of 10{sup 18}-10{sup 22} W/cm{sup 2} and a pulse duration of 0.1 to 1 ps and high-energy lasers characterized by an energy in excess of 1 kJ and a pulse duration of 1 to 10 ns makes it possible to perform investigations in laboratory astrophysics along all of the chosen promising lines. The results obtained by experimentally investigating laser plasma with the aid of the laser facility created at Central Research Institute of Machine Building (TsNIIMash) and characterized by a power level of 10 TW demonstrate the potential of such facilities for performing a number of experiments in the realms of laboratory astrophysics.« less

  14. Approximating the r-Process on Earth with Thermonuclear Explosions. Lessons Learned and Unanswered Questions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Stephen Allan

    2016-01-28

    During the astrophysical r-process, multiple neutron captures occur so rapidly on target nuclei that their daughter nuclei generally do not have time to undergo radioactive decay before another neutron is captured. The r-process can be approximately simulated on Earth in certain types of thermonuclear explosions through an analogous process of rapid neutron captures known as the "prompt capture" process. Between 1952 and 1969, 23 nuclear tests were fielded by the US which were involved (at least partially) with the "prompt capture" process. Of these tests, 15 were at least partially successful. Some of these tests were conducted under the Plowsharemore » Peaceful Nuclear Explosion Program as scientific research experiments. It is now known that the USSR conducted similar nuclear tests during 1966 to 1979. The elements einsteinium and fermium were first discovered by this process. The most successful tests achieved 19 successive neutron captures on the initial target nuclei. A review of the US program, target nuclei used, heavy element yields, scientific achievements of the program, and how some of the results have been used by the astrophysical community is given. Finally, some unanswered questions concerning very neutron-rich nuclei that could potentially have been answered with additional nuclear experiments is presented.« less

  15. The CUREA 1996 Summer Program in Astrophysics at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Snider, Joe; Faison, Michael

    1996-05-01

    The Consortium for Undergraduate Research and Education in Astronomy (CUREA) will present its hands-on course in astrophysics and observational astronomy at Mount Wilson Observatory for the seventh time, from August 7-20, 1996. Students and staff live and work at the Observatory, situated in the San Gabriel Mountains above Los Angeles. This is a beautiful site at which the atmospheric seeing conditions are equal to the best in the world. This poster paper presents in text and photographs some of the highlights of past programs. During the program informal discussions led by staff members provide the necessary background for using the following facilities: the Snow Horizontal Solar Telescope, which was the first major solar telescope in the world and the first telescope to be installed on Mount Wilson when G.E.Hale founded the Observatory; a high-resolution Littrow pit spectrograph; a 6-inch diffraction-limited refractor and 24- inch reflector; a photometer and a CCD detector; a unique atomic-beam apparatus for recording solar 5-minute oscillations; and this summer for the first time, the historic 100-inch Hooker Telescope. Attention is devoted to many observable solar phenomena, such as sunspots, granulation, limb darkening, important spectral lines, Zeeman splitting of solar lines, and the measurement of solar rotation using the Doppler shift of a spectral line. Nighttime observing includes celestial objects such as the Moon, planets, variable stars, clusters, galaxies and other deep-sky objects. Students learn how to process celestial photographs and spectral plates in the darkroom. Each student works on a special project she or he has chosen, and reports on it at the end of the program. Tours of research projects on the mountain, talks by visiting astronomers and field trips to JPL, Cal Tech and Palomar are included.

  16. A Complete Public Archive for the Einstein Imaging Proportional Counter

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1996-01-01

    Consistent with our proposal to the Astrophysics Data Program in 1992, we have completed the design, construction, documentation, and distribution of a flexible and complete archive of the data collected by the Einstein Imaging Proportional Counter. Along with software and data delivered to the High Energy Astrophysics Science Archive Research Center at Goddard Space Flight Center, we have compiled and, where appropriate, published catalogs of point sources, soft sources, hard sources, extended sources, and transient flares detected in the database along with extensive analyses of the instrument's backgrounds and other anomalies. We include in this document a brief summary of the archive's functionality, a description of the scientific catalogs and other results, a bibliography of publications supported in whole or in part under this contract, and a list of personnel whose pre- and post-doctoral education consisted in part in participation in this project.

  17. Understanding and Affecting Science Teacher Candidates' Scientific Reasoning in Introductory Astrophysics

    ERIC Educational Resources Information Center

    Steinberg, Richard; Cormier, Sebastien

    2013-01-01

    This study reports on a content course for science immersion teacher candidates that emphasized authentic practice of science and thinking scientifically in the context of introductory astrophysics. We explore how 122 science teacher candidates spanning three cohorts did and did not reason scientifically and how this evolved in our program. Our…

  18. Astrophysics at RIA (ARIA) Working Group

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    2006-07-01

    The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities.

  19. Cooperative Research in High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Trasco, John D.

    1997-01-01

    A joint agreement between NASA/Goddard and The University of Maryland currently supports cooperative research in Satellite Based Studies of Photons and Charged Particles in the following areas: 1) Detection of cosmic rays and studies of the solar modulation of galactic cosmic rays; 2) Research with several past and upcoming X-ray satellites; 3) High resolution gamma-ray spectroscopy of celestial sources; 4) Theoretical astrophysics.

  20. Astrometric Results of NEOs from the Characterization and Astrometric Follow-up Program at Adler Planetarium

    NASA Astrophysics Data System (ADS)

    Nault, Kristie A.; Brucker, Melissa J.; Hammergren, Mark; Gyuk, Geza; Solontoi, Mike R.

    2015-11-01

    We present astrometric results of near-Earth objects (NEOs) targeted in fourth quarter 2014 and in 2015. This is part of Adler Planetarium’s NEO characterization and astrometric follow-up program, which uses the Astrophysical Research Consortium (ARC) 3.5-m telescope at Apache Point Observatory (APO). The program utilizes a 17% share of telescope time, amounting to a total of 500 hours per year. This time is divided up into two hour observing runs approximately every other night for astrometry and frequent half-night runs approximately several times a month for spectroscopy (see poster by M. Hammergren et. al.) and light curve studies (see poster by M. J. Brucker et. al.).Observations were made using Seaver Prototype Imaging Camera (SPIcam), a visible-wavelength, direct imaging CCD camera with 2048 x 2048 pixels and a field of view of 4.78’ x 4.78’. Observations were made using 2 x 2 binning.Special emphasis has been made to focus on the smallest NEOs, particularly around 140m in diameter. Targets were selected based on absolute magnitude (prioritizing for those with H > 25 mag to select small objects) and a 3σ uncertainty less than 400” to ensure that the target is in the FOV. Targets were drawn from the Minor Planet Center (MPC) NEA Observing Planning Aid, the JPL What’s Observable tool, and the Spaceguard priority list and faint NEO list.As of August 2015, we have detected 670 NEOs for astrometric follow-up, on point with our goal of providing astrometry on a thousand NEOs per year. Astrometric calculations were done using the interactive software tool Astrometrica, which is used for data reduction focusing on the minor bodies of the solar system. The program includes automatic reference star identification from new-generation star catalogs, access to the complete MPC database of orbital elements, and automatic moving object detection and identification.This work is based on observations done using the 3.5-m telescope at Apache Point Observatory, owned and operated by the Astrophysical Research Consortium. We acknowledge the support from the NASA NEOO award NNX14AL17G and thank the University of Chicago Astronomy and Astrophysics Department for observing time in 2014.

  1. Space astrophysics - Science operations

    NASA Technical Reports Server (NTRS)

    Kutter, G. S.; Riegler, G. R.

    1990-01-01

    Science Operations in the Astrophysics Division of NASA Headquarters are the responsibility of the Science Operations Branch. The goals of Science Operations are to encourage multimission, panchromatic research in astrophysics and to foster coordination and cooperation among all mission operations and data analysis efforts. To meet these goals, the Branch is structured into four areas of responsibility. The paper describes these responsibilities.

  2. Metal Mesh Fabrication and Testing for Infrared Astronomy and ISO Science Programs; ISO GO Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Oliversen, Ronald J. (Technical Monitor)

    2001-01-01

    This research program addresses astrophysics research with the Infrared Space Observatory's Long Wavelength Spectrometer (ISO-LWS), including efforts to supply ISO-LWS with superior metal mesh filters. This grant has, over the years, enabled Dr. Smith in his role as a Co-Investigator on the satellite, the PI (Principal Investigator) on the Extragalactic Science Team, and a member of the Calibration and performance working groups. The emphasis of the budget in this proposal is in support of Dr. Smith's Infrared Space Observatory research. This program began (under a different grant number) while Dr. Smith was at the Smithsonian's National Air and Space Museum, and was transferred to SAO with a change in number. While Dr. Smith was a visiting Discipline Scientist at NASA HQ the program was in abeyance, but it has resumed in full since his return to SAO. The Infrared Space Observatory mission was launched in November, 1996, and since then has successfully completed its planned lifetime mission. Data are currently being calibrated to the 2% level.

  3. ``Astrophysique sur Mesure'', E-learning in Astronomy and Astrophysics

    NASA Astrophysics Data System (ADS)

    Mosser, Benoît; Delsanti, Audrey; Guillaume, Damien; Balança, Christian; Balkowski, Chantal

    2011-06-01

    ``Astrophysique sur Mesure'' (astrophysics made-to-measure) is a set of e-learning programmes started 4 years ago at the Paris Observatory. In order to deliver attractive and efficient programmes, we have added many multimedia tools to usual lectures: animations, Java applets. The programmes are presented on two different platforms. The first one offers the content of all the lectures in free access. A second platform with restricted access is provided to registered students taking part in the e-learning program and benefiting from the help of tutors. The development of these programs helps to increase the sphere of influence of astronomy taught at the Paris Observatory, hence to increase the presence of astronomy in various degree courses. Instead of teaching classical astronomy lectures to a happy few, we can bring astronomy and astrophysics to a wider audience.

  4. In Search of the True Universe

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    2014-01-01

    1. The nineteenth century's last five years; Part I. The Import of Theoretical Tools: 2. An overview; 3. Conclusions based on principles; 4. Conclusions based on a premise; 5. Conclusions based on calculations; 6. Asking the right questions, accepting limited answers; Part II. A National Plan Shaping the Universe We Perceive: 7. A new order and the new universe it produced; 8. Where did the chemical elements arise?; 9. Landscapes; 10. The evolution of astrophysical theory after 1960; 11. Turmoils of leadership; 12. Cascades and shocks that shape astrophysics; 13. Astrophysical discourse and persuasion; Part III. The Cost of Discerning the True Universe: 14. Organization and functioning of the astronomical community; 15. Language and astrophysical stability; 16. An economically viable astronomical program; Epilogue.

  5. In Search of the True Universe

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    2013-11-01

    1. The nineteenth century's last five years; Part I. The Import of Theoretical Tools: 2. An overview; 3. Conclusions based on principles; 4. Conclusions based on a premise; 5. Conclusions based on calculations; 6. Asking the right questions, accepting limited answers; Part II. A National Plan Shaping the Universe We Perceive: 7. A new order and the new universe it produced; 8. Where did the chemical elements arise?; 9. Landscapes; 10. The evolution of astrophysical theory after 1960; 11. Turmoils of leadership; 12. Cascades and shocks that shape astrophysics; 13. Astrophysical discourse and persuasion; Part III. The Cost of Discerning the True Universe: 14. Organization and functioning of the astronomical community; 15. Language and astrophysical stability; 16. An economically viable astronomical program; Epilogue.

  6. The IDL astronomy user's library

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.

    1992-01-01

    IDL (Interactive Data Language) is a commercial programming, plotting, and image display language, which is widely used in astronomy. The IDL Astronomy User's Library is a central repository of over 400 astronomy-related IDL procedures accessible via anonymous FTP. The author will overview the use of IDL within the astronomical community and discuss recent enhancements at the IDL astronomy library. These enhancements include a fairly complete I/O package for FITS images and tables, an image deconvolution package and an image mosaic package, and access to IDL Open Windows/Motif widgets interface. The IDL Astronomy Library is funded by NASA through the Astrophysics Software and Research Aids Program.

  7. NASA Discovery Program Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of the workshop was to review concepts for Discover-class missions that would follow the first two missions (MESUR-Pathfinder and NEAR) of this new program. The concepts had been generated by scientists involved in NASA's Solar System Exploration Program to carry out scientifically important investigations within strict guidelines -- $150 million cap on development cost and 3 year cap on development schedule. Like the Astrophysics Small Explorers (SMEX), such 'faster and cheaper' missions could provide vitality to solar system exploration research by returning high quality data more frequently and regularly and by involving many more young researchers than normally participate directly in larger missions. An announcement of opportunity (AO) to propose a Discovery mission to NASA is expected to be released in about two years time. One purpose of the workshop was to assist Code SL in deciding how to allocate its advanced programs resources. A second, complimentary purpose was to provide the concept proposers with feedback to allow them to better prepare for the AO.

  8. Astrophysical science with a spaceborne photometric telescope

    NASA Technical Reports Server (NTRS)

    Granados, Arno F. (Editor); Borucki, William J. (Editor)

    1994-01-01

    The FRESIP Project (FRequency of Earth-Sized Inner Planets) is currently under study at NASA Ames Research Center. The goal of FRESIP is the measurement of the frequency of Earth-sized extra-solar planets in inner orbits via the photometric signature of a transit event. This will be accomplished with a spaceborne telescope/photometer capable of photometric precision of two parts in 100,000 at a magnitude of m(sub v) = 12.5. To achieve the maximum scientific value from the FRESIP mission, an astrophysical science workshop was held at the SETI Institute in Mountain View, California, November 11-12, 1993. Workshop participants were invited as experts in their field of astrophysical research and discussed the astrophysical science that can be achieved within the context of the FRESIP mission.

  9. Astrophysics related programs at center for underground physics (CUP)

    NASA Astrophysics Data System (ADS)

    Kim, Yeongduk

    2018-04-01

    We are developing experimental programs related to particle astrophysics at the Center for Underground Physics (CUP); searching for neutrino-less double beta decay (0νββ) of 100Mo nuclei and sterile neutrinos in the mass range of eV using reactor neutrinos. Expected sensitivities of AMoRE double beta decay experiment and the results from recent NEOS experiment are described. Utilizing the facilities for ultra-low radioactivity measurement at the center, we are planning to measure the decay of 180mTa which is important to the nucleosynthesis of heavy nuclei.

  10. Life as a graduate student in a globalized collaboration

    NASA Astrophysics Data System (ADS)

    Fracchiolla, Claudia

    2009-05-01

    A global vision is important, if not essential, in all scientific fields. In the case of graduate students, the language of instruction is not the only issue. We must learn different research methodologies and understand a new set of complex cultural dynamics both in our living situations and in our new university workplaces. My research program is in experimental particle astrophysics. I study ultra-high energy cosmic rays with the Pierre Auger Observatory located in Argentina. More than 400 scientists from 18 different countries are a part of this science program. As a graduate student within this model provides me with a comprehensive understanding of global cultures combined with research skills, proficiency in different languages, and an international experience. I will discuss the benefits and challenges of working in a large international collaboration, and how it can help you grow not only as a scientist, but also as a person.

  11. High energy physics in cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic raymore » program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.« less

  12. BiteScis: Connecting K-12 teachers with science graduate students to produce lesson plans on modern science research

    NASA Astrophysics Data System (ADS)

    Battersby, Cara

    2016-01-01

    Many students graduate high school having never learned about the process and people behind modern science research. The BiteScis program addresses this gap by providing easily implemented lesson plans that incorporate the whos, whats, and hows of today's scienctific discoveries. We bring together practicing scientists (motivated graduate students from the selective communicating science conference, ComSciCon) with K-12 science teachers to produce, review, and disseminate K-12 lesson plans based on modern science research. These lesson plans vary in topic from environmental science to neurobiology to astrophysics, and involve a range of activities from laboratory exercises to art projects, debates, or group discussion. An integral component of the program is a series of short, "bite-size" articles on modern science research written for K-12 students. The "bite-size" articles and lesson plans will be made freely available online in an easily searchable web interface that includes association with a variety of curriculum standards. This ongoing program is in its first year with about 15 lesson plans produced to date.

  13. First Observations of a Stellar Occultation by KBO (50000) Quaoar from MIT's George R. Wallace, Jr., Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Sallum, Stephanie; Brothers, T.; Elliot, J. L.; Person, M. J.; Bosh, A. S.; Zangari, A.; Zuluaga, C.; Levine, S.; Bright, L.; Sheppard, S.; Tilleman, T.

    2011-05-01

    Here we report the first recorded observations of a stellar occultation by Kuiper Belt Object (KBO) (50000) Quaoar. We detected a single-chord stellar occultation by Quaoar of a magnitude 16.2 star designated 26029635 UCAC2 (2MASS ID 1275509401), which occurred on 11 February 2011 UT. The prediction of the occultation was made using long baseline astrometric observations of Quaoar from several sites as part of the MIT Planetary Astronomy Laboratory's continuing effort to improve KBO positions for occultation prediction. The successful observations were made with a Celestron C14 0.36 m telescope and an SBIG STL-1001E CCD camera on a Paramount ME robotic mount. These observations show that a relatively accessible level of astronomical equipment, of the class often used by amateur astronomers, can be used to record KBO occultations. The data were taken at MIT's George R. Wallace, Jr., Astrophysical Observatory in Westford, MA. A light curve was generated from the data using aperture photometry on the individual images and is presented here. This light curve is being analyzed by Person et al. (this meeting) to provide constraints on Quaoar's size. We also discuss various observing strategies that could be used in the future to optimize the data from this type of event. This work was supported in part by grant NNX10AB27G to MIT from NASA's Planetary Astronomy Division. Student participation was supported in part by NSF's REU program, MIT's Undergraduate Research Opportunities Program, NASA's Massachusetts Space Grant, and the George R. Wallace, Jr., Astrophysical Observatory.

  14. Laboratory astrophysics under the ultraviolet, visible, and gravitational astrophysics research program: Oscillator strengths for ultraviolet atomic transitions

    NASA Technical Reports Server (NTRS)

    Federman, Steven R.

    1992-01-01

    The conditions within astrophysical environments can be derived from observational data on atomic and molecular lines. For instance, the density and temperature of the gas are obtained from relative populations among energy levels. Information on populations comes about only when the correspondence between line strength and abundance is well determined. The conversion from line strength to abundance involves knowledge of meanlives and oscillator strengths. For many ultraviolet atomic transitions, unfortunately, the necessary data are either relatively imprecise or not available. Because of the need for more and better atomic oscillator strengths, our program was initiated. Through beam-foil spectroscopy, meanlives of ultraviolet atomic transitions are studied. In this technique, a nearly isotopically pure ion beam of the desired element is accelerated. The beam passes through a thin carbon foil (2 mg/cu cm), where neutralization, ionization, and excitation take place. The dominant process depends on the energy of the beam. Upon exiting the foil, the decay of excited states is monitored via single-photon-counting techniques. The resulting decay curve yields a meanlife. The oscillator strength is easily obtained from the meanlife when no other decay channels are presented. When other channels are present, additional measurements or theoretical calculations are performed in order to extract an oscillator strength. During the past year, three atomic systems have been studied experimentally and/or theoretically; they are Ar, I, Cl I, and N II. The results for the first two are important for studies of interstellar space, while the work on N II bears on processes occurring in planetary atmospheres.

  15. SPAN: Astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Green, James L.; Warren, Wayne H., Jr.; Lopez-Swafford, Brian

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links science research and data analysis computers in the U.S., Canada, and Europe. The purpose of this document is to provide Astronomy and Astrophysics scientists, currently reachable on SPAN, with basic information and contacts for access to correlative data bases, star catalogs, and other astrophysic facilities accessible over SPAN.

  16. WorldWide Telescope in Research and Education

    NASA Astrophysics Data System (ADS)

    Goodman, A.; Fay, J.; Muench, A.; Pepe, A.; Udompraseret, P.; Wong, C.

    2012-09-01

    The WorldWide Telescope computer program, released to researchers and the public as a free resource in 2008 by Microsoft Research, has changed the way the ever-growing Universe of online astronomical data is viewed and understood. The WWT program can be thought of as a scriptable, interactive, richly visual browser of the multi-wavelength Sky as we see it from Earth, and of the Universe as we would travel within it. In its web API format, WWT is being used as a service to display professional research data. In its desktop format, WWT works in concert (thanks to SAMP and other IVOA standards) with more traditional research applications such as ds9, Aladin and TOPCAT. The WWT Ambassadors Program (founded in 2009) recruits and trains astrophysically-literate volunteers (including retirees) who use WWT as a teaching tool in online, classroom, and informal educational settings. Early quantitative studies of WWTA indicate that student experiences with WWT enhance science learning dramatically. Thanks to the wealth of data it can access, and the growing number of services to which it connects, WWT is now a key linking technology in the Seamless Astronomy environment we seek to offer researchers, teachers, and students alike.

  17. Low energy range dielectronic recombination of Fluorine-like Fe17+ at the CSRm

    NASA Astrophysics Data System (ADS)

    Khan, Nadir; Huang, Zhong-Kui; Wen, Wei-Qiang; Mahmood, Sultan; Dou, Li-Jun; Wang, Shu-Xing; Xu, Xin; Wang, Han-Bing; Chen, Chong-Yang; Chuai, Xiao-Ya; Zhu, Xiao-Long; Zhao, Dong-Mei; Mao, Li-Jun; Li, Jie; Yin, Da-Yu; Yang, Jian-Cheng; Yuan, You-Jin; Zhu, Lin-Fan; Ma, Xin-Wen

    2018-05-01

    The accuracy of dielectronic recombination (DR) data for astrophysics related ions plays a key role in astrophysical plasma modeling. The absolute DR rate coefficient of Fe17+ ions was measured at the main cooler storage ring at the Institute of Modern Physics, Lanzhou, China. The experimental electron-ion collision energy range covers the first Rydberg series up to n = 24 for the DR resonances associated with the {}2P1/2\\to {}2P3/2{{Δ }}n=0 core excitations. A theoretical calculation was performed by using FAC code and compared with the measured DR rate coefficient. Overall reasonable agreement was found between the experimental results and calculations. Moreover, the plasma rate coefficient was deduced from the experimental DR rate coefficient and compared with the available results from the literature. At the low energy range, significant discrepancies were found, and the measured resonances challenge state-of-the-art theory at low collision energies. Supported by the National Key R&D Program of China (2017YFA0402300), the National Natural Science Foundation of China through (11320101003, U1732133, 11611530684) and Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH006)

  18. 78 FR 22346 - Request of Recommendations for Membership for Directorate and Office Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... recommendation on specific topics: astronomy and astrophysics; environmental research and education; equal.... Astronomy and Astrophysics Elizabeth Pentecost, Division of Advisory Committee http:// Astronomical Sciences...

  19. Helping Teachers Teach Plasma Physics

    NASA Astrophysics Data System (ADS)

    Correll, Donald

    2008-11-01

    Lawrence Livermore National Laboratory's E/O program in Fusion Science and Plasma Physics now includes both `pre-service' as well as `in-service' high school science teacher professional development activities. Teachers are instructed and mentored by `master teachers' and LLNL plasma researchers working in concert. The Fusion/Plasma E/O program exploits a unique science education partnership that exists between LLNL's Science Education Program and the UC Davis Edward Teller Education Center. For `in-service' teachers, the Fusion & Astrophysics Teacher Research Academy (TRA) has four levels of workshops that are designed to give in-service high school science teachers experience in promoting and conducting research, most notably in the filed of plasma spectroscopy. Participating teachers in all four TRA levels may earn up to ten units of graduate credit from Cal-State University East Bay, and may apply these units toward a Masters of Science in Education. For `pre-service' teachers, the Science Teacher and Researcher (STAR) program, as a partnership with the California State University System, includes attracting undergraduate science majors to teaching careers by allowing them to pursue professional identities as both a research scientist as well as a science teacher. Participating `pre-service' STAR students are provided research internships at LLNL and work closely with the `in-service' TRA teachers. Results from the continuum `pre-service' to `in-service' science teacher professional development programs will be presented.

  20. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherfoord, John P.; Johns, Kenneth A.; Shupe, Michael A.

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  1. Searching for Black Holes

    NASA Technical Reports Server (NTRS)

    Garica, M.

    2001-01-01

    In 1995 we proposed to carry out ground-based observations in order to securely identify stellar mass black holes in our galaxy. This type 4 proposal under NASA's UV, Visible, and Gravitational Astrophysics program compliments NASA's space-based research by following up black hole candidates found and studied with space-based observatories, in order to determine if they are indeed black holes. While our primary goal is to securely identify black holes by measuring their masses, a secondary goal is identifying unique visible-range signatures for black holes.

  2. AstroCom NYC: A Partnership Between Astronomers at CUNY, AMNH, and Columbia University

    NASA Astrophysics Data System (ADS)

    Paglione, Timothy; Ford, K. S.; Robbins, D.; Mac Low, M.; Agueros, M. A.

    2014-01-01

    AstroCom NYC is a new program designed to improve urban minority student access to opportunities in astrophysical research by greatly enhancing partnerships between research astronomers in New York City. The partners are minority serving institutions of the City University of New York, and the astrophysics research departments of the American Museum of Natural History and Columbia. AstroCom NYC provides centralized, personalized mentoring as well as financial and academic support, to CUNY undergraduates throughout their studies, plus the resources and opportunities to further CUNY faculty research with students. The goal is that students’ residency at AMNH helps them build a sense of belonging in the field, and inspires and prepares them for graduate study. AstroCom NYC prepares students for research with a rigorous Methods of Scientific Research course developed specifically to this purpose, a laptop, a research mentor, career mentor, involvement in Columbia outreach activities, scholarships and stipends, Metrocards, and regular assessment for maximum effectiveness. Stipends in part alleviate the burdens at home typical for CUNY students so they may concentrate on their academic success. AMNH serves as the central hub for our faculty and students, who are otherwise dispersed among all five boroughs of the City. With our first cohort we experienced the expected challenges from their diverse preparedness, but also far greater than anticipated challenges in scheduling, academic advisement, and molding their expectations. We review Year 1 operations and outcomes, as well as plans for Year 2, when our current students progress to be peer mentors.

  3. NASA Astrophysics EPO Community: Enhancing STEM Instruction

    NASA Astrophysics Data System (ADS)

    Bartolone, L.; Manning, J.; Lawton, B.; Meinke, B. K.; Smith, D. A.; Schultz, G.; NASA Astrophysics EPO community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enhance Science, Technology, Engineering, and Math (STEM) instruction. In 2010, the Astrophysics EPO community identified online professional development for classroom educators and multiwavelength resources as a common interest and priority for collaborative efforts. The result is NASA's Multiwavelength Universe, a 2-3 week online professional development experience for classroom educators. The course uses a mix of synchronous sessions (live WebEx teleconferences) and asynchronous activities (readings and activities that educators complete on their own on the Moodle, and moderated by course facilitators). The NASA SMD Astrophysics EPO community has proven expertise in providing both professional development and resources to K-12 Educators. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum engage the K-12 education community in these ways, including associated metrics and evaluation findings.

  4. High-energy solar flare observations at the Y2K maximum

    NASA Astrophysics Data System (ADS)

    Emslie, A. Gordon

    2000-04-01

    Solar flares afford an opportunity to observe processes associated with the acceleration and propagation of high-energy particles at a level of detail not accessible in any other astrophysical source. I will review some key results from previous high-energy solar flare observations, including those from the Compton Gamma-Ray Observatory, and the problems that they pose for our understanding of energy release and particle acceleration processes in the astrophysical environment. I will then discuss a program of high-energy observations to be carried out during the upcoming 2000-2001 solar maximum that is aimed at addressing and resolving these issues. A key element in this observational program is the High Energy Solar Spectroscopic Imager (HESSI) spacecraft, which will provide imaging spectroscopic observations with spatial, temporal, and energy resolutions commensurate with the physical processes believed to be operating, and will in addition provide the first true gamma-ray spectroscopy of an astrophysical source. .

  5. 77 FR 16866 - Request of Recommendations for Membership for Directorate and Office Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... recommendation on specific topics: astronomy and astrophysics; environmental research and education; equal...-mail: [email protected] ; (703) 292-9084. Astronomy and Astrophysics Advisory Elizabeth Pentecost, Division...

  6. Astrophysics experiments with radioactive beams at ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Back, B. B.; Clark, J. A.; Pardo, R. C.

    Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

  7. Dominion Radio Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Dominion Radio Astrophysical Observatory began operating in 1959, and joined the NATIONAL RESEARCH COUNCIL in 1970. It became part of the Herzberg Institute of Astrophysics in 1975. The site near Penticton, BC has a 26 m radio telescope, a seven-antenna synthesis telescope on a 600 m baseline and two telescopes dedicated to monitoring the solar radio flux at 10.7 cm. This part of the Institu...

  8. Generating Long Scale-Length Plasma Jets Embedded in a Uniform, Multi-Tesla Magnetic-Field

    NASA Astrophysics Data System (ADS)

    Manuel, Mario; Kuranz, Carolyn; Rasmus, Alex; Klein, Sallee; Fein, Jeff; Belancourt, Patrick; Drake, R. P.; Pollock, Brad; Hazi, Andrew; Park, Jaebum; Williams, Jackson; Chen, Hui

    2013-10-01

    Collimated plasma jets emerge in many classes of astrophysical objects and are of great interest to explore in the laboratory. In many cases, these astrophysical jets exist within a background magnetic field where the magnetic pressure approaches the plasma pressure. Recent experiments performed at the Jupiter Laser Facility utilized a custom-designed solenoid to generate the multi-tesla fields necessary to achieve proper magnetization of the plasma. Time-gated interferometry, Schlieren imaging, and proton radiography were used to characterize jet evolution and collimation under varying degrees of magnetization. Experimental results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, by the National Laser User Facility Program, grant number DE-NA0000850, by the Predictive Sciences Academic Alliances Program in NNSA-ASC, grant number DEFC52-08NA28616, and by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.

  9. Aleksandar Kubičcela (1930-2017) - An Astrophysical Research Pioneer at the Astronomical Observatory of Belgrade

    NASA Astrophysics Data System (ADS)

    Popović, L. Č.; Vince, I.

    2018-06-01

    Here, we give a short biography and summary of scientific contributions of Aleksandar Kubičela, a doyen of astronomy in Serbia, and an astrophysical research pioneer at the Astronomical Observatory of Belgrade. Additionally, we evoke some of our memories concerning scientific collaboration with Aleksandar Kubičcela.

  10. Exploring How Gender Figures the Identity Trajectories of Two Doctoral Students in Observational Astrophysics

    ERIC Educational Resources Information Center

    Gonsalves, Allison J.

    2018-01-01

    [This paper is part of the Focused Collection on Astronomy Education Research.] This paper presents the cases of two doctoral students in observational astrophysics whose circumstances and experiences led them on a career trajectory out of academic research. In this article, I employ a sociocultural lens that provides insight into the dynamics of…

  11. Simultaneous and Comparable Numerical Indicators of International, National and Local Collaboration Practices in English-Medium Astrophysics Research Papers

    ERIC Educational Resources Information Center

    Méndez, David I.; Alcaraz, M. Ángeles

    2016-01-01

    Introduction: We report an investigation on collaboration practices in research papers published in the most prestigious English-medium astrophysics journals. Method: We propose an evaluation method based on three numerical indicators to study and compare, in absolute terms, three different types of collaboration (international, national and…

  12. Astrophysics education at Universidad de Guadalajara, Mexico: From children popularization to posgraduate courses

    NASA Astrophysics Data System (ADS)

    de Alba-Martinez, D. J.

    1999-05-01

    Astrophysics growing group of the Universidad de Guadalajara situation is shown. Programs and activities developed at different levels are described, as popularization for children and adults (some in colaboration with Tourism Bureau and Jalisco State Education Secretary), licenciatura \\" (\\ BSc) courses actually taugth and posgraduate courses to be taugth in near future. Facilities and some exercises are shown.

  13. Experimental Evaluation and Workload Characterization for High-Performance Computer Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.

    1995-01-01

    This research is conducted in the context of the Joint NSF/NASA Initiative on Evaluation (JNNIE). JNNIE is an inter-agency research program that goes beyond typical.bencbking to provide and in-depth evaluations and understanding of the factors that limit the scalability of high-performance computing systems. Many NSF and NASA centers have participated in the effort. Our research effort was an integral part of implementing JNNIE in the NASA ESS grand challenge applications context. Our research work under this program was composed of three distinct, but related activities. They include the evaluation of NASA ESS high- performance computing testbeds using the wavelet decomposition application; evaluation of NASA ESS testbeds using astrophysical simulation applications; and developing an experimental model for workload characterization for understanding workload requirements. In this report, we provide a summary of findings that covers all three parts, a list of the publications that resulted from this effort, and three appendices with the details of each of the studies using a key publication developed under the respective work.

  14. Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Hiroaki; Renstrøm, Therese; Tveten, Gry Merete; Gheorghe, Ioana; Filipescu, Dan Mihai; Belyshev, Sergey; Stopani, Konstantin; Wang, Hongwei; Fan, Gongtao; Lui, Yiu-Wing; Symochko, Dmytro; Goriely, Stephane; Larsen, Ann-Cecilie; Siem, Sunniva; Varlamov, Vladimir; Ishkhanov, Boris; Glodariu, Tudor; Krzysiek, Mateusz; Takenaka, Daiki; Ari-izumi, Takashi; Amano, Sho; Miyamoto, Shuji

    2018-05-01

    We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032).

  15. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angellini, L.

    1994-01-01

    This report reviews activities performed by members of the USRA contract team during the three months of the reporting period. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics.

  16. Research of advanced techniques for X-ray detectors and telescopes with applications to rockets and the LAMAR facility

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1985-01-01

    A program for the development of high throughput instrumentation for X-ray astronomy based upon focusing optics is being carried out by the Smithsonian Astrophysical Observatory. The instrumentation is applicable to investigations requiring large area focusing optics for direct imaging or dispersive spectroscopy. The long range goals of this program are the development of telescopes and gratings for future major X-ray astronomy facilities, including additions to the LAMAR OSS-2/SHEAL experiment after the initial flights. Tests of the devices and their more immediate utilization in scientific investigations can be carried out with SPARTAN payloads deployed and retrieved by the Space Shuttle. However, the present backlog of approved SPARTAN missions is longer than the three-year duration of the program described in this program. Laboratory studies and breadboarding of instrumentation are discussed.

  17. Modeling Spectral Variations of Dusty Circumstellar Envelopes During Microlensing Events

    NASA Astrophysics Data System (ADS)

    Bunker, Christina; Ignace, R.; Bjorkman, J. E.

    2007-12-01

    Microlensing surveys have proven to be tremendously fruitful in providing valuable data products for many fields of astrophysics, from eclipse lightcurves for substellar candidates to limb darkening in stellar atmospheres. We report on a program of modeling observables from microlensing of circumstellar envelopes, particularly those of red giant stars that are the most likely to show finite source effects. Recent modeling results for the time dependent spectral energy distributions from microlensing of dusty winds are presented. In effect, wavelength-dependent continuum variations that occur as the lens-star separation changes can provide information about the emissivity distribution of dust in the wind. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  18. Telescience testbed pilot program, volume 2: Program results

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, contains the integrated results. Background is provided of the program and highlights of the program results. The various testbed experiments and the programmatic approach is summarized. The results are summarized on a discipline by discipline basis, highlighting the lessons learned for each discipline. Then the results are integrated across each discipline, summarizing the lessons learned overall.

  19. Laboratory Astrophysics White Paper: Summary of Laboratory Astrophysics Needs

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Laboratory Astrophysics Workshop (NASA LAW) met at NASA Ames Research Center from 1-3 May 2002 to assess the role that laboratory astrophysics plays in the optimization of NASA missions, both at the science conception level and at the science return level. Space missions provide understanding of fundamental questions regarding the origin and evolution of galaxies, stars, and planetary systems. In all of these areas the interpretation of results from NASA's space missions relies crucially upon data obtained from the laboratory. We stress that Laboratory Astrophysics is important not only in the interpretation of data, but also in the design and planning of future missions. We recognize a symbiosis between missions to explore the universe and the underlying basic data needed to interpret the data from those missions. In the following we provide a summary of the consensus results from our Workshop, starting with general programmatic findings and followed by a list of more specific scientific areas that need attention. We stress that this is a 'living document' and that these lists are subject to change as new missions or new areas of research rise to the fore.

  20. The Million-Body Problem: Particle Simulations in Astrophysics

    ScienceCinema

    Rasio, Fred

    2018-05-21

    Computer simulations using particles play a key role in astrophysics. They are widely used to study problems across the entire range of astrophysical scales, from the dynamics of stars, gaseous nebulae, and galaxies, to the formation of the largest-scale structures in the universe. The 'particles' can be anything from elementary particles to macroscopic fluid elements, entire stars, or even entire galaxies. Using particle simulations as a common thread, this talk will present an overview of computational astrophysics research currently done in our theory group at Northwestern. Topics will include stellar collisions and the gravothermal catastrophe in dense star clusters.

  1. HEASARC - The High Energy Astrophysics Science Archive Research Center

    NASA Technical Reports Server (NTRS)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  2. The Use of Abbreviations in English-Medium Astrophysics Research Paper Titles: A Problematic Issue

    ERIC Educational Resources Information Center

    Méndez, David I.; Alcaraz, M. Ángeles

    2015-01-01

    In this study, we carry out a qualitative and quantitative analysis of abbreviations in 300 randomly collected research paper titles published in the most prestigious European and US-based Astrophysics journals written in English. Our main results show that the process of shortening words and groups of words is one of the most characteristic and…

  3. Adapting Low-Tech Gear to Exoplanet Discovery

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.

    2014-01-01

    The discovery of 51 Peg b by Mayor and Queloz revealed (among other things) that discovering extrasolar planets, though certainly difficult, was not as hard as professional astronomers had previously thought. At the same time, the astronomical equipment available to amateurs -- including optics, mountings, and CCD detectors -- had become quite capable. This combination of factors led to successful exoplanet programs that leaned heavily on amateur-grade hardware, seeking faster development times and lower costs than were possible for traditional no-compromises astronomical instrument programs. I will describe two of these in which I played a role: the AFOE (Advanced Fiber Optic Echelle) spectrograph, and the STellar Astrophysics and Research on Exoplanets (STARE) transit-search wide-field imager.

  4. Investigation of Zerodur material processing

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1993-01-01

    The Final Report of the Center for Applied Optics (CAO), of The University of Alabama (UAH) study entitled 'Investigation of Zerodur Material Processing' is presented. The objectives of the effort were to prepare glass samples by cutting, grinding, etching, and polishing block Zerodur to desired specifications using equipment located in the optical shop located in the Optical System Branch at NASA/MSFC; characterize samples for subsurface damage and surface roughness; utilize Zerodur samples for coating investigations; and perform investigations into enhanced optical fabrication and metrology techniques. The results of this investigation will be used to support the Advanced X Ray Astrophysics Facility (AXAF) program as well as other NASA/MSFC research programs. The results of the technical effort are presented and discussed.

  5. Foreword

    NASA Astrophysics Data System (ADS)

    Jorissen, A.; Goriely, S.; Rayet, M.; Siess, L.; Boffin, H.

    The international conference The Future Astronuclear Physics was held at the Université Libre de Bruxelles (ULB) from August 20 to 22, 2003, to celebrate Marcel Arnould on the occasion of his sixtieth birthday. Marcel Arnould is full professor at ULB and was appointed director of the Institut d'Astronomie et d'Astrophysique (IAA) of this university in 1983, when he was still a Research Associate of the National Fund for Scientific Research (FNRS). Since the late sixties he has played a leading role in the development of a trans-disciplinary field of research, the object of which is the study of nuclear phenomena in astrophysics. Those phenomena being the main source of energy in stellar interiors and being also responsible for the synthesis of the chemical elements, the study of the often peculiar, sometimes exotic, nuclear physics in a rich variety of astrophysical conditions, is crucial to understand almost all stages of stellar evolution as well as the chemical and isotopic content of the neighboring and remote places of our universe. All along his scientific career, Marcel Arnould has worked to give the so-called nuclear astrophysics, born in the second half of the twentieth century and marked by a few prominent physicists in the United States and in Canada, a fertile ground for development inside Europe as a fully grown discipline, collecting the knowledge on the infinitely small with that on the infinitely large, a true interdisciplinary science that ought to be more appropriately called “astronuclear physics". We like to remind that to achieve this goal, Marcel Arnould has promoted and directed two important projects in the framework of the EU scientific programs. The first one (1989 1992), “Nuclear Astrophysics: experimental and theoretical studies", involved 11 European research centers and led to the first measurement, at the Louvain-la-Neuve cyclotron facility, of a nuclear reaction rate involving a short-lived nuclide, ^{13}N. This experiment was performed using a radioactive ion beam technique, a new and powerful tool of investigation in nuclear astrophysics, which has since been developed worldwide. The second program, “Nuclear Astrophysics: measurement, evaluation and compilation of reaction rates, and their impact on stellar evolution and nucleosynthesis" (1992 1997), gave the scientific community the first European compilation of astrophysical reaction rates. This work was meant to supersede the compilations performed during more than forty years by a team led by the late Nobel Prize winner, William A. Fowler, at the California Institute of Technology. A relentless scientific advisor amongst astrophysicists as well as nuclear physicists, Marcel deplores the persistent lack of communication between those two communities. For years, his hope has been to see the rise of a generation of true astronuclear physicists, but one has to admit with him that this goal is far from being achieved yet and that one still has to fight, despite all the expressions of good intentions, against the barriers that, as is usual, separate scientific disciplines. It is therefore in tribute to the transdisciplinary and visionary nature of Marcel Arnould's scientific work that his close collaborators at the IAA decided to organize this conference, which is explicitely devoted to future developments in the field of astronuclear physics and not, as is often the case, to already completed, or even published, works. The audience has been limited from the start to invited participants chosen for the quality of their human and scientific relations with Marcel, as well as for their contribution to the domains he is exceptionally found of. The conference program was on purpose centered on a few fields that for many years now have been central to the activities of the IAA: the stellar nucleosynthesis and its relations to stellar physics, to nuclear physics and to cosmochemistry. The organizers' choice was to concentrate on a few challenging problems: abundance determinations in stars and modeling of atmospheres, special topics in stellar evolution (rotation, mixing, binarity), multi-D modeling of stellar explosions, future progress in experimental and theoretical nuclear physics for astrophysics. The speakers were asked to give, starting from their own topic, a prospective (or “visionary") view on the evolution of astronuclear physics for the next twenty years. Of course this demand requires time and explains why the organizers chose to limit the number of speeches rather than the time allocated to each speaker. In each of the four sessions, round tables gave the participants plenty of time for discussions or for more formal contributions, some of which have been included in the present proceedings. We hope that the reader will find the same pleasure in reading these proceedings as those who lived the three days of the Conference in a studious and friendly enthusiasm. Scientific Organizing Committee: H. Boffin (Observatoire Royal de Belgique/European Southern Observatory), S. Goriely (IAA), A. Jorissen (IAA), P. Leleux (Université Catholique de Louvain, Institut de Physique Nucléaire), M. Rayet (IAA). Local Organizing Committee: S. Goriely, S. Jancart, A. Jorissen, Y. Levasseur, D. Pourbaix, M. Rayet, L. Siess, S. Van Eck.

  6. The Gaia-ESO Survey Astrophysical Calibration

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Gaia-ESO Survey Consortium

    2016-05-01

    The Gaia-ESO Survey is a wide field spectroscopic survey recently started with the FLAMES@VLT in Cerro Paranal, Chile. It will produce radial velocities more accurate than Gaia's for faint stars (down to V ≃ 18), and astrophysical parameters and abundances for approximately 100 000 stars, belonging to all Galactic populations. 300 nights were assigned in 5 years (with the last year subject to approval after a detailed report). In particular, to connect with other ongoing and planned spectroscopic surveys, a detailed calibration program — for the astrophysical parameters derivation — is planned, including well known clusters, Gaia benchmark stars, and special equatorial calibration fields designed for wide field/multifiber spectrographs.

  7. The Transition from Mathematician to Astrophysicist

    NASA Astrophysics Data System (ADS)

    Flannery, M. R.

    Various landmarks in the evolution of Alexander Dalgarno from a gifted mathematician to becoming the acknowledged Father of Molecular Astrophysics are noted. His researches in basic atomic and molecular physics, aeronomy (the study of the upper atmosphere) and astrophysics are highlighted.

  8. Fertilizing ROSES through the STEM: Interdisciplinary Modules as Pre-service Research Experiences for Secondary STEM Educators (IMPRESS-Ed)

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Wiita, P. J.; Benoit, M.; Magee, N.

    2013-01-01

    IMPRESS-Ed is a program designed to provide authentic summer research experiences in the space, earth, and atmospheric sciences for pre-service K-12 educators at Long Island University (LIU) and The College of New Jersey (TCNJ). In 2011 and 2012, the program involved five students and took place over eight weeks with recruitment occurring during the preceding academic year. The program was divided into two modules: A common core module and an individual mentored research experience. The common module consisted of three units focusing on data-driven pedagogical approaches in astrophysics, tectonophysics, and atmospheric science, respectively. The common module also featured training sessions in observational astronomy, and use of a 3D geowall and state of the art planetarium. Participants in the program are also offered the opportunity to utilize the available TCNJ facilities with their future students. The individual mentored research module matched student interests with potential projects. All five students demonstrated strong gains in earth and space science literacy compared to a baseline measurement. Each student also reported gaining confidence to incorporate data and research-driven instruction in the space and earth sciences into the K-12 STEM classroom setting. All five research projects were also quite successful: several of the students plan to continue research during the academic year and two students are presenting research findings as first authors here at AAS. Other research results are likely to be presented at this year's American Geophysical Union meeting.

  9. The Gamma Ray Imaging Detector of the AGILE satellite: A novel application of silicon trackers for detection of astrophysics high-energy photons

    NASA Astrophysics Data System (ADS)

    Rappoldi, Andrea; AGILE Collaboration

    2009-10-01

    AGILE is a project of the Italian Space Agency (ASI) Scientific Program dedicated to Gamma ray astrophysics. It is designed to be a very light and compact instrument, capable of photon detections and imaging in both the 30 MeV-50 GeV and 18-60 keV energy ranges, with a large field of view (FOV is ˜3 and ˜1 sr, respectively). The core of the instrument (launched on April 23, 2007 from the Indian Space Research Organization's launch facility) is represented by the Gamma Ray Imaging Detector (GRID), which is a silicon tracker developed by the Italian National Institute of Nuclear Physics (INFN), with a spatial resolution of ˜40 μm. The GRID performances have been studied by means of a GEANT Montecarlo, and tested with a dedicated calibration campaign using the tagged gamma beam available at Beam Test Facility (BTF) of INFN Frascati Laboratory.

  10. Complex Plasma Physics and Rising Above the Gathering Storm

    NASA Astrophysics Data System (ADS)

    Hyde, Truell

    2008-11-01

    Research in complex plasma is prevalent across a variety of regimes ranging from the majority of plasma processing environments to many astrophysical settings. Dust particles suspended within such plasmas acquire a charge from collisions with electrons and ions in the plasma. Depending upon the ratio of their interparticle potential energy to their average kinetic energy, once charged these particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. The field of complex plasmas thus offers research opportunities across a wide range of academic disciplines including physics, chemistry, biology, mathematics, electrical engineering and nanoscience. The field of complex plasmas also offers unique educational research opportunities for combating many of the issues raised in Rising Above the Gathering Storm, recently published by the National Academies Press. CASPER's Educational Outreach programs, supported by the National Science Foundation, the Department of Education and the Department of Labor takes advantage of these opportunities through a variety of avenues including a REU / RET program, a High School Scholars Program, integrated curriculum development and the CASPER Physics Circus. Together, these programs impact thousands of students and parents while providing K-12 teachers with curriculum, supporting hands-on material and support for introducing plasma and basic physical science concepts into the classroom. Both research results and educational outreach concepts from the above will be discussed.

  11. Titles of Scientific Letters and Research Papers in Astrophysics: A Comparative Study of Some Linguistic Aspects and Their Relationship with Collaboration Issues

    ERIC Educational Resources Information Center

    Méndez, David I.; Alcaraz, M. Ángeles

    2017-01-01

    In this study we compare the titles of scientific letters and those of research papers published in the field of astrophysics in order to identify the possible differences and/or similarities between both genres in terms of several linguistic and extra-linguistic variables (length, lexical density, number of prepositions, number of compound…

  12. Los Alamos Neutron Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less

  13. Shape: A 3D Modeling Tool for Astrophysics.

    PubMed

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  14. Nuclear astrophysics in the laboratory and in the universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Champagne, A. E., E-mail: artc@physics.unc.edu; Iliadis, C.; Longland, R.

    Nuclear processes drive stellar evolution and so nuclear physics, stellar models and observations together allow us to describe the inner workings of stars and their life stories. This Information on nuclear reaction rates and nuclear properties are critical ingredients in addressing most questions in astrophysics and often the nuclear database is incomplete or lacking the needed precision. Direct measurements of astrophysically-interesting reactions are necessary and the experimental focus is on improving both sensitivity and precision. In the following, we review recent results and approaches taken at the Laboratory for Experimental Nuclear Astrophysics (LENA, http://research.physics.unc.edu/project/nuclearastro/Welcome.html )

  15. Proceedings of the NASA Laboratory Astrophysics Workshop

    NASA Technical Reports Server (NTRS)

    Salama, Farid (Editor)

    2002-01-01

    This document is the proceedings of the NASA Laboratory Astrophysics Workshop, convened May 1-3, 2002 at NASA's Ames Research Center. Sponsored by the NASA Office of Space Science (OSS), this programmatic workshop is held periodically by NASA to discuss the current state of knowledge in the interdisciplinary field of laboratory astrophysics and to identify the science priorities (needs) in support of NASA's space missions. An important goal of the Workshop is to provide input to OSS in the form of a white paper for incorporation in its strategic planning. This report comprises a record of the complete proceedings of the Workshop and the Laboratory Astrophysics White Paper drafted at the Workshop.

  16. The Future is Hera! Analyzing Astronomical Over the Internet

    NASA Technical Reports Server (NTRS)

    Valencic, L. A.; Chai, P.; Pence, W.; Shafer, R.; Snowden, S.

    2008-01-01

    Hera is the data processing facility provided by the High Energy Astrophysics Science Archive Research Center (HEASARC) at the NASA Goddard Space Flight Center for analyzing astronomical data. Hera provides all the pre-installed software packages, local disk space, and computing resources need to do general processing of FITS format data files residing on the users local computer, and to do research using the publicly available data from the High ENergy Astrophysics Division. Qualified students, educators and researchers may freely use the Hera services over the internet of research and educational purposes.

  17. A meeting with the universe: Science discoveries from the space program

    NASA Technical Reports Server (NTRS)

    French, B. M. (Editor); Maran, S. P. (Editor)

    1981-01-01

    A general history of space exploration is presented. The solar system is discussed. The Sun-Earth relationship is considered, including magnetic fields, solar wind, the magnetosphere, and the Sun-weather relationship. The universe beyond the solar system is discussed. Topics include stellar and galactic evolution, quasars and intergalactic space. The effects of weightlessness and ionizing radiation on human beings are considered. The possibility of extraterrestrial life is discussed. Lunar and planetary exploration, solar-terrestrial physics, astrophysics, biomedical research and exobiology are reviewed. Numerons color illustrations are included.

  18. AO corrected satellite imaging from Mount Stromlo

    NASA Astrophysics Data System (ADS)

    Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.

    2016-07-01

    The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.

  19. CAMAC and NIM systems in the space program. [Computer-Aided Measurement And Control and Nuclear Instrumentation Modules

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.; Ehrmann, C. H.; Kaminski, T. J.

    1975-01-01

    The CAMAC and NIM instrumentation systems were developed originally to serve the needs of nuclear research institutions in Europe and North America. CAMAC and NIM are currently considered in several studies at the systems level conducted by NASA and ESRO groups. NIM and CAMAC studies for applications related to the space shuttle are discussed along with the advantages provided by aspects of modularization and standardization, a use of NIM and CAMAC equipment in connection with a group of astrophysics experiments, and questions of cost effectiveness.

  20. A meeting with the universe: Science discoveries from the space program

    NASA Astrophysics Data System (ADS)

    French, Bevan M.; Maran, Stephen P.; Chipman, Eric G.

    A general history of space exploration is presented. The solar system is discussed. The Sun-Earth relationship is considered, including magnetic fields, solar wind, the magnetosphere, and the Sun-weather relationship. The universe beyond the solar system is discussed. Topics include stellar and galactic evolution, quasars and intergalactic space. The effects of weightlessness and ionizing radiation on human beings are considered. The possibility of extraterrestrial life is discussed. Lunar and planetary exploration, solar-terrestrial physics, astrophysics, biomedical research and exobiology are reviewed. Numerous color illustrations are included.

  1. Astrophysics space systems critical technology needs

    NASA Technical Reports Server (NTRS)

    Gartrell, C. F.

    1982-01-01

    This paper addresses an independent assessment of space system technology needs for future astrophysics flight programs contained within the NASA Space Systems Technology Model. The critical examination of the system needs for the approximately 30 flight programs in the model are compared to independent technology forecasts and possible technology deficits are discussed. These deficits impact the developments needed for spacecraft propulsion, power, materials, structures, navigation, guidance and control, sensors, communications and data processing. There are also associated impacts upon in-orbit assembly technology and space transportation systems. A number of under-utilized technologies are highlighted which could be exploited to reduce cost and enhance scientific return.

  2. Physics of the Cosmos (PCOS) Technology Development Program Overview

    NASA Astrophysics Data System (ADS)

    Pham, B. Thai; Clampin, M.; Werneth, R. L.

    2014-01-01

    The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.

  3. FTOOLS: A general package of software to manipulate FITS files

    NASA Astrophysics Data System (ADS)

    Blackburn, J. K.; Shaw, R. A.; Payne, H. E.; Hayes, J. J. E.; Heasarc

    1999-12-01

    FTOOLS, a highly modular collection of utilities for processing and analyzing data in the FITS (Flexible Image Transport System) format, has been developed in support of the HEASARC (High Energy Astrophysics Research Archive Center) at NASA's Goddard Space Flight Center. The FTOOLS package contains many utility programs which perform modular tasks on any FITS image or table, as well as higher-level analysis programs designed specifically for data from current and past high energy astrophysics missions. The utility programs for FITS tables are especially rich and powerful, and provide functions for presentation of file contents, extraction of specific rows or columns, appending or merging tables, binning values in a column or selecting subsets of rows based on a boolean expression. Individual FTOOLS programs can easily be chained together in scripts to achieve more complex operations such as the generation and displaying of spectra or light curves. FTOOLS development began in 1991 and has produced the main set of data analysis software for the current ASCA and RXTE space missions and for other archival sets of X-ray and gamma-ray data. The FTOOLS software package is supported on most UNIX platforms and on Windows machines. The user interface is controlled by standard parameter files that are very similar to those used by IRAF. The package is self documenting through a stand alone help task called fhelp. Software is written in ANSI C and FORTRAN to provide portability across most computer systems. The data format dependencies between hardware platforms are isolated through the FITSIO library package.

  4. 2015 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  5. SMD Technology Development Story for NASA Annual Technology report

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  6. Variable Stars as an Introduction to Computational Research

    NASA Astrophysics Data System (ADS)

    Cash, Jennifer; Walter, Donald K.

    2017-01-01

    As a part of larger effort to enhance the research activity at SC State and involve more undergraduates in research activities, we present our efforts to develop an introductory research experience where the goal is a balance of astrophysical understanding, general research skills, and programming skills which the students can carry into a wide variety of future research activities. We have found that variable stars are a very good topic for this sort of introductory experience due to a combination of factors including: accessibility of data, easily understandable physical processes, and a relatively straight forward data analysis process. We will present an outline of our research experiences to guide a student from the very initial stages of learning to final presentation of the student's work.“This work was supported in part by NSF PAARE award AST-1358913 and NSF HBCU-UP award HRD-1332449 to SCSU.”

  7. The IceCube realtime alert system

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2017-06-01

    Although high-energy astrophysical neutrinos were discovered in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts for the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole site and at IceCube facilities in the north that have enabled this fast follow-up program to be implemented. Additionally, this paper presents the first realtime analyses to be activated within this framework, highlights their sensitivities to astrophysical neutrinos and background event rates, and presents an outlook for future discoveries.

  8. AXAF: The Advanced X-ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Advanced X-ray Astrophysics Facility (AXAF) will be the X-ray astronomy component of U.S. space exploration via Great Observatories (mostly orbital) for the remainder of the century. AXAF and the research planned for it are discussed for a lay audience.

  9. The Legacy of NASA Astrophysics E/PO: Conducting Professional Development, Developing Key Themes & Resources, and Broadening E/PO Audiences

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, Denise A.; Meinke, Bonnie K.; Bartolone, Lindsay; Manning, Jim; Schultz, Gregory R.; NASA Astrophysics E/PO Community

    2016-01-01

    For the past six years, NASA's Science Mission Directorate (SMD) has coordinated the work of its mission- and program-embedded education and public outreach (E/PO) efforts through four forums representing its four science divisions. The Astrophysics Forum, as the others, has built on SMD's long-standing principle of partnering scientists and educators and embedding E/PO in its missions to encourage and coordinate collaborative efforts to make the most efficient and effective use of NASA resources, personnel, data and discoveries in leveraged ways, in support of the nation's science education. Three priorities established early in the Forum's period of activity were to collaboratively enhance professional development for formal and informal educators, develop key themes & resources centered on astrophysics topics, and broaden the reach of astrophysics E/PO to traditionally underserved audiences in STEM subjects. This presentation will highlight some of the achievements of the Astrophysics E/PO community and Forum in these priority areas. This work constitutes an ongoing legacy--a firm foundation on which the new structure of NASA SMD education efforts will go forward.

  10. BRAVO (Brazilian Astrophysical Virtual Observatory): data mining development

    NASA Astrophysics Data System (ADS)

    De Carvalho, R. R.; Capelato, H. V.; Velho, H. C.

    2007-08-01

    The primary goal of the BRAVO project is to generate investment in information technology, with particular emphasis on datamining and statistical analysis. From a scientific standpoint, the participants assembled to date are engaged in several scientific projects in various fields of cosmology, astrophysics, and data analysis, with significant contributions from international partners. These scientists conduct research on clusters of galaxies, small groups of galaxies, elliptical galaxies, population synthesis, N-body simulations, and a variety of studies in stellar astrophysics. One of the main aspects of this project is the incorporation of these disparate areas of astrophysical research within the context of the coherent development of database technology.Observational cosmology is one of the branches of science experiencing the largest growth in the past few decades. large photometric and spectroscopic surveys have been carried out in both hemispheres. As a result, an extraordinary amount of data in all portions of the electromagnetic spectrum exists, but without standard techniques for storage and distribution. This project will utilize several specific astronomical databases, created to store data generated by several instruments (including SOAR, Gemini, BDA, etc), uniting them within a common framework and with standard interfaces. We are inviting members of the entire Brazilian astronomical community to partake in this effort. This will certainly impact both education and outreach efforts, as well as the future development of astrophysical research. Finally, this project will provide a constant investment in human resources. First, it will do so by stimulating ongoing short technical visits to Johns Hopkins University and Caltech. These will allow us to bring software technology and expertise in datamining back to Brazil. Second, we will organize the Summer School on Software Technology in Astrophysics, which will be designed to ensure that the Brazilian scientific community can take full advantage of the benefits offered by the VO project

  11. Composite materials for precision space reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.

    1992-01-01

    One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.

  12. Relevance of advanced nuclear fusion research: Breakthroughs and obstructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppi, Bruno, E-mail: coppi@mit.edu

    2016-03-25

    An in depth understanding of the collective modes that can be excited in a wide range of high-energy plasmas is necessary to advance nuclear fusion research in parallel with other fields that include space and astrophysics in particular. Important achievements are shown to have resulted from implementing programs based on this reality, maintaining a tight connection with different areas of investigations. This involves the undertaking of a plurality of experimental approaches aimed at understanding the physics of fusion burning plasmas. At present, the most advanced among these is the Ignitor experiment involving international cooperation, that is designed to investigate burningmore » plasma regimes near ignition for the first time.« less

  13. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1997-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.

  14. Facilities at Indian Institute of Astrophysics and New Initiatives

    NASA Astrophysics Data System (ADS)

    Bhatt, Bhuwan Chandra

    2018-04-01

    The Indian Institute of Astrophysics is a premier national institute of India for the study of and research into topics pertaining to astronomy, astrophysics and related subjects. The Institute's main campus in Bangalore city in southern India houses the main administrative set up, library and computer center, photonics lab and state of art mechanical workshop. IIA has a network of laboratories and observatories located in various places in India, including Kodaikanal (Tamilnadu), Kavalur (Tamilnadu), Gauribidanur (Karnataka), Leh & Hanle (Jammu & Kashmir) and Hosakote (Karnataka).

  15. CICART Center For Integrated Computation And Analysis Of Reconnection And Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Amitava

    CICART is a partnership between the University of New Hampshire (UNH) and Dartmouth College. CICART addresses two important science needs of the DoE: the basic understanding of magnetic reconnection and turbulence that strongly impacts the performance of fusion plasmas, and the development of new mathematical and computational tools that enable the modeling and control of these phenomena. The principal participants of CICART constitute an interdisciplinary group, drawn from the communities of applied mathematics, astrophysics, computational physics, fluid dynamics, and fusion physics. It is a main premise of CICART that fundamental aspects of magnetic reconnection and turbulence in fusion devices, smaller-scalemore » laboratory experiments, and space and astrophysical plasmas can be viewed from a common perspective, and that progress in understanding in any of these interconnected fields is likely to lead to progress in others. The establishment of CICART has strongly impacted the education and research mission of a new Program in Integrated Applied Mathematics in the College of Engineering and Applied Sciences at UNH by enabling the recruitment of a tenure-track faculty member, supported equally by UNH and CICART, and the establishment of an IBM-UNH Computing Alliance. The proposed areas of research in magnetic reconnection and turbulence in astrophysical, space, and laboratory plasmas include the following topics: (A) Reconnection and secondary instabilities in large high-Lundquist-number plasmas, (B) Particle acceleration in the presence of multiple magnetic islands, (C) Gyrokinetic reconnection: comparison with fluid and particle-in-cell models, (D) Imbalanced turbulence, (E) Ion heating, and (F) Turbulence in laboratory (including fusion-relevant) experiments. These theoretical studies make active use of three high-performance computer simulation codes: (1) The Magnetic Reconnection Code, based on extended two-fluid (or Hall MHD) equations, in an Adaptive Mesh Refinement (AMR) framework, (2) the Particle Simulation Code, a fully electromagnetic 3D Particle-In-Cell (PIC) code that includes a collision operator, and (3) GS2, an Eulerian, electromagnetic, kinetic code that is widely used in the fusion program, and simulates the nonlinear gyrokinetic equations, together with a self-consistent set of Maxwell’s equations.« less

  16. What Do Subject Matter Experts Have to Say about Participating in Education and Outreach?

    NASA Astrophysics Data System (ADS)

    Manning, Colleen; NASA's Universe of Learning Team

    2018-01-01

    NASA’s Universe of Learning partners wish to actively engage with Subject Matter Experts (scientists and engineers) throughout the design, development, and delivery of products, programs, and professional development. In order to ensure these engagement efforts aligned with the needs of Subject Matter Experts, the external evaluators conducted an online survey. The subject pool included the scientists and engineers employed at the partner organizations as well as other scientists and engineers affiliated with NASA’s Astrophysics missions and research programs. This presentation will describe scientists’/engineers’ interest in various types of education/outreach, their availability to participate in education/outreach, factors that would encourage their participation in education/outreach, and the preparation and support they have for participation in education/outreach.

  17. NASA's future plans for space astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael S.

    1992-01-01

    NASA's plans in the field of space astronomy and astrophysics through the first decade of the next century are reviewed with reference to specific missions and mission concepts. The missions discussed include the Space Infrared Telescope Facility, the Stratospheric Observatory for Infrared Astronomy, the Submillimeter Intermediate Mission, the Astrometric Interferometry Mission, the Greater Observatories program, and Mission from Planet Earth. Plans to develop optics and sensors technology to enable these missions are also discussed.

  18. Underground Nuclear Astrophysics - from LUNA to CASPAR

    NASA Astrophysics Data System (ADS)

    Strieder, Frank; Caspar Collaboration

    2015-04-01

    It is in the nature of astrophysics that many of the processes and objects are physically inaccessible. Thus, it is important that those aspects that can be studied in the laboratory are well understood. Nuclear reactions are such quantities that can be partly measured in the laboratory. These reactions influence the nucleosynthesis of the elements in the Big Bang as well as in all objects formed thereafter, and control the associated energy generation and evolution of stars. Since 20 years LUNA (Laboratory for Underground Nuclear Astrophysics) has been measuring cross sections relevant for hydrogen burning in the Gran Sasso Laboratory and demonstrated the research potential of an underground accelerator facility. Unfortunately, the number of reactions is limited by the energy range accessible with the 400 kV LUNA accelerator. The CASPAR (Compact Accelerator System for Performing Astrophysical Research) Collaboration will implement a high intensity 1 MV accelerator at the Sanford Underground Research Facility (SURF) and overcome the current limitation at LUNA. This project will primarily focus on the neutron sources for the so-called s-process, e.g. 13 C(α , n) 16 O and 22 Ne(α , n) 25 Mg , and lead to unprecedented measurements compared to previous studies.

  19. Astrophysics of Red Supergiants

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.

    2017-12-01

    'Astrophysics of Red Supergiants' is the first book of its kind devoted to our current knowledge of red supergiant stars, a key evolutionary phase that is critical to our larger understanding of massive stars. It provides a comprehensive overview of the fundamental physical properties of red supergiants, their evolution, and their extragalactic and cosmological applications. It serves as a reference for researchers from a broad range of fields (including stellar astrophysics, supernovae, and high-redshift galaxies) who are interested in red supergiants as extreme stages of stellar evolution, dust producers, supernova progenitors, extragalactic metallicity indicators, members of massive binaries and mergers, or simply as compelling objects in their own right. The book is accessible to a range of experience levels, from graduate students up to senior researchers.

  20. Preface to special topic: High-energy density laboratory astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenzer, Siegfried H

    Here, in the 1990s, when the large inertial confinement fusion facilities in the United States became accessible for discovery-class research, physicists soon realized that the combination of these energetic drivers with precision plasmas diagnostics would allow the unprecedented experimental study of astrophysical problems.

  1. Preface to special topic: High-energy density laboratory astrophysics

    DOE PAGES

    Glenzer, Siegfried H

    2017-04-11

    Here, in the 1990s, when the large inertial confinement fusion facilities in the United States became accessible for discovery-class research, physicists soon realized that the combination of these energetic drivers with precision plasmas diagnostics would allow the unprecedented experimental study of astrophysical problems.

  2. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forest, Cary B.

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamomore » Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.« less

  3. Research at the Institute of Astronomy and Astrophysics of the Université Libre de Bruxelles

    NASA Astrophysics Data System (ADS)

    Karinkuzhi, Drisya; Chamel, Nicolas; Goriely, Stéphane; Jorissen, Alain; Pourbaix, Dimitri; Siess, Lionel; Van Eck, Sophie

    2018-04-01

    Over the years, a coherent research strategy has developed in the field of stellar physics at the Institute of Astronomy and Astrophysics (IAA). It involves observational studies (chemical composition of giant stars, binary properties, tomography of stellar atmospheres) that make use of the large ESO telescopes as well as of other major instruments. The presence of a high-resolution spectrograph on the 3.6-m Devasthal Optical Telescope (DOT) would therefore be highly beneficial to IAA research. These observations are complemented and supported by theoretical studies of mass transfer in binary systems, of standard and non-standard stellar evolution (including the modelling of stellar hydrodynamical nuclear burning for application to certain thermonuclear supernovae) and of nuclear astrophysics (a field in which IAA has been recognized for a long time as an international centre of excellence), including the theory of nucleosynthesis. IAA also addresses the end-points of stellar evolution as it is carrying out research on the compact remnants of stellar evolution of massive stars: neutron stars.

  4. S-factor for radiative capture reactions for light nuclei at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Ghasemi, Reza; Sadeghi, Hossein

    2018-06-01

    The astrophysical S-factors of thermonuclear reactions, including radiative capture reactions and their analysis in the frame of different theoretical models, are the main source of nuclear processes. We have done research on the radiative capture reactions importance in the framework of a potential model. Investigation of the reactions in the astrophysical energies is of great interest in the aspect of astrophysics and nuclear physics for developing correct models of burning and evolution of stars. The experimental measurements are very difficult and impossible because of these reactions occurrence at low-energies. In this paper we do a calculation on radiative capture astrophysical S-factors for nuclei in the mass region A < 17. We calculate the astrophysical factor for the dipole electronic transition E1 and magnetic dipole transition M1 and electric quadrupole transition E2 by using the M3Y potential for non-resonances and resonances captures. Then we have got the parameter of a central part and spin-orbit part of M3Y potential and spectroscopic factor for reaction channels. For the astrophysical S-factor of this article the good agreement is achieved In comparison with experimental data and other theoretical methods.

  5. Development And Application Of The Ion Microprobe For Analysis Of Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.

    2001-01-01

    This report covers the work carried out under NASA Grant NAG5-4083. The research was directed toward analyses of early solar system material, of presolar grains preserved in meteorites, and toward theoretical studies of nucleosynthesis in stars related to the chemical evolution of the galaxy and the formation of the solar system. The work was carried out over the time period 15 February 1998 - 31 May 2001 and involved the participation of the following individuals: M. Busso, Visiting Associate, Professor of Astrophysics, Perugia University, Italy; B.-G. Choi, research fellow, now Associate Professor at Seoul National University, Korea; H. C. Connolly, research fellow, now at Kingsborough Community College, CUNY; R. Gallino, Visiting Associate, Professor of Astrophysics, University of Torino; Y. Guan, Smithsonian Institution; C. Hohenberg, Professor of Physics, Washington University, St. Louis; M. Heinrich, electronics and systems engineer, Caltech; W. Hsu, research fellow, Caltech; T. LaTourrette, research fellow, now at Rand Corporation; G. R. Huss, Senior Research Scientist, now at Arizona State University; N. Krestina, research fellow in geochemistry, Caltech; G. J. MacPherson, Smithsonian Institution; K. Nollett, research fellow in astrophysics; Y.-Z. Qian, Professor of Physics, University of Minnesota; G. Srinivasan, research fellow, now Research Scientist, Physical Research Laboratory, Ahmedabad, India.

  6. Particle astrophysics

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    1991-01-01

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  7. A plasma deflagration accelerator as a platform for laboratory astrophysics

    NASA Astrophysics Data System (ADS)

    Underwood, Thomas C.; Loebner, Keith T. K.; Cappelli, Mark A.

    2017-06-01

    The replication of astrophysical flows in the laboratory is critical for isolating particular phenomena and dynamics that appear in complex, highly-coupled natural systems. In particular, plasma jets are observed in astrophysical contexts at a variety of scales, typically at high magnetic Reynolds number and driven by internal currents. In this paper, we present detailed measurements of the plasma parameters within deflagration-produced plasma jets, the scaling of these parameters against both machine operating conditions and the corresponding astrophysical phenomena. Using optical and spectroscopic diagnostics, including Schlieren cinematography, we demonstrate the production of current-driven plasma jets of ∼100 km/s and magnetic Reynolds numbers of ∼100, and discuss the dynamics of their acceleration into vacuum. The results of this study will contribute to the reproduction of various types of astrophysical jets in the laboratory and indicate the ability to further probe active research areas such as jet collimation, stability, and interaction.

  8. Cosmic rays: Physics and astrophysics. A research briefing

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Some recent results in cosmic-ray physics are summarized, and how they raise new questions of interest for both physics and astrophysics is described. An important technical advance, the recently demonstrated capability of long-duration balloon flights of heavy payloads, will offer a great advantage for achieving some of these goals.

  9. Publications of the exobiology program for 1984: A special bibliography

    NASA Technical Reports Server (NTRS)

    Wallace, J. S. (Compiler); Devincenzi, D. L. (Compiler)

    1986-01-01

    A bibliography of NASA exobiology programs is given. Planetary environments; chemical evolution; organic geochemistry; extraterrestrial intelligence; and the effect of planetary solar and astrophysical phenomena on the evolution of complex life in the universe are among the topics listed.

  10. Neutron Star Mergers and the R process

    NASA Astrophysics Data System (ADS)

    Joniak, Ronald; Ugalde, Claudio

    2017-09-01

    About half of the elements of the periodic table that are present today in the Solar System were synthesized before the formation of the Sun via a rapid neutron capture process (r process). However, the astrophysical site of the r process is a longstanding problem that has captivated both experimental and theoretical astrophysicists. Up to date, two possible scenarios for the site of the r process have been suggested: the first involves the high entropy wind of core collapse supernovae, and the second corresponds to the merger of two compact stellar objects such as neutron stars. We will study the robustness of the nucleosynthesis abundance pattern between the second and third r process peaks as produced by neutron star mergers with r process-like neutron exposures. First, we will vary parameters to obtain an understanding of the astrophysical mechanisms that create the r process. Next, we will create a program to obtain the best possible parameters based on a chi-squared test. Once we have the best fits, we will test the effect of fission in the overall isotope abundance pattern distribution. Later on, we will vary the ratio of masses of the two fission fragments and study its effect on elemental abundances. This research was supported by the UIC College of Liberal Arts and Sciences Undergraduate Research Initiative (LASURI).

  11. Laboratory Studies of Thermal Energy Charge Transfer of Multiply Charged Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    2003-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.

  12. Experimental and numerical investigation of reactive shock-accelerated flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonazza, Riccardo

    2016-12-20

    The main goal of this program was to establish a qualitative and quantitative connection, based on the appropriate dimensionless parameters and scaling laws, between shock-induced distortion of astrophysical plasma density clumps and their earthbound analog in a shock tube. These objectives were pursued by carrying out laboratory experiments and numerical simulations to study the evolution of two gas bubbles accelerated by planar shock waves and compare the results to available astrophysical observations. The experiments were carried out in an vertical, downward-firing shock tube, 9.2 m long, with square internal cross section (25×25 cm 2). Specific goals were to quantify themore » effect of the shock strength (Mach number, M) and the density contrast between the bubble gas and its surroundings (usually quantified by the Atwood number, i.e. the dimensionless density difference between the two gases) upon some of the most important flow features (e.g. macroscopic properties; turbulence and mixing rates). The computational component of the work performed through this program was aimed at (a) studying the physics of multi-phase compressible flows in the context of astrophysics plasmas and (b) providing a computational connection between laboratory experiments and the astrophysical application of shock-bubble interactions. Throughout the study, we used the FLASH4.2 code to run hydrodynamical and magnetohydrodynamical simulations of shock bubble interactions on an adaptive mesh.« less

  13. Calin Popovici (1910-1977): The Founder of Modern Astrophysics in Romania

    NASA Astrophysics Data System (ADS)

    Dumitrescu, A.; Maris, G.

    2007-03-01

    Connected to the development of astrophysics at the world level, animated by the wish to create a Romanian school of astrophysics and getting understanding and support from the director of the Observatory, the academician Gheorghe Demetrescu, Prof. Calin Popovici laid the basis of the new sector of solar researches, whose coordinator he became in 1955. After the launch of the first artificial satellite on 4 October 1957, Prof. C. Popovici, anticipating the importance of space research in the future, organized at Bucharest Observatory one of the first artificial satellites tracking station in Europe. Later, the group of artificial satellites was set up, whose research focused especially on two new research fields: cosmic triangulation and the study of high atmosphere by means of artificial satellites. It was also at the initiative of Prof. Popovici that in 1962 the second pavilion (after the solar one) was built and was endowed with the new Cassegrain telescope (50/750 cm) equipped with a high precision photoelectric photometer. Thus, the new research sector dedicated to variable stars study was set up. Due to his high professionalism, abnegation and passion for astronomy, Prof. C. Popovici managed to overcome some political difficulties, and his dream of creating a section of astrophysics had come true. Prof. C. Popovici had also an exceptional merit in the scientific training of his collaborators. His vast activity carried out throughout the years in the service of astronomy, education and culture was rewarded with the distinction of academician granted post-mortem.

  14. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    NASA Astrophysics Data System (ADS)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O'Neill, B. J.; Nolting, C.; Edmon, P.; Donnert, J. M. F.; Jones, T. W.

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This journal contains 7 articles pertaining to astrophysics. The first article is an overview of the other 6 articles and also a tribute to Jim Wilson and his work in the fields of general relativity and numerical astrophysics. The six articles are on the following subjects: (1) computer simulations of black hole accretion; (2) calculations on the collapse of the iron core of a massive star; (3) stellar-collapse models which reveal a possible site for nucleosynthesis of elements heavier than iron; (4) modeling sources for gravitational radiation; (5) the development of a computer program for finite-difference mesh calculations and itsmore » applications to astrophysics; (6) the existence of neutrinos with nonzero rest mass are used to explain the universe. Abstracts of each of the articles were prepared separately. (SC)« less

  16. Sub-orbital Programs and their Influence upon Space Missions

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2009-01-01

    Sub-orbital programs can push science to new limits by deploying the very latest in instrument concepts and technologies. Many space missions have sprung from sub-orbital programs, scientifically, technologically, and personally. I will illustrate the sub-orbital potential with examples from cosmology, interferometry, high-energy astrophysics, and others foreseen in NASA roadmaps.

  17. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Community Collaborations

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Lawton, B. L.; Bartolone, L.; Schultz, G. R.; Blair, W. P.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum is one of four scientist-educator teams that support NASA's Science Mission Directorate and its nationwide education and public outreach community in increasing the coherence, efficiency, and effectiveness of their education and public outreach efforts. NASA Astrophysics education and outreach teams collaborate with each other through the Astrophysics Forum to place individual programs in context, connect with broader education and public outreach activities, learn and share successful strategies and techniques, and develop new partnerships. This poster highlights examples of collaborative efforts designed to engage youth and adults across the full spectrum of learning environments, from public outreach venues, to centers of informal learning, to K-12 and higher education classrooms. These include coordinated efforts to support major outreach events such as the USA Science and Engineering Festival; pilot "Astro4Girls" activities in public libraries to engage girls and their families in science during Women’s History Month; and a pilot "NASA's Multiwavelength Universe" online professional development course for middle and high school educators. Resources to assist scientists and Astro101 instructors in incorporating NASA Astrophysics discoveries into their education and public outreach efforts are also discussed.

  18. Development of observational and instrumental techniques in hard X-ray and medium energy gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Pelling, M.

    1985-01-01

    The technical activities, scientific results, related space hardware projects and personnel of the high energy astrophysics program are reported. The development of observational and instrumental techniques in hard X-ray (0.001 to 100 keV) and medium energy gamma-ray (0.1 to 10 MeV) astronomy are examined. Many of these techniques were developed explicitly for use on high altitude balloons where most of the scientific results were obtained. The extensive observational activity using balloons are tabulated. Virtually every research activity will eventually result in a major space hardware development effort.

  19. A Long-Term Space Astrophysics Research Program: The Evolution of the Quasar Continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Oliversen, Ronald K. (Technical Monitor)

    2002-01-01

    Four papers have been written. One reports on the major study funded by this grant: a pan-chromatic study of the quasar continuum at redshift 3. Two others make use of the quasar continuum shapes to find the minimum total accretion luminosity of the Universe, and hence the efficiency and spin of supermassive black holes; the second shows that the reemission of absorbed quasar radiation alleviates a major problem with galaxy formation and the FIR background. The last paper recognizes the role quasars may play in the initial formation of dust in the early Universe.

  20. β-DECAY Studies at Triumf and Future Opportunities with Griffin

    NASA Astrophysics Data System (ADS)

    Garnsworthy, A. B.; Ball, G. C.; Bender, P. C.; Churchman, R.; Close, A.; Glister, J.; Hackman, G.; Ketelhut, S.; Krücken, R.; Sjue, S. K. L.; Tardiff, E.; Garrett, P. E.; Demand, G. A.; Dunlop, R.; Finlay, P.; Hadinia, B.; Leach, K.; Michetti-Wilson, J.; Rand, E. T.; Svensson, C. E.; Andreoiu, C.; Ashley, R.; Chester, A.; Cross, D.; Starosta, K.; Wang, Z.; Zganjar, E. F.

    2013-03-01

    The 8π spectrometer at TRIUMF-ISAC-I and a powerful suite of ancillary detectors support a wide program of research in the fields of nuclear structure, nuclear astrophysics and fundamental symmetries with low-energy radioactive beams.Work is underway to upgrade the Ge detectors and DAQ aspects of the facility to a new state-of-the-art γ-ray spectrometer, GRIFFIN, which will become operational in 2014. GRIFFIN will constitute an increase in the γ-γ efficiency of close to a factor of 300 over the current setup and extend the capabilities for investigations of exotic nuclei produced at ISAC.

  1. Tools Automate Spacecraft Testing, Operation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "NASA began the Small Explorer (SMEX) program to develop spacecraft to advance astrophysics and space physics. As one of the entities supporting software development at Goddard Space Flight Center, the Hammers Company Inc. (tHC Inc.), of Greenbelt, Maryland, developed the Integrated Test and Operations System to support SMEX. Later, the company received additional Small Business Innovation Research (SBIR) funding from Goddard for a tool to facilitate the development of flight software called VirtualSat. NASA uses the tools to support 15 satellites, and the aerospace industry is using them to develop science instruments, spacecraft computer systems, and navigation and control software."

  2. Washington Camp-A New Site for TSU Astronomy

    NASA Astrophysics Data System (ADS)

    Wade, Montanez A.

    1997-02-01

    The astronomy research program at Tennessee State University began in the Center of Excellence in Information Systems in 1988 with a grant from Marshall Space Flight Center. The initial research was to expand the investigation of Dr. D. S. Hall of Vanderbilt University on the behavior of chromospherically active (CA) stars utilizing automatic photometric telescopes (APT's)located in the southern Arizonan desert at the Smithsonian Institution's Mt. Hopkins Facility (Fred Whipple Observatory). The APT's were and are operated by Fairborn Observatory, a non-profit organization. Over the years the TSU program significantly expanded and by 1996 CASS astronomers managed four APT's at the Mt. Hopkins site: Fairborn 10-in, SAO/TSU 30- in, the Vanderbilt/TSU 16-in, and the TSU/SAO 32-in. In addition to CA star research, the program now includes observation of solar duplicates to better understand the Sun-climate connection, investigation of magnetic activity in cool stars, and verification of the existence of extra-solar planets. Observing schemes are programmed in Nashville and data are retrieved from the Arizona site via the Internet. With CASS funding TSU has under construction a 2-m automatic spectroscopic telescope (AST) and a 24-in automatic imaging telescope (AIT). Anticipating this expansion, Fairborn Observatory located a 40 acre site in Washington Camp, AZ to build its own expanded facility. This paper will present a brief history of the TSU astrophysics program including a cursory description of the research areas, the instrumentation utilized in data acquisition, and a description of the facilities.

  3. The Nuclear Astrophysics Explorer

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Teegarden, B. J.; Gehrels, N.; Mahoney, W. A.

    1989-01-01

    The Nuclear Astrophysics Explorer was proposed in 1986 for NASA's Explorer Concept Study Program by an international collaboration of 25 scientists from nine institutions. The one-year feasibility study began in June 1988. The Nuclear Astrophysics Explorer would obtain high resolution observations of gamma-ray lines, E/Delta E about 1000, at a sensitivity of about 0.000003 ph/sq cm s, in order to study fundamental problems in astrophysics such as nucleosynthesis, supernovae, neutron star and black-hole physics, and particle acceleration and interactions. The instrument would operate from 15 keV to 10 Mev and use a heavily shielded array of nine cooled Ge spectrometers in a very low background configuration. Its 10 deg FWHM field of view would contain a versatile coded mask system which would provide two-dimensional imaging with 4 deg resolution, one-dimensional imaging with 2 deg resolution, and efficiendt measurements of diffuse emission. An unshielded Ge spectrometer would obtain wide-field measurements of transient gamma-ray sources. The earliest possible mission would begin in 1995.

  4. A Class for Teachers Featuring a NASA Satellite Mission

    NASA Astrophysics Data System (ADS)

    Battle, R.; Hawkins, I.

    1996-05-01

    As part of the NASA IDEA (Initiative to Develop Education through Astronomy) program, the UC Berkeley Center for EUV Astrophysics (CEA) received a grant to develop a self-contained teacher professional development class featuring NASA's Extreme Ultraviolet Explorer (EUVE) satellite mission. This class was offered in collaboration with the Physics/Astronomy Department and the Education Department of San Francisco State University during 1994, and in collaboration with the UCB Graduate School of Education in 1995 as an extension course. The class served as the foundation for the Science Education Program at CEA, providing valuable lessons and experience through a full year of intense collaboration with 50 teachers from the diverse school districts of the San Francisco Bay Area teaching in the 3rd--12th grade range. The underlying theme of the class focused on how scientists carry out research using a NASA satellite mission. Emphasis was given to problem-solving techniques, with specific examples taken from the pre- and post-launch stages of the EUVE mission. The two, semester-long classes were hosted by the CEA, so the teachers spent an average of 4 hours/week during 17 weeks immersed in astrophysics, collaborating with astronomers, and working with colleagues from the Lawrence Hall of Science and the Graduate School of Education. The teachers were taught the computer skills and space astrophysics concepts needed to perform hands-on analysis and interpretation of the EUVE satellite data and the optical identification program. As a final project, groups of teachers developed lesson plans based on NASA and other resources that they posted on the World Wide Web using html. This project's model treats teachers as professionals, and allows them to collaborate with scientists and to hone their curriculum development skills, an important aspect of their professional growth. We will summarize class highlights and showcase teacher-developed lesson plans. A detailed evaluation report will be made available. We acknowledge NASA contracts NAS5-30180 and NAS5-29298 to CEA/UCB and NASA grant ED-90033.01-94A to SSL/UCB.

  5. The low-energy program of the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Massarczyk, Ralph; MAJORANA Collaboration

    2017-01-01

    The MAJORANA Collaboration constructed an ultra-low background, modular high-purity Ge detector array to search for neutrinoless double-beta decay in 76Ge. Located at the 4850-ft level of the Sanford Underground Research Facility, the DEMONSTRATOR detector assembly has the goal to show that it is possible to achieve background rates necessary for future ton-scale experiments. The ultra-clean assembly in combination with low-noise p-type point contact detectors allows measurements with thresholds in the keV range. The talk will give an overview of the low-energy physics and recent achievements made since the completed DEMONSTRATOR array started data taking in mid 2016. Recent results from campaign will be presented, including new limits on bosonic dark matter interaction rates. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  6. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities carried out by the Smithsonian Astrophysical Observatory (SAO) are described. The SAO network continued to track LAGEOS at highest priority for polar motion and Earth rotation studies, and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination. The network performed regular tracking of several other retroreflector satellites including GEOS-1, GEOS-3, BE-C, and Starlette for refined determinations of station coordinates and the Earth's gravity field and for studies of solid Earth dynamics. A major program in laser upgrading continued to improve ranging accuracy and data yield. This program includes an increase in pulse repetition rate from 8 ppm to 30 ppm, a reduction in laser pulse width from 6 nsec to 2 to 3 nsec, improvements in the photoreceiver and the electronics to improve daylight ranging, and an analog pulse detection system to improve range noise and accuracy. Data processing hardware and software are discussed.

  7. A Long-Term Space Astrophysics Research Program. The Evolution of the Quasar Continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1998-01-01

    The grant "The Evolution of the Quasar Continuum" resulted in over 53 published referred papers and conference proceedings. The more significant of these papers are listed below, and abstracts are attached. The papers address a wide range of issues involving the evolution of quasars, their electromagnetic emissions, and their environment, from nearby low luminosity Seyfert galaxies to quasars at the highest redshifts. Primarily observational in content the work nonetheless included theoretical studies of quasar accretion disks that attempt to explain the observed time variability of quasars, and the overall 'demographics' of the quasar population. The work carried out under this grant has laid a strong foundation for ongoing and future research with AXAF, HST and other new facilities.

  8. Intermediate-Band Photometric Luminosity Descrimination for M Stars

    NASA Astrophysics Data System (ADS)

    Robertson, T. H.; Furiak, N. M.

    1995-12-01

    Synthetic photometry has been used to design an intermediate-band filter to be used with CCD cameras to facilitate the luminosity classification of M stars. Spectrophotometric data published by Gunn & Stryker (1983) were used to test various bandwidths and centers. Based on these calculations an intermediate-band filter has been purchased. This filter is being used in conjunction with standard BVRI filters to test its effectiveness in luminosity classification of M stars having a wide range of temperatures and different chemical compositions. The results of the theoretical calculations, filter design specifications and preliminary results of the testing program are presented. This research is supported in part by funds provided by Ball State University, The Fund for Astrophysical Research and the Indiana Academy of Science.

  9. Cosmogenically-produced isotopes in natural and enriched high-purity germanium detectors for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Gilliss, Thomas; MAJORANA DEMONSTRATOR Collaboration

    2017-01-01

    The MAJORANA DEMONSTRATOR advances toward measurements of the neutrinoless double-beta decay of 76Ge. Detectors employed in the DEMONSTRATOR are subject to cosmogenic spallation during production and processing, resulting in activation of certain long-lived radioisotopes. Activation of these cosmogenic isotopes is mitigated by shielded storage of detectors and through underground operation of the DEMONSTRATOR at the 4850 ft level of the Sanford Underground Research Facility. In this work, we explore the appearance and reduction of cosmogenic contributions to the DEMONSTRATOR background spectrum. This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  10. History of the University of Washington Astronomy Department: 1965-1995

    NASA Astrophysics Data System (ADS)

    Lutz, Julie H.

    2015-01-01

    The Department of Astronomy of the University of Washington (UW) is celebrating its fiftieth anniversary this year, starting in 1965 when George Wallerstein and Paul Hodge joined Theodor Jacobsen to significantly expand research and initiate a graduate program. Three additional faculty members in astrophysical theory were added before the end of the decade: James Bardeen, Karl-Heinz Böhm and Erika Böhm-Vitense. In addition, plans were started to establish a research telescope in the State of Washington, primarily for training graduate students. The site survey for what eventually became Manastash Ridge Observatory (MRO) started in 1965. The 30-inch telescope at MRO in the eastern Cascades was dedicated in 1972.Four more faculty with a broad range of expertise were added in the 1970s and the number of graduate students expanded to about 15. Wallerstein was Chair of the department from 1965-1980. Part of his vision for the department was for UW astronomers to have access to a large, well-equipped telescope at a good observing site. He realized that such a goal would have to be accomplished in collaboration with other institutions and he spent years seeking partners.Newly-arrived faculty member Bruce Margon served as Chair from 1981-87 and from 1990-1995. In 1983 the Astrophysical Research Consortium (ARC) was formed with UW as a partner. UW played a major role in the construction of the ARC 3.5-m telescope in New Mexico, which was dedicated in 1994 and continues to function robustly. The department hired several more faculty with a variety of interests, both in multi-wavelength studies and astrophysical theory. An undergraduate astronomy major was added in the mid-1980s.In the mid-1980s ARC started to think about a sky survey which would encompass both imaging and spectroscopy. This became the original Sloan Digital Sky Survey (SDSS), which took place between 1990 and 1995, again with the UW as a major partner. At this time, UW Astronomy experienced growth in faculty, graduate students, postdoctoral fellows, research scientists and undergraduate majors.

  11. Theoretical Research at the High Energy Frontier: Cosmology, Neutrinos, and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Lawrence M; Vachaspati, Tanmay; Parikh, Maulik

    The DOE theory group grew from 2009-2012 from a single investigator, Lawrence Krauss, the PI on the grant, to include 3 faculty (with the addition of Maulik Parikh and Tanmay Vachaspati), and a postdoc covered by the grant, as well as partial support for a graduate student. The group has explored issues ranging from gravity and quantum field theory to topological defects, energy conditions in general relativity, primordial magnetic fields, neutrino astrophysics, quantum phases, gravitational waves from the early universe, dark matter detection schemes, signatures for dark matter at the LHC, and indirect astrophysical signatures for dark matter. In addition,more » we have run active international workshops each year, as well as a regular visitor program. As well, the PI's outreach activities, including popular books and articles, and columns for newspapers and magazines, as well as television and radio appearances have helped raise the profile of high energy physics internationally. The postdocs supported by the grant, James Dent and Roman Buniy have moved on successfully to a faculty positions in Louisiana and California.« less

  12. The Theoretical Astrophysical Observatory: Cloud-based Mock Galaxy Catalogs

    NASA Astrophysics Data System (ADS)

    Bernyk, Maksym; Croton, Darren J.; Tonini, Chiara; Hodkinson, Luke; Hassan, Amr H.; Garel, Thibault; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Hegarty, Sarah

    2016-03-01

    We introduce the Theoretical Astrophysical Observatory (TAO), an online virtual laboratory that houses mock observations of galaxy survey data. Such mocks have become an integral part of the modern analysis pipeline. However, building them requires expert knowledge of galaxy modeling and simulation techniques, significant investment in software development, and access to high performance computing. These requirements make it difficult for a small research team or individual to quickly build a mock catalog suited to their needs. To address this TAO offers access to multiple cosmological simulations and semi-analytic galaxy formation models from an intuitive and clean web interface. Results can be funnelled through science modules and sent to a dedicated supercomputer for further processing and manipulation. These modules include the ability to (1) construct custom observer light cones from the simulation data cubes; (2) generate the stellar emission from star formation histories, apply dust extinction, and compute absolute and/or apparent magnitudes; and (3) produce mock images of the sky. All of TAO’s features can be accessed without any programming requirements. The modular nature of TAO opens it up for further expansion in the future.

  13. Precise Masses in the WASP-47 Multi-Transiting Hot Jupiter System

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Becker, Juliette; Buchhave, Lars A.; Mortier, Annelies; Latham, David W.; Charbonneau, David; Lopez-Morales, Mercedes; HARPS-N Collaboration

    2017-06-01

    We present precise radial velocity observations of WASP-47, a star known to host a hot Jupiter, a distant Jovian companion, and, uniquely, two additional transiting planets in short-period orbits: a super-Earth in a 19 hour orbit, and a Neptune in a 9 day orbit. We combine our observations, collected with the HARPS-N spectrograph, with previously published data to measure the most precise planet masses yet for this system. When combined with new stellar parameters (from analysis of the HARPS-N spectra) and a reanalysis of the transit photometry, our mass measurements yield strong constraints on the small planets’ compositions. Finally, we probabilistically constrain the orbital inclination of the outer Jovian planet through a dynamical analysis that requires the system reproduce its observed parameters.This work was supported by the National Science Foundation Graduate Research Fellowship Program. HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh.

  14. The progress about measurements of the proton beam characteristics of the JUNA 400 kV accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Li, Kuoang

    2018-04-01

    China JinPing underground Laboratory (CJPL) was established inside the tunnels piercing Jinping Mountain in Sichuan Province, China, which can provide an ideal environment for low background experiment. Jinping Underground laboratory for Nuclear Astrophysics (JUNA) is one of the major research programs in CJPL. A new 400 kV accelerator, with high current based on an ECR source, will be installed into CJPL for the study of key nuclear reactions in astrophysics. The beam characteristics of the accelerator, like absolute energy, energy spread, and long-term energy stability, will be determined by several well-known resonance and non-resonance reactions. Due to the new accelerator still being under construction, the resonance reaction of 27Al(p, γ)28Si and non-resonance 12C(p, γ)13N were studied at the 320 kV high-voltage platform of Institute of Modern Physics in Lanzhou, China. The energy spread of proton beam is about 1.0 keV and the long-term energy stability of proton beam is better than ±200eV during 4 hours measurement.

  15. Space for Women: Perspectives on Careers in Science.

    ERIC Educational Resources Information Center

    Corliss, Julie

    The Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. The CfA's research mission is the study of the origin, evolution, and ultimate fate of the universe. This 16-page booklet profiles women in the physical sciences or related fields; it…

  16. The Cerro Tololo Inter-American Observatory Summer Student Programs in La Serena, Chile

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Smith, C.; Van Der Bliek, N. S.; James, D.

    2014-01-01

    The Cerro Tololo Inter-American Observatory (CTIO) offers positions for U.S. and Chilean student interns during the Chilean summer months of January-March (northern winter semester) at the CTIO offices in La Serena, Chile. CTIO is part of the National Optical Astronomy Observatory (NOAO) of the United States, focused on the development of astronomy in the southern hemisphere. Six undergraduate research assistantships are offered for U.S. physics and astronomy undergraduate students through the NSF-funded Research Experiences for Undergraduates (REU) program. The CTIO-funded Prácticas de Investigación en Astronomía (PIA) program is run concurrently with the REU program, and offers two research assistantships for Chilean undergraduate or 1st or 2nd year masters students, also at the CTIO offices in La Serena, Chile. The CTIO REU and PIA programs provide exceptional opportunities for students considering a career in astronomy to engage in substantive research activities with scientists working at the forefront of contemporary astrophysics. Student participants work on specific research projects in close collaboration with members of the CTIO scientific and technical staff, such as galaxy clusters, gravitational lensing, supernovae, planetary nebulae, stellar populations, star clusters, star formation, variable stars and interstellar medium. The CTIO REU and PIA programs emphasize observational techniques and provide opportunities for direct observational experience using CTIO's state-of-the-art telescopes and instrumentation. The programs run for 10 weeks, from mid-January to the end of March. A two-night observing run on Cerro Tololo and a field trip to another observatory in Chile are included for students of both programs. These positions are full time, and those selected will receive a modest stipend and subsidized housing on the grounds of the offices of CTIO in La Serena, as well as travel costs to and from La Serena. In addition, the students have the opportunity attend the American Astronomical Society (AAS) winter meeting to present their research the year following the program.

  17. Goddard's Astrophysics Science Division Annual Report 2011

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  18. The Astrophysics Science Division Annual Report 2009

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  19. Goddard's Astrophysics Science Division Annual Report 2013

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  20. Authentic Research in the Classroom: NITARP Teachers Connect Astronomy with NGSS.

    NASA Astrophysics Data System (ADS)

    Pruett, Lee; Gibbs, John; Palmer, Robert; Young, Diedre; Gorjian, Varoujan

    2016-01-01

    The NASA/IPAC Teacher Archive Research Program (NITARP) uses authentic astronomical research to bring the Next Generation Science Standards (NGSS) into the classroom. The creation of the NGSS was a collaborative effort between teams composed of teachers, scientists and other professionals from twenty-six states. These standards provide a framework for the change in how science is taught at all levels from kindergarten to twelfth grade in participating states. Scientific concepts are grouped into broad categories (physical, biological and earth sciences), and call for an interdisciplinary approach to content, along with the integration of engineering practices into the curriculum. This approach to the teaching of science has led educators to place more emphasis on authentic learning and problem-solving in their curricula. Project-based learning is a strategy that can effectively allow students to learn core scientific concepts within the context of a focused and complex scientific problem.The NASA/IPAC Teacher Archive Research Program (NITARP) pairs teams of teachers and students with NASA astronomers. These teams are immersed in an astronomy research project over the course of the year, and are responsible for writing a project proposal, doing original research and presenting that research at a professional conference. The students who are involved in the NITARP research are provided with a rich hands-on experience that both exposes them to a deep understanding of an astronomical problem (and the core physics and math behind it), as well as the process of doing real science. The NITARP program offers a unique opportunity to bring project-based learning into K-12 science classrooms. We will highlight the ways in which this program has been implemented in classrooms across the country, as well as the connections to the NGSS.This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  1. Performance characteristics of CCDs for the ACIS experiment. [Advanced X-ray Astrophysics Facility CCD Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Garmire, Gordon P.; Nousek, John; Burrows, David; Ricker, George; Bautz, Mark; Doty, John; Collins, Stewart; Janesick, James

    1988-01-01

    The search for the optimum CCD to be used at the focal surface of the Advanced X-ray Astrophysics Facility (AXAF) is described. The physics of the interaction of X-rays in silicon through the photoelectric effect is reviewed. CCD technology at the beginning of the AXAF definition phase is summarized, and the results of the CCD enhancement program are discussed. Other sources of optimum CCDs are examined, and CCD enhancements made at MIT Lincoln Laboratory are addressed.

  2. Telescience testbed pilot program, volume 3: Experiment summaries

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth science, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, presents summaries of the experiments. This experiment involves the evaluation of the current Internet for the use of file and image transfer between SIRTF instrument teams. The main issue addressed was current network response times.

  3. Astronomy and Astrophysics for the 1980s.

    ERIC Educational Resources Information Center

    Field, George B.

    1982-01-01

    Following a discussion of scientific opportunities for astronomy (galaxies and the universe, stars, and planets/life/intelligence), four programs recommended by the National Academy of Sciences' Astronomy Survey Committee are described, indicating areas that must be strengthened before undertaking the programs. Ongoing projects are also…

  4. High energy from space

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Canizares, Claude; Catura, Richard C.; Clark, George W.; Fichtel, Carl E.; Friedman, Herbert; Giacconi, Riccardo; Grindlay, Jonathan E.; Helfand, David J.; Holt, Stephen S.

    1991-01-01

    The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues.

  5. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    DOE PAGES

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; ...

    2016-12-28

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012more » Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.« less

  6. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012more » Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.« less

  7. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcones, Almudena; Escher, Jutta E.; Others, M.

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9more » - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.« less

  8. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; Bernstein, Lee A.; Blackmon, Jeffrey C.; Messer, Bronson; Brown, B. Alex; Brown, Edward F.; Brune, Carl R.; Champagne, Art E.; Chieffi, Alessandro; Couture, Aaron J.; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib; Escher, Jutta E.; Fields, Brian D.; Fröhlich, Carla; Herwig, Falk; Hix, William Raphael; Iliadis, Christian; Lynch, William G.; McLaughlin, Gail C.; Meyer, Bradley S.; Mezzacappa, Anthony; Nunes, Filomena; O'Shea, Brian W.; Prakash, Madappa; Pritychenko, Boris; Reddy, Sanjay; Rehm, Ernst; Rogachev, Grigory; Rutledge, Robert E.; Schatz, Hendrik; Smith, Michael S.; Stairs, Ingrid H.; Steiner, Andrew W.; Strohmayer, Tod E.; Timmes, F. X.; Townsley, Dean M.; Wiescher, Michael; Zegers, Remco G. T.; Zingale, Michael

    2017-05-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9-10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long standing key questions are well within reach in the coming decade.

  9. NASA Science4Girls and Their Families: Connecting Local Libraries with NASA Scientists and Education Programs to Engage Girls in STEM

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Meinke, B.; Hauck, K.; Soeffing, C.; Spitz, A.

    2014-01-01

    NASA Science4Girls and Their Families (NS4G) partners NASA Science Mission Directorate (SMD) education programs with public libraries to provide hands-on science, technology, engineering, and math (STEM) activities and career information for girls and their families, along with training for librarians, in conjunction with Women's History Month (March). NS4G is a collaboration among education teams within the four NASA SMD education and public outreach (E/PO) Forums: Planetary, Earth, Astrophysics, and Heliophysics. It began in 2012 as an Astrophysics-led program (Astro4Girls) with 9 events around the country. Upon expanding among the four Forums, over 73 events were held in Spring 2013 (Fig. 1), with preparations underway for events in Spring 2014. All events are individually evaluated by both the student participants and participating librarians to assess their effectiveness in addressing audience needs.

  10. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Manuel, Mario; Keiter, Paul; Drake, R. P.

    2014-10-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, imploding bubbles, and interacting jet experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via Grant DEFC52-08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0001840, and by the National Laser User Facility Program, Grant Number DE-NA0000850.

  11. Gamma Ray Observatory (GRO) Prelaunch Mission Operations Report (MOR)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Astrophysics Program is an endeavor to understand the origin and fate of the universe, to understand the birth and evolution of the large variety of objects in the universe, from the most benign to the most violent, and to probe the fundamental laws of physics by examining their behavior under extreme physical conditions. These goals are pursued by means of observations across the entire electromagnetic spectrum, and through theoretical interpretation of radiations and fields associated with astrophysical systems. Astrophysics orbital flight programs are structured under one of two operational objectives: (1) the establishment of long duration Great Observatories for viewing the universe in four major wavelength regions of the electromagnetic spectrum (radio/infrared/submillimeter, visible/ultraviolet, X-ray, and gamma ray), and (2) obtaining crucial bridging and supporting measurements via missions with directed objectives of intermediate or small scope conducted within the Explorer and Spacelab programs. Under (1) in this context, the Gamma Ray Observatory (GRO) is one of NASA's four Great Observatories. The other three are the Hubble Space Telescope (HST) for the visible and ultraviolet portion of the spectrum, the Advanced X-ray Astrophysics Facility (AXAF) for the X-ray band, and the Space Infrared Telescope Facility (SIRTF) for infrared wavelengths. GRO's specific mission is to study the sources and astrophysical processes that produce the highest energy electromagnetic radiation from the cosmos. The fundamental physical processes that are known to produce gamma radiation in the universe include nuclear reactions, electron bremsstrahlung, matter-antimatter annihilation, elementary particle production and decay, Compton scattering, synchrotron radiation. GRO will address a variety of questions relevant to understanding the universe, such as: the formation of the elements; the structure and dynamics of the Galaxy; the nature of pulsars; the existence of black holes; the possible existence of large amounts of antimatter, energetic and explosive phenomena occurring in galactic nuclei; the origin of the cosmic diffuse background; particle acceleration in the Sun, stars and stellar systems; processes in supernovae; and the origin and evolution of the universe itself.

  12. Optical Observation of Low Mass X-Ray Binary V1727 Cygni

    NASA Astrophysics Data System (ADS)

    Price, Alex; Mason, Paul; Robinson, Edward L.

    2011-10-01

    This research is based upon optical observations of the neutron star V1727 Cygni (=4U 2129+47). A total of 19 nights of data were collected from September 2010 through August 2011 at the McDonald Observatory via the 82 inch (2.1 m) Otto Struve Telescope. The Interactive Reduction and Analysis Facility (IRAF) was used to reduce the data collected. We present the resulting light curves. We will describe our analytical methodology, which makes use of a phase dispersion minimization program in order to identify periodicity. Preliminary results seem to support previous research by Bothwell, Torres, Garcia, and Charles that V1727 Cygni is part of a three-body system. Preliminary results also suggest that this system exhibits ellipsoidal variations. This research is supported by a National Science Foundation Partnership in Astronomy and Astrophysics Research and Education (PAARE) grant to the University of Texas at El Paso.

  13. The Astrophysics Science Division Annual Report 2008

    NASA Technical Reports Server (NTRS)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  14. Astrophysics at the future Rare Isotope Accelerator

    NASA Astrophysics Data System (ADS)

    Smith, Michael; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    PoS(NIC-IX)179 Significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical phenomena require intense beams of a wide range of unsta- ble nuclei. While some such beams are currently available and being used for important studies in nuclear astrophysics, the beams are often insufficient in intensity, purity, or available isotopes. It is anticipated that a next-generation radioactive beam facility will be built in the U.S. in the next decade to address these shortcomings, and a Working Group has been established to develop and promote nuclear astrophysics research at this new facility. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities around the world.

  15. Assembly of NASA's Most Powerful X-Ray Telescope Completed

    NASA Astrophysics Data System (ADS)

    1998-03-01

    Assembly of the world's most powerful X-ray telescope, NASA's Advanced X-ray Astrophysics Facility, was completed last week with the installation of its power-generating twin solar panels. The observatory is scheduled for launch aboard Space Shuttle mission STS-93, in December 1998. The last major components of the observatory were bolted and pinned into place March 4 at TRW Space & Electronics Group in Redondo Beach, Calif., and pre-launch testing of the fully assembled observatory began March 7. "Completion of the observatory's assembly process is a big step forward toward launch scheduled for the end of this year," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "With all the major components in place, we are now concentrating on a thorough pre-launch checkout of the observatory." "We're delighted to reach this major milestone for the program," said Craig Staresinich, TRW's Advanced X-ray Astrophysics Facility program manager. "The entire observatory team has worked hard to get to this point and will continue an exhaustive test program to ensure mission success. We're looking forward to delivering a truly magnificent new space capability to NASA later this summer." The first pre-launch test of the Advanced X-ray Astrophysics Facility was an acoustic test, which simulated the sound pressure environment inside the Space Shuttle cargo bay during launch. A thorough electrical checkout before and after the acoustic test verifies that the observatory and its science instruments can withstand the extreme sound levels and vibrations that accompany launch. "With 10 times the resolution and 50-100 times the sensitivity of any previous X-ray telescope, this observatory will provide us with a new perspective of our universe," said the project's chief scientist, Dr. Martin Weisskopf of Marshall Center. "We'll be able to study sources of X-rays throughout the universe, like colliding galaxies and black holes, many of which are invisible to us now. We may even see the processes that create the elements found here on Earth." Assembly of the observatory began in 1997 with the arrival of the high resolution mirror assembly at TRW Space and Electronics Group. In August 1997, the telescope's optical bench was mated with the mirrors, followed by integration of the telescope with the spacecraft in October. In February 1998, the observatory's science instrument module was mated to the top of the telescope. The complete observatory is 45 feet long, has a solar array wing span 64 feet wide, and weighs more than 5 tons. Using glass purchased from Schott Glaswerke, Mainz, Germany, the telescope's mirrors were built by Raytheon Optical Systems Inc., Danbury, Conn. The mirrors were coated by Optical Coating Laboratory Inc., Santa Rosa, Calif.; and assembled by Eastman-Kodak Co., Rochester, N.Y. The observatory's charged coupled device imaging spectrometer was developed by Pennsylvania State University at University Park, and the Massachusetts Institute of Technology (MIT), at Cambridge. One diffraction grating was developed by MIT, the other by the Space Research Organization Netherlands, Utrecht, in collaboration with the Max Planck Institute, Garching, Germany. The high resolution camera instrument was built by the Smithsonian Astrophysical Observatory. Ball Aerospace & Technologies Corporation of Boulder, Colo., developed the science instrument module. The Advanced X-ray Astrophysics Facility program is managed by the Marshall Center for the Office of Space Science, NASA Headquarters, Washington, D.C. The Smithsonian Astrophysical Observatory in Cambridge, Mass., will operate the observatory for NASA. NOTE TO EDITORS: A photo of the integrated telescope is available via the World Wide Web at URL: http://chandra.harvard.edu/press/images.html Prepared by John Bryk

  16. Recent Astronomical Development in Asia Pacific Rim

    NASA Astrophysics Data System (ADS)

    Leung, K.-C.

    2009-08-01

    For over two decades The Pacific Rim Conference on Stellar Astrophysics series has been held exclusively at the Asian Rim. The primary reason is that the majority of nations in Asia are less developed in Astronomy than many countries on the American Rim. At time same time, many nations in Asia are less able to afford the costs of long distance travel for astronomical conferences. As a result Asia has had a hold on the Pacific Rim Conferences. Over the last few years new research institutes have been coming on board. The ones that have most visibly emerged are; National Astronomical Research Institute of Thailand, NARIT, The Astrophysical Research Center for the Structure and Evolution of the Cosmos, ARCSEC, and Kavli Institute of Astronomy and Astrophysics at Peking University, KIAA-PKU. It is interesting to note the development and structure of each is very different. So far they all appear to be working well. Hopefully they will provide a variety of models for astronomical institutes in developing nations of the region and perhaps beyond.

  17. Promoting Diversity in STEM through Active Recruiting and Mentoring: The Pre-Major in Astronomy Program (Pre-MAP) at the University of Washington

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Binder, Breanna; Tremmel, Michael; Garofali, Kristen; Agol, Eric; Meadows, Victoria

    2015-11-01

    The Pre-Major in Astronomy Program (Pre-MAP) is a research and mentoring program for underclassmen and transfer students offered by the University of Washington Astronomy Department since 2005. The primary goal of Pre-MAP is to recruit and retain students from groups traditionally underrepresented in science, technology, engineering, and mathematics (STEM) through early exposure to research. The Pre-MAP seminar is the core component of the program and offers instruction in computing skills, data manipulation, science writing, statistical analysis, and scientific speaking and presentation skills. Students choose research projects proposed by faculty, post-docs and graduate students in areas related to astrophysics, planetary science, and astrobiology. Pre-MAP has been successful in retaining underrepresented students in STEM fields relative to the broader UW population, and we've found these students are more likely to graduate and excel academically than their peers. As of spring 2015, more than one hundred students have taken the Pre-MAP seminar, and both internal and external evaluations have shown that all groups of participating students report an increased interest in astronomy and science careers at the end of the seminar. Several former Pre-MAP students have obtained or are pursuing doctoral and master’s degrees in STEM fields; many more work at NASA centers, teaching colleges, or as engineers or data analysts. Pre- MAP student research has produced dozens of publications in peer-reviewed research journals. This talk will provide an overview of the program: the structure of the seminar, examples of projects completed by students, cohort-building activities outside the seminar, funding sources, recruitment strategies, and the aggregate demographic and achievement data of our students. It is our hope that similar programs may be adopted successfully at other institutions.

  18. Solar observations carried out at the INAF - Catania Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Zuccarello, F.; Contarino, L.; Romano, P.

    2011-10-01

    Solar observations at the INAF - Catania Astrophysical Observatory are carried out by means of an equatorial spar, which includes: a Cook refractor, used to make daily drawings of sunspot groups from visual observations; a 150-mm refractor with an Hα Lyot filter for chromospheric observations; a 150-mm refractor feeding an Hα Halle filter for limb observations of the chromosphere. The photospheric and chromospheric data are daily distributed to several international Solar Data Centers. Recently, a program of Flare Warning has been implemented, with the aim of determining the probability that an active region yields a flare on the basis of its characteristics deduced from optical observations. Some science results obtained by means of solar data acquired at the INAF - Catania Astrophysical Observatory, as well as by space-instruments data, are briefly described.

  19. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it maymore » be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.« less

  20. Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  1. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  2. Extrasolar Planet Inferometric Survey (EPIcS)

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Baliunas, Sallie; Boden, Andrew; Kulkarni, Shrinivas; Lin, Douglas N. C.; Loredo, Tom; Queloz, Didier; Shaklan, Stuart; Tremaine, Scott; Wolszczan, Alexander

    2004-01-01

    The discovery of the nature of the solar system was a crowning achievement of Renaissance science. The quest to evaluate the properties of extrasolar planetary systems is central to both the intellectual understanding of our origins and the cultural understanding of humanity's place in the Universe; thus it is appropriate that the goals and objectives of NASA's breakthrough Origins program emphasize the study of planetary systems, with a focus on the search for habitable planets. We propose an ambitious research program that will use SIM - the first major mission of the Origins program - to explore planetary systems in our Galactic neighborhood. Our program is a novel two-tiered SIM survey of nearby stars that exploits the capabilities of SIM to achieve two scientific objectives: (i) to identify Earth-like planets in habitable regions around nearby Sunlike stars: and (ii) to explore the nature and evolution of planetary systems in their full variety. The first of these objectives was recently recommended by the Astronomy and Astrophysics Survey Committee (the McKee-Taylor Committee) as a prerequisite for the development of the Terrestrial Planet Finder mission later in the decade. Our program combines this two-part survey with preparatory and contemporaneous research designed to maximize the scientific return from the limited and thus precious observing resources of SIM.

  3. Planck focal plane instruments: advanced modelization and combined analysis

    NASA Astrophysics Data System (ADS)

    Zonca, Andrea; Mennella, Aniello

    2012-08-01

    This thesis is the result of my work as research fellow at IASF-MI, Milan section of the Istituto di Astrofisica Spaziale e Fisica Cosmica, part of INAF, Istituto Nazionale di Astrofisica. This work started in January 2006 in the context of the PhD school program in Astrophysics held at the Physics Department of Universita' degli Studi di Milano under the supervision of Aniello Mennella. The main topic of my work is the software modelling of the Low Frequency Instrument (LFI) radiometers. The LFI is one of the two instruments on-board the European Space Agency Planck Mission for high precision measurements of the anisotropies of the Cosmic Microwave Background (CMB). I was also selected to participate at the International Doctorate in Antiparticles Physics, IDAPP. IDAPP is funded by the Italian Ministry of University and Research (MIUR) and coordinated by Giovanni Fiorentini (Universita' di Ferrara) with the objective of supporting the growing collaboration between the Astrophysics and Particles Physics communities. It is an international program in collaboration with the Paris PhD school, involving Paris VI, VII and XI Universities, leading to a double French-Italian doctoral degree title. My work was performed with the co-tutoring of Jean-Michel Lamarre, Instrument Scientist of the High Frequency Instrument (HFI), the bolometric instrument on-board Planck. Thanks to this collaboration I had the opportunity to work with the HFI team for four months at the Paris Observatory, so that the focus of my activity was broadened and included the study of cross-correlation between HFI and LFI data. Planck is the first CMB mission to have on-board the same satellite very different detection technologies, which is a key element for controlling systematic effects and improve measurements quality.

  4. Astrophysics science operations - Near-term plans and vision

    NASA Technical Reports Server (NTRS)

    Riegler, Guenter R.

    1991-01-01

    Astrophysics science operations planned by the Science Operations branch of NASA Astrophysics Division for the 1990s for the purpose of gathering spaceborne astronomical data are described. The paper describes the near-future plans of the Science Operations in the areas of the preparation of the proposal; the planning and execution of spaceborne observations; the collection, processing, and analysis data; and the dissemination of results. Also presented are concepts planned for introduction at the beginning of the 20th century, including the concepts of open communications, transparent instrument and observatory operations, a spiral requirements development method, and an automated research assistant.

  5. High energy astronomy or astrophysics and properties of the interplanetary plasma

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The research activities related to high energy astrophysics and interplanetary plasma are reported. The experimental work in the following areas are described: (1) balloon-and rocket-borne cosmic X-ray, (2) X-ray spectroscopy, and (3) OSO-3 gamma ray experiment. Plasma studies in the interplanetary region, magnetosphere, and geomagnetic tail are included.

  6. Astrophysics today

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, A.G.W.

    1984-01-01

    Examining recent history, current trends, and future possibilities, the author reports the frontiers of research on the solar system, stars, galactic physics, and cosmological physics. The book discusses the great discoveries in astronomy and astrophysics and examines the circumstances in which they occurred. It discusses the physics of white dwarfs, the inflationary universe, the extinction of dinosaurs, black hole, cosmological models, and much more.

  7. Pulsating star research from Antarctica

    NASA Astrophysics Data System (ADS)

    Chadid, Merieme

    2017-09-01

    This invited talk discusses the pulsating star research from the heart of Antarctica and the scientific polar challenges in the extreme environment of Antarctica, and how the new polar technology could cope with unresolved stellar pulsation enigmas and evolutionary properties challenges towards an understanding of the mysteries of the Universe. PAIX, the first robotic photometer Antarctica program, has been successfully launched during the polar night 2007. This ongoing program gives a new insight to cope with unresolved stellar enigmas and stellar oscillation challenges with a great opportunity to benefit from an access to the best astronomical site on Earth, Dome C. PAIX achieves astrophysical measurement time-series of stellar fields, challenging photometry from space. A continuous and an uninterrupted series of multi-color photometric observations has been collected each polar night - 150 days - without regular interruption, Earth's rotation effect. PAIX shows the first light curve from Antarctica and first step for the astronomy in Antarctica giving new insights in remote polar observing runs and robotic instruments towards a new technology.

  8. Active Refrigeration for Space Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Wade, L.

    1994-01-01

    The use of cryogen dewars limits mission lifetime, increases sensor mass, and increases program engineering and launch costs on spacebased low-background, precision-pointing instruments, telescopes and interferometers.

  9. First AXAF Fellowships Awarded

    NASA Astrophysics Data System (ADS)

    1998-03-01

    The AXAF (Advanced X-ray Astrophysics Facility) Science Center has announced the selection of five scientists to inaugurate the AXAF Postdoctoral Fellowship Program. Competition for the fellowships was open to all recent astronomy and astrophysics graduates worldwide. The AXAF Fellows will work for three years at a host astronomical institution in the United States where they will investigate topics broadly related to the scientific mission of AXAF. Additional AXAF Fellows will be selected each year over the course of the program. The AXAF Fellowship Program is a joint venture between NASA and the AXAF Science Center in cooperation with the host institutions. The AXAF Science Center is operated by the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts and funded by NASA through the Marshall Space Flight Center. "We are elated at the outstanding group of Fellows," said Harvey Tananbaum, the Director of the AXAF Science Center. "They will be working during the exciting period when the first X-ray images will be received from AXAF." Nancy Remage Evans, AXAF Fellowship Program Coordinator added, "The program will also encourage AXAF related work at institutions throughout the United States." An independent panel of scientists selected the honorees. The first AXAF Fellows and the host institutions at which they will hold their fellowships are: David Buote (University of California, Santa Cruz), Tiziana Di Matteo (Harvard-Smithsonian Center for Astrophysics), Ann Esin (California Institute of Technology), Joseph Mohr (University of Chicago), and Edward Moran (Massachusetts Institute of Technology). AXAF, the third of NASA's Great Observatories after the Hubble Space Telescope and the Compton Gamma Ray Observatory, is the largest and most sophisticated X-ray telescope ever built. When it is launched in December of this year, AXAF's high resolution will provide new information about exploding stars, black holes, colliding galaxies, and other extremely hot regions of the universe. Further information about the AXAF satellite is available at the World Wide Web at http://xrtpub.harvard.edu/. Further information about the Fellowship program is available at http://asc.harvard.edu/fellows/. Supplemental Information on 1998 AXAF Fellows: * David Buote graduated from MIT, Cambridge MA 02139 * Tiziana DiMatteo graduated from Cambridge University, Cambridge CB30HA UK * Ann Esin graduated from Harvard University, Cambridge, MA 02138 * Joseph Mohr graduated from Harvard University, Cambridge, MA 02138 * Edward Moran graduated from Columbia University, New York City, NY 10027

  10. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.

    2009-01-01

    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance learning center, and enhancements to the atmospheric and earth science suite of instrumentation.

  11. Developing Resource Guides for Astro 101 Instructors, as a Higher Education Community Collaboration from the NASA Astrophysics SEPOF

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory R.; Fraknoi, A.; Smith, D.; Manning, J.

    2012-01-01

    The NASA/SMD-funded Astrophysics SEPOF (Science Education & Public Outreach Forum) has been organizing EPO "community collaborations” as part of its coordination efforts with missions and EPO programs within NASA Astrophysics. One of the community collaborations that emerged has been focusing on higher education, with a particular emphasis on introductory astronomy courses ("Astro 101"), and how NASA EPO programs and materials can help serve the needs of these courses’ instructors. One of the consequent efforts that has begun is the compiling and development of topical Resource Guides for Astro 101 instructors, with the initial subject tackled being cosmology. This is an area in basic astronomy where rapid progress is being made, older textbooks are quickly out of date, and ideas are challenging for many students, and even instructors! We have had informal conversations so far with about a dozen instructors, divided among universities, liberal-arts colleges, and 2-year community colleges. We have also gathered feedback regarding suggested cosmology resources from the EPO community served by the NASA Astrophysics Forum. And we have undertaken an independent search for Astro 101-suitable curriculum materials, from NASA and other sources, and identified a useful set of such materials, in print and on the Web. Results from this investigation will be shared, along with our project's initial Cosmology Resource Guide, and plans for follow-up guides. Feedback is solicited from Astro 101 instructors, resource developers, and EPO professionals.

  12. Astrophysics for Early Elementary Students and Teachers

    NASA Astrophysics Data System (ADS)

    Kang, R.

    2004-12-01

    How can very young students be taught astrophysics? What can we offer to teachers of K-4 students? Whether you deal directly with youngsters in classrooms, work with your School of Education to develop science inquiry training, or offer occasional general outreach, we discuss activities your program can adopt from the University of Oregon's Electronic Universe outreach program. This collaboration through NASA's Oregon Space Grant plus citizen amateur astronomers has been successfully delivering astrophysics to students in all grades throughout Oregon for over a decade. Students in grades K-4 are generally very enthusiastic learners who have a lot of interest in content and technology about space. Unfortunately typical curricula, state learning requirements, and typical training of their teachers is usually very simplistic and often contains erroneous and outdated materials. We'll work through a series of explorations designed for elementary level that use digital data and virtual reality simulations in conjunction with kinesthetic activities to connect observations such as brightness, shadows, motions, shapes, and colors to basic physical characteristics and properties. This is the starting place where we can grab already curious students and inspire teachers, particularly new teachers, to use space science content to develop science inquiry based curricula. Young students and their teachers can handle astrophysics if the topics are presented in familiar terms and with use of sufficient first hand modeling. Don't be afraid to start them early on these topics, this could dispel myths, generate future interest, and promote careers in science.

  13. Improvements on Fresnel arrays for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Wilhem, Roux; Laurent, Koechlin

    2018-03-01

    The Fresnel Diffractive Array Imager (FDAI) is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France. For the visible and near-infrared it has already proven its performances in resolution and dynamic range. We propose it now for astrophysical applications in the ultraviolet with apertures from 6 to 30 meters, aimed at imaging in UV faint astrophysical sources close to bright ones, as well as other applications requiring high dynamic range. Of course the project needs first a probatory mission at small aperture to validate the concept in space. In collaboration with institutes in Spain and Russia, we will propose to board a small prototype of Fresnel imager on the International Space Station (ISS), with a program combining technical tests and astrophysical targets. The spectral domain should contain the Lyman- α line ( λ = 121 nm). As part of its preparation, we improve the Fresnel array design for a better Point Spread Function in UV, presently on a small laboratory prototype working at 260 nm. Moreover, we plan to validate a new optical design and chromatic correction adapted to UV. In this article we present the results of numerical propagations showing the improvement in dynamic range obtained by combining and adapting three methods : central obturation, optimization of the bars mesh holding the Fresnel rings, and orthogonal apodization. We briefly present the proposed astrophysical program of a probatory mission with such UV optics.

  14. A Partnership in Observational and Computational Astronomy (POCA)

    NASA Astrophysics Data System (ADS)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M., Jr.

    2009-01-01

    A partnership has been established between South Carolina State University (SCSU, a Historically Black College/University), the National Optical Astronomy Observatory (NOAO) and Clemson University (CU) under an award from NSF's "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. The mission of POCA is to develop an effective, long-term partnership that combines the strengths of the three institutions to increase the scientific and educational output of all the partners with special emphasis on enhancing diversity in the field of astronomy. Components of the program include enhancing faculty and student research in astronomy at SCSU, recruiting and retaining underrepresented minority students into the field, outreach through planetarium programs and museum exhibits and developing web based resources in astronomy education. Activities in the first year of the program are discussed. We have begun developing and testing several new astronomy laboratory exercises. Our first summer internship program has concluded successfully. With PAARE scholarship money, we are now supporting four physics majors at SCSU who have chosen the astronomy option (concentration) for their degree. SCSU undergraduates have acquired observing experience on the KPNO Mayall 4-meter telescope under the guidance of faculty and graduate students from CU. NOAO astronomers have collaborated with SCSU faculty to begin a research program that studies RV Tauri stars. Funds from PAARE are supporting follow-up research to a just-completed doctoral dissertation by E. A. Mayo described elsewhere in these proceedings. Future plans for graduate fellowships and related activities are discussed in addition to summer internships for POCA undergraduates at CU and NOAO. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.

  15. Impact of Information and Communication Technology on Information Seeking Behavior of Users in Astronomy and Astrophysics Centers of India: A Survey

    NASA Astrophysics Data System (ADS)

    Sahu, H. K.; Singh, S. N.

    2010-10-01

    This study is based on a survey designed to determine the Information Seeking Behavior (ISB) of Astronomy and Astrophysics users in India. The main objective of the study is to determine the sources consulted and the general pattern of the information-gathering system of users and the impact of Information and Communication Technology (ICT) on the Astronomy and Astrophysics user's Information Seeking Behavior. It examines various Information and Communication Technology-based resources and methods of access and use. A descriptive sample stratified method has been used and data was collected using a questionnaire as the main tool. The response rate was 72%. Descriptive statistics were also employed and data have been presented in tables and graphs. The study is supported by earlier studies. It shows that Astronomy and Astrophysics users have developed a unique Information Seeking Behavior to carry out their education and research. The vast majority of respondents reported that more information is available from a variety of e-resources. Consequently, they are able to devote more time to seek out relevant information in the current Information and Communication Technology scenario. The study also indicates that respondents use a variety of information resources including e-resources for teaching and research. Books and online databases such as the NASA Astrophysics Data System (ADS) were considered more important as formal sources of information. E-mail and face-to-face communications are used extensively by users as informal sources of information. It also reveals that despite the presence of electronic sources, Astronomy and Astrophysics users are still using printed materials. This study should to help to improve various Information and Communication Technology-based services. It also suggests that GOI should adopt Information and Communication Technology-based Information Centers and Libraries services and recommends a network-based model for Astronomy and Astrophysics users.

  16. ISAGEX (International Satellite Geodesy Experiment) experience. 1: Data acquisition

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M. (Editor)

    1972-01-01

    The contributions and methods of the Smithsonian Astrophysical Observatory to the International Satellite Geodesy program are described. The report provides data users with necessary supporting information.

  17. LSS systems planning and performance program

    NASA Technical Reports Server (NTRS)

    Mckenna, Victoria Jones; Dendy, Michael J.; Naumann, Charles B.; Rice, Sally A.; Weathers, John M.

    1993-01-01

    This report describes, using viewgraphs, the Marshall Space Flight Center's Large Space Structures Ground Test Facilities located in building 4619. Major topics include the Active Control Evaluation of Systems (ACES) Laboratory; the Control-Structures Interaction/Controls, Astrophysics, and Structures Experiment in Space (CSI/CASES); Advanced Development Facility; and the ACES Guest Investigator Program.

  18. Computational Astrophysics Consortium, University of Minnesota, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heger, Alexander

    During its six year duration the Computational Astrophysics consortium helped to train the next generation of scientists in computational and nuclear astrophysics. A total of five graduate students were supported by the grant at UMN. The major advances at UMN were in the use, testing, and contribution to development of the CASTRO that efficiently scales on over 100,000 CPUs. At UMN it was used for modeling of thermonuclear supernovae (pair instability and supermassive stars) and core-collapse supernovae as well as the final phases of their progenitors, as well as for x-ray bursts from accreting neutron stars. Important secondary advances inmore » the field of nuclear astrophysics included a better understanding of the evolution of massive stars and the origin of the elements. The research resulted in more than 50 publications.« less

  19. Astrophysical blast wave data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Nathan; Geissel, Matthias; Lewis, Sean M

    2015-03-01

    The data described in this document consist of image files of shadowgraphs of astrophysically relevant laser driven blast waves. Supporting files include Mathematica notebooks containing design calculations, tabulated experimental data and notes, and relevant publications from the open research literature. The data was obtained on the Z-Beamlet laser from July to September 2014. Selected images and calculations will be published as part of a PhD dissertation and in associated publications in the open research literature, with Sandia credited as appropriate. The authors are not aware of any restrictions that could affect the release of the data.

  20. On the Use of the Passive and Active Voice in Astrophysics Journal Papers: With Extensions to Other Languages and Other Fields.

    ERIC Educational Resources Information Center

    Tarone, Elaine; Dwyer, Sharon; Gillette, Susan; Icke, Vincent.

    1998-01-01

    A study examined frequency of active, passive verb forms in two astrophysics journal articles, finding "we" plus an active voice occurs at least as frequently as the passive. This pattern typifies a previously unidentified type of research article, the logical argument scientific paper, whose characteristics are detailed. Similar pattern…

  1. Long-Term Space Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Nowark, Michael A.

    2001-01-01

    This is the final report for our Long-Term Space Astrophysics Program (NRA 94-OSS-12) grant NAG 5-3225. The proposal is entitled 'Spectral and Temporal Properties of Black Hole Candidates', and began funding in May 1995, and ran through 31 Aug 2000. The project summary from the original proposal was as follows: 'We will study the spectral and temporal properties of black hole candidates (BHC) by using data from archival sources (e.g., EXOSAT, Ginga, ROSAT) and proposed follow-up observations with modern instruments (e.g., ASCA, XTE). Our spectral studies will focus on identifying the basic characteristics and luminosities of the emission components in the various 'states' of BHC. We hope to understand and quantify the global energetics of these states. Our temporal studies will focus on expanding and classifying our knowledge of BHC variability properties in each state. We will explore the nature of quasi-periodic oscillations in BHC. We will combine our spectral and temporal studies by analyzing time lags and variability coherence between energy channels. In addition, we will investigate ways of correlating observed variability behavior with specific emission components.' We have accomplished many of these goals laid out within the original proposal. As originally proposed, we have utilized both archival and proprietary satellite data. In terms of archival data, we have utilized data from the Advanced Satellite for Cosmology and Astrophysics (ASCA), ROSAT, and the Rossi X-ray Timing Explorer (RXTE). We also obtained proprietary data from ASCA, RXTE, and the Extreme Ultraviolet Explorer (EUVE). In terms of sources, we have examined a wide variety of both galactic black hole candidates and extra-galactic black holes. For the galactic black holes we have observed and analyzed both the low/hard state and the high/soft state. We have performed both spectral and timing analyses on all of these objects. In addition, we have also examined a number of neutron stars or potential neutron stars. All of our research on the above mentioned objects has resulted in one or more publications in peer-reviewed journals. Attached is a list of refereed publications of research results which have been funded by this grant over approximately the past five and a half years. In addition, we have included a list of conference proceedings and other similar reports that have been associated with this grant.

  2. Visualization techniques to aid in the analysis of multi-spectral astrophysical data sets

    NASA Technical Reports Server (NTRS)

    Domik, Gitta; Alam, Salim; Pinkney, Paul

    1992-01-01

    This report describes our project activities for the period Sep. 1991 - Oct. 1992. Our activities included stabilizing the software system STAR, porting STAR to IDL/widgets (improved user interface), targeting new visualization techniques for multi-dimensional data visualization (emphasizing 3D visualization), and exploring leading-edge 3D interface devices. During the past project year we emphasized high-end visualization techniques, by exploring new tools offered by state-of-the-art visualization software (such as AVS3 and IDL4/widgets), by experimenting with tools still under research at the Department of Computer Science (e.g., use of glyphs for multidimensional data visualization), and by researching current 3D input/output devices as they could be used to explore 3D astrophysical data. As always, any project activity is driven by the need to interpret astrophysical data more effectively.

  3. Summary of PhysPAG Activities

    NASA Astrophysics Data System (ADS)

    Ritz, Steven M.

    2012-01-01

    The Physics of the Cosmos (PCOS) Program Analysis Group (PhysPAG) provides an important interface between the scientific community and NASA in matters related to PCOS objectives. An Executive Committee facilitates the work of several subgroups, including a Technology Science Analysis Group and an Inflation Probe Science Analysis Group. Work is also starting in areas of X-ray, gamma-ray, and gravitational wave astrophysics. The PAG reports to the Astrophysics Subcommittee of the NASA Advisory Council. A summary of PhysPAG activities will be given, along with time for questions and discussion.

  4. Space Interferometry Science Working Group

    NASA Astrophysics Data System (ADS)

    Ridgway, Stephen T.

    1992-12-01

    Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.

  5. Catalyzing Effective Science Education: Contributions from the NASA Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Bartolone, L.; Eisenhamer, B.; Lawton, B. L.; Schultz, G. R.; Peticolas, L.; Schwerin, T.; Shipp, S.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-06-01

    Advancing scientific literacy and strengthening the Nation’s future workforce through stimulating, informative, and effective learning experiences are core principles of the NASA Science Mission Directorate (SMD) education and public outreach (E/PO) program. To support and coordinate its E/PO community in offering a coherent suite of activities and experiences that effectively meet the needs of the education community, NASA SMD has created four Science Education and Public Outreach Forums (Astrophysics, Planetary Science, Heliophysics, Earth Science). Forum activities include: professional development to raise awareness of the existing body of best practices and educational research; analysis and cataloging of SMD-funded education materials with respect to AAAS Benchmarks for Science Literacy; Working Groups that assemble needs assessment and best practices data relevant to Higher Education, K-12 Formal Education, and Informal Science Education audiences; and community collaborations that enable SMD E/PO community members to develop new partnerships and to learn and share successful strategies and techniques. This presentation will highlight examples of Forum and community-based activities related to astronomy education and teacher professional development, within the context of the principles articulated within the NRC Framework for K-12 Science Education and the Next Generation Science Standards. Among these are an emerging community of practice for K-12 educators and online teacher professional development and resources that incorporate misconception research and authentic experiences with NASA Astrophysics data.

  6. The AstroVR Collaboratory, an On-line Multi-User Environment for Research in Astrophysics

    NASA Astrophysics Data System (ADS)

    van Buren, D.; Curtis, P.; Nichols, D. A.; Brundage, M.

    We describe our experiment with an on-line collaborative environment where users share the execution of programs and communicate via audio, video, and typed text. Collaborative environments represent the next step in computer-mediated conferencing, combining powerful compute engines, data persistence, shared applications, and teleconferencing tools. As proof of concept, we have implemented a shared image analysis tool, allowing geographically distinct users to analyze FITS images together. We anticipate that \\htmllink{AstroVR}{http://astrovr.ipac.caltech.edu:8888} and similar systems will become an important part of collaborative work in the next decade, including with applications in remote observing, spacecraft operations, on-line meetings, as well as and day-to-day research activities. The technology is generic and promises to find uses in business, medicine, government, and education.

  7. Aluminum Mirror Coatings for UVOIR Telescope Optics Including the Far UV

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatha; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Ayala, Michael; Shaklan, Stuart; Scowen, Paul; Del Hoyo, Javier; Quijada, Manuel

    2015-01-01

    NASA Cosmic Origins (COR) Program identified the development of high reflectivity mirror coatings for large astronomical telescopes particularly for the far ultra violet (FUV) part of the spectrum as a key technology requiring significant materials research and process development. In this paper we describe the challenges and accomplishments in producing stable high reflectance aluminum mirror coatings with conventional evaporation and advanced Atomic Layer Deposition (ALD) techniques. We present the current status of process development with reflectance of approx. 55 to 80% in the FUV achieved with little or no degradation over a year. Keywords: Large telescope optics, Aluminum mirror, far UV astrophysics, ALD, coating technology development.

  8. NICER Mission

    NASA Image and Video Library

    2017-12-08

    This video previews the Neutron star Interior Composition Explorer (NICER). NICER is an Astrophysics Mission of Opportunity within NASA’s Explorer program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation. NICER is an upcoming International Space Station payload scheduled to launch in June 2017. Learn more about the mission at nasa.gov/nicer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Using an integral-field unit spectrograph to study radical species in cometary coma

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna M.; Vaughan, Charles M.; Cochran, Anita

    2015-01-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CN, NH2). Various coma enhancements were used to identify and characterize coma morphological features. The azimuthal average profiles and the Haser model were used to determine production rates and possible parent molecules. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419), NASA's Planetary Atmospheres program (Award No. NNX14AH18G), and the Fund for Astrophysical Research, Inc.

  10. Using an integral-field unit spectrograph to study radical species in cometary coma

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita; Vaughan, Charles

    2014-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CN, NH2). Various coma enhancements were used to identify and characterize coma morphological features. The azimuthal average profiles and the Haser model were used to determine production rates and possible parent molecules. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419), NASA’s Planetary Atmospheres program (Award No. NNX14AH18G), and the Fund for Astrophysical Research, Inc.

  11. Experimental and theoretical research in high energy astrophysics

    NASA Technical Reports Server (NTRS)

    Clark, George W.

    1990-01-01

    NASA grants to MIT for investigations in experimental and theoretical high energy astrophysics have, over the years, nurtured the infrastructure development and experimental activities that have led to successful proposals for the OSO 7, SAS 3, HEAO 1, and HEAO 2 missions and to the achievements in high energy astrophysics of the MIT Group. This report consists of excerpts from the progress reports of 1988 through 1990 that have been submitted as a regular feature of the renewal requests. These excerpts convey the flavor of the grant-supported activities, and a sense of the progress that has been made in each of the areas investigations.

  12. Science and Science Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Peticolas, L.; Schwerin, T.; Shipp, S.; Manning, J. G.

    2014-07-01

    For nearly two decades, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The NASA SMD EPO program evaluates EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advances STEM education and literacy, and enables students and educators to participate in the practice of science as embodied in the 2013 Next Generation Science Standards. Leads of the four NASA SMD Science EPO Forums provided big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting examples of program effectiveness and impact. Attendees gained an increased awareness of the depth and breadth of NASA SMD's EPO programs and achievements, the magnitude of its impacts through representative examples, and the ways current and future EPO programs can build upon the work being done.

  13. The Cal-Bridge Program: Supporting Diverse Graduate Students in Astrophysics

    NASA Astrophysics Data System (ADS)

    Smecker-Hane, Tammy A.; Rudolph, Alexander L.; Abazajian, Kevork; Povich, Matthew S.

    2018-06-01

    The mission of the Cal-Bridge program is to increase the number of underrepresented minority and women students completing a bachelor’s degree and entering a PhD program in astronomy, physics, or closely-related fields. To do so, we have built a network of faculty at diverse higher education institutions, including University of California (UC) campuses, California State Universities (CSUs), and community colleges dedicated to this goal. Students selected for our program are known as Cal-Bridge Scholars, and we give them a wide variety of support: (1) financial scholarships in their junior/senior years at CSU and their first year of graduate school at a UC, (2) intensive mentoring by a pair of CSU and UC faculty members, (3) tutoring, (4) professional development workshops, (5) exposure to research opportunities at various universities, and (6) membership in a growing cohort of like-minded students. In this poster, we report on our work in designing an effective mentoring program and developing tools like our mentoring and graduate application handbooks, and we discuss our tutoring program and the professional development workshops we have designed, and we report on their effectiveness. Funding for this program is provided by NSF-SSTEM Grant #1356133.

  14. The Cal-Bridge Program: Increasing the Gender and Ethnic Diversity of Astrophysics Students in Southern California

    NASA Astrophysics Data System (ADS)

    Smecker-Hane, Tammy A.; Rudolph, Alexander L.

    2016-06-01

    The mission of the Cal-Bridge program is to increase the number of underrepresented minority and women students completing a bachelor’s degree and entering a PhD program in astronomy, physics, or closely-related fields. The program has created a network of faculty at diverse higher education institutions, including 5 University of California (UC) campuses, 9 California State Universities (CSUs), and 10 community colleges in southern California, dedicated to this goal. Students selected for the program are know as “Cal-Bridge Scholars” and they are given a wide variety of support: (1) scholarships in their junior/senior years at CSU and their first year of graduate school at a UC, (2) intensive mentoring by a pair of CSU and UC faculty members, (3) tutoring, when needed, (4) professional development workshops, (5) exposure to research opportunities at various universities, and (6) membership in a growing cohort of like-minded students. We report on the structure of our program, lessons learned with our current 12 Cal-Bridge scholars, and the results of our first two years of operation. Funding for this program is provided by NSF-SSTEM Grant #1356133.

  15. Astrobites: The Astro-ph Reader's Digest For Undergraduates

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth R.; Kohler, S.; Gifford, D.; Plunkett, A. L.; Astrobites Team

    2012-01-01

    Astrobites (http://astrobites.com) is a daily blog aimed primarily at undergraduates interested in astrophysical research and written by a team of graduate students from around the country. Every day we present a journal article recently posted to astro-ph in a brief format that is accessible to anyone with a general background in the physical sciences. In addition to summarizing new work, Astrobites provides valuable context for readers not yet familiar with the astrophysical literature. Special posts offer career guidance for undergraduates (e.g. applying for an NSF graduate fellowship) and describe personal experiences (e.g. attending an astronomy summer school). We will discuss the Astrobites format, readership statistics and the results of our October reader survey (117 responses). The Astrobites blog is currently receiving 17000 on-site hits per month with an average of 600 all-time views per post. 17% of our readers are undergraduate students and 34% are graduates, while researchers and astronomy enthusiasts make up the remainder in equal parts. Out of the 60 students surveyed, 75% plan on a career in research in astrophysics. EN and DG acknowledge support from the National Science Foundation through Graduate Research Fellowships.

  16. NASA Astrophysics Prioritizes Technology Development Funding for Strategic Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Pham, Bruce; Ganel, Opher

    2017-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope, Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and X-ray Surveyor. The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned L3 gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. Starting in 2016, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of this year’s technology gap prioritization and showcase our current portfolio of technology development projects. To date, 77 COR and 80 PCOS SAT proposals have been received, of which 18 COR and 22 PCOS projects were funded (PCOS awards starting in 2017 have yet to be announced). For more information, see the respective Program Annual Technology Reports under the technology tabs of the COR website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  17. Proceedings of RIKEN BNL Research Center Workshop: Thermal Photons and Dileptons in Heavy-Ion Collisions. Volume 119

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, G.; Rapp, R.; Ruan, L.

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The primary theme for thismore » workshop related to sharing the latest experimental and theoretical developments in area of low transverse momentum (p T) dielectron and photons. All the presentations given at the workshop are included in this proceedings, primarily as PowerPoint presentations.« less

  18. Space Studies Board, 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This 1994 report of the Space Studies Board of the National Research Council summarizes the charter and organization of the board, activities and membership, major and short reports, and congressional testimony. A cumulative bibliography of the Space Studies (formerly Space Science) Board and its committees is provided. An appendix contains reports of the panel to review Earth Observing System Data and Information System (EOSDIS) plans. Major reports cover scientific opportunities in the human exploration of space, the dichotomy between funding and effectiveness in space physics, an integrated strategy for the planetary sciences for the years 1995-2010, and Office of Naval Research (ONR) research opportunities in upper atmospheric sciences. Short reports cover utilization of the space station, life and microgravity sciences and the space station program, Space Infrared Telescope Facility and the Stratospheric Observatory for Infrared Astronomy, and the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe.

  19. Update on Astrometric Follow-Up at Apache Point Observatory by Adler Planetarium

    NASA Astrophysics Data System (ADS)

    Nault, Kristie A.; Brucker, Melissa; Hammergren, Mark

    2016-10-01

    We began our NEO astrometric follow-up and characterization program in 2014 Q4 using about 500 hours of observing time per year with the Astrophysical Research Consortium (ARC) 3.5m telescope at Apache Point Observatory (APO). Our observing is split into 2 hour blocks approximately every other night for astrometry (this poster) and several half-nights per month for spectroscopy (see poster by M. Hammergren et al.) and light curve studies.For astrometry, we use the ARC Telescope Imaging Camera (ARCTIC) with an SDSS r filter, in 2 hour observing blocks centered around midnight. ARCTIC has a magnitude limit of V~23 in 60s, and we target 20 NEOs per session. ARCTIC has a FOV 1.57 times larger and a readout time half as long as the previous imager, SPIcam, which we used from 2014 Q4 through 2015 Q3. Targets are selected primarily from the Minor Planet Center's (MPC) NEO Confirmation Page (NEOCP), and NEA Observation Planning Aid; we also refer to JPL's What's Observable page, the Spaceguard Priority List and Faint NEOs List, and requests from other observers. To quickly adapt to changing weather and seeing conditions, we create faint, midrange, and bright target lists. Detected NEOs are measured with Astrometrica and internal software, and the astrometry is reported to the MPC.As of June 19, 2016, we have targeted 2264 NEOs, 1955 with provisional designations, 1582 of which were detected. We began observing NEOCP asteroids on January 30, 2016, and have targeted 309, 207 of which were detected. In addition, we serendipitously observed 281 moving objects, 201 of which were identified as previously known objects.This work is based on observations obtained with the Apache Point Observatory 3.5m telescope, which is owned and operated by the Astrophysical Research Consortium. We gratefully acknowledge support from NASA NEOO award NNX14AL17G and thank the University of Chicago Department of Astronomy and Astrophysics for observing time in 2014.

  20. Teaching astronomy and astrophysics at the Valencian International University (VIU): Application and use of Virtual Observatory tools

    NASA Astrophysics Data System (ADS)

    Diago, P. D.; Gutiérrez-Soto, J.; Ruiz, J. E.; Solano, E.

    2013-05-01

    The Astronomy and Astrophysics Master, running at the Valencian International University (VIU, http://www.viu.es) since march 2010, is a clear example of how development of infor- mation and communication technologies (ICTs) and new e-learning methods are changing the traditional distance learning. In the context of the European Space for Higher Edu- cation (ESHE) we present how the Virtual Observatory (VO) tools can be an important part in the Astronomy and Astrophysics teaching. The described tasks has been carried out during the last three courses. These tasks are representative of the state of the art in Astrophysics research. We attach a description and a learning results list of each one of the presented tasks. The tasks can be downloaded at the Spanish VO website: http://svo.cab.inta-csic.es/docs/index.php?pagename=Education/VOcases

  1. The Astrophysics Source Code Library by the numbers

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Teuben, Peter; Berriman, G. Bruce; DuPrie, Kimberly; Mink, Jessica; Nemiroff, Robert; Ryan, PW; Schmidt, Judy; Shamir, Lior; Shortridge, Keith; Wallin, John; Warmels, Rein

    2018-01-01

    The Astrophysics Source Code Library (ASCL, ascl.net) was founded in 1999 by Robert Nemiroff and John Wallin. ASCL editors seek both new and old peer-reviewed papers that describe methods or experiments that involve the development or use of source code, and add entries for the found codes to the library. Software authors can submit their codes to the ASCL as well. This ensures a comprehensive listing covering a significant number of the astrophysics source codes used in peer-reviewed studies. The ASCL is indexed by both NASA’s Astrophysics Data System (ADS) and Web of Science, making software used in research more discoverable. This presentation covers the growth in the ASCL’s number of entries, the number of citations to its entries, and in which journals those citations appear. It also discusses what changes have been made to the ASCL recently, and what its plans are for the future.

  2. Astrobites: Blogging Astrophysics Research, Bringing it to the Classroom, and beyond

    NASA Astrophysics Data System (ADS)

    Tsang, Benny Tsz Ho; Kohler, Susanna; Astrobites Team

    2017-06-01

    Transitioning from undergraduate studies to a career in scientific research is not without its difficulties. Astrobites (astrobites.com) is a graduate student-organized website that aims to decipher the research process in astrophysics and present the latest discoveries in form of daily digestible blog posts. Astrobites posts paint vivid mental pictures of diverse research topics without jargon or extensive presumed knowledge, helping readers to make the connections between topics. Besides summarizing research papers, our posts feature reviews on selected subjects, sharing in career development, live-blogging in conferences, and keynote speakers’ personal encounters with science! The accessibility of Astrobites attracts readers beyond undergraduate students, from professional astrophysicists exploring unfamiliar territory outside of their research to science educators looking for exciting and topical ideas for lesson plans. We will present our goals, readership, latest endeavors, and future initiatives.

  3. CdTe focal plane detector for hard x-ray focusing optics

    NASA Astrophysics Data System (ADS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Gregory, Kyle; Inglis, Andrew; Panessa, Marco

    2015-08-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 mm x 20 mm CdTe-based detector with 250 μm square pixels (80x80 pixels) which achieves 1 keV FWHM @ 60 keV and gives full spectroscopy between 5 keV and 200 keV. An added advantage of these detectors is that they have a full-frame readout rate of 10 kHz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1mm-thick CdTe detectors are tiled into a 2x2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flightsuitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  4. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    NASA Technical Reports Server (NTRS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  5. Mapping the Ultraviolet Universe: The Smithsonian's Celescope Payload

    NASA Astrophysics Data System (ADS)

    DeVorkin, D. H.

    2005-12-01

    This paper reports on one facet of our overall program to document the transformation of the old ``Astrophysical Observatory" (APO) of the Smithsonian into the Smithsonian Astrophysical Observatory at Harvard, in just under six years, from 1955 to 1962. In this interval SAO went from near-death stasis to becoming one of the largest and most non-traditional astronomical institutions in the world. The author has previously examined how Celescope was one of the many agents of institutional growth at SAO. In the present paper, the author will explore the institutional and technical challenges facing Celescope, which was conceived and proposed by SAO as a quick first-look at the ultraviolet sky in 1958, but which grew into a complex battery of telescopes as the OAO program became articulated by NASA into its largest investment in space astronomy in the 1960s. The author acknowledges primary support from the NSF History and Philosophy Program, administrative support from the American Institute of Physics Center for History of Physics, and documentary assistance from the Smithsonian Institution Archives.

  6. Modeling Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Drake, R. P.; Grosskopf, Michael; Bauerle, Matthew; Kruanz, Carolyn; Keiter, Paul; Malamud, Guy; Crash Team

    2013-10-01

    The understanding of high energy density systems can be advanced by laboratory astrophysics experiments. Computer simulations can assist in the design and analysis of these experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport and electron heat conduction. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Radiative shocks experiments, Kelvin-Helmholtz experiments, Rayleigh-Taylor experiments, plasma sheet, and interacting jets experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  7. Resource Letter GrW-1: Gravitational Waves

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Centrella, Joan M.

    2003-01-01

    The phenomenon of gravitational radiation was one of the first predictions of Einstein's general theory of relativity. Progress in understanding this radiation theoretically was slow at first, owing to the difficulty of the nonlinear field equations and the subtleties of their physical effects. The experimental side of this subject also has taken a long time to develop, with efforts at detection severely challenged by the extreme weakness of the waves impinging on the Earth. However, as the 21st century begins, observations of the gravitational waves from astrophysical sources such as black holes, neutron stars, and stellar collapse are expected to open a new window on the universe. Vigorous experimental programs centered on ground-based detectors are being carried out worldwide, and a space-based detector is in the planning stages. On the theoretical side, much effort is being expended to produce robust models of the astrophysical sources and accurate calculations of the waveforms they produce. In this Resource Letter, a set of basic references will be presented first, to provide a general introduction to and overview of the literature in this field. The focus then will shift to highlighting key resources in more specialized areas at the forefront of current research.

  8. Obituary: Richard D. Schwartz (1941-2011)

    NASA Astrophysics Data System (ADS)

    Wilking, Bruce

    2011-12-01

    Richard D. Schwartz, Professor Emeritus of Astronomy, died at his home in Sequim, WA, after a nearly 3 year battle against pancreatic cancer. Richard was born in Pretty Prairie, Kansas. He was active in sports and band and graduated in 1959. After completing a BS at Kansas State, and a Master's degree in Divinity at Union Seminary in NY, he further studied astrophysics, receiving his doctorate from University of Washington in 1973. When Dick arrived at the University of Missouri-St. Louis in 1975, he was the only astronomer in the Department of Physics. He built the astronomy program and initiated the B.S. in physics with an astrophysics option that the majority of physics majors choose. Dick was a wonderful teacher and provided outstanding leadership to the campus. He designed and provided oversight on the construction of the campus observatory that was completed in 1981. Since that time the observatory has served as both a teaching and research facility. It is also used for monthly public open houses that draw hundreds of people annually to the campus to view the moon, stars, and planets. Upon his retirement in 2003, the Board of Curators approved naming the campus observatory the "Richard D. Schwartz Observatory" in honor of his distinctive service to the University of Missouri-St. Louis. Just as important as Dick's service to promote public interest in astronomy was his effort to make the campus observatory a research facility. Dick equipped and maintained the observatory with state-of-art detectors that allowed students to get their first taste of scientific research. From 1991-2003, he managed the campus program for the NASA/Missouri Space Grant Consortium and mentored over 30 research students in projects at the observatory. Some of the results have been published in astronomical journals. Many of those students went on to graduate schools and several have achieved tenure and distinction at major universities. In addition to Dick's service to the University of Missouri-St. Louis, he compiled a distinguished record of research that gave him an international reputation as an astrophysicist. During his career, Dick pioneered a new research area studying the energetic mass loss in young stars, leading to hundreds of astronomers and physicists working in this area worldwide. He used a variety of unique telescopes to conduct his research including the Hubble Space Telescope. There have been over 2000 citations to his 80 scientific papers. From 1979-1998, he had continuous funding from NASA and the National Science Foundation and in 1999 he received the Chancellor's Award for Research and Creativity for his distinguished research record.. Dick retired in 2003 after 28 years at UMSL. However, he kept active in research, using the Galaxy View Observatory that he constructed adjacent to his home in Sequim, Washington. Characteristic of his broad scientific interests, this year the Geological Society of America Today will publish Dick's commentary on the scientific basis of anthropogenic global warming. He brought a deep compassion to local activities to raise awareness of climate change, offering thoughtful comments in local newspapers that reflected his rare combination of degrees in astrophysics and divinity. Dick is survived by his wife of 23 years, Eleanor McIntyre, 6 step-children, 14 grandchildren, 2 brothers, 2 nieces, and their families.

  9. 75 FR 33837 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... community and other persons scientific and technical information relevant to program planning. DATES... Discussion --Update of Flight Missions It is imperative that the meeting be held on these dates to...

  10. Photographic region elemental abundance analyses of Dr. David S. Leckrone's GTO HST stars 2

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.

    1994-01-01

    Activities are presented for the grant-funded work at the Dominion Astrophysical (DAO) and Casleo Observatories. A comparison is planned for the spectrograms taken at both observatories of similar stars. It is reported that of the Northern Hemisphere program stars, only 112 Her remains to be analyzed. A preliminary solution for the components of this binary system has been found. The new ATLAS9 models have been used to reevaluate the effective temperatures and surface gravities derived for all program stars. Model atmospheres are being calculated by extensive grids on workstations upgraded to the DEC 3000 model 300X running Open VMS. An attached paper describes a plan to obtain the needed gf values as well as some first applications of astrophysical gf values, the most important of which was Vega.

  11. Swift-BAT: Transient Source Monitoring

    NASA Astrophysics Data System (ADS)

    Barbier, L. M.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H.; Markwardt, C.; Mushotzky, R.; Parsons, A.; Sakamoto, T.; Tueller, J.; Fenimore, E.; Palmer, D.; Skinner, G.; Swift-BAT Team

    2005-12-01

    The Burst Alert Telescope (BAT) on the Swift satellite is a large field of view instrument that continually monitors the sky to provide the gamma-ray burst trigger for Swift. An average of more than 70% of the sky is observed on a daily basis. The survey mode data is processed on two sets of time scales: from one minute to one day as part of the transient monitor program, and from one spacecraft pointing ( ˜20 minutes) to the full mission duration for the hard X-ray survey program. In the transient monitor program, sky images are processed to detect astrophysical sources in six energy bands covering 15-350 keV. The detected flux or upper limit in each energy band is calculated for >300 objects on time scales up to one day. In addition, the monitor is sensitive to an outburst from a new or unknown source. Sensitivity as a function of time scale for catalog and unknown sources will be presented. The daily exposure for a typical source is ˜1500 - 3000 seconds, with a 1-sigma sensitivity of ˜4mCrab. 90% of the sources are sampled at least every 16 days, but many sources are sampled daily. The BAT team will soon make the results of the transient monitor public to the astrophysical community through the Swift mission web page. It is expected that the Swift-BAT transient monitor will become an important resource for the high energy astrophysics community.

  12. Student Research in Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Blondin, J. M.

    1999-12-01

    Computational physics can shorten the long road from freshman physics major to independent research by providing students with powerful tools to deal with the complexities of modern research problems. At North Carolina State University we have introduced dozens of students to astrophysics research using the tools of computational fluid dynamics. We have used several formats for working with students, including the traditional approach of one-on-one mentoring, a more group-oriented format in which several students work together on one or more related projects, and a novel attempt to involve an entire class in a coordinated semester research project. The advantages and disadvantages of these formats will be discussed at length, but the single most important influence has been peer support. Having students work in teams or learn the tools of research together but tackle different problems has led to more positive experiences than a lone student diving into solo research. This work is supported by an NSF CAREER Award.

  13. Summer Internships for Students through the Air Force Research Laboratory’s Scholars Program

    NASA Astrophysics Data System (ADS)

    Barnaby, David A.; Hwang, Eunsook; McCullough, Julie A.

    2017-01-01

    Did you know that the Air Force Research Laboratory (AFRL) has sponsored a summer research program for students for the last 15 years? The AFRL Scholars Program hires high school, undergraduate, and graduate students as payed interns for 12-18 weeks each summer to work on space science and astronomy projects at one of four AFRL locations. By now, more than 1200 students from 34 states have participated. Like advisors in other summertime astrophysics research programs, the AFRL mentors benefit from extra staff for their research efforts at no cost (the Scholars are funded centrally within AFRL). Likewise, the students benefit from summer pay, job experience in a science lab, university housing, and comradery with students from other states. Pay is based on the intern’s academic level with the range being $395/week for high school up to $1115/week for recent Ph.Ds. Benefits not available from other programs include a secret clearance, socializing with a cohort exceeding 100 peers, and exposure to a pathway to a professional science career outside academia. Benefits to AFRL include persuading young people to choose science-technical-engineering-math (STEM) degrees, and roughly 89% of participants show increased interest in STEM courses following their internship.In this poster, we present the advantages to college students (and their mentors) to participating. We outline the topic areas, 60% of which are related to space science and astronomy. We quantify the range of participants’ scholastic level and majors, as well as the impact the program has on stimulating STEM careers and sight stories of students going onto rewarding careers in AFRL. To be eligible, an applicant must be a U.S. citizen, at least 16 years old, available to work a 40-hour business week, agree to a background check, and be enrolled at the time of application. To apply for the summer 2017 program, start at http://afrlscholars.usra.edu.

  14. Research in particles and fields

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1987-01-01

    The astrophysical aspects of cosmic rays and gamma rays and the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are carried out by means of energetic particle and photon detector systems flown on spacecraft and balloons. Particle astrophysics is directed toward the investigation of galactic, solar, interplanetary, and planetary energetic particles and plasmas. The emphasis is on precision measurements with high resolution in charge, mass, and energy. Gamma ray research is directed toward the investigation of galactic, extragalactic, and solar gamma rays with spectrometers of high angular resolution and moderate energy resolution carried on spacecraft and balloons.

  15. News Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

  16. Astrophysical payload accommodation on the space station

    NASA Technical Reports Server (NTRS)

    Woods, B. P.

    1985-01-01

    Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.

  17. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  18. Theoretical Research at the High Energy Frontier: Cosmology and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Lawrence M.

    The forefront of particle physics has focused on possible physics beyond the standard model which might help explain its peculiarities, including the nature of the spectrum of masses of elementary particles, the peculiar hierarchy between the Planck scale and the electroweak scale, and the possible manner in which the standard model might be embedded in a quantum theory which incorporates gravity. Over the past several decades it has become clear that several of the key out-standing problems associated with our understanding of fundamental interactions are inextricably tied to questions that are also of current interest in cosmology and astrophysics. Atmore » the same time, remarkable new data is being gathered that will allow empirical testing of theoretical ideas that have been around for a generation, from the discovery of the Higgs at the LHC to the possible detection of gravitational waves from Inflation at the GUT scale. The questions of the origin of mass, and possible grand unification are both tied to the possible existence of phase transitions in the early universe. Neutrino masses, as probed from astrophysical sources, may play a key role in elucidating the physics associated with the generation of baryon number. It is also possible that new physics at the electroweak scale may play a role in the nature of primordial cosmological magnetic fields. Low Energy Supersymmetry as a solution to the hierarchy problem can predict, besides events detectable at the LHC, stable weakly interacting particles that might make up the dark matter of the universe. The possible existence of large extra dimensions might also impact upon the hierarchy problem, but these could also dramatically affect our picture of the evolution of the Universe both at early times, and possibly on large scales. Inflation may depend upon new physics at the GUT scale, but its detection may now be imminent with the possible detection of a gravitational wave signature in the Cosmic Microwave Background Radiation. Undoubtedly the most significant outstanding problem in high-energy physics is also a problem in cosmology, and indeed originated not from accelerators but from astrophysical observations: What is the origin and nature of the dark energy that appears to dominate the Universe? An understanding of quantum gravity, and perhaps a new understanding of quantum mechanics or quantum field theory may be required to fully address this problem. At the moment, the physics of black holes may provide the best opportunity to explore these issues, while the discovery of the Higgs suggests several new possible connections to physics that might be relevant for dark energy. Finally, pending confirmation of a gravitational wave signal from inflation, to date the only direct evidence for fundamental particle physics beyond the standard model comes, at least in part, from astrophysical neutrino observations. A remarkable convergence of theory, observation and experiment has been taking place that is allowing great strides to be made in our knowledge of the parameters that describe the universe, if not the origin of these parameters. Given the new discoveries now being made, and the incredible capabilities of future instruments, it is an exciting time to make progress in our fundamental understanding the origin and evolution of the Universe and the fundamental forces that guide that evolution. As a result, it is natural that our DOE theory research program at Arizona State University focuses in large part on the connections between particle physics and cosmology and astrophysics in order to improve our understanding of fundamental physics. Our areas of research cover all of the areas described above. Our group now consists of four faculty PI’s and their postdocs and students, complemented by long term visitor Frank Wilczek, and physics faculty colleagues Cecilia Lunardini, Richard Lebed, and Andrei Belitsky, whose interests overlap in areas ranging from particle theory and phenomenology to neutrino astrophysics. In addition, we interact with astronomers, and experimentalists in both Physics and the School of Earth and Space Exploration. In addition, Krauss and Parikh are associated, respectively, with the ASU Origins Project and the ASU Beyond Center. Both of these groups have helped us leverage DOE funds by supporting workshops associated with our activities from time to time. To continue the active program we have built up here, we are asking for support for 3 graduate students, and 3 postdocs (note that the PI will forego summer salary support in order to support one additional postdoc beyond the request in our last proposal for 2 postdocs). We have been fortunate to build a vibrant group based in part on University startup support for our program. Now that that support is coming to a close for most of our group, we are hoping that the exciting program we have created motivates continued DOE support at a level that, while not as great as the level we enjoyed with startup support, will nevertheless allow us to maintain our momentum.« less

  19. An astrophysical view of Earth-based metabolic biosignature gases.

    PubMed

    Seager, Sara; Schrenk, Matthew; Bains, William

    2012-01-01

    Microbial life on Earth uses a wide range of chemical and energetic resources from diverse habitats. An outcome of this microbial diversity is an extensive and varied list of metabolic byproducts. We review key points of Earth-based microbial metabolism that are useful to the astrophysical search for biosignature gases on exoplanets, including a list of primary and secondary metabolism gas byproducts. Beyond the canonical, unique-to-life biosignature gases on Earth (O(2), O(3), and N(2)O), the list of metabolic byproducts includes gases that might be associated with biosignature gases in appropriate exoplanetary environments. This review aims to serve as a starting point for future astrophysical biosignature gas research.

  20. The High-Energy Astrophysics Learning Center-and More!

    NASA Astrophysics Data System (ADS)

    Whitlock, L. A.

    2006-06-01

    As part of the education outreach efforts at NASA-Goddard's HEASARC (High Energy Astrophysics Science Archive Research Center), we have developed two World Wide Web sites for astronomy and space science education. "StarChild" is a site geared for ages 4-14, and the "High-Energy Astrophysics Learning Center" focuses on ages 14-adult. In both sites, information is presented on a variety of reading and comprehension levels. Interactive activities, movies, and animations are included. The sites have been developed with the participation of, and review by, teachers of all grade levels. The sites are now also being distributed in a CD-ROM format. Development of the sites and our future plans are discussed.

  1. Astrophysics and Big Data: Challenges, Methods, and Tools

    NASA Astrophysics Data System (ADS)

    Garofalo, Mauro; Botta, Alessio; Ventre, Giorgio

    2017-06-01

    Nowadays there is no field research which is not flooded with data. Among the sciences, astrophysics has always been driven by the analysis of massive amounts of data. The development of new and more sophisticated observation facilities, both ground-based and spaceborne, has led data more and more complex (Variety), an exponential growth of both data Volume (i.e., in the order of petabytes), and Velocity in terms of production and transmission. Therefore, new and advanced processing solutions will be needed to process this huge amount of data. We investigate some of these solutions, based on machine learning models as well as tools and architectures for Big Data analysis that can be exploited in the astrophysical context.

  2. Classical dense matter physics: some basic methods and results

    NASA Astrophysics Data System (ADS)

    Čelebonović, Vladan

    2002-07-01

    This is an introduction to the basic notions, some methods and open problems of dense matter physics and their applications in astrophysics. Experimental topics cover the range from the work of P. W. Bridgman to the discovery and basic results of use of the diamond anvil cell. On the theoretical side, the semiclassical method of P. Savić and R. Kašanin is described. The choice of these topics is conditioned by their applicability in astrophysics and the author's research experience. At the end of the paper is presented a list of some unsolved problems in dense matter physics and astrophysics, some (or all) of which could form a basis of future collaborations.

  3. Target characterizations for a 14N(p,γ)15O cross section measurement

    NASA Astrophysics Data System (ADS)

    Gyürky, Gy.; Csik, A.; Mátyus, Zs.; Fülöp, Zs.; Halász, Z.; Kiss, G. G.; Szücs, T.; Wagner, L.

    2018-01-01

    The 14N(p,γ)15O reaction controls the rate of CNO cycle hydrogen burning in various astrophysical sites and it is therefore one of the most important reactions in nuclear astrophysics. An experimental program is in progress to measure the 14N(p,γ)15O cross section in a wide energy range using a novel approach. A crucial quantity for the cross section determination is the number of N atoms in the target. In this paper the results of different experiments used for N target characterization are presented.

  4. Transiting Exoplanet Survey Satellite (TESS) Briefing

    NASA Image and Video Library

    2018-03-28

    NASA Astrophysics Division director Paul Hertz, left, Sara Seager, TESS deputy director of science, MIT, George Ricker, TESS principal investigator, MIT Kavli Institute for Astrophysics and Space Research, and Jeff Volosin, TESS project manager, NASA’s Goddard Space Flight Center, right, discuss the upcoming launch of NASA’s next planet hunter, the Transiting Exoplanet Survey Satellite (TESS), Wednesday, March 28, 2018 at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  5. Obituary: Beth Brown (1969-2008)

    NASA Astrophysics Data System (ADS)

    Bregman, Joel

    2011-12-01

    The astronomical community lost one of its most buoyant and caring individuals when Beth Brown died, unexpectedly, at the age of 39 from a pulmonary embolism. Beth Brown was born in Roanoke, Virginia where she developed a deep interest in astronomy, science, and science fiction (Star Trek). After graduating as the valedictorian of William Fleming High School's Class of 1987, she attended Howard University, where she graduated summa cum laude in 1991 with a bachelor's degree in astrophysics. Following a year in the graduate physics program at Howard, she entered the graduate program in the Department of Astronomy at the University of Michigan, the first African-American woman in the program. She received her PhD in 1998, working with X-ray observations of elliptical galaxies from the Röntgen Satellite (ROSAT; Joel Bregman was her advisor). She compiled and analyzed the first large complete sample of such galaxies with ROSAT and her papers in this area made an impact in the field. Following her PhD, Beth Brown held a National Academy of Science & National Research Council Postdoctoral Research Fellowship at NASA's Goddard Space Flight Center. Subsequently, she became a civil servant at the National Space Science Data Center at GSFC, where she was involved in data archival activities as well as education and outreach, a continuing passion in her life. In 2006, Brown became an Astrophysics Fellow at GSFC, during which time she worked as a visiting Assistant Professor at Howard University, where she taught and worked with students and faculty to improve the teaching observatory. At the time of her death, she was eagerly looking forward to a new position at GSFC as the Assistant Director for Science Communications and Higher Education. Beth Brown was a joyous individual who loved to work with people, especially in educating them about our remarkable field. Her warmth and openness was a great aid in making accessible explanations of otherwise daunting astrophysical phenomena. She was involved in outreach and education at many levels and throughout her career. She would give planetarium shows, popular science talks for the public, and would speak to local and national news agencies, where she would explain recent NASA science findings. Among other contributions to higher education, she created a course, "Naked Eye Astronomy" at the University of Michigan, which remains the most popular course that the department offers. She was an active member of the National Society of Black Physicists (NSBP), where she was a frequent speaker as well as a mentor to students. Beth Brown was an inspiration to women and minorities in encouraging them to pursue careers in astronomy and physics. One could not find a finer roll model. She will be missed but not forgotten.

  6. Current Physics Research: Part I.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1980-01-01

    This article is a preview of the book, "Physics News in 1980." Five research areas are reviewed: high energy particle accelerators, fusion reactors, solar cells, astrophysics, and gauge theories. (Author/DS)

  7. Report on INT Program INT-17-1a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escher, J. E.; Blackmon, J.; Elster, C.

    The purpose of the 5-week program was to bring together physicists from the low-energy nuclear structure and reaction communities to identify avenues for achieving reliable and predictive descriptions of reactions involving nuclei across the isotopic chart. The 4-day embedded workshop focused on connecting theory developments to experimental advances and data needs for astrophysics and other applications.

  8. Astronomy Students Learn to Think Big.

    ERIC Educational Resources Information Center

    Somerville, W. B.

    1989-01-01

    Presents background information related to astronomy for high school students. Discusses the differences between astronomy and astrophysics, and the employment of the astronomy graduates. Lists degree programs in astronomy and related subjects in an appendix. (YP)

  9. Undergraduate Research Possibilities with a 0.6m Telescope

    NASA Astrophysics Data System (ADS)

    Carini, M. T.; Barnaby, D.; Gelderman, R.; Marchenko, S.; McGruder, C. H., III; Strolger, L.

    2005-12-01

    We present a discussion of the research projects that are being carried out by undergraduate students with the 0.6m telescope at the Bell Observatory, operated by Western Kentucky University. As a primarily undergraduate institution, our goal is to provide a meaningful undergraduate educational experience through both quality instruction and engagement of students in mentored research activities. Such activities not only enhance the student's educational experience, but also prepare them to be competitive in graduate school and/or the workplace. Using our modernized 0.6m telescope, our students pursue research projects which investigate a variety of astrophysically interesting problems: variability of Blazars, eclipsing binary stars, Gamma-ray burst identifications and follow up, photometric searches for extra-solar planets, supernova monitoring and survey programs, the relationship between morphological disturbances and activity in Seyfert nuclei, and variability in Wolf Rayet stars. We discuss the instrumentation, projects and results obtained by our undergraduate students, and the impact this has had on their undergraduate experience.

  10. Nuclear Structure Research at TRIUMF

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Chakrawarthy, R. S.; Cline, D.; Cooper, R. J.; Churchman, R.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Miosan, F.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Scraggs, H. C.; Strange, M. D.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.; Wu, C. Y.; Zganjar, E. F.

    2007-04-01

    The radioactive beam laboratory at TRIUMF is currently the highest power ISOL facility in the world. Taking advantage of the high-intensity beams, major programs in nuclear astrophysics, nuclear structure, and weak interaction studies have begun. The low-energy area, ISAC-I, is capable of delivering beams up to mass 30 at approx 1.7 MeV/u or 60 keV up to the mass of the primary target, whereas ISAC-II will ultimately provide beams up to mass 150 and approx 6.5 MeV/u. Major gamma -ray spectrometers for nuclear structure research consist of the 8pi spectrometer at ISAC-I, and the TIGRESS spectrometer now being constructed for ISAC-II. Results from recent experiments investigating the beta -decay of nuclei near N=90 and Coulomb excitation of 20,21Na are presented that highlight the capabilities of the spectrometers.

  11. Evolving Graduate Programs in Arizona

    NASA Astrophysics Data System (ADS)

    Impey, C. D.

    2002-12-01

    At the University of Arizona, as in many other top-ranked research institutions, there is a tension between the desire to give student broad enough skills for the workplace with the demands of the specific academic discipline. 2/3 of the Astronomy graduate students at Steward Observatory go on to permanent jobs at universities or observatories, but some of our most successful graduates take more diverse career paths. We do not wish to sacrifice academic rigor in astrophysics or the primary goal of training students in research. However, we are creating opportunities for (a) students to take M.Sc. and eventually Ph.D. degrees with a specialization in education, and (b) students with technical skills to have Ph.D. minors in optics, applied physics, or ECE. This second initiative is the subject of a pending NSF/IGERT proposal, with the science theme "Search for other Worlds."

  12. The large area high resolution gamma ray astrophysics facility - HR-GRAF

    NASA Astrophysics Data System (ADS)

    Fenyves, E. J.; Chaney, R. C.; Hoffman, J. H.; Cline, D. B.; Atac, M.; Park, J.; White, S. R.; Zych, A. D.; Tumer, Q. T.; Hughes, E. B.

    1990-03-01

    The long-term program is described in terms of its equipment, scientific objectives, and long-range scientific studies. A prototype of a space-based large-area high-resolution gamma-ray facility (HR-GRAF) is being developed to examine pointlike and diffuse gamma-ray sources in the range 1 MeV-100 GeV. The instrument for the facility is proposed to have high angular and energy resolution and very high sensitivity to permit the study of the proposed objects. The primary research targets include the mapping of galactic gamma radiation, observing the angular variations of diffuse gamma rays, and studying the Galactic center with particular emphasis on the hypothetical black hole. Also included in the research plans are obtaining data on gamma-ray bursters, investigating the transmission of gamma rays from cold dark matter, and studying nuclear gamma-ray lines.

  13. Fifteen Years of Laboratory Astrophysics at Ames

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Salama, F.; Hudgins, D. M.; Bernstein, M.; Goorvitch, David (Technical Monitor)

    1998-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past fifteen years thanks to significant, parallel developments in two closely related areas: observational astronomy and laboratory astrophysics. Fifteen years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon-rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, these cold dust particles are coated with mixed-molecular ices whose compositions are very well known. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the ISM. This great progress has only been made possible by the close collaboration of laboratory experimentalists with observers and theoreticians, all with the goal of applying their skills to astrophysical problems of direct interest to NASA programs. Such highly interdisciplinary collaborations ensure fundamental, in depth coverage of the wide-ranging challenges posed by astrophysics. These challenges include designing astrophysically focused experiments and data analysis, tightly coupled with astrophysical searches spanning 2 orders of magnitude in wavelength, and detailed theoretical modeling. The impact of our laboratory has been particularly effective as there is constant cross-talk and feedback between quantum theorists; theoretical astrophysicists and chemists; experimental physicists; organic, physical and petroleum chemists; and infrared and UV/Vis astronomers. In this paper, two examples of the Ames Program will be given. We have been involved in identifying 9 out of the 14 interstellar pre-cometary ice species known, determined their abundances and the physical nature of the ice structure. Details on our ice work are given in the paper by Sandford et al. Our group is among the pioneers of the PAH model. We built the theoretical framework, participated in the observations and developed the experimental techniques needed to test the model. We demonstrated that the ubiquitous infrared emission spectrum associated with many interstellar objects can be matched by laboratory spectra of neutral and positively charged PAHs and that PAHs were excellent candidates for the diffuse interstellar band (DIB) carriers. See Salama et al. and Hudgins et al.

  14. EBIT - Electronic Beam Ion Trap: N Divison experimental physics annual report 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, D.

    1996-10-01

    The multi-faceted research effort of the EBIT (Electron Beam Ion Trap) program in N-Division of the Physics and Space Technology Department at Lawrence Livermore National Laboratory (LLNL) continues to contribute significant results to the physical sciences from studies with low energy very highly charged heavy ions. The EBIT program attracts a number of collaborators from the US and abroad for the different projects. The collaborations are partly carried out through participating graduate students demonstrating the excellent educational capabilities at the LLNL EBIT facilities. Moreover, participants from Historically Black Colleges and Universities are engaged in the EBIT project. This report describesmore » EBIT work for 1995 in atomic structure measurements and radiative transition probabilities, spectral diagnostics for laboratory and astrophysical plasmas, ion/surface interaction studies, electron-ion interactions studies, retrap and ion collisions, and instrumental development.« less

  15. Infrared Submillimeter and Radio Astronomy Research and Analysis Program

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2000-01-01

    This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.

  16. The Astrophysics Major at the University of California, Berkeley

    NASA Astrophysics Data System (ADS)

    Arons, J.; Heiles, C.

    2001-12-01

    The Astrophysics major offered by the Berkeley Astronomy Department has been redesigned to reflect broad educational goals. Students preparing for graduate school study mostly Physics and Mathematics, leavened with four semesters of astrophysics at the sophomore and senior level. These courses make heavy use of their concurrent Physics and Math. Astrophysics and Physics majors differ in the astrophysics courses replacing other electives which a Physics major might choose. The major's redesign also opened the door to students who wish to pursue a major which gives them broad technical training without having graduate school as a goal. Many such students follow the same track as those pursuing the graduate school option; others take courses specifically designed for people with alternate careers in mind. The major change has been a laboratory requirement for all Astrophysics majors, in either track. We now have advanced undergraduate laboratories: optical, radio, and near infrared; details are on our web page. These share the common thread of development of deep capabilities in data gathering, analysis, and presentation. Students achieve expertise in these areas because the labs include the complete range of activities normally encountered in observational or experimental research. Students use laboratory equipment to measure the fundamental parameters of devices and systems, make astronomical observations with those systems, write software in UNIX and IDL to control equipment and analyze the results, and write formal lab reports in LATEX. We avoid ``black box'' or ``cookbook'' procedures . The students leave the course having gained experience and knowledge, and a ``feel'' for how to proceed when faced with sometimes recalcitrant equipment and imperfect data. A by product of the training has been an increase in student involvement in undergraduate research projects. These innovations have led to a major that has doubled in size and, in a quite unanticipated development, has become gender balanced. We will present a number of aspects, both statistically and anecdotally, from this decade long experience with reform of an astronomy major.

  17. The status and initial results of the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyu; MAJORANA Collaboration

    2017-01-01

    The MAJORANA DEMONSTRATOR is an ultra-low background experiment searching for neutrinoless double-beta decay in 76Ge at the Sanford Underground Research Facility. The search for neutrinoless double-beta decay could determine the Dirac vs Majorana nature of neutrino mass and provide insight to the matter-antimatter asymmetry in the Universe. The DEMONSTRATOR is comprised of 44.8 kg (30 kg enriched in 76Ge) of high purity Ge detectors separated into two modules. Construction and commissioning of both modules completed in Summer 2016 and both modules are now acquiring physics data. In my talk, I will discuss the initial results of the first physics run utilizing both modules focusing primarily on the studies of the background and projections to a ton-scale experiment. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  18. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    NASA Astrophysics Data System (ADS)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  19. A Technology Development Roadmap for a Near-Term Probe-Class X-ray Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    Daelemans, Gerard J.; Petre, Robert; Bookbinder, Jay; Ptak, Andrew; Smith, Randall

    2013-01-01

    This document presents a roadmap, including proposed budget and schedule, for maturing the instrumentation needed for an X-ray astrophysics Probe-class mission. The Physics of the Cosmos (PCOS) Program Office was directed to create this roadmap following the December 2012 NASA Astrophysics Implementation Plan (AIP). Definition of this mission is called for in the AIP, with the possibility of selection in 2015 for a start in 2017. The overall mission capabilities and instrument performance requirements were defined in the 2010 Astronomy and Astrophysics Decadal Survey report, New Worlds, New Horizons in Astronomy and Astrophysics (NWNH), in connection with the highly ranked International X-ray Observatory (IXO). In NWNH, recommendations were provided regarding the size of, and instrumentation needed by, the next large X-ray observatory. Specifically, the key instrumental capability would be an X-ray calorimeter spectrometer at the focus of a large mirror with angular resolution of 10 arc seconds (arcsec) or better. If possible, a grating spectrometer should also be incorporated into the instrument complement. In response to these recommendations, four instrumentation technologies are included in this roadmap. Three of these are critical for an X-ray mission designed to address NWNH questions: segmented X-ray mirrors, transition edge sensor calorimeters, and gratings. Two approaches are described for gratings, which represent the least mature technology and thus most in need of a parallel path for risk reduction. Also, while current CCD detectors would likely meet the mission needs for grating spectrum readout, specific improvements are included as an additional approach for achieving the grating system effective area requirement. The technical steps needed for these technologies to attain technology readiness levels (TRL) of 5 and 6 are described, as well as desirable modest risk reduction steps beyond TRL-6. All of the technology development efforts are currently funded through the NASA Physics of the Cosmos (PCOS) Strategic Astrophysics Technology (SAT) program; some through the end of FY13, others though FY14. These technology needs are those identified as critical for a near-term mission and briefly described in the 2012 NASA X-ray Mission Concepts Study. This Technology Development Roadmap (TDR) provides a more complete description of each, updates the status, and describes the steps to mature them. For each technology, a roadmap is presented for attaining TRL-6 by 2020 at the latest, and 2018 for most. The funding required for each technology to attain TRL-5 and TRL-6 is presented and justified through a description of the steps needing completion. The total funding required for these technologies to reach TRL-6 is relatively modest, and is consistent with the planned PCOS SAT funding over the next several years. The approximate annual cost through 2018 is $8M. The total cost for all technologies to be matured is $62M (including funding already awarded for FY13 and FY14). This can be contrasted to the $180M recommended by NWNH for technology development for IXO, primarily for the maturation of the mirror technology. The technology described in Section 3 of this document is exclusively that needed for a near-term Probe-class mission, to start in 2017, or for a mission that can be recommended by the next Decadal survey committee for an immediate start. It is important to note that there are other critical X-ray instrumentation technologies under development that are less mature than the ones discussed here, but are essential for a major X-ray mission that might start in the late 2020s. These technologies, described briefly in Section 4, are more appropriately funded through the Astronomy and Physics Research and Analysis (APRA) program.

  20. Distance correlation methods for discovering associations in large astrophysical databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Gómez, Elizabeth; Richards, Mercedes T.; Richards, Donald St. P., E-mail: elizabeth.martinez@itam.mx, E-mail: mrichards@astro.psu.edu, E-mail: richards@stat.psu.edu

    2014-01-20

    High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient, which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension,more » can be used to determine smaller sets of variables that provide equivalent astrophysical information, is zero only when variables are independent, and is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlation coefficient. Hence, the distance correlation coefficient provides more information than the Pearson coefficient. We analyze numerous pairs of variables in the COMBO-17 database with the distance correlation method and with the maximal information coefficient. We show that the Pearson coefficient can be estimated with higher accuracy from the corresponding distance correlation coefficient than from the maximal information coefficient. For given values of the Pearson coefficient, the distance correlation method has a greater ability than the maximal information coefficient to resolve astrophysical data into highly concentrated horseshoe- or V-shapes, which enhances classification and pattern identification. These results are observed over a range of redshifts beyond the local universe and for galaxies from elliptical to spiral.« less

  1. Promoting Inclusivity in STEM through Active Recruiting and Mentoring: The Pre-Major in Astronomy Program (Pre-MAP) at the University of Washington

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Binder, Breanna A.; Pre-Major in Astronomy Program

    2016-01-01

    The Pre-Major in Astronomy Program (Pre-MAP) is a research and mentoring program for entering undergraduate students offered by the University of Washington Astronomy Department since 2005. The primary goal of Pre-MAP is to recruit and retain students from groups traditionally underrepresented in science, technology, engineering, and mathematics (STEM) through early exposure to guided research projects. The Pre-MAP seminar is the core component of the program and offers instruction in computing skills, data manipulation, science writing, statistical analysis, and scientific speaking and presentation skills. Students choose research projects proposed by faculty, post-docs and graduate students in areas related to astrophysics, planetary science, and astrobiology. Pre-MAP has been successful in retaining underrepresented students in STEM fields relative to the broader UW population, and we've found these students are more likely to graduate and excel academically than their peers. As of fall 2015, more than one hundred students have taken the Pre-MAP seminar, and both internal and external evaluations have shown that all groups of participating students report an increased interest in astronomy and science careers at the end of the seminar. This talk will provide an overview of the program and the structure of the core seminar. In particular, the talk will focus on additions and revisions to the seminar course over the last few years, such as the introduction of a public speaking coach, career and internship modules, and the formalization of external lab tours.

  2. NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions

    NASA Astrophysics Data System (ADS)

    1998-07-01

    NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe. The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory. "Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task." Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20. During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory - the spacecraft, telescope, and science instruments - were checked out. Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results. Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from the Operations Control Center after launch. "As is usually the case, we identified a few issues to be resolved before launch," said Wojtalik. "Overall, however, the observatory performed exceptionally well." The observatory test team discovered a mechanical problem with one of the primary science instruments, the Imaging Spectrometer. A door protecting the instrument did not function when commanded by test controllers. "We do these tests to check and double check every aspect of satellite operation that could affect the ultimate success of the science mission," said Craig Staresinich, TRW Advanced X-ray Astrophysics Facility program manager. "Discovering a problem now is a success. Discovering a problem later, after launch, would be a failure." A team of NASA and contractor engineers are studying the mechanical problem and developing a plan to correct it. The instrument will be sent back to its builder, Lockheed-Martin Astronautics in Denver, Colo., where it will be repaired while the rest of the observatory continues other testing. This should still allow an on-time delivery of the observatory to NASA's Kennedy Space Center, Fla., in August, where it will be readied for launch in January. With a resolving power 10 times greater than previous X-ray telescopes, the new X-ray observatory will provide scientists with views of previously invisible X-ray sources, including black holes, exploding stars and interstellar gasses. The third of NASA's Great Observatories, it will join the Compton Gamma Ray Observatory and the Hubble Space Telescope in orbit. The Advanced X-ray Astrophysics Facility program is managed by the Marshall Center for the Office of Space Science, NASA Headquarters, Washington, D.C. TRW Space & Electronics Group is assembling the observatory and doing verification testing. The Advanced X-ray Astrophysics Facility Operations Control Center is operated by the Smithsonian Astrophysical Observatory. Using glass purchased from Schott Glaswerke, Mainz, Germany, the telescope's mirrors were built by Raytheon Optical Systems Inc., Danbury, Conn. The mirrors were coated by Optical Coating Laboratory, Inc., Santa Rosa, Calif., and assembled by EastmanKodak Co., Rochester, N.Y. The Advanced X-ray Astrophysics Facility Charge-Coupled Device Imaging Spectrometer was developed by Pennsylvania State University, University Park, Pa., and the Massachusetts Institute of Technology (MIT), Cambridge. One diffraction grating was developed by MIT, the other by the Space Research Organization Netherlands, Utrecht, Netherlands, in collaboration with the Max Planck Institute, Garching, Germany. The High Resolution Camera was built by the Smithsonian Astrophysical Observatory. Ball Aerospace & Technologies Corporation of Boulder, Colo., developed the aspect camera and the Science Instrument Module. Note to editors: Digital images to accompany this release are available via the World Wide Web at the following URL: http://chandra.harvard.edu/press/images.html

  3. Center for Theoretical Underground Physics and Related Fields. CETUP2015/ Particle Physics and Cosmology Conference. PPC2015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczerbinska, Barbara

    For last five years Center for Theoretical Underground Physics and Related Areas (CETUP*) serves as a collaboration point for scientists from around the world interested in theoretical and experimental aspects of underground science. The mission of CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Scientists invited to participate in the program will not only provide theoretical support to the underground science, but theymore » will also examine core questions of the 21st century including: What is dark matter? How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, How were the heavy elements made?, What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? How do supernovae explode? Studies of Neutrino Physics and Dark Matter are of high interest to particle and nuclear physicists, astrophysicists and cosmologists. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. This year summer program was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle physics, nuclear physics and astrophysics and cosmology. CETUP*2015 consisted of 5 week long program (June 14 – July 18, 2015) covering various theoretical and experimental aspects in these research areas. The two week long session on Dark Matter physics (June 14 – June 26) was followed by two week long program on Neutrino physics (July 6 – July 18). The international conference entitled IXth International Conference on Interconnection Between Particle Physics and Cosmology (PPC) was hosted at CETUP* in the time between the Dark Matter and Neutrino workshops (June 29 – July 3) covering the subjects of dark matter, dark energy, neutrino physics, gravitational waves, collider physics and many others. PPC brought about 90 national and international participants. Started at Texas A&M University in 2007, PPC travelled to many places which include Geneva (Switzerland), Turin (Italy), Seoul (South Korea) and Leon (Mexico) over last few years. The objectives of CETUP*2015 and PPC2015 were to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results and predictions for possible experiments.« less

  4. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  5. Beta delayed neutrons for nuclear structure and astrophysics

    NASA Astrophysics Data System (ADS)

    Grzywacz, Robert

    2014-09-01

    Beta-delayed neutron emission (β xn) is a significant or even dominant decay channel for the majority of very neutron-rich nuclei, especially for those on the r-process path. The recent theoretical models predicts that it may play more significant role then previously expected for astrophysics and this realization instigated a renewed experimental interest in this topic as a part of a larger scope of research on beta-decay strength distribution. Because studies of the decay strength directly probe relevant physics on the microscopic level, energy-resolved measurements of the beta-decay strength distribution is a better test of nuclear models than traditionally used experimental observables like half-lives and neutron branching ratios. A new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed to directly address this issue. In its first experimental campaign at the Holifield Radioactive Ion Beam Facility neutron energy spectra in key regions of the nuclear chart were measured: near the shell closures at 78Ni and 132Sn, and for the deformed nuclei near 100Rb. In several cases, unexpectedly intense and concentrated, resonant-like, high-energy neutron structures were observed. These results were interpreted within shell model framework which clearly indicated that these neutron emission is driven by nuclear structure effects and are due to large Gamow-Teller type transition matrix elements. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552.

  6. Program of Fundamental-Interaction Research for the Ultracold-Neutron Source at the the WWR-M Reactor

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2018-03-01

    The use of ultracold neutrons opens unique possibilities for studying fundamental interactions in particles physics. Searches for the neutron electric dipole moment are aimed at testing models of CP violation. A precise measurement of the neutron lifetime is of paramount importance for cosmology and astrophysics. Considerable advances in these realms can be made with the aid of a new ultracold-neutron (UCN) supersource presently under construction at Petersburg Nuclear Physics Institute. With this source, it would be possible to obtain an UCN density approximately 100 times as high as that at currently the best UCN source at the high-flux reactor of the Institute Laue-Langevin (ILL, Grenoble, France). To date, the design and basic elements of the source have been prepared, tests of a full-scale source model have been performed, and the research program has been developed. It is planned to improve accuracy in measuring the neutron electric dipole moment by one order of magnitude to a level of 10-27 to 10-28 e cm. This is of crucial importance for particle physics. The accuracy in measuring the neutron lifetime can also be improved by one order of magnitude. Finally, experiments that would seek neutron-antineutron oscillations by employing ultracold neutrons will become possible upon reaching an UCN density of 103 to 104 cm-3. The current status of the source and the proposed research program are discussed.

  7. SERS internship Fall 1992--Spring 1993: Abstract and research papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-05

    This report contains the abstracts and research papers by students on a variety of topics in engineering, genetics, solid state physics, thermonuclear energy, astrophysics, and other science related topics.

  8. Young Star May Be Belching Spheres of Gas, Astronomers Say

    NASA Astrophysics Data System (ADS)

    2001-05-01

    A young star more than 2,000 light-years away in the constellation Cepheus may be belching out spheres of gas, say astronomers who observed it with the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope. Not only is the star ejecting spheres of gas, the researchers say, but it also may be ejecting them repeatedly, phenomena not predicted by current theories of how young stars shed matter. Cepheus A star-forming region with blowups of detail In order to remain stable while accumulating matter, young stars have to throw off some of the infalling material to avoid "spinning up" so fast they would break apart, according to current theories. Infalling matter forms a thin spinning disk around the core of the new star, and material is ejected in twin "jets" perpendicular to the plane of the disk. "Twin jets have been seen emerging from many young stars, so we are quite surprised to see evidence that this object may be ejecting not jets, but spheres of gas," said Paul T.P. Ho, an astronomer at the Harvard-Smithsonian Center for Astrophysics. The research is reported in the May 17 edition of the scientific journal Nature. The astronomers observed a complex star-forming region in Cepheus and found an arc of water molecules that act like giant celestial amplifiers to boost the strength of radio signals at a frequency of 22 GHz. Such radio-wave amplifiers, called masers, show up as bright spots readily observed with radio telescopes. "With the great ability of the VLBA to show fine detail, we could track the motions of these maser spots over a period of weeks, and saw that this arc of water molecules is expanding at nearly 20,000 miles per hour," said Ho. "This was possible because we could detect detail equivalent to seeing Lincoln's nose on a penny in Los Angeles from the distance of New York," Ho added. "These observations pushed the tremendous capabilities of the VLBA and of modern computing power to their limits. This is an extremely complex observational project," said Luis F. Rodriguez, of Mexico's National Autonomous University. The arc of water masers can be fit to a nearly-perfect circle to within one part in a thousand. That, the researchers say, means that the water vapor in the arc most likely is part of a complete sphere. "The arc we see fits a circle so well that it is unlikely that any geometry other than that of a sphere would produce it," Ho said. The sphere would be about 1.5 times the size of the Solar System. Because the arc, and presumably the sphere of which it is part, is so thin and so uniform, the researchers say that it came from a single, short-lived ejection. In addition, other evidence suggests that the sphere from an earlier ejection now is being overtaken by a newer spherical bubble that took only about 33 years after being ejected to reach its observed size. "We now have at least one case, we believe, in which a young star has repeatedly ejected mass spherically in short bursts," Guillem Anglada, of the Institute of Astrophysics of Andalucia (CSIC), in Granada, Spain, said. "In light of our current understanding of star formation, we don't yet understand how this can happen, so we have an exciting new scientific challenge. It is surprising that nature can maintain such perfect symmetry, especially since the environment around the young star must be so varied. This appears to be a triumph of order over chaos," he added. The researchers, in addition to Rodriguez, Ho and Anglada, are: Jose M. Torrelles, Institute for Space Studies of Catalonia (IEEC)-Spanish Research Council (CSIC), Spain; Nimesh A. Patel and Lincoln Greenhill, of the Harvard-Smithsonian Center for Astrophysics; Jose F. Gomez, Laboratory for Space Astrophysics and Theoretical Physics of the National Institute for Aerospace Technology, Madrid, Spain; Salvador Curiel and Jorge Canto, of Mexico's National Autonomous University; and Guido Garay, Department of Astronomy of the University of Chile. The VLBA is part of the National Radio Astronomy Observatory. It consists of ten radio-telescope antennas, each 82 feet (25 meters) in diameter, spread across the U.S. from Hawaii to the U.S. Virgin Islands. Operated from Socorro, New Mexico, the VLBA provides astronomers with the greatest angular resolution, or ability to see fine detail, of any telescope on Earth or in space. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. Some 300 Smithsonian and Harvard scientists cooperate in broad programs of astrophysical research supported by Federal appropriations and University funds as well as contracts and grants from government agencies.

  9. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    NASA Astrophysics Data System (ADS)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  10. Particle rings and astrophysical accretion discs

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2016-03-01

    Norman Rostoker had a wide range of interests and significant impact on the plasma physics research at Cornell during the time he was a Cornell professor. His interests ranged from the theory of energetic electron and ion beams and strong particle rings to the related topics of astrophysical accretion discs. We outline some of the topics related to rings and discs including the Rossby wave instability which leads to formation of anticyclonic vortices in astrophysical discs. These vorticies are regions of high pressure and act to trap dust particles which in turn may facilitate planetesimals growth in proto-planetary disks and could be important for planet formation. Analytical methods and global 3D magneto-hydrodynamic simulations have led to rapid advances in our understanding of discs in recent years.

  11. Astronomy in Georgia - Present Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Todua, M.

    2016-09-01

    Astronomy in Georgia is generally represented in Abastumani Astrophysical Observatory found in 1932. It is one of the leading scientific institutes in the country. Main fields of research are solar system bodies (including near-Earth asteroids), various aspects of solar physics, stellar astronomy (including binary stars and open clusters), extragalactic objects (AGNs), theoretical astrophysics, cosmology, atmospheric and solar-terrestrial physics. Several telescopes are operational today, as well as the instruments for atmospheric studies. In 2007 the Observatory was integrated with Ilia State University, merging scientific research and education which facilitated the growth of a new generation of researchers. There are groups of astronomers and astrophysicists in other Georgian universities and institutions as well. Georgian scientists collaborate with research centers and universities worldwide. Research groups participate in various international scientific projects. The interest in astronomy in Georgia has been growing, which increases future perspectives of its development in the country.

  12. Beyond Outreach: Expanding the UCI Astronomy Outreach Program to New Heights

    NASA Astrophysics Data System (ADS)

    Smecker-Hane, T. A.; Mauzy-Melitz, D. K.; Hood, M. A.

    2010-08-01

    The Astronomy Outreach Program at the University of California, Irvine (UCI) has three major components: (1) tours of the UCI Observatory and visits to local K-12 classrooms that bring hands-on activities and telescopes into the local schools, (2) an annual Teacher's Workshop in Astronomy & Astrophysics, and (3) Visitor Nights at the Observatory for the general public that include lectures on astrophysics topics and star gazing with our telescopes. Here we describe the results of our year long partnership with Grade 3-12 teachers to expand the tour and classroom visit portion of our program. We developed curricula and survey tools for Grades 3, 5, and high school that addresses specific California State Science Content Standards and amplify the impact of our outreach visits to their classrooms and their tours of the UCI Observatory. We describe the lessons and hands-on activities developed for the curricula, report on the results of pre- and post-testing of the students to judge how much they learned and whether or not their attitudes about science have changed, and report on teachers' responses to the program. Many of the lessons and activities we developed are available on our website.

  13. NASA Extends Chandra Science and Operations Support Contract

    NASA Astrophysics Data System (ADS)

    2010-01-01

    NASA has extended a contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, a powerful tool used to better understand the structure and evolution of the universe. The contract extension with the Smithsonian Astrophysical Observatory provides continued science and operations support to Chandra. This approximately 172 million modification brings the total value of the contract to approximately 545 million for the base effort. The base effort period of performance will continue through Sept. 30, 2013, except for the work associated with the administration of scientific research grants, which will extend through Feb. 28, 2016. The contract type is cost reimbursement with no fee. In addition to the base effort, the contract includes two options for three years each to extend the period of performance for an additional six years. Option 1 is priced at approximately 177 million and Option 2 at approximately 191 million, for a total possible contract value of about $913 million. The contract covers mission operations and data analysis, which includes observatory operations, science data processing and astronomer support. The operations tasks include monitoring the health and status of the observatory and developing and uplinking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning and coordination of science observations and processing and delivery of the resulting scientific data. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations. For more information about the Chandra X-ray Observatory visit: http://chandra.nasa.gov

  14. Proceedings of the Armenian-Iranian Astronomical Workshop, held on 13-16 October 2015 in Byurakan, Armenia. Eds.: A. M. Mickaelian, H. G. Khosroshahi, H. A. Harutyunian.

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Khosroshahi, H. G.; Harutyunian, H. A. (Eds.)

    2016-09-01

    An Armenian-Iranian Astronomical Workshop (AIAW) was organized on 13-16 October 2015 in Byurakan, Armenia aimed at strengthening scientific relations between Armenian and Iranian astronomers and establishing new collaborations. A number of such mutual colloquia were held before between the Armenian and Georgian astronomers (in Byurakan, Armenia and Abastumani, Georgia) and the previous experience and format were used for better organization of AIAW. The organizers and sponsors were: NAS RA V. Ambartsumian Byurakan Astrophysical Observatory (BAO, Armenia), Armenian Astronomical Society (ArAS, the Workshop was also combined with ArAS XIV Annual Meeting), Astronomical Society of Iran (ASI) and Institute for Research in Fundamental Sciences (IPM, Tehran, Iran). There was a representative Scientific Organizing Committee (SOC) of 13 members from Armenia and Iran. There were 30 Armenian and 16 Iranian participants, as well as the Director of Abastumani Astrophysical Observatory (AAO) was also invited as the representative of Georgia. The scientific program consisted of 18 invited and 22 contributed talks and 4 posters. Invited talks by senior scientists were given on each topic followed by a number of contributed ones, as well as posters were presented and discussed. The Volume consists of 4 sections: 1) Astronomy in South West Asia (Armenia, Iran and Georgia); 2) Sun, Stars and Nebulae; 3) Galaxies and Cosmology and 4) Archaeoastronomy and Astronomy in Culture. A number of excellent review talks were given on various related topics and many new outstanding results were presented during the Workshop, and many papers are useful for a number of astrophysical fields. A Preface, Organizers and Sponsors, the List of Participants, and Author Index are also given.

  15. Multi-channel probes to understand fission dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosby, Shea Morgan

    2016-04-15

    Explaining the origin of the elements is a major outstanding question in nuclear astrophysics. Observed elemental abundance distribution shows strong nuclear physics effects. In conclusion, neutron-induced reactions are important for nuclear astrophysics and applied fields in nuclear energy and security. LANSCE has a program to address many of these questions directly with neutron beams on (near-)stable nuclei. Increasing demand for correlated data to test details of fission models poses additional challenges. Possibilities exist to extend existing experimental efforts to radioactive beam facilities. Kinematic focusing from using inverse kinematics has potential to circumvent some challenges associated with measuring correlations between fissionmore » output channels.« less

  16. Applications of Java and Vector Graphics to Astrophysical Visualization

    NASA Astrophysics Data System (ADS)

    Edirisinghe, D.; Budiardja, R.; Chae, K.; Edirisinghe, G.; Lingerfelt, E.; Guidry, M.

    2002-12-01

    We describe a series of projects utilizing the portability of Java programming coupled with the compact nature of vector graphics (SVG and SWF formats) for setup and control of calculations, local and collaborative visualization, and interactive 2D and 3D animation presentations in astrophysics. Through a set of examples, we demonstrate how such an approach can allow efficient and user-friendly control of calculations in compiled languages such as Fortran 90 or C++ through portable graphical interfaces written in Java, and how the output of such calculations can be packaged in vector-based animation having interactive controls and extremely high visual quality, but very low bandwidth requirements.

  17. The laboratory astrophysics facility at University College

    NASA Astrophysics Data System (ADS)

    Hyland, A. R.; Smith, R. G.; Robinson, G.

    A laboratory astrophysics facility for the study of the terrestrial analogues of interstellar dust grains is being developed in the Physics Department, University College, Australian Defence Force Academy. The facility consists of a gas handling system for the preparation of samples, a closed-cycle cooler and specimen chamber, and a Fourier Transform Infrared (FTIR) Spectrometer capable of high resolution (0.3/cm) and high sensitivity measurements, currently from 1-25 microns. The layout and construction of the laboratory are described, and the proposed initial experimental program aimed at determining the optical constants of ices, over a wide wavelength range for comparison with astronomical observations, is discussed.

  18. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann

    2016-03-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology, embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes development of a space mission for measuring gravitational waves from merging supermassive black holes, currently envisioned as a collaboration with the European Space Agency (ESA) on its L3 mission and development of an X-ray observatory that will measure X-ray emission from the final stages of accretion onto black holes, currently envisioned as a NASA collaboration on ESA's Athena observatory. The portfolio also includes the study of cosmic rays and gamma ray photons resulting from a range of processes, of the physical process of inflation associated with the birth of the universe and of the nature of the dark energy that dominates the mass-energy of the modern universe. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis and the talk will include a description of activities of this group.

  19. Laboratory Astrophysics Division of The AAS (LAD)

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-10-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  20. Laboratory Astrophysics Division of the AAS (LAD)

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

Top