Science.gov

Sample records for asymmetric m-b velocity

  1. Asymmetric optimal-velocity car-following model

    NASA Astrophysics Data System (ADS)

    Xu, Xihua; Pang, John; Monterola, Christopher

    2015-10-01

    Taking the asymmetric characteristic of the velocity differences of vehicles into account, we present an asymmetric optimal velocity model for a car-following theory. The asymmetry between the acceleration and the deceleration is represented by the exponential function with an asymmetrical factor, which agrees with the published experiment. This model avoids the disadvantage of the unrealistically high acceleration appearing in previous models when the velocity difference becomes large. This model is simple and only has two independent parameters. The linear stability condition is derived and the phase transition of the traffic flow appears beyond the critical density. The strength of interaction between clusters is shown to increase with the asymmetry factor in our model.

  2. Quantum beats in conductance oscillations in graphene-based asymmetric double velocity wells and electrostatic wells

    SciTech Connect

    Liu, Lei; Li, Yu-Xian; Zhang, Ying-Tao; Liu, Jian-Jun

    2014-01-14

    The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structures as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.

  3. Asymmetric velocity anisotropies in remnants of collisionless mergers

    SciTech Connect

    Sparre, Martin; Hansen, Steen H. E-mail: hansen@dark-cosmology.dk

    2012-07-01

    Dark matter haloes in cosmological N-body simulations are affected by processes such as mergers, accretion and the gravitational interaction with baryonic matter. Typically the analysis of dark matter haloes is performed in spherical or elliptical bins and the velocity distributions are often assumed to be constant within those bins. However, the velocity anisotropy, which describes differences between the radial and tangential velocity dispersion, has recently been show to have a strong dependence on direction in the triaxial halos formed in cosmological simulations. In this study we derive properties of particles in cones parallel or perpendicular to the collision axis of merger remnants. We find that the velocity anisotropy has a strong dependence on direction. The finding that the direction-dependence of the velocity anisotropy of a halo depends on the merger history, explains the existence of such trends in cosmological simulations. It also explains why a large diversity is seen in the velocity anisotropy profiles in the outer parts of high-resolution simulations of cosmological haloes.

  4. Computational analysis of asymmetric water entry of wedge and ship section at constant velocity

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. Mashiur; Ullah, Al Habib; Afroz, Laboni; Shabnam, Sharmin; Sarkar, M. A. Rashid

    2016-07-01

    Water impact problems receive much attention due to their short duration and large unsteady component of hydrodynamic loads. The effect of water entry has several important applications in various aspects of the naval field. Significant attention has been given to various water entry phenomena such as ship slamming, planning hulls, high-speed hydrodynamics of seaplanes, surface-piercing propellers and the interaction of high-speed liquid drops with structural elements. Asymmetric water entry may be caused by various natural phenomena such as weather conditions or strong winds. Since the determination of hydrodynamic impact load plays a vital role in designing safe and effcient vessels, an accurate and reliable prediction method is necessary to investigate asymmetric water entry problems. In this paper, water entry of a two-dimensional wedge and ship section at constant velocity in asymmetric condition will be analysed numerically and the effects of asymmetric impact on the velocity and pressure distribution will be discussed. The finite volume method is employed to solve the dynamic motion of the wedge in two-phase flow. During the water entry, the air and water interface is described implicitly by the volume of fluid (VOF) scheme. The numerical code and method was first validated for symmetric condition by one of the present author is applied for asymmetric wedge and ship section. The free surface, velocity and pressure distribution for asymmetric water entry are investigated and visualized with contour plots at different time steps.

  5. Reconstruction of velocity profiles in axisymmetric and asymmetric flows using an electromagnetic flow meter

    NASA Astrophysics Data System (ADS)

    Kollár, László E.; Lucas, Gary P.; Meng, Yiqing

    2015-05-01

    An analytical method that was developed formerly for the reconstruction of velocity profiles in asymmetric flows is improved to be applicable for both axisymmetric and asymmetric flows. The method is implemented in Matlab, and predicts the velocity profile from measured electrical potential distributions obtained around the boundary of a multi-electrode electromagnetic flow meter (EMFM). Potential distributions are measured in uniform and non-uniform magnetic fields, and the velocity is assumed as a sum of axisymmetric and polynomial components. The procedure requires three steps. First, the discrete Fourier transform (DFT) is applied to the potential distribution obtained in a uniform magnetic field. Since the direction of polynomial components of order greater than two in the plane of the pipe cross section is not unique multiple solutions exist, therefore all possible polynomial velocity profiles are determined. Then, the DFT is applied to the potential distribution obtained in a specific non-uniform magnetic field, and used to calculate the exponent in a power-law representation of the axisymmetric component. Finally, the potential distribution in the non-uniform magnetic field is calculated for all of the possible velocity profile solutions using weight values, and the velocity profile with the calculated potential distribution which is closest to the measured one provides the optimum solution. The method is validated by reconstructing two quartic velocity profiles, one of which includes an axisymmetric component. The potential distributions are obtained from simulations using COMSOL Multiphysics where a model of the EMFM is constructed. The reconstructed velocity profiles show satisfactory agreement with the input velocity profiles. The main benefits of the method described in this paper are that it provides a velocity distribution in the circular cross section of a pipe as an analytical function of the spatial coordinates which is suitable for both

  6. Control of exit velocity profile of an asymmetric annular diffuser using wall suction

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1973-01-01

    An asymmetric annular diffuser equipped with wall bleed (suction) capability was tested for controllability of exit velocity profile. The diffuser area ratio was 3.2, and the length to inlet height ratio was 1.6. Results show that the diffuser radial exit velocity profile could be controlled from a hub peaked to a tip peaked form by selective use of bleed on the outer wall or on both diffuser walls. Based on these results, application of the diffuser bleed technique to gas turbine combustors may be possible. Diffuser bleed could be used to tailor the airflow distribution for optimizing combustor performance at a variety of operating conditions.

  7. Asymmetric orbital distribution near mean motion resonance: Application to planets observed by Kepler and radial velocities

    SciTech Connect

    Xie, Ji-Wei E-mail: jwxie@astro.utoronto.ca

    2014-05-10

    Many multiple-planet systems have been found by the Kepler transit survey and various radial velocity (RV) surveys. Kepler planets show an asymmetric feature, namely, there are small but significant deficits/excesses of planet pairs with orbital period spacing slightly narrow/wide of the exact resonance, particularly near the first order mean motion resonance (MMR), such as 2:1 and 3:2 MMR. Similarly, if not exactly the same, an asymmetric feature (pileup wide of 2:1 MMR) is also seen in RV planets, but only for massive ones. We analytically and numerically study planets' orbital evolutions near and in the MMR. We find that their orbital period ratios could be asymmetrically distributed around the MMR center regardless of dissipation. In the case of no dissipation, Kepler planets' asymmetric orbital distribution could be partly reproduced for 3:2 MMR but not for 2:1 MMR, implying that dissipation might be more important to the latter. The pileup of massive RV planets just wide of 2:1 MMR is found to be consistent with the scenario that planets formed separately then migrated toward the MMR. The location of the pileup infers a K value of 1-100 on the order of magnitude for massive planets, where K is the damping rate ratio between orbital eccentricity and semimajor axis during planet migration.

  8. Hummingbirds control turning velocity using body orientation and turning radius using asymmetrical wingbeat kinematics.

    PubMed

    Read, Tyson J G; Segre, Paolo S; Middleton, Kevin M; Altshuler, Douglas L

    2016-03-01

    Turning in flight requires reorientation of force, which birds, bats and insects accomplish either by shifting body position and total force in concert or by using left-right asymmetries in wingbeat kinematics. Although both mechanisms have been observed in multiple species, it is currently unknown how each is used to control changes in trajectory. We addressed this problem by measuring body and wingbeat kinematics as hummingbirds tracked a revolving feeder, and estimating aerodynamic forces using a quasi-steady model. During arcing turns, hummingbirds symmetrically banked the stroke plane of both wings, and the body, into turns, supporting a body-dependent mechanism. However, several wingbeat asymmetries were present during turning, including a higher and flatter outer wingtip path and a lower more deviated inner wingtip path. A quasi-steady analysis of arcing turns performed with different trajectories revealed that changes in radius were associated with asymmetrical kinematics and forces, and changes in velocity were associated with symmetrical kinematics and forces. Collectively, our results indicate that both body-dependent and -independent force orientation mechanisms are available to hummingbirds, and that these kinematic strategies are used to meet the separate aerodynamic challenges posed by changes in velocity and turning radius.

  9. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    SciTech Connect

    Malík, M. Primas, J.; Kopecký, V.; Svoboda, M.

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  10. Dark matter searches employing asymmetric velocity distributions obtained via the Eddington approach

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Moustakidis, Ch. C.; Owen, D.

    2016-08-01

    Starting from WIMP density profiles, in the framework of the Eddington approach, we obtain the energy distribution f(E) of dark matter in our vicinity. Assuming a factorizable phase space function, f(E , L) = F(E) FL(L) , we obtain the velocity dispersions and the anisotropy parameter β in terms of the parameters describing the angular momentum dependence. By employing the derived expression f(E) we construct axially symmetric WIMP velocity distributions. The obtained distributions automatically have a velocity upper bound, as a consequence of the fact that they are associated with a gravitationally bound system, and are characterized by an anisotropy parameter β. We then show how such velocity distributions can be used in determining the event rates, including modulation, both in the standard as well directional WIMP searches.

  11. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    SciTech Connect

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; Scharff, Robert; Byers, Mark

    2015-05-19

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodology of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.

  12. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    DOE PAGES

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; Scharff, Robert; Byers, Mark

    2015-05-19

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less

  13. Thermal and velocity slip effects on the MHD peristaltic flow with carbon nanotubes in an asymmetric channel: application of radiation therapy

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Nadeem, S.; Khan, Zafar Hayat

    2014-10-01

    Peristaltic flow is used to study the flow and heat transfer of carbon nanotubes in an asymmetric channel with thermal and velocity slip effects. Two types of carbon nanotubes, namely, single- and multi-wall carbon nanotubes are utilized to see the analysis with water as base fluids. Empirical correlations are used for the thermo-physical properties of carbon nanotubes (CNTs) in terms of solid volume fraction of CNTs. The governing equations are simplified using long wavelength and low Reynolds number approximation. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of CNTs and temperature profile. The effects of various flow parameters, i.e. Hatmann number M, the solid volume fraction of the nanoparticles ϕ, Grashof number G, velocity slip parameter β, thermal slip parameter γ and Prandtl number P r are presented graphically for both single- (SWCNT) and multi-wall carbon nanotubes (MWCNT).

  14. Performance of an asymmetric short annular diffuser with a nondiverging inner wall using suction. [control of radial profiles of diffuser exit velocity

    NASA Technical Reports Server (NTRS)

    Juhasz, A.

    1974-01-01

    The performance of a short highly asymmetric annular diffuser equipped with wall bleed (suction) capability was evaluated at nominal inlet Mach numbers of 0.188, 0.264, and 0.324 with the inlet pressure and temperature at near ambient values. The diffuser had an area ratio of 2.75 and a length- to inlet-height ratio of 1.6. Results show that the radial profiles of diffuser exit velocity could be controlled from a severely hub peaked to a slightly tip biased form by selective use of bleed. At the same time, other performance parameters were also improved. These results indicate the possible application of the diffuser bleed technique to control flow profiles to gas turbine combustors.

  15. Observations of asymmetric velocity fields and gas cooling in the NGC 4636 galaxy group X-ray halo

    NASA Astrophysics Data System (ADS)

    Ahoranta, Jussi; Finoguenov, Alexis; Pinto, Ciro; Sanders, Jeremy; Kaastra, Jelle; de Plaa, Jelle; Fabian, Andrew

    2016-08-01

    Aims: This study aims to probe the thermodynamic properties of the hot intragroup medium (IGM) plasma in the core regions of the NGC 4636 galaxy group by detailed measurements of several emission lines and their relative intensities. Methods: We analyzed deep XMM-Newton Reflection Grating Spectrometer (RGS) data in five adjacent spectral regions in the central parts of the NGC 4636 galaxy group. We examined the suppression of the Fe xvii resonance line (15.01 Å) as compared to the forbidden lines of the same ion (17.05 Å and 17.10 Å). The presence and radial dependence of the cooling flow was investigated through spectral modeling. Parallel analysis with deep Chandra Advances CCD Imaging Spectrometer (ACIS) data was conducted to gain additional information about the thermodynamical properties of the IGM. Results: The plasma at the group center to the north shows efficient Fe xvii ion resonant scattering, yielding (Iλ17.05 + Iλ17.10) /Iλ15.01 line ratios up to 2.9 ± 0.4, corresponding toabout twice the predicted line ratio. In contrast, no resonant scattering was detected at the south side. The regions featuring resonant scattering coincide with those embodying large amounts of cool (kT ≲ 0.4 keV) gas phases, and the spectral imprints of cooling gas with a total mass deposition rate of ~0.8 M⊙ yr-1 within the examined region of 2.4' × 5.0'. Conclusions: We interpret the results as possible evidence of asymmetric turbulence distribution in the NGC 4636 IGM: turbulence dominates the gas dynamics to the south, while collective gas motions characterize the dynamics to the north. X-ray images show imprints of energetic AGN at both sides, yet we find evidence of turbulence heating at the south and gas cooling at the north of the core. We infer that the observed asymmetry may be the result of the specific observation angle to the source, or arise from the turbulence driven by core sloshing at south side.

  16. Structure of the velocity distribution of sheath-accelerated secondary electrons in an asymmetric RF-dc discharge

    NASA Astrophysics Data System (ADS)

    Khrabrov, Alexander V.; Kaganovich, Igor D.; Ventzek, Peter L. G.; Ranjan, Alok; Chen, Lee

    2015-10-01

    Low-pressure capacitively-coupled discharges with additional dc bias applied to a separate electrode are utilized in plasma-assisted etching for semiconductor device manufacturing. Measurements of the electron velocity distribution function (EVDF) of the flux impinging on the wafer, as well as in the plasma bulk, show a thermal population and additional peaks within a broad range of energies. That range extends from the thermal level up to the value for the ‘ballistic’ peak, corresponding to the bias potential. The non-thermal electron flux has been correlated to alleviating the electron shading effect and providing etch-resistance properties to masking photoresist layers. ‘Middle-energy peak electrons’ at energies of several hundred eV may provide an additional sustaining mechanism for the discharge. These features in the electron velocity (or energy) distribution functions are possibly caused by secondary electrons emitted from the electrodes and interacting with two high-voltage sheaths: a stationary sheath at the dc electrode and an oscillating self-biased sheath at the powered electrode. Since at those energies the mean free path for large-angle scattering (momentum relaxation length) is comparable to, or exceeds the size of the discharge gap, these ‘ballistic’ electrons will not be fully scattered by the background gas as they traverse the inter-electrode space. We have performed test-particle simulations in which the features in the EVDF of electrons impacting the RF electrode are fully resolved at all energies. An analytical model has been developed to predict existence of peaked and step-like structures in the EVDF. Those features can be explained by analyzing the kinematics of electron trajectories in the discharge gap. Step-like structures in the EVDF near the powered electrode appear due to accumulation of electrons emitted from the dc electrode within a portion of the RF cycle, and their subsequent release. Trapping occurs when the RF

  17. Developing Content for an M.B.A. Communications Class.

    ERIC Educational Resources Information Center

    Shelby, Annette N.

    1983-01-01

    Outlines an M.B.A. communications course which includes source materials and content development frameworks for four different topic areas: (1) company, industry, and organization data; (2) management theory and organizational design; (3) crisis communication; and (4) issues management. (RAE)

  18. Asymmetric Ashes

    NASA Astrophysics Data System (ADS)

    2006-11-01

    that oscillate in certain directions. Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflected off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation. If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. This is what broad-band polarimetry can accomplish. If additional spectral information is available ('spectro-polarimetry'), one can determine whether the asymmetry is in the continuum light or in some spectral lines. In the case of the Type Ia supernovae, the astronomers found that the continuum polarisation is very small so that the overall shape of the explosion is crudely spherical. But the much larger polarization in strongly blue-shifted spectral lines evidences the presence, in the outer regions, of fast moving clumps with peculiar chemical composition. "Our study reveals that explosions of Type Ia supernovae are really three-dimensional phenomena," says Dietrich Baade. "The outer regions of the blast cloud is asymmetric, with different materials found in 'clumps', while the inner regions are smooth." "This study was possible because polarimetry could unfold its full strength thanks to the light-collecting power of the Very Large Telescope and the very precise calibration of the FORS instrument," he adds. The research team first spotted this asymmetry in 2003, as part of the same observational campaign (ESO PR 23/03 and ESO PR Photo 26/05). The new, more extensive results show that the degree of polarisation and, hence, the asphericity, correlates with the intrinsic brightness of the explosion. The brighter the supernova, the smoother, or less clumpy

  19. DFT study on endohedral and exohedral B38 fullerenes: M@B38 (M = Sc, Y, Ti) and M&B38 (M = Nb, Fe, Co, Ni).

    PubMed

    Lu, Qi Liang; Luo, Qi Quan; Li, Yi De; Huang, Shou Guo

    2015-08-28

    The structures, stabilities and electronic properties of endohedral and exohedral B38 fullerenes with transition metal atoms (M = Sc, Y, Ti, Nb, Fe, Co, Ni) are studied using all-electron density functional theory. M@B38 (M = Sc, Y, Ti) possess endohedral structures as their lowest energy structures, while Nb, Fe, Co and Ni atoms favor the coordination of B38 fullerenes in an exohedral manner. Sizable HOMO-LUMO gaps and high binding energies imply the viability of M@B38 towards experimental realization. The distributions of electron density and frontier orbitals are analyzed in detail. The analysis of vertical ionization potential and vertical electron affinity indicates that M@B38 are good electron acceptors and bad electron donors.

  20. Twin Higgs Asymmetric Dark Matter.

    PubMed

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors. PMID:26430985

  1. Twin Higgs Asymmetric Dark Matter.

    PubMed

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  2. Dissipative system with asymmetric interaction and Hopf bifurcation.

    PubMed

    Yamamoto, Masami; Nomura, Yasuyuki; Sugiyama, Yuki

    2009-08-01

    A dissipative system with asymmetric interaction, as well as the optimal velocity model, generally shows a Hopf bifurcation concerned with the transition from homogeneous motion to the formation of nontrivial patterns. We reveal that the origin of Hopf bifurcation in macroscopic phenomena is strongly related to asymmetric interaction in a microscopic many-body system, using the continuum system derived from the original discrete system.

  3. Asymmetrical field emitter

    DOEpatents

    Fleming, James G.; Smith, Bradley K.

    1995-01-01

    Providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure.

  4. Asymmetrical field emitter

    DOEpatents

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  5. Cold asymmetrical fermion superfluids

    SciTech Connect

    Caldas, Heron

    2003-12-19

    The recent experimental advances in cold atomic traps have induced a great amount of interest in fields from condensed matter to particle physics, including approaches and prospects from the theoretical point of view. In this work we investigate the general properties and the ground state of an asymmetrical dilute gas of cold fermionic atoms, formed by two particle species having different densities. We have show in a recent paper, that a mixed phase composed of normal and superfluid components is the energetically favored ground state of such a cold fermionic system. Here we extend the analysis and verify that in fact, the mixed phase is the preferred ground state of an asymmetrical superfluid in various situations. We predict that the mixed phase can serve as a way of detecting superfluidity and estimating the magnitude of the gap parameter in asymmetrical fermionic systems.

  6. A New Home for NEAT on the 1.2m/B37 at AMOS

    NASA Astrophysics Data System (ADS)

    Talent, D. L.; Maeda, R.; Walton, S.; Hsu, Y.; Cameron, B.; Kervin, P.

    2000-05-01

    The NASA/JPL Near Earth Asteroid Tracking (NEAT) Program was in operation using the Maui GEODSS as its observing platform for about three years starting in late 1995 and continuing into 1998. In October of 1998 the NASA/AFSPC Near Earth Object Working Group (NEOWG) recommended that the NASA/JPL NEAT program be moved to the AMOS 1.2m/B37 telescope. This paper describes the technical efforts that were required to facilitate the move. The task requirements specified that the modified 1.2m/B37 system be capable of producing a field of view (FOV) greater than or equal to 1.4 deg. X 1.4 deg. at the NEAT camera focal plane. Further, it was specified that no modifications be made to the 1.2m/B37 mirror or the NASA/JPL camera. Thus, activity focused on the development of suitable focal reduction optics (FRO). A new headring and spider, based on the original design, were also built to receive the NEAT FRO and the NASA/JPL camera. Operation of the NEAT system, for asteroid search and discovery, will be autonomous and remotely directed from NASA/JPL. Finally, the potential for use of the NEAT system as regards the satellite metric mission will also be presented.

  7. New home for NEAT on the 1.2m/B37 at AMOS

    NASA Astrophysics Data System (ADS)

    Talent, David L.; Maeda, Riki; Walton, Steve R.; Sydney, Paul F.; Hsu, Yuling; Cameron, Bruce A.; Kervin, Paul W.; Helin, Eleanor F.; Pravdo, Steven H.; Lawrence, Kenneth; Rabinowitz, David

    2000-10-01

    The NASA/JPL Near Earth Asteroid Tracking (NEAT) Program was in operation using the Maui GEODSS as its observing platform for about three years starting in late 1995 and continuing into 1998. In October of 1998 the NASA/AFSPC Near Earth Object Working Group (NEOWG) recommended that the NASA/JPL NEAT program be moved to the AMOS 1.2 m/B37 telescope. This paper describes the technical efforts that were required to facilitate the move. The task requirements specified that the modified 1.2 m/B37 system be capable of producing a field of view (FOV) greater than or equal to 1.4 degrees X 1.4 degrees at the NEAT camera focal plane. Further, it was specified that no modifications be made to the 1.2 m/B37 mirror or the NASA/JPL camera. Thus, activity focused on the development of suitable focal reduction optics (FRO). A new headring and spider, based on the original design, were also built to receive the NEAT FRO and the NASA/JPL camera. Operation of the NEAT system, for asteroid search and discovery, will be autonomous and remotely directed from NASA/JPL. Finally, the potential for use of the NEAT system as regards the satellite metric mission will also be presented.

  8. Asymmetric ion trap

    DOEpatents

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  9. Asymmetric ion trap

    DOEpatents

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  10. A Simple Modeling of Asymmetric Rolling

    NASA Astrophysics Data System (ADS)

    Halloumi, A.; Desrayaud, Ch.; Montheillet, F.

    2010-06-01

    Two complementary analytical approaches and the finite difference method are proposed for modeling asymmetric rolling (ASR) of metal sheet. The first analytical model is an upper bound method based on a uniform strain field depending on one single optimization parameter, viz. the entry velocity of the sheet. Its results can be straightforwardly used for practical applications. The second model uses a more refined analytical velocity field based on the classical parabolic estimation of the material flow lines in rolling. It involves an additional optimization parameter associated with the precise form of the velocity field. Local values of strain, strain rate and self-heating temperature are easily calculated, as well as the rolling force. Finally, the finite difference method is applied to compute heat transfers between the rolls and the sheet. In conclusion, the respective advantages of the three methods are discussed.

  11. Asymmetric reactions in continuous flow

    PubMed Central

    Mak, Xiao Yin; Laurino, Paola

    2009-01-01

    Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913

  12. ON ASYMMETRIC DISTRIBUTIONS OF SATELLITE GALAXIES

    SciTech Connect

    Bowden, A.; Evans, N. W.; Belokurov, V.

    2014-10-01

    We demonstrate that the asymmetric distribution of M31 satellites cannot be produced by tides from the Milky Way as such effects are too weak. However, loosely bound associations and groups of satellites can fall into larger halos and give rise to asymmetries. We compute the survival times for such associations. We prove that the survival time is always shortest in Keplerian potentials, and can be ∼3 times longer in logarithmic potentials. We provide an analytical formula for the dispersal time in terms of the size and velocity dispersion of the infalling structure. We show that, if an association of ∼10 dwarfs fell into the M31 halo, its present aspect would be that of an asymmetric disk of satellites. We also discuss the case of cold substructure in the Andromeda II and Ursa Minor dwarfs.

  13. Asymmetric Hopf bifurcation for proton beams with electron cooling

    SciTech Connect

    Kang, X.; Ball, M.; Brabson, B.; Budnick, J.; East, G.; Ellison, M.; Hamilton, B.; Lee, S.Y.; Li, D.; Liu, J.Y.; Pei, A.; Riabko, A.; Wang, L.; Wang, Y.; Caussyn, D.D.; Colestock, P.; Ng, K.Y.; Hedblom, K.; Syphers, M.

    1995-12-31

    We observed maintained longitudinal limiting cycle oscillations, which grew rapidly once a critical threshold in the relative velocity between the proton beam and the cooling electrons was exceeded. The threshold for the bifurcation of a fixed point into a limit cycle, also known as a Hopf bifurcation, was found to be asymmetric with respect to the relative velocity. This asymmetry of Hopf bifurcation was found to be related to the electron beam alignment with respect to the stored proton beam.

  14. Multipartite asymmetric quantum cloning

    SciTech Connect

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-10-15

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M{sub A} clones with fidelity F{sup A} and another set of M{sub B} clones with fidelity F{sup B}, the trade-off between these fidelities is analyzed, and particular cases of optimal N{yields}M{sub A}+M{sub B} cloning machines are exhibited. We also present an optimal 1{yields}1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized.

  15. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  16. Asymmetric information and economics

    NASA Astrophysics Data System (ADS)

    Frieden, B. Roy; Hawkins, Raymond J.

    2010-01-01

    We present an expression of the economic concept of asymmetric information with which it is possible to derive the dynamical laws of an economy. To illustrate the utility of this approach we show how the assumption of optimal information flow leads to a general class of investment strategies including the well-known Q theory of Tobin. Novel consequences of this formalism include a natural definition of market efficiency and an uncertainty principle relating capital stock and investment flow.

  17. Asymmetrical Capacitors for Propulsion

    NASA Technical Reports Server (NTRS)

    Canning, Francis X.; Melcher, Cory; Winet, Edwin

    2004-01-01

    Asymmetrical Capacitor Thrusters have been proposed as a source of propulsion. For over eighty years, it has been known that a thrust results when a high voltage is placed across an asymmetrical capacitor, when that voltage causes a leakage current to flow. However, there is surprisingly little experimental or theoretical data explaining this effect. This paper reports on the results of tests of several Asymmetrical Capacitor Thrusters (ACTs). The thrust they produce has been measured for various voltages, polarities, and ground configurations and their radiation in the VHF range has been recorded. These tests were performed at atmospheric pressure and at various reduced pressures. A simple model for the thrust was developed. The model assumed the thrust was due to electrostatic forces on the leakage current flowing across the capacitor. It was further assumed that this current involves charged ions which undergo multiple collisions with air. These collisions transfer momentum. All of the measured data was consistent with this model. Many configurations were tested, and the results suggest general design principles for ACTs to be used for a variety of purposes.

  18. Asymmetric Evolutionary Games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  19. Oscillating asymmetric dark matter

    SciTech Connect

    Tulin, Sean; Yu, Hai-Bo; Zurek, Kathryn M. E-mail: haiboyu@umich.edu

    2012-05-01

    We study the dynamics of dark matter (DM) particle-antiparticle oscillations within the context of asymmetric DM. Oscillations arise due to small DM number-violating Majorana-type mass terms, and can lead to recoupling of annihilation after freeze-out and washout of the DM density. Asymmetric DM oscillations 'interpolate' between symmetric and asymmetric DM freeze-out scenarios, and allow for a larger DM model-building parameter space. We derive the density matrix equations for DM oscillations and freeze-out from first principles using nonequilibrium field theory, and our results are qualitatively different than in previous studies. DM dynamics exhibits particle-vs-antiparticle 'flavor' effects, depending on the interaction type, analogous to neutrino oscillations in a medium. 'Flavor-sensitive' DM interactions include scattering or annihilation through a new vector boson, while 'flavor-blind' interactions include scattering or s-channel annihilation through a new scalar boson. In particular, we find that flavor-sensitive annihilation does not recouple when coherent oscillations begin, and that flavor-blind scattering does not lead to decoherence.

  20. Asymmetric Kinks: Stabilization by Entropic Forces

    SciTech Connect

    Costantini, G.; Marchesoni, F.

    2001-09-10

    Asymmetric kinks bridging two adjacent potential valleys of equal depth but different curvature are unstable against phonon modes. When coupled to a heat bath, a kink-bearing string tends to cross over into the shallower valley; kinks are thus predicted to drift in the appropriate direction with velocity proportional to the temperature, in close agreement with numerical simulation. When contrasted by a mechanical bias, these entropic forces give rise to a rich phenomenology that includes configurational phase transitions, double-kink dissociation, and noise-directed signal transmission.

  1. Asymmetric quantum convolutional codes

    NASA Astrophysics Data System (ADS)

    La Guardia, Giuliano G.

    2016-01-01

    In this paper, we construct the first families of asymmetric quantum convolutional codes (AQCCs). These new AQCCs are constructed by means of the CSS-type construction applied to suitable families of classical convolutional codes, which are also constructed here. The new codes have non-catastrophic generator matrices, and they have great asymmetry. Since our constructions are performed algebraically, i.e. we develop general algebraic methods and properties to perform the constructions, it is possible to derive several families of such codes and not only codes with specific parameters. Additionally, several different types of such codes are obtained.

  2. Asymmetric inclusion process.

    PubMed

    Reuveni, Shlomi; Eliazar, Iddo; Yechiali, Uri

    2011-10-01

    We introduce and explore the asymmetric inclusion process (ASIP), an exactly solvable bosonic counterpart of the fermionic asymmetric exclusion process (ASEP). In both processes, random events cause particles to propagate unidirectionally along a one-dimensional lattice of n sites. In the ASEP, particles are subject to exclusion interactions, whereas in the ASIP, particles are subject to inclusion interactions that coalesce them into inseparable clusters. We study the dynamics of the ASIP, derive evolution equations for the mean and probability generating function (PGF) of the sites' occupancy vector, obtain explicit results for the above mean at steady state, and describe an iterative scheme for the computation of the PGF at steady state. We further obtain explicit results for the load distribution in steady state, with the load being the total number of particles present in all lattice sites. Finally, we address the problem of load optimization, and solve it under various criteria. The ASIP model establishes bridges between statistical physics and queueing theory as it represents a tandem array of queueing systems with (unlimited) batch service, and a tandem array of growth-collapse processes. PMID:22181081

  3. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N.

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  4. Asymmetric twin Dark Matter

    SciTech Connect

    Farina, Marco

    2015-11-09

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of the cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.

  5. Asymmetric twin Dark Matter

    SciTech Connect

    Farina, Marco

    2015-11-01

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of the cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.

  6. Asymmetrically warped spacetimes

    SciTech Connect

    Csaki, C.

    2001-01-01

    We investigate spacetimes in which the speed of light along flat 4D sections varies over the extra dimensions due to different warp factors for the space and the time coordinates ('asymmetrically warped' spacetimes). The main property of such spaces is that while the induced metric is flat, implying Lorentz invariant particle physics on a brane, bulk gravitational effects will cause apparent violations of Lorentz invariance and of causality from the brane observer's point of view. An important experimentally verifiable consequence of this is that gravitational waves may travel with a speed different from the speed of light on the brane, and possibly even faster. We find the most general spacetimes of this sort, which are given by certain types of black hole spacetimes characterized by the m a s and the charge of the black hole. We show how to satisfy the junction conditions and analyze the properties of these space-times.

  7. Engineered Asymmetric Synthetic Vesicles

    NASA Astrophysics Data System (ADS)

    Lu, Li; Chiarot, Paul

    2013-11-01

    Synthetic vesicles are small, fluid-filled spheres that are enclosed by a bilayer of lipid molecules. They can be used as models for investigating membrane biology and as delivery vehicles for pharmaceuticals. In practice, it is difficult to simultaneously control membrane asymmetry, unilamellarity, vesicle size, vesicle-to-vesicle uniformity, and luminal content. Membrane asymmetry, where each leaflet of the bilayer is composed of different lipids, is of particular importance as it is a feature of most natural membranes. In this study, we leverage microfluidic technology to build asymmetric vesicles at high-throughput. We use the precise flow control offered by microfluidic devices to make highly uniform emulsions, with controlled internal content, that serve as templates to build the synthetic vesicles. Flow focusing, dielectrophoretic steering, and interfacial lipid self-assembly are critical procedures performed on-chip to produce the vesicles. Fluorescent and confocal microscopy are used to evaluate the vesicle characteristics.

  8. Metal rolling - Asymmetrical rolling process

    NASA Astrophysics Data System (ADS)

    Alexa, V.; Raţiu, S.; Kiss, I.

    2016-02-01

    The development of theory and practice related to the asymmetric longitudinal rolling process is based on the general theory of metalworking by pressure and symmetric rolling theory, to which a large number of scientists brought their contribution. The rolling of metal materials was a serious problem throughout history, either economically or technically, because the plating technologies enabled the consumption of raw materials (scarce and expensive) to be reduced, while improving the mechanical properties. Knowing the force parameters related to asymmetric rolling leads to the optimization of energy and raw material consumption. This paper presents data on symmetric rolling process, in order to comparatively highlight the particularities of the asymmetric process.

  9. Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat.

    PubMed

    Clemente-Suárez, Vicente J; Robles-Pérez, José J

    2013-09-01

    In current theaters of operation, soldiers had to face a different situation as symmetrical (defined battlefield) and asymmetrical combat (non-defined battlefield), especially in urban areas. The mechanical and organic responses of soldiers in these combats are poorly studied in specific literature. This research aimed to analyze physical, mechanical, and physiological parameters during symmetrical and asymmetrical combat simulations. We analyzed 20 soldiers from the Spanish Army and Spanish Forces and Security Corps (34.5 ± 4.2 years; 176.4 ± 8.4 cm; 74.6 ± 8.7 kg; 63.3 ± 8.0 kg muscular mass; 7.6 ± 3.2 kg fat mass) during a symmetric combat (traditional combat simulation) and during an asymmetrical combat (urban combat simulation). Heart rate (HR), speed, sprints, distances, impact, and body load parameters were measured by a GPS system and a HR belt. Results showed many differences between symmetrical and asymmetrical combat. Asymmetrical combat presented higher maximum velocity movement, number of sprints, sprint distance, and average HR. By contrary, symmetric combat presented higher number of impact and body load. This information could be used to improve specific training programs for each type of combat.

  10. Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat.

    PubMed

    Clemente-Suárez, Vicente J; Robles-Pérez, José J

    2013-09-01

    In current theaters of operation, soldiers had to face a different situation as symmetrical (defined battlefield) and asymmetrical combat (non-defined battlefield), especially in urban areas. The mechanical and organic responses of soldiers in these combats are poorly studied in specific literature. This research aimed to analyze physical, mechanical, and physiological parameters during symmetrical and asymmetrical combat simulations. We analyzed 20 soldiers from the Spanish Army and Spanish Forces and Security Corps (34.5 ± 4.2 years; 176.4 ± 8.4 cm; 74.6 ± 8.7 kg; 63.3 ± 8.0 kg muscular mass; 7.6 ± 3.2 kg fat mass) during a symmetric combat (traditional combat simulation) and during an asymmetrical combat (urban combat simulation). Heart rate (HR), speed, sprints, distances, impact, and body load parameters were measured by a GPS system and a HR belt. Results showed many differences between symmetrical and asymmetrical combat. Asymmetrical combat presented higher maximum velocity movement, number of sprints, sprint distance, and average HR. By contrary, symmetric combat presented higher number of impact and body load. This information could be used to improve specific training programs for each type of combat. PMID:23254545

  11. Bifunctional Asymmetric Catalysis

    PubMed Central

    PAULL, DANIEL H.; ABRAHAM, CIBY J.; SCERBA, MICHAEL T.; ALDEN-DANFORTH, ETHAN; LECTKA, THOMAS

    2008-01-01

    CONSPECTUS In the field of catalytic, asymmetric synthesis, there is a growing emphasis on multifunctional systems, in which multiple parts of a catalyst or multiple catalysts work together to promote a specific reaction. These efforts, in part, are result-driven, and they are also part of a movement toward emulating the efficiency and selectivity of nature’s catalysts, enzymes. In this Account, we illustrate the importance of bifunctional catalytic methods, focusing on the cooperative action of Lewis acidic and Lewis basic catalysts by the simultaneous activation of both electrophilic and nucleophilic reaction partners. For our part, we have contributed three separate bifunctional methods that combine achiral Lewis acids with chiral cinchona alkaloid nucleophiles, for example, benzoylquinine (BQ), to catalyze highly enantioselective cycloaddition reactions between ketene enolates and various electrophiles. Each method requires a distinct Lewis acid to coordinate and activate the electrophile, which in turn increases the reaction rates and yields, without any detectable influence on the outstanding enantioselectivities inherent to these reactions. To place our results in perspective, many important contributions to this emerging field are highlighted and our own reports are chronicled. PMID:18402470

  12. Asymmetric Ion-Pairing Catalysis

    PubMed Central

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  13. Asymmetric mass models of disk galaxies. I. Messier 99

    NASA Astrophysics Data System (ADS)

    Chemin, Laurent; Huré, Jean-Marc; Soubiran, Caroline; Zibetti, Stefano; Charlot, Stéphane; Kawata, Daisuke

    2016-04-01

    Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M 99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M 99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M 99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.

  14. [Photosensitization in cattle grazing on pastures of Brahciaria decumbens Stapf infested with Pithomyces chartarum (Berk. & Curt.) M.B. Ellis].

    PubMed

    Andrade, S O; da Silva Lopes, H O; de Almeida Barros, M; Leite, G G; Dias, S M; Saueressig, M; Nobre, D; Temperini, J A

    1978-01-01

    Aspects of photosensitization in bovines grazing on pastures of Brachiaria decumbens Stapf infested with Pithomyces chartarum (Berk. & Curt.) M.B. Ellis infested all pastures 45(2):117-136, 1978. This paper reports experimental studies on photosensitization in bovines grazing on different pastures of Brachiaria decumbens Stapf in the "Cerrados" region (Planaltina, DF). Climatic conditions, zinc content and occurence of fungi on pastures were investigated. Pithomyces chartarum (Berk. & Curt.) M.B. Ellis infested all pastures examined. Photosensitization was observed in one animal maintained on a pasture of B. decumbens formed with seeds from Australia. Clinical and necropsy data were similar to those related in literature for sporidesmin-intoxicated animals. An isolate of P. chartarum and samples of bovine bile were assayed for sporidesmin presence.

  15. [Photosensitization in cattle grazing on pastures of Brahciaria decumbens Stapf infested with Pithomyces chartarum (Berk. & Curt.) M.B. Ellis].

    PubMed

    Andrade, S O; da Silva Lopes, H O; de Almeida Barros, M; Leite, G G; Dias, S M; Saueressig, M; Nobre, D; Temperini, J A

    1978-01-01

    Aspects of photosensitization in bovines grazing on pastures of Brachiaria decumbens Stapf infested with Pithomyces chartarum (Berk. & Curt.) M.B. Ellis infested all pastures 45(2):117-136, 1978. This paper reports experimental studies on photosensitization in bovines grazing on different pastures of Brachiaria decumbens Stapf in the "Cerrados" region (Planaltina, DF). Climatic conditions, zinc content and occurence of fungi on pastures were investigated. Pithomyces chartarum (Berk. & Curt.) M.B. Ellis infested all pastures examined. Photosensitization was observed in one animal maintained on a pasture of B. decumbens formed with seeds from Australia. Clinical and necropsy data were similar to those related in literature for sporidesmin-intoxicated animals. An isolate of P. chartarum and samples of bovine bile were assayed for sporidesmin presence. PMID:573108

  16. Hydroxamic Acids in Asymmetric Synthesis

    PubMed Central

    Li, Zhi; Yamamoto, Hisashi

    2012-01-01

    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst’s center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Due to their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless Asymmetric Epoxidation, which uses titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless Asymmetric Epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities. PMID:23157425

  17. Catalytic asymmetric synthesis of thiols.

    PubMed

    Monaco, Mattia Riccardo; Prévost, Sébastien; List, Benjamin

    2014-12-10

    The synthesis of enantiopure thiols is of significant interest for industrial and academic applications. However, direct asymmetric approaches to free thiols have previously been unknown. Here we describe a novel organocascade that is catalyzed by a confined chiral phosphoric acid and furnishes O-protected β-hydroxythiols with excellent enantioselectivities. The method relies on an asymmetric thiocarboxylysis of meso-epoxides, followed by an intramolecular trans-esterification reaction. By varying the reaction conditions, the intermediate thioesters can also be obtained chemoselectively and enantioselectively.

  18. The effect of M & B 22948 on carbachol-induced inositol trisphosphate accumulation and contraction in iris sphincter smooth muscle.

    PubMed

    Akhtar, R A; Abdel-Latif, A A

    1991-04-25

    The effect of a cyclic GMP phosphodiesterase inhibitor, M & B 22948, on carbachol-induced phosphatidylinositol 4,5-bis-phosphate (PIP2) breakdown and phosphatidic acid labeling, 1,4,5-inositol trisphosphate (IP3) accumulation and muscle contraction was studied in bovine iris sphincter smooth muscle. Addition of carbachol (10 microM) to 32P-labeled tissue resulted in increased labeling of phosphatidic acid and hydrolysis of PIP2. In myo[3H]inositol labeled tissue, carbachol caused rapid accumulation of IP3 which reached its maximum at about 2 min. Under identical experimental conditions, carbachol initiated a rapid increase in muscle contraction (phasic component) which was followed by a slightly lower contractile response (tonic component) that lasted for several minutes. Pretreatment of the iris sphincter with M & B 22948 did not alter carbachol-stimulated PIP2 breakdown and phosphatidic acid labeling, IP3 accumulation, or phasic component of the contractile response. However, the tonic component of the contractile response was increasingly attenuated by increasing concentrations of the drug. In conclusion, the data presented demonstrate a close correlation between carbachol-induced IP3 accumulation and muscle contraction, and that M & B 22948 does not inhibit carbachol-induced responses in the iris sphincter.

  19. Asymmetric bursting of Taylor bubble in inclined tubes

    NASA Astrophysics Data System (ADS)

    Rana, Basanta Kumar; Das, Arup Kumar; Das, Prasanta Kumar

    2016-08-01

    In the present study, experiments have been reported to explain the phenomenon of approach and collapse of an asymmetric Taylor bubble at free surface inside an inclined tube. Four different tube inclinations with horizontal (30°, 45°, 60° and 75°) and two different fluids (water and silicon oil) are considered for the experiment. Using high speed imaging, we have investigated the approach, puncture, and subsequent liquid drainage for re-establishment of the free surface. The present study covers all the aspects in the collapse of an asymmetric Taylor bubble through the generation of two films, i.e., a cap film which lies on top of the bubble and an asymmetric annular film along the tube wall. Retraction of the cap film is studied in detail and its velocity has been predicted successfully for different inclinations and fluids. Film drainage formulation considering azimuthal variation is proposed which also describes the experimental observations well. In addition, extrapolation of drainage velocity pattern beyond the experimental observation limit provides insight into the total collapse time of bubbles at different inclinations and fluids.

  20. Vertical asymmetric double quantum dots

    NASA Astrophysics Data System (ADS)

    Roßbach, R.; Reischle, M.; Beirne, G. J.; Schweizer, H.; Jetter, M.; Michler, P.

    2007-01-01

    Two layers of differently sized self-assembled InP-quantum dots (QDs) separated by a GaInP spacer layer with varying thickness were grown by metal organic vapor phase epitaxy (MOVPE). Photoluminescence measurements of the QD ensembles and of individual asymmetric double QDS show coupling due to the tunnelling of carriers.

  1. Asymmetrical Switch Costs in Children

    ERIC Educational Resources Information Center

    Ellefson, Michelle R.; Shapiron, Laura R.; Chater, Nick

    2006-01-01

    Switching between tasks produces decreases in performance as compared to repeating the same task. Asymmetrical switch costs occur when switching between two tasks of unequal difficulty. This asymmetry occurs because the cost is greater when switching to the less difficult task than when switching to the more difficult task. Various theories about…

  2. ASYMMETRIC EJECTA DISTRIBUTION IN SN 1006

    SciTech Connect

    Uchida, Hiroyuki; Koyama, Katsuji; Yamaguchi, Hiroya

    2013-07-01

    We present the results from deep X-ray observations ({approx}400 ks in total) of SN 1006 with Suzaku. The thermal spectrum from the entire supernova remnant (SNR) exhibits prominent emission lines of O, Ne, Mg, Si, S, Ar, Ca, and Fe. The observed abundance pattern in the ejecta components is in good agreement with that predicted by a standard model of Type Ia supernovae (SNe). The spatially resolved analysis reveals that the distribution of the O-burning and incomplete Si-burning products (Si, S, and Ar) is asymmetric, while that of the C-burning products (O, Ne, and Mg) is relatively uniform in the SNR interior. The peak position of the former is clearly shifted by 5' ({approx}3.2 pc at the distance of 2.2 kpc) to the southeast (SE) from the SNR's geometric center. Using the SNR age of {approx}1000 yr, we constrain that the velocity asymmetry (in projection) of the ejecta is {approx}3100 km s{sup -1}. The Fe abundance is also significantly higher in the SE region than in the northwest. Given that the non-uniformity is observed only in the heavier elements (Si through Fe), we argue that SN 1006 originates from an asymmetric explosion, as is expected from recent multidimensional simulations of Type Ia SNe, although we cannot eliminate the possibility that inhomogeneous ambient medium had induced the apparent non-uniformity. Possible evidence for the Cr-K-shell line and line broadening in the Fe-K-shell emission is also found.

  3. A computational study of asymmetric glottal jet deflection during phonation

    PubMed Central

    Zheng, X.; Mittal, R.; Bielamowicz, S.

    2011-01-01

    Two-dimensional numerical simulations are used to explore the mechanism for asymmetric deflection of the glottal jet during phonation. The model employs the full Navier–Stokes equations for the flow but a simple laryngeal geometry and vocal-fold motion. The study focuses on the effect of Reynolds number and glottal opening angle with a particular emphasis on examining the importance of the so-called “Coanda effect” in jet deflection. The study indicates that the glottal opening angle has no substantial effect on glottal jet deflection. Deflection in the glottal jet is always preceded by large-scale asymmetry in the downstream portion of the glottal jet. A detailed analysis of the velocity and vorticity fields shows that these downstream asymmetric vortex structures induce a flow at the glottal exit which is the primary driver for glottal jet deflection. PMID:21476669

  4. A computational study of asymmetric glottal jet deflection during phonation.

    PubMed

    Zheng, X; Mittal, R; Bielamowicz, S

    2011-04-01

    Two-dimensional numerical simulations are used to explore the mechanism for asymmetric deflection of the glottal jet during phonation. The model employs the full Navier-Stokes equations for the flow but a simple laryngeal geometry and vocal-fold motion. The study focuses on the effect of Reynolds number and glottal opening angle with a particular emphasis on examining the importance of the so-called "Coanda effect" in jet deflection. The study indicates that the glottal opening angle has no substantial effect on glottal jet deflection. Deflection in the glottal jet is always preceded by large-scale asymmetry in the downstream portion of the glottal jet. A detailed analysis of the velocity and vorticity fields shows that these downstream asymmetric vortex structures induce a flow at the glottal exit which is the primary driver for glottal jet deflection. PMID:21476669

  5. Modeling Asymmetric Forbidden Line Emission Profiles in Supernovae with Clumping

    NASA Astrophysics Data System (ADS)

    Herrington, Jessica; Ignace, R.; Hole, K. T.

    2010-01-01

    There are some supernovae that display emission line profiles that are asymmetric in shape. One cause for asymmetry could be an in-homogeneous density distribution, or "clumps". We explore the effects of clumps on the emission line profiles of forbidden lines. Our model assumes the ejecta shell is spherically symmetric in velocity, with a central cavity. The model assigns density perturbations to conical sections in the ejecta. To model the emission profile for a forbidden line, we use Sobolev theory. Our model gives asymmetric profiles when the clumping is introduced. The amount of asymmetry varies with the range of density perturbations allowed, and the relative asymmetry evolves in time. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  6. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185961

  7. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  8. Propulsion of a molecular machine by asymmetric distribution of reaction products.

    PubMed

    Golestanian, Ramin; Liverpool, Tanniemola B; Ajdari, Armand

    2005-06-10

    A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. The motion of the device is driven by an asymmetric distribution of reaction products. The propulsive velocity of the device is calculated as well as the scale of the velocity fluctuations. The effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction are addressed.

  9. Stable walking with asymmetric legs.

    PubMed

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-12-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  10. Electron jet of asymmetric reconnection

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; André, M.; Pritchett, P. L.; Retinò, A.; Phan, T. D.; Ergun, R. E.; Goodrich, K.; Lindqvist, P.-A.; Marklund, G. T.; Le Contel, O.; Plaschke, F.; Magnes, W.; Strangeway, R. J.; Russell, C. T.; Vaith, H.; Argall, M. R.; Kletzing, C. A.; Nakamura, R.; Torbert, R. B.; Paterson, W. R.; Gershman, D. J.; Dorelli, J. C.; Avanov, L. A.; Lavraud, B.; Saito, Y.; Giles, B. L.; Pollock, C. J.; Turner, D. L.; Blake, J. D.; Fennell, J. F.; Jaynes, A.; Mauk, B. H.; Burch, J. L.

    2016-06-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E∥ amplitudes reaching up to 300 mV m-1 and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  11. Analysis of seismic magnitude differentials ( m b- M w) across megathrust faults in the vicinity of recent great earthquakes

    NASA Astrophysics Data System (ADS)

    Rushing, Teresa M.; Lay, Thorne

    2012-12-01

    Spatial variations in underthrusting earthquake seismic magnitude differentials ( m b - M w) are examined for plate boundary megathrusts in the vicinity of the 26 December 2004 Sumatra-Andaman ( M w 9.2), 2010 Maule, Chile ( M w 8.8), and 11 March 2011 Tohoku, Japan ( M w 9.1) great earthquakes. The magnitude differentials, corrected for ω-squared source spectrum dependence on seismic moment, provide a first-order probe of spatial variations of frequency-dependent seismic radiation. This is motivated by observations that the three great earthquakes all have coherent short-period radiation from the down-dip portions of their ruptures as imaged through back-projections, but little coherent short-period energy from shallower regions where large coseismic slip occurred. While there is substantial scatter in the magnitude measures, all three regions display some increase in relative strength of short-period seismic waves with depth, with the pattern being strongest for Sumatra and Japan where the deeper portion of the seismogenic zone is below the overriding crust. Other regions such as the Kuril Islands, Aleutians, Peru, and Southern Sumatra/Sumba show little, if any, depth pattern in the magnitude differentials. Variation in material and frictional properties over particularly wide seismogenic megathrusts likely produce the depth-dependence observed in both m b- M w residuals and great earthquake seismic radiation.

  12. Asymmetrical hypersensitivity to bovine collagen.

    PubMed

    Somerville, P; Wray, R C

    1993-05-01

    We report a unique patient with true asymmetrical hypersensitivity to bovine collagen. Hypersensitivity is the development of an inflammatory response at a treatment site after a negative skin test. She developed an inflammatory response in only one of two simultaneously injected sites. About 1.5% of patients with a negative skin test have a hypersensitivity reaction consisting of firmness, erythema, and swelling. The signs and symptoms generally resolve spontaneously in a few months.

  13. Deformation of an asymmetric film

    NASA Astrophysics Data System (ADS)

    Geng, Jun; Selinger, Jonathan

    2010-03-01

    Recent experiments have investigated shape changes of polymer films induced by asymmetric swelling by a chemical vapor. Inspired by recent work on the shaping of elastic sheets by non-Euclidean metrics [1,2], we represent the effect of chemical vapors by a change in the target metric tensor. In this problem, unlike Refs. [1,2], the target metric is asymmetric between the two sides of the film. Changing this metric induces a curvature of the film, which may be Gaussian curvature into a sphere or mean curvature into a cylinder. We calculate the elastic energy for each of these shapes, and show that the sphere is favored for films smaller than a critical size, which depends on the film thickness, while the cylinder is favored for larger films. We compare the formalism for asymmetric films with previous theoretical work on symmetric films, and compare the predictions with experimental results. [4pt] [1] Y. Klein, E. Efrati, and E. Sharon, Science 315, 1116 (2007).[0pt] [2] E. Efrati, E. Sharon, and R. Kupferman, J. Mech. Phys. Solids 57, 762 (2009).

  14. Resonant discharge simulations with asymmetric electrodes

    SciTech Connect

    Smith, H.B.; Bowers, K.J.; Birdsall, C.K.

    1999-07-01

    Bounded plasmas exhibit two basic natural resonances--the plasma frequency and the series resonance frequency. The latter is associated with the edge of the plasma, and involves density perturbations in the sheath; it is also the cut-off frequency for waves propagating along the wall. Series resonant discharges have been previously simulated in planar 1d3v (one spatial dimension, 3 velocity dimensions) models. Results from these simulations are found to compare well with experimental measurements. In this paper the authors will look at 1d3v simulations of series resonant discharges between concentric cylinders and concentric spheres, also 1d3v. First, the natural series resonant frequency is determined by simulating an undriven plasma between short-circuited electrodes, looking for the resonance in the current; this frequency will be checked with simple circuit modeling. Second, they driven the same model near this resonance, in order to obtain a self-sustained discharge. They will report in detail on the differences between the driven symmetric and asymmetric discharges with respect to start-up, lock-on and steady state behavior, as well as on scaling laws.

  15. Asymmetric effect on single-file dense pedestrian flow

    NASA Astrophysics Data System (ADS)

    Kuang, Hua; Cai, Mei-Jing; Li, Xing-Li; Song, Tao

    2015-11-01

    In this paper, an extended optimal velocity model is proposed to simulate single-file dense pedestrian flow by considering asymmetric interaction (i.e. attractive force and repulsive force), which depends on the different distances between pedestrians. The stability condition of this model is obtained by using the linear stability theory. The phase diagram comparison and analysis show that asymmetric effect plays an important role in strengthening the stabilization of system. The modified Korteweg-de Vries (mKdV) equation near the critical point is derived by applying the reductive perturbation method. The pedestrian jam could be described by the kink-antikink soliton solution for the mKdV equation. From the simulation of space-time evolution of the pedestrians distance, it can be found that the asymmetric interaction is more efficient compared to the symmetric interaction in suppressing the pedestrian jam. Furthermore, the simulation results are consistent with the theoretical analysis as well as reproduce experimental phenomena better.

  16. Electronic properties of asymmetrically doped twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Trambly de Laissardière, Guy; Namarvar, Omid Faizy; Mayou, Didier; Magaud, Laurence

    2016-06-01

    Rotated graphene bilayers form an exotic class of nanomaterials with fascinating electronic properties governed by the rotation angle θ . For large rotation angles, the electron eigenstates are restricted to one layer and the bilayer behaves like two decoupled graphene layers. At intermediate angles, Dirac cones are preserved but with a lower velocity and van Hove singularities are induced at energies where the two Dirac cones intersect. At very small angles, eigenstates become localized in peculiar moiré zones. We analyze here the effect of an asymmetric doping for a series of commensurate rotated bilayers on the basis of tight-binding calculations of their band dispersions, density of states, participation ratio, and diffusive properties. While a small doping level preserves the θ dependence of the rotated bilayer electronic structure, larger doping induces a further reduction of the band velocity in the same way as a further reduction of the rotation angle.

  17. Asymmetric Schiff bases derived from diaminomaleonitrile and their metal complexes

    NASA Astrophysics Data System (ADS)

    Yang, Jianjie; Shi, Rufei; Zhou, Pei; Qiu, Qiming; Li, Hui

    2016-02-01

    Asymmetric Schiff bases, due to its asymmetric structure, can be used as asymmetric catalyst, antibacterial, and mimic molecules during simulate biological processes, etc. In recent years, research on synthesis and properties of asymmetric Schiff bases have become an increase interest of chemists. This review summarizes asymmetric Schiff bases derived from diaminomaleonitrile (DAMN) and DAMN-based asymmetric Schiff bases metal complexes. Applications of DAMN-based asymmetric Schiff bases are also discussed in this review.

  18. LG tools for asymmetric wargaming

    NASA Astrophysics Data System (ADS)

    Stilman, Boris; Yakhnis, Alex; Yakhnis, Vladimir

    2002-07-01

    Asymmetric operations represent conflict where one of the sides would apply military power to influence the political and civil environment, to facilitate diplomacy, and to interrupt specified illegal activities. This is a special type of conflict where the participants do not initiate full-scale war. Instead, the sides may be engaged in a limited open conflict or one or several sides may covertly engage another side using unconventional or less conventional methods of engagement. They may include peace operations, combating terrorism, counterdrug operations, arms control, support of insurgencies or counterinsurgencies, show of force. An asymmetric conflict can be represented as several concurrent interlinked games of various kinds: military, transportation, economic, political, etc. Thus, various actions of peace violators, terrorists, drug traffickers, etc., can be expressed via moves in different interlinked games. LG tools allow us to fully capture the specificity of asymmetric conflicts employing the major LG concept of hypergame. Hypergame allows modeling concurrent interlinked processes taking place in geographically remote locations at different levels of resolution and time scale. For example, it allows us to model an antiterrorist operation taking place simultaneously in a number of countries around the globe and involving wide range of entities from individuals to combat units to governments. Additionally, LG allows us to model all sides of the conflict at their level of sophistication. Intelligent stakeholders are represented by means of LG generated intelligent strategies. TO generate those strategies, in addition to its own mathematical intelligence, the LG algorithm may incorporate the intelligence of the top-level experts in the respective problem domains. LG models the individual differences between intelligent stakeholders. The LG tools make it possible to incorporate most of the known traits of a stakeholder, i.e., real personalities involved in

  19. Asymmetric Formal Synthesis of Azadirachtin.

    PubMed

    Mori, Naoki; Kitahara, Takeshi; Mori, Kenji; Watanabe, Hidenori

    2015-12-01

    An asymmetric formal synthesis of azadirachtin, a potent insect antifeedant, was accomplished in 30 steps to Ley's synthetic intermediate (longest linear sequence). The synthesis features: 1) rapid access to the optically active right-hand segment starting from the known 5-hydroxymethyl-2-cyclopentenone scaffold; 2) construction of the B and E rings by a key intramolecular tandem radical cyclization; 3) formation of the hemiacetal moiety in the C ring through the α-oxidation of the six-membered lactone followed by methanolysis. PMID:26474211

  20. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  1. Fiber Optic Velocity Interferometry

    SciTech Connect

    Neyer, Barry T.

    1988-04-01

    This paper explores the use of a new velocity measurement technique that has several advantages over existing techniques. It uses an optical fiber to carry coherent light to and from a moving target. A Fabry-Perot interferometer, formed by a gradient index lens and the moving target, produces fringes with a frequency proportional to the target velocity. This technique can measure velocities up to 10 km/s, is accurate, portable, and completely noninvasive.

  2. Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential.

    PubMed

    Ai, Bao-quan; Liu, Liang-gang

    2007-10-01

    Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P. Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial Brownian motors to the case of an asymmetric potential. It is found that some transport phenomena appear in the presence of an asymmetric potential. Within tailored parameter regimes, there exists two optimal values of the load at which the mean velocity takes its maximum, which means that a load can facilitate the transport in the two parameter regimes. In addition, the phenomenon of multiple current reversals can be observed when the load is increased.

  3. Effect of Geometric Azimuthal Asymmetrics of PPM Stack on Electron Beam Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A three-dimensional (3D) beam optics model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes an electron beam with initial transverse velocity distribution focused by a periodic permanent magnet (PPM) stack. All components of the model are simulated in three dimensions allowing several azimuthally asymmetric traveling wave tube (TWT) characteristics to be investigated for the first time. These include C-magnets, shunts and magnet misalignment and their effects on electron beam behavior. The development of the model is presented and 3D TWT electron beam characteristics are compared in the absence of and under the influence of the azimuthally asymmetric characteristics described.

  4. Migration in asymmetric, random environments

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Wang, Dong

    Migration is a key mechanism for expansion of communities. As a population migrates, it experiences a changing environment. In heterogeneous environments, rapid adaption is key to the evolutionary success of the population. In the case of human migration, environmental heterogeneity is naturally asymmetric in the North-South and East-West directions. We here consider migration in random, asymmetric, modularly correlated environments. Knowledge about the environment determines the fitness of each individual. We find that the speed of migration is proportional to the inverse of environmental change, and in particular we find that North-South migration rates are lower than East-West migration rates. Fast communication within the population of pieces of knowledge between individuals, similar to horizontal gene transfer in genetic systems, can help to spread beneficial knowledge among individuals. We show that increased modularity of the relation between knowledge and fitness enhances the rate of evolution. We investigate the relation between optimal information exchange rate and modularity of the dependence of fitness on knowledge. These results for the dependence of migration rate on heterogeneity, asymmetry, and modularity are consistent with existing archaeological facts.

  5. Asymmetric Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-06-01

    We introduce a family of asymmetric Laguerre-Gaussian (aLG) laser beams. The beams have been derived via a complex-valued shift of conventional LG beams in the Cartesian plane. While propagating in a uniform medium, the first bright ring of the aLG beam becomes less asymmetric and the energy is redistributed toward peripheral diffraction rings. The projection of the orbital angular momentum (OAM) onto the optical axis is calculated. The OAM is shown to grow quadratically with increasing asymmetry parameter of the aLG beam, which equals the ratio of the shift to the waist radius. Conditions for the OAM becoming equal to the topological charge have been derived. For aLG beams with zero radial index, we have deduced an expression to define the intensity maximum coordinates and shown the crescent-shaped intensity pattern to rotate during propagation. Results of the experimental generation and rotation of aLG beams agree well with theoretical predictions.

  6. Excitons in asymmetric quantum wells

    NASA Astrophysics Data System (ADS)

    Grigoryev, P. S.; Kurdyubov, A. S.; Kuznetsova, M. S.; Ignatiev, I. V.; Efimov, Yu. P.; Eliseev, S. A.; Petrov, V. V.; Lovtcius, V. A.; Shapochkin, P. Yu.

    2016-09-01

    Resonance dielectric response of excitons is studied for the high-quality InGaAs/GaAs heterostructures with wide asymmetric quantum wells (QWs). To highlight effects of the QW asymmetry, we have grown and studied several heterostructures with nominally square QWs as well as with triangle-like QWs. Several quantum confined exciton states are experimentally observed as narrow exciton resonances. A standard approach for the phenomenological analysis of the profiles is generalized by introducing different phase shifts for the light waves reflected from the QWs at different exciton resonances. Good agreement of the phenomenological fit to the experimentally observed exciton spectra for high-quality structures allowed us to reliably obtain parameters of the exciton resonances: the exciton transition energies, the radiative broadenings, and the phase shifts. A direct numerical solution of the Schrödinger equation for the heavy-hole excitons in asymmetric QWs is used for microscopic modeling of the exciton resonances. Remarkable agreement with the experiment is achieved when the effect of indium segregation is taken into account. The segregation results in a modification of the potential profile, in particular, in an asymmetry of the nominally square QWs.

  7. Dynamic responses of asymmetric vortices over slender bodies to a rotating tip perturbation

    NASA Astrophysics Data System (ADS)

    Ma, Bao-Feng; Huang, Yu; Deng, Xue-Ying

    2016-04-01

    The dynamic responses of asymmetric vortices over a slender body to a rotating tip perturbation were investigated experimentally in a wind tunnel. A small rotating nose with an artificial micro-perturbation on the nose tip was driven by a servomotor with various rates to change azimuthal locations of tip perturbation. Wall pressures and spatial velocity fields were measured using pressure scanner and particle image velocimetry based on a phase-locked method. The results show that the spinning tip perturbation enables asymmetric vortices to exhibit significantly dynamic characteristics different from a case with a static perturbation. The orientations of asymmetric vortices and associated side forces show apparent phase delay that are enlarged with increasing rotational rates of the nose. The switching rates of asymmetric vortices among various orientations also increase with the rotational rates increasing, but asymmetry level of vortices is lowered, which reveals that the asymmetric vortices change requires an amount of time to switch from one orientation to another. The phase delays of vortices, however, are determined by the amount of time required for the propagation of disturbance waves along a body axis. As the rotational frequencies are sufficiently high, the orientations of vortices almost hold to be unchanged. The unchanged orientation of vortices is asymmetric, depending on the directions of rotation. The asymmetric vortices arising from high-frequency rotation of the nose are attributed to wall effects induced by the rotating nose with a finite length. In addition, there exist small intrinsic vortex oscillations which are superimposed on the average vortex structures with symmetric and asymmetric orientations for the cases of static and rotational tip perturbations.

  8. Separator for Heavy ELement Spectroscopy - velocity filter SHELS

    NASA Astrophysics Data System (ADS)

    Popeko, A. G.; Yeremin, A. V.; Malyshev, O. N.; Chepigin, V. I.; Isaev, A. V.; Popov, Yu. A.; Svirikhin, A. I.; Haushild, K.; Lopez-Martens, A.; Rezynkina, K.; Dorvaux, O.

    2016-06-01

    The SHELS velocity filter originated upon reconstruction of the VASSILISSA electrostatic separator used for investigations of heavy nuclei produced in complete fusion reactions. The goals of this modernization were to increase the transmission of products of asymmetric reactions and to extend the region of reactions to be investigated up to symmetric combinations. The first tests of the set-up were performed with the beams of accelerated 22Ne, 40Ar, 48Ca, and 50Ti ions.

  9. Stepwise shockwave velocity determinator

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.; Beeson, Harold

    1992-01-01

    To provide an uncomplicated and inexpensive method for measuring the far-field velocity of a surface shockwave produced by an explosion, a stepwise shockwave velocity determinator (SSVD) was developed. The velocity determinator is constructed of readily available materials and works on the principle of breaking discrete sensors composed of aluminum foil contacts. The discrete sensors have an average breaking threshold of approximately 7 kPa. An incremental output step of 250 mV is created with each foil contact breakage and is logged by analog-to-digital instrumentation. Velocity data obtained from the SSVD is within approximately 11 percent of the calculated surface shockwave velocity of a muzzle blast from a 30.06 rifle.

  10. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    PubMed Central

    Chauhan, Pankaj

    2012-01-01

    Summary Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques. PMID:23243475

  11. Defect-free ultrahigh flux asymmetric membranes

    DOEpatents

    Pinnau, Ingo; Koros, William J.

    1990-01-01

    Defect-free, ultrahigh flux integrally-skinned asymmetric membranes having extremely thin surface layers (<0.2 .mu.m) comprised of glassy polymers are disclosed. The membranes are formed by casting an appropriate drope followed by forced convective evaporation of solvent to obtain a dry phase separated asymmetrical structure. The structure is then washed in a precipitation liquid and dried.

  12. Recombinant carp IL-4/13B stimulates in vitro proliferation of carp IgM(+) B cells.

    PubMed

    Yamaguchi, Takuya; Miyata, Shunsuke; Katakura, Fumihiko; Nagasawa, Takahiro; Shibasaki, Yasuhiro; Yabu, Takeshi; Fischer, Uwe; Nakayasu, Chihaya; Nakanishi, Teruyuki; Moritomo, Tadaaki

    2016-02-01

    Teleost IL-4/13B is a cytokine related to mammalian IL-4 and IL-13, of which hitherto the function had not been studied at the protein level. We identified an IL-4/13B gene in common carp (Cyprinus carpio) and expressed the recombinant protein (rcIL-4/13B). RcIL-4/13B was shown to stimulate proliferation of IgM(+) B cells, because after four days of stimulation the IgM(+) fraction of carp kidney and spleen leukocytes had formed many cell colonies, whereas such colonies were not found in the absence of rcIL-4/13B stimulation. After nine days of incubation with rcIL-4/13B these cells had proliferated to more than 3-to-7-fold higher numbers when compared to untreated cells. The proliferating cells contained a majority of IgM(+) cells but also other cells, as indicated by FACS and RT-PCR analyses. The important conclusion is that in fish not only IL-4/13A has B cell stimulating properties, as a previous publication has shown, but also IL-4/13B. PMID:26766176

  13. How required reserve ratio affects distribution and velocity of money

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Ding, Ning; Wang, Yougui

    2005-11-01

    In this paper the dependence of wealth distribution and the velocity of money on the required reserve ratio is examined based on a random transfer model of money and computer simulations. A fractional reserve banking system is introduced to the model where money creation can be achieved by bank loans and the monetary aggregate is determined by the monetary base and the required reserve ratio. It is shown that monetary wealth follows asymmetric Laplace distribution and latency time of money follows exponential distribution. The expression of monetary wealth distribution and that of the velocity of money in terms of the required reserve ratio are presented in a good agreement with simulation results.

  14. Asymmetric total synthesis of halicholactone.

    PubMed

    Baba, Y; Saha, G; Nakao, S; Iwata, C; Tanaka, T; Ibuka, T; Ohishi, H; Takemoto, Y

    2001-01-12

    The asymmetric total synthesis of the marine metabolite, halicholactone 1, is described. The bisallylic triol 6 with three chiral centers at C8, C12, and C15 was constructed by [2,3]-sigmatropic rearrangement of the sulfoxide 18, which was prepared stereoselectively using the chirality of (diene)Fe(CO)3 complexes. Introduction of the trans-substituted cyclopropane subunit into 21 was successfully achieved using the modified regio- and stereoselective Simmons-Smith reaction. The use of RCM (ring-closing metathesis) methodology (4-->35) was pivotal for the formation of a nine-membered unsaturated lactone fragment of halicholactone 1. As this approach is flexible and stereoselective, other oxylipins could be synthesized by the protocol described herein.

  15. Asymmetric catalysis: An enabling science

    PubMed Central

    Trost, Barry M.

    2004-01-01

    Chirality of organic molecules plays an enormous role in areas ranging from medicine to material science, yet the synthesis of such entities in one enantiomeric form is one of the most difficult challenges. The advances being made stem from the convergence of a broader understanding of theory and how structure begets function, the developments in the interface between organic and inorganic chemistry and, most notably, the organic chemistry of the transition metals, and the continuing advancements in the tools to help define structure, especially in solution. General themes for designing catalysts to effect asymmetric induction are helping to make this strategy more useful, in general, with the resultant effect of a marked enhancement of synthetic efficiency. PMID:14990801

  16. New asymmetric quantum codes over Fq

    NASA Astrophysics Data System (ADS)

    Ma, Yuena; Feng, Xiaoyi; Xu, Gen

    2016-07-01

    Two families of new asymmetric quantum codes are constructed in this paper. The first family is the asymmetric quantum codes with length n=qm-1 over Fq, where qge 5 is a prime power. The second one is the asymmetric quantum codes with length n=3m-1. These asymmetric quantum codes are derived from the CSS construction and pairs of nested BCH codes. Moreover, let the defining set T1=T2^{-q}, then the real Z-distance of our asymmetric quantum codes are much larger than δ _max+1, where δ _max is the maximal designed distance of dual-containing narrow-sense BCH code, and the parameters presented here have better than the ones available in the literature.

  17. Stability of sliding Couette-Poiseuille flow in an annulus subject to axisymmetric and asymmetric disturbances

    NASA Astrophysics Data System (ADS)

    Sadeghi, Venus M.; Higgins, Brian G.

    1991-09-01

    The linear stability of pressure-driven flow between a sliding inner cylinder and a stationary outer cylinder is studied numerically. Attention is restricted to axisymmetric disturbances (n=0), and asymmetric disturbances with azimuthal wave numbers n=1, 2, and 3. Neutral stability curves in the Reynolds number versus the wave-number plane are presented as a function of the sliding velocity of the inner cylinder for select values of the radius ratio κ. Overall, the sliding velocity of the inner cylinder has a net stabilizing effect on all modes studied. Results presented for κ=2 show that individual disturbance modes can be completely stabilized by increasing the sliding velocity. In particular, when the sliding velocity is approximately 25% of the maximum Poiseuille velocity, the neutral curve for the n=2 mode vanishes; at 36% of the maximum Poiseuille velocity, the neutral curve for the n=0 mode vanishes, and at 65%, the neutral curve for the n=1 mode vanishes. For a stationary inner cylinder the asymmetric modes are generally the least stable, though this conclusion does depend on the magnitude of κ. As κ→1 the axisymmetric mode is found to be the most dangerous.

  18. Velocity of Sound

    ERIC Educational Resources Information Center

    Gillespie, A.

    1975-01-01

    Describes a method for the determination of the velocity of sound using a dual oscilloscope on which is displayed the sinusoidal input into a loudspeaker and the signal picked up by a microphone. (GS)

  19. Near wake velocity profiles

    SciTech Connect

    Porterio, J.L.F.; Page, R.H.; Przirembel, C.E.G.

    1984-02-01

    The development of the wake velocity profile behind a cylindrical blunt based body aligned with a subsonic uniform stream was experimentally investigated as a function of the momentum thickness of the approaching boundary layer and the transfer of mass into the recirculating region. Tests were conducted at M = 0.11 in an interference-free wind tunnel utilizing an upstream support system. Results indicate that the width of the wake increases with the thickness of the boundary layer while the velocity at the centerline decreases. Near wake mass transfer was found to alter centerline velocities while the width of the wake was not significantly altered. Wake centerline velocity development as a function of boundary layer thickness is presented for distances up to three diameters from the base.

  20. High Velocity Gas Gun

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  1. Spectra of Cas A's Highest Velocity Ejecta

    NASA Astrophysics Data System (ADS)

    Fesen, Robert A.; Milisavljevic, Dan

    2010-08-01

    The young age and close distance of the Galactic supernova remnant Cassiopeia A (Cas A) make it perhaps our best case study and clearest look at the explosion dynamics of a core-collapse supernova (CCSN). Interestingly, Cas A exhibits two nearly opposing streams of high velocity ejecta or `jets' in its NE and SW regions racing outward at speeds more than twice that of the main shell. The nature of these jets, however, and their possible association with an aspherical supernova explosion mechanism is controversial. A handful of existing low-resolution spectra of outer knots in the NE jet display chemical abundances hinting at an origin from the S-Si-Ca- Ar rich layer deep inside the progenitor. If these abundances could be firmly established in both the NE and SW jets, it would be very strong evidence in support of a highly asymmetrical explosion engine for Cas A's progenitor and, in turn, for CCSNe in general. We request KPNO 4m telescope + MARS time to obtain high quality multi-object spectroscopy of Cas A's highest velocity ejecta to measure their nitrogen, sulfur, oxygen, calcium, and argon abundances. These spectra will be analyzed with the metal-rich shock models of J. Raymond and then compared to current sets of CCSN models paying particular attention to knot composition vs. ejection velocity and ejecta mixing.

  2. Nondeterministic self-assembly with asymmetric interactions

    NASA Astrophysics Data System (ADS)

    Tesoro, S.; Göpfrich, K.; Kartanas, T.; Keyser, U. F.; Ahnert, S. E.

    2016-08-01

    We investigate general properties of nondeterministic self-assembly with asymmetric interactions, using a computational model and DNA tile assembly experiments. By contrasting symmetric and asymmetric interactions we show that the latter can lead to self-limiting cluster growth. Furthermore, by adjusting the relative abundance of self-assembly particles in a two-particle mixture, we are able to tune the final sizes of these clusters. We show that this is a fundamental property of asymmetric interactions, which has potential applications in bioengineering, and provides insights into the study of diseases caused by protein aggregation.

  3. Regenerating a symmetry in asymmetric dark matter.

    PubMed

    Buckley, Matthew R; Profumo, Stefano

    2012-01-01

    Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe. PMID:22304253

  4. Regenerating a symmetry in asymmetric dark matter.

    PubMed

    Buckley, Matthew R; Profumo, Stefano

    2012-01-01

    Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe.

  5. Nondeterministic self-assembly with asymmetric interactions.

    PubMed

    Tesoro, S; Göpfrich, K; Kartanas, T; Keyser, U F; Ahnert, S E

    2016-08-01

    We investigate general properties of nondeterministic self-assembly with asymmetric interactions, using a computational model and DNA tile assembly experiments. By contrasting symmetric and asymmetric interactions we show that the latter can lead to self-limiting cluster growth. Furthermore, by adjusting the relative abundance of self-assembly particles in a two-particle mixture, we are able to tune the final sizes of these clusters. We show that this is a fundamental property of asymmetric interactions, which has potential applications in bioengineering, and provides insights into the study of diseases caused by protein aggregation. PMID:27627332

  6. Nondeterministic self-assembly with asymmetric interactions.

    PubMed

    Tesoro, S; Göpfrich, K; Kartanas, T; Keyser, U F; Ahnert, S E

    2016-08-01

    We investigate general properties of nondeterministic self-assembly with asymmetric interactions, using a computational model and DNA tile assembly experiments. By contrasting symmetric and asymmetric interactions we show that the latter can lead to self-limiting cluster growth. Furthermore, by adjusting the relative abundance of self-assembly particles in a two-particle mixture, we are able to tune the final sizes of these clusters. We show that this is a fundamental property of asymmetric interactions, which has potential applications in bioengineering, and provides insights into the study of diseases caused by protein aggregation.

  7. Sensitivity to Auditory Velocity Contrast.

    PubMed

    Locke, Shannon M; Leung, Johahn; Carlile, Simon

    2016-06-13

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static "snapshot" model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation.

  8. M&B 28,767: a potent anti-secretory and anti-ulcer PG analogue. A comparative study with 16, 16' dimethyl PGE2 methylester.

    PubMed

    Banerjee, A K; Christmas, A J; Crowshaw, K; Heazell, M A; Ivers-Read, G C; Saunders, L C; Wyatt, D

    1984-12-17

    M&B 28,767 [(+/-)11-deoxy-16-phenoxy-omega-tetranor PGE1] and 16, 16'-dimethyl PGE2 methylester (DMPG) were compared for their effects on gastric acid secretion (GAS) and gastric ulceration (GU), employing various laboratory models. In anaesthetised rats, GAS was stimulated by a continuous i.v. infusion of pentagastrin (30 micrograms/kg/h), and PG analogues were perfused through the stomach for 1 h. M&B 28,767 (3-15 micrograms/kg/h) and DMPG (3-60 micrograms/kg/h) reduced GAS in a dose-related manner, the ED50 values being 4 and 15 micrograms/kg/h respectively. In conscious rats possessing indwelling gastric cannulae, oral doses of M&B 28,767 (0.025-0.1 microgram/kg) and DMPG (0.50-1.0 microgram/kg) caused a prolonged inhibition of pentagastrin-stimulated GAS. M&B 28,767 was 17 times more potent than DMPG; the respective ED50 values were 0.036 and 0.6 microgram/kg. Indomethacin-induced ulceration in rats, was reduced by both M&B 28,767 and DMPG; the respective ED50 values being 3.0 and 0.8 micrograms/kg. Both compounds given orally increased gastrointestinal motility in mice; M&B 28,767 (1-3 mg/kg) and DMPG (0.1-0.3 mg/kg) caused diarrhoea, the former being about 0.1 times as potent as the latter. In another test, M&B 28,767 (0.5-5.0 mg/kg) and DMPG (10-40 micrograms/kg) overcame morphine-induced constipation in a dose-related manner, the respective ED50s being 0.9-1.4 mg/kg and 20-40 micrograms/kg. Thus, M&B 28,767 had a better profile of activity than DMPG as an antisecretory and antiulcer agent.

  9. Asymmetric total synthesis of vindoline.

    PubMed

    Kato, Daisuke; Sasaki, Yoshikazu; Boger, Dale L

    2010-03-24

    A concise asymmetric total synthesis of (-)-vindoline (1) is detailed based on a tandem intramolecular [4+2]/[3+2] cycloaddition cascade of a 1,3,4-oxadiazole inspired by the natural product structure, in which the tether linking the initiating dienophile and oxadiazole bears a chiral substituent that controls the facial selectivity of the initiating Diels-Alder reaction and sets absolute stereochemistry of the remaining six stereocenters in the cascade cycloadduct. This key reaction introduces three rings and four C-C bonds central to the pentacyclic ring system setting all six stereocenters and introducing essentially all the functionality found in the natural product in a single step. Implementation of the approach also required the development of a unique ring expansion reaction to provide a six-membered ring suitably functionalized for introduction of the Delta (6, 7)-double bond found in the core structure of vindoline and defined our use of a protected hydroxymethyl group as the substituent used to control the stereochemical course of the cycloaddition cascade.

  10. Chaos suppression through asymmetric coupling

    NASA Astrophysics Data System (ADS)

    Bragard, J.; Vidal, G.; Mancini, H.; Mendoza, C.; Boccaletti, S.

    2007-12-01

    We study pairs of identical coupled chaotic oscillators. In particular, we have used Roessler (in the funnel and no funnel regimes), Lorenz, and four-dimensional chaotic Lotka-Volterra models. In all four of these cases, a pair of identical oscillators is asymmetrically coupled. The main result of the numerical simulations is that in all cases, specific values of coupling strength and asymmetry exist that render the two oscillators periodic and synchronized. The values of the coupling strength for which this phenomenon occurs is well below the previously known value for complete synchronization. We have found that this behavior exists for all the chaotic oscillators that we have used in the analysis. We postulate that this behavior is presumably generic to all chaotic oscillators. In order to complete the study, we have tested the robustness of this phenomenon of chaos suppression versus the addition of some Gaussian noise. We found that chaos suppression is robust for the addition of finite noise level. Finally, we propose some extension to this research.

  11. Numerical study of Williamson nano fluid flow in an asymmetric channel

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Nadeem, S.; Lee, Changhoon; Khan, Zafar Hayat; Haq, Rizwan Ul

    This article investigates with the peristaltic flow of a Williamson nano fluid in an asymmetric channel. The related modeling of the problem has been done in Cartesian coordinate system. Problem has been simplified with the reliable assumptions i.e. long wave length and small Reynolds number. Numerical solutions have been evaluated for stream function, velocity profile, temperature profile, nano particle phenomena and pressure rise. Graphical results have been presented and discussed for various involved parameters.

  12. Velocities in Solar Pores

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  13. Asymmetrically charged carbon nanotubes by controlled functionalization.

    PubMed

    Peng, Qiang; Qu, Liangti; Dai, Liming; Park, Kyoungweon; Vaia, Richard A

    2008-09-23

    Surface modification of carbon nanotubes (CNTs) has been widely studied for some years. However, the asymmetric modification of individual CNTs with different molecular species/nanoparticles at the two end-tips or along the nanotube length is only a recent development. As far as we are aware, no attempt has so far been made to asymmetrically functionalize individual CNTs with moieties of opposite charges. In this paper, we have demonstrated a simple, but effective, asymmetric modification of the sidewall of CNTs with oppositely charged moieties by plasma treatment and pi-pi stacking interaction. The as-prepared asymmetrically sidewall-functionalized CNTs can be used as a platform for bottom-up self-assembly of complex structures or can be charge-selectively self-assembled onto and/or between electrodes with specific biases under an appropriate applied voltage for potential device applications. PMID:19206422

  14. Asymmetric cryptography based on wavefront sensing.

    PubMed

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  15. GPM Sees Tropical Storm Danny's Asymmetric Rainfall

    NASA Video Gallery

    On Aug. 19, GPM saw Danny's rain structure was still asymmetric as noted by the large rain band (identified by the green arc indicating moderate rain) being located mainly on the eastern side of th...

  16. Optimization of backward giant circle technique on the asymmetric bars.

    PubMed

    Hiley, Michael J; Yeadon, Maurice R

    2007-11-01

    The release window for a given dismount from the asymmetric bars is the period of time within which release results in a successful dismount. Larger release windows are likely to be associated with more consistent performance because they allow a greater margin for error in timing the release. A computer simulation model was used to investigate optimum technique for maximizing release windows in asymmetric bars dismounts. The model comprised four rigid segments with the elastic properties of the gymnast and bar modeled using damped linear springs. Model parameters were optimized to obtain a close match between simulated and actual performances of three gymnasts in terms of rotation angle (1.5 degrees ), bar displacement (0.014 m), and release velocities (<1%). Three optimizations to maximize the release window were carried out for each gymnast involving no perturbations, 10-ms perturbations, and 20-ms perturbations in the timing of the shoulder and hip joint movements preceding release. It was found that the optimizations robust to 20-ms perturbations produced release windows similar to those of the actual performances whereas the windows for the unperturbed optimizations were up to twice as large. It is concluded that robustness considerations must be included in optimization studies in order to obtain realistic results and that elite performances are likely to be robust to timing perturbations of the order of 20 ms. PMID:18089928

  17. The cosmology of asymmetric brane modified gravity

    SciTech Connect

    O'Callaghan, Eimear; Gregory, Ruth; Pourtsidou, Alkistis E-mail: ppxap1@nottingham.ac.uk

    2009-09-01

    We consider the asymmetric branes model of modified gravity, which can produce late time acceleration of the universe and compare the cosmology of this model to the standard ΛCDM model and to the DGP braneworld model. We show how the asymmetric cosmology at relevant physical scales can be regarded as a one-parameter extension of the DGP model, and investigate the effect of this additional parameter on the expansion history of the universe.

  18. Asymmetric cryorolling for fabrication of nanostructural aluminum sheets

    PubMed Central

    YU, Hailiang; LU, Cheng; TIEU, Kiet; LIU, Xianghua; SUN, Yong; YU, Qingbo; KONG, Charlie

    2012-01-01

    Nanostructural Al 1050 sheets were produced using a novel method of asymmetric cryorolling under ratios of upper and down rolling velocities (RUDV) of 1.1, 1.2, 1.3, and 1.4. Sheets were rolled to about 0.17 mm from 1.5 mm. Both the strength and ductility of Al 1050 sheets increase with RUDVs. Tensile strength of Al sheets with the RUDV 1.4 is larger 22.3% of that for RUDV 1.1, which is 196 MPa. The TEM observations show the grain size is 360 nm when the RUDV is 1.1, and 211 nm for RUDV 1.4. PMID:23101028

  19. Quantitative velocity modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  20. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasmoid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  1. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S. C.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasm! oid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  2. Cirrus Crystal Terminal Velocities.

    NASA Astrophysics Data System (ADS)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  3. Advanced PDV velocity extraction

    NASA Astrophysics Data System (ADS)

    Dolan, Daniel; Ao, Tommy; Furnish, Michael

    2015-06-01

    While PDV has become a standard diagnostic, reliable velocity extraction remains challenging. Measurements with multiple real/apparent velocities are intrinsically difficult to analyze, and overlapping frequency components invalidate standard extraction methods. This presentation describes an advanced analysis technique where overlapping frequency components are resolved in the complex Fourier spectrum. Practical matters--multiple region of interest selection, component intersection, and shock transitions--will also be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  4. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  5. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  6. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  7. MSE velocity survey

    NASA Astrophysics Data System (ADS)

    Schimd, C.; Courtois, H.; Koda, J.

    2015-12-01

    A huge velocity survey based on the Maunakea Spectroscopic Explorer facility (MSE) is proposed, aiming at investigating the structure and dynamics of the cosmic web over 3π steradians up to ˜1 Gpc and at unprecedented spatial resolution, its relationship with the galaxy formation process, and the bias between galaxies and dark matter during the last three billions years. The cross-correlation of velocity and density fields will further allow the probe any deviation from General Relativity by measuring the the linear-growth rate of cosmic structures at precision competitive with high-redshift spectroscopic redshift surveys.

  8. On the wake flow of asymmetrically beveled trailing edges

    NASA Astrophysics Data System (ADS)

    Guan, Yaoyi; Pröbsting, Stefan; Stephens, David; Gupta, Abhineet; Morris, Scott C.

    2016-05-01

    Trailing edge and wake flows are of interest for a wide range of applications. Small changes in the design of asymmetrically beveled or semi-rounded trailing edges can result in significant difference in flow features which are relevant for the aerodynamic performance, flow-induced structural vibration and aerodynamically generated sound. The present study describes in detail the flow field characteristics around a family of asymmetrically beveled trailing edges with an enclosed trailing-edge angle of 25° and variable radius of curvature R. The flow fields over the beveled trailing edges are described using data obtained by particle image velocimetry (PIV) experiments. The flow topology for different trailing edges was found to be strongly dependent on the radius of curvature R, with flow separation occurring further downstream as R increases. This variation in the location of flow separation influences the aerodynamic force coefficients, which were evaluated from the PIV data using a control volume approach. Two-point correlations of the in-plane velocity components are considered to assess the structure in the flow field. The analysis shows large-scale coherent motions in the far wake, which are associated with vortex shedding. The wake thickness parameter yf is confirmed as an appropriate length scale to characterize this large-scale roll-up motion in the wake. The development in the very near wake was found to be critically dependent on R. In addition, high-speed PIV measurements provide insight into the spectral characteristics of the turbulent fluctuations. Based on the time-resolved flow field data, the frequency range associated with the shedding of coherent vortex pairs in the wake is identified. By means of time-correlation of the velocity components, turbulent structures are found to convect from the attached or separated shear layers without distinct separation point into the wake.

  9. Modeling Terminal Velocity

    ERIC Educational Resources Information Center

    Brand, Neal; Quintanilla, John A.

    2013-01-01

    Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…

  10. Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients

    PubMed Central

    2010-01-01

    Introduction Systemic lupus erythematosus (SLE) is characterized by B cell hyper-activation and auto-reactivity resulting in pathogenic auto-antibody generation. The phenotypic analysis of blood B cell subsets can be used to understand these alterations. Methods The combined detection of CD19, CD27 and IgD (or IgM) by flow cytometry (FC) analysis delineates five well-defined blood B cell-subsets: naive, switched (S) memory, double negative (DN) memory and CD27 IgD IgM (non-switched memory) B lymphocytes, and plasma cells (PCs). This phenotypic study was performed in 69 consecutive SLE patients and 31 healthy controls. Results SLE patients exhibited several abnormalities in the distribution of these B cell subsets, including elevated levels of DN memory B cells and PCs, and decreased CD27 IgD IgM B cells. Active SLE patients also showed decreased presence of S memory B cells and increased proportions of naive B lymphocytes. Nevertheless, when the patients in remission who did not require treatment were studied separately, the only remaining abnormality was a reduction of the CD27 IgD IgM B cell-subset detectable in most of these patients. The level of reduction of CD27 IgD IgM B cells was associated with elevated values of serum SLE auto-antibodies. Further analysis of this latter B cell-subset specifically showed increased expression of CD80, CD86, CD95, 9G4 idiotype and functional CXCR3 and CXCR4. Conclusions The presence of a reduced blood CD27 IgD IgM B cell-subset, exhibiting an activated state and enriched for auto-reactivity, is a consistent B cell abnormality in SLE. These findings suggest that CD27 IgD IgM B lymphocytes play a role in the pathogenesis of this disease. PMID:20525218

  11. Simulating photospheric Doppler velocity fields

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1988-01-01

    A method is described for constructing artificial data that realistically simulate photospheric velocity fields. The velocity fields include rotation, differential rotation, meridional circulation, giant cell convection, supergranulation, convective limb shift, p-mode oscillations, and observer motion. Data constructed by this method can be used for testing algorithms designed to extract and analyze these velocity fields in real Doppler velocity data.

  12. Evolution of planetesimal velocities

    NASA Technical Reports Server (NTRS)

    Stewart, Glen R.; Wetherill, George W.

    1987-01-01

    A self-consistent set of equations for the velocity evolution of a general planetesimal population is presented. The equations are given in a form convenient for calculations of the early stages of planetary accumulation when it is necessary to model the planetesimal swarm by methods of gas dynamics, rather than follow the orbital evolution of individual bodies. Steady state velocities of a simple planetesimal population consisting of two different sizes of bodies are calculated. Dynamical friction is found to be an important mechanism for transferring kinetic energy from the larger planetesimals to the smaller ones. When the small planetesimals are relatively abundant, gas drag and inelastic collisions among the smaller bodies are of comparable importance for dissipating energy from the population.

  13. Evolution of planetesimal velocities

    NASA Astrophysics Data System (ADS)

    Stewart, G. R.; Wetherill, G. W.

    1988-06-01

    A self-consistent set of equations for the velocity evolution of a general planetesimal population is presented. Dynamical friction is found to be an important mechanism for transferring kinetic energy from the larger planetesimals to the smaller ones, providing an energy source for the small planetesimals that is comparable to that provided by the viscous stirring process. When small planetesimals are relatively abundant, gas drag and inelastic collisions among the smaller bodies are of comparable importance for dissipating energy from the population.

  14. [Development of new methods in asymmetric reactions and their applications].

    PubMed

    Node, Manabu

    2002-01-01

    Several novel methods using chiral reagents and biocatalysts for asymmetric reactions are described. Among those reactions, asymmetric reduction via a novel tandem Michael addition/Meerwein-Ponndorf-Verley reduction of acyclic alpha,beta-unsaturated ketones using a chiral mercapto alcohol, asymmetric synthesis of allene-1,3-dicarboxylate via crystallization induced asymmetric transformation, and improved asymmetric nitroolefination of lactones and lactames at alpha-carbon using new chiral reagents were developed. In the reactions using biocatalysts, asymmetric dealkoxycarbonylation of bicyclic beta-keto diesters having sigma-symmetry with lipase or esterase to give optically active beta-keto esters, the asymmetric reduction of bicyclic 1,3-diketones having sigma-symmetry with Baker's yeast to give optically active keto alcohols, and the asymmetric aldol reaction of glycine with threonine aldolase were also developed. The above mentioned products were effectively utilized as chiral building blocks for the asymmetric synthesis of natural products and drugs.

  15. IS FS Tau B DRIVING AN ASYMMETRIC JET?

    SciTech Connect

    Liu, Chun-Fan; Shang, Hsien; Takami, Michihiro; Yan, Chi-Hung; Wang, Shiang-Yu; Ohashi, Nagayoshi; Pyo, Tae-Soo; Walter, Frederick M.; Hayashi, Masahiko

    2012-04-10

    FS Tau B is one of the few T Tauri stars that possess a jet and a counterjet as well as an optically visible cavity wall. We obtained images and spectra of its jet-cavity system in the near-infrared H and K bands using the Subaru/Infrared Camera and Spectrograph and detected the jet and the counterjet in the [Fe II] 1.644 {mu}m line for the first time. Within 2'' the blueshifted jet is brighter, whereas beyond {approx}5'' the redshifted counterjet dominates the [Fe II] emission. The innermost blueshifted knot is spectrally resolved to have a large line width of {approx}110 km s{sup -1}, while the innermost redshifted knot appears spectrally unresolved. The velocity ratio of the jet to the counterjet is {approx}1.34, which suggests that FS Tau B is driving an asymmetric jet, similar to those found in several T Tauri stars. Combining with optical observations in the literature, we showed that the blueshifted jet has a lower density and higher excitation than the redshifted counterjet. We suggest that the asymmetry in brightness and velocity is the manifestation of a bipolar outflow driving at different mass-loss rates, while maintaining balance of linear momentum. A full explanation of the asymmetry in the FS Tau B system awaits detail modeling and further investigation of the kinematic structure of the wind-associated cavity walls.

  16. Keep-Left Behavior Induced by Asymmetrically Profiled Walls

    NASA Astrophysics Data System (ADS)

    Oliveira, C. L. N.; Vieira, A. P.; Helbing, D.; Andrade, J. S.; Herrmann, H. J.

    2016-01-01

    We show, computationally and analytically, that asymmetrically shaped walls can organize the flow of pedestrians driven in opposite directions through a corridor. Precisely, a two-lane ordered state emerges in which people always walk on the left-hand side (or right-hand side), controlled by the system's parameters. This effect depends on features of the channel geometry, such as the asymmetry of the profile and the channel width, as well as on the density and the drift velocity of pedestrians, and the intensity of noise. We investigate in detail the influence of these parameters on the flow and discover a crossover between ordered and disordered states. Our results show that an ordered state only appears within a limited range of drift velocities. Moreover, increasing noise may suppress such flow organization, but the flow is always sustained. This is in contrast with the "freezing by heating" phenomenon according to which pedestrians tend to clog in smooth channels for strong noise [Phys. Rev. Lett. 84, 1240 (2000)]. Therefore, the ratchetlike effect proposed here acts on the system not only to induce a "keep-left" behavior but also to prevent the freezing by heating clogging phenomenon. Besides pedestrian flow, this new phenomenon has other potential applications in microfluidics systems.

  17. Asymmetric soft-error resistant memory

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Perlman, Marvin (Inventor)

    1991-01-01

    A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code.

  18. Asymmetric Magnon Excitation by Spontaneous Toroidal Ordering

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2016-05-01

    The effects of spontaneous toroidal ordering on magnetic excitation are theoretically investigated for a localized spin model that includes a staggered Dzyaloshinsky-Moriya interaction and anisotropic exchange interactions, which arise from the antisymmetric spin-orbit coupling and the multiorbital correlation effect. We show that the model exhibits a Néel-type antiferromagnetic order, which simultaneously accompanies a ferroic toroidal order. We find that the occurrence of toroidal order modulates the magnon dispersion in an asymmetric way with respect to the wave number: a toroidal dipole order on the zigzag chain leads to a band-bottom shift, while a toroidal octupole order on the honeycomb lattice gives rise to a valley splitting. These asymmetric magnon excitations could be a source of unusual magnetic responses, such as nonreciprocal magnon transport. A variety of modulations are discussed while changing the lattice and magnetic symmetries. The implications regarding candidate materials for asymmetric magnon excitations are presented.

  19. Active cavitation detection of asymmetrical inertial cavitation

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2001-05-01

    The active cavitation detector (ACD) developed in Bob Apfel's laboratory has often been employed to quantify pressure thresholds for inception of symmetrical inertial cavitation of microbubbles. In the current application, however, a 30-MHz ACD interrogates individual echo-contrast agent bubbles adhering to a Mylar(TM) sheet that are driven into asymmetrical (jet-producing) collapse by a 1-MHz toneburst (>1 MPa pp). The resulting ACD output suggests that asymmetrical bubble collapse is slower than symmetrical collapse, producing less total radiated acoustic power. ACD output mixed with reference sinusoids at 30 MHz and low pass filtered yields Doppler signals that may be useful in quantifying asymmetrical collapses under biomedically relevant conditions, such as on endothelial walls.

  20. Asymmetric Membrane Osmotic Capsules for Terbutaline Sulphate

    PubMed Central

    Gobade, N. G.; Koland, Marina; Harish, K. H.

    2012-01-01

    The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist widely used in the treatment of asthma. The oral dosage regimen of terbutaline sulphate is 5 mg twice or thrice daily, the plasma half-life is approximate 3-4 h and it produces GI irritation with extensive first pass metabolism. Hence, terbutaline sulphate was chosen as a model drug with an aim to develop controlled release system. Different formulations of ethyl cellulose were prepared by phase inversion technique using different concentrations of sorbitol as pore forming agent. It was found that the thickness of the prepared asymmetric membrane capsules was increased with increase in concentration of ethyl cellulose and pore forming agent, i.e. sorbitol. The dye release study in water and 10% sodium chloride solution indicates that, the asymmetric membrane capsules follow osmotic principle to release content. The pores formed due to sorbitol were confirmed by microscopic observation of transverse section of capsule membrane. Data of in vitro release study of terbutaline sulphate from asymmetric membrane capsules indicated that, the capsules prepared with 10% and 12.5% of ethyl cellulose and 25% of sorbitol released as much as 97.44% and 76.27% in 12 h, respectively with zero order release rate. Hence asymmetric membrane capsule of 10% ethyl cellulose and 25% of sorbitol is considered as optimum for controlled oral delivery of terbutaline sulphate. PMID:23204625

  1. Asymmetric membrane osmotic capsules for terbutaline sulphate.

    PubMed

    Gobade, N G; Koland, Marina; Harish, K H

    2012-01-01

    The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist widely used in the treatment of asthma. The oral dosage regimen of terbutaline sulphate is 5 mg twice or thrice daily, the plasma half-life is approximate 3-4 h and it produces GI irritation with extensive first pass metabolism. Hence, terbutaline sulphate was chosen as a model drug with an aim to develop controlled release system. Different formulations of ethyl cellulose were prepared by phase inversion technique using different concentrations of sorbitol as pore forming agent. It was found that the thickness of the prepared asymmetric membrane capsules was increased with increase in concentration of ethyl cellulose and pore forming agent, i.e. sorbitol. The dye release study in water and 10% sodium chloride solution indicates that, the asymmetric membrane capsules follow osmotic principle to release content. The pores formed due to sorbitol were confirmed by microscopic observation of transverse section of capsule membrane. Data of in vitro release study of terbutaline sulphate from asymmetric membrane capsules indicated that, the capsules prepared with 10% and 12.5% of ethyl cellulose and 25% of sorbitol released as much as 97.44% and 76.27% in 12 h, respectively with zero order release rate. Hence asymmetric membrane capsule of 10% ethyl cellulose and 25% of sorbitol is considered as optimum for controlled oral delivery of terbutaline sulphate. PMID:23204625

  2. Asymmetric acoustic transmission in multiple frequency bands

    NASA Astrophysics Data System (ADS)

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-11-01

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  3. The Direct Catalytic Asymmetric Aldol Reaction

    PubMed Central

    Brindle, Cheyenne S.

    2013-01-01

    Asymmetric aldol reactions are a powerful method for the construction of carbon-carbon bonds in an enantioselective fashion. Historically this reaction has been performed in a stoichiometric fashion to control the various aspects of chemo-, diastereo-, regio- and enantioselectivity, however, a more atom economical approach would unite high selectivity with the use of only a catalytic amount of a chiral promoter. This critical review documents the development of direct catalytic asymmetric aldol methodologies, including organocatalytic and metal-based strategies. New methods have improved the reactivity, selectivity and substrate scope of the direct aldol reaction and enabled the synthesis of complex molecular targets PMID:20419212

  4. Asymmetric counter propagation of domain walls

    NASA Astrophysics Data System (ADS)

    Andrade-Silva, I.; Clerc, M. G.; Odent, V.

    2016-07-01

    Far from equilibrium systems show different states and domain walls between them. These walls, depending on the type of connected equilibria, exhibit a rich spatiotemporal dynamics. Here, we investigate the asymmetrical counter propagation of domain walls in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the shape and speed of the domain walls. Based on the molecular orientation, we infer that the counter propagative walls have different elastic deformations. These deformations are responsible of the asymmetric counter propagating fronts. Theoretically, based on symmetry arguments, we propose a simple bistable model under the influence of a nonlinear gradient, which qualitatively describes the observed dynamics.

  5. Homogeneous asymmetric catalysis in fragrance chemistry.

    PubMed

    Ciappa, Alessandra; Bovo, Sara; Bertoldini, Matteo; Scrivanti, Alberto; Matteoli, Ugo

    2008-06-01

    Opposite enantiomers of a chiral fragrance may exhibit different olfactory activities making a synthesis in high enantiomeric purity commercially and scientifically interesting. Accordingly, the asymmetric synthesis of four chiral odorants, Fixolide, Phenoxanol, Citralis, and Citralis Nitrile, has been investigated with the aim to develop practically feasible processes. In the devised synthetic schemes, the key step that leads to the formation of the stereogenic center is the homogeneous asymmetric hydrogenation of a prochiral olefin. By an appropriate choice of the catalyst and the reaction conditions, Phenoxanol, Citralis, and Citralis Nitrile were obtained in high enantiomeric purity, and odor profiles of the single enantiomers were determined.

  6. Asymmetric and Unilateral Hearing Loss in Children

    PubMed Central

    Vila, Peter; Lieu, Judith E. C.

    2015-01-01

    Asymmetric and unilateral hearing losses in children have traditionally been underappreciated, but health care practitioners are now beginning to understand their effect on development and the underlying pathophysiologic mechanisms. The common wisdom among medical and educational professionals has been that at least one normal hearing or near-normal hearing ear was sufficient for typical speech and language development in children. The objective of this review is to illustrate to the non-otolaryngologist the consequences of asymmetric and unilateral hearing loss in children on developmental and educational outcomes. In the process, etiology, detection, and management are discussed. Lastly, implications for further research are considered. PMID:26004144

  7. Asymmetric acoustic transmission in multiple frequency bands

    SciTech Connect

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  8. Asymmetric catalysis with short-chain peptides.

    PubMed

    Lewandowski, Bartosz; Wennemers, Helma

    2014-10-01

    Within this review article we describe recent developments in asymmetric catalysis with peptides. Numerous peptides have been established in the past two decades that catalyze a wide variety of transformations with high stereoselectivities and yields, as well as broad substrate scope. We highlight here catalytically active peptides, which have addressed challenges that had thus far remained elusive in asymmetric catalysis: enantioselective synthesis of atropoisomers and quaternary stereogenic centers, regioselective transformations of polyfunctional substrates, chemoselective transformations, catalysis in-flow and reactions in aqueous environments.

  9. Asymmetric multiscale behavior in PM2.5 time series: Based on asymmetric MS-DFA

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Ni, Zhiwei; Ni, Liping

    2016-11-01

    Particulate matter with an aerodynamic diameter of 2.5 mm or less (PM2.5) is one of the most serious air pollution, considered most harmful for people by World Health Organisation. In this paper, we utilized the asymmetric multiscale detrended fluctuation analysis (A-MSDFA) method to explore the existence of asymmetric correlation properties for PM2.5 daily average concentration in two USA cities (Fresno and Los Angeles) and two Chinese cities (Hong Kong and Shanghai), and to assess the properties of these asymmetric correlations. The results show the existences of asymmetric correlations, and the degree of asymmetric for two USA cities is stronger than that of two Chinese cities. Further, most of the local exponent β(n) are smaller than 0.5, which indicates the existence of anti-persistent long-range correlation for PM2.5 time series in four cities. In addition, we reanalyze the asymmetric correlation by the A-MSDFA method with secant rolling windows of different sizes, which can investigate dynamic changes in the multiscale correlation for PM2.5 time series with changing window size. Whatever window sizes, the correlations are asymmetric and display smaller asymmetries at small scales and larger asymmetries at large scales. Moreover, the asymmetries become increasingly weaker with the increase of window sizes.

  10. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes

    NASA Astrophysics Data System (ADS)

    Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji

    2016-09-01

    Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid–lipid and lipid–membrane protein interactions involved in the regulation of cellular functions.

  11. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes.

    PubMed

    Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji

    2016-09-01

    Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions. PMID:27554415

  12. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes

    NASA Astrophysics Data System (ADS)

    Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji

    2016-09-01

    Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions.

  13. Velocity distribution of neutral species during magnetron sputtering by Fabry-Perot interferometry

    SciTech Connect

    Britun, N.; Han, J. G.; Oh, S.-G.

    2008-04-07

    The velocity distribution of a metallic neutral species sputtered in a dc magnetron discharge was measured using a planar Fabry-Perot interferometer and a hollow cathode lamp as a reference source. The measurement was performed under different angles of view relative to the target surface. The velocity distribution function in the direction perpendicular to the target becomes asymmetrical as the Ar pressure decreases, whereas it remains nearly symmetrical when the line of sight is parallel to the target surface. The average velocity of the sputtered Ti atoms was measured to be about 2 km/s.

  14. Measurement of the flow velocity in unmagnetized plasmas by counter propagating ion-acoustic waves

    SciTech Connect

    Ma, J.X.; Li Yangfang; Xiao Delong; Li Jingju; Li Yiren

    2005-06-15

    The diffusion velocity of an inhomogeneous unmagnetized plasma is measured by means of the phase velocities of ion-acoustic waves propagating along and against the direction of the plasma flow. Combined with the measurement of the plasma density distributions by usual Langmuir probes, the method is applied to measure the ambipolar diffusion coefficient and effective ion collision frequency in inhomogeneous plasmas formed in an asymmetrically discharged double-plasma device. Experimental results show that the measured flow velocities, diffusion coefficients, and effective collision frequencies are in agreement with ion-neutral collision dominated diffusion theory.

  15. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  16. Line-of-Sight Velocity Distributions of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Bender, R.; Saglia, R. P.; Gerhard, O. E.

    1994-08-01

    The line-of-sight velocity distributions (LOSVDs) have been measured to > R_e_/2 along the major axes of 44 elliptical galaxies (more than 80 per cent of all ellipticals north of δ = -10^deg^ and brighter than B_T_ = 12.0), together with stellar rotational velocity and velocity dispersion profiles. For 19 of these 44 objects, minor axis profiles are also given. Monte Carlo simulations have been used to estimate errors. LOSVDs are found to deviate from Gaussians by no more than ~10 per cent. If rotation is present, LOSVDs are asymmetric with the prograde wings being always steeper than the retrograde wings. The degree of asymmetry (measured by the H_3_ Gauss-Hermite coefficient) correlates with ν/σ. Round and boxy ellipticals have lower asymmetries than flat and discy ones. On the whole, both types must have intrinsically asymmetric velocity distributions. Symmetric deviations (measured by the H_4_ Gauss-Hermite coefficient) are generally smaller than asymmetric ones. On the basis of the observed LOSVD shapes, the validity of two- integral models can be ruled out for most of the non-discy objects observed here (discy ellipticals require detailed modelling before similar conclusions can be drawn). Discy ellipticals have H_3_ and H_4_ major and minor axis profiles which appear consistent with a bulge+disc superposition. The observed H_4_ profile in M87 argues for radially anisotropic spherical or oblate models. Velocity dispersion profiles show significant individuality, but typically become flat outside R_e_/4. Major and minor axis slopes are mostly correlated one to one. We confirm that, with increasing luminosity, ellipticals become more anisotropic and that discy ellipticals have more rotational support. The Fundamental Plane of elliptical galaxies is tighter if total kinetic energy is used instead of central velocity dispersion. Both the small scatter about the Fundamental Plane and the homogenous and systematic properties of the LOSVDs imply that only a small

  17. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications. PMID:26849582

  18. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  19. Halo velocity bias

    NASA Astrophysics Data System (ADS)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2014-11-01

    It has been recently shown that any halo velocity bias present in the initial conditions does not decay to unity, in agreement with predictions from peak theory. However, this is at odds with the standard formalism based on the coupled-fluids approximation for the coevolution of dark matter and halos. Starting from conservation laws in phase space, we discuss why the fluid momentum conservation equation for the biased tracers needs to be modified in accordance with the change advocated in Baldauf et al. Our findings indicate that a correct description of the halo properties should properly take into account peak constraints when starting from the Vlasov-Boltzmann equation.

  20. High velocity acoustics

    NASA Astrophysics Data System (ADS)

    Legendre, R.

    1992-09-01

    Different types of aerodynamically generated noise of practical interest are examined using a novel, physically based, approach. A simple source model for turbulence noise is proposed. The prediction for turbulent mixing layer noise, produced by this model based on a simple monopole-type source mechanism, is that the radiated sound power varies as the eighth power of the relative velocity. The model is too simple to allow calculations to be carried further to the extent of determining the radiated sound power level, so that an empirical factor must still be considered, as in the case of Lighthill's formula.

  1. Asymmetric and axisymmetric dynamics of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Persing, J.; Montgomery, M. T.; McWilliams, J. C.; Smith, R. K.

    2013-05-01

    We present the results of idealized numerical experiments to examine the difference between tropical cyclone evolution in three-dimensional (3-D) and axisymmetric (AX) model configurations. We focus on the prototype problem for intensification, which considers the evolution of an initially unsaturated AX vortex in gradient-wind balance on an f-plane. Consistent with findings of previous work, the mature intensity in the 3-D model is reduced relative to that in the AX model. In contrast with previous interpretations invoking barotropic instability and related horizontal mixing processes as a mechanism detrimental to the spin-up process, the results indicate that 3-D eddy processes associated with vortical plume structures can assist the intensification process by contributing to a radial contraction of the maximum tangential velocity and to a vertical extension of tangential winds through the depth of the troposphere. These plumes contribute significantly also to the azimuthally-averaged heating rate and the corresponding azimuthal-mean overturning circulation. The comparisons show that the resolved 3-D eddy momentum fluxes above the boundary layer exhibit counter-gradient characteristics and are generally not represented properly by the subgrid-scale parameterizations in the AX configuration. The resolved eddy fluxes act to support the contraction and intensification of the maximum tangential winds. The comparisons indicate fundamental differences between convective organization in the 3-D and AX configurations for meteorologically relevant forecast time scales. While the radial and vertical gradients of the system-scale angular rotation provide a hostile environment for deep convection in the 3-D model, with a corresponding tendency to strain the convective elements in the tangential direction, deep convection in the AX model does not suffer this tendency. Also, since during the 3-D intensification process the convection has not yet organized into annular rings

  2. Asymmetric and axisymmetric dynamics of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Persing, J.; Montgomery, M. T.; McWilliams, J. C.; Smith, R. K.

    2013-12-01

    We present the results of idealized numerical experiments to examine the difference between tropical cyclone evolution in three-dimensional (3-D) and axisymmetric (AX) model configurations. We focus on the prototype problem for intensification, which considers the evolution of an initially unsaturated AX vortex in gradient-wind balance on an f plane. Consistent with findings of previous work, the mature intensity in the 3-D model is reduced relative to that in the AX model. In contrast with previous interpretations invoking barotropic instability and related horizontal mixing processes as a mechanism detrimental to the spin-up process, the results indicate that 3-D eddy processes associated with vortical plume structures can assist the intensification process by contributing to a radial contraction of the maximum tangential velocity and to a vertical extension of tangential winds through the depth of the troposphere. These plumes contribute significantly also to the azimuthally averaged heating rate and the corresponding azimuthal-mean overturning circulation. The comparisons show that the resolved 3-D eddy momentum fluxes above the boundary layer exhibit counter-gradient characteristics during a key spin-up period, and more generally are not solely diffusive. The effects of these eddies are thus not properly represented by the subgrid-scale parameterizations in the AX configuration. The resolved eddy fluxes act to support the contraction and intensification of the maximum tangential winds. The comparisons indicate fundamental differences between convective organization in the 3-D and AX configurations for meteorologically relevant forecast timescales. While the radial and vertical gradients of the system-scale angular rotation provide a hostile environment for deep convection in the 3-D model, with a corresponding tendency to strain the convective elements in the tangential direction, deep convection in the AX model does not suffer this tendency. Also, since

  3. Mach bands change asymmetrically during solar eclipses.

    PubMed

    Ross, John; Diamond, Mark R; Badcock, David R

    2003-01-01

    Observations made during two partial eclipses of the Sun show that the Mach bands on shadows cast by the Sun disappear and reappear asymmetrically as an eclipse progresses. These changes can be explained as due to changes in the shape of the penumbras of shadows as the visible portion of the Sun forms crescents of different orientation. PMID:12892435

  4. Mach bands change asymmetrically during solar eclipses.

    PubMed

    Ross, John; Diamond, Mark R; Badcock, David R

    2003-01-01

    Observations made during two partial eclipses of the Sun show that the Mach bands on shadows cast by the Sun disappear and reappear asymmetrically as an eclipse progresses. These changes can be explained as due to changes in the shape of the penumbras of shadows as the visible portion of the Sun forms crescents of different orientation.

  5. Attentional Control and Asymmetric Associative Priming

    ERIC Educational Resources Information Center

    Hutchison, Keith A.; Heap, Shelly J.; Neely, James H.; Thomas, Matthew A.

    2014-01-01

    Participants completed a battery of 3 attentional control (AC) tasks (OSPAN, antisaccade, and Stroop, as in Hutchison, 2007) and performed a lexical decision task with symmetrically associated (e.g., "sister-brother") and asymmetrically related primes and targets presented in both the forward (e.g., "atom-bomb") and backward…

  6. Stochastic Differential Games with Asymmetric Information

    SciTech Connect

    Cardaliaguet, Pierre Rainer, Catherine

    2009-02-15

    We investigate a two-player zero-sum stochastic differential game in which the players have an asymmetric information on the random payoff. We prove that the game has a value and characterize this value in terms of dual viscosity solutions of some second order Hamilton-Jacobi equation.

  7. Magnetically Retrievable Catalysts for Asymmetric Synthesis

    EPA Science Inventory

    Surface modification of magnetic nanoparticles with chiral scaffolds for asymmetric catalytic applications is an elegant way of providing a special pseudo homogenous phase which could be separated using an external magnet. In this review, we summarize the use of magnetic nanopart...

  8. Asymmetric conditional volatility in international stock markets

    NASA Astrophysics Data System (ADS)

    Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.

    2007-08-01

    Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.

  9. Asymmetric Bulkheads for Cylindrical Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Ford, Donald B.

    2007-01-01

    Asymmetric bulkheads are proposed for the ends of vertically oriented cylindrical pressure vessels. These bulkheads, which would feature both convex and concave contours, would offer advantages over purely convex, purely concave, and flat bulkheads (see figure). Intended originally to be applied to large tanks that hold propellant liquids for launching spacecraft, the asymmetric-bulkhead concept may also be attractive for terrestrial pressure vessels for which there are requirements to maximize volumetric and mass efficiencies. A description of the relative advantages and disadvantages of prior symmetric bulkhead configurations is prerequisite to understanding the advantages of the proposed asymmetric configuration: In order to obtain adequate strength, flat bulkheads must be made thicker, relative to concave and convex bulkheads; the difference in thickness is such that, other things being equal, pressure vessels with flat bulkheads must be made heavier than ones with concave or convex bulkheads. Convex bulkhead designs increase overall tank lengths, thereby necessitating additional supporting structure for keeping tanks vertical. Concave bulkhead configurations increase tank lengths and detract from volumetric efficiency, even though they do not necessitate additional supporting structure. The shape of a bulkhead affects the proportion of residual fluid in a tank that is, the portion of fluid that unavoidably remains in the tank during outflow and hence cannot be used. In this regard, a flat bulkhead is disadvantageous in two respects: (1) It lacks a single low point for optimum placement of an outlet and (2) a vortex that forms at the outlet during outflow prevents a relatively large amount of fluid from leaving the tank. A concave bulkhead also lacks a single low point for optimum placement of an outlet. Like purely concave and purely convex bulkhead configurations, the proposed asymmetric bulkhead configurations would be more mass-efficient than is the flat

  10. The velocity distribution of cometary hydrogen - Evidence for high velocities?

    NASA Technical Reports Server (NTRS)

    Brown, Michael E.; Spinrad, Hyron

    1993-01-01

    The Hamilton Echelle spectrograph on the 3-m Shane telescope at Lick Observatory was used to obtain high-velocity and spatial resolution 2D spectra of H-alpha 6563-A emission in Comets Austin and Levy. The presence of the components expected from water dissociation and collisional thermalization in the inner coma is confirmed by the hydrogen velocity distribution. In Comet Austin, the potential high-velocity hydrogen includes velocities of up to about 40 km/s and is spatially symmetric with respect to the nucleus. In Comet Levy, the high-velocity hydrogen reaches velocities of up to 50 km/s and is situated exclusively on the sunward side of the nucleus. The two distinct signatures of high-velocity hydrogen imply two distinct sources.

  11. A new approach for the asymmetric total synthesis of umbelactone.

    PubMed

    Liu, Huawei; Zhang, Tao; Li, Yulin

    2006-05-01

    The asymmetric total syntheses of (R)-(+)- and (S)-(-)-umbelactone were achieved by using the Sharpless asymmetric epoxidation reaction to generate the stereogenic center and a ring-closing metathesis (RCM) for the formation of the lactone structure. Starting from 3-methyl-2-buten-1-ol, the asymmetric total synthesis was achieved in an efficient 6-step protocol with an overall yield of 16%.

  12. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.

  13. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, T.J.

    1994-06-07

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment is disclosed. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-nanometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment. 10 figs.

  14. Theoretical analysis of electrokinetic flow and heat transfer in a microchannel under asymmetric boundary conditions.

    PubMed

    Soong, C Y; Wang, S H

    2003-09-01

    The main theme of the present work is to investigate the electrokinetic effects on liquid flow and heat transfer in a flat microchannel of two parallel plates under asymmetric boundary conditions including wall-sliding motion, unequal zeta potentials, and unequal heat fluxes on two walls. Based on the Debye-Huckel approximation, an electrical potential solution to the linearized Poisson-Boltzmann equation is obtained and employed in the analysis. The analytic solutions of the electrical potential, velocity distributions, streaming potential, friction coefficient, temperature distribution, and heat transfer rate are obtained, and thereby the effects of electrokinetic separation distance (K), zeta-potential level (zeta;(1)), ratio of two zeta potentials (r(zeta) identical with zeta;(2)/zeta;(1)), wall-sliding velocity (u(w)), and heat flux ratio (r(q) identical with q"(2)/q"(1)) are investigated. The present results reveal the effects of wall-sliding and zeta-potential ratio on the hydrodynamic nature of microchannel flow, and they are used to provide physical interpretations for the resultant electrokinetic effects and the underlying electro-hydrodynamic interaction mechanisms. In the final part the results of potential and velocity fields are applied in solving the energy equation. The temperature distributions and heat transfer characteristics under the asymmetrical kinematic, electric, and thermal boundary conditions considered presently are dealt with. PMID:12927184

  15. Experiments on the water entry of asymmetric wedges using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Shams, Adel; Jalalisendi, Mohammad; Porfiri, Maurizio

    2015-02-01

    In this work, we experimentally characterize the water entry of an asymmetric wedge into a quiescent fluid through particle image velocimetry (PIV). The wedge enters the water surface with an orthogonal velocity falling from a fixed height. We systematically vary the heel angle to elucidate the effect of asymmetric impact on the flow physics and on the fluid-structure interaction. The pressure field in the fluid is reconstructed from PIV data by integrating the Poisson equation. We find that the impact configuration significantly influences both the velocity and the pressure field, ultimately, regulating the hydrodynamic loading on the wedge. Specifically, as the heel angle increases, the location of maximum velocity of the flow moves from the pile-up region to the keel. At the same time, the pressure field significantly decreases in the vicinity of the keel, reaching values smaller than the atmospheric pressure. The spatiotemporal evolution of the hydrodynamic loading is thus controlled by the heel angle, with larger heel angles resulting into more rapid and sustained impacts.

  16. Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    NASA Astrophysics Data System (ADS)

    Doss, C. E.; Cassak, P. A.; Swisdak, M.

    2016-08-01

    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields, simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al. [J. Geophys. Res. 120, 7748 (2015)]. Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.

  17. δ Meson Effects on Asymmetric Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Liu, B.; di Toro, M.; Greco, V.

    The impact of a δ meson field (the scalar-isovector channel) on asymmetric nuclear matter is studied within relativistic mean-field (RMF) models with both constant and density dependent (DD) nucleon-meson couplings. The Equation of State (EOS) for asymmetric nuclear matter and the neutron star properties by the different models are compared. We find that the δ-field in the constant coupling scheme leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses, finally influencing the stability of the neutron stars. A broader analysis of possible δ-field effects is achieved considering also density dependent nucleon-meson coupling. A remarkable effect on the relation between mass and radius for the neutron stars is seen, showing a significant reduction of the radius along with a moderate mass reduction due to the increase of the effective δ coupling in high density regions.

  18. Deformation of an asymmetric thin film

    NASA Astrophysics Data System (ADS)

    Geng, Jun; Selinger, Jonathan V.

    2012-09-01

    Experiments have investigated shape changes of polymer films induced by asymmetric swelling by a chemical vapor. Inspired by recent work on the shaping of elastic sheets by non-Euclidean metrics [Y. Klein, E. Efrati, and E. Sharon, ScienceSCIEAS0036-807510.1126/science.1135994 315, 1116 (2007)], we represent the effect of chemical vapors by a change in the target metric tensor. In this problem, unlike that earlier work, the target metric is asymmetric between the two sides of the film. Changing this metric induces a curvature of the film, which may curve into a partial cylinder or a partial sphere. We calculate the elastic energy for each of these shapes and show that the sphere is favored for films smaller than a critical size, which depends on the film thickness, while the cylinder is favored for larger films.

  19. Enhancing molecule fluorescence with asymmetrical plasmonic antennas.

    PubMed

    Lu, Guowei; Liu, Jie; Zhang, Tianyue; Shen, Hongming; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gu, Ying; He, Yingbo; Wang, Yuwei; Gong, Qihuang

    2013-07-21

    We propose and justify by the finite-difference time-domain method an efficient strategy to enhance the spontaneous emission of a fluorophore with a multi-resonance plasmonic antenna. The custom-designed asymmetrical antenna consists of two plasmonic nanoparticles with different sizes and is able to couple efficiently to free space light through multiple localized surface plasmon resonances. This design simultaneously permits a large near-field excitation near the antenna as well as a high quantum efficiency, which results in an unusual and significant enhancement of the fluorescence of a single emitter. Such an asymmetrical antenna presents intrinsic advantages over single particle or dimer based antennas made using two identical nanostructures. This promising concept can be exploited in the large domain of light-matter interaction processes involving multiple frequencies.

  20. Asymmetric Epoxidation Using Hydrogen Peroxide as Oxidant.

    PubMed

    Wang, Chuan; Yamamoto, Hisashi

    2015-10-01

    Asymmetric epoxidation is one of the most important transformations in organic synthesis. Although tremendous progress was achieved in this field in the 1980s and 1990s, it is still desirable from both economical and ecological views to develop environmentally friendly catalytic epoxidation with a broad substrate scope. Hydrogen peroxide is a safe and cheap oxidant, which is easy to handle and generates water as the sole byproduct. Therefore, asymmetric epoxidation of olefins using hydrogen peroxide as oxidant has been a very active research field and has been investigated by many research groups in recent years. In this review, the exciting very recent developments of this rapidly growing area are surveyed and organized according to the catalyst systems.

  1. Diastereodivergent organocatalytic asymmetric vinylogous Michael reactions.

    PubMed

    Li, Xin; Lu, Min; Dong, Yun; Wu, Wenbin; Qian, Qingqing; Ye, Jinxing; Dixon, Darren J

    2014-07-24

    One of the major challenges of modern asymmetric catalysis is the ability to selectively control the formation of all diastereoisomers of reaction products possessing multiple stereocenters. Pioneers of such diastereodivergent catalytic asymmetric processes have focused on reactions where the newly formed stereogenic centres are proximal to the active carbonyl group. To date, however, diastereodivergent reactions at remote positions remain an unmet challenge. Herein, we describe a catalyst-controlled diastereodivergence in the formation of remote stereocenters in the direct vinylogous Michael reactions of β, γ-unsaturated butenolides to α, β-unsaturated ketones. The reactions are enabled by two complementary, non-enantiomeric multifunctional catalysts, which mutually activate and organise both reactants, affording either the syn- or anti-adduct with high diastereo- and enantioselectivity. These two catalytic systems are also applicable in the Mukaiyama-Michael reactions and tandem Michael-Michael reactions.

  2. Asymmetric fishnet metamaterials with strong optical activity.

    PubMed

    Zhang, Yong-Liang; Jin, Wei; Dong, Xian-Zi; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2012-05-01

    We investigate the optical properties of mono- and double-layer asymmetric fishnet metamaterials with orientated elliptical holes, which exhibit exotic spectral and polarization rotating characteristics in the visible spectral range. Our results show that nontrivial orientations of the holes with respect to the reciprocal lattice vectors of the periodic lattice in both systems produce strong polarization rotation as well as additional enhanced optical transmission peaks. Analysis of the electromagnetic field distribution shows the unusual effect is produced by the spinning localized surface plasmon resonances due to the asymmetric geometry. High sensitivity of the hybridized mode on the dielectric spacing, the aspect ratio of the holes and the embedding media in double-layer structure is also observed. The dependence of spectral and polarization response on the orientation of the holes and the embedding media is useful for design of chiral metamaterials at optical frequencies and tailoring the polarization behavior of the metallic nano-structures.

  3. Design of Asymmetric Peptide Bilayer Membranes.

    PubMed

    Li, Sha; Mehta, Anil K; Sidorov, Anton N; Orlando, Thomas M; Jiang, Zhigang; Anthony, Neil R; Lynn, David G

    2016-03-16

    Energetic insights emerging from the structural characterization of peptide cross-β assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel β-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-β assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies.

  4. Organocatalytic Asymmetric Reactions of Epoxides: Recent Progress.

    PubMed

    Meninno, Sara; Lattanzi, Alessandra

    2016-03-01

    In this Minireview recent advances in the asymmetric reactions of meso and racemic epoxides promoted by organocatalysts is reviewed. Organic promoters, such as chiral phosphoric acids, amino- and peptidyl thioureas, and sulfinamides, have been successfully used for a variety of enantioselective transformations of epoxides under catalytic conditions, involving direct nucleophilic attack at the oxirane ring, base-catalysed β-eliminations and Brønsted acid catalysed 1,2-rearrangements. Accordingly, highly valuable enantioenriched 1,2-functionalised alcohols, carbonyl compounds and nitroepoxides are attainable. Dual activation of the reagents, provided by the organocatalysts, appears to be the most recurrent strategy, potentially suitable to face other unmet challenges in asymmetric ring-opening reactions of epoxides.

  5. Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence

    DOE Data Explorer

    Gunawan, Budi

    2014-06-11

    The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

  6. Particle Velocity Measuring System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    1998-01-01

    Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.

  7. Velocity dependant splash behaviour

    NASA Astrophysics Data System (ADS)

    Hamlett, C. A. E.; Shirtcliffe, N. J.; McHale, G.; Ahn, S.; Doerr, S. H.; Bryant, R.; Newton, M. I.

    2012-04-01

    Extreme soil water repellency can occur in nature via condensation of volatile organic compounds released during wildfires and can lead to increased erosion rate. Such extreme water repellent soil can be classified as superhydrophobic and shares similar chemical and topographical features to specifically designed superhydrophobic surfaces. Previous studies using high speed videography to investigate single droplet impact behaviour on artificial superhydrophobic have revealed three distinct modes of splash behaviour (rebound, pinned and fragmentation) which are dependent on the impact velocity of the droplet. In our studies, using high-speed videography, we show that such splash behaviour can be replicated on fixed 'model' water repellent soils (hydrophobic glass beads/particles). We show that the type of splash behaviour is dependent on both the size and chemical nature of the fixed particles. The particle shape also influences the splash behaviour as shown by drop impact experiments on fixed sand samples. We have also studied soil samples, as collected from the field, which shows that the type of droplet splash behaviour can lead to enhanced soil particle transport.

  8. Asymmetric Redox-Annulation of Cyclic Amines

    PubMed Central

    2015-01-01

    Cyclic amines such as 1,2,3,4-tetrahydroisoquinoline undergo regiodivergent annulation reactions with 4-nitrobutyraldehydes. These redox-neutral transformations enable the asymmetric synthesis of highly substituted polycyclic ring systems in just two steps from commercial materials. The utility of this process is illustrated in a rapid synthesis of (−)-protoemetinol. Computational studies provide mechanistic insights and implicate the elimination of acetic acid from an ammonium nitronate intermediate as the rate-determining step. PMID:26348653

  9. Catalytic Asymmetric Synthesis of Phosphine Boronates.

    PubMed

    Hornillos, Valentín; Vila, Carlos; Otten, Edwin; Feringa, Ben L

    2015-06-26

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of α,β-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good yields and high enantiomeric excess. The synthetic utility of the products is demonstrated through stereospecific transformations into multifunctional optically active compounds. PMID:25950871

  10. Asymmetric magnon excitation by spontaneous toroidal ordering

    DOE PAGES

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2016-04-12

    The effects of spontaneous toroidal ordering on magnetic excitation are theoretically investigated for a localized spin model that includes a staggered Dzyaloshinsky–Moriya interaction and anisotropic exchange interactions, which arise from the antisymmetric spin–orbit coupling and the multiorbital correlation effect. We show that the model exhibits a Néel-type antiferromagnetic order, which simultaneously accompanies a ferroic toroidal order. We find that the occurrence of toroidal order modulates the magnon dispersion in an asymmetric way with respect to the wave number: a toroidal dipole order on the zigzag chain leads to a band-bottom shift, while a toroidal octupole order on the honeycomb latticemore » gives rise to a valley splitting. These asymmetric magnon excitations could be a source of unusual magnetic responses, such as nonreciprocal magnon transport. A variety of modulations are discussed while changing the lattice and magnetic symmetries. Furthermore, the implications regarding candidate materials for asymmetric magnon excitations are presented.« less

  11. Traceless Synthesis of Asymmetrically Modified Bivalent Nucleosomes.

    PubMed

    Lechner, Carolin C; Agashe, Ninad D; Fierz, Beat

    2016-02-18

    Nucleosomes carry extensive post-translational modifications (PTMs), which results in complex modification patterns that are involved in epigenetic signaling. Although two copies of each histone coexist in a nucleosome, they may not carry the same PTMs and are often differently modified (asymmetric). In bivalent domains, a chromatin signature prevalent in embryonic stem cells (ESCs), namely H3 methylated at lysine 4 (H3K4me3), coexists with H3K27me3 in asymmetric nucleosomes. We report a general, modular, and traceless method for producing asymmetrically modified nucleosomes. We further show that in bivalent nucleosomes, H3K4me3 inhibits the activity of the H3K27-specific lysine methyltransferase (KMT) polycomb repressive complex 2 (PRC2) solely on the same histone tail, whereas H3K27me3 stimulates PRC2 activity across tails, thereby partially overriding the H3K4me3-mediated repressive effect. To maintain bivalent domains in ESCs, PRC2 activity must thus be locally restricted or reversed.

  12. Flapping flight: effect of asymmetric kinematics

    NASA Astrophysics Data System (ADS)

    Pande, Nakul; Krithivasan, Siddharth; K. R., Sreenivas

    2014-11-01

    Flapping flight has received considerable attention in the past with its relevance in the design of micro-air vehicles. In this regard, asymmetric flapping of wings offers simple kinematics. Nevertheless, it leads to symmetry-breaking in the flow field and generation of sustained lift. It has been observed previously with flow visualization experiments and Discrete Vortex Method (DVM) simulations that if the down-stroke time period is lesser than the up-stroke time, there is a net downward momentum imparted to the fluid. This is seen as a switching the flow field from a four-jet (symmetric) to a two-jet (asymmetric) configuration when the stroke-time ratio is progressively varied. This symmetry breaking has been studied experimentally using Particle Image Velocimetry (PIV) across a range of Reynolds Numbers and asymmetry ratios. Results are also corroborated with results from 3-D numerical simulations. Study helps in shedding light on the effectiveness of asymmetric kinematics as a lift generation mechanism.

  13. Flatfish: an asymmetric perspective on metamorphosis.

    PubMed

    Schreiber, Alexander M

    2013-01-01

    The most asymmetrically shaped and behaviorally lateralized of all the vertebrates, the flatfishes are an endless source of fascination to all fortunate enough to study them. Although all vertebrates undergo left-right asymmetric internal organ placement during embryogenesis, flatfish are unusual in that they experience an additional period of postembryonic asymmetric remodeling during metamorphosis, and thus deviate from a bilaterally symmetrical body plan more than other vertebrates. As with amphibian metamorphosis, all the developmental programs of flatfish metamorphosis are ultimately under the control of thyroid hormone. At least one gene pathway involved in embryonic organ lateralization (nodal-lefty-pitx2) is re-expressed in the larval stage during flatfish metamorphosis. Aspects of modern flatfish ontogeny, such as the gradual translocation of one eye to the opposite side of the head and the appearance of key neurocranial elements during metamorphosis, seem to elegantly recapitulate flatfish phylogeny. This chapter highlights the current state of knowledge of the developmental biology of flatfish metamorphosis with emphases on the genetic, morphological, behavioral, and evolutionary origins of flatfish asymmetry.

  14. Asymmetric shape transitions of epitaxial quantum dots

    NASA Astrophysics Data System (ADS)

    Wei, Chaozhen; Spencer, Brian J.

    2016-06-01

    We construct a two-dimensional continuum model to describe the energetics of shape transitions in fully faceted epitaxial quantum dots (strained islands) via minimization of elastic energy and surface energy at fixed volume. The elastic energy of the island is based on a third-order approximation, enabling us to consider shape transitions between pyramids, domes, multifaceted domes and asymmetric intermediate states. The energetics of the shape transitions are determined by numerically calculating the facet lengths that minimize the energy of a given island type of prescribed island volume. By comparing the energy of different island types with the same volume and analysing the energy surface as a function of the island shape parameters, we determine the bifurcation diagram of equilibrium solutions and their stability, as well as the lowest barrier transition pathway for the island shape as a function of increasing volume. The main result is that the shape transition from pyramid to dome to multifaceted dome occurs through sequential nucleation of facets and involves asymmetric metastable transition shapes. We also explicitly determine the effect of corner energy (facet edge energy) on shape transitions and interpret the results in terms of the relative stability of asymmetric island shapes as observed in experiment.

  15. Microfluidic fabrication of asymmetric giant lipid vesicles

    PubMed Central

    Hu, Peichi C.; Li, Su; Malmstadt, Noah

    2011-01-01

    We have developed a microfluidic technology for the fabrication of compositionally asymmetric giant unilamellar vesicles (GUVs). The vesicles are assembled in two independent steps. In each step, a lipid monolayer is formed at a water-oil interface. The first monolayer is formed inside of a microfluidic device with a multiphase droplet flow configuration consisting of a continuous oil stream in which water droplets are formed. These droplets are dispensed into a vessel containing a layer of oil over a layer of water. The second lipid monolayer is formed by transferring the droplets through this second oil-water interface by centrifugation. By dissolving different lipid compositions in the different oil phases, the composition of each leaflet of the resulting lipid bilayer can be controlled. We have demonstrated membrane asymmetry by showing differential fluorescence quenching of labeled lipids in each leaflet and by demonstrating that asymmetric GUVs will bind an avidin-coated surface only when biotinylated lipids are targeted to the outer leaflet. In addition, we have demonstrated the successful asymmetric targeting of phosphatidylserine lipids to each leaflet, producing membranes with a biomimetic and physiologically relevant compositional asymmetry. PMID:21449588

  16. Asymmetric threat data mining and knowledge discovery

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Pagels, Michael A.; Palk, Justin

    2001-03-01

    Asymmetric threats differ from the conventional force-on- force military encounters that the Defense Department has historically been trained to engage. Terrorism by its nature is now an operational activity that is neither easily detected or countered as its very existence depends on small covert attacks exploiting the element of surprise. But terrorism does have defined forms, motivations, tactics and organizational structure. Exploiting a terrorism taxonomy provides the opportunity to discover and assess knowledge of terrorist operations. This paper describes the Asymmetric Threat Terrorist Assessment, Countering, and Knowledge (ATTACK) system. ATTACK has been developed to (a) data mine open source intelligence (OSINT) information from web-based newspaper sources, video news web casts, and actual terrorist web sites, (b) evaluate this information against a terrorism taxonomy, (c) exploit country/region specific social, economic, political, and religious knowledge, and (d) discover and predict potential terrorist activities and association links. Details of the asymmetric threat structure and the ATTACK system architecture are presented with results of an actual terrorist data mining and knowledge discovery test case shown.

  17. Asymmetric soliton mobility in competing linear-nonlinear parity-time-symmetric lattices.

    PubMed

    Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis

    2016-09-15

    We address the transverse mobility of spatial solitons in competing parity-time-symmetric linear and nonlinear lattices. The competition between out-of-phase linear and nonlinear lattices results in a drastic mobility enhancement within a range of soliton energies. We show that within such a range, the addition of even a small imaginary part in the linear potential makes soliton mobility strongly asymmetric. For a given initial phase tilt, the velocity of soliton motion grows with an increase of the balanced gain/losses. In this regime of enhanced mobility, tilted solitons can efficiently drag other solitons that were initially at rest to form moving soliton pairs. PMID:27628394

  18. Velocity Dispersions Across Bulge Types

    SciTech Connect

    Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich; Saglia, Roberto; Drory, Niv; Fisher, David

    2010-06-08

    We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (sigma*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.

  19. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Makarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...

  20. Zero Temperature Phase Diagram of an Asymmetric Spin Ladder

    NASA Astrophysics Data System (ADS)

    Capriotti, Luca; Becca, Federico; Parola, Alberto; Sorella, Sandro

    2003-03-01

    Asymmetric spin-half ladders (ASL) have recently attracted much theoretical interest due to possible experimental realizations in delafossite cuprates such as YCuO_2.5 [1] and the unusual physical effects that the asymmetry in the leg exchanges could introduce both in the ground-state correlations and in the properties of the excitation spectrum. Using conformal field theory and Lanczos exact diagonalizations, we demonstrate that for small frustration these systems are in a Luttinger spin-fluid phase, with gapless excitations, and a finite spin-wave velocity. In the regime of strong frustration, instead, the ground state is spontaneously dimerized and the bond alternation reduces the triplet gap, leading to a slight enhancement of the critical point separating the Luttinger phase from the gapped one. An accurate determination of the phase boundary, is obtained numerically from the study of the excitation spectrum. Our study completely clarifies the much debated zero-temperature phase diagram of the ASL model. [2] [1] G. Van Tendeloo, O. Garlea, C. Darie, C. Bougerol-Chaillout, and P. Bordet, J. Solid State Chem. 156, 428 (2001). [2] L. Capriotti, F. Becca, S. Sorella, and A. Parola, Phys. Rev. Lett. 89, 149701 (2002); to be published.

  1. Epitaxial growth in dislocation-free strained asymmetric alloy films

    SciTech Connect

    Desai, Rashmi C.; Kim, Ho Kwon; Chatterji, Apratim; Ngai, Darryl; Chen Si; Yang Nan

    2010-06-15

    Epitaxial growth in strained asymmetric, dislocation-free, coherent, alloy films is explored. Linear-stability analysis is used to theoretically analyze the coupled instability arising jointly from the substrate-film lattice mismatch (morphological instability) and the spinodal decomposition mechanism. Both the static and growing films are considered. Role of various parameters in determining stability regions for a coherent growing alloy film is investigated. In addition to the usual parameters: lattice mismatch {epsilon}, solute-expansion coefficient {eta}, growth velocity V, and growth temperature T, we consider the alloy asymmetry arising from its mean composition. The dependence of elastic moduli on composition fluctuations and the coupling between top surface and underlying bulk of the film also play important roles. The theory is applied to group III-V films such as GaAsN, InGaN, and InGaP and to group IV Si-Ge films at temperatures below the bare critical temperature T{sub c} for strain-free spinodal decomposition. The dependences of various material parameters on mean concentration and temperature lead to significant qualitative changes.

  2. Critical Differences of Asymmetric Magnetic Reconnection from Standard Models

    NASA Astrophysics Data System (ADS)

    Nitta, S.; Wada, T.; Fuchida, T.; Kondoh, K.

    2016-09-01

    We have clarified the structure of asymmetric magnetic reconnection in detail as the result of the spontaneous evolutionary process. The asymmetry is imposed as ratio k of the magnetic field strength in both sides of the initial current sheet (CS) in the isothermal equilibrium. The MHD simulation is carried out by the HLLD code for the long-term temporal evolution with very high spatial resolution. The resultant structure is drastically different from the symmetric case (e.g., the Petschek model) even for slight asymmetry k = 2. (1) The velocity distribution in the reconnection jet clearly shows a two-layered structure, i.e., the high-speed sub-layer in which the flow is almost field aligned and the acceleration sub-layer. (2) Higher beta side (HBS) plasma is caught in a lower beta side plasmoid. This suggests a new plasma mixing process in the reconnection events. (3) A new large strong fast shock in front of the plasmoid forms in the HBS. This can be a new particle acceleration site in the reconnection system. These critical properties that have not been reported in previous works suggest that we contribute to a better and more detailed knowledge of the reconnection of the standard model for the symmetric magnetic reconnection system.

  3. Animating streamlines with repeated asymmetric patterns for steady flow visualization

    NASA Astrophysics Data System (ADS)

    Yeh, Chih-Kuo; Liu, Zhanping; Lee, Tong-Yee

    2012-01-01

    Animation provides intuitive cueing for revealing essential spatial-temporal features of data in scientific visualization. This paper explores the design of Repeated Asymmetric Patterns (RAPs) in animating evenly-spaced color-mapped streamlines for dense accurate visualization of complex steady flows. We present a smooth cyclic variable-speed RAP animation model that performs velocity (magnitude) integral luminance transition on streamlines. This model is extended with inter-streamline synchronization in luminance varying along the tangential direction to emulate orthogonal advancing waves from a geometry-based flow representation, and then with evenly-spaced hue differing in the orthogonal direction to construct tangential flow streaks. To weave these two mutually dual sets of patterns, we propose an energy-decreasing strategy that adopts an iterative yet efficient procedure for determining the luminance phase and hue of each streamline in HSL color space. We also employ adaptive luminance interleaving in the direction perpendicular to the flow to increase the contrast between streamlines.

  4. Pyrosequencing on templates generated by asymmetric nucleic acid sequence-based amplification (asymmetric-NASBA).

    PubMed

    Jia, Huning; Chen, Zhiyao; Wu, Haiping; Ye, Hui; Yan, Zhengyu; Zhou, Guohua

    2011-12-21

    Pyrosequencing is an ideal tool for verifying the sequence of amplicons. To enable pyrosequencing on amplicons from nucleic acid sequence-based amplification (NASBA), asymmetric NASBA with unequal concentrations of T7 promoter primer and reverse transcription primer was proposed. By optimizing the ratio of two primers and the concentration of dNTPs and NTPs, the amount of single-stranded cDNA in the amplicons from asymmetric NASBA was found increased 12 times more than the conventional NASBA through the real-time detection of a molecular beacon specific to cDNA of interest. More than 20 bases have been successfully detected by pyrosequencing on amplicons from asymmetric NASBA using Human parainfluenza virus (HPIV) as an amplification template. The primary results indicate that the combination of NASBA with a pyrosequencing system is practical, and should open a new field in clinical diagnosis.

  5. Velocity ratio and its application to predicting velocities

    USGS Publications Warehouse

    Lee, Myung W.

    2003-01-01

    The velocity ratio of water-saturated sediment derived from the Biot-Gassmann theory depends mainly on the Biot coefficient?a property of dry rock?for consolidated sediments with porosity less than the critical porosity. With this theory, the shear moduli of dry sediments are the same as the shear moduli of water-saturated sediments. Because the velocity ratio depends on the Biot coefficient explicitly, Biot-Gassmann theory accurately predicts velocity ratios with respect to differential pressure for a given porosity. However, because the velocity ratio is weakly related to porosity, it is not appropriate to investigate the velocity ratio with respect to porosity (f). A new formulation based on the assumption that the velocity ratio is a function of (1?f)n yields a velocity ratio that depends on porosity, but not on the Biot coefficient explicitly. Unlike the Biot-Gassmann theory, the shear moduli of water-saturated sediments depend not only on the Biot coefficient but also on the pore fluid. This nonclassical behavior of the shear modulus of water-saturated sediment is speculated to be an effect of interaction between fluid and the solid matrix, resulting in softening or hardening of the rock frame and an effect of velocity dispersion owing to local fluid flow. The exponent n controls the degree of softening/hardening of the formation. Based on laboratory data measured near 1 MHz, this theory is extended to include the effect of differential pressure on the velocity ratio by making n a function of differential pressure and consolidation. However, the velocity dispersion and anisotropy are not included in the formulation.

  6. Sodium Velocity Maps on Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  7. Generalized closed-form model for analysis of asymmetric shaped charges

    NASA Astrophysics Data System (ADS)

    Mahdian, A.; Liaghat, G. H.; Ghayour, M.

    2013-03-01

    This paper presents a model that has less constraints than similar models and explains the collapse phenomenon in any desired order of geometrical asymmetries and in the presence of symmetric and asymmetric general-form wave fronts. It seems that, in this model, a complete generalized form of the classical jet formation theory has been developed. Available models that describe the symmetric jet and slug formation phenomenon are very good in such conditions. But the liner and confinement asymmetries, detonation wave front asymmetries, and other specifications, such as manufacturing tolerances, can affect the collapse and the behavior of the jet and slug. Some proposed models that describe asymmetric cases are not closed-form models or are only applicable for limited conditions, such as small asymmetries and a planar wave front. With the presented model, effects of concave, plane, and convex wave fronts on the off-axis velocity of the jet, other parameters of the jet and slug, and effects of an asymmetric wave front on jet formation for a completely symmetric liner and confinement geometry can be evaluated.

  8. Multi-Velocity Component LDV

    NASA Technical Reports Server (NTRS)

    Johnson, Dennis A. (Inventor)

    1996-01-01

    A laser doppler velocimeter uses frequency shifting of a laser beam to provide signal information for each velocity component. A composite electrical signal generated by a light detector is digitized and a processor produces a discrete Fourier transform based on the digitized electrical signal. The transform includes two peak frequencies corresponding to the two velocity components.

  9. Instantaneous Velocity Using Photogate Timers

    ERIC Educational Resources Information Center

    Wolbeck, John

    2010-01-01

    Photogate timers are commonly used in physics laboratories to determine the velocity of a passing object. In this application a card attached to a moving object breaks the beam of the photogate timer providing the time for the card to pass. The length L of the passing card can then be divided by this time to yield the average velocity (or speed)…

  10. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Mao; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This is an old issue in computational fluid dynamics (CFD). What is the so-called contravariant velocity or contravariant velocity component? In the article, we review the basics of tensor analysis and give the contravariant velocity component a rigorous explanation. For a given coordinate system, there exist two uniquely determined sets of base vector systems - one is the covariant and another is the contravariant base vector system. The two base vector systems are reciprocal. The so-called contravariant velocity component is really the contravariant component of a velocity vector for a time-independent coordinate system, or the contravariant component of a relative velocity between fluid and coordinates, for a time-dependent coordinate system. The contravariant velocity components are not physical quantities of the velocity vector. Their magnitudes, dimensions, and associated directions are controlled by their corresponding covariant base vectors. Several 2-D (two-dimensional) linear examples and 2-D mass-conservation equation are used to illustrate the details of expressing a vector with respect to the covariant and contravariant base vector systems, respectively.

  11. Asymmetric electroosmotic flow and mobility measurements at nonstationary positions in the rectangular chamber

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The electrophoretic mobility of a cell in solution is defined by its velocity divided by the electric field strength it experiences. An obvious way to measure the mobility of cells is to apply a constant electric field to a suspension of cells in a glass chamber and clock the velocities of individual cells through a microscope. This microscope method is the classic technique in cell electrophoresis and it has been used for the bulk of research in this field. Two aspects of the microscope method can critically affect the accuracy and consistency of its cell mobility measurements: (1) the electroosmotic fluctuations in the chamber from measurement to measurement; and (2) the number of cells which can be practically measured for statistically meaningful results. A new method of analyzing microelectrophoretic data using a computer program has been developed which addresses both of these aspects. It makes possible the mobility measurements of individual cells as positions throughout the rectangular chamber depth during asymmetric electroosmotic flow.

  12. Physiological and biomechanical responses to a prolonged repetitive asymmetric lifting activity.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J

    2014-01-01

    This study investigated the effects of a prolonged repetitive asymmetric lifting task on behavioural adaptations during repetitive lifting activity, measures of tissue oxygenation and spine kinematics. Seventeen volunteers repeatedly lifted a box, normalised to 15% of the participant's maximum lifting strength, at the rate of 10 lifts/min for a period of 60 min. The lifts originated in front of the participants at ankle level and terminated on their left side at waist level. Overall, perceived workload increased during the repetitive lifting task. Erector spinae oxygenation levels, assessed using near-infrared spectroscopy, decreased significantly over time. Behavioural changes observed during the repetitive lifting task included increases in the amount of forward bending, the extension velocity and the lateral bending velocity, and a reduced lateral bending moment on the spine. These changes, with the exception of the reduced lateral bending moment, are associated with increased risk of low back disorder.

  13. Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential

    NASA Astrophysics Data System (ADS)

    Novak, R. L.; Metaxas, P. J.; Jamet, J.-P.; Weil, R.; Ferré, J.; Mougin, A.; Rohart, S.; Stamps, R. L.; Zermatten, P.-J.; Gaudin, G.; Baltz, V.; Rodmacq, B.

    2015-06-01

    Magneto-optical microscopy and magnetometry have been used to study magnetization reversal in an ultrathin magnetically soft (Pt/Co)2 ferromagnetic film coupled to an array of magnetically harder (Co/Pt)4 nanodots via a predominantly dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially periodic pinning potential for domain walls propagating through the continuous magnetic film. When reversing the applied field with respect to the static nanodot array magnetization orientation, strong asymmetries in the wall velocity and switching fields are observed. Asymmetric switching fields mean that hysteresis of the film is characterized by a large bias field of dipolar origin which is linked to the wall velocity asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields where the domains become round and compact. A field-polarity-controlled transition from dendritic to compact faceted domain structures is also seen at intermediate fields and a model is proposed to interpret the transition.

  14. Benzene analogues of (quasi-)planar M@B{sub n}H{sub n} compounds (M = V{sup −}, Cr, Mn{sup +}): A theoretical investigation

    SciTech Connect

    Li, Lifen; Xu, Chang; Jin, Baokang; Cheng, Longjiu

    2013-11-07

    The stability of M@B{sub n}H{sub n} (M = V{sup −}, Cr, Mn{sup +}; n = 5–8) is investigated by density functional theory. For n = 6–8, the isomers possess (quasi-)planar local minima showed by geometry optimization at TPSSh/6-311+G{sup **} level. All the optimized structures are thermodynamics stable according to the large HOMO-LUMO gap, binding energy, vertical ionization potential, and vertical electron affinity analysis. The peripheral and central atomic radius fit each other best at n = 7 confirmed by the variation of the binding energy values. The availability of d atom orbitals in M for participation in the π-delocalized bonding with the peripheral ring leads to the aromaticity of the (quasi-)planar structures and makes them the benzene analogues. This work establishes firmly the metal-doped borane rings as a new type of aromatic molecule.

  15. Drift of continental rafts with asymmetric heating.

    PubMed

    Knopoff, L; Poehls, K A; Smith, R C

    1972-06-01

    A laboratory model of a lithospheric raft is propelled through a viscous asthenospheric layer with constant velocity of scaled magnitude appropriate to continental drift. The propulsion is due to differential heat concentration in the model oceanic and continental crusts.

  16. Synthesis of asymmetric tetracarboxylic acids and corresponding dianhydrides

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2008-01-01

    This invention relates to processes for preparing asymmetrical biphenyl tetracarboxylic acids and the corresponding asymmetrical dianhydrides, namely 2,3,3',4'-biphenyl dianhydride (a-BPDA), 2,3,3',4'-benzophenone dianhydride (a-BTDA) and 3,4'-methylenediphthalic anhydride (-MDPA). By cross-coupling reactions of reactive metal substituted o-xylenes or by cross-coupling o-xylene derivatives in the presence of catalysts, this invention specifically produces asymmetrical biphenyl intermediates that are subsequently oxidized or hydrolyzed and oxidized to provide asymmetric biphenyl tetracarboxylic acids in comparatively high yields. These asymmetrical biphenyl tetracarboxylic acids are subsequently converted to the corresponding asymmetrical dianhydrides without contamination by symmetrical biphenyl dianhydrides.

  17. Asymmetric-Structure Analysis of Carbon and Energy Markets

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Cao, Guangxi

    2016-02-01

    This study aimed to investigate the asymmetric structure between the carbon and energy markets from two aspects of different trends (up or down) and volatility-transmission direction using asymmetric detrended cross-correlation analysis (DCCA) cross-correlation coefficient test, multifractal asymmetric DCCA (MF-ADCCA) method, asymmetric volatility-constrained correlation metric and time rate of information-flow approach. We sampled 1283 observations from January 2008 to December 2012 among pairs of carbon and energy markets for analysis. Empirical results show that the (1) asymmetric characteristic from the cross-correlation between carbon and returns in the energy markets is significant, (2) asymmetric cross-correlation between carbon and energy market price returns is persistent and multifractral and (3) volatility of the base assets of energy market returns is more influential to the base asset of the carbon market than that of the energy market.

  18. Catalytic asymmetric formal synthesis of beraprost.

    PubMed

    Kobayashi, Yusuke; Kuramoto, Ryuta; Takemoto, Yoshiji

    2015-01-01

    The first catalytic asymmetric synthesis of the key intermediate for beraprost has been achieved through an enantioselective intramolecular oxa-Michael reaction of an α,β-unsaturated amide mediated by a newly developed benzothiadiazine catalyst. The Weinreb amide moiety and bromo substituent of the Michael adduct were utilized for the C-C bond formations to construct the scaffold. All four contiguous stereocenters of the tricyclic core were controlled via Rh-catalyzed stereoselective C-H insertion and the subsequent reduction from the convex face.

  19. Catalytic asymmetric formal synthesis of beraprost

    PubMed Central

    Kobayashi, Yusuke; Kuramoto, Ryuta

    2015-01-01

    Summary The first catalytic asymmetric synthesis of the key intermediate for beraprost has been achieved through an enantioselective intramolecular oxa-Michael reaction of an α,β-unsaturated amide mediated by a newly developed benzothiadiazine catalyst. The Weinreb amide moiety and bromo substituent of the Michael adduct were utilized for the C–C bond formations to construct the scaffold. All four contiguous stereocenters of the tricyclic core were controlled via Rh-catalyzed stereoselective C–H insertion and the subsequent reduction from the convex face. PMID:26734111

  20. RHIC operation with asymmetric collisions in 2015

    SciTech Connect

    Liu, C.; Aschenauer, C.; Atoian, G.; Blaskiewicz, M.; Brown, K. A.; Bruno, D.; Connolly, R.; Ottavio, T. D.; Drees, K. A.; Fischer, W.; Gardner, C. J.; Gu, X.; Hayes, T.; Huang, H.; Laster, J. S.; Luo, Y.; Makdisi, Y.; Marr, G.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Narayan, G.; Nayak, S.; Nemesure, S.; Pile, P.; Poblaguev, A.; Ranjbar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, B.; Schoefer, V.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Wang, G.; White, S.; Yip, K.; Zaltsman, A.; Zeno, K.; Zhang, S. Y.

    2015-08-07

    To study low-x shadowing/saturation physics as well as other nuclear effects [1], [2], proton-gold (p-Au, for 5 weeks) and proton-Aluminum (p-Al, for 2 weeks) collisions were provided for experiments in 2015 at the Relativistic Heavy Ion Collider (RHIC), with polarized proton beam in the Blue ring and Au/Al beam in the Yellow ring. The special features of the asymmetric run in 2015 will be introduced. The operation experience will be reviewed as well in the report.

  1. Plasma current resonance in asymmetric toroidal systems

    SciTech Connect

    Hazeltine, R. D.; Catto, Peter J.

    2015-09-15

    The well-known singularity in the magnetic differential equation for plasma current in an asymmetric toroidal confinement system is resolved by including in the pressure tensor corrections stemming from finite Larmor radius. The result provides an estimate of the amplitude of spikes in the parallel current that occur on rational magnetic surfaces. Resolution of the singularity is shown to depend on both the ambipolarity condition—the requirement of zero surface-averaged radial current—and the form of the magnetic differential equation near the rational surface.

  2. Flory Theorem for Structurally Asymmetric Mixtures

    NASA Astrophysics Data System (ADS)

    Dobrynin, Andrey; Sun, Frank; Shirvanyants, David; Rubinstein, Gregory; Rubinstein, Michael; Sheiko, Sergei; Lee, Hyung-Il; Matyjaszewski, Krzysztof

    2008-03-01

    The generalization of the Flory theorem for structurally asymmetric mixtures was derived and tested by direct visualization of conformational transformations of brushlike macromolecules embedded in a melt of linear chains. Swelling of a brush molecule was shown to be controlled not only by the degree of polymerization of the surrounding linear chains, NB, but also by the degree of polymerization of the brush's side chains, N, which determines the structural asymmetry of the mixed species. The boundaries of the swelling region were established by scaling analysis as N^2

  3. Catalytic Asymmetric Alkylation of Substituted Isoflavanones

    PubMed Central

    Nibbs, Antoinette E.; Baize, Amanda-Lauren; Herter, Rachel M.; Scheidt, Karl A.

    2009-01-01

    The asymmetric alkylation of isoflavanones and protected 3-phenyl-2,3-dihydroquinolin-4(1H)-ones catalyzed by a novel cinchonidine-derived phase transfer catalyst E is reported. This functionalization occurs at the non-activated C3 methine to afford novel products that can easily be functionalized to generate more complex fused ring systems. The process accommodates a variety of isoflavanones and activated electrophiles and installs a stereogenic quaternary center in high yield and with good-to-excellent selectivity. PMID:19658430

  4. Plasmonic photodetectors based on asymmetric nanogap electrodes

    NASA Astrophysics Data System (ADS)

    Ge, Junyu; Luo, Manlin; Zou, Wanghui; Peng, Wei; Duan, Huigao

    2016-08-01

    Hot electrons excited by plasmon resonance in nanostructure can be employed to enhance the properties of photodetectors, even when the photon energy is lower than the bandgap of the semiconductor. However, current research has seldom considered how to realize the efficient collection of hot electrons, which restricts the responsivity of the device. In this paper, a type of plasmonic photodetector based on asymmetric nanogap electrodes is proposed. Owing to this structure, the device achieves responsivities as high as 0.45 and 0.25 mA/W for wavelengths of 1310 and 1550 nm, respectively. These insights can aid the realization of efficient plasmon-enhanced photodetectors for infrared detection.

  5. de Sitter and double asymmetric brane worlds

    SciTech Connect

    Guerrero, Rommel; Rodriguez, R. Omar; Torrealba, Rafael

    2005-12-15

    Asymmetric brane worlds with dS expansion and static double kink topology are obtained from a recently proposed method and their properties are analyzed. These domain walls interpolate between two spacetimes with different cosmological constants. In the dynamic case, the vacua correspond to dS and AdS geometry, unlike the static case where they correspond to AdS background. We show that it is possible to confine gravity on such branes. In particular, the double-brane world hosts two different walls, so that the gravity is localized on one of them.

  6. The art of choreographing asymmetric cell division.

    PubMed

    Li, Rong

    2013-06-10

    Asymmetric cell division (ACD), a mechanism for cell-type diversification in both prokaryotes and eukaryotes, is accomplished through highly coordinated cell-fate segregation, genome partitioning, and cell division. Whereas important paradigms have arisen from the study of animal embryonic divisions, the strategies for choreographing the dynamic subprocesses are, in fact, highly varied. This review examines divergent mechanisms of ACD across different kingdoms. Examples discussed show that there is no obligatory hierarchy among the dynamic events and that asymmetry can emerge from each event, but cell polarization more often occurs as the initial instructive process for patterning ACD especially in the multicellular context.

  7. Quantum optics of lossy asymmetric beam splitters

    NASA Astrophysics Data System (ADS)

    Uppu, Ravitej; Wolterink, Tom A. W.; Tentrup, Tristan B. H.; Pinkse, Pepijn W. H.

    2016-07-01

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2$\\times$2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.

  8. Quantum optics of lossy asymmetric beam splitters.

    PubMed

    Uppu, Ravitej; Wolterink, Tom A W; Tentrup, Tristan B H; Pinkse, Pepijn W H

    2016-07-25

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2×2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.

  9. Design of mode-sorting asymmetric Y-junctions.

    PubMed

    Riesen, Nicolas; Love, John D

    2012-05-20

    The theory of mode-sorting in bimodal asymmetric Y-junctions is extended to multimode asymmetric Y-junctions with multiple output arms. This theory allows for the optimization of these mode-sorting planar structures. Asymmetric Y-junctions provide unique opportunities for spatial mode division multiplexing (MDM) of optical fiber. Spatial MDM is considered paramount to overcoming the bandwidth limitations of single-mode fiber. The design criteria presented in this paper facilitate their design.

  10. Velocity Distributions of Runaway Stars Produced by Supernovae in the Galaxy

    NASA Astrophysics Data System (ADS)

    Yisikandeer, Abudusaimaitijiang; Zhu, Chunhua; Wang, Zhaojun; Lü, Guoliang

    2016-09-01

    Using a method of population synthesis, we investigate the runaway stars produced by disrupted binaries via asymmetric core collapse supernova explosions (CC-RASs) and thermonuclear supernova explosions (TN-RASs). We find the velocities of CC-RASs in the range of about 30-100 km s -1. The runaway stars observed in the galaxy are possibly CC-RASs. Due to differences in stellar chemical components and structures, TN-RASs are divided into hydrogen-rich TN-RASs and helium-rich TN-RASs. The velocities of the former are about 100-500 km s -1, while the velocities of the latter are mainly between 600 and 1100 km s -1. The hypervelocity stars observed in the galaxy may originate from thermonuclear supernova explosions. Our results possibly cover the US 708 which is a compact helium star and travels with a velocity of 1157 ±53 km s-1 in our galaxy.

  11. Lane-changing behavior and its effect on energy dissipation using full velocity difference model

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Ding, Jian-Xun; Shi, Qin; Kühne, Reinhart D.

    2016-07-01

    In real urban traffic, roadways are usually multilane with lane-specific velocity limits. Most previous researches are derived from single-lane car-following theory which in the past years has been extensively investigated and applied. In this paper, we extend the continuous single-lane car-following model (full velocity difference model) to simulate the three-lane-changing behavior on an urban roadway which consists of three lanes. To meet incentive and security requirements, a comprehensive lane-changing rule set is constructed, taking safety distance and velocity difference into consideration and setting lane-specific speed restriction for each lane. We also investigate the effect of lane-changing behavior on distribution of cars, velocity, headway, fundamental diagram of traffic and energy dissipation. Simulation results have demonstrated asymmetric lane-changing “attraction” on changeable lane-specific speed-limited roadway, which leads to dramatically increasing energy dissipation.

  12. Asymmetrical Capacitors for Propulsion and the ISR Asymmetrical Capacitator Thruster, Experimental Results and Improved Designs

    NASA Technical Reports Server (NTRS)

    Canning, Francis; Winet, Ed; Ice, Bob; Melcher, Cory; Pesavento, Phil; Holmes, Alan; Butler, Carey; Cole, John; Campbell, Jonathan

    2004-01-01

    The outline of this viewgraph presentation on asymmetrical capacitor thruster development includes: 1) Test apparatus; 2) Devices tested; 3) Circuits used; 4) Data collected (Time averaged, Time resolved); 5) Patterns observed; 6) Force calculation; 7) Electrostatic modeling; 8) Understand it all.

  13. Asymmetrical Sample Training Produces Asymmetrical Retention Functions in Feature-Present/Feature-Absent Matching in Pigeons

    ERIC Educational Resources Information Center

    Grant, Douglas S.; Blatz, Craig W.

    2004-01-01

    Pigeons were trained in a matching task in which samples involved presentation of a white line on a green background (feature-present) or on an otherwise dark key (feature-absent). After asymmetrical training in which one group was initially trained with the feature-present sample and another was initially trained with the feature-absent sample,…

  14. New GNSS velocity field and preliminary velocity model for Ecuador

    NASA Astrophysics Data System (ADS)

    Luna-Ludeña, Marco P.; Staller, Alejandra; Gaspar-Escribano, Jorge M.; Belén Benito, M.

    2016-04-01

    In this work, we present a new preliminary velocity model of Ecuador based on the GNSS data of the REGME network (continuous monitoring GNSS network). To date, there is no velocity model available for the country. The only existing model in the zone is the regional model VEMOS2009 for South America and Caribbean (Drewes and Heidbach, 2012). This model was developed from the SIRGAS station positions, the velocities of the SIRGAS-CON stations, and several geodynamics projects performed in the region. Just two continuous GNSS (cGNSS) stations of Ecuador were taking into account in the VEMOS2009 model. The first continuous station of the REGME network was established in 2008. At present, it is composed by 32 continuous GNSS stations, covering the country. All the stations provided data during at least two years. We processed the data of the 32 GNSS stations of REGME for the 2008-2014 period, as well as 20 IGS stations in order to link to the global reference frame IGb08 (ITRF2008). GPS data were processed using Bernese 5.0 software (Dach et al., 2007). We obtained and analyzed the GNSS coordinate time series of the 32 REGME stations and we calculated the GPS-derived horizontal velocity field of the country. Velocities in ITRF2008 were transformed into a South American fixed reference frame, using the Euler pole calculated from 8 cGNSS stations throughout this plate. Our velocity field is consistent with the tectonics of the country and contributes to a better understanding of it. From the horizontal velocity field, we determined a preliminary model using the kriging geostatistical technique. To check the results we use the cross-validation method. The differences between the observed and estimated values range from ± 5 mm. This is a new velocity model obtained from GNSS data for Ecuador.

  15. Horns as particle velocity amplifiers.

    PubMed

    Donskoy, Dimitri M; Cray, Benjamin A

    2011-11-01

    Preliminary measurements and numerical predictions reveal that simple, and relatively small, horns generate remarkable amplification of acoustic particle velocity. For example, below 2 kHz, a 2.5 cm conical horn has a uniform velocity amplification ratio (throat-to-mouth) factor of approximately 3, or, in terms of a decibel level, 9.5 dB. It is shown that the velocity amplification factor depends on the horn's mouth-to-throat ratio as well as, though to a lesser degree, the horn's flare rate. A double horn configuration provides limited additional gain, approximately an increase of up to 25%.

  16. Dendritic Growth Velocities in Microgravity

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Winsa, E. A.

    1994-01-01

    We measured dendritic tip velocities in pure succinonitrile (SCN) in microgravity. using a sequence of telemetered binary images sent to Earth from the Space Shuttle Columbia (STS-62). Growth velocities were measured as a function of the supercooling over the range 0.05-1.5 K. Microgravity observations show that buoyancy-induced convection alters the growth kinetics of SCN dendrites at supercooling as high as 1.3 K. Also, the dendrite velocity data measured under microgravity agree well with the Ivantsov paraboloidal diffusion solution when coupled to a scaling constant of sigma(sup *) = 0.0157.

  17. Limit laws for the asymmetric inclusion process.

    PubMed

    Reuveni, Shlomi; Eliazar, Iddo; Yechiali, Uri

    2012-12-01

    The Asymmetric Inclusion Process (ASIP) is a unidirectional lattice-gas flow model which was recently introduced as an exactly solvable 'Bosonic' counterpart of the 'Fermionic' asymmetric exclusion process. An iterative algorithm that allows the computation of the probability generating function (PGF) of the ASIP's steady state exists but practical considerations limit its applicability to small ASIP lattices. Large lattices, on the other hand, have been studied primarily via Monte Carlo simulations and were shown to display a wide spectrum of intriguing statistical phenomena. In this paper we bypass the need for direct computation of the PGF and explore the ASIP's asymptotic statistical behavior. We consider three different limiting regimes: heavy-traffic regime, large-system regime, and balanced-system regime. In each of these regimes we obtain-analytically and in closed form-stochastic limit laws for five key ASIP observables: traversal time, overall load, busy period, first occupied site, and draining time. The results obtained yield a detailed limit-laws perspective of the ASIP, numerical simulations demonstrate the applicability of these laws as useful approximations.

  18. Instability of asymmetric continuous shaft system

    NASA Astrophysics Data System (ADS)

    Srinath, R.; Sarkar, Abhijit; Sekhar, A. S.

    2016-11-01

    In this work, the governing equation of asymmetric continuous shaft in inertial frame of reference is studied. In particular, determination of the parameter ranges for the stability or instability of the shaft response is the focus of the present work. The governing equations are a fourth-order coupled partial differential equations containing time dependent coefficients. The equations are non-dimensionalized in terms of two parameters related to the average moment of inertia and the difference of moments of inertia about the principal axes. Using the latter as the asymptotic parameter and employing modal superposition, a formal methodology based on perturbation methods is developed to ascertain the stability and instability characteristics. The methodology is applicable to shafts subjected to some of the classical boundary conditions viz. simply supported, cantilever, and fixed-fixed. Similar stability curves are obtained for each mode for these different boundary conditions. The novel non-dimensionalization scheme chosen leads to the stability boundaries as well as the loci of varying speeds to be in the form of straight lines. The intersection of these lines determine the stable and unstable speed ranges of different asymmetric shafts. The results are generalized for different material and geometric properties of the shaft.

  19. Internally architectured materials with directionally asymmetric friction

    PubMed Central

    Bafekrpour, Ehsan; Dyskin, Arcady; Pasternak, Elena; Molotnikov, Andrey; Estrin, Yuri

    2015-01-01

    Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel ‘ribs’ inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations. PMID:26040634

  20. Particle identification at an asymmetric B Factory

    SciTech Connect

    Coyle, P.; Eigen, G.; Hitlin, D.; Oddone, P.; Ratcliff, B.; Roe, N.; Va'vra, J.; Ypsilantis, T.

    1991-09-01

    Particle identification systems are an important component of any detector at a high-luminosity, asymmetric B Factory. In particular, excellent hadron identification is required to probe CP violation in B{sup 0} decays to CP eigenstates. The particle identification systems discussed below also provide help in separating leptons from hadrons at low momenta. We begin this chapter with a discussion of the physics motivation for providing particle identification, the inherent limitations due to interactions and decays in flight, and the requirements for hermiticity and angular coverage. A special feature of an asymmetric B Factory is the resulting asymmetry in the momentum distribution as a function of polar angle; this will also be quantified and discussed. In the next section the three primary candidates, time-of-flight (TOF), energy loss (dE/dx), and Cerenkov counters, both ring-imaging and threshold, will be briefly described and evaluated. Following this, one of the candidates, a long-drift Cerenkov ring-imaging device, is described in detail to provide a reference design. Design considerations for a fast RICH are then described. A detailed discussion of aerogel threshold counter designs and associated R D conclude the chapter. 56 refs., 64 figs., 13 tabs.

  1. Characterization of Asymmetric Coplanar Waveguide Discontinuities

    NASA Technical Reports Server (NTRS)

    Dib, Nihad I.; Katehi, Linda P. B.; Gupta, Minoo; Ponchak, George E.

    1993-01-01

    A general technique to characterize asymmetric coplanar waveguide (CPW) discontinuities with air bridges where both the fundamental coplanar and slotline modes may be excited together is presented. First, the CPW discontinuity without air bridges is analyzed using the space-domain integral equation (SDIE) approach. Second, the parameters (phase, amplitude, and wavelength) of the coplanar and slotline modes are extracted from an amplitude modulated-like standing wave existing in the CPW feeding lines. Then a 2n x 2n generalized scattering matrix of the n-port discontinuity without air bridges is derived which includes the occurring mode conversion. Finally, this generalized scattering matrix is reduced to an n x n matrix by enforcing suitable conditions at the ports which correspond to the excited slotline mode. For the purpose of illustration, the method is applied to a shielded asymmetric short-end CPW shunt stub, the scattering parameters of which are compared with those of a symmetric one. Experiments are performed on both discontinuities and the results are in good agreement with theoretical data. The advantages of using air bridges in CPW circuits as opposed to bond wires are also discussed.

  2. Asymmetric Vesicle Instability in Extensional Flow

    NASA Astrophysics Data System (ADS)

    Spann, Andrew; Zhao, Hong; Shaqfeh, Eric

    2012-11-01

    Previous researchers have chronicled the breakup of drops in an extensional flow as they stretch into a dumbbell shape with a long thin neck. Motivated by recent experimental observations, we study an apparently similar problem with vesicles, which are deformable but incompressible membranes that conserve area and volume. First, we simulate vesicles in an unbounded uniaxial extensional flow which are given general radial perturbations from an initially stable symmetric equilibrium state. For sufficiently low reduced volume (< 0.74 at matched inner/outer viscosity) there exists a capillary number at which an asymmetric perturbation mode will grow, resulting in the formation of an asymmetric dumbbell shape with a thin connecting cylindrical bridge analogous to the shapes associated with drop breakup. Our simulations help elucidate a mechanism for this instability based on a competition between internal pressure differentials in the vesicle resulting from the membrane bending force and ambient flow. We compare and contrast this transition to the ``standard'' drop breakup transition. Funded by NSF GRFP and Stanford Graduate Fellowship.

  3. Coil-Type Asymmetric Supercapacitor Electrical Cables.

    PubMed

    Yu, Zenan; Moore, Julian; Calderon, Jean; Zhai, Lei; Thomas, Jayan

    2015-10-21

    Cable-shaped supercapacitors (SCs) have recently aroused significant attention due to their attractive properties such as small size, lightweight, and bendability. Current cable-shaped SCs have symmetric device configuration. However, if an asymmetric design is used in cable-shaped supercapacitors, they would become more attractive due to broader cell operation voltages, which results in higher energy densities. Here, a novel coil-type asymmetric supercapacitor electrical cable (CASEC) is reported with enhanced cell operation voltage and extraordinary mechanical-electrochemical stability. The CASECs show excellent charge-discharge profiles, extraordinary rate capability (95.4%), high energy density (0.85 mWh cm(-3)), remarkable flexibility and bendability, and superior bending cycle stability (≈93.0% after 4000 cycles at different bending states). In addition, the CASECs not only exhibit the capability to store energy but also to transmit electricity simultaneously and independently. The integrated electrical conduction and storage capability of CASECS offer many potential applications in solar energy storage and electronic gadgets.

  4. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  5. Survey of Reflection-Asymmetric Nuclear Deformations

    NASA Astrophysics Data System (ADS)

    Olsen, Erik; Birge, Noah; Erler, Jochen; Nazarewicz, Witek; Perhac, Alex; Schunck, Nicolas; Stoitsov, Mario; Nuclei Collaboration

    2015-10-01

    Due to spontaneous symmetry breaking it is possible for a nucleus to have a deformed shape in its ground state. It is theorized that atoms whose nuclei have reflection-asymmetric or pear-like deformations could have non-zero electric dipole moments (EDMs). Such a trait would be evidence of CP-violation, a feature that goes beyond the Standard Model of Physics. It is the purpose of this project to predict which nuclei exhibit a reflection-asymmetric deformation and which of those would be the best candidates for an EDM measuring experiment. Using nuclear Density Functional Theory along with the new computer code AxialHFB and massively parallel computing we calculated ground state nuclear properties for thousands of even-even nuclei across the nuclear chart: from light to superheavy and from stable to short-lived systems. Six different Energy Density Functionals (EDFs) were used to assess systematic errors in our calculations. Overall, 140 even-even nuclei (near and among the lantanides and actinides and in the superheavy region near N = 184) were predicted by all 6 EDFs to have a pear-like deformation. The case of 112Xe also proved curious as it was predicted by 5 EDFs to have a pear-like deformation despite its proximity to the two-proton drip line. Deceased.

  6. Asymmetric disassembly and robustness in declining networks

    PubMed Central

    Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian

    2008-01-01

    Mechanisms that enable declining networks to avert structural collapse and performance degradation are not well understood. This knowledge gap reflects a shortage of data on declining networks and an emphasis on models of network growth. Analyzing >700,000 transactions between firms in the New York garment industry over 19 years, we tracked this network's decline and measured how its topology and global performance evolved. We find that favoring asymmetric (disassortative) links is key to preserving the topology and functionality of the declining network. Based on our findings, we tested a model of network decline that combines an asymmetric disassembly process for contraction with a preferential attachment process for regrowth. Our simulation results indicate that the model can explain robustness under decline even if the total population of nodes contracts by more than an order of magnitude, in line with our observations for the empirical network. These findings suggest that disassembly mechanisms are not simply assembly mechanisms in reverse and that our model is relevant to understanding the process of decline and collapse in a broad range of biological, technological, and financial networks. PMID:18936489

  7. Asymmetric disassembly and robustness in declining networks.

    PubMed

    Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian

    2008-10-28

    Mechanisms that enable declining networks to avert structural collapse and performance degradation are not well understood. This knowledge gap reflects a shortage of data on declining networks and an emphasis on models of network growth. Analyzing >700,000 transactions between firms in the New York garment industry over 19 years, we tracked this network's decline and measured how its topology and global performance evolved. We find that favoring asymmetric (disassortative) links is key to preserving the topology and functionality of the declining network. Based on our findings, we tested a model of network decline that combines an asymmetric disassembly process for contraction with a preferential attachment process for regrowth. Our simulation results indicate that the model can explain robustness under decline even if the total population of nodes contracts by more than an order of magnitude, in line with our observations for the empirical network. These findings suggest that disassembly mechanisms are not simply assembly mechanisms in reverse and that our model is relevant to understanding the process of decline and collapse in a broad range of biological, technological, and financial networks.

  8. Anatomic asymmetric prostheses: shaping the breast.

    PubMed

    Mira, Juan A

    2003-01-01

    Over more than 50 years the manufacturers of mammary prostheses have offered implants of two basic shapes, sphere or teardrop, and always unilateral (symmetric). In the year 2001 Poly Implants Prothèse invited us to participate in the development of a device that, in our opinion, was going to change the conceptual design for mammary augmentation and reconstruction: the asymmetric anatomical prosthesis (AAP). On December 10, 2001 we performed, via the transareolaris inferior, the first breast augmentation using a prototype of anatomic, asymmetric, cohesive silicone implants. The result was pleasing in all aspects. The prostheses were capable to reproduce faithfully, in all dimensions, the anatomy of the female breasts, including the differences between each side. Since then, we have used the AAP with two different contents, silicone cohesive gel and Hidrogel, this last model in which we are currently experimenting. We utilized either a transareolar or submammary approach, according to the case (atrophy, ptosis, tuberous breast, etc.). We present in this paper the features of this new prosthesis, the procedures used for their implant, and a comparative analysis of our results. PMID:14629058

  9. Asymmetric EPR entanglement in continuous variable systems

    NASA Astrophysics Data System (ADS)

    Wagner, Katherine; Janousek, Jiri; Armstrong, Seiji; Morizur, Jean-François; Lam, Ping Koy; Bachor, Hans-Albert

    2014-11-01

    Continuous variable entanglement can be produced in nonlinear systems or via the interference of squeezed states. In many optical systems such as parametric down conversion, the production of two perfectly symmetric subsystems is usually assumed when demonstrating the existence of entanglement. This symmetry simplifies the description of entanglement. However, asymmetry in entanglement may arise naturally in a real experiment, or be intentionally introduced in a given quantum information protocol. These asymmetries can emerge from having the output beams experience different losses and environmental contamination, or from the availability of non-identical input quantum states in quantum communication protocols. In this paper, we present a visualization of entanglement using quadrature amplitude plots of the twin beams. We quantitatively discuss the strength of asymmetric entanglement using EPR and inseparability criteria and theoretically show that the optimal beamsplitter ratio for entanglement is dependent on the asymmetries and may not be 50 : 50. To support this theory, we present experimental results showing one particular asymmetric entanglement where a 78 : 22 beamsplitter is optimal for observing entanglement.

  10. Limit laws for the asymmetric inclusion process.

    PubMed

    Reuveni, Shlomi; Eliazar, Iddo; Yechiali, Uri

    2012-12-01

    The Asymmetric Inclusion Process (ASIP) is a unidirectional lattice-gas flow model which was recently introduced as an exactly solvable 'Bosonic' counterpart of the 'Fermionic' asymmetric exclusion process. An iterative algorithm that allows the computation of the probability generating function (PGF) of the ASIP's steady state exists but practical considerations limit its applicability to small ASIP lattices. Large lattices, on the other hand, have been studied primarily via Monte Carlo simulations and were shown to display a wide spectrum of intriguing statistical phenomena. In this paper we bypass the need for direct computation of the PGF and explore the ASIP's asymptotic statistical behavior. We consider three different limiting regimes: heavy-traffic regime, large-system regime, and balanced-system regime. In each of these regimes we obtain-analytically and in closed form-stochastic limit laws for five key ASIP observables: traversal time, overall load, busy period, first occupied site, and draining time. The results obtained yield a detailed limit-laws perspective of the ASIP, numerical simulations demonstrate the applicability of these laws as useful approximations. PMID:23367919

  11. An asymmetric B factory based on PEP

    SciTech Connect

    Not Available

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e{sup +}e{sup {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings.

  12. Evolutionary Stability in the Asymmetric Volunteer's Dilemma

    PubMed Central

    Li, Yao-Tang

    2014-01-01

    It is often assumed that in public goods games, contributors are either strong or weak players and each individual has an equal probability of exhibiting cooperation. It is difficult to explain why the public good is produced by strong individuals in some cooperation systems, and by weak individuals in others. Viewing the asymmetric volunteer's dilemma game as an evolutionary game, we find that whether the strong or the weak players produce the public good depends on the initial condition (i.e., phenotype or initial strategy of individuals). These different evolutionarily stable strategies (ESS) associated with different initial conditions, can be interpreted as the production modes of public goods of different cooperation systems. A further analysis revealed that the strong player adopts a pure strategy but mixed strategies for the weak players to produce the public good, and that the probability of volunteering by weak players decreases with increasing group size or decreasing cost-benefit ratio. Our model shows that the defection probability of a “strong” player is greater than the “weak” players in the model of Diekmann (1993). This contradicts Selten's (1980) model that public goods can only be produced by a strong player, is not an evolutionarily stable strategy, and will therefore disappear over evolutionary time. Our public good model with ESS has thus extended previous interpretations that the public good can only be produced by strong players in an asymmetric game. PMID:25111781

  13. Explosive synchronization with asymmetric frequency distribution

    NASA Astrophysics Data System (ADS)

    Zhou, Wenchang; Chen, Lumin; Bi, Hongjie; Hu, Xin; Liu, Zonghua; Guan, Shuguang

    2015-07-01

    In this work, we study the synchronization in a generalized Kuramoto model with frequency-weighted coupling. In particular, we focus on the situations in which the frequency distributions of oscillators are asymmetric. For typical unimodal frequency distributions, such as Lorentzian, Gaussian, triangle, and even special Rayleigh, we find that the synchronization transition in the model generally converts from the first order to the second order as the central frequency shifts toward positive direction. We characterize two interesting coherent states in the system: In the former, two phase-locking clusters are formed, rotating with the same frequency. They correspond to those oscillators with relatively high frequencies while the oscillators with relatively small frequencies are not entrained. In the latter, two phase-locking clusters rotate with different frequencies, leading to the oscillation of the order parameter. We further conduct theoretical analysis to reveal the relation between the asymmetric frequency distribution and the conversion of synchronization type, and justify the coherent states observed in the system.

  14. Robust, automatic GPS station velocities and velocity time series

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Kreemer, C.; Hammond, W. C.

    2014-12-01

    Automation in GPS coordinate time series analysis makes results more objective and reproducible, but not necessarily as robust as the human eye to detect problems. Moreover, it is not a realistic option to manually scan our current load of >20,000 time series per day. This motivates us to find an automatic way to estimate station velocities that is robust to outliers, discontinuities, seasonality, and noise characteristics (e.g., heteroscedasticity). Here we present a non-parametric method based on the Theil-Sen estimator, defined as the median of velocities vij=(xj-xi)/(tj-ti) computed between all pairs (i, j). Theil-Sen estimators produce statistically identical solutions to ordinary least squares for normally distributed data, but they can tolerate up to 29% of data being problematic. To mitigate seasonality, our proposed estimator only uses pairs approximately separated by an integer number of years (N-δt)<(tj-ti )<(N+δt), where δt is chosen to be small enough to capture seasonality, yet large enough to reduce random error. We fix N=1 to maximally protect against discontinuities. In addition to estimating an overall velocity, we also use these pairs to estimate velocity time series. To test our methods, we process real data sets that have already been used with velocities published in the NA12 reference frame. Accuracy can be tested by the scatter of horizontal velocities in the North American plate interior, which is known to be stable to ~0.3 mm/yr. This presents new opportunities for time series interpretation. For example, the pattern of velocity variations at the interannual scale can help separate tectonic from hydrological processes. Without any step detection, velocity estimates prove to be robust for stations affected by the Mw7.2 2010 El Mayor-Cucapah earthquake, and velocity time series show a clear change after the earthquake, without any of the usual parametric constraints, such as relaxation of postseismic velocities to their preseismic values.

  15. Velocity of Sound in Solids.

    ERIC Educational Resources Information Center

    Frank, Michael T.; Kluk, Edward

    1991-01-01

    Presents experiments to measure the velocity of sound through metals and other amorphous materials. Describes the equipment used to make the measurements and the possibility of interfacing with a microcomputer. (MDH)

  16. GMTI radar minimum detectable velocity.

    SciTech Connect

    Richards, John Alfred

    2011-04-01

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  17. Kriging interpolating cosmic velocity field

    NASA Astrophysics Data System (ADS)

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie

    2015-10-01

    Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.

  18. On optimal velocity during cycling.

    PubMed

    Maroński, R

    1994-02-01

    This paper focuses on the solution of two problems related to cycling. One is to determine the velocity as a function of distance which minimizes the cyclist's energy expenditure in covering a given distance in a set time. The other is to determine the velocity as a function of the distance which minimizes time for fixed energy expenditure. To solve these problems, an equation of motion for the cyclist riding over arbitrary terrain is written using Newton's second law. This equation is used to evaluate either energy expenditure or time, and the minimization problems are solved using an optimal control formulation in conjunction with the method of Miele [Optimization Techniques with Applications to Aerospace Systems, pp. 69-98 (1962) Academic Press, New York]. Solutions to both optimal control problems are the same. The solutions are illustrated through two examples. In one example where the relative wind velocity is zero, the optimal cruising velocity is constant regardless of terrain. In the second, where the relative wind velocity fluctuates, the optimal cruising velocity varies.

  19. Single-drop impingement onto a wavy liquid film and description of the asymmetrical cavity dynamics.

    PubMed

    van Hinsberg, Nils Paul; Charbonneau-Grandmaison, Marie

    2015-07-01

    The present paper is devoted to an experimental investigation of the cavity formed upon a single-drop impingement onto a traveling solitary surface wave on a deep pool of the same liquid. The dynamics of the cavity throughout its complete expansion and receding phase are analyzed using high-speed shadowgraphy and compared to the outcomes of drop impingements onto steady liquid surface films having equal thickness. The effects of the surface wave velocity, amplitude and phase, drop impingement velocity, and liquid viscosity on the cavity's diameter and depth evolution are accurately characterized at various time instants. The wave velocity induces a distinct and in time increasing inclination of the cavity in the wave propagation direction. In particular for strong waves an asymmetrical distribution of the radial expansion and retraction velocity along the cavity's circumference is observed. A linear dependency between the absolute Weber number and the typical length and time scales associated with the cavity's maximum depth and maximum diameter is reported. PMID:26274267

  20. Single-drop impingement onto a wavy liquid film and description of the asymmetrical cavity dynamics

    NASA Astrophysics Data System (ADS)

    van Hinsberg, Nils Paul; Charbonneau-Grandmaison, Marie

    2015-07-01

    The present paper is devoted to an experimental investigation of the cavity formed upon a single-drop impingement onto a traveling solitary surface wave on a deep pool of the same liquid. The dynamics of the cavity throughout its complete expansion and receding phase are analyzed using high-speed shadowgraphy and compared to the outcomes of drop impingements onto steady liquid surface films having equal thickness. The effects of the surface wave velocity, amplitude and phase, drop impingement velocity, and liquid viscosity on the cavity's diameter and depth evolution are accurately characterized at various time instants. The wave velocity induces a distinct and in time increasing inclination of the cavity in the wave propagation direction. In particular for strong waves an asymmetrical distribution of the radial expansion and retraction velocity along the cavity's circumference is observed. A linear dependency between the absolute Weber number and the typical length and time scales associated with the cavity's maximum depth and maximum diameter is reported.

  1. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.

    PubMed

    Li, Yan-Yun; Yu, Shen-Luan; Shen, Wei-Yi; Gao, Jing-Xing

    2015-09-15

    Chiral alcohols are important building blocks in the pharmaceutical and fine chemical industries. The enantioselective reduction of prochiral ketones catalyzed by transition metal complexes, especially asymmetric transfer hydrogenation (ATH) and asymmetric hydrogenation (AH), is one of the most efficient and practical methods for producing chiral alcohols. In both academic laboratories and industrial operations, catalysts based on noble metals such as ruthenium, rhodium, and iridium dominated the asymmetric reduction of ketones. However, the limited availability, high price, and toxicity of these critical metals demand their replacement with abundant, nonprecious, and biocommon metals. In this respect, the reactions catalyzed by first-row transition metals, which are more abundant and benign, have attracted more and more attention. As one of the most abundant metals on earth, iron is inexpensive, environmentally benign, and of low toxicity, and as such it is a fascinating alternative to the precious metals for catalysis and sustainable chemical manufacturing. However, iron catalysts have been undeveloped compared to other transition metals. Compared with the examples of iron-catalyzed asymmetric reduction, cobalt- and nickel-catalyzed ATH and AH of ketones are even seldom reported. In early 2004, we reported the first ATH of ketones with catalysts generated in situ from iron cluster complex and chiral PNNP ligand. Since then, we have devoted ourselves to the development of ATH and AH of ketones with iron, cobalt, and nickel catalysts containing novel chiral aminophosphine ligands. In our study, the iron catalyst containing chiral aminophosphine ligands, which are expected to control the stereochemistry at the metal atom, restrict the number of possible diastereoisomers, and effectively transfer chiral information, are successful catalysts for enantioselective reduction of ketones. Among these novel chiral aminophosphine ligands, 22-membered macrocycle P2N4

  2. Photonic integration using asymmetric twin-waveguides

    NASA Astrophysics Data System (ADS)

    Studenkov, Pavel V.

    A novel approach to fabrication of monolithic photonic integrated circuits based on the asymmetric twin- waveguide (ATG) structure is proposed and demonstrated. In contrast to the conventional integration methods relying on semiconductor regrowth, the ATG approach requires only one epitaxy step, while the integrated devices are defined by post-growth patterning. The ATG structure contains two evanescently coupled waveguide layers separated by a cladding layer. The upper layer provides optical gain for the active devices such as lasers and semiconductor optical amplifiers. The transparent lower layer is used to make waveguides and optical interconnects on the chip. Thus the ATG represents a versatile integration platform for cost- effective fabrication of photonic integrated circuits, similar in some respects to the electronic CMOS platform. Light propagation and coupling in the ATG structure are analyzed using the beam propagation method to optimize the layer design. It is shown that the asymmetric refractive index profile eliminates undesirable optical coupling between the waveguide layers. At the interfaces between the active and passive devices, lateral tapers are used to induce vertical coupling of light with a coupling loss of typically <1 dB. Therefore various integrated devices can be separately optimized to achieve performance close to that of the conventional discrete components. The design of taper couplers is described in detail, and their performance is experimentally verified. Using the ATG approach, several integrated devices were fabricated in the InGaAsP/InP material system for λ = 1.55 μm wavelength operation. Lasers and semiconductor optical amplifiers with integrated waveguides were characterized to test the integration approach. Single-frequency, distributed Bragg reflector (DBR) lasers achieved output power of 11 mW with a 40 dB side-mode suppression ratio. A DBR laser with integrated electroabsorption modulator had a 24 dB extinction ratio

  3. Modeling Normal Shock Velocity Curvature Relation for Heterogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Yoo, Sunhee; Crochet, Michael; Pemberton, Steve

    2015-06-01

    The normal shock velocity and curvature, Dn(κ) , relation on a detonation shock surface has been an important functional quantity to measure to understand the shock strength exerted against the material interface between a main explosive charge and the case of an explosive munition. The Dn(κ) relation is considered an intrinsic property of an explosive, and can be experimentally deduced by rate stick tests at various charge diameters. However, experimental measurements of the Dn(κ) relation for heterogeneous explosives such as PBXN-111 are challenging due to the non-smoothness and asymmetry usually observed in the experimental streak records of explosion fronts. Out of the many possibilities, the asymmetric character may be attributed to the heterogeneity of the explosives, a hypothesis which begs two questions: (1) is there any simple hydrodynamic model that can explain such an asymmetric shock evolution, and (2) what statistics can be derived for the asymmetry using simulations with defined structural heterogeneity in the unreacted explosive? Saenz, Taylor and Stewart studied constitutive models for derivation of the Dn(κ) relation on porous `homogeneous' explosives and carried out simulations in a spherical coordinate frame. In this paper, we extend their model to account for `heterogeneity' and present shock evolutions in heterogeneous explosives using 2-D hydrodynamic simulations with some statistical examination. (96TW-2015-0004)

  4. Asymmetric type F botulism with cranial nerve demyelination.

    PubMed

    Filozov, Alina; Kattan, Jessica A; Jitendranath, Lavanya; Smith, C Gregory; Lúquez, Carolina; Phan, Quyen N; Fagan, Ryan P

    2012-01-01

    We report a case of type F botulism in a patient with bilateral but asymmetric neurologic deficits. Cranial nerve demyelination was found during autopsy. Bilateral, asymmetric clinical signs, although rare, do not rule out botulism. Demyelination of cranial nerves might be underrecognized during autopsy of botulism patients.

  5. Effect of Asymmetric Auxin Application on Helianthus Hypocotyl Curvature 1

    PubMed Central

    Migliaccio, Fernando; Rayle, David L.

    1989-01-01

    Indole-3-acetic acid was applied asymmetrically to the hypocotyls of sunflower (Helianthus annuus L.) seedlings. After 5 hours on a clinostat, auxin gradients as small as 1 to 1.3 produced substantial (more than 60 degrees) hypocotyl curvature. This result suggests the asymmetric growth underlying hypocotyl gravitropism can be explained by lateral auxin redistribution. PMID:11537460

  6. Effect of asymmetric auxin application on Helianthus hypocotyl curvature

    NASA Technical Reports Server (NTRS)

    Migliaccio, F.; Rayle, D. L.

    1989-01-01

    Indole-3-acetic acid was applied asymmetrically to the hypocotyls of sunflower (Helianthus annuus L.) seedlings. After 5 hours on a clinostat, auxin gradients as small as 1 to 1.3 produced substantial (more than 60 degrees) hypocotyl curvature. This result suggests the asymmetric growth underlying hypocotyl gravitropism can be explained by lateral auxin redistribution.

  7. Microscale Synthesis of Chiral Alcohols via Asymmetric Catalytic Transfer Hydrogenation

    ERIC Educational Resources Information Center

    Peeters, Christine M.; Deliever, Rik; De Vos, Dirk

    2009-01-01

    Synthesis of pure enantiomers is a key issue in industry, especially in areas connected to life sciences. Catalytic asymmetric synthesis has emerged as a powerful and practical tool. Here we describe an experiment on racemic reduction and asymmetric reduction via a catalytic hydrogen transfer process. Acetophenone and substituted acetophenones are…

  8. Asymmetric catalytic synthesis of the proposed structure of trocheliophorolide B.

    PubMed

    Trost, Barry M; Quintard, Adrien

    2012-09-01

    A concise catalytic asymmetric synthesis of the proposed structure of trocheliophorolide B is reported. The synthetic sequence notably features an asymmetric acetaldehyde alkynylation, a Ru-catalyzed alder-ene reaction, and a Zn-ProPhenol ynone aldol condensation. Comparison with the reported data suggests a misassignment of the natural product structure.

  9. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    DOEpatents

    Friesen, D.T.; Babcock, W.C.

    1989-11-28

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  10. Effects of Noise on Asymmetric Bidirectional Controlled Teleportation

    NASA Astrophysics Data System (ADS)

    Nie, Yi-you; Sang, Ming-huang

    2016-07-01

    We present a scheme for asymmetric bidirectional controlled teleportation via a six-qubit cluster state in noisy environments, which includes the phase-damping and amplitude-damping channels. We analytically derive the fidelities of the asymmetric bidirectional controlled teleportation process in these two noise channels. We show that the fidelities only depend on the initial state and the noisy rate.

  11. Asymmetric perfectly matched layer for the absorption of waves

    SciTech Connect

    Vay, Jean-Luc

    2002-02-10

    The Perfectly Matched Layer (PML) has become a standard for comparison in the techniques that have been developed to close the system of Maxwell equations (more generally wave equations) when simulating an open system. The original Berenger PML formulation relies on a split version of Maxwell equations with numerical electric and magnetic conductivities. They present here an extension of this formulation which introduces counterparts of the electric and magnetic conductivities affecting the term which is spatially differentiated in the equations. they phase velocity along each direction is also multiplied by an additional coefficient. They show that, under certain constraints on the additional numerical coefficients, this ''medium'' does not generate any reflection at any angle and any frequency and is then a Perfectly Matched Layer. Technically it is a super-set of Berenger's PML to which it reduces for a specific set of parameters and like it, it is anisotropic. However, unlike the PML, it introduces some asymmetry in the absorption rate and is therefore labeled an APML for Asymmetric Perfectly Matched Layer. They present here the numerical considerations that have led them to introduce such a medium as well as its theory. Several finite-different numerical implementations are derived (in one, two and three dimensions) and the performance of the APML is contrasted with that of the PML in one and two dimensions. Using plane wave analysis, they show that the APML implementations lead to higher absorption rates than the considered PML implementations. Although they have considered in this paper the finite-different discretization of Maxwell-like equations only, the APML system of equations may be used with other discretization schemes, such as finite-elements, and may be applied to other equations, for applications beyond electromagnetics.

  12. Gait phase varies over velocities.

    PubMed

    Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan

    2014-02-01

    We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification.

  13. Double aromaticity in transition metal centered double-ring boron clusters M@B2n (M = Ti, Cr, Fe, Ni, Zn; n = 6, 7, 8).

    PubMed

    Xu, Chang; Cheng, Longjiu; Yang, Jinlong

    2014-09-28

    It is well known that double-ring boron clusters have got the special double aromaticity with delocalized π orbitals in two directions (tangential and radial), which are potential ligands centered by a transition metal. In this article, the transition metal centered double-ring boron clusters M@B2n (M = Ti, Cr, Fe, Ni, Zn; n = 6, 7, 8) are theoretically investigated by density functional theory calculations. These endohedral compounds have also got double aromaticity in both tangential and radial directions. Interestingly, the tangential delocalized π orbitals of boron ligands following the Huckle's (4n + 2) rule do not interact with the central metal, while the radial π orbitals of boron ligands are bonded with the central mental to form spd-π endohedral bonding. The spd-π endohedral bonding follows the 18e-principle in Ni@B14 and Fe@B16. However, due to the flat shape of the compounds, 14e (Cr@B14) and 16e (Ni@B12) can also be electronically very stable where the energy levels of the spd-π orbitals delocalized in z-direction rise up. This intriguing bonding model makes sense in further study of the boron chemistry.

  14. Structural phase stability, electronic structure and mechanical properties of alkali metal hydrides AMH4 (A=Li, Na; M=B, AL)

    NASA Astrophysics Data System (ADS)

    Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    The structural stability of Alkali metal hydrides AMH4 (A=Li, Na; M=B, Al) is analyzed among the various crystal structures, namely hexagonal (P63mc), tetragonal (P42/nmc), tetragonal (P-421c), tetragonal (I41/a), orthorhombic (Pnma) and monoclinic (P21/c). It is observed that, orthorhombic (Pnma) phase is the most stable structure for LiBH4, monoclinic (P21/c) for LiAlH4, tetragonal (P42/nmc) for NaBH4 and tetragonal (I41/a) for NaAlH4 at normal pressure. Pressure induced structural phase transitions are observed in LiBH4, LiAlH4, NaBH4 and NaAlH4 at the pressures of 4 GPa, 36.1 GPa, 26.5 GPa and 46 GPa respectively. The electronic structure reveals that these metal hydrides are wide band gap insulators. The calculated elastic constants indicate that these metal hydrides are mechanically stable at normal pressure.

  15. Baryon destruction by asymmetric dark matter

    SciTech Connect

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2011-11-01

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  16. Baryon destruction by asymmetric dark matter

    SciTech Connect

    Davoudiasl H.; Morrissey, D.; Sigurdson, K.; Tulin, S.

    2011-11-10

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  17. Hydrazones as Singular Reagents in Asymmetric Organocatalysis.

    PubMed

    de Gracia Retamosa, María; Matador, Esteban; Monge, David; Lassaletta, José M; Fernández, Rosario

    2016-09-12

    This Minireview summarizes strategies and developments regarding the use of hydrazones as reagents in asymmetric organocatalysis, their distinct roles in nucleophile-electrophile, cycloaddition, and cyclization reactions. The key structural elements governing the reactivity of these reagents in a preferred pathway will be discussed, as well as their different interactions with organocatalysts, leading to diverse activation modes. Along these studies, the synthetic equivalence of N-monoalkyl, N,N-dialkyl, and N-acyl hydrazones with several synthons is also highlighted. Emphasis is also put on the mechanistic studies performed to understand the observed reactivities. Finally, the functional group transformations performed from the available products has also been analyzed, highlighting the synthetic value of these methodologies, which served to access numerous families of valuable multifunctional compounds and nitrogen-containing heterocycles.

  18. Activation of carboxylic acids in asymmetric organocatalysis.

    PubMed

    Monaco, Mattia Riccardo; Poladura, Belén; Diaz de Los Bernardos, Miriam; Leutzsch, Markus; Goddard, Richard; List, Benjamin

    2014-07-01

    Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. Its success relies to a large extent upon the introduction of novel and generic activation modes. Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition-metal catalysis, a general and well-defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self-assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine-opening reaction with carboxylic acids as nucleophiles.

  19. Asymmetric Synthesis of Spiroketals with Aminothiourea Catalysts.

    PubMed

    Yoneda, Naoki; Fukata, Yukihiro; Asano, Keisuke; Matsubara, Seijiro

    2015-12-14

    Chiral spiroketal skeletons are found as core structures in a range of bioactive compounds. These natural compounds and their analogues have attracted much attention in the field of drug discovery. However, methods for their enantioselective construction are limited, and easily available optically active spiroketals are rare. We demonstrate a novel catalytic asymmetric synthesis of spiroketal compounds that proceeds through an intramolecular hemiacetalization/oxy-Michael addition cascade mediated by a bifunctional aminothiourea catalyst. This results in spiroketal structures through the relay formation of contiguous oxacycles, in which multipoint recognition by the catalyst through hydrogen bonding imparts high enantioselectivity. This method offers facile access to spiroketal frameworks bearing an alkyl group at the 2-position, which are prevalent in insect pheromones. Optically active (2S,5S)-chalcogran, a pheromone of the six-spined spruce bark beetle, and an azide derivative could be readily synthesized from the bicyclic reaction product. PMID:26510921

  20. Polyimides Derived from Novel Asymmetric Benzophenone Dianhydrides

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2015-01-01

    This invention relates to the composition and processes for preparing thermoset polyimides derived from an asymmetric dianhydride, namely 2,3,3',4'-benzophenone dianhydride (a-BTDA) with at least one diamine, and a monofunctional terminal endcaps. The monofunctional terminating groups include 4-phenylethynylphthalic anhydride ester-acid derivatives, phenylethyl trimellitic anhydride (PETA) and its ester derivatives as well as 3-phenylethynylaniline. The process of polyimide composite comprises impregnating monomer reactants of dianhydride or its ester-acid derivatives, diamine and with monofunctional reactive endcaps into glass, carbon, quartz or synthetic fibers and fabrics, and then stack up into laminates and subsequently heated to between 150-375.degree. C. either at atmosphere or under pressure to promote the curing and crosslinking of the reactive endcaps to form a network of thermoset polyimides.

  1. Fractional domain asymmetric cryptosystem and cryptanalysis

    NASA Astrophysics Data System (ADS)

    Rajput, Sudheesh K.; Nishchal, Naveen K.

    2013-06-01

    Most of the reported optical techniques of encryption in literature belong to the category of symmetric cryptosystems, in which the keys used for encryption are identical to the decryption keys. In an environment of network security, a symmetric cryptosystem would suffer from problems in key distribution, management, and delivery. In this paper, we present the results of an asymmetric cryptosystem that uses fractional Fourier transform domain amplitude- and phase- truncation approach. The input image/data used are gray-scale and color patterns. The conventional random phase masks are replaced with structured phase masks to further enhance the key size and hence security of cryptosystem. The scheme also uses the concept of interference and polarization selective diffractive optical element. Cryptanalysis has been carried out considering various types of attacks using phase retrieval algorithm. Numerical simulation results have been presented.

  2. Spectral measurements of asymmetrically irradiated capsule backlighters

    NASA Astrophysics Data System (ADS)

    Keiter, P. A.; Drake, R. P.

    2016-11-01

    Capsule backlighters provide a quasi-continuum x-ray spectrum over a wide range of photon energies [J. F. Hansen et al., Rev. Sci. Instrum. 79, 013504 (2008)]. Ideally one irradiates the capsule backlighter symmetrically, however, in complex experimental geometries, this is not always possible. In recent experiments we irradiated capsule backlighters asymmetrically and measured the x-ray spectrum from multiple directions. We will present time-integrated spectra over the photon energy range of 2-13 keV and time-resolved spectra over the photon energy range of 2-3 keV. We will compare the spectra from different lines of sight to determine if the laser asymmetry results in an angular dependence in the x-ray emission.

  3. Asymmetrical Integration: Lessons from a Railway Empire.

    PubMed

    McDonald, Kate

    2015-01-01

    This article reexamines railway imperialism in Manchuria from the perspective of global network building. Through a case study of the Japanese-owned South Manchuria Railway Company (SMR), I trace how one railway empire used through traffic agreements to integrate Northeast Asian railways into a global network while at the same time installing itself as the necessary intermediary between European and Asian overland traffic. I argue that the SMR's pursuit of global reach and local dominance compels us to reconsider the traditional division of border-crossing railways into international and imperialist types, and instead to examine how border-crossing railways contributed to the uneven or "asymmetrical" integration of the global transportation infrastructure.

  4. Cylindrical Asymmetrical Capacitor Devices for Space Applications

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor)

    2004-01-01

    An asymmetrical capacitor system is provided which creates a thrust force. The system is adapted for use in space applications and includes a capacitor device provided with a first conductive element and a second conductive element axially spaced from the first conductive element and of smaller axial extent. A shroud supplied with gas surrounds the capacitor device. The second conductive element can be a wire ring or mesh mounted on dielectric support posts affixed to a dielectric member which separates the conductive elements or a wire or mesh annulus surrounding a barrel-shaped dielectric member on which the h t element is also mounted. A high voltage source is connected across the conductive elements and applies a high voltage to the conductive elements of sufficient value to create a thrust force on the system inducing movement thereof.

  5. Reflection asymmetric shape in sup 221 Ra

    SciTech Connect

    Liang, C.F.; Paris, P.; Briancon, C. ); Sheline, R.K. )

    1990-04-20

    This paper reports on mass separated sources of {sup 225}Th used to study the level structure of {sup 221}Ra following alpha decay. Fluorination techniques were used to obtain the selectivity in atomic number. The low lying levels in {sup 221}Ra are interpreted in terms of K = 5/2 {sup {plus minus}} and 3/2{sup {plus minus}} parity doublet bands which occur naturally from reflection asymmetric models. The anomalous spin sequences in the K = 3/2{sup {plus minus}} bands of {sup 221}Ra are interpreted in terms of their Coriolis coupling with K = 1/2{sup {plus minus}} bands with large decoupling parameters. The low-lying parity doublet bands in {sup 221}Ra, {sup 223}Ra and {sup 225}Ra, and particularly the Coriolis coupling of their K = 3/2{sup {plus minus}} bands, are compared and contrasted.

  6. Performance of an AGATA asymmetric detector

    SciTech Connect

    Boston, A. J.; Dimmock, M. R.; Unsworth, C.; Boston, H. C.; Cooper, R. J.; Grint, A. N.; Harkness, L. J.; Jones, M.; Nolan, P. J.; Oxley, D. C.; Slee, M.; Lazarus, I. H.; Simpson, J.

    2008-11-11

    Each major technical advance in gamma-ray detection devices has resulted in significant new insights into the structure of atomic nuclei. The next major step in gamma-ray spectroscopy involves achieving the goal of a 4{pi} ball of germanium detectors by using the technique of gamma-ray energy tracking in electrically segmented germanium crystals. The resulting spectrometer will have an unparalleled level of detection power for nuclear electromagnetic radiation. Collaborations have been established in Europe (AGATA)[1] and the USA (GRETA/GRETINA)[2] to build gamma-ray tracking spectrometers. This paper discusses the performance of the first AGATA (Advanced GAmma Tracking Array) asymmetric detector that has been tested at the University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector.

  7. Asymmetric Total Synthesis of (-)-Lycospidine A.

    PubMed

    Xu, Shiyan; Zhang, Jing; Ma, Donghui; Xu, Dengyu; Xie, Xingang; She, Xuegong

    2016-09-16

    The first asymmetric total synthesis of the structurally unique Lycopodium alkaloid (-)-lycospidine A, containing an unprecedented five-membered ring, has been accomplished in only 10 steps with 21.6% overall yield from the known conveniently available sulfoxide. This protecting-group-free short synthesis relied on the use of a key amidation/aza-Prins domino cyclization reaction to rapidly construct the tricyclic skeleton and two continuous stereocenters (one of which is a bridged quaternary stereocenter). An intramolecular aldol condensation was successfully utilized to establish the unique five-membered ring, and a late-stage oxidation inspired by biosynthesis pathway was adopted to synthesize the diosphenol ring of (-)-lycospidine A. PMID:27565006

  8. Magnetoresistive system with concentric ferromagnetic asymmetric nanorings

    SciTech Connect

    Avila, J. I. Tumelero, M. A.; Pasa, A. A.; Viegas, A. D. C.

    2015-03-14

    A structure consisting of two concentric asymmetric nanorings, each displaying vortex remanent states, is studied with micromagnetic calculations. By orienting in suitable directions, both the asymmetry of the rings and a uniform magnetic field, the vortices chiralities can be switched from parallel to antiparallel, obtaining in this way the analogue of the ferromagnetic and antiferromagnetic configurations found in bar magnets pairs. Conditions on the thickness of single rings to obtain vortex states, as well as formulas for their remanent magnetization are given. The concentric ring structure enables the creation of magnetoresistive systems comprising the qualities of magnetic nanorings, such as low stray fields and high stability. A possible application is as contacts in spin injection in semiconductors, and estimations obtained here of magnetoresistance change for a cylindrical spin injection based device show significant variations comparable to linear geometries.

  9. Control of Asymmetric Magnetic Perturbations in Tokamaks

    SciTech Connect

    Park, Jong-kyu; Schaffer, Michael J.; Menard, Jonathan E.; Boozer, Allen H.

    2007-10-03

    The sensitivity of tokamak plasmas to very small deviations from the axisymmetry of the magnetic field |δ→(over)Β/→(over)Β|≈ 10–4 is well known. What was not understood until very recently is the importance of the perturbation to the plasma equilibrium in assessing the effects of externally produced asymmetries in the magnetic field, even far from a stability limit. DIII-D and NSTX experiments find that when the deleterious effects of asymmetries are mitigated, the external asymmetric field was often made stronger and with an increased interaction with the magnetic field of the unperturbed equilibrium fields. This paper explains these counter intuitive results. The explanation using ideal perturbed equilibria has important implications for the control of field errors in all toroidal plasmas.

  10. Hydrazones as Singular Reagents in Asymmetric Organocatalysis.

    PubMed

    de Gracia Retamosa, María; Matador, Esteban; Monge, David; Lassaletta, José M; Fernández, Rosario

    2016-09-12

    This Minireview summarizes strategies and developments regarding the use of hydrazones as reagents in asymmetric organocatalysis, their distinct roles in nucleophile-electrophile, cycloaddition, and cyclization reactions. The key structural elements governing the reactivity of these reagents in a preferred pathway will be discussed, as well as their different interactions with organocatalysts, leading to diverse activation modes. Along these studies, the synthetic equivalence of N-monoalkyl, N,N-dialkyl, and N-acyl hydrazones with several synthons is also highlighted. Emphasis is also put on the mechanistic studies performed to understand the observed reactivities. Finally, the functional group transformations performed from the available products has also been analyzed, highlighting the synthetic value of these methodologies, which served to access numerous families of valuable multifunctional compounds and nitrogen-containing heterocycles. PMID:27552942

  11. Asymmetric selection and the evolution of extraordinary defences

    PubMed Central

    Urban, Mark C.; Bürger, Reinhard; Bolnick, Daniel I.

    2013-01-01

    Evolutionary biologists typically predict future evolutionary responses to natural selection by analyzing evolution on an adaptive landscape. Much theory assumes symmetric fitness surfaces even though many stabilizing selection gradients deviate from symmetry. Here we revisit Lande's adaptive landscape and introduce novel analytical theory that includes asymmetric selection. Asymmetric selection and the resulting skewed trait distributions bias equilibrium mean phenotypes away from fitness peaks, usually toward the flatter shoulder of the individual fitness surface. We apply this theory to explain a longstanding paradox in biology and medicine: the evolution of excessive defences against enemies. These so-called extraordinary defences can evolve in response to asymmetrical selection when marginal risks of insufficient defence exceed marginal costs of excessive defence. Eco-evolutionary feedbacks between population abundances and asymmetric selection further exaggerate these defences. Recognizing the effect of asymmetrical selection on evolutionary trajectories will improve the accuracy of predictions and suggest novel explanations for apparent sub-optimality. PMID:23820378

  12. Molecular line emission in asymmetric envelopes of evolved stars

    NASA Astrophysics Data System (ADS)

    Sanchez, Andres Felipe Perez

    2014-06-01

    Stars with initial masses of 0.8 < M⊙ < 9M⊙ eject most of their mass when evolving along the asymptotic giant branch (AGB) phase. The ejected material eventually cools down, which leads it to condensate and to form dust grains and molecular gas around the star, creating an extended circumstellar envelope (CSE). The mechanism responsible for the expansion of the dusty and dense CSEs is not completely understood. It is suggested that stellar radiation pressure on the dust particles can accelerate them outwards. Then, by collisional exchange of momentum, the dust particles drag along the molecular gas. However, this scenario cannot explain the onset of asymmetries in the CSEs observed towards more evolved sources such as post-AGB sources and Planetary nebulae. Part of the research in this thesis is focused on the study of the role that the stellar magnetic field plays on the formation of the collimated high-velocity outflows observed towards post-AGB sources. Polarized maser emission towards (post-)AGB stars has become an useful tool to determine the properties of the stellar magnetic fields permeating their CSEs. However, the polarization fraction detected can be affected by non-Zeeman effects. Here I present the results of our analysis of the polarization properties of SiO, H2O and HCN maser emission in the (sub-)millimetre wavelength range. The goal of this analysis is to determine whether polarized maser emission of these molecular species can be used as reliable tracer of the magnetic field from observations at (sub-)millimetre wavelengths. I also present the results of radio interferometric observations of both continuum and polarized maser emission towards post-AGB stars. The sources observed are characterized by H2O maser emission arising from their collimated, high-velocity outflows. The observations have been carried out with the Australian Telescope Compact Array aiming to detect both polarized maser emission and non-thermal radio continuum emission

  13. Algebraic Davis Decomposition and Asymmetric Doob Inequalities

    NASA Astrophysics Data System (ADS)

    Hong, Guixiang; Junge, Marius; Parcet, Javier

    2016-09-01

    In this paper we investigate asymmetric forms of Doob maximal inequality. The asymmetry is imposed by noncommutativity. Let {({M}, τ)} be a noncommutative probability space equipped with a filtration of von Neumann subalgebras {({M}_n)_{n ≥ 1}}, whose union {bigcup_{n≥1}{M}_n} is weak-* dense in {{M}}. Let {{E}_n} denote the corresponding family of conditional expectations. As an illustration for an asymmetric result, we prove that for {1 < p < 2} and {x in L_p({M},τ)} one can find {a, b in L_p({M},τ)} and contractions {u_n, v_n in {M}} such that {E}_n(x) = a u_n + v_n b quad and quad max big{ |a|_p,|b|_p big} ≤ c_p |x|_p. Moreover, it turns out that {a u_n} and {v_n b} converge in the row/column Hardy spaces {{H}_p^r({M})} and {{H}_p^c({M})} respectively. In particular, this solves a problem posed by the Defant and Junge in 2004. In the case p = 1, our results establish a noncommutative form of the Davis celebrated theorem on the relation betwe en martingale maximal and square functions in L 1, whose noncommutative form has remained open for quite some time. Given {1 ≤ p ≤ 2}, we also provide new weak type maximal estimates, which imply in turn left/right almost uniform convergence of {{E}_n(x)} in row/column Hardy spaces. This improves the bilateral convergence known so far. Our approach is based on new forms of Davis martingale decomposition which are of independent interest, and an algebraic atomic description for the involved Hardy spaces. The latter results are new even for commutative von Neumann algebras.

  14. Columnar structures from asymmetrically tapered biphenylamide.

    PubMed

    Park, Soo-Jin; Hwang, Seok-Ho; Kim, Namil; Kuo, Shiao-Wei; Kim, Hak Yong; Park, Seul-Ki; Kim, Young-Jin; Nah, Changwoon; Lee, Joong Hee; Jeong, Kwang-Un

    2009-10-15

    An asymmetrically tapered N,N'-tris[[(2-dodecylaminocarbonyl)ethyl]methyl]-4-biphenylamide (asym-C(12)PhA, where n is the number of carbon atoms in the alkyl chains, n = 12) was newly designed and synthesized. In this asymmetrically tapered asym-C(12)PhA biphenylamide, H-bondable hydrophilic amide moieties are located at between a rigid hydrophobic biphenyl rod and three flexible hydrophobic alkyl chains. Computer energy minimization indicated that three-dimensional (3D) geometry of asym-C(12)PhA biphenylamide looks like a cone with dimensions of 3.01 nm in height and 1.44 nm in bottom radius. Phase transitions and supra-molecular structures were identified utilizing the combined techniques of differential scanning calorimetry, 1D wide-angle X-ray diffraction (1D WAXD), Fourier-transform infrared spectroscopy, and solid-state (13)C nuclear magnetic resonance analyses. The asym-C(12)PhA self-assembled into a highly ordered columnar mesophase just below the isotropization temperature and then transformed to 3D columnar crystalline phase (Phi(Cr)) on further cooling. Selected area electron diffractions in transmission electron microscopy (TEM) along with 1D WAXD and cross-polarized optical microscopy suggested that discotic building blocks were constructed by rotating 120 degrees of three asym-C(12)PhA with respect to neighboring ones and the tmb (top-middle-bottom) stacked discotic building blocks further self-organized into columns. These columns are laterally intercalated to form the Phi(Cr) phase. On the basis of the TEM image and polyethylene surface decoration technology, it was identified that the self-assembled asym-C(12)PhA fibers with approximately 1 mum in diameter and several millimeters in length were braids of tiny single crystals.

  15. Scaffold of Asymmetric Organic Compounds - Magnetite Plaquettes

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Martinez, J.

    2015-01-01

    Life on Earth shows preference towards the set of organics with particular spatial configurations, this 'selectivity' is a crucial criterion for life. With only rare exceptions, life prefers the left- (L-) form over the right- (D-) form of amino acids, resulting in an L-enantiomeric excess (L-ee). Recent studies have shown Lee for alpha-methyl amino acids in some chondrites. Since these amino acids have limited terrestrial occurrence, the origin of their stereoselectivity is nonbiological, and it seems appropriate to conclude that chiral asymmetry, the molecular characteristic that is common to all terrestrial life form, has an abiotic origin. A possible abiotic mechanism that can produce chiral asymmetry in meteoritic amino acids is their formation with the presence of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. Magnetite is shown to be an effective catalyst for the formation of amino acids that are commonly found in chondrites. Magnetite 'plaquettes' (or 'platelets'), first described by Jedwab, show an interesting morphology of barrel-shaped stacks of magnetite disks with an apparent dislocation-induced spiral growth that seem to be connected at the center. A recent study by Singh et al. has shown that magnetites can self-assemble into helical superstructures. Such molecular asymmetry could be inherited by adsorbed organic molecules. In order to understand the distribution of 'spiral' magnetites in different meteorite classes, as well as to investigate their apparent spiral configurations and possible correlation to molecular asymmetry, we observed polished sections of carbonaceous chondrites (CC) using scanning electron microscope (SEM) imaging. The sections were also studied by electron backscattered diffraction (EBSD) in order to reconstruct the crystal orientation along the stack of magnetite disks.

  16. The evolution of cooperation in asymmetric systems.

    PubMed

    Wang, RuiWu; Shi, Lei

    2010-01-01

    Explaining "Tragedy of the Commons" of evolution of cooperation remains one of the greatest problems for both biology and social science. Asymmetrical interaction, which is one of the most important characteristics of cooperative system, has not been sufficiently considered in the existing models of the evolution of cooperation. Considering the inequality in the number and payoff between the cooperative actors and recipients in cooperation systems, discriminative density-dependent interference competition will occur in limited dispersal systems. Our model and simulation show that the local but not the global stability of a cooperative interaction can be maintained if the utilization of common resource remains unsaturated, which can be achieved by density-dependent restraint or competition among the cooperative actors. More intense density dependent interference competition among the cooperative actors and the ready availability of the common resource, with a higher intrinsic contribution ratio of a cooperative actor to the recipient, will increase the probability of cooperation. The cooperation between the recipient and the cooperative actors can be transformed into conflict and, it oscillates chaotically with variations of the affecting factors under different environmental or ecological conditions. The higher initial relatedness (i.e. similar to kin or reciprocity relatedness), which is equivalent to intrinsic contribution ratio of a cooperative actor to the recipient, can be selected for by penalizing less cooperative or cheating actors but rewarding cooperative individuals in asymmetric systems. The initial relatedness is a pivot but not the aim of evolution of cooperation. This explains well the direct conflict observed in almost all cooperative systems.

  17. Asymmetric turbulent boundary layers along long thin circular cylinders at low-Re

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen A.

    2015-09-01

    Notable deviations of the asymmetric turbulent boundary layer (TBL) statistics from their axisymmetric counterpart along long thin circular cylinders are vitally important to the naval and oceanographic jurisdictions. Although the available experimental evidence backs their concern, the realm of parametric variability (both geometric and kinematic) is extremely limited to draw solid conclusions. We know that only small misalignments which quantify less than one degree of incidence between the freestream and the straight cylinder axis can substantially alter the boundary layer thicknesses, mean axial velocity, and Reynolds stresses. But the statistical database is plainly inadequate to justify modifying the design tools that were founded solely for axisymmetric flow conditions. Herein, we begin rectifying this drawback by numerical means. The investigation centers on low turbulent Reynolds numbers (500 ≤ Rea ≤ 2500) and small angles-of-incidence (0° < α < 9°) to validate and complement the lions-share of the present database (Rea = aUo/ν, where a, Uo, and ν are the cylinder radius, freestream velocity, and kinematic viscosity, respectively). In particular, we numerically resolved the statistical responses of the TBL, mean axial velocity, Reynolds stresses, and skin friction under angles-of-incidence up to the earliest signs of Strouhal-type shedding. Clearly, the first prominent response was the thinning and thickening of the TBL along the respective windward and leeward sides to only a minor misalignment. Tilting the straight cylinder to slightly higher yaw angles transformed the TBL to a transitional boundary layer along the windward side for all simulated Reynolds numbers. For yaw angles α > 2°, all turbulent statistics of the asymmetric boundary layer were measurably dissimilar to those of the axisymmetric state.

  18. Velocity Requirements for Causality Violation

    NASA Astrophysics Data System (ADS)

    Modanese, Giovanni

    We re-examine the "Regge-Tolman paradox" with reference to some recent experimental results. It is straightforward to find a formula for the velocity v of the moving system required to produce causality violation. This formula typically yields a velocity very close to the speed of light (for instance, v/c > 0.97 for X-shaped microwaves), which raises some doubts about the real physical observability of the violations. We then compute the velocity requirement introducing a delay between the reception of the primary signal and the emission of the secondary. It turns out that in principle for any delay it is possible to find moving observers able to produce active causal violation. This is mathematically due to the singularity of the Lorentz transformations for β →1. For a realistic delay due to the propagation of a luminal precursor, we find that causality violations in the reported experiments are still more unlikely (v/c > 0.989), and even in the hypothesis that the superluminal propagation velocity goes to infinity, the velocity requirement is bounded by v/c > 0.62. We also prove that if two oscopic bodies exchange energy and momentum through superluminal signals, then the swap of signal source and target is incompatible with the Lorentz transformations; therefore it is not possible to distinguish between source and target, even with reference to a definite reference frame.

  19. Asymmetric dominance and asymmetric mate choice oppose premating isolation after allopatric divergence

    PubMed Central

    Sefc, Kristina M; Hermann, Caroline M; Steinwender, Bernd; Brindl, Hanna; Zimmermann, Holger; Mattersdorfer, Karin; Postl, Lisbeth; Makasa, Lawrence; Sturmbauer, Christian; Koblmüller, Stephan

    2015-01-01

    Assortative mating promotes reproductive isolation and allows allopatric speciation processes to continue in secondary contact. As mating patterns are determined by mate preferences and intrasexual competition, we investigated male–male competition and behavioral isolation in simulated secondary contact among allopatric populations. Three allopatric color morphs of the cichlid fish Tropheus were tested against each other. Dyadic male–male contests revealed dominance of red males over bluish and yellow-blotch males. Reproductive isolation in the presence of male–male competition was assessed from genetic parentage in experimental ponds and was highly asymmetric among pairs of color morphs. Red females mated only with red males, whereas the other females performed variable degrees of heteromorphic mating. Discrepancies between mating patterns in ponds and female preferences in a competition-free, two-way choice paradigm suggested that the dominance of red males interfered with positive assortative mating of females of the subordinate morphs and provoked asymmetric hybridization. Between the nonred morphs, a significant excess of negative assortative mating by yellow-blotch females with bluish males did not coincide with asymmetric dominance among males. Hence, both negative assortative mating preferences and interference of male–male competition with positive assortative preferences forestall premating isolation, the latter especially in environments unsupportive of competition-driven spatial segregation. PMID:25937900

  20. Effect of delta tabs on mixing and axis switching in jets from asymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1994-01-01

    The effect of delta tabs on mixing and the phenomenon of axis switching in free air jets from various asymmetric nozzles was studied experimentally. Flow visualization and Pitot probe surveys were carried out with a set of small nozzles (D = 1.47 cm) at a jet Mach number, Mj = 1.63. Hot wire measurements for streamwise vorticity were carried out with larger nozzles (D = 6.35 cm) at Mj = 0.31. Jet mixing with the asymmetric nozzles, as indicated by the mass fluxes downstream, was found to be higher than that produced by a circular nozzle. The circular nozzle with four delta tabs, however, produced fluxes much higher than that produced by a asymmetric nozzles themselves or by most of the tab configurations tried with them. Even higher fluxes could be obtained with only a few cases, e.g., with 3:1 rectangular nozzle with two large delta tabs placed on the narrow edges. In this case, the jet 'fanned out' at a large angle after going through one axis switch. The axis switching could be either stopped or augmented with suitable choice of the tab configurations. Two mechanisms are identified governing the phenomenon. One, as described in Ref. 12 and referred to here as the omega(sub Theta)-induced dynamics, is due to differential induced velocities of different segments of a rolled up azimuthal vortical structure. The other is the omega(sub x)-induced dynamics due to the induced velocities of streamwise vortex pairs in the flow. While the former dynamics are responsible for rapid axis switching in periodically forced jets, the effect of the tabs is governed mainly by the latter. It is inferred that both dynamics are active in a natural asymmetric jet issuing from a nozzle having an upstream contraction. The tendency for axis switching caused by the omega(sub Theta)-induced dynamics is resisted by the omega(sub x)-induced dynamics, leading to a delayed or no switch over in that case. In jets from orifices and in screeching jets, the omega(sub Theta)-induced dynamics

  1. Constructing velocity distributions in crossed-molecular beam studies using Fourier Transform Doppler Spectroscopy

    NASA Astrophysics Data System (ADS)

    Monge, Josue Roberto

    The goal of our scattering experiments is to derive the distribution the differential cross-section and elucidate the dynamics of a bimolecular collision via pure rotational spectroscopy. We have explored the use of a data reduction model to directly transform rotational line shapes into the differential cross section and speed distribution of a reactive bimolecular collision. This inversion technique, known as Fourier Transform Doppler Spectroscopy (FTDS), initially developed by James Kinsey, deconvolves the velocity information contained in one-dimensional Doppler Profiles to construct the non-thermal, state-selective three-dimensional velocity distribution. By employing an expansion in classical orthogonal polynomials, the integral transform in FTDS can be simplified into a set of purely algebraic expressions technique; i.e. the Taatjes method. In this investigation, we extend the Taatjes method for general use in recovering asymmetric velocity distributions. We have also constructed a hypothetical asymmetric distribution from adiabatic scattering in Argon-Argon to test the general method. The angle- and speed-components of the sample distribution were derived classically from a Lennard-Jones 6-12 potential, with collisions at 60 meV, and mapped onto Radon space to generate a set of discrete Doppler profiles. The sample distribution was reconstructed from these profiles using FTDS. Both distributions were compared along with derived total cross sections for the Argon--Argon system. This study serves as a template for constructing velocity distributions from bimolecular scattering experiments using the FTDS inversion technique.

  2. Calculation of symmetric and asymmetric vortex seperation on cones and tangent ogives based on discrete vortex models

    NASA Technical Reports Server (NTRS)

    Chin, S.; Lan, C. Edward

    1988-01-01

    An inviscid discrete vortex model, with newly derived expressions for the tangential velocity imposed at the separation points, is used to investigate the symmetric and asymmetric vortex separation on cones and tangent ogives. The circumferential locations of separation are taken from experimental data. Based on a slender body theory, the resulting simultaneous nonlinear algebraic equations in a cross-flow plane are solved with Broyden's modified Newton-Raphson method. Total force coefficients are obtained through momentum principle with new expressions for nonconical flow. It is shown through the method of function deflation that multiple solutions exist at large enough angles of attack, even with symmetric separation points. These additional solutions are asymmetric in vortex separation and produce side force coefficients which agree well with data for cones and tangent ogives.

  3. Signal velocity in oscillator arrays

    NASA Astrophysics Data System (ADS)

    Cantos, C. E.; Veerman, J. J. P.; Hammond, D. K.

    2016-09-01

    We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c- < 0 such that low frequency disturbances travel through the flock as f+(x - c+t) in the direction of increasing agent numbers and f-(x - c-t) in the other.

  4. Cosmic string induced peculiar velocities

    NASA Technical Reports Server (NTRS)

    Van Dalen, Anthony; Schramm, David N.

    1988-01-01

    This paper considers the scenario of a flat universe with a network of heavy cosmic strings as the primordial fluctuation spectrum. The joint probability of finding streaming velocities of at least 600 km/s on large scales and local peculiar velocities of less than 800 km/s is calculated. It is shown how the effects of loops breaking up and being born with a spectrum of sizes can be estimated. It is found that to obtain large-scale streaming velocities of at least 600 km/s, it is necessary that either a large value for beta G mu exist or the effect of loop fissioning and production details be considerable.

  5. Microbunching Instability in Velocity Bunching

    SciTech Connect

    Xiang, D; Wu, J.; /SLAC

    2009-05-26

    Microbunching instability is one of the most challenging threats to FEL performances. The most effective ways to cure the microbunching instability include suppression of the density modulation sources and suppression of the amplification process. In this paper we study the microbunching instability in velocity bunching. Our simulations show that the initial current and energy modulations are suppressed in velocity bunching process, which may be attributed to the strong plasma oscillation and Landau damping from the relatively low beam energy and large relative slice energy spread. A heating effect that may be present in a long solenoid is also preliminarily analyzed.

  6. Velocity fluctuations of fission fragments

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.; Carmona, Belén Martínez; Martínez, Jose L. Muñoz

    2016-02-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  7. Ångström (B1Σ+ →A1Π) 0-1 and 1-1 bands in isotopic CO molecules: further investigations

    NASA Astrophysics Data System (ADS)

    Kȩpa, R.; Ostrowska-Kopeć, M.; Piotrowska, I.; Zachwieja, M.; Hakalla, R.; Szajna, W.; Kolek, P.

    2014-02-01

    In the emission spectrum of six 12C16O, 13C16O, 12C18O, 14C16O, 13C18O and 14C18O isotopologues of the carbon monoxide molecule, new recordings and analyses or new reanalyses of the selected and strongest bands belonging to the Ångström (B1Σ+ - A1Π) system were carried out. Under high resolution, emission spectra of the 0-1 and 1-1 bands were recorded and reanalysed, representing both the 0 - v″ and 1 - v″ progressions of this system. Unobserved so far, new spectral lines were identified, and for the 12C16O, 13C16O, 12C18O, 14C16O and 14C18O molecules new parameters of the rovibronic structure B0, B1, D0 and D1 of the v = 0 and v = 1 levels of the B1Σ+ state and band origins ν0 of the 0-1 and 1-1 bands of the B - A transition were determined. A detailed analysis included the predissociation regions of the spectra observed in all analysed bands and isotopologues. The values of rotational quantum numbers and rovibronic terms of the highest nonpredissociated Jh as well as the first, already predissociated Jf levels were determined. On that basis, a new and more precise value of dissociation energy of the CO molecule was determined: {D}_e=(90\\,679.1+/- 6.0) cm-1. Also, atomic states of the dissociation products of this molecule, which correspond to this energy, were identified as C(3P0) + O(3P2) i.e. as both triplet ground atomic sublevels.

  8. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator

    SciTech Connect

    Zhang, Dian; Zhang, Jun Zhong, Huihuang; Jin, Zhenxing; Ju, Jinchuan

    2014-09-15

    Most of the investigated overmoded relativistic backward wave oscillators (RBWOs) are azimuthally symmetric; thus, they are designed through two dimensional (2-D) particle-in-cell (PIC) simulations. However, 2-D PIC simulations cannot reveal the effect of asymmetric modes on beam-wave interaction. In order to investigate whether asymmetric mode competition needs to be considered in the design of overmoded RBWOs, a numerical method of determining the composition of both symmetric and asymmetric modes in three dimensional (3-D) PIC simulations is introduced in this paper. The 2-D and 3-D PIC simulation results of an X-band overmoded RBWO are analyzed. Our analysis indicates that the 2-D and 3-D PIC simulation results of our device are quite different due to asymmetric mode competition. In fact, asymmetric surface waves, especially EH{sub 11} mode, can lead to serious mode competition when electron beam propagates near the surface of slow wave structures (SWSs). Therefore, additional method of suppressing asymmetric mode competition, such as adjusting the reflections at both ends of SWSs to decrease the Q-factor of asymmetric modes, needs to be utilized in the design of overmoded RBWOs. Besides, 3-D PIC simulation and modes decomposition are essential for designing overmoded RBWOs.

  9. Error analysis of the converted wave deduced by equivalent velocity assumption

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Yun; Yin, Junjie; Gao, Xing

    2012-05-01

    Based on the assumption of the equivalent velocity and offset, the converted wave travel-time equation, which has a double square root due to the asymmetric ray-path of the down-going P-wave and the up-coming S-wave, can be transformed into a single square root equation if the common scatterpoint (CSP) gathers are binned. This method simplifies the equation and decreases the errors of converted wave migration transferred by P-wave velocity error, compared to the equivalent offset method (EOM) migration proposed by Bancroft, Geiger and Foltinek . In this paper, the errors caused by the introduction of equivalent velocity for the PS-wave are analysed in detail. The discrete errors and effects introduced by discretization of the equivalent offset are presented, and finally the conditions for applying CSP gathers for PS-wave processing under the control of reasonable error limits are derived.

  10. Kuroshio Stream path variation and its associated velocity structures south of Shikoku, Japan

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Hua; Kaneko, Arata; Saito, Tsutomu; Gohda, Noriaki

    During 1993-1995, twelve repeat observations of the Kuroshio south of Shikoku, Japan were carried out for obtaining a vertical velocity section of the upper 300m, using a towed-type acoustic Doppler current profiler (ADCP). Among the twelve observations, the Kuroshio took the onshore path 9 times and the offshore path 3 times. The cross-stream velocity distribution around the Kuroshio stream axis is asymmetric (steeper on the onshore side than on the offshore side) for the onshore path while it is symmetric for the offshore one. The core with a maximum velocity is submerged to 100-200m depths for the onshore case and located at the near surface for the offshore case. In the combined analysis with the Rapid Bulletin of Ocean Conditions, the Kuroshio mainly took an onshore path with stream-axis positions less than 80km from Cape Ashizuri, but the distance was increased over 150km at the frequency once a year.

  11. High-Voltage, Asymmetric-Waveform Generator

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise

  12. Asymmetric protonation of EmrE

    PubMed Central

    Morrison, Emma A.; Robinson, Anne E.; Liu, Yongjia

    2015-01-01

    The small multidrug resistance transporter EmrE is a homodimer that uses energy provided by the proton motive force to drive the efflux of drug substrates. The pKa values of its “active-site” residues—glutamate 14 (Glu14) from each subunit—must be poised around physiological pH values to efficiently couple proton import to drug export in vivo. To assess the protonation of EmrE, pH titrations were conducted with 1H-15N TROSY-HSQC nuclear magnetic resonance (NMR) spectra. Analysis of these spectra indicates that the Glu14 residues have asymmetric pKa values of 7.0 ± 0.1 and 8.2 ± 0.3 at 45°C and 6.8 ± 0.1 and 8.5 ± 0.2 at 25°C. These pKa values are substantially increased compared with typical pKa values for solvent-exposed glutamates but are within the range of published Glu14 pKa values inferred from the pH dependence of substrate binding and transport assays. The active-site mutant, E14D-EmrE, has pKa values below the physiological pH range, consistent with its impaired transport activity. The NMR spectra demonstrate that the protonation states of the active-site Glu14 residues determine both the global structure and the rate of conformational exchange between inward- and outward-facing EmrE. Thus, the pKa values of the asymmetric active-site Glu14 residues are key for proper coupling of proton import to multidrug efflux. However, the results raise new questions regarding the coupling mechanism because they show that EmrE exists in a mixture of protonation states near neutral pH and can interconvert between inward- and outward-facing forms in multiple different protonation states. PMID:26573622

  13. Theory and Modeling of Asymmetric Catalytic Reactions.

    PubMed

    Lam, Yu-Hong; Grayson, Matthew N; Holland, Mareike C; Simon, Adam; Houk, K N

    2016-04-19

    Modern density functional theory and powerful contemporary computers have made it possible to explore complex reactions of value in organic synthesis. We describe recent explorations of mechanisms and origins of stereoselectivities with density functional theory calculations. The specific functionals and basis sets that are routinely used in computational studies of stereoselectivities of organic and organometallic reactions in our group are described, followed by our recent studies that uncovered the origins of stereocontrol in reactions catalyzed by (1) vicinal diamines, including cinchona alkaloid-derived primary amines, (2) vicinal amidophosphines, and (3) organo-transition-metal complexes. Two common cyclic models account for the stereoselectivity of aldol reactions of metal enolates (Zimmerman-Traxler) or those catalyzed by the organocatalyst proline (Houk-List). Three other models were derived from computational studies described in this Account. Cinchona alkaloid-derived primary amines and other vicinal diamines are venerable asymmetric organocatalysts. For α-fluorinations and a variety of aldol reactions, vicinal diamines form enamines at one terminal amine and activate electrophilically with NH(+) or NF(+) at the other. We found that the stereocontrolling transition states are cyclic and that their conformational preferences are responsible for the observed stereoselectivity. In fluorinations, the chair seven-membered cyclic transition states is highly favored, just as the Zimmerman-Traxler chair six-membered aldol transition state controls stereoselectivity. In aldol reactions with vicinal diamine catalysts, the crown transition states are favored, both in the prototype and in an experimental example, shown in the graphic. We found that low-energy conformations of cyclic transition states occur and control stereoselectivities in these reactions. Another class of bifunctional organocatalysts, the vicinal amidophosphines, catalyzes the (3 + 2) annulation

  14. Asymmetrical passive intermodulation distortions of memristors with mathematical behavior models

    NASA Astrophysics Data System (ADS)

    Wu, Yongle; Jin, Qiuyan; Wang, Weimin; Liu, Yuanan

    2016-10-01

    A rigorous mathematical explanation and accurate numerical prediction for asymmetrical passive intermodulation (PIM) distortions of memristors are investigated in this article. This theoretical explanation is based on behavior models of memristors representing the interrelation between terminated voltages and currents. The simulated single-tone and two-tone signal spectrums for extremely low-frequency (Hz) and microwave (GHz) applications verify our proposed mathematical approach and the new discovery of asymmetrical PIM distortions. This presented method provides an innovative choice to model and simulate the external performance of circuits and systems with asymmetrical PIM distortions in the future.

  15. Modified transfer matrix method for asymmetric rotor-bearing systems

    NASA Astrophysics Data System (ADS)

    Kang, Yuan; Lee, An-Chen; Shih, Yuan-Pin

    1994-07-01

    A modified transfer matrix method (MTMM) is developed to analyze rotor-bearing systems with an asymmetric shaft and asymmetric disks. The rotating shaft is modeled by a Rayleigh-Euler beam considering the effects of the rotary inertia and gyroscopic moments. Specifically, a transfer matrix of the asymmetric shaft segments is derived in a continuous-system sense to give accurate solutions. The harmonic balance method is incorporated in the transfer matrix equations, so that steady-state responses of synchronous and superharmonic whirls can be determined. A numerical example is presented to demonstrate the effectiveness of this approach.

  16. Generic approach for synthesizing asymmetric nanoparticles and nanoassemblies

    DOEpatents

    Sun, Yugang; Hu, Yongxing

    2015-05-26

    A generic route for synthesis of asymmetric nanostructures. This approach utilizes submicron magnetic particles (Fe.sub.3O.sub.4--SiO.sub.2) as recyclable solid substrates for the assembly of asymmetric nanostructures and purification of the final product. Importantly, an additional SiO.sub.2 layer is employed as a mediation layer to allow for selective modification of target nanoparticles. The partially patched nanoparticles are used as building blocks for different kinds of complex asymmetric nanostructures that cannot be fabricated by conventional approaches. The potential applications such as ultra-sensitive substrates for surface enhanced Raman scattering (SERS) have been included.

  17. Low-Velocity Halo Clouds

    NASA Astrophysics Data System (ADS)

    Peek, J. E. G.; Heiles, Carl; Putman, M. E.; Douglas, Kevin

    2009-02-01

    Models that reproduce the observed high-velocity clouds (HVCs) also predict clouds at lower radial velocities that may easily be confused with Galactic disk (|z|< 1 kpc) gas. We describe the first search for these low-velocity halo clouds (LVHCs) using Infrared Astronomical Satellite (IRAS) data and the initial data from the Galactic Arecibo L-band Feed Array survey in H I. The technique is based upon the expectation that such clouds should, like HVCs, have very limited infrared (IR) thermal dust emission as compared to their H I column density. We describe our "displacement-map" technique for robustly determining the dust-to-gas ratio (DGR) of clouds and the associated errors that take into account the significant scatter in the IR flux from the Galactic disk gas. We find that there exist lower-velocity clouds that have extremely low DGRs, consistent with being in the Galactic halo—candidate LVHCs. We also confirm the lack of dust in many HVCs with the notable exception of complex M, which we consider to be the first detection of dust in HVCs. We do not confirm the previously reported detection of dust in complex C. In addition, we find that most intermediate- and low-velocity clouds that are part of the Galactic disk have a higher 60 μm/100 μm flux ratio than is typically seen in Galactic H I, which is consistent with a previously proposed picture in which fast-moving Galactic clouds have smaller, hotter dust grains.

  18. ON THE ORIGIN OF THE ASYMMETRIC HELICITY INJECTION IN EMERGING ACTIVE REGIONS

    SciTech Connect

    Fan, Y.; Alexander, D.; Tian, L.

    2009-12-10

    To explore the possible causes of the observed asymmetric helicity flux in emerging active regions between the leading and following polarities reported in a recent study by Tian and Alexander, we examine the subsurface evolution of buoyantly rising OMEGA-shaped flux tubes using three-dimensional, spherical-shell anelastic MHD simulations. We find that due to the asymmetric stretching of the OMEGA-shaped tube by the Coriolis force, the leading side of the emerging tube has a greater field strength, is more buoyant, and remains more cohesive compared to the following side. As a result, the magnetic field lines in the leading leg show more coherent values of local twist alpha ident to (nabla x B) centre dot B/B {sup 2}, whereas the values in the following leg show large fluctuations and are of mixed sign. On average, however, the field lines in the leading leg do not show a systematically greater mean twist compared to the following leg. Due to the higher rise velocity of the leading leg, the upward helicity flux through a horizontal cross section at each depth in the upper half of the convection zone is significantly greater in the leading polarity region than that in the following leg. This may contribute to the observed asymmetric helicity flux in emerging active regions. Furthermore, based on a simplified model of active region flux emergence into the corona by Longcope and Welsch, we show that a stronger field strength in the leading tube can result in a faster rotation of the leading polarity sunspot driven by torsional Alfven waves during flux emergence into the corona, contributing to a greater helicity injection rate in the leading polarity of an emerging active region.

  19. Unitarity Constraints on Asymmetric Freeze-In

    SciTech Connect

    Hook, Anson; /SLAC

    2011-08-15

    This paper considers unitarity and CPT constraints on asymmetric freeze-in, the use of freeze-in to store baryon number in a dark sector. In this scenario, Sakharov's out of equilibrium condition is satisfied by placing the visible and hidden sectors at different temperatures while a net visible baryon number is produced by storing negative baryon number in a dark sector. It is shown that unitarity and CPT lead to unexpected cancellations. In particular, the transfer of baryon number cancels completely at leading order. This note has shown that if two sectors are in thermal equilibrium with themselves, but not with each other, then the leading effect transferring conserved quantities between the two sectors is of order the the weak coupling connecting them to the third power. When freeze-in is used to produce a net baryon number density, the leading order effect comes from {Omicron}({lambda}{sup 3}) diagrams where the intermediate state that goes on-shell has a different visible baryon number than the final state visible baryon number. Models in which the correct baryon number is generated with freeze-in as the dominant source of abundance, typically require {lambda} {approx}> 10{sup -6} and m{sub bath} {approx}> TeV. m{sub bath} is the mass of the visible particle which communicates with the hidden sector. The lower window is potentially observable at the LHC.

  20. Polyimides Derived from Novel Asymmetric Dianhydrides

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    This invention relates to the compositions and processes for preparing thermoset and thermoplastic polyimides derived from novel asymmetrical dianhydrides: specifically 2,3,3',4' benzophenone dianhydride (a-BTDA), and 3,4'-(hexafluoroisopropylidene)diphthalic anhydride (a-6FDA). The a-BTDA anhydride is prepared by Suzuki coupling with catalysts from a mixed anhydride of 3,4-dimethylbenzoic acid or 2,3-dimethylbenzoic acid with 2,3-dimethylphenylboronic acid or 3,4-dimethylphenylboronic acid respectively, to form 2,3,3',4'-tetramethylbenzophenone which is oxidized to form 2,3,3',4'-benzophenonetetracarboxylic acid followed by cyclodehydration to obtain a-BTDA. The a-6FDA is prepared by nucleophilic triflouoromethylation of 2,3,3',4'-tetramethylbenzophenone with trifluoromethyltrimethylsilane to form 3,4'-(trifluoromethylmethanol)-bis(o-xylene) which is converted to 3,4'-(hexafluoroisopropylidene-bis(o-xylene). The 3,4'-(hexafluoroisopropylidene)-bis(o-xylene) is oxidized to the corresponding tetraacid followed by cyclodehydration to yield a-6FDA.

  1. Asymmetric Swiss-cheese brane-worlds

    NASA Astrophysics Data System (ADS)

    Gergely, László Á.; Képíró, Ibolya

    2007-07-01

    We study a brane-world cosmological scenario with local inhomogeneities represented by black holes. The brane is asymmetrically embedded into the bulk. The black strings/cigars penetrating the Friedmann brane generate a Swiss-cheese-type structure. This universe forever expands and decelerates, as its general relativistic analogue. The evolution of the cosmological fluid, however, can proceed along four branches, two allowed to have positive energy density, and one of them having the symmetric embedding limit. On this branch a future pressure singularity can arise for either (a) a difference in the cosmological constants of the cosmological and black hole brane regions or (b) a difference in the left and right bulk cosmological constants. While behaviour (a) can be avoided by a redefinition of the fluid variables, (b) establishes a critical value of the asymmetry over which the pressure singularity occurs. We introduce the pressure singularity censorship which bounds the degree of asymmetry in the bulk cosmological constant. We also show as a model-independent generic feature that the asymmetry source term due to the bulk cosmological constant increases in the early universe. In order to obey the nucleosynthesis constraints, the brane tension should be constrained therefore both from below and from above. With the maximal degree of asymmetry obeying the pressure singularity censorship, the higher limit is ten times the lower limit. The degree of asymmetry allowed by present cosmological observations is, however, much less, pushing the upper limit to infinity.

  2. Asymmetric Sensory Reweighting in Human Upright Stance

    PubMed Central

    Logan, David; Kiemel, Tim; Jeka, John J.

    2014-01-01

    To investigate sensory reweighting as a fundamental property of sensor fusion during standing, we probed postural control with simultaneous rotations of the visual scene and surface of support. Nineteen subjects were presented with pseudo-random pitch rotations of visual scene and platform at the ankle to test for amplitude dependencies in the following conditions: low amplitude vision: high amplitude platform, low amplitude vision: low amplitude platform, and high amplitude vision: low amplitude platform. Gain and phase of frequency response functions (FRFs) to each stimulus were computed for two body sway angles and a single weighted EMG signal recorded from seven muscles. When platform stimulus amplitude was increased while visual stimulus amplitude remained constant, gain to vision increased, providing strong evidence for inter-modal reweighting between vision and somatosensation during standing. Intra-modal reweighting of vision was also observed as gains to vision decreased as visual stimulus amplitude increased. Such intra-modal and inter-modal amplitude dependent changes in gain were also observed in muscular activity. Gains of leg segment angle and muscular activity relative to the platform, on the other hand, showed only intra-modal reweighting. That is, changing platform motion amplitude altered the responses to both visual and support surface motion whereas changing visual scene motion amplitude did not significantly affect responses to support surface motion, indicating that the sensory integration scheme between somatosensation (at the support surface) and vision is asymmetric. PMID:24959665

  3. Asymmetric Cherenkov acoustic reverse in topological insulators

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2014-09-01

    A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.

  4. Particle transport through hydrogels is charge asymmetric.

    PubMed

    Zhang, Xiaolu; Hansing, Johann; Netz, Roland R; DeRouchey, Jason E

    2015-02-01

    Transport processes within biological polymer networks, including mucus and the extracellular matrix, play an important role in the human body, where they serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate diffusive processes through finely tuned particle-network interactions. In this work, we present experimental and theoretical studies to examine the role of electrostatics on the basic mechanisms governing the diffusion of charged probe molecules inside model polymer networks. Translational diffusion coefficients are determined by fluorescence correlation spectroscopy measurements for probe molecules in uncharged as well as cationic and anionic polymer solutions. We show that particle transport in the charged hydrogels is highly asymmetric, with diffusion slowed down much more by electrostatic attraction than by repulsion, and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations of a simple model are used to examine key parameters, including interaction strength and interaction range within the model networks. Simulations, which are in quantitative agreement with our experiments, reveal the charge asymmetry to be due to the sticking of particles at the vertices of the oppositely charged polymer networks.

  5. Asymmetric Wormholes via Electrically Charged Lightlike Branes

    SciTech Connect

    Guendelman, E.; Kaganovich, A.; Nissimov, E.; Pacheva, S.

    2010-06-17

    We consider a self-consistent Einstein-Maxwell-Kalb-Ramond system in the bulk D = 4 space-time interacting with a variable-tension electrically charged lightlike brane. The latter serves both as a material and charge source for gravity and electromagnetism, as well as it dynamically generates a bulk space varying cosmological constant. We find an asymmetric wormhole solution describing two 'universes' with different spherically symmetric black-hole-type geometries connected through a 'throat' occupied by the lightlike brane. The electrically neutral 'left universe' comprises the exterior region of Schwarzschild-de-Sitter (or pure Schwarzschild) space-time above the inner(Schwarzschild-type) horizon, whereas the electrically charged 'right universe' consists of the exterior Reissner-Nordstroem (or Reissner-Nordstroem-de-Sitter) black hole region beyond the outer Reissner-Nordstroem horizon. All physical parameters of the wormhole are uniquely determined by two free parameters - the electric charge and Kalb-Ramond coupling of the lightlike brane.

  6. Computation in Dynamically Bounded Asymmetric Systems

    PubMed Central

    Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney

    2015-01-01

    Previous explanations of computations performed by recurrent networks have focused on symmetrically connected saturating neurons and their convergence toward attractors. Here we analyze the behavior of asymmetrical connected networks of linear threshold neurons, whose positive response is unbounded. We show that, for a wide range of parameters, this asymmetry brings interesting and computationally useful dynamical properties. When driven by input, the network explores potential solutions through highly unstable ‘expansion’ dynamics. This expansion is steered and constrained by negative divergence of the dynamics, which ensures that the dimensionality of the solution space continues to reduce until an acceptable solution manifold is reached. Then the system contracts stably on this manifold towards its final solution trajectory. The unstable positive feedback and cross inhibition that underlie expansion and divergence are common motifs in molecular and neuronal networks. Therefore we propose that very simple organizational constraints that combine these motifs can lead to spontaneous computation and so to the spontaneous modification of entropy that is characteristic of living systems. PMID:25617645

  7. Asymmetric vector mesons produced in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Dremin, I. M.; Nechitailo, V. A.

    2016-09-01

    It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high-energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further described in quantum mechanics as the interference of direct and continuum states in the Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction amplitude in this wing. The corresponding parameters are found from the comparison with ρ-meson data and admit reasonable explanation.

  8. Asymmetric translation between multiple representations in chemistry

    NASA Astrophysics Data System (ADS)

    Lin, Yulan I.; Son, Ji Y.; Rudd, James A., II

    2016-03-01

    Experts are more proficient in manipulating and translating between multiple representations (MRs) of a given concept than novices. Studies have shown that instruction using MR can increase student understanding of MR, and one model for MR instruction in chemistry is the chemistry triplet proposed by Johnstone. Concreteness fading theory suggests that presenting concrete representations before abstract representations can increase the effectiveness of MR instruction; however, little work has been conducted on varying the order of different representations during instruction and the role of concreteness in assessment. In this study, we investigated the application of concreteness fading to MR instruction and assessment in teaching chemistry. In two experiments, undergraduate students in either introductory psychology courses or general chemistry courses were given MR instruction on phase changes using different orders of presentation and MR assessment questions based on the representations in the chemistry triplet. Our findings indicate that the order of presentation based on levels of concreteness in MR chemistry instruction is less important than implementation of comprehensive MR assessments. Even after MR instruction, students display an asymmetric understanding of the chemical phenomenon on the MR assessments. Greater emphasis on MR assessments may be an important component in MR instruction that effectively moves novices toward more expert MR understanding.

  9. Asymmetric Electrostatic Radiation Shielding for Spacecraft

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Youngquist, Robert C.; Lane, John E.

    2005-01-01

    A paper describes the types, sources, and adverse effects of energetic-particle radiation in interplanetary space, and explores a concept of using asymmetric electrostatic shielding to reduce the amount of such radiation impinging on spacecraft. Typically, such shielding would include a system of multiple inflatable, electrically conductive spheres deployed in clusters in the vicinity of a spacecraft on lightweight structures that would maintain the spheres in a predetermined multipole geometry. High-voltage generators would maintain the spheres at potential differences chosen in conjunction with the multipole geometry so that the resulting multipole field would gradually divert approaching energetic atomic nuclei from a central region occupied by the spacecraft. The spheres nearest the center would be the most positive, so as to repel the positively charged impinging nuclei from the center. At the same time, the monopole potential of the overall spacecraft-and-shielding system would be made negative so as to repel thermal electrons. The paper presents results of computational simulations of energetic-particle trajectories and shield efficiency for a trial system of 21 spheres arranged in three clusters in an overall linear quadrupole configuration. Further development would be necessary to make this shielding concept practical.

  10. Particle Transport through Hydrogels Is Charge Asymmetric

    PubMed Central

    Zhang, Xiaolu; Hansing, Johann; Netz, Roland R.; DeRouchey, Jason E.

    2015-01-01

    Transport processes within biological polymer networks, including mucus and the extracellular matrix, play an important role in the human body, where they serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate diffusive processes through finely tuned particle-network interactions. In this work, we present experimental and theoretical studies to examine the role of electrostatics on the basic mechanisms governing the diffusion of charged probe molecules inside model polymer networks. Translational diffusion coefficients are determined by fluorescence correlation spectroscopy measurements for probe molecules in uncharged as well as cationic and anionic polymer solutions. We show that particle transport in the charged hydrogels is highly asymmetric, with diffusion slowed down much more by electrostatic attraction than by repulsion, and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations of a simple model are used to examine key parameters, including interaction strength and interaction range within the model networks. Simulations, which are in quantitative agreement with our experiments, reveal the charge asymmetry to be due to the sticking of particles at the vertices of the oppositely charged polymer networks. PMID:25650921

  11. Asymmetric Dark Matter and Dark Radiation

    SciTech Connect

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo E-mail: enfmarti@cern.ch E-mail: redondo@mppmu.mpg.de

    2012-07-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.

  12. Characterisation of an asymmetric AGATA detector

    NASA Astrophysics Data System (ADS)

    Unsworth, C.; Boston, A. J.; Boston, H. C.; Colosimo, S.; Cresswell, J.; Dimmock, M. R.; Filmer, F.; Judson, D.; Moon, S.; Nolan, P. J.; Norman, M. J.; Slee, M.

    2009-08-01

    The Advanced GAmma Tracking Array (AGATA) is a next-generation gamma-ray spectrometer for nuclear physics being developed as part of a Europe-wide collaboration. AGATA aims to vastly improve upon the sensitivity of today's arrays by removing the BGO shields used to suppress the Compton background and instead, tracking gamma rays through a complete 4π shell of Germanium using Gamma Ray Tracking (GRT). In order to facilitate this, Pulse Shape Analysis (PSA) must be used to accurately locate the position of each gamma-ray interaction within each detector. The preferred approach to PSA relies on the generation of a database of typical pulse shapes produced by interactions at each position on a grid throughout the detector. This paper details current progress at the University of Liverpool toward validating the electric field simulation, which will be used to generate the pulse shape database, with experimental data from an asymmetric AGATA detector. The field simulation is discussed and some comparisons are made between this and a two dimensional raster scan of the detector with a highly collimated source.

  13. Spontaneous curvature of bilayer membranes from molecular simulations: Asymmetric lipid densities and asymmetric adsorption

    NASA Astrophysics Data System (ADS)

    RóŻycki, Bartosz; Lipowsky, Reinhard

    2015-02-01

    Biomimetic and biological membranes consist of molecular bilayers with two leaflets which are typically exposed to different aqueous environments and may differ in their molecular density or composition. Because of these asymmetries, the membranes prefer to curve in a certain manner as quantitatively described by their spontaneous curvature. Here, we study such asymmetric membranes via coarse-grained molecular dynamics simulations. We consider two mechanisms for the generation of spontaneous curvature: (i) different lipid densities within the two leaflets and (ii) leaflets exposed to different concentrations of adsorbing particles. We focus on membranes that experience no mechanical tension and describe two methods to compute the spontaneous curvature. The first method is based on the detailed structure of the bilayer's stress profile which can hardly be measured experimentally. The other method starts from the intuitive view that the bilayer represents a thin fluid film bounded by two interfaces and reduces the complexity of the stress profile to a few membrane parameters that can be measured experimentally. For the case of asymmetric adsorption, we introduce a simulation protocol based on two bilayers separated by two aqueous compartments with different adsorbate concentrations. The adsorption of small particles with a size below 1 nm is shown to generate large spontaneous curvatures up to about 1/(24 nm). Our computational approach is quite general: it can be applied to any molecular model of bilayer membranes and can be extended to other mechanisms for the generation of spontaneous curvatures as provided, e.g., by asymmetric lipid composition or depletion layers of solute molecules.

  14. Asymmetric drag in oscillatory motion: ratchet effect without an asymmetric potential.

    PubMed

    Fomin, Vladimir M; Smith, Elliot J; Karnaushenko, Dmitriy D; Makarov, Denys; Schmidt, Oliver G

    2013-05-01

    Asymmetry of magnetic objects in a fluid under an oscillating magnetic field leads to a wealth of nonequilibrium dynamics phenomena including a novel ratchet effect without an asymmetric substrate. These nonlinear dynamics are explained in the framework of the Stokes' model by a drag coefficient, which depends on the direction of motion. This approach is general and is independent of the physical mechanism responsible for this directional dependence of the drag coefficient as well as the size of the object. The theoretical model is experimentally verified for two systems, a nonrigid magnetic microcoil and a chiral magnetic macroobject immersed in a bounded fluid. PMID:23767502

  15. Application of multivariate outlier detection to fluid velocity measurements

    NASA Astrophysics Data System (ADS)

    Griffin, John; Schultz, Todd; Holman, Ryan; Ukeiley, Lawrence S.; Cattafesta, Louis N.

    2010-07-01

    A statistical-based approach to detect outliers in fluid-based velocity measurements is proposed. Outliers are effectively detected from experimental unimodal distributions with the application of an existing multivariate outlier detection algorithm for asymmetric distributions (Hubert and Van der Veeken, J Chemom 22:235-246, 2008). This approach is an extension of previous methods that only apply to symmetric distributions. For fluid velocity measurements, rejection of statistical outliers, meaning erroneous as well as low probability data, via multivariate outlier rejection is compared to a traditional method based on univariate statistics. For particle image velocimetry data, both tests are conducted after application of the current de facto standard spatial filter, the universal outlier detection test (Westerweel and Scarano, Exp Fluids 39:1096-1100, 2005). By doing so, the utility of statistical outlier detection in addition to spatial filters is demonstrated, and further, the differences between multivariate and univariate outlier detection are discussed. Since the proposed technique for outlier detection is an independent process, statistical outlier detection is complementary to spatial outlier detection and can be used as an additional validation tool.

  16. Hopf bifurcation analysis for a dissipative system with asymmetric interaction: Analytical explanation of a specific property of highway traffic.

    PubMed

    Nomura, Yasuyuki; Saito, Satoshi; Ishiwata, Ryosuke; Sugiyama, Yuki

    2016-01-01

    A dissipative system with asymmetric interaction, the optimal velocity model, shows a Hopf bifurcation concerned with the transition from a homogeneous motion to the formation of a moving cluster, such as the emergence of a traffic jam. We investigate the properties of Hopf bifurcation depending on the particle density, using the dynamical system for the traveling cluster solution of the continuum system derived from the original discrete system of particles. The Hopf bifurcation is revealed as a subcritical one, and the property explains well the specific phenomena in highway traffic: the metastability of jamming transition and the hysteresis effect in the relation of car density and flow rate.

  17. Hopf bifurcation analysis for a dissipative system with asymmetric interaction: Analytical explanation of a specific property of highway traffic.

    PubMed

    Nomura, Yasuyuki; Saito, Satoshi; Ishiwata, Ryosuke; Sugiyama, Yuki

    2016-01-01

    A dissipative system with asymmetric interaction, the optimal velocity model, shows a Hopf bifurcation concerned with the transition from a homogeneous motion to the formation of a moving cluster, such as the emergence of a traffic jam. We investigate the properties of Hopf bifurcation depending on the particle density, using the dynamical system for the traveling cluster solution of the continuum system derived from the original discrete system of particles. The Hopf bifurcation is revealed as a subcritical one, and the property explains well the specific phenomena in highway traffic: the metastability of jamming transition and the hysteresis effect in the relation of car density and flow rate. PMID:26871081

  18. Optimal multicopy asymmetric Gaussian cloning of coherent states

    SciTech Connect

    Fiurasek, Jaromir; Cerf, Nicolas J.

    2007-05-15

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.

  19. Polarization dependent switching of asymmetric nanorings with a circular field

    NASA Astrophysics Data System (ADS)

    Pradhan, Nihar R.; Tuominen, Mark T.; Aidala, Katherine E.

    2016-01-01

    We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs) with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  20. Asymmetric squares as standing waves in rayleigh-Benard convection

    PubMed

    Das; Ghosal; Kumar

    2000-09-01

    Possibility of thermal convection in the form of asymmetric squares in a thin layer of Boussinesq fluids of large lateral extension confined between stress-free and conducting flat boundaries is investigated numerically using a seven mode Lorenz-like model. For fluids with moderate and high Prandtl numbers (4asymmetric squares appear as standing waves at the onset of secondary instability. Asymmetric squares, two-dimensional rolls, and again asymmetric squares with their corners shifted by half a wavelength form a stable limit cycle. The oscillatory bifurcation is supercritical. PMID:11088876

  1. Abundance of Asymmetric Dark Matter in Brane World Cosmology

    NASA Astrophysics Data System (ADS)

    Abdusattar, Haximjan; Iminniyaz, Hoernisa

    2016-09-01

    Relic abundance of asymmetric Dark Matter particles in brane world cosmological scenario is investigated in this article. Hubble expansion rate is enhanced in brane world cosmology and it affects the relic abundance of asymmetric Dark Matter particles. We analyze how the relic abundance of asymmetric Dark Matter is changed in this model. We show that in such kind of nonstandard cosmological scenario, indirect detection of asymmetric Dark Matter is possible if the cross section is small enough which let the anti-particle abundance kept in the same amount with the particle. We show the indirect detection signal constraints can be used to such model only when the cross section and the 5-dimensional Planck mass scale are in appropriate values. Supported by the National Natural Science Foundation of China under Grant No. 11365022

  2. The Asymmetrical "Sticking" Behavior of Two Balls on an Incline.

    ERIC Educational Resources Information Center

    Mallinckrodt, A. John

    1999-01-01

    Offers a relatively simple analysis of the asymmetrical "sticking" and rolling behavior of two balls, one steel and one rubber, on an incline. Describes an Interactive Physics (TM) simulation designed to study the problem and gives rough experimental results. (WRM)

  3. Asymmetric dynamic phase holographic grating in nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Ren, Chang-Yu; Shi, Hong-Xin; Ai, Yan-Bao; Yin, Xiang-Bao; Wang, Feng; Ding, Hong-Wei

    2016-09-01

    A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal (NLC) was presented. An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating. The diffraction efficiency we achieved is more than 40%, exceeding the theoretical limit for symmetric profile gratings. Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC. Finally, physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented, based on the photo-refractive-like (PR-like) effect. Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province, China (Grant No. 12541730) and the National Natural Science Foundation of China (Grant No. 61405057).

  4. Chiral Brønsted Acids for Asymmetric Organocatalysis

    NASA Astrophysics Data System (ADS)

    Kampen, Daniela; Reisinger, Corinna M.; List, Benjamin

    Chiral Brønsted acid catalysis is an emerging area of organocatalysis. Since the pioneering studies of the groups of Akiyama and Terada in 2004 on the use of chiral BINOL phosphates as powerful Brønsted acid catalysts in asymmetric Mannich-type reactions, numerous catalytic asymmetric transformations involving imine activation have been realized by means of this catalyst class, including among others Friedel-Crafts, Pictet-Spengler, Strecker, cycloaddition reactions, transfer hydrogenations, and reductive aminations. More recently, chiral BINOL phosphates found application in multicomponent and cascade reactions as for example in an asymmetric version of the Biginelli reaction. With the introduction of chiral BINOL-derived N-triflyl phosphoramides in 2006, asymmetric Brønsted acid catalysis is no longer restricted to reactive substrates. Also certain carbonyl compounds can be activated through these stronger Brønsted acid catalysts. In dealing with sensitive substrate classes, chiral dicarboxylic acids proved of particular value.

  5. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    SciTech Connect

    Cohen, T.D.; Broniowski, W.

    1995-01-01

    The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter.

  6. Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial

    NASA Astrophysics Data System (ADS)

    Li, Bing; Tan, K. T.

    2016-08-01

    Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted and mathematically controlled, which extends the design concept of unidirectional transmission devices.

  7. A laboratory study of asymmetric magnetic reconnection in strongly-driven plasmas

    DOE PAGES

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R.P. J.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-02-04

    Magnetic reconnection, the annihilation and rearrangement of magnetic fields in a plasma, is a universal phenomenon that frequently occurs when plasmas carrying oppositely-directed field lines collide. In most natural circumstances the collision is asymmetric (the two plasmas having different properties), but laboratory research to date has been limited to symmetric configurations. Additionally, the regime of strongly-driven magnetic reconnection, where the ram pressure of the plasma dominates the magnetic pressure, as in several astrophysical environments, has also received little experimental attention. Thus, we have designed experiments to probe reconnection in asymmetric, strongly-driven, laser-generated plasmas. Here we show that, in this strongly-drivenmore » system, the rate of magnetic flux annihilation is dictated by the relative flow velocities of the opposing plasmas and is insensitive to initial asymmetries. Additionally, out-of-plane magnetic fields that arise from asymmetries in the three-dimensional plasma geometry have minimal impact on the reconnection rate, due to the strong flows.« less

  8. Equation of State for Isospin Asymmetric Nuclear Matter Using Lane Potential

    NASA Astrophysics Data System (ADS)

    Basu, D. N.; Chowdhury, P. Roy; Samanta, C.

    2006-10-01

    A mean field calculation for obtaining the equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe--Weizsäcker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi--Wapstra--Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the constants of density dependence are determined, EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of the M3Y interaction that do not contribute to the EOS of symmetric nuclear matter. These EOS are then used to calculate the pressure, the energy density and the velocity of sound in symmetric as well as isospin asymmetric nuclear matter.

  9. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure.

  10. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure. PMID:25264920

  11. Tailor-made asymmetric PVDF hollow fibers for soluble gas removal

    SciTech Connect

    Li, K.; Kong, J.F.; Wang, D.; Teo, W.K.

    1999-06-01

    Tailor-made polyvinylidene fluoride (PVDF) asymmetric hollow-fiber membranes and their membrane modules were employed for soluble gas removal, such as H{sub 2}S from waste gas streams. This study focused on the techniques of fabricating and characterizing the PVDF asymmetric hollow-fiber membranes and their membrane modules for removal of H{sub 2}S using an aqueous solution containing 10% NaOH. A laminar parabolic velocity profile was used to characterize the flow of the H{sub 2}S gas mixture in the hollow-fiber lumen. Effects of operating conditions and the morphological structures of the membranes on the membrane`s coefficient, k{sub AM}, were examined both theoretically and experimentally. The capabilities of the hollow-fiber membranes developed for removal of H{sub 2}S from waste gas streams were evaluated and compared with conventional symmetric hydrophobic hollow-fiber membranes, such as polypropylene. An analysis of H{sub 2}S transfer across the more developed PVDF membranes reveals that the membrane`s coefficient, k{sub AM}, evaluated from its structure parameters, such as the effective surface porosity and mean radius, agreed well with the experimental data obtained from absorption experiments.

  12. A laboratory study of asymmetric magnetic reconnection in strongly-driven plasmas

    SciTech Connect

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R.P. J.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-02-04

    Magnetic reconnection, the annihilation and rearrangement of magnetic fields in a plasma, is a universal phenomenon that frequently occurs when plasmas carrying oppositely-directed field lines collide. In most natural circumstances the collision is asymmetric (the two plasmas having different properties), but laboratory research to date has been limited to symmetric configurations. Additionally, the regime of strongly-driven magnetic reconnection, where the ram pressure of the plasma dominates the magnetic pressure, as in several astrophysical environments, has also received little experimental attention. Thus, we have designed experiments to probe reconnection in asymmetric, strongly-driven, laser-generated plasmas. Here we show that, in this strongly-driven system, the rate of magnetic flux annihilation is dictated by the relative flow velocities of the opposing plasmas and is insensitive to initial asymmetries. Additionally, out-of-plane magnetic fields that arise from asymmetries in the three-dimensional plasma geometry have minimal impact on the reconnection rate, due to the strong flows.

  13. Plasma and Energetic Particle Behaviors During Asymmetric Magnetic Reconnection at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Zhang, H.; Zong, Q.-G.; Otto, A.; Sibeck, D. G.; Wang, Y.; Glassmeier, K.-H.; Daly, P.W.; Reme, H.

    2014-01-01

    The factors controlling asymmetric reconnection and the role of the cold plasma population in the reconnection process are two outstanding questions. We present a case study of multipoint Cluster observations demonstrating that the separatrix and flow boundary angles are greater on the magnetosheath than on the magnetospheric side of the magnetopause, probably due to the stronger density than magnetic field asymmetry at this boundary. The motion of cold plasmaspheric ions entering the reconnection region differs from that of warmer magnetosheath and magnetospheric ions. In contrast to the warmer ions, which are probably accelerated by reconnection in the diffusion region near the subsolar magnetopause, the colder ions are simply entrained by ??×?? drifts at high latitudes on the recently reconnected magnetic field lines. This indicates that plasmaspheric ions can sometimes play only a very limited role in asymmetric reconnection, in contrast to previous simulation studies. Three cold ion populations (probably H+, He+, and O+) appear in the energy spectrum, consistent with ion acceleration to a common velocity.

  14. Asymmetric viscoelastic flow through a porous channel with expanding or contracting walls: a model for transport of biological fluids through vessels.

    PubMed

    Xinhui, Si; Liancun, Zheng; Xinxin, Zhang; Xinyi, Si; Min, Li

    2014-01-01

    In this article, the asymmetric viscoelastic fluid in a rectangular domain bounded by two porous moving channels with expanding or contracting walls is investigated. The governing equations are reduced to an ordinary equation by using suitable similar transformations. Homotopy analysis method is used to obtain the expression for velocity fields. The analytical solutions are influenced by the permeation Reynolds number Re, the wall expansion ratio [Formula: see text] and viscoelastic parameter [Formula: see text]. Graphs are sketched and the effects of some values of parameters, especially the expansion ratio and viscoelastic parameter, on the velocity fields are discussed in detail.

  15. Circular motion of asymmetric self-propelling particles.

    PubMed

    Kümmel, Felix; ten Hagen, Borge; Wittkowski, Raphael; Buttinoni, Ivo; Eichhorn, Ralf; Volpe, Giovanni; Löwen, Hartmut; Bechinger, Clemens

    2013-05-10

    Micron-sized self-propelled (active) particles can be considered as model systems for characterizing more complex biological organisms like swimming bacteria or motile cells. We produce asymmetric microswimmers by soft lithography and study their circular motion on a substrate and near channel boundaries. Our experimental observations are in full agreement with a theory of Brownian dynamics for asymmetric self-propelled particles, which couples their translational and orientational motion. PMID:23705745

  16. Circular Motion of Asymmetric Self-Propelling Particles

    NASA Astrophysics Data System (ADS)

    Kümmel, Felix; ten Hagen, Borge; Wittkowski, Raphael; Buttinoni, Ivo; Eichhorn, Ralf; Volpe, Giovanni; Löwen, Hartmut; Bechinger, Clemens

    2013-05-01

    Micron-sized self-propelled (active) particles can be considered as model systems for characterizing more complex biological organisms like swimming bacteria or motile cells. We produce asymmetric microswimmers by soft lithography and study their circular motion on a substrate and near channel boundaries. Our experimental observations are in full agreement with a theory of Brownian dynamics for asymmetric self-propelled particles, which couples their translational and orientational motion.

  17. Modelling crystal growth: Convection in an asymmetrically heated ampoule

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Rosenberger, Franz; Pulicani, J. P.; Krukowski, S.; Ouazzani, Jalil

    1990-01-01

    The objective was to develop and implement a numerical method capable of solving the nonlinear partial differential equations governing heat, mass, and momentum transfer in a 3-D cylindrical geometry in order to examine the character of convection in an asymmetrically heated cylindrical ampoule. The details of the numerical method, including verification tests involving comparison with results obtained from other methods, are presented. The results of the study of 3-D convection in an asymmetrically heated cylinder are described.

  18. Large deviation function of the partially asymmetric exclusion process.

    PubMed

    Lee, D S; Kim, D

    1999-06-01

    The large deviation function obtained recently by Derrida and Lebowitz [Phys. Rev. Lett. 80, 209 (1998)] for the totally asymmetric exclusion process is generalized to the partially asymmetric case in the scaling limit. The asymmetry parameter rescales the scaling variable in a simple way. The finite-size corrections to the universal scaling function and the universal cumulant ratio are also obtained to the leading order. PMID:11969632

  19. [Synthesis of asymmetric tetraarylporphyrins and its ytterbium complexes].

    PubMed

    Rumiantseva, V D; Roshchina, N V; Fedorova, L D; Mironov, A F; Markushev, V M; Shilov, I P

    2011-01-01

    The synthesis of asymmetric meso-aryl-substituted porphyrins containing three 4-methoxycarbonylphenyl groups, and as a forth substituent 4-hydroxyphenyl or 4-hydroxy-3- methoxyphenyl radicals, or the isomeric 3- and 4-pyridyl substituents is described. O-alkyl derivatives of 4-hydroxyl residue are obtained. The ytterbium complexes ofthese porphyrins were synthesized and studied their luminescence spectral properties were studied. A significant difference in the lifetimes of the excited state ofytterbium complexes of esters and acids of asymmetric porphyrins is demonstrated.

  20. Route guidance strategies revisited: Comparison and evaluation in an asymmetric two-route traffic network

    NASA Astrophysics Data System (ADS)

    He, Zhengbing; Chen, Bokui; Jia, Ning; Guan, Wei; Lin, Benchuan; Wang, Binghong

    2014-12-01

    To alleviate traffic congestion, a variety of route guidance strategies have been proposed for intelligent transportation systems. A number of strategies are introduced and investigated on a symmetric two-route traffic network over the past decade. To evaluate the strategies in a more general scenario, this paper conducts eight prevalent strategies on an asymmetric two-route traffic network with different slowdown behaviors on alternative routes. The results show that only mean velocity feedback strategy (MVFS) is able to equalize travel time, i.e. approximate user optimality (UO); while the others fail due to incapability of establishing relations between the feedback parameters and travel time. The paper helps better understand these strategies, and suggests MVFS if the authority intends to achieve user optimality.

  1. Controllable asymmetric double well and ring potential on an atom chip

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Yu, H.; Gang, S. T.; Anderson, D. Z.; Kim, J. B.

    2016-03-01

    We have constructed an asymmetric matter-wave beam splitter and a ring potential on an atom chip with Bose-Einstein condensates using radio-frequency dressing. By applying rf field parallel to the quantization axis in the vicinity of the static trap minima added to perpendicular rf fields, versatile controllability on the asymmetry of rf-dressed potentials is realized. Asymmetry of the rf-induced double well is controlled over a wide range without discernible displacement of each well. Formation of an isotropic ring potential on an atom chip is achieved by compensating the gradient due to gravity and inhomogeneous coupling strength. In addition, position and rotation velocity of a BEC along the ring geometry are controlled by the relative phase and the frequency difference between the rf fields, respectively.

  2. Asymmetric dihedral angle offsets for large-size lunar laser ranging retroreflectors

    NASA Astrophysics Data System (ADS)

    Otsubo, Toshimichi; Kunimori, Hiroo; Noda, Hirotomo; Hanada, Hideo; Araki, Hiroshi; Katayama, Masato

    2011-08-01

    The distribution of two-dimensional velocity aberration is off-centered by 5 to 6 microradians in lunar laser ranging, due to the stable measurement geometry in the motion of the Earth and the Moon. The optical responses of hollow-type retroreflectors are investigated through numerical simulations, especially focusing on large-size, single-reflector targets that can ultimately minimize the systematic error in future lunar laser ranging. An asymmetric dihedral angle offset, i.e. setting unequal angles between the three back faces, is found to be effective for retroreflectors that are larger than 100 mm in diameter. Our numerical simulation results reveal that the optimized return energy increases approximately 3.5 times more than symmetric dihedral angle cases, and the optimized dihedral angle offsets are 0.65-0.8 arcseconds for one angle, and zeroes for the other two angles.

  3. Asymmetric soliton mobility in competing linear–nonlinear parity-time-symmetric lattices

    NASA Astrophysics Data System (ADS)

    Kartashov, Yaroslav V.; Vysloukh, Victor A.; Torner, Lluis

    2016-09-01

    We address the transverse mobility of spatial solitons in competing parity-time-symmetric linear and nonlinear lattices. The competition between out-of-phase linear and nonlinear lattices results in a drastic mobility enhancement within a range of soliton energies. We show that within such range, the addition of even a small imaginary part in the linear potential makes soliton mobility strongly asymmetric. The minimal phase tilt required for setting solitons into radiationless motion across the lattice in the direction opposite to that of the internal current drops to nearly zero, while the minimal phase tilt required for motion in the opposite direction notably increases. For a given initial phase tilt, the velocity of soliton motion grows with an increase of the balanced gain/losses. In this regime of enhanced mobility, tilted solitons can efficiently drag other solitons that were initially at rest, to form moving soliton pairs.

  4. An asymmetric and slightly dimerized structure for the tetanus toxoid protein used in glycoconjugate vaccines.

    PubMed

    Abdelhameed, Ali Saber; Morris, Gordon A; Adams, Gary G; Rowe, Arthur J; Laloux, Olivier; Cerny, Louis; Bonnier, Benjamin; Duvivier, Pierre; Conrath, Karel; Lenfant, Christophe; Harding, Stephen E

    2012-11-01

    Tetanus toxoid protein has been characterized with regard oligomeric state and hydrodynamic (low-resolution) shape, important parameters with regard its use in glycoconjugate vaccines. From sedimentation velocity and sedimentation equilibrium analysis in the analytical ultracentrifuge tetanus toxoid protein is shown to be mostly monomeric in solution (~86%) with approximately 14% dimer. The relative proportions do not appear to change significantly with concentration, suggesting the two components are not in reversible equilibrium. Hydrodynamic solution conformation studies based on high precision viscometry, combined with sedimentation data show the protein to be slightly extended conformation in solution with an aspect ratio ~3. The asymmetric structure presents a greater surface area for conjugation with polysaccharide than a more globular structure, underpinning its popular choice as a conjugation protein for glycoconjugate vaccines.

  5. Multilogarithmic velocity renormalization in graphene

    NASA Astrophysics Data System (ADS)

    Sharma, Anand; Kopietz, Peter

    2016-06-01

    We reexamine the effect of long-range Coulomb interactions on the quasiparticle velocity in graphene. Using a nonperturbative functional renormalization group approach with partial bosonization in the forward scattering channel and momentum transfer cutoff scheme, we calculate the quasiparticle velocity, v (k ) , and the quasiparticle residue, Z , with frequency-dependent polarization. One of our most striking results is that v (k ) ∝ln[Ck(α ) /k ] where the momentum- and interaction-dependent cutoff scale Ck(α ) vanishes logarithmically for k →0 . Here k is measured with respect to one of the charge neutrality (Dirac) points and α =2.2 is the strength of dimensionless bare interaction. Moreover, we also demonstrate that the so-obtained multilogarithmic singularity is reconcilable with the perturbative expansion of v (k ) in powers of the bare interaction.

  6. Solar-wind velocity decreases

    NASA Astrophysics Data System (ADS)

    Geranios, A.

    1980-08-01

    A model is developed to account for the solar wind electron and proton temperature decreases observed following the passage of an interplanetary shock wave and during the velocity decrease of a solar wind stream. The equations of mass and energy conservation are solved for a fully ionized, electrically neutral plasma expanding radially and spherically symmetrically, taking into account the heat flux from the solor corona to the plasma along the open magnetic field lines, and the electron thermal conductivity. An analytical relationship between the temperature and the velocity of the solar wind plasma is obtained which is found to be in agreement with experimental measurements made by the Vela 5 and 6 and IMP 6 satellites from August 1969-May 1974. It is thus proposed that the observed low plasma temperatures are due to the fact that the temperature decrease of the expanding plasma exceeds the heat gain due to thermal conduction from the corona.

  7. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-moa; Kwak, Dochan (Technical Monitor)

    2002-01-01

    In this paper we have reviewed the basics of tensor analysis in an attempt to clarify some misconceptions regarding contravariant and covariant vector components as used in fluid dynamics. We have indicated that contravariant components are components of a given vector expressed as a unique combination of the covariant base vector system and, vice versa, that the covariant components are components of a vector expressed with the contravariant base vector system. Mathematically, expressing a vector with a combination of base vector is a decomposition process for a specific base vector system. Hence, the contravariant velocity components are decomposed components of velocity vector along the directions of coordinate lines, with respect to the covariant base vector system. However, the contravariant (and covariant) components are not physical quantities. Their magnitudes and dimensions are controlled by their corresponding covariant (and contravariant) base vectors.

  8. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  9. Dust in High Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Wakker, B. P.

    The facilities available in Groningen to produce IRAS maps were used to make comparatively high-quality maps of two fields where a high-velocity cloud (HVC) is observed in the 21-cm line. The HVC's are not discernable in these maps although one would expect to see them if the relation between 100 micron emission and H I column density found by Boulanger, Baud & van Albada (1985) is used. The implications of this non-detection are discussed in this contribution.

  10. Gaussian Velocity Distributions in Avalanches

    NASA Astrophysics Data System (ADS)

    Shattuck, Mark

    2004-03-01

    Imagine a world where gravity is so strong that if an ice cube is tilted the shear forces melt the surface and water avalanches down. Further imagine that the ambient temperature is so low that the water re-freezes almost immediately. This is the world of granular flows. As a granular solid is tilted the surface undergoes a sublimation phase transition and a granular gas avalanches down the surface, but the inelastic collisions rapidly remove energy from the flow lowering the granular temperature (kinetic energy per particle) until the gas solidifies again. It is under these extreme conditions that we attempt to uncover continuum granular flow properties. Typical continuum theories like Navier-Stokes equation for fluids follow the space-time evolution of the first few moments of the velocity distribution. We study continuously avalanching flow in a rotating two-dimensional granular drum using high-speed video imaging and extract the position and velocities of the particles. We find a universal near Gaussian velocity distribution throughout the flowing regions, which are characterized by a liquid-like radial distribution function. In the remaining regions, in which the radial distribution function develops sharp crystalline peaks, the velocity distribution has a Gaussian peak but is much broader in the tails. In a companion experiment on a vibrated two-dimensional granular fluid under constant pressure, we find a clear gas-solid phase transition in which both the temperature and density change discontinuously. This suggests that a low temperature crystal and a high temperature gas can coexist in steady state. This coexistence could result in a narrower, cooler, Gaussian peak and a broader, warmer, Gaussian tail like the non-Gaussian behavior seen in the crystalline portions of the rotating drum.

  11. An examination of a group-velocity criterion for the breakdown of an idealized vortex flow

    NASA Technical Reports Server (NTRS)

    Tsai, C. Y.; Widnall, S. E.

    1979-01-01

    The phenomenon of vortex breakdown is believed to be associated with a finite amplitude wave that has become trapped at the critical or breakdown location. The conditions at which the propagating waves become trapped at a certain axial location were examined by use of a group-velocity criterion implied by Landahl's general theory of wave trapping. An ideal vortex having constant vorticity and uniform axial velocity at the inlet of a slowly diverging duct was studied. The linear wave propagation analysis is applied to the base flow at several axial stations for several values of the ratio of swirl velocity to axial velocity at the inlet of the divergent duct, assuming a locally parallel flow. The dipsersion relations and hence the group velocities of both the symmetric (n = 0) and asymmetric modes (n = + or - 1) were investigated. The existence of a critical state in the flow (at which the group velocity vanishes), and its relationship to the stagnation point on the axis of the duct and to the occurrence of an irregular singularity in the equations governing wave propagation in the flow field are discussed.

  12. Flexible Asymmetric Encapsulation for Dehydration-Responsive Hybrid Microfibers.

    PubMed

    Chaurasia, Ankur S; Sajjadi, Shahriar

    2016-08-01

    A new class of smart alginate microfibers with asymmetric oil encapsulates is introduced. These fibers are produced by injecting an aqueous alginate solution into an outer aqueous calcium chloride solution to form alginate fibers, which are asymmetrically loaded with oil entities through eccentrically aligned inner capillaries. The fiber morphology and its degree of asymmetry can be tuned via altering the size, location, and frequency of the oil encapsulates. These asymmetric fibers reveal significant potential for applications where conventional symmetric fibers fail to perform. It is shown how asymmetric oil-encapsulated fibers can become dehydration-sensitive, and trigger the release of encapsulates if their hydration level drops below a critical value. It is also shown how the triggered response could be switched off on demand by stabilizing the oil encapsulates. The capability of asymmetric fibers to carry and release multiple cargos in parallel is demonstrated. The fibers loaded with equal-sized spheres are more asymmetric than those containing unequal drops, have a higher tensile strength, and show better potential for a triggered response. PMID:27352241

  13. Asymmetric nucleosomes flank promoters in the budding yeast genome.

    PubMed

    Ramachandran, Srinivas; Zentner, Gabriel E; Henikoff, Steven

    2015-03-01

    Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that 5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling.

  14. BENCAP, LLC: CAPSULE VELOCITY TEST

    SciTech Connect

    Meidinger, Brian

    2005-09-07

    Ben Cap, LLC, has a technology that utilizes bebtonite to plug wells. The bentonite is encapsulated in a cardboard capsule, droped down to the bottom of the well where it is allowed to hydrate, causing the bentonite to expand and plug the well. This method of plugging a well is accepted in some, but not all states. This technology can save a significant amount of money when compared to cementing methods currently used to plug and abandon wells. The test objective was to obtain the terminal velocity of the capsule delivery system as it drops through a column of water in a wellbore. Once the terminal velocity is known, the bentonite swelling action can be timed not to begin swelling until it reaches the bottom of the well bore. The results of the test showed that an average speed of 8.93 plus or minus 0.12 ft/sec was achieved by the capsule as it was falling through a column of water. Plotting the data revealed a very linear function with the capsules achieving terminal velocity shortly after being released. The interference of the capsule impacting the casing was not readily apparent in any of the runs, but a siginal sampling anomaly was present in one run. Because the anomaly was so brief and not present in any of the other runs, no solid conclusions could be drawn. Additional testing would be required to determine the effects of capsules impacting a fluid level that is not at surface.

  15. Three axis velocity probe system

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  16. Measurement of retinal blood velocity

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W., Jr.; Chou, Nee-Yin

    2006-02-01

    A fundus camera was modified to illuminate the retina of a rabbit model with low power laser light in order to obtain laser speckle images. A fast-exposure charge-coupled device (CCD) camera was used to capture laser speckle images of the retina. Image acquisition was synchronized with the arterial pulses of the rabbit to ensure that all images are obtained at the same point in the cardiac cycle. The rabbits were sedated and a speculum was inserted to prevent the eyelid from closing. Both albino (New Zealand; pigmented (Dutch belted) rabbits were used in the study. The rabbit retina is almost avascular. The measurements are obtained for choroidal tissue as well as retinal tissue. Because the retina is in a region of high metabolism, blood velocity is strongly affected by blood oxygen saturation. Measurements of blood velocity obtained over a wide range of O II saturations (58%-100%) showed that blood velocity increases with decreasing O II saturation. For most experiments, the left eye of the rabbit was used for laser measurements whereas the right eye served as a control. No observable difference between pre- and post-experimented eye was noted. Histological examinations of retinal tissue subjected to repeated laser measurements showed no indication of tissue damage.

  17. Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens

    NASA Astrophysics Data System (ADS)

    Calignano, Elisa; Sokoutis, Dimitrios; Willingshofer, Ernst; Gueydan, Frédéric; Cloetingh, Sierd

    2015-08-01

    The initiation and subsequent evolution of intra-plate orogens, resulting from continental plate interior deformation due to transmission of stresses over large distances from the active plate boundaries, is controlled by lateral and vertical strength contrasts in the lithosphere. We present lithospheric-scale analogue models combining 1) lateral strength variations in the continental lithosphere, and 2) different vertical rheological stratifications. The experimental continental lithosphere has a four-layer brittle-ductile rheological stratification. Lateral heterogeneity is implemented in all models by increased crustal strength in a central narrow block. The main investigated parameters are strain rate and strength of the lithospheric mantle, both playing an important role in crust-mantle coupling. The experiments show that the presence of a strong crustal domain is effective in localizing deformation along its boundaries. After deformation is localized, the evolution of the orogenic system is governed by the mechanical properties of the lithosphere such that the final geometry of the intra-plate mountain depends on the interplay between crust-mantle coupling and folding versus fracturing of the lithospheric mantle. Underthrusting is the main deformation mode in case of high convergence velocity and/or thick brittle mantle with a final asymmetric architecture of the deep lithosphere. In contrast, lithospheric folding is dominant in case of low convergence velocity and low strength brittle mantle, leading to the development of a symmetric lithospheric root. The presented analogue modelling results provide novel insights for 1) strain localization and 2) the development of the asymmetric architecture of the Pyrenees.

  18. Axis switching and spreading of an asymmetric jet: Role of vorticity dynamics

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1994-01-01

    The effects of vortex generators and periodic excitation on vorticity dynamics and the phenomenon of axis switching in a free asymmetric jet are studied experimentally. Most of the data reported are for a 3:1 rectangular jet at a Reynolds number of 450,000 and a Mach number of 0.31. The vortex generators are in the form of 'delta tabs', triangular shaped protrusions into the flow, placed at the nozzle exit. With suitable placement of the tabs, axis switching could be either stopped or augmented. Two mechanisms are identified governing the phenomenon. One, as described by previous researchers and referred to here as the omega(sub theta)-induced dynamics, is due to difference in induced velocities for different segments of a rolled up azimuthal vortical structure. The other, omega(sub x)-induced dynamics, is due to the induced velocities of streamwise vortex pairs in the flow. Both dynamics can be active in a natural asymmetric jet; the tendency for axis switching caused by the omega(sub theta)-induced dynamics may be, depending on the streamwise vorticity distribution, either resisted or enhanced by the omega(sub x)-induced dynamics. While this simple framework qualitatively explains the various observations made on axis switching, mechanisms actually in play may be much more complex. The two dynamics are not independent as the flow field is replete with both azimuthal and streamwise vortical structures which continually interact. Phase averaged flow field data for a periodically forced case, over a volume of the flow field, are presented and discussed in an effort to gain insight into the dynamics of these vortical structures.

  19. Inferring proximity to the reconnection site via structural changes to the magnetopause caused by asymmetric reconnection.

    NASA Astrophysics Data System (ADS)

    Argall, M. R.; Chen, L. J.; Torbert, R. B.; Daughton, W. S.; Yoo, J.; Yamada, M.

    2014-12-01

    The mechanisms of field line breaking and magnetic energy dissipation that result in magnetic reconnection have yet to be determined by spacecraft observations. Many parameters have been proposed to locate the reconnection site, but they either fail to identify uniquely the reconnection site or have not been tested for asymmetric reconnection. We demonstrate that the change in magnetopause structure caused by reconnection can be used to locate and estimate proximity to the site of reconnection. Cluster observations of quiet magnetopause crossings, for which no evidence of reconnection is found, show no obvious spatial dependence of the DC electric field, while the plasma density and velocity make the transition from magnetosheath to magnetosphere values simultaneously with the tangential magnetic field (BL) reversal. Conversely, in-situ observations of several active crossings, for which signs of reconnection are evident, show that the density transition and BL reversal can occur simultaneously or be offset from one another by over 100 ion skin depths (λi) (assuming a constant magnetopause velocity), the outflow jet can occur anywhere from the BL reversal to several λi earthward of the density gradient, and the DC electric field changes sign on either side of the density gradient. Laboratory experiments and 2D and 3D particle-in-cell simulations of asymmetric reconnection reveal that the relative transition offsets are due to exhaust crossings at different proximities to the X-line. Only within the thin electron current layer surrounding the X-line do the transitions remain concurrent. We present one reconnection event during which the transitions in plasma density, DC electric field, and BL are simultaneous in two of the four Cluster spacecraft and offset in the other two spacecraft. The multiple satellite encounter allows us to examine spatial features in the region surrounding the X-line.

  20. Chilly dark sectors and asymmetric reheating

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-06-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  1. Hemispherical anomaly from asymmetric initial states

    NASA Astrophysics Data System (ADS)

    Ashoorioon, Amjad; Koivisto, Tomi

    2016-08-01

    We investigate if the hemispherical asymmetry in the CMB is produced from "asymmetric" excited initial conditions. We show that in the limit where the deviations from the Bunch-Davies vacuum are large and the scale of new physics is maximally separated from the inflationary Hubble parameter, the primordial power spectrum is modulated only by position-dependent dipole and quadrupole terms. Requiring the dipole contribution in the power spectrum to account for the observed power asymmetry, A =0.07 ±0.022 , we show that the amount of quadrupole terms is roughly equal to A2. The mean local bispectrum, which gets enhanced for the excited initial state, is within the 1 σ bound of Planck 2015 results for a large field model, fNL≃4.17 , but is reachable by future CMB experiments. The amplitude of the local non-Gaussianity modulates around this mean value, depending on the angle that the correlated patches on the 2d CMB surface make with the preferred direction. The amount of variation is minimized for the configuration in which the short and long wavelength modes are around the preferred pole and |k→3|≈|k→l ≈10|≪|k→1|≈|k→2|≈|k→l ≈2500| with fNLmin≈3.64 . The maximum occurs when these modes are at the antipode of the preferred pole, fNLmax≈4.81 . The difference of non-Gaussianity between these two configurations is as large as ≃1.17 , which can be used to distinguish this scenario from other scenarios that try to explain the observed hemispherical asymmetry.

  2. Asymmetric inhibitory treatment effects in multilingual aphasia

    PubMed Central

    Goral, Mira; Naghibolhosseini, Maryam; Conner, Peggy

    2014-01-01

    Findings from recent psycholinguistic studies of bilingual processing support the hypothesis that both languages of a bilingual are always active and that bilinguals continually engage in processes of language selection. This view aligns with the convergence hypothesis of bilingual language representation (Abutalebi & Green, 2008). Furthermore, it is hypothesized that when bilinguals perform a task in one language they need to inhibit their other, non-target language(s) (e.g., Costa, Miozzo, & Caramazza, 1999) and that stronger inhibition is required when the task is performed in the weaker language than in the stronger one (e.g., Costa & Santesteban, 2004). The study of multilingual individuals who acquire aphasia resulting from a focal brain lesion offers a unique opportunity to test the convergence hypothesis and the inhibition asymmetry. We report on a trilingual person with chronic non-fluent aphasia who at the time of testing demonstrated greater impairment in her first acquired language (Persian) than in her third, later-learned language (English). She received treatment in English followed by treatment in Persian. An examination of her connected language production revealed improvement in her grammatical skills in each language following intervention in that language, but decreased grammatical accuracy in English following treatment in Persian. The increased error rate was evident in structures that are not shared by the two languages (e.g., use of auxiliary verbs). The results support the prediction that greater inhibition is applied to the stronger language than to the weaker language, regardless of their age of acquisition. We interpret the findings as consistent with convergence theories that posit overlapping neuronal representation and simultaneous activation of multiple languages, and with proficiency-dependent asymmetric inhibition in multilinguals. PMID:24499302

  3. Asymmetrical Stimulus Generalization following Differential Fear Conditioning

    PubMed Central

    Bang, Sun Jung; Allen, Timothy A.; Jones, Lauren K.; Boguszewski, Pawel; Brown, Thomas H.

    2008-01-01

    Rodent ultrasonic vocalizations (USVs) are ethologically critical social signals. Rats emit 22 kHz USVs and 50 kHz USVs, respectively, in conjunction with negative and positive affective states. Little is known about what controls emotional reactivity to these social signals. Using male Sprague-Dawley rats, we examined unconditional and conditional freezing behavior in response to the following auditory stimuli: three 22 kHz USVs, a discontinuous tone whose frequency and on-off pattern matched one of the USVs, a continuous tone with the same or lower frequencies, a 4 kHz discontinuous tone with an on-off pattern matched to one of the USVs, and a 50 kHz USV. There were no differences among these stimuli in terms of the unconditional elicitation of freezing behavior. Thus, the stimuli were equally neutral before conditioning. During differential fear conditioning, one of these stimuli (the CS+) always co-terminated with a footshock unconditional stimulus (US) and another stimulus (the CS−) was explicitly unpaired with the US. There were no significant differences among these cues in CS+-elicited freezing behavior. Thus, the stimuli were equally salient or effective as cues in supporting fear conditioning. When the CS+ was a 22 kHz USV or a similar stimulus, rats discriminated based on the principal frequency and/or the temporal pattern of the stimulus. However, when these same stimuli served as the CS−, discrimination failed due to generalization from the CS+. Thus, the stimuli differed markedly in the specificity of conditioning. This strikingly asymmetrical stimulus generalization is a novel bias in discrimination. PMID:18434217

  4. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  5. Asymmetric inhibitory treatment effects in multilingual aphasia.

    PubMed

    Goral, Mira; Naghibolhosseini, Maryam; Conner, Peggy S

    2013-01-01

    Findings from recent psycholinguistic studies of bilingual processing support the hypothesis that both languages of a bilingual are always active and that bilinguals continually engage in processes of language selection. This view aligns with the convergence hypothesis of bilingual language representation. Furthermore, it is hypothesized that when bilinguals perform a task in one language they need to inhibit their other, nontarget language(s) and that stronger inhibition is required when the task is performed in the weaker language than in the stronger one. The study of multilingual individuals who acquire aphasia resulting from a focal brain lesion offers a unique opportunity to test the convergence hypothesis and the inhibition asymmetry. We report on a trilingual person with chronic nonfluent aphasia who at the time of testing demonstrated greater impairment in her first acquired language (Persian) than in her third, later learned language (English). She received treatment in English followed by treatment in Persian. An examination of her connected language production revealed improvement in her grammatical skills in each language following intervention in that language, but decreased grammatical accuracy in English following treatment in Persian. The increased error rate was evident in structures that are used differently in the two languages (e.g., auxiliary verbs). The results support the prediction that greater inhibition is applied to the stronger language than to the weaker language, regardless of their age of acquisition. We interpret the findings as consistent with convergence theories that posit overlapping neuronal representation and simultaneous activation of multiple languages and with proficiency-dependent asymmetric inhibition in multilinguals.

  6. Influence of thermal and velocity slip on the peristaltic flow of Cu-water nanofluid with magnetic field

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher

    2016-03-01

    The peristaltic flow of an incompressible viscous fluid containing copper nanoparticles in an asymmetric channel is discussed with thermal and velocity slip effects. The copper nanoparticles for the peristaltic flow water as base fluid is not explored so far. The equations for the purposed fluid model are developed first time in literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been calculated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. The influence of various flow parameters on the flow and heat transfer characteristics is obtained.

  7. The Asymmetric Wind in M82

    NASA Astrophysics Data System (ADS)

    Shopbell, P. L.; Bland-Hawthorn, J.

    1998-01-01

    We have obtained detailed Fabry-Perot imaging observations of the nearby galaxy M82 in order to understand the physical association between the high-velocity outflow and the starburst nucleus. The high spatial and kinematic resolution of our observations has allowed us to perform photometric analyses of Hα, [N II], and [O III] spectral lines at roughly 100,000 positions across the extent of the galaxy. The observed velocities of the emitting gas in M82 reveal a bipolar outflow of material, originating from the bright starburst regions in the galaxy's inner disk but misaligned with respect to the galaxy spin axis. The deprojected outflow velocity indicated by the optical filaments increases with radius from 525 to 655 km s-1. All three spectral lines show double components in the centers of the outflowing lobes, with the Hα line split by ~300 km s-1 over a region almost 1 kpc in size. The filamentary lobes lie along an axis tilted by 15° with respect to the spin axis, a finding confirmed by the regions of line splitting and by the ionization pattern over the outflow. The filaments are not simple surfaces of revolution, nor is the emission distributed evenly over the surfaces. We model these lobes as a composite of cylindrical and conical structures, collimated in the inner ~500 pc but expanding at a larger opening angle of ~25° beyond that radius. We compare our kinematic model with simulations of starburst-driven winds in which disk material surrounding the source is entrained by the wind. There is some evidence for rotation of the wind filaments about the outflow axis in support of entrainment, and we find strong similarities between the observed and predicted structures. The data reveal a remarkably low [N II]/Hα ratio in the region of the outflow, indicating that photoionization by the nuclear starburst may play a significant role in the excitation of the optical filament gas, particularly near the nucleus. An increase in the [O III]/Hα ratio along the

  8. Spatio-temporal linear stability analysis of stratified planar wakes: Velocity and density asymmetry effects

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Jagtap, Swapnil; Quinlan, J. Mathew; Renfro, Michael W.; Cetegen, Baki M.; Lieuwen, Tim

    2016-04-01

    This paper explores the hydrodynamic stability of bluff body wakes with non-uniform mean density, asymmetric mean density, and velocity profiles. This work is motivated by experiments [S. Tuttle et al., "Lean blow off behavior of asymmetrically-fueled bluff body-stabilized flames," Combust. Flame 160, 1677 (2013)], which investigated reacting wakes with equivalence ratio stratification and, hence, asymmetry in the base flow density profiles. They showed that highly stratified cases exhibited strong, narrowband oscillations, suggestive of global hydrodynamic instability. In this paper, we present a local hydrodynamic stability analysis for non-uniform density wakes that includes base flow asymmetry. The results show that increasing the degree of base density asymmetry generally has a destabilizing effect and that increasing base velocity asymmetry tends to be stabilizing. Furthermore, we show that increasing base density asymmetry slightly decreases the absolute frequency and that increasing the base velocity asymmetry slightly increases the absolute frequency. In addition, we show that increasing the degree of base density asymmetry distorts the most absolutely unstable hydrodynamic mode from its nominally sinuous structure. This distorted mode exhibits higher amplitude pressure and velocity oscillations near the interface with the smaller density jump than near the one with the bigger density jump. This would then be anticipated to lead to strongly non-symmetric amplitudes of flame flapping, with much stronger flame flapping on the side with lower density ratio. These predictions are shown to be consistent with experimental data. These comparisons support the analytical predictions that increased base density asymmetry are destabilizing and that hydrodynamic velocity fluctuation amplitudes should be greatest at the flame with the lowest density jump.

  9. Asymmetric bias in user guided segmentations of brain structures.

    PubMed

    Maltbie, Eric; Bhatt, Kshamta; Paniagua, Beatriz; Smith, Rachel G; Graves, Michael M; Mosconi, Matthew W; Peterson, Sarah; White, Scott; Blocher, Joseph; El-Sayed, Mohammed; Hazlett, Heather C; Styner, Martin A

    2012-01-16

    Brain morphometric studies often incorporate comparative hemispheric asymmetry analyses of segmented brain structures. In this work, we present evidence that common user guided structural segmentation techniques exhibit strong left-right asymmetric biases and thus fundamentally influence any left-right asymmetry analyses. In this study, MRI scans from ten pediatric subjects were employed for studying segmentations of amygdala, globus pallidus, putamen, caudate, and lateral ventricle. Additionally, two pediatric and three adult scans were used for studying hippocampus segmentation. Segmentations of the sub-cortical structures were performed by skilled raters using standard manual and semi-automated methods. The left-right mirrored versions of each image were included in the data and segmented in a random order to assess potential left-right asymmetric bias. Using shape analysis we further assessed whether the asymmetric bias is consistent across subjects and raters with the focus on the hippocampus. The user guided segmentation techniques on the sub-cortical structures exhibited left-right asymmetric volume bias with the hippocampus displaying the most significant asymmetry values (p<0.01). The hippocampal shape analysis revealed the bias to be strongest on the lateral side of the body and medial side of the head and tail. The origin of this asymmetric bias is considered to be based in laterality of visual perception; therefore segmentations with any degree of user interaction contain an asymmetric bias. The aim of our study is to raise awareness in the neuroimaging community regarding the presence of the asymmetric bias and its influence on any left-right hemispheric analyses. We also recommend reexamining previous research results in the light of this new finding. PMID:21889995

  10. Asymmetric photoredox transition-metal catalysis activated by visible light

    NASA Astrophysics Data System (ADS)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  11. Nonlinear transport of the Wigner crystal in symmetric and asymmetric FET-like structures. Nonlinear transport of the Wigner crystal on superfluid 4He in quasi-one-dimensional channels with symmetric and asymmetric constrictions

    NASA Astrophysics Data System (ADS)

    Vasylenko, Anna A.; Misko, Vyacheslav R.

    2015-04-01

    When floating on a two-dimensional surface of superfluid 4He, electrons arrange themselves in two-dimensional crystalline structure known as Wigner crystal. In channels, the boundaries interfere the crystalline order and in case of very narrow channels one observes a quasi-one-dimensional (quasi-1D) Wigner crystal formed by just a few rows of electrons and, ultimately, one row in the "quantum wire" regime. Recently, the "quantum wire" regime was accessed experimentally [D.G. Rees, H. Totsuji, K. Kono, Phys. Rev. Lett. 108, 176801 (2012)] resulting in unusual transport phenomena such as, e.g., oscillations in the electron conductance. Using molecular dynamics simulations, we study the nonlinear transport of electrons in channels with various types of constrictions: single and multiple symmetric and asymmetric geometrical constrictions with varying width and length, and saddle-point-type potentials with varying gate voltage. In particular, we analyze the average particle velocity of the particles and the corresponding electron current versus the driving force or the gate voltage. We have revealed a significant difference in the dynamics for long and short constrictions: The oscillations of the average velocity of the particles for the systems with short constrictions exhibit a clear correlation with the transitions between the states with different numbers of rows of particles; on the other hand, for the systems with longer constrictions these oscillations are suppressed. The obtained results qualitatively agree with the experimental observations. Next, we propose a FET-like structure that consists of a channel with asymmetric constrictions. We show that applying a transverse bias results either in increase of the average particle velocity or in its suppression thus allowing a flexible control tool over the electron transport. The advantage of the asymmetric FET is that it does not have a gate and it allows an easy control of relatively large electron flow

  12. Study of Estimation Method for Unsteady Inflow Velocity in Two-Dimensional Ultrasonic-Measurement-Integrated Blood Flow Simulation.

    PubMed

    Kadowaki, Hiroko; Hayase, Toshiyuki; Funamoto, Kenichi; Taniguchi, Nobuyuki

    2016-02-01

    Information on hemodynamics is essential for elucidation of mechanisms and development of novel diagnostic methods for circulatory diseases. Two-dimensional ultrasonic-measurement-integrated (2D-UMI) simulation can correctly reproduce an intravascular blood flow field and hemodynamics by feeding back an ultrasonic measurement to the numerical blood flow simulation. In this method, it is critically important to give the correct cross-sectional average inflow velocity (inflow velocity) as the boundary condition. However, systematic study has not been done on the relative validity and effectiveness of existing inflow velocity estimation methods for various target flow fields. The aim of this study was to examine the existing methods systematically and to establish a method to accurately estimate inflow velocities for various vessel geometries and flow conditions in 2D-UMI simulations. A numerical experiment was performed for 2D-UMI simulation of blood flow models in a straight vessel with inflow velocity profiles symmetric and asymmetric to the vessel axis using existing evaluation functions based on Doppler velocity error for the inflow velocity estimation. As a result, it was clarified that a significantly large estimation error occurs in the asymmetric flow due to a nonfeedback domain near the downstream end of the calculation domain. Hence, a new inflow velocity estimation method of 2D-UMI simulation is proposed in which the feedback and evaluation domains are extended to the downstream end. Further numerical experiments of 2D-UMI simulation for two realistic vessel geometries of a healthy blood vessel and a stenosed one confirmed the effectiveness of the proposed method.

  13. Study of Estimation Method for Unsteady Inflow Velocity in Two-Dimensional Ultrasonic-Measurement-Integrated Blood Flow Simulation.

    PubMed

    Kadowaki, Hiroko; Hayase, Toshiyuki; Funamoto, Kenichi; Taniguchi, Nobuyuki

    2016-02-01

    Information on hemodynamics is essential for elucidation of mechanisms and development of novel diagnostic methods for circulatory diseases. Two-dimensional ultrasonic-measurement-integrated (2D-UMI) simulation can correctly reproduce an intravascular blood flow field and hemodynamics by feeding back an ultrasonic measurement to the numerical blood flow simulation. In this method, it is critically important to give the correct cross-sectional average inflow velocity (inflow velocity) as the boundary condition. However, systematic study has not been done on the relative validity and effectiveness of existing inflow velocity estimation methods for various target flow fields. The aim of this study was to examine the existing methods systematically and to establish a method to accurately estimate inflow velocities for various vessel geometries and flow conditions in 2D-UMI simulations. A numerical experiment was performed for 2D-UMI simulation of blood flow models in a straight vessel with inflow velocity profiles symmetric and asymmetric to the vessel axis using existing evaluation functions based on Doppler velocity error for the inflow velocity estimation. As a result, it was clarified that a significantly large estimation error occurs in the asymmetric flow due to a nonfeedback domain near the downstream end of the calculation domain. Hence, a new inflow velocity estimation method of 2D-UMI simulation is proposed in which the feedback and evaluation domains are extended to the downstream end. Further numerical experiments of 2D-UMI simulation for two realistic vessel geometries of a healthy blood vessel and a stenosed one confirmed the effectiveness of the proposed method. PMID:26241967

  14. Measuring mean velocities with Pogo

    SciTech Connect

    Rossby, T.; Fontaine, J.; Hummon, J. )

    1991-10-01

    Pogo is a sample technique for measuring water transport between the surface and some preselected depth. Equipped with a 12-kHz pinger for tracking and range measurements, a xenon flasher for nighttime relocation, and a VHF beacon for daytime recovery, it has been used over 200 times in the Gulf Stream to measure volume transport and to provide a reference velocity (transport) for geostrophic calculations from pairs of hydrographic stations. This note gives a brief technical description of Pogo and how it is used. Loran C was used for navigation in this study, but with the advent of the Global Positioning System (GPS), Pogo can be used worldwide. 6 refs.

  15. Measuring mean velocities with Pogo

    NASA Astrophysics Data System (ADS)

    Rossby, T.; Fontaine, J.; Hummon, J.

    1991-10-01

    Pogo is a sample technique for measuring water transport between the surface and some preselected depth. Equipped with a 12-kHz pinger for tracking and range measurements, a xenon flasher for nighttime relocation, and a VHF beacon for daytime recovery, it has been used over 200 times in the Gulf Stream to measure volume transport and to provide a reference velocity (transport) for geostrophic calculations from pairs of hydrographic stations. This note gives a brief technical description of Pogo and how it is used. Loran C was used for navigation in this study, but with the advent of the Global Positioning System (GPS), Pogo can be used worldwide.

  16. PRECISION RADIAL VELOCITIES WITH CSHELL

    SciTech Connect

    Crockett, Christopher J.; Prato, L.; Mahmud, Naved I.; Johns-Krull, Christopher M.; Jaffe, Daniel T.; Beichman, Charles A. E-mail: lprato@lowell.edu E-mail: cmj@rice.edu

    2011-07-10

    Radial velocity (RV) identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near-infrared RV techniques. We present our methodology for achieving 58 m s{sup -1} precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3 m NASA Infrared Telescope Facility. We also demonstrate our ability to recover the known 4 M{sub JUP} exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.

  17. Newberry EGS Seismic Velocity Model

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  18. Velocity Condensation for Magnetotactic Bacteria

    NASA Astrophysics Data System (ADS)

    Rupprecht, Jean-François; Waisbord, Nicolas; Ybert, Christophe; Cottin-Bizonne, Cécile; Bocquet, Lydéric

    2016-04-01

    Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We show that the swimming strategy, e.g., active Brownian motion versus run-and-tumble dynamics, strongly affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the phase transition to collective motion, indicating that Lévy run-and-tumble walks can outperform active Brownian processes as strategies to trigger collective behavior.

  19. Time-asymmetric structure of gravitational radiation

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc

    1993-05-01

    Gravitational radiation reaction effects in the dynamics of an isolated system arise from the use of retarded potentials for the radiation field, satisfying time-asymmetric boundary conditions imposed at past-null infinity. Part one of this paper investigates the ``antisymmetric'' component, a solution of the wave equation of the type retarded minus advanced, of the linearized gravitational field generated by an isolated system in the exterior region of the system. At linearized order such a component is well defined and is ``time odd'' in the usual post-Newtonian (PN) sense. We introduce a new linearized coordinate system which generalizes the Burke and Thorne coordinate system both in its space-time domain of validity, which is no longer limited to the near zone of the source, and in the post-Newtonian smallness of the linear antisymmetric (``time-odd'') component of the metric, for all multipolarities of antisymmetric waves. These waves (as viewed in the near zone) define a generalized radiation reaction four-tensor potential Vαβreact of the linear theory. At the 2.5 post-Newtonian approximation, the tensor potential reduces to the standard Burke-Thorne scalar potential of the lowest-order local radiation reaction force. At the 3.5 PN approximation, the potential involves scalar (V00react) and vector (V0ireact) components which are associated with subdominant radiation reaction effects such as the recoil effect. At the higher-order PN approximations, the potential is intrinsically tensorial. A nonlinear exterior metric is iteratively constructed from the new linearized metric by the method of a previous work. Part two of this paper is devoted to the near-zone reexpansion of the nonlinear iterations of the exterior metric. We use a very convenient decomposition of the integral of the retarded potentials into a particular solution involving only ``instantaneous'' potentials, and a homogeneous solution of the antisymmetric type. The former particular solution is

  20. Accretional Heating of Asymmetric Supernova Cores

    NASA Astrophysics Data System (ADS)

    Thompson, Christopher

    2000-05-01

    The role of accretion in heating a stalled bounce shock in a core-collapse supernova is investigated. We show that effective accretional heating causes an asymmetric expansion of the shock, sufficient to impart a net impulse of ~300-400 km s-1 to the neutron core. To simplify the analysis, we consider a failed accretion shock. Below such a shock, inward advection is faster than neutrino heating and the usual gain criterion does not suffice to determine a successful explosion. A mechanism that enhances buoyancy and inhibits mixing between hot and cold postshock fluid elements is required to revive the shock. We focus on the response of a magnetic field to the accretion flow. Ram heating and shearing of a low-density, magnetized fluid phase (``M-fluid'') is shown to be faster than neutrino cooling. The long duration of the accretion flow compared with the dynamical time allows for a large amplification of the magnetic energy. We calculate the stability of a spherical shock in the presence of a low-density hydrostatic atmosphere below it and show that below a critical atmospheric density the shock is unstable to a global Rayleigh-Taylor mode. We then calculate the equilibrium structure of this Rayleigh-Taylor plume as it accumulates energy and the critical size beyond which quasi-static expansion is no longer possible and its outer boundary converts to a running shock. Accretion continues while the shock expands, and an energy of ~1051 ergs is a direct consequence of the efficiency of ram heating close to the neutron core. The linear momentum imparted to the core is directly related to the mass profile of the precollapse core and explains the proper motions of (most) radio pulsars. We also estimate the net circulation imparted to the last 0.1-0.2 Msolar of collapsing material, which appears sufficient to torque the core down to a spin period of 1-100 ms. The effect of photodissociation on the shock jump conditions is calculated, and the implications for

  1. Asymmetric Hip Rotation in Professional Baseball Pitchers

    PubMed Central

    McCulloch, Patrick C.; Patel, Jayesh K.; Ramkumar, Prem N.; Noble, Philip C.; Lintner, David M.

    2014-01-01

    Background: There is a renewed interest in examining the association between hip range of motion and injury in athletes, and the data on baseball players are conflicting. Understanding whether asymmetrical hip rotation is a normal adaptation or a risk factor for injury will help therapists, trainers, and physicians develop rehabilitation programs to improve kinetic energy transfer and prevent injury. As our knowledge of hip pathology among baseball pitchers improves, establishing baselines for hip motion is critical in the further assessment of injury. Hypothesis: Because of the repetitive nature of throwing sports and the adaptive changes documented in the shoulder, elite baseball pitchers would have characteristic patterns of hip internal and external rotations on their dominant throwing side (stance) and their nondominant side (stride) in extension. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Computer software was used to measure passive internal and external rotations on digital photographs of 111 professional baseball pitchers. Results: In right-handed pitchers, there was significantly more internal rotation in the stance hip than the stride hip (32.2° ± 8.2° vs 30.8° ± 8.4°; P = .0349) and significantly more external rotation in the stride hip than the stance hip (36.3° ± 7.7° vs 30.8° ± 9.7°; P < .0001). While the mean difference in external rotation was 4.7°, 32% of the subjects had a >10° increase in external rotation on the stride hip relative to the stance hip. This population was statistically different from the remaining group for older age (P = .0053), lower body mass index (P = .0379), and more years in professional baseball (P = .0328). In the smaller number of left-handed pitchers, side-to-side differences in hip rotation were found but were not statistically significant. Conclusion: Pitchers showed more internal rotation on their stance hip and more external rotation on their stride hip. Although the mean

  2. Velocity gradients and microturbulence in Cepheids

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1972-01-01

    Variations of the microturbulent velocity with phase and height in the atmosphere were reported in classical Cepheids. It is shown that these effects can be understood in terms of variations of the velocity gradient in the atmospheres of these stars.

  3. Contributing factors for increased bat swing velocity.

    PubMed

    Szymanski, David J; DeRenne, Coop; Spaniol, Frank J

    2009-07-01

    Bat swing velocity is an important characteristic of successful hitters in baseball and softball. The purpose of this literature review is threefold. First, before describing what components and training methods have been investigated to improve bat swing velocity, it is necessary to discuss the importance of bat swing velocity and batted-ball velocity. The second purpose is to discuss bat weight during on-deck circle warm-up, bat weight during resistance training, resistance training with an overload of force, performance of additional supplemental resistance exercises, the relationship between strength, power, lean body mass, and angular velocity and bat swing velocity, and the relationship between improvements in strength, power, lean body mass, and angular velocity and improvements in bat swing velocity. The third purpose of this review is to recommend some practical applications based on research results. PMID:19528868

  4. Azimuthally Anisotropic 3D Velocity Continuation

    DOE PAGES

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  5. Calculating the Velocity in the Moss

    NASA Technical Reports Server (NTRS)

    Womebarger, Amy R.; Tripathi, Durgesh; Mason, Helen

    2011-01-01

    The velocity of the warm (1 MK) plasma in the footpoint of the hot coronal loops (commonly called moss) could help discriminate between different heating frequencies in the active region core. Strong velocities would indicated low-frequency heating, while velocities close to zero would indicate high-frequency heating. Previous results have found disparaging observations, with both strong velocities and velocities close to zero reported. Previous results are based on observations from Hinode/EIS. The wavelength arrays for EIS spectra are typically calculated by assuming quiet Sun velocities are zero. In this poster, we determine the velocity in the moss using observations with SoHO/SUMER. We rely on neutral or singly ionized spectral lines to determine accurately the wavelength array associated with the spectra. SUMER scanned the active region twice, so we also report the stability of the velocity.

  6. Inexpensive Time-of-Flight Velocity Measurements.

    ERIC Educational Resources Information Center

    Everett, Glen E.; Wild, R. L.

    1979-01-01

    Describes a circuit designed to measure time-of-flight velocity and shows how to use it to determine bullet velocity in connection with the ballistic pendulum demonstration of momentum conservation. (Author/GA)

  7. Contributing factors for increased bat swing velocity.

    PubMed

    Szymanski, David J; DeRenne, Coop; Spaniol, Frank J

    2009-07-01

    Bat swing velocity is an important characteristic of successful hitters in baseball and softball. The purpose of this literature review is threefold. First, before describing what components and training methods have been investigated to improve bat swing velocity, it is necessary to discuss the importance of bat swing velocity and batted-ball velocity. The second purpose is to discuss bat weight during on-deck circle warm-up, bat weight during resistance training, resistance training with an overload of force, performance of additional supplemental resistance exercises, the relationship between strength, power, lean body mass, and angular velocity and bat swing velocity, and the relationship between improvements in strength, power, lean body mass, and angular velocity and improvements in bat swing velocity. The third purpose of this review is to recommend some practical applications based on research results.

  8. Distribution of quantum Fisher information in asymmetric cloning machines

    PubMed Central

    Xiao, Xing; Yao, Yao; Zhou, Lei-Ming; Wang, Xiaoguang

    2014-01-01

    An unknown quantum state cannot be copied and broadcast freely due to the no-cloning theorem. Approximate cloning schemes have been proposed to achieve the optimal cloning characterized by the maximal fidelity between the original and its copies. Here, from the perspective of quantum Fisher information (QFI), we investigate the distribution of QFI in asymmetric cloning machines which produce two nonidentical copies. As one might expect, improving the QFI of one copy results in decreasing the QFI of the other copy. It is perhaps also unsurprising that asymmetric phase-covariant cloning outperforms universal cloning in distributing QFI since a priori information of the input state has been utilized. However, interesting results appear when we compare the distributabilities of fidelity (which quantifies the full information of quantum states), and QFI (which only captures the information of relevant parameters) in asymmetric cloning machines. Unlike the results of fidelity, where the distributability of symmetric cloning is always optimal for any d-dimensional cloning, we find that any asymmetric cloning outperforms symmetric cloning on the distribution of QFI for d ≤ 18, whereas some but not all asymmetric cloning strategies could be worse than symmetric ones when d > 18. PMID:25484234

  9. Characterization of Asymmetric Fragmentation Patterns in Spatially Extended Systems

    NASA Astrophysics Data System (ADS)

    Rosa, R. R.; Sharma, A. S.; Valdivia, J. A.

    Spatially extended systems yield complex patterns arising from the coupled dynamics of its different regions. In this paper we introduce a matrix computational operator, { F}{ A}, for the characterization of asymmetric amplitude fragmentation in extended systems. For a given matrix of amplitudes this operation results in an asymmetric-triangulation field composed by L points and I straight lines. The parameter (I-L)/L is a new quantitative measure of the local complexity defined in terms of the asymmetry in the gradient field of the amplitudes. This asymmetric fragmentation parameter is a measure of the degree of structural complexity and characterizes the localized regions of a spatially extended system and symmetry breaking along the evolution of the system. For the case of a random field, in the real domain, which has total asymmetry, this asymmetric fragmentation parameter is expected to have the highest value and this is used to normalize the values for the other cases. Here, we present a detailed description of the operator { F}{ A} and some of the fundamental conjectures that arises from its application in spatio-temporal asymmetric patterns.

  10. Numerical simulation of steady and unsteady asymmetric vortical flow

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Wong, Tin-Chee; Liu, C. H.

    1992-01-01

    The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds.

  11. Evaluation of Asymmetric Immunoliposomal Nanoparticles for Cellular Uptake

    PubMed Central

    Whittenton, Jeremiah; Pitchumani, Ramanan; Thevananther, Sundararajah; Mohanty, Kishore

    2013-01-01

    Effective and targeted in vivo delivery of polynucleotide therapeutics is the key for the treatment of many diseases. Asymmetric immunoliposomes can be used as vehicles to deliver polynucleotides effectively because the two leaflets of the bilayer can have different compositions, which enhance the delivery capacity. The formation and in vitro cellular uptake of asymmetric immunoliposomes containing polynucleotide cargoes were studied here. Maleimide functionalized DSPE-PEG (2000) were incorporated into the outer leaflet to produce asymmetric liposomes capable of covalently attaching antibodies. Thiolated antibodies from both human and rabbit origin were conjugated to produce asymmetric pendant-type immunoliposomes that retain their specificity towards detection antibodies through the formation process. Human IgG conjugated asymmetric immunoliposomes were readily internalized (> 20 per cell) by macrophage, HEPG2, and CV-1 monkey kidney cells. The cells internalized the liposomal nanoparticles by the endocytic pathway. The immunoliposome-encapsulated endosomes were intact for at least 5 days and sequestered the plasmid from expression by the cell. PMID:22742513

  12. Asymmetric MRI magnet design using a hybrid numerical method.

    PubMed

    Zhao, H; Crozier, S; Doddrell, D M

    1999-12-01

    This paper describes a hybrid numerical method for the design of asymmetric magnetic resonance imaging magnet systems. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. A new type of asymmetric magnet is proposed in this work. The asymmetric MRI magnet allows the diameter spherical imaging volume to be positioned close to one end of the magnet. The main advantages of making the magnet asymmetric include the potential to reduce the perception of claustrophobia for the patient, better access to the patient by attending physicians, and the potential for reduced peripheral nerve stimulation due to the gradient coil configuration. The results highlight that the method can be used to obtain an asymmetric MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1.2 m in length. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries.

  13. Thermal transport across symmetric and asymmetric solid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Bi, Kedong; Liu, Yadong; Zhang, Chunwei; Li, Jiapeng; Chen, Minhua; Chen, Yunfei

    2016-10-01

    Thermal transport across symmetric and asymmetric solid-solid interfaces is investigated by non-equilibrium molecular dynamics simulations. For symmetric interfaces, simulation results demonstrate that the thermal interface resistance is reduced greatly with the temperature increasing from 20 to 70 K. Besides, the introduction of an interlayer in the region of a highly mismatched interface is predicted to effectively decrease the thermal interface resistance due to the vibrational bridge role of the interlayer in connecting two vibrationally mismatched materials. As for the case of asymmetric interfaces, it is found that the capacity of thermal transport across an asymmetric interface is related to the effective interfacial area, namely the smaller cross-section area of component materials. In addition, effects of the transition angle at asymmetric interfaces on the thermal interface resistance are further studied when heat flows through interfaces from the side with larger cross-section area to the other. It is shown that a smoother transition is preferred for thermal transport through an asymmetric interface.

  14. Geometric Perturbations and Asymmetric Vortex Shedding about Slender Pointed Bodies

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.

    2000-01-01

    The flow about slender, pointed bodies can be characterized by different states with angle of attack. At moderate-to-high angles of attack (alpha approx. = 40 deg.), a steady, asymmetric vortex pattern develops along the body, leading to a net lateral force. At higher angles of attack (alpha approx. = 60 deg.), the aft-end of the body develops an unsteady von Karman shedding. As the angle of attack approaches 90 deg., the entire body length exhibits a time-dependent vortex shedding pattern. The current work uses three-dimensional, thin-layer Navier-Stokes simulations to investigate the physical mechanisms of asymmetric vortex shedding at alpha = 40 deg. and alpha = 60 deg. The development of an asymmetric vortex pattern via a convective instability mechanism is investigated using tip bumps, surface roughness, and tip curvature. It's found that surface roughness simulations can incite an asymmetric vortex state at alpha = 60 deg. which is consistent with the application of a tip bump, and the experimentally observed flowfield. The unsteady von Karman vortex shedding on the aft. portion of the body is also well resolved. The use of surface roughness did not incite a flow asymmetry at alpha = 40 deg., and it was necessary to simulate tip curvature at this angle of attack in order to generate an asymmetric vortex state.

  15. Geometric Perturbations and Asymmetric vortex shedding About Slender Pointed Bodies

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    The flow about slender, pointed bodies can be characterized by different states with angle of attack. At moderate-to-high angles of attack (alpha approximately equals 40deg), a steady, asymmetric vortex pattern develops along the body, leading to a net lateral force. At higher angles of attack (alpha approximately equals 60deg), the aft-end of the body develops an unsteady von Karman shedding. As the angle of attack approaches 90deg, the entire body length exhibits a time-dependent vortex shedding pattern. The current work uses three-dimensional, thin-layer Navier-Stokes simulations to investigate the physical mechanisms of asymmetric vortex shedding at alpha = 40deg and alpha = 60deg. The development of an asymmetric vortex pattern via a convective instability mechanism is investigated using tip bumps, surface roughness, and tip curvature. It's found that surface roughness simulations can incite an asymmetric vortex state at alpha = 60deg which is consistent with the application of a tip bumps, and the experimentally observed flowfield. The unsteady von Karman vortex shedding on the aft portion of the body is also well resolved. The use of surface roughness did not incite a flow asymmetry at alpha = 40deg, and it was necessary to simulate tip curvature at this angle of attack in order to generate an asymmetric vortex state.

  16. Dark matter particle spectroscopy at the LHC: generalizing M T2 to asymmetric event topologies

    NASA Astrophysics Data System (ADS)

    Konar, Partha; Kong, Kyoungchul; Matchev, Konstantin T.; Park, Myeonghun

    2010-04-01

    We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M T2 variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different “children” particles. In this more general approach, the endpoint M T2( max) of the M T2 distribution now gives the mass {tilde M_p}left( {tilde M_c^{(a)},tilde M_c^{(b)}} right) of the parent particles as a function of two input children masses tilde M_c^{(a)} and tilde M_c^{(b)} . We propose two methods for an independent determination of the individual children masses M ( a) c and M ( b) c . First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M_p}left( {tilde M_c^{(a)},tilde M_c^{(b)},{P_{text{UTM}}}} right) is independent of PUTM at precisely the right values of the children masses. Second, the previously discussed M T2 “kink” is now generalized to a “ridge” on the 2-dimensional surface {tilde M_p}left( {tilde M_c^{(a)},tilde M_c^{(b)}} right) . As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.

  17. Velocity distributions for fast rotating nuclei

    SciTech Connect

    Wu, X.; Zhang, X.; Zhuo, Y.; Feng, R.

    1982-01-01

    The velocity field is calculated on the basis of the exact wave functions of the cranked deformed harmonic oscillator by including the term of ..delta..N = 2 subject to the conditions of isotropic velocity distribution and self-consistency between potential and density distribution. We study the characteristics of velocity distributions of nuclei with the large rotational frequencies. We also discuss the effects of two types of self-consistency conditions on the velocity distributions.

  18. 14 CFR 25.237 - Wind velocities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Wind velocities. 25.237 Section 25.237... velocities. (a) For land planes and amphibians, the following applies: (1) A 90-degree cross component of wind velocity, demonstrated to be safe for takeoff and landing, must be established for dry runways...

  19. 14 CFR 25.237 - Wind velocities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Wind velocities. 25.237 Section 25.237... velocities. (a) For land planes and amphibians, the following applies: (1) A 90-degree cross component of wind velocity, demonstrated to be safe for takeoff and landing, must be established for dry runways...

  20. 14 CFR 25.237 - Wind velocities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Wind velocities. 25.237 Section 25.237... velocities. (a) For land planes and amphibians, the following applies: (1) A 90-degree cross component of wind velocity, demonstrated to be safe for takeoff and landing, must be established for dry runways...

  1. 14 CFR 25.237 - Wind velocities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Wind velocities. 25.237 Section 25.237... velocities. (a) For land planes and amphibians, the following applies: (1) A 90-degree cross component of wind velocity, demonstrated to be safe for takeoff and landing, must be established for dry runways...

  2. Application of Vectors to Relative Velocity

    ERIC Educational Resources Information Center

    Tin-Lam, Toh

    2004-01-01

    The topic 'relative velocity' has recently been introduced into the Cambridge Ordinary Level Additional Mathematics syllabus under the application of Vectors. In this note, the results of relative velocity and the 'reduction to rest' technique of teaching relative velocity are derived mathematically from vector algebra, in the hope of providing…

  3. Questions Students Ask: About Terminal Velocity.

    ERIC Educational Resources Information Center

    Meyer, Earl R.; Nelson, Jim

    1984-01-01

    If a ball were given an initial velocity in excess of its terminal velocity, would the upward force of air resistance (a function of velocity) be greater than the downward force of gravity and thus push the ball back upwards? An answer to this question is provided. (JN)

  4. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  5. Effect of asymmetrical flow field-flow fractionation channel geometry on separation efficiency.

    PubMed

    Ahn, Ji Yeon; Kim, Ki Hun; Lee, Ju Yong; Williams, P Stephen; Moon, Myeong Hee

    2010-06-11

    The separation efficiencies of three different asymmetrical flow field-flow fractionation (AF4) channel designs were evaluated using polystyrene latex standards. Channel breadth was held constant for one channel (rectangular profile), and was reduced either linearly (trapezoidal profile) or exponentially (exponential profile) along the length for the other two. The effective void volumes of the three channel types were designed to be equivalent. Theoretically, under certain flow conditions, the mean channel flow velocity of the exponential channel could be arranged to remain constant along the channel length, thereby improving separation in AF4. Particle separation obtained with the exponential channel was compared with particle separation obtained with the trapezoidal and rectangular channels. We demonstrated that at a certain flow rate condition (outflow/inflow rate=0.2), the exponential channel design indeed provided better performance with respect to the separation of polystyrene nanoparticles in terms of reducing band broadening. While the trapezoidal channel exhibited a little poorer performance than the exponential, the strongly decreasing mean flow velocity in the rectangular channel resulted in serious band broadening, a delay in retention time, and even failure of larger particles to elute. PMID:20439106

  6. EVIDENCE FOR ASYMMETRIC DISTRIBUTION OF CIRCUMSTELLAR MATERIAL AROUND TYPE Ia SUPERNOVAE

    SciTech Connect

    Foerster, Francisco; Gonzalez-Gaitan, Santiago; Anderson, Joseph; Marchi, Sebastian; Gutierrez, Claudia; Hamuy, Mario; Cartier, Regis; Pignata, Giuliano

    2012-08-01

    We study the properties of low-velocity material in the line of sight toward nearby Type Ia supernovae (SNe Ia) that have measured late phase nebular velocity shifts (v{sub neb}), thought to be an environment-independent observable. We have found that the distribution of equivalent widths of narrow blended Na I D1 and D2 and Ca II H and K absorption lines differs significantly between those SNe Ia with negative and positive v{sub neb}, with generally stronger absorption for SNe Ia with v{sub neb} {>=} 0. A similar result had been found previously for the distribution of colors of SNe Ia, which was interpreted as a dependence of the temperature of the ejecta with viewing angle. Our work suggests that (1) a significant part of these differences in color should be attributed to extinction, (2) this extinction is caused by an asymmetric distribution of circumstellar material (CSM), and (3) the CSM absorption is generally stronger on the side of the ejecta opposite to where the ignition occurs. Since it is difficult to explain (3) via any known physical processes that occur before explosion, we argue that the asymmetry of the CSM is originated after explosion by a stronger ionizing flux on the side of the ejecta where ignition occurs, probably due to a stronger shock breakout and/or more exposed radioactive material on one side of the ejecta. This result has important implications for both progenitor and explosion models.

  7. Three-dimensional infrared metamaterial with asymmetric transmission

    DOE PAGES

    Kenanakis, George; Xomalis, Aggelos; Selimis, Alexandros; Vamvakaki, Maria; Farsari, Maria; Kafesaki, Maria; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-01-14

    A novel three-dimensional (3D) metallic metamaterial structure with asymmetric transmission for linear polarization is demonstrated in the infrared spectral region. The structure was fabricated by direct laser writing and selective electroless silver coating, a straightforward, novel technique producing mechanically and chemically stable 3D photonic structures. The structure unit cell is composed of a pair of conductively coupled magnetic resonators, and the asymmetric transmission response results from interplay of electric and magnetic responses; this equips the structure with almost total opaqueness along one propagation direction versus satisfying transparency along the opposite one. It also offers easily adjustable impedance, 90° one-way puremore » optical activity and backward propagation possibility, resulting thus in unique capabilities in polarization control and isolation applications. We show also that scaling down the structure can make it capable of exhibiting its asymmetric transmission and its polarization capabilities in the optical region.« less

  8. Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter

    SciTech Connect

    Bishara, Fady; Zupan, Jure

    2015-01-19

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavor breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.

  9. Asymmetric spindle pole formation in CPAP-depleted mitotic cells.

    PubMed

    Lee, Miseon; Chang, Jaerak; Chang, Sunghoe; Lee, Kyung S; Rhee, Kunsoo

    2014-02-21

    CPAP is an essential component for centriole formation. Here, we report that CPAP is also critical for symmetric spindle pole formation during mitosis. We observed that pericentriolar material between the mitotic spindle poles were asymmetrically distributed in CPAP-depleted cells even with intact numbers of centrioles. The length of procentrioles was slightly reduced by CPAP depletion, but the length of mother centrioles was not affected. Surprisingly, the young mother centrioles of the CPAP-depleted cells are not fully matured, as evidenced by the absence of distal and subdistal appendage proteins. We propose that the selective absence of centriolar appendages at the young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells. Our results suggest that the neural stem cells with CPAP mutations might form asymmetric spindle poles, which results in premature initiation of differentiation.

  10. Experimental Quantification of Asymmetric Einstein-Podolsky-Rosen Steering.

    PubMed

    Sun, Kai; Ye, Xiang-Jun; Xu, Jin-Shi; Xu, Xiao-Ye; Tang, Jian-Shun; Wu, Yu-Chun; Chen, Jing-Ling; Li, Chuan-Feng; Guo, Guang-Can

    2016-04-22

    Einstein-Podolsky-Rosen (EPR) steering describes the ability of one observer to nonlocally "steer" the other observer's state through local measurements. EPR steering exhibits a unique asymmetric property; i.e., the steerability can differ between observers, which can lead to one-way EPR steering in which only one observer obtains steerability in the steering process. This property is inherently different from the symmetric concepts of entanglement and Bell nonlocality, and it has attracted increasing interest. Here, we experimentally demonstrate asymmetric EPR steering for a class of two-qubit states in the case of two measurement settings. We propose a practical method to quantify the steerability. We then provide a necessary and sufficient condition for EPR steering and clearly demonstrate one-way EPR steering. Our work provides new insight into the fundamental asymmetry of quantum nonlocality and has potential applications in asymmetric quantum information processing.

  11. Control of the asymmetric flow in rocket nozzles

    NASA Astrophysics Data System (ADS)

    Matsuo, Shigeru; Suetsugu, Shotaro; Nagao, Junji; Hashimoto, Tokitada; Setoguchi, Toshiaki; Kim, Heuy Dong

    2013-04-01

    In some rocket nozzle flows, the existence of the transition from FSS to RSS and the occurrence of asymmetric flow are known in previous researches. As a result, the transition causes excessive side-loads that may damage the nozzle. Thus, it is important to investigate the method in order to control the asymmetric flow separation. In the present study, the relationship between the asymmetric separation and the rate of change of the pressure ratio with time was investigated from the point of view of the transition from FSS to RSS in the supersonic nozzle experimentally. Further, change of the flow separation by using step and cavity, and the possibility of the control was demonstrated. As a result, it was shown that the method using a cavity was effective for the control of the separation pattern.

  12. Asymmetric dark matter and the scalar-tensor model

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Zhi; Iminniyaz, Hoernisa; Mamat, Mamatrishat

    2016-03-01

    The relic abundance of asymmetric dark matter particles in the scalar-tensor model is analyzed in this paper. We extend the numerical and analytical calculations of the relic density of the asymmetric dark matter in the standard cosmological scenario to the nonstandard cosmological scenario. We focus on the scalar-tensor model. Hubble expansion rate is changed in the nonstandard cosmological scenario. This leaves its imprint on the relic density of dark matter particles. In this paper we investigate to what extent the asymmetric dark matter particle’s relic density is changed in the scalar-tensor model. We use the observed present day dark matter abundance to find the constraints on the parameter space in this model.

  13. Gravity-induced asymmetric distribution of a plant growth hormone

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.; Momonoki, Y.

    1984-01-01

    Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.

  14. Catalytic Asymmetric 1,4-Addition Reactions of Simple Alkylnitriles.

    PubMed

    Yamashita, Yasuhiro; Sato, Io; Suzuki, Hirotsugu; Kobayashi, Shū

    2015-10-01

    The development of catalytic asymmetric carbon-carbon bond-forming reactions of alkylnitriles that do not have an activating group at the α-position, under proton-transfer conditions, is a challenging research topic. Here, we report catalytic asymmetric direct-type 1,4-addition reactions of alkylnitriles with α,β-unsaturated amides by using a catalytic amount of potassium hexamethyldisilazide (KHMDS) with a chiral macro crown ether. The desired reactions proceeded in high yields with good diastereo- and enantioselectivities. To our knowledge, this is the first example of catalytic asymmetric direct-type 1,4-addition reaction of alkylnitriles without any activating group at the α-position.

  15. Three-dimensional infrared metamaterial with asymmetric transmission

    SciTech Connect

    Kenanakis, George; Xomalis, Aggelos; Selimis, Alexandros; Vamvakaki, Maria; Farsari, Maria; Kafesaki, Maria; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-01-14

    A novel three-dimensional (3D) metallic metamaterial structure with asymmetric transmission for linear polarization is demonstrated in the infrared spectral region. The structure was fabricated by direct laser writing and selective electroless silver coating, a straightforward, novel technique producing mechanically and chemically stable 3D photonic structures. The structure unit cell is composed of a pair of conductively coupled magnetic resonators, and the asymmetric transmission response results from interplay of electric and magnetic responses; this equips the structure with almost total opaqueness along one propagation direction versus satisfying transparency along the opposite one. It also offers easily adjustable impedance, 90° one-way pure optical activity and backward propagation possibility, resulting thus in unique capabilities in polarization control and isolation applications. We show also that scaling down the structure can make it capable of exhibiting its asymmetric transmission and its polarization capabilities in the optical region.

  16. Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter

    DOE PAGES

    Bishara, Fady; Zupan, Jure

    2015-01-19

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less

  17. Heating distribution comparison between asymmetric and symmetric blunt cones

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.; Kolodziej, P.

    1986-01-01

    An experiment was performed to compare the heating distribution between symmetric and asymmetric large-angle blunt cones, with cone angles of 100, 120, and 140 deg. These hot-wall data were obtained from models made from typical thermal protection insulation for proposed aeroassisted orbital transfer vehicles. Experimental data are compared with predictions using a boundary-layer integral matrix procedure with kinetics to determine how well the heating distribution over an asymmetric cone could be approximated using axisymmetric solutions for a cone and spherical segment. In addition, a relationship between the stagnation-point heat-transfer rate and the bow-shock standoff distance for these cones is discussed. The heat-distribution data from the symmetric and asymmetric cones were very similar. Numerical results compared well with the measured wall temperatures at the stagnation point but slightly underpredicted them over the conical portion of the models.

  18. Asymmetric diffraction based on a passive parity-time grating

    NASA Astrophysics Data System (ADS)

    Zhu, Xue-Yi; Xu, Ye-Long; Zou, Yi; Sun, Xiao-Chen; He, Cheng; Lu, Ming-Hui; Liu, Xiao-Ping; Chen, Yan-Feng

    2016-09-01

    Optical structures with balanced loss and gain provide an efficient platform to study the features of light propagation under non-Hermitian parity-time symmetry. Here, we report a feasible design of one-dimensional parity-time symmetric diffraction grating, where the real and imaginary parts of refractive index are separately modulated. Due to the spontaneous breaking of parity-time symmetry at the exceptional point, asymmetric diffractions are observed between a pair of oblique incident light. This asymmetric phenomenon, determined by the modulation direction of the introduced parity-time symmetry, is also polarization-dependent. The coupled-mode theory is implemented to theoretically analyze the polarization dependent asymmetric diffraction, showing consistence with numerical simulations. Our findings may provide a feasible way for manipulating light and instructively inspire the development of diffraction optics.

  19. Pentamodal behaviors and acoustic bandgaps of asymmetric pentamode elastic metamaterials

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Lu, Xuegang; Liang, Gongying; Xu, Zhuo

    2016-04-01

    The asymmetric pentamode metamaterial structure which is built by connecting double-cones with different cross-section shapes (regular triangle, square, pentagon and hexagon) to form diamond lattice is proposed in this paper. Then its phonon band structure is calculated by finite-element method (FEM), and its pentamodal behaviors and acoustic bandgaps are studied in detail. Results show that in the process of adjusting geometrical parameters, the asymmetric case performs similar pentamodal behaviors [ratio of bulk modulus to shear modulus B/G and single-mode bandgap (SBG)] with the symmetric cases. And the asymmetric case not only remains the intrinsic complete bandgap (CBG) of mode 12-13 like symmetric cases, but also opens new and wide CBG of mode 10-11 and mode 14-15 for appropriate parameters. Therefore, introducing structural asymmetry should be an effective way to open CBG in pentamode elastic metamaterials.

  20. Complete polarimetry on the asymmetric transmission through subwavelength hole arrays.

    PubMed

    Arteaga, Oriol; Maoz, Ben M; Nichols, Shane; Markovich, Gil; Kahr, Bart

    2014-06-01

    Dissymmetric, periodically nanostructured metal films can show non-reciprocal transmission of polarized light, in apparent violation of the Lorentz reciprocity theorem. The wave vector dependence of the extraordinary optical transmission in gold films with square and oblique subwavelength hole arrays was examined for the full range of polarized light input states. In normal incidence, the oblique lattice, in contrast to square lattice, showed strong asymmetric, non-reciprocal transmission of circularly polarized light. By analyzing the polarization of the input and the output with a complete Mueller matrix polarimeter the mechanisms that permits asymmetric transmission while preserving the requirement of electromagnetic reciprocity is revealed: the coupling of the linear anisotropies induced by misaligned surface plasmons in the film. The square lattice also shows asymmetric transmission at non-normal incidence, whenever the plane of incidence does not coincide with a mirror line.

  1. Asymmetric transformations of achiral 2,5-cyclohexadienones

    PubMed Central

    Kalstabakken, Kyle A.; Harned, Andrew M.

    2014-01-01

    Cyclohexadienones are versatile platforms for performing asymmetric synthesis as evidenced by the numerous natural product syntheses that exploit their diverse reactivity profile. However, there are few general methods available for the direct asymmetric synthesis of chiral cyclohexadienones. To circumvent this problem, several researchers have developed catalytic asymmetric methods that employ readily available achiral 2,5-cyclohexadienones as substrates. Many of these reactions are desymmetrizations in which one of the enantiotopic alkenes of an achiral dienone is transformed. Others involve selective reaction at one alkene of an unsymmetrically substituted, achiral dienone. This review will cover advances in this area over the last 20 years and the application of these strategies in complex molecule synthesis. PMID:26688596

  2. Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted allenes

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takuya; Sakata, Kazuki; Tamakuni, Fumiko; Dutton, Mark J.; Maruoka, Keiji

    2013-03-01

    Allenes are molecules based on three carbons connected by two cumulated carbon-carbon double bonds. Given their axially chiral nature and unique reactivity, substituted allenes have a variety of applications in organic chemistry as key synthetic intermediates and directly as part of biologically active compounds. Although the demands for these motivated many endeavours to make axially chiral, substituted allenes by exercising asymmetric catalysis, the catalytic asymmetric synthesis of fully substituted ones (tetrasubstituted allenes) remained largely an unsolved issue. The fundamental obstacle to solving this conundrum is the lack of a simple synthetic transformation that provides tetrasubstituted allenes in the action of catalysis. We report herein a strategy to overcome this issue by the use of a phase-transfer-catalysed asymmetric functionalization of 1-alkylallene-1,3-dicarboxylates with N-arylsulfonyl imines and benzylic and allylic bromides.

  3. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    PubMed

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-01

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  4. VELOCITY INDICATOR FOR EXTRUSION PRESS

    DOEpatents

    Digney, F.J. Jr.; Bevilacqua, F.

    1959-04-01

    An indicator is presented for measuring the lowspeed velocity of an object in one direction where the object returns in the opposite direction at a high speed. The indicator comprises a drum having its axis of rotation transverse to the linear movement of the object and a tape wound upon the drum with its free end extending therefrom and adapted to be connected to the object. A constant torque is applied to the drum in a direction to wind the tape on the drum. The speed of the tape in the unwinding direction is indicated on a tachometer which is coupled through a shaft and clutch means to the drum only when the tape is unwinding.

  5. Flow velocities of Alaskan glaciers.

    PubMed

    Burgess, Evan W; Forster, Richard R; Larsen, Christopher F

    2013-01-01

    Our poor understanding of tidewater glacier dynamics remains the primary source of uncertainty in sea level rise projections. On the ice sheets, mass lost from tidewater calving exceeds the amount lost from surface melting. In Alaska, the magnitude of calving mass loss remains unconstrained, yet immense calving losses have been observed. With 20% of the global new-water sea level rise coming from Alaska, partitioning of mass loss sources in Alaska is needed to improve sea level rise projections. Here we present the first regionally comprehensive map of glacier flow velocities in Central Alaska. These data reveal that the majority of the regional downstream flux is constrained to only a few coastal glaciers. We find regional calving losses are 17.1 Gt a(-1), which is equivalent to 36% of the total annual mass change throughout Central Alaska.

  6. The critical velocity in swimming.

    PubMed

    di Prampero, Pietro E; Dekerle, Jeanne; Capelli, Carlo; Zamparo, Paola

    2008-01-01

    In supra-maximal exercise to exhaustion, the critical velocity (cv) is conventionally calculated from the slope of the distance (d) versus time (t) relationship: d = I + St. I is assumed to be the distance covered at the expense of the anaerobic capacity, S the speed maintained on the basis of the subject's maximal O(2) uptake (VO2max) This approach is based on two assumptions: (1) the energy cost of locomotion per unit distance (C) is constant and (2) VO2max is attained at the onset of exercise. Here we show that cv and the anaerobic distance (d (anaer)) can be calculated also in swimming, where C increases with the velocity, provided that VO2max its on-response, and the C versus v relationship are known. d (anaer) and cv were calculated from published data on maximal swims for the four strokes over 45.7, 91.4 and 182.9 m, on 20 elite male swimmers (18.9 +/- 0.9 years, 75.9 +/- 6.4 kg), whose VO2max and C versus speed relationship were determined, and compared to I and S obtained from the conventional approach. cv was lower than S (4, 16, 7 and 11% in butterfly, backstroke, breaststroke and front crawl) and I (=11.6 m on average in the four strokes) was lower than d (anaer). The latter increased with the distance: average, for all strokes: 38.1, 60.6 and 81.3 m over 45.7, 91.4 and 182.9 m. It is concluded that the d versus t relationship should be utilised with some caution when evaluating performance in swimmers.

  7. The critical velocity in swimming.

    PubMed

    di Prampero, Pietro E; Dekerle, Jeanne; Capelli, Carlo; Zamparo, Paola

    2008-01-01

    In supra-maximal exercise to exhaustion, the critical velocity (cv) is conventionally calculated from the slope of the distance (d) versus time (t) relationship: d = I + St. I is assumed to be the distance covered at the expense of the anaerobic capacity, S the speed maintained on the basis of the subject's maximal O(2) uptake (VO2max) This approach is based on two assumptions: (1) the energy cost of locomotion per unit distance (C) is constant and (2) VO2max is attained at the onset of exercise. Here we show that cv and the anaerobic distance (d (anaer)) can be calculated also in swimming, where C increases with the velocity, provided that VO2max its on-response, and the C versus v relationship are known. d (anaer) and cv were calculated from published data on maximal swims for the four strokes over 45.7, 91.4 and 182.9 m, on 20 elite male swimmers (18.9 +/- 0.9 years, 75.9 +/- 6.4 kg), whose VO2max and C versus speed relationship were determined, and compared to I and S obtained from the conventional approach. cv was lower than S (4, 16, 7 and 11% in butterfly, backstroke, breaststroke and front crawl) and I (=11.6 m on average in the four strokes) was lower than d (anaer). The latter increased with the distance: average, for all strokes: 38.1, 60.6 and 81.3 m over 45.7, 91.4 and 182.9 m. It is concluded that the d versus t relationship should be utilised with some caution when evaluating performance in swimmers. PMID:17901978

  8. Ultrasonic transit-time flowmeters modelled with theoretical velocity profiles: methodology

    NASA Astrophysics Data System (ADS)

    Moore, Pamela I.; Brown, Gregor J.; Stimpson, Brian P.

    2000-12-01

    Fully developed flow is well defined for most values of Reynolds number but distorted flow is not. Velocity profile is the definition given to the distribution of velocity in the axial direction over the cross-section of the pipe. This distribution is not usually uniform and can vary dramatically depending on the properties of the fluid and the configuration of the pipe in which it flows. Ultrasonic flowmeters are affected by such distortions in the flow profile, often resulting in erroneous measurements. Transit-time ultrasonic flowmeters are widely used in industry in distorted fluid flows, therefore correction to or prediction of distorted profiles has sparked great interest in the design and application of ultrasonic flowmeters. This document describes a method for modelling and analysing the effect of theoretical asymmetric flow profiles on ultrasonic flowmeters of the transit-time type, thus allowing an understanding of installation effects.

  9. Sediment sound velocities from sonobuoys: Arabian fan

    SciTech Connect

    Bachman, R.T.; Hamilton, E.L.

    1980-02-10

    Eight variable-angle seismic reflection stations in the Arabian Fan, Northwestern Indian Ocean, provided 40 determinations of sound velocity in sediment and sedimentary rock. Sound velocity in the homogeneous, largely terrigenous fan increases smoothly with depth. Regression analysis yielded the velocity-time relationship V (km/s)=1.510+1.863t, where V is instantaneous velocity and t is one-way travel time below the sea floor to 1 s. The velocity-depth function is V (km/s)=1.510+1.200h-0.253h/sup 2/+ 0.034h/sup 3/, where h is subbottom depth in km.

  10. Shear wave velocities in the earth's mantle.

    NASA Technical Reports Server (NTRS)

    Robinson, R.; Kovach, R. L.

    1972-01-01

    Direct measurement of the travel time gradient for S waves together with travel time data are used to derive a shear velocity model for the earth's mantle. In order to satisfy the data it is necessary to discard the usual assumption of lateral homogeneity below shallow depths. A shear velocity differential is proposed for a region between western North America and areas of the Pacific Ocean. Distinctive features of the velocity model for the upper mantle beneath western North America are a low-velocity zone centered at 100 km depth and zones of high velocity gradient beginning at 400, 650, and 900 km.

  11. Recent advances in copper-catalyzed asymmetric coupling reactions

    PubMed Central

    2015-01-01

    Summary Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds. PMID:26734106

  12. Possible origin of transition from symmetric to asymmetric fission

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-09-01

    The charged distributions of fragments produced in the electromagnetic-induced fission of the even-even isotopes of Rn, Ra, Th, and U are described within an improved scission-point model and compared with the available experimental data. The three-equal-peaked charge distributions are predicted for several fissioning nuclei with neutron number N = 136. The possible explanation of the transition from a symmetric fission mode to an asymmetric one around N ∼ 136 is presented. The excitation energy dependencies of the asymmetric and symmetric fission modes are anticipated.

  13. Strongly asymmetric discrete Painlevé equations: The multiplicative case

    NASA Astrophysics Data System (ADS)

    Grammaticos, B.; Ramani, A.; Tamizhmani, K. M.; Tamizhmani, T.; Satsuma, J.

    2016-04-01

    We examine a class of multiplicative discrete Painlevé equations which may possess a strongly asymmetric form. When the latter occurs, the equation is written as a system of two equations the right hand sides of which have different functional forms. The present investigation focuses upon two canonical families of the Quispel-Roberts-Thompson classification which contain equations associated with the affine Weyl groups D5 ( 1 ) and E6 ( 1 ) (or groups appearing lower in the degeneration cascade of these two). Many new discrete Painlevé equations with strongly asymmetric forms are obtained.

  14. Fluctuation-Driven Molecular Transport Through an Asymmetric Membrane Channel

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan; Schulten, Klaus

    2004-11-01

    Channel proteins that selectively conduct molecules across cell membranes often exhibit an asymmetric structure. By means of a stochastic model, we argue that channel asymmetry in the presence of nonequilibrium fluctuations, fueled by the cell’s metabolism as observed recently, can dramatically influence the transport through such channels by a ratchetlike mechanism. For an aquaglyceroporin that conducts water and glycerol, we show that a previously determined asymmetric glycerol potential leads to enhanced inward transport of glycerol, but for unfavorably high glycerol concentrations also to enhanced outward transport that protects a cell against poisoning.

  15. Asymmetric Mutualism in Two- and Three-Dimensional Range Expansions

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim O.; Nelson, David R.

    2014-04-01

    Genetic drift at the frontiers of two-dimensional range expansions of microorganisms can frustrate local cooperation between different genetic variants, demixing the population into distinct sectors. In a biological context, mutualistic or antagonistic interactions will typically be asymmetric between variants. By taking into account both the asymmetry and the interaction strength, we show that the much weaker demixing in three dimensions allows for a mutualistic phase over a much wider range of asymmetric cooperative benefits, with mutualism prevailing for any positive, symmetric benefit. We also demonstrate that expansions with undulating fronts roughen dramatically at the boundaries of the mutualistic phase, with severe consequences for the population genetics along the transition lines.

  16. Careful numerical study of flowfields about asymmetric external conical corners

    NASA Technical Reports Server (NTRS)

    Salas, M. D.

    1980-01-01

    A numerical study of the flowfield about asymmetrical external axial corners formed by the juncture of swept compressive wedges is presented. The geometrical configuration allows a unified treatment of external corners typical of delta wings and rectangular inlets. The study investigates how the flow transitions from a symmetrical flowfield with a cross-flow stagnation point at the corner to an asymmetrical flowfield for which the flow spills over the corner. The effects of leading-edge sweep, wedge compression, and corner radius are investigated.

  17. An optical tweezer in asymmetrical vortex Bessel-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Kotlyar, V. V.; Kovalev, A. A.; Porfirev, A. P.

    2016-07-01

    We study an optical micromanipulation that comprises trapping, rotating, and transporting 5-μm polystyrene microbeads in asymmetric Bessel-Gaussian (BG) laser beams. The beams that carry orbital angular momentum are generated by means of a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. We experimentally show that given a constant topological charge, the rate of microparticle motion increases near linearly with increasing asymmetry of the BG beam. Asymmetric BG beams can be used instead of conventional Gaussian beam for trapping and transferring live cells without thermal damage.

  18. Phase equilibria of size-asymmetric primitive model electrolytes.

    PubMed

    Yan, Q; de Pablo, J J

    2001-03-01

    The low-temperature phase coexistence of size-asymmetric primitive model electrolyte solutions has been investigated by means of Monte Carlo simulations. Binodal curves and critical parameters are reported as a function of size ratio lambda = sigma(+)/sigma(-) in the range 0.05 to 1. Both the critical temperature and the critical density are found to decrease as lambda decreases. These trends are in conflict with available theoretical predictions. For highly asymmetric systems, the depression of the critical parameters is accompanied by the formation of large chainlike and ringlike structures, thereby giving rise to considerable finite-size effects.

  19. Asymmetric laser sideband generation with a tapered semiconductor amplifier

    NASA Astrophysics Data System (ADS)

    Yanakas, Michael; Lim, Michael

    2013-03-01

    We have constructed a free-space, frequency-shifted feedback amplifier using a tapered semiconductor gain element. The general layout of the system is similar to that described in Littler, et al., Opt. Comm. 88, 523 (1992). Traveling-wave feedback is demonstrated with the m = - 1 order of several different acousto-optic modulators driven at variable frequency. Asymmetric sideband production is observed in the rf spectrum of a fast photodiode and in the transmission of a scanning Fabry-Perot interferometer. The number of asymmetric modes is controlled with the AOM rf drive power and the seed laser optical power. Supported by NSF PHY-0613659

  20. Ideal MHD beta-limits of poloidally asymmetric equilibria

    SciTech Connect

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.

  1. Recent advances in copper-catalyzed asymmetric coupling reactions.

    PubMed

    Zhou, Fengtao; Cai, Qian

    2015-01-01

    Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C-C, C-N, C-O and other carbon-heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C-C and carbon-heteroatom bonds. PMID:26734106

  2. Asymmetric Domain Walls of Small Angle in Soft Ferromagnetic Films

    NASA Astrophysics Data System (ADS)

    Döring, Lukas; Ignat, Radu

    2016-05-01

    We focus on a special type of domain wall appearing in the Landau-Lifshitz theory for soft ferromagnetic films. These domain walls are divergence-free S^2-valued transition layers that connect two directions {m_θ^± in S^2} (differing by an angle {2θ}) and minimize the Dirichlet energy. Our main result is the rigorous derivation of the asymptotic structure and energy of such "asymmetric" domain walls in the limit {θ downarrow 0}. As an application, we deduce that a supercritical bifurcation causes the transition from symmetric to asymmetric walls in the full micromagnetic model.

  3. 10 Step Asymmetric Total Synthesis and Stereochemistry of (+)-Dragmacidin D

    PubMed Central

    Jackson, Jeffrey J.; Kobayashi, Hiroyuki; Steffens, Sophia D.

    2015-01-01

    The asymmetric synthesis of dragmacidin D (1) has been completed in 10 steps. Its sole stereocenter was set using direct asymmetric alkylation enabled by a C2-symmetric tetramine and lithium N-(trimethylsilyl)-tert-butylamide as the enolization reagent. A central Larock indole synthesis was employed in a convergent assembly of heterocyclic subunits. The stereochemical evidence from this work strongly supports the predicted S configuration at 6′″ position consistent with other members of the dragmacidin family of natural products. PMID:26130270

  4. Complex Structure in Class 0 Protostellar Envelopes. III. Velocity Gradients in Non-axisymmetric Envelopes, Infall, or Rotation?

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Hartmann, Lee; Bergin, Edwin; Chiang, Hsin-Fang; Looney, Leslie W.; Chandler, Claire J.; Maret, Sébastien; Heitsch, Fabian

    2012-03-01

    We present an interferometric kinematic study of morphologically complex protostellar envelopes based on observations of the dense gas tracers N2H+ and NH3. The strong asymmetric nature of most envelopes in our sample leads us to question the common interpretation of velocity gradients as rotation, given the possibility of projection effects in the observed velocities. Several "idealized" sources with well-ordered velocity fields and envelope structures are now analyzed in more detail. We compare the interferometric data to position-velocity (PV) diagrams of kinematic models for spherical rotating collapse and filamentary rotating collapse. For this purpose, we developed a filamentary parameterization of the rotating collapse model to explore the effects of geometric projection on the observed velocity structures. We find that most envelopes in our sample have PV structures that can be reproduced by an infalling filamentary envelope projected at different angles within the plane of the sky. The infalling filament produces velocity shifts across the envelope that can mimic rotation, especially when viewed at single-dish resolutions and the axisymmetric rotating collapse model does not uniquely describe any data set. Furthermore, if the velocities are assumed to reflect rotation, then the inferred centrifugal radii are quite large in most cases, indicating significant fragmentation potential or more likely another component to the line-center velocity. We conclude that ordered velocity gradients cannot be interpreted as rotation alone when envelopes are non-axisymmetric and that projected infall velocities likely dominate the velocity field on scales larger than 1000 AU. Based on observations carried out with the IRAM Plateau de Bure Interferometer, Combined Array for Research in Millimeter-wave Astronomy (CARMA), and the NRAO Very Large Array.

  5. Stationary Plasma Thruster Ion Velocity Distribution

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1994-01-01

    A nonintrusive velocity diagnostic based on laser induced fluorescence of the 5d4F(5/2)-6p4D(5/2) singly ionized xenon transition was used to interrogate the exhaust of a 1.5 kW Stationary Plasma Thruster (SPT). A detailed map of plume velocity vectors was obtained using a simplified, cost-effective, nonintrusive, semiconductor laser based scheme. Circumferential velocities on the order of 250 m/s were measured which implied induced momentum torques of approximately 5 x 10(exp -2) N-cm. Axial and radial velocities were evaluated one mm downstream of the cathode at several locations across the width of the annular acceleration channel. Radial velocities varied linearly with radial distance. A maximum radial velocity of 7500 m/s was measured 8 mm from the center of the channel. Axial velocities as large as 16,500 m/s were measured.

  6. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  7. Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information

    NASA Astrophysics Data System (ADS)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2015-10-01

    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.

  8. Dipolophoresis of dielectric spheroids under asymmetric fields

    NASA Astrophysics Data System (ADS)

    Frankel, Itzchak; Yossifon, Gilad; Miloh, Touvia

    2012-01-01

    Non-spherical particles are common in colloidal science. Spheroidal shapes are particularly convenient for the analysis of the pertinent electrostatic and hydrodynamic problems and are thus widely used to model the manipulation of biological cells as well as deformed drops and bubbles. We study the rotary motion of a dielectric spheroidal micro-particle which is freely suspended in an unbounded electrolyte solution in the presence of a uniform applied electric field, assuming a thin Debye layer. For the common case of a uniform distribution of the native surface-charge density, the rotary motion of the particle is generated by the contributions of the induced-charge electro-osmotic (ICEO) slip and the dielectrophoresis associated with the distribution of the Maxwell stress, respectively. Series solutions are obtained by using spheroidal (prolate or oblate) coordinates. Explicit results are presented for the angular velocity of particles spanning the entire spectrum from rod-like to disk-like shapes. These results demonstrate the non-monotonic variation of the angular speed with the eccentricity of particle shape and the singularity of the multiple limits corresponding to conducting (ideally polarizable) particles of extreme eccentricity (e ≈ 1). The non-monotonic variation of the angular speed with the particle dielectric permittivity is related to the induced-charge contribution. We apply these results to describe the motion of particles subject to a uniform field rotating in the plane. For a sufficiently slow rotation rate, prolate particles eventually become "locked" to the external field with their stationary relative orientation in the plane of rotation being determined by the particle eccentricity and dielectric constant. This effect may be of potential use in the manipulation of poly-disperse suspensions of dielectric non-spherical particles. Oblate spheroids invariably approach a uniform orientation with their symmetry axes directed normal to the external

  9. Exploring the velocity distribution of debris flows: An iteration algorithm based approach for complex cross-sections

    NASA Astrophysics Data System (ADS)

    Han, Zheng; Chen, Guangqi; Li, Yange; Wang, Wei; Zhang, Hong

    2015-07-01

    The estimation of debris-flow velocity in a cross-section is of primary importance due to its correlation to impact force, run up and superelevation. However, previous methods sometimes neglect the observed asymmetric velocity distribution, and consequently underestimate the debris-flow velocity. This paper presents a new approach for exploring the debris-flow velocity distribution in a cross-section. The presented approach uses an iteration algorithm based on the Riemann integral method to search an approximate solution to the unknown flow surface. The established laws for vertical velocity profile are compared and subsequently integrated to analyze the velocity distribution in the cross-section. The major benefit of the presented approach is that natural channels typically with irregular beds and superelevations can be taken into account, and the resulting approximation by the approach well replicates the direct integral solution. The approach is programmed in MATLAB environment, and the code is open to the public. A well-documented debris-flow event in Sichuan Province, China, is used to demonstrate the presented approach. Results show that the solutions of the flow surface and the mean velocity well reproduce the investigated results. Discussion regarding the model sensitivity and the source of errors concludes the paper.

  10. Frequency Comb Velocity Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.; Sinclair, Laura C.; Coffey, Tyler; Cornell, Eric; Ye, Jun

    2011-06-01

    We have developed a novel technique for rapid ion-sensitive spectroscopy over a broad spectral bandwidth by combining the high sensitivity of velocity modulation spectroscopy (VMS) with the parallel nature and high frequency accuracy of cavity-enhanced direct frequency comb spectroscopy. Prior to this research, no techniques have been capable of high sensitivity velocity modulation spectroscopy on every parallel detection channel over such a broad spectral range. We have demonstrated the power of this technique by measuring the A^2Π_u - X^2Σ_g^+ (4,2) band of N_2^+ at 830 nm with an absorption sensitivity of 1×10-6 for each of 1500 simultaneous measurement channels spanning 150 Cm-1. A densely sampled spectrum consisting of interleaved measurements to achieve 75 MHz spacing is acquired in under an hour. This technique is ideally suited for high resolution survey spectroscopy of molecular ions with applications including chemical physics, astrochemistry, and precision measurement. Currently, this system is being used to map the electronic transitions of HfF^+ for the JILA electron electric dipole moment (eEDM) experiment. The JILA eEDM experiment uses trapped molecular ions to significantly increase the coherence time of the measurement in addition to utilizing the strong electric field enhancement available from molecules. Previous theoretical work has shown that the metastable ^3Δ_1 state in HfF^+ and ThF^+ provides high sensitivity to the eEDM and good cancellation of systematic effects; however, the electronic level structure of these species have not previously been measured, and the theoretical uncertainties are hundreds to thousands of wavenumbers. This necessitates broad-bandwidth, high-resolution survey spectroscopy provided by frequency comb VMS in the 700-900 nm spectral window. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) A. E. Leanhardt, et. al. arXiv:1008.2997v2 E. Meyer, J. L. Bohn, and M. P. Deskevich

  11. The velocity distributions of cometary protons picked up by the solar wind

    NASA Astrophysics Data System (ADS)

    Neugebauer, M.; Lazarus, A. J.; Balsiger, H.; Fuselier, S. A.; Neubauer, F. M.; Rosenbauer, H.

    1989-05-01

    Velocity space distributions of picked up cometary protons were measured by the ion mass spectrometer on the Giotto spacecraft upstream of the Halley bow shock. Large pitch angle anisotropies were observed at all distances greater than 1.2 x 10 to the 6th km from the comet. As expected, pitch angle diffusion was much more rapid than energy diffusion. When the field was quasi-parallel to the solar wind velocity vector, it was possible to discern the effect of pitch angle scattering by sunward propagating, field-aligned hydromagnetic waves, but there is evidence for other scattering modes as well. For quasi-perpendicular geometries, the pitch angle distribution was very asymmetric with phase space density peaks near pitch angles of 180 deg. It is suggested that the asymmetric pitch angle distribution may be caused by global rather than local wave-particle interactions. Just outside the shock, the pitch angle distribution was nearly isotropic and the radius of the pickup shell increased significantly.

  12. Chemoepitaxial guiding underlayers for density asymmetric and energetically asymmetric diblock copolymers

    NASA Astrophysics Data System (ADS)

    Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.

    2016-04-01

    Block copolymers, polymers composed of two or more homopolymers covalently bonded together, are currently being investigated as a method to extend optical lithography due to their ability to microphase separate on small size scales. In order to drive down the size that these BCPs phase separate, the BCPs with larger Flory-Huggin's χparameter needs to be found. Typically these BCPs are composed of more dissimilar homopolymers. However, changing these interactions also changes how BCPs interact with their guiding underlayers. In this paper, several block copolymers are simulated annealing on chemoepitaxial guiding underlayers using a coarse-grained molecular dynamics model in order to explore the effect that either energetic asymmetry or density asymmetry in the BCP have on the pattern registration. It is found that energetic asymmetry in BCPs causes one of the blocks to desire to skin, which shifts the composition of the background region that leads to well aligned vertical lamellae formation. It is hypothesized that moderate footing and undercutting at the underlayer or slight skinning at the free surface can increase the kinetics of defect annihilation by decreasing the distance that bridges must form. The density asymmetric BCPs simulated in this paper have different mechanical properties which lead to straighter sidewalls in the BCP film and potentially lead to better pattern registration. It is hypothesized that altering the compressibility of the blocks can alter equilibrium defectivity.

  13. Seismic velocity estimation from time migration

    NASA Astrophysics Data System (ADS)

    Cameron, M. K.; Fomel, S. B.; Sethian, J. A.

    2007-08-01

    We address the problem of estimating seismic velocities inside the Earth which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the 'time-migration velocities' using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time-migration velocities and depth velocities, and show that this problem is mathematically ill posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like fast marching methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.

  14. High velocity impact experiment (HVIE)

    SciTech Connect

    Toor, A.; Donich, T.; Carter, P.

    1998-02-01

    The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!

  15. Thermal rectification in three-dimensional asymmetric nanostructure.

    PubMed

    Lee, Jonghoon; Varshney, Vikas; Roy, Ajit K; Ferguson, John B; Farmer, Barry L

    2012-07-11

    Previously, thermal rectification has been reported in several low-dimensional shape-asymmetric nanomaterials. In this Letter, we demonstrate that a three-dimensional crystalline material with an asymmetric shape also displays as strong thermal rectification as low-dimensional materials do. The observed rectification is attributed to the stronger temperature dependence of vibration density of states in the narrower region of the asymmetric material, resulting from the small number of atomic degrees of freedom directly interacting with the thermostat. We also demonstrate that the often reported "device shape asymmetry" is not a sufficient condition for thermal rectification. Specifically, the size asymmetry in boundary thermal contacts is equally important toward determining the magnitude of thermal rectification. When the boundary thermal contacts retain the same size asymmetry as the nanomaterial, the overall system displays notable thermal rectification, in accordance with existing literature. However, when the wider region of the asymmetric nanomaterial is partially thermostatted by a smaller sized contact, thermal rectification decreases dramatically and even changes direction.

  16. Linguistic Correlates of Asymmetric Motor Symptom Severity in Parkinson's Disease

    ERIC Educational Resources Information Center

    Holtgraves, Thomas; McNamara, Patrick; Cappaert, Kevin; Durso, Raymond

    2010-01-01

    Asymmetric motor severity is common in Parkinson's Disease (PD) and provides a method for examining the neurobiologic mechanisms underlying cognitive and linguistic deficits associated with the disorder. In the present research, PD participants (N = 31) were assessed in terms of the asymmetry of their motor symptoms. Interviews with the…

  17. Welfare-Improving Asymmetric Information in Dynamic Insurance Markets.

    ERIC Educational Resources Information Center

    de Garidel-Thoron, Thomas

    2005-01-01

    This article presents a two-period asymmetric learning model of insurance markets. When information about past accidents is not shared by insurers, asymmetries of information develop through time. Equilibrium contracts exist, are payoff unique, and display a realistic bonus-malus pattern. Eliminating asymmetries through information sharing is…

  18. Coherent and incoherent tunneling in asymmetric double-well potentials

    SciTech Connect

    Ranfagni, A.; Cacciari, I.; Vitali, M. A.; Viliani, G.; Moretti, P.; Ruggeri, R.

    2006-07-15

    The determination of the time scale for coherent and incoherent tunneling in asymmetric double-well potentials is reconsidered according to the instanton-bounce method. In particular, by making use of Feynman's transition elements, a different, relatively simpler approach to this problem, with respect to conventional quantum-mechanical treatments, is obtained.

  19. The Mediastinal Waltz--A Representation of Asymmetrical Mediastinal Anatomy

    ERIC Educational Resources Information Center

    Chan, Lap Ki

    2011-01-01

    Many structures in the mediastinum have asymmetrical relationships. For example, the pulmonary artery is superior to the main bronchus on the left side but is anterior on the right side. The pulmonary trunk is not in the midline, but to the left of the midline, and bifurcates anterior to the left main bronchus. Students often find these…

  20. The first catalytic asymmetric thioacetalization by chiral phosphoric acid catalysis.

    PubMed

    Yu, Jin-Sheng; Wu, Wen-Biao; Zhou, Feng

    2016-02-21

    We report here the first catalytic asymmetric thioacetalization of salicylaldehyde and dithiol. Chiral phosphoric acid STRIP C5 is identified as a powerful catalyst for this reaction to afford various chiral dithioacetals in high to excellent yields and enantioselectivities under mild conditions. PMID:26810819

  1. Bayesian estimation of system reliability under asymmetric loss

    NASA Astrophysics Data System (ADS)

    Thompson, Ronald David

    This research is concerned with estimating the reliability of a k-out-of-p system when the lifetimes of its p components are iid, when subjective beliefs about the behavior of the system's individual components are available, and when losses corresponding to overestimation and underestimation errors can be approximated by a suitable family of asymmetric loss functions. Point estimates for such systems are discussed in the context of Bayes estimation with respect to loss functions. A set of properties is proposed as being minimal properties that all loss functions appropriate to reliability estimation might satisfy. Several families of asymmetric loss functions that satisfy these minimal properties are discussed, and their corresponding posterior Bayes estimators are derived. One of these families, squarex loss functions, is a generalization of linex loss functions. The concept of loss robustness is discussed in the context of parametric families of asymmetric loss functions. As an application, the reliability of O-rings critical to the 1986 catastrophic failure of the Space Shuttle Challenger is estimated. Point estimation of negative exponential stress-strength k-out-of-p systems with respect to reference priors is discussed in this context of asymmetric loss functions.

  2. An Asymmetric Stroop/Reverse-Stroop Interference Phenomenon in ADHD

    ERIC Educational Resources Information Center

    Song, Yongning; Hakoda, Yuji

    2011-01-01

    Objective: To examine whether participants with ADHD showed a deficit in Stroop/reverse-Stroop interference by comparing them to non-ADHD participants. Method: A group with ADHD, primarily inattentive type (n = 15), and a paired non-ADHD group (n = 15) completed the group version of the Stroop/reverse-Stroop test. Results: Asymmetric interference…

  3. Attempt to accelerate asymmetric species with unequal frequencies in RHIC

    SciTech Connect

    Liu, C.; Luo, Y.; Marusic, A.; Minty, M.; Robert-Demolaize, G.; Smith, K.; Mernick, K.; Hayes, T.; Severino, F.

    2015-07-09

    This report summarizes the beam studies on accelerating asymmetric beams with unequal frequencies, during the proton-Gold/Aluminum run in 2015. The experiment failed due to modulated beam-beam effects even though the beams were separated by at least 15 mm.

  4. Sensory feedback and coordinating asymmetrical landing in toads.

    PubMed

    Cox, S M; Gillis, Gary B

    2016-06-01

    Coordinated landing requires anticipating the timing and magnitude of impact, which in turn requires sensory input. To better understand how cane toads, well known for coordinated landing, prioritize visual versus vestibular feedback during hopping, we recorded forelimb joint angle patterns and electromyographic data from five animals hopping under two conditions that were designed to force animals to land with one forelimb well before the other. In one condition, landing asymmetry was due to mid-air rolling, created by an unstable takeoff surface. In this condition, visual, vestibular and proprioceptive information could be used to predict asymmetric landing. In the other, animals took off normally, but landed asymmetrically because of a sloped landing surface. In this condition, sensory feedback provided conflicting information, and only visual feedback could appropriately predict the asymmetrical landing. During the roll treatment, when all sensory feedback could be used to predict an asymmetrical landing, pre-landing forelimb muscle activity and movement began earlier in the limb that landed first. However, no such asymmetries in forelimb preparation were apparent during hops onto sloped landings when only visual information could be used to predict landing asymmetry. These data suggest that toads prioritize vestibular or proprioceptive information over visual feedback to coordinate landing. PMID:27247440

  5. What makes space-time interactions in human vision asymmetrical?

    PubMed

    Homma, Chizuru T; Ashida, Hiroshi

    2015-01-01

    The interaction of space and time affects perception of extents: (1) the longer the exposure duration, the longer the line length is perceived and vice versa; (2) the shorter the line length is, the shorter the exposure duration is perceived. Previous studies have shown that space-time interactions in human vision are asymmetrical; spatial cognition has a larger effect on temporal cognition rather than vice versa (Merritt et al., 2010). What makes the interactions asymmetrical? In this study, participants were asked to judge exposure duration of lines that differed in length or to judge the lengths of the lines with different exposure time; to judge the task-relevant stimulus extents that also varied in the task-irrelevant stimulus extents. Paired spatial and temporal tasks in which the ranges of task-relevant and -irrelevant stimulus values were common, were conducted. In our hypothesis, the imbalance in saliency of spatial and temporal information would cause asymmetrical space-time interaction. To assess the saliency, task difficulty was rated. If saliency of relevant stimuli is high, the difficulty of discrimination task would be low, and vice versa. The saliency of irrelevant stimuli in one task would be reflected in the difficulty of the other task, in the pair of tasks. If saliency of irrelevant stimuli is high, the difficulty of paired task would be low, and vice versa. The result supports our hypothesis; spatial cognition asymmetrically affected on temporal cognition when the difficulty of temporal task was significantly higher than that of spatial task.

  6. Bound states in a hyperbolic asymmetric double-well

    SciTech Connect

    Hartmann, R. R.

    2014-01-15

    We report a new class of hyperbolic asymmetric double-well whose bound state wavefunctions can be expressed in terms of confluent Heun functions. An analytic procedure is used to obtain the energy eigenvalues and the criterion for the potential to support bound states is discussed.

  7. Modular asymmetric parachute for wind-tunnel testing

    SciTech Connect

    Klimas, P.C.; Widdows, H.E.; Croll, R.H.

    1981-01-01

    The construction of a series of asymmetrical wind tunnel model parachutes designed to a modular concept is described. The static force, inflation force, and dynamic force and motion time history wind tunnel testing of up to 123 different configurations is discussed.

  8. Chromium-Catalyzed Asymmetric Dearomatization Addition Reactions of Halomethyl Heteroarenes.

    PubMed

    Tian, Qingshan; Bai, Jing; Chen, Bin; Zhang, Guozhu

    2016-04-15

    The first asymmetric dearomatization addition reaction of halomethyl arenes including benzofuran and benzothiophene was enabled by chromium catalysis. A variety of aldehydes served as suitable electrophiles under mild reaction conditions. Molecular complexities are quickly increased in a highly diastereo- and enantioselective manner.

  9. Terahertz detector with series connection of asymmetric gated transistors

    NASA Astrophysics Data System (ADS)

    Yermolaev, D. M.; Marem'yanin, K. M.; Maleev, N. A.; Zemlyakov, V. E.; Gavrilenko, V. I.; Popov, V. V.; Shapoval, S. Yu

    2014-03-01

    Terahertz (THz) detection by a one-dimensional array of series connected field-effect transistors (FETs) is studied experimentally. Such terahertz detector demonstrates greatly enhanced voltaic responsivity up to 2 kV/W. Asymmetrical position of the gate contact in each FET in the array enables strong photovoltaic response.

  10. Catalytic asymmetric Torgov cyclization: a concise total synthesis of (+)-estrone.

    PubMed

    Prévost, Sébastien; Dupré, Nathalie; Leutzsch, Markus; Wang, Qinggang; Wakchaure, Vijay; List, Benjamin

    2014-08-11

    An asymmetric Torgov cyclization, catalyzed by a novel, highly Brønsted acidic dinitro-substituted disulfonimide, is described. The reaction delivers the Torgov diene and various analogues with excellent yields and enantioselectivity. This method was applied in a very short synthesis of (+)-estrone.

  11. Asymmetric Prefrontal Cortex Functions Predict Asymmetries in Number Space

    ERIC Educational Resources Information Center

    Bachmann, Valerie; Fischer, Martin H.; Landolt, Hans-Peter; Brugger, Peter

    2010-01-01

    Little is known about the neuropsychological factors that contribute to individual differences in the asymmetric orientation along the mental number line. The present study documents healthy subjects' preference for small numbers over large numbers in a random number generation task. This preference, referred to as "small-number bias" (SNB),…

  12. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis

    PubMed Central

    Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter

    2016-01-01

    A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments. PMID:26676875

  13. Inferring asymmetric limb cloudiness on exoplanets from transit light curves

    NASA Astrophysics Data System (ADS)

    von Paris, P.; Gratier, P.; Bordé, P.; Leconte, J.; Selsis, F.

    2016-05-01

    Context. Clouds have been shown to be present in many exoplanetary atmospheres. Cloud formation modeling predicts considerable inhomogeneities of cloud cover, consistent with optical phase curve observations. However, optical phase curves cannot resolve some existing degeneracies between cloud location and cloud optical properties. Aims: We present a conceptually simple technique for detecting inhomogeneous cloud cover on exoplanets. Such an inhomogeneous cloud cover produces an asymmetric primary transit of the planet in front of the host star. Asymmetric transits produce characteristic residuals that are different from standard symmetric models. Furthermore, bisector spans can be used to determine asymmetries in the transit light curve. Methods: We apply a model of asymmetric transits to the light curves of HAT-P-7b, Kepler-7b, and HD 209458b and search for possible cloud signatures. The nearly uninterrupted Kepler photometry is particularly well suited for this method since it allows for a very high time resolution. Results: We do not find any statistically sound cloud signature in the data of the considered planets. For HAT-P-7b, a tentative detection of an asymmetric cloud cover is found, consistent with analysis of the optical phase curve. Based on Bayesian probability arguments, a symmetric model with an offset in the transit ephemeris is still the most viable model. This work demonstrates that for suitable targets, namely low-gravity planets around bright stars, the method can be used to constrain cloud cover characteristics and is thus a helpful additional tool for the study of exoplanetary atmospheres.

  14. Optical Time Division Multiplexing Using Terahertz Optical Asymmetric Demultiplexer

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Bhatia, K. S.

    2015-12-01

    In this paper, optical time division multiplexing is demonstrated using TOAD (terahertz optical asymmetric demultiplexer), which employs semiconductor optical amplifier (SOA) as nonlinear switching element. The TOAD device in its original configuration is based on Sagnac interferometer (also referred to as nonlinear optical loop mirror - NOLM).

  15. High efficiency silicon solar cell based on asymmetric nanowire

    PubMed Central

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M.; Baek, Chang-Ki

    2015-01-01

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm2 and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells. PMID:26152914

  16. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis.

    PubMed

    Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter

    2016-01-26

    A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments. PMID:26676875

  17. Asymmetrical Cortical Processing of Radial Expansioncontraction in Infants and Adults

    ERIC Educational Resources Information Center

    Shirai, Nobu; Birtles, Deirdre; Wattam-Bell, John; Yamaguchi, Masami K.; Kanazawa, So; Atkinson, Janette; Braddick, Oliver

    2009-01-01

    We report asymmetrical cortical responses (steady-state visual evoked potentials) to radial expansion and contraction in human infants and adults. Forty-four infants (22 3-month-olds and 22 4-month-olds) and nine adults viewed dynamic dot patterns which cyclically (2.1 Hz) alternate between radial expansion (or contraction) and random directional…

  18. Reputations in Markets with Asymmetric Information: A Classroom Game

    ERIC Educational Resources Information Center

    Wolf, James R.; Myerscough, Mark A.

    2007-01-01

    The authors describe a classroom game used to teach students about the impact of reputations in markets with asymmetric information. The game is an extension of Holt and Sherman's lemons market game and simulates a market under three information conditions. In the full information setting, all participants know both the quality and the price of…

  19. Copper-catalyzed intermolecular asymmetric propargylic dearomatization of indoles.

    PubMed

    Shao, Wen; Li, He; Liu, Chuan; Liu, Chen-Jiang; You, Shu-Li

    2015-06-22

    The first copper-catalyzed intermolecular dearomatization of indoles by an asymmetric propargylic substitution reaction was developed. This method provides a highly efficient synthesis of versatile furoindoline and pyrroloindoline derivatives containing a quaternary carbon stereogenic center and a terminal alkyne moiety with up to 86 % yield and 98 % ee. PMID:25968474

  20. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis.

    PubMed

    Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter

    2016-01-26

    A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments.