Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry.
Juan, Thomas; Géminard, Charles; Coutelis, Jean-Baptiste; Cerezo, Delphine; Polès, Sophie; Noselli, Stéphane; Fürthauer, Maximilian
2018-05-16
The establishment of left-right (LR) asymmetry is fundamental to animal development, but the identification of a unifying mechanism establishing laterality across different phyla has remained elusive. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish. Alternatively, LR asymmetry can be established independently of cilia, notably through the intrinsic chirality of the acto-myosin cytoskeleton. Here, we show that Myosin1D (Myo1D), a previously identified regulator of Drosophila LR asymmetry, is essential for the formation and function of the zebrafish LR organizer (LRO), Kupffer's vesicle (KV). Myo1D controls the orientation of LRO cilia and interacts functionally with the planar cell polarity (PCP) pathway component VanGogh-like2 (Vangl2), to shape a productive LRO flow. Our findings identify Myo1D as an evolutionarily conserved regulator of animal LR asymmetry, and show that functional interactions between Myo1D and PCP are central to the establishment of animal LR asymmetry.
microRNA function in left-right neuronal asymmetry: perspectives from C. elegans.
Alqadah, Amel; Hsieh, Yi-Wen; Chuang, Chiou-Fen
2013-09-23
Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.
Early uneven ear input induces long-lasting differences in left-right motor function.
Antoine, Michelle W; Zhu, Xiaoxia; Dieterich, Marianne; Brandt, Thomas; Vijayakumar, Sarath; McKeehan, Nicholas; Arezzo, Joseph C; Zukin, R Suzanne; Borkholder, David A; Jones, Sherri M; Frisina, Robert D; Hébert, Jean M
2018-03-01
How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.
Early embryonic programming of neuronal left/right asymmetry in C. elegans.
Poole, Richard J; Hobert, Oliver
2006-12-05
Nervous systems are largely bilaterally symmetric on a morphological level but often display striking degrees of functional left/right (L/R) asymmetry. How L/R asymmetric functional features are superimposed onto an essentially bilaterally symmetric structure and how nervous-system laterality relates to the L/R asymmetry of internal organs are poorly understood. We address these questions here by using the establishment of L/R asymmetry in the ASE chemosensory neurons of C. elegans as a paradigm. This bilaterally symmetric neuron pair is functionally lateralized in that it senses a distinct class of chemosensory cues and expresses a putative chemoreceptor family in a L/R asymmetric manner. We show that the directionality of the asymmetry of the two postmitotic ASE neurons ASE left (ASEL) and ASE right (ASER) in adults is dependent on a L-/R-symmetry-breaking event at a very early embryonic stage, the six-cell stage, which also establishes the L/R asymmetric placement of internal organs. However, the L/R asymmetry of the ASE neurons per se is dependent on an even earlier anterior-posterior (A/P) Notch signal that specifies embryonic ABa/ABp blastomere identities at the four-cell stage. This Notch signal, which functions through two T box genes, acts genetically upstream of a miRNA-controlled bistable feedback loop that regulates the L/R asymmetric gene-expression program in the postmitotic ASE cells. Our results link adult neuronal laterality to the generation of the A/P axis at the two-cell stage and raise the possibility that neural asymmetries observed across the animal kingdom are similarly established by very early embryonic interactions.
Establishment of left–right asymmetry in vertebrate development: the node in mouse embryos
Komatsu, Yoshihiro
2014-01-01
Establishment of vertebrate left–right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left–right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left–right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left–right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left–right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left–right asymmetry. PMID:23771646
Establishment of left-right asymmetry in vertebrate development: the node in mouse embryos.
Komatsu, Yoshihiro; Mishina, Yuji
2013-12-01
Establishment of vertebrate left-right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left-right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left-right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left-right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left-right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left-right asymmetry.
Uncoupled Leftward Asymmetries for Planum Morphology and Functional Language Processing
ERIC Educational Resources Information Center
Eckert, Mark A.; Leonard, Christiana M.; Possing, Edward T.; Binder, Jeffrey R.
2006-01-01
Explanations for left hemisphere language laterality have often focused on hemispheric structural asymmetry of the planum temporale. We examined the association between an index of language laterality and brain morphology in 99 normal adults whose degree of laterality was established using a functional MRI single-word comprehension task. The index…
Left brain, right brain: facts and fantasies.
Corballis, Michael C
2014-01-01
Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.
Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases.
Trulioff, Andrey; Ermakov, Alexander; Malashichev, Yegor
2017-01-25
Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry.
Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases
Trulioff, Andrey; Ermakov, Alexander; Malashichev, Yegor
2017-01-01
Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry. PMID:28125008
Petzoldt, Astrid G; Coutelis, Jean-Baptiste; Géminard, Charles; Spéder, Pauline; Suzanne, Magali; Cerezo, Delphine; Noselli, Stéphane
2012-05-01
In bilateria, positioning and looping of visceral organs requires proper left-right (L/R) asymmetry establishment. Recent work in Drosophila has identified a novel situs inversus gene encoding the unconventional type ID myosin (MyoID). In myoID mutant flies, the L/R axis is inverted, causing reversed looping of organs, such as the gut, spermiduct and genitalia. We have previously shown that MyoID interacts physically with β-Catenin, suggesting a role of the adherens junction in Drosophila L/R asymmetry. Here, we show that DE-Cadherin co-immunoprecipitates with MyoID and is required for MyoID L/R activity. We further demonstrate that MyoIC, a closely related unconventional type I myosin, can antagonize MyoID L/R activity by preventing its binding to adherens junction components, both in vitro and in vivo. Interestingly, DE-Cadherin inhibits MyoIC, providing a protective mechanism to MyoID function. Conditional genetic experiments indicate that DE-Cadherin, MyoIC and MyoID show temporal synchronicity for their function in L/R asymmetry. These data suggest that following MyoID recruitment by β-Catenin at the adherens junction, DE-Cadherin has a twofold effect on Drosophila L/R asymmetry by promoting MyoID activity and repressing that of MyoIC. Interestingly, the product of the vertebrate situs inversus gene inversin also physically interacts with β-Catenin, suggesting that the adherens junction might serve as a conserved platform for determinants to establish L/R asymmetry both in vertebrates and invertebrates.
Diversity and convergence in the mechanisms establishing L/R asymmetry in metazoa
Coutelis, Jean-Baptiste; González-Morales, Nicanor; Géminard, Charles; Noselli, Stéphane
2014-01-01
Differentiating left and right hand sides during embryogenesis represents a major event in body patterning. Left–Right (L/R) asymmetry in bilateria is essential for handed positioning, morphogenesis and ultimately the function of organs (including the brain), with defective L/R asymmetry leading to severe pathologies in human. How and when symmetry is initially broken during embryogenesis remains debated and is a major focus in the field. Work done over the past 20 years, in both vertebrate and invertebrate models, has revealed a number of distinct pathways and mechanisms important for establishing L/R asymmetry and for spreading it to tissues and organs. In this review, we summarize our current knowledge and discuss the diversity of L/R patterning from cells to organs during evolution. PMID:25150102
Temporal reliability and lateralization of the resting-state language network.
Zhu, Linlin; Fan, Yang; Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong
2014-01-01
The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability.
Temporal Reliability and Lateralization of the Resting-State Language Network
Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong
2014-01-01
The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability. PMID:24475058
Truleva, A S; Malashichev, E B; Ermakov, A S
2015-01-01
Externally, vertebrates are bilaterally symmetrical; however, left-right asymmetry is observed in the structure of their internal organs and systems of organs (circulatory, digestive, and respiratory). In addition to the asymmetry of internal organs (visceral), there is also functional (i.e., asymmetrical functioning of organs on the left and right sides of the body) and behavioral asymmetry. The question of a possible association between different types of asymmetry is still open. The study of the mechanisms of such association, in addition to the fundamental interest, has important applications for biomedicine, primarily for the understanding of the brain functioning in health and disease and for the development of methods of treatment of certain mental diseases, such as schizophrenia and autism, for which the disturbance of left-right asymmetry of the brain was shown. To study the deep association between different types of asymmetry, it is necessary to obtain adequate animal models (primarily animals with inverted visceral organs, situs inversus totalis). There are two main possible approaches to obtaining such model organisms: mutagenesis followed by selection of mutant strains with mutations in the genes that affect the formation of the left-right visceral asymmetry and experimental obtaining of animals with inverted internal organs. This review focuses on the second approach. We describe the theoretical models for establishing left-right asymmetry and possible experimental approaches to obtaining animals with inverted internal organs.
Mechanisms of hemispheric specialization: Insights from analyses of connectivity
Stephan, Klaas Enno; Fink, Gereon R.; Marshall, John C.
2007-01-01
Traditionally, anatomical and physiological descriptions of hemispheric specialization have focused on hemispheric asymmetries of local brain structure or local functional properties, respectively. This article reviews the current state of an alternative approach that aims at unraveling the causes and functional principles of hemispheric specialization in terms of asymmetries in connectivity. Starting with an overview of the historical origins of the concept of lateralization, we briefly review recent evidence from anatomical and developmental studies that asymmetries in structural connectivity may be a critical factor shaping hemispheric specialization. These differences in anatomical connectivity, which are found both at the intra- and inter-regional level, are likely to form the structural substrate of different functional principles of information processing in the two hemispheres. The main goal of this article is to describe how these functional principles can be characterized using functional neuroimaging in combination with models of functional and effective connectivity. We discuss the methodology of established models of connectivity which are applicable to data from positron emission tomography and functional magnetic resonance imaging and review published studies that have applied these approaches to characterize asymmetries of connectivity during lateralized tasks. Adopting a model-based approach enables functional imaging to proceed from mere descriptions of asymmetric activation patterns to mechanistic accounts of how these asymmetries are caused. PMID:16949111
Contribution of Hedgehog signaling to the establishment of left-right asymmetry in the sea urchin
Warner, Jacob F.; Miranda, Esther L.; McClay, David R.
2016-01-01
Summary Most bilaterians exhibit a left-right asymmetric distribution of their internal organs. The sea urchin larva is notable in this regard since most adult structures are generated from left sided embryonic structures. The gene regulatory network governing this larval asymmetry is still a work in progress but involves several conserved signaling pathways including Nodal, and BMP. Here we provide a comprehensive analysis of Hedgehog signaling and it’s contribution to left-right asymmetry. We report that Hh signaling plays a conserved role to regulate late asymmetric expression of Nodal and that this regulation occurs after Nodal breaks left-right symmetry in the mesoderm. Thus, while Hh functions to maintain late Nodal expression, the molecular asymmetry of the future coelomic pouches is locked in. Furthermore we report that cilia play a role only insofar as to transduce Hh signaling and do not have an independent effect on the asymmetry of the mesoderm. From this, we are able to construct a more complete regulatory network governing the establishment of left-right asymmetry in the sea urchin. PMID:26872875
Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin.
Warner, Jacob F; Miranda, Esther L; McClay, David R
2016-03-15
Most bilaterians exhibit a left-right asymmetric distribution of their internal organs. The sea urchin larva is notable in this regard since most adult structures are generated from left sided embryonic structures. The gene regulatory network governing this larval asymmetry is still a work in progress but involves several conserved signaling pathways including Nodal, and BMP. Here we provide a comprehensive analysis of Hedgehog signaling and it's contribution to left-right asymmetry. We report that Hh signaling plays a conserved role to regulate late asymmetric expression of Nodal and that this regulation occurs after Nodal breaks left-right symmetry in the mesoderm. Thus, while Hh functions to maintain late Nodal expression, the molecular asymmetry of the future coelomic pouches is locked in. Furthermore we report that cilia play a role only insofar as to transduce Hh signaling and do not have an independent effect on the asymmetry of the mesoderm. From this, we are able to construct a more complete regulatory network governing the establishment of left-right asymmetry in the sea urchin. Copyright © 2016 Elsevier Inc. All rights reserved.
Asymmetries of the human social brain in the visual, auditory and chemical modalities.
Brancucci, Alfredo; Lucci, Giuliana; Mazzatenta, Andrea; Tommasi, Luca
2009-04-12
Structural and functional asymmetries are present in many regions of the human brain responsible for motor control, sensory and cognitive functions and communication. Here, we focus on hemispheric asymmetries underlying the domain of social perception, broadly conceived as the analysis of information about other individuals based on acoustic, visual and chemical signals. By means of these cues the brain establishes the border between 'self' and 'other', and interprets the surrounding social world in terms of the physical and behavioural characteristics of conspecifics essential for impression formation and for creating bonds and relationships. We show that, considered from the standpoint of single- and multi-modal sensory analysis, the neural substrates of the perception of voices, faces, gestures, smells and pheromones, as evidenced by modern neuroimaging techniques, are characterized by a general pattern of right-hemispheric functional asymmetry that might benefit from other aspects of hemispheric lateralization rather than constituting a true specialization for social information.
Salient features of the ciliated organ of asymmetry
Amack, Jeffrey D.
2014-01-01
Many internal organs develop distinct left and right sides that are essential for their functions. In several vertebrate embryos, motile cilia generate an asymmetric fluid flow that plays an important role in establishing left-right (LR) signaling cascades. These ‘LR cilia’ are found in the ventral node and posterior notochordal plate in mammals, the gastrocoel roof plate in amphibians and Kupffer’s vesicle in teleost fish. I consider these transient ciliated structures as the ‘organ of asymmetry’ that directs LR patterning of the developing embryo. Variations in size and morphology of the organ of asymmetry in different vertebrate species have raised questions regarding the fundamental features that are required for LR determination. Here, I review current models for how LR asymmetry is established in vertebrates, discuss the cellular architecture of the ciliated organ of asymmetry and then propose key features of this organ that are critical for orienting the LR body axis. PMID:24481178
TGFβ signaling in establishing left-right asymmetry.
Shiratori, Hidetaka; Hamada, Hiroshi
2014-08-01
Two TGFβ-related proteins, Nodal and Lefty, are asymmetrically expressed and play central roles in establishing left-right (L-R) asymmetry of our body. Nodal acts as a left-side determinant whereas Lefty restricts Nodal activity to the left side by acting as a feedback inhibitor of Nodal. While the mechanism for symmetry breaking is variable among animals, the pair of Nodal and Lefty has a conserved role in the L-R asymmetry pathway. Function and regulation of Nodal and Lefty have been revealed in the last decades, but in this review we summarize the role of TGFβ-related proteins together with more recent findings. We mainly discuss observations made with mouse embryos, unless indicated otherwise. Copyright © 2014. Published by Elsevier Ltd.
Calmodulin binds to inv protein: implication for the regulation of inv function.
Yasuhiko, Y; Imai, F; Ookubo, K; Takakuwa, Y; Shiokawa, K; Yokoyama, T
2001-12-01
Establishment of the left-right asymmetry of internal organs is essential for the normal development of vertebrates. The inv mutant in mice shows a constant reversal of left-right asymmetry and although the inv gene has been cloned, its biochemical and cell biological functions have not been defined. Here, we show that calmodulin binds to mouse inv protein at two sites (IQ1 and IQ2). The binding of calmodulin to the IQ2 site occurs in the absence of Ca(2+) and is not observed in the presence of Ca(2+). Injection of mouse inv mRNA into the right blastomere of Xenopus embryos at the two-cell stage randomized the left-right asymmetry of the embryo and altered the patterns of Xnr-1 and Pitx2 expression. Importantly, inv mRNA that lacked the region encoding the IQ2 site was unable to randomize left-right asymmetry in Xenopus embryos, implying that the IQ2 site is essential for inv to randomize left-right asymmetry in Xenopus. These results suggest that calmodulin binding may regulate inv function. Based on our findings, we propose a model for the regulation of inv function by calcium-calmodulin and discuss its implications.
Believing in paranormal phenomena: relations to asymmetry of body and brain.
Schulter, Günter; Papousek, Ilona
2008-01-01
The goal of this study was to investigate the possible relationship between established measures of body and brain asymmetries and individual differences in paranormal beliefs. In addition to behavioural measures of cerebral laterality, measures of facial features and finger length were taken to calculate body asymmetry scores and indicators of fluctuating asymmetry (average absolute differences between left and right body features). Both the direction and degree of laterality measures were used. In addition to that, quantitative measures of inconsistency of cerebral lateralization were obtained. Results indicated that a stronger belief in paranormal phenomena was associated with fluctuating asymmetry of finger length, and that this aspect of body asymmetry may be related to greater intraindividual variability in the degree of 'atypical' functional lateralization. This intraindividual variability index, in turn, significantly predicted strength of belief in the paranormal. Belief in the paranormal was also higher in women than men and it was negatively correlated with the education level. In sum, these findings suggest that a part of the variance of strength of belief in paranormal phenomena can be explained by patterns of functional hemispheric asymmetry that may be related to perturbations during fetal development.
Asymmetries of the human social brain in the visual, auditory and chemical modalities
Brancucci, Alfredo; Lucci, Giuliana; Mazzatenta, Andrea; Tommasi, Luca
2008-01-01
Structural and functional asymmetries are present in many regions of the human brain responsible for motor control, sensory and cognitive functions and communication. Here, we focus on hemispheric asymmetries underlying the domain of social perception, broadly conceived as the analysis of information about other individuals based on acoustic, visual and chemical signals. By means of these cues the brain establishes the border between ‘self’ and ‘other’, and interprets the surrounding social world in terms of the physical and behavioural characteristics of conspecifics essential for impression formation and for creating bonds and relationships. We show that, considered from the standpoint of single- and multi-modal sensory analysis, the neural substrates of the perception of voices, faces, gestures, smells and pheromones, as evidenced by modern neuroimaging techniques, are characterized by a general pattern of right-hemispheric functional asymmetry that might benefit from other aspects of hemispheric lateralization rather than constituting a true specialization for social information. PMID:19064350
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Lingyun; Prokudin, Alexei; Kang, Zhong-Bo
2015-09-01
We study the three-gluon correlation function contribution to the Sivers asymmetry in semi-inclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally, we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off-diagonal contribution from the three-gluon correlation functions.
Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography
Liu, Yaou; Duan, Yunyun; Li, Kuncheng
2015-01-01
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535
Noël, Emily S; Momenah, Tarek S; Al-Dagriri, Khalid; Al-Suwaid, Abdulrahman; Al-Shahrani, Safar; Jiang, Hui; Willekers, Sven; Oostveen, Yara Y; Chocron, Sonja; Postma, Alex V; Bhuiyan, Zahurul A; Bakkers, Jeroen
2016-02-01
Establishing correct left-right asymmetry during embryonic development is crucial for proper asymmetric positioning of the organs. Congenital heart defects, such as dextrocardia, transposition of the arteries, and inflow or outflow tract malformations, comprise some of the most common birth defects and may be attributed to incorrect establishment of body laterality. Here, we identify new patients with dextrocardia who have mutations in CFAP53, a coiled-coil domain containing protein. To elucidate the mechanism by which CFAP53 regulates embryonic asymmetry, we used genome editing to generate cfap53 zebrafish mutants. Zebrafish cfap53 mutants have specific defects in organ laterality and randomization of asymmetric gene expression. We show that cfap53 is required for cilia rotation specifically in Kupffer's vesicle, the zebrafish laterality organ, providing a mechanism by which patients with CFAP53 mutations develop dextrocardia and heterotaxy, and confirming previous evidence that left-right asymmetry in humans is regulated through cilia-driven fluid flow in a laterality organ. © 2015 WILEY PERIODICALS, INC.
Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings.
Mehta, Daryush D; Deliyski, Dimitar D; Quatieri, Thomas F; Hillman, Robert E
2011-02-01
In prior work, a manually derived measure of vocal fold vibratory phase asymmetry correlated to varying degrees with visual judgments made from laryngeal high-speed videoendoscopy (HSV) recordings. This investigation extended this work by establishing an automated HSV-based framework to quantify 3 categories of vocal fold vibratory asymmetry. HSV-based analysis provided for cycle-to-cycle estimates of left-right phase asymmetry, left-right amplitude asymmetry, and axis shift during glottal closure for 52 speakers with no vocal pathology producing comfortable and pressed phonation. An initial cross-validation of the automated left-right phase asymmetry measure was performed by correlating the measure with other objective and subjective assessments of phase asymmetry. Vocal fold vibratory asymmetry was exhibited to a similar extent in both comfortable and pressed phonations. The automated measure of left-right phase asymmetry strongly correlated with manually derived measures and moderately correlated with visual-perceptual ratings. Correlations with the visual-perceptual ratings remained relatively consistent as the automated measure was derived from kymograms taken at different glottal locations. An automated HSV-based framework for the quantification of vocal fold vibratory asymmetry was developed and initially validated. This framework serves as a platform for investigating relationships between vocal fold tissue motion and acoustic measures of voice function.
Unmasking Language Lateralization in Human Brain Intrinsic Activity
McAvoy, Mark; Mitra, Anish; Coalson, Rebecca S.; d'Avossa, Giovanni; Keidel, James L.; Petersen, Steven E.; Raichle, Marcus E.
2016-01-01
Lateralization of function is a fundamental feature of the human brain as exemplified by the left hemisphere dominance of language. Despite the prominence of lateralization in the lesion, split-brain and task-based fMRI literature, surprisingly little asymmetry has been revealed in the increasingly popular functional imaging studies of spontaneous fluctuations in the fMRI BOLD signal (so-called resting-state fMRI). Here, we show the global signal, an often discarded component of the BOLD signal in resting-state studies, reveals a leftward asymmetry that maps onto regions preferential for semantic processing in left frontal and temporal cortex and the right cerebellum and a rightward asymmetry that maps onto putative attention-related regions in right frontal, temporoparietal, and parietal cortex. Hemispheric asymmetries in the global signal resulted from amplitude modulation of the spontaneous fluctuations. To confirm these findings obtained from normal, healthy, right-handed subjects in the resting-state, we had them perform 2 semantic processing tasks: synonym and numerical magnitude judgment and sentence comprehension. In addition to establishing a new technique for studying lateralization through functional imaging of the resting-state, our findings shed new light on the physiology of the global brain signal. PMID:25636911
Pai, Vaibhav P.; Vandenberg, Laura N.; Blackiston, Douglas; Levin, Michael
2012-01-01
Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V mem) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V mem. The ATP-sensitive K+ channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways. PMID:23346115
Pai, Vaibhav P; Vandenberg, Laura N; Blackiston, Douglas; Levin, Michael
2012-01-01
Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V(mem)) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V(mem). The ATP-sensitive K(+) channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways.
Enck, Paul; Hinninghofen, Heidemarie; Wietek, Beate; Becker, Horst D
2004-01-01
While the regular and symmetric innervation of the pelvic floor has been regarded as "established" for many years, recent data indicate that asymmetry of innervation of the sphincters may exists and may contribute to the occurrence and severity of incontinence symptoms in case of pelvic floor trauma. A systematic review of published papers on asymmetry of sphincter innervation was performed including studies in healthy volunteers and patients with incontinence. 234 consecutive patients with fecal incontinence were investigated by means of side-separated mass surface EMG from the left and right side anal canal, these data were correlated to clinical and anamnestic findings. The literature survey indicates that asymmetry of sphincter innervation exists in a subgroup of healthy male and female volunteers, and may be a risk factor to become incontinent in case of trauma. Patients with incontinence in whom asymmetry of sphincter innervation could be shown more frequently reported a history of pelvic floor trauma during childbirth. Childbirth per se but not the number of deliveries predicted sphincter asymmetry. Asymmetrically innervated sphincters show a compromised sphincter function in routine anorectal manometry. Assessment of sphincter innervation asymmetry may be of value in clinical routine testing of patients with incontinence. However, a new technology is needed to replace mass surface EMG by multi-electrode arrays on a sphincter probe. This is one of the goals of the EU-sponsored research project OASIS. Copyright 2004 S. Karger AG, Basel
None, None
2016-06-13
QCD factorisation for semi-inclusive deep inelastic scattering at low transverse momentum in the current-fragmentation region has been established recently, providing a rigorous basis to study the Transverse Momentum Dependent distribution and fragmentation functions (TMDs) of partons from Semi-Inclusive DIS data using different spin-dependent and spin-independent observables. The main focus of the experiments were the measurements of various single- and double-spin asymmetries in hadron electro-production (ep{up-arrow} --> ehX ) with unpolarised, longitudinally and transversely polarised targets. The joint use of a longitudinally polarised beam and longitudinally and transversely polarised targets allowed to measure double-spin asymmetries (DSA) related to leading-twist distribution functionsmore » describing the transverse momentum distribution of longitudinally and transversely polarised quarks in a longitudinally and transversely polarised nucleons (helicity and worm-gear TMDs). Furthermore, the single-spin asymmetries (SSA) measured with transversely polarised targets, provided access to specific leading-twist parton distribution functions: the transversity, the Sivers function and the so-called 'pretzelosity' function. In this review we present the current status and some future measurements of TMDs worldwide.« less
Brewer, Paul; Berryman, Fiona; Baker, De; Pynsent, Paul; Gardner, Adrian
2013-11-01
Retrospective sequential patient series. To establish the relationship between the magnitude of the deformity in scoliosis and patients' perception of their condition, as measured with Scoliosis Research Society-22 scores. A total of 93 untreated patients with adolescent idiopathic scoliosis were included retrospectively. The Cobb angle was measured from a plain radiograph, and volumetric asymmetry was measured by ISIS2 surface topography. The association between Scoliosis Research Society scores for function, pain, self-image, and mental health against Cobb angle and volumetric asymmetry was investigated using the Pearson correlation coefficient. Correlation of both Cobb angle and volumetric asymmetry with function and pain was weak (all < .23); these correlation values were not statistically significant. Correlation of Cobb angle and volumetric asymmetry with self-image, was higher, although still moderate (-.37 for Cobb angle and -.44 for volumetric asymmetry). Both were statistically significant (Cobb angle, p = .0002; volumetric asymmetry; p = .00001). Cobb angle contributed 13.8% to the linear relationship with self-image, whereas volumetric asymmetry contributed 19.3%. For mental health, correlation was statistically significant with Cobb angle (p = .011) and volumetric asymmetry (p = .0005), but the correlation was low to moderate (-.26 and -.35, respectively). Cobb angle contributed 6.9% to the linear relationship with mental health, whereas volumetric asymmetry contributed 12.4%. Volumetric asymmetry correlates better with both mental health and self-image compared with Cobb angle, but the correlation was only moderate. This study suggests that a patient's own perception of self-image and mental health is multifactorial and not completely explained through present objective measurements of the size of the deformity. This helps to explain the difficulties in any objective analysis of a problem with multifactorial perception issues. Further study is required to investigate other physical aspects of the deformity that may have a role in how patients view themselves. Copyright © 2013 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Ocklenburg, Sebastian; Hugdahl, Kenneth; Westerhausen, René
2013-12-01
Functional hemispheric asymmetries of speech production and perception are a key feature of the human language system, but their neurophysiological basis is still poorly understood. Using a combined fMRI and tract-based spatial statistics approach, we investigated the relation of microstructural asymmetries in language-relevant white matter pathways and functional activation asymmetries during silent verb generation and passive listening to spoken words. Tract-based spatial statistics revealed several leftward asymmetric clusters in the arcuate fasciculus and uncinate fasciculus that were differentially related to activation asymmetries in the two functional tasks. Frontal and temporal activation asymmetries during silent verb generation were positively related to the strength of specific microstructural white matter asymmetries in the arcuate fasciculus. In contrast, microstructural uncinate fasciculus asymmetries were related to temporal activation asymmetries during passive listening. These findings suggest that white matter asymmetries may indeed be one of the factors underlying functional hemispheric asymmetries. Moreover, they also show that specific localized white matter asymmetries might be of greater relevance for functional activation asymmetries than microstructural features of whole pathways. © 2013.
Arenas, Eduardo; Muñoz, Diana; Matheus, Evelyn; Morales, Diana
2014-01-01
To establish the prevalence of nasopupillary asymmetry (difference in nasopupillary distances) in the population and its relation with the interpupillary distance. A retrospective descriptive study was conducted by reviewing of 1262 medical records. The values of nasopupillary asymmetry and the interpupillary distance were obtained. A statistical analysis was made and the correlation between these variables was established. Seventy-nine percent of the population presented some degree of nasopupillary asymmetry. The interpupillary distance had a very low correlation with the nasopupillary asymmetry (r = 0.074, P = 0.0). It is advisable to use the nasopupillary distance of each eye as a standard measurement.
[Orthodontic treatment of Class III patients with mandibular asymmetry].
Duan, Yin-Zhong; Huo, Na; Chen, Lei; Chen, Xue-Peng; Lin, Yang
2008-12-01
To investigate the treatment outcome of Class III patients with dental, functional and mild skeletal mandibular asymmetry. Thirty-five patients (14 males and 21 females) with dental, functional and mild skeletal mandibular asymmetry were selected. The age range of the patients was 7 - 22 years with a mean age of 16.5 years. Dental mandibular asymmetry was treated with expansion of maxillary arch to help the mandible returning to normal position. Functional mandibular asymmetry was treated with activator or asymmetrical protraction and Class III elastics. Mild skeletal mandibular asymmetry was treated with camouflage treatment. Good occlusal relationships were achieved and facial esthetics was greatly improved after orthodontic treatment in patients with dental and functional mandibular asymmetry. However, patients with skeletal mandibular asymmetry should be treated with both extraction and genioplasty. Orthodontic treatment was suitable for patients with dental and functional mandibular asymmetry, while combined orthodontics and surgery could get good results in patients with skeletal mandibular asymmetry.
Syryńska, Maria; Szyszka, Liliana; Post, Marcin
2008-01-01
Recognised and unrecognised bone diseases including maxilla and/or mandible may have influance on formation of malocclusions. In first stages of diseases the patients are directed or report for orthodontic treatment which starting need additional examinations mainly pantomographic views. In spite doing necessary additional examinations sometimes we can't recognise disorder like patient presented in our study. Then we can observate and if changes will begin disturbing the function--surgical intervention. Establishment of orthodontic treatment plan and explanation if during three years the dimension of asymmetry resulting from wrong growth right and left part of mandible and the estimation the rate of changes happening in this time. In study we used the own asymmetry index to estimate the patient's pantomographic views who reported for orthodontic treatment because of occlusion disorders, facial asymmetry and discomfort of mastication and speech. The telerentgenographic lateral views in right and posterior-anterior (PA) projection were also done. We measured and estimated the own asymmetry index on pantomographic views. The radiographs reveal the asymmetry of left part of mandible. The comparative analysis of pantomographic views enables the estimation of changes happening in time and the telerentgenographic lateral views, PA and computer tomography (CT) confirm changes which increase the asymmetry. The asymmetry index is the instrument which enable the estimation of growth changes in mandible with unsteady aetiology and histopathological unrecognised, allow determine the growth rate and facilitate the permanent control the dimension of mandible asymmetry.
Wash-out in N{sub 2}-dominated leptogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn-Woernle, F., E-mail: fhahnwo@mppmu.mpg.de
2010-08-01
We study the wash-out of a cosmological baryon asymmetry produced via leptogenesis by subsequent interactions. Therefore we focus on a scenario in which a lepton asymmetry is established in the out-of-equilibrium decays of the next-to-lightest right-handed neutrino. We apply the full classical Boltzmann equations without the assumption of kinetic equilibrium and including all quantum statistical factors to calculate the wash-out of the lepton asymmetry by interactions of the lightest right-handed state. We include scattering processes with top quarks in our analysis. This is of particular interest since the wash-out is enhanced by scatterings and the use of mode equations withmore » quantum statistical distribution functions. In this way we provide a restriction on the parameter space for this scenario.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Ling -Yun; Kang, Zhong -Bo; Prokudin, Alexei
2015-12-22
Here, we study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(α em 2α s), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading ordermore » calculation for the transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function.« less
Cilia play a role in breaking left-right symmetry of the sea urchin embryo.
Takemoto, Ayumi; Miyamoto, Tatsuo; Simono, Fumie; Kurogi, Nao; Shirae-Kurabayashi, Maki; Awazu, Akinori; Suzuki, Ken-Ichi T; Yamamoto, Takashi; Sakamoto, Naoaki
2016-06-01
Left-right asymmetry of bilaterian animals is established during early development. In mice, frogs and fishes, the ciliated left-right organizer plays an essential role in establishing bilateral asymmetry, and leftward flow of extracellular fluid generated by ciliary motion results in Nodal activity on the left side. However, H(+) /K(+) -ATPase activity is also involved in the determination of left-right asymmetry in a variety of animals, and it has been thought to be an ancestral mechanism in deuterostomes. In sea urchin, the determination of the left-right asymmetry based on H(+) /K(+) -ATPase activity was already clarified, but it remains to be uncovered whether ciliary motion is involved in the left-right asymmetry of the embryo. Here, we show evidence that ciliary motion is involved in the establishment of left-right asymmetry of sea urchin embryo. Furthermore, we show that the initial cilia generated on small micromeres during the early stage of embryogenesis may be involved in this process. These results suggest that the cilia-mediated mechanism for the determination of left-right asymmetry may be acquired at the base of the deuterostomes. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
N-cadherin locks left-right asymmetry by ending the leftward movement of Hensen's node cells.
Mendes, Raquel V; Martins, Gabriel G; Cristovão, Ana M; Saúde, Leonor
2014-08-11
The stereotypic left-right (LR) asymmetric distribution of internal organs is due to an asymmetric molecular cascade in the lateral plate mesoderm (LPM) that is originated at the embryonic node. In chicken embryos, molecular asymmetries at Hensen's node are created by leftward cell movements that occur transiently. What terminates these movements, and, moreover, what is the impact of prolonging them on the LR asymmetry cascade? We show that leftward movements last longer when N-cadherin function is blocked and cease prematurely when N-cadherin is overexpressed on the right side of the node. The prolonged leftward movements lead to loss of asymmetric expression of fgf8 and nodal at the node region. This originates an abnormal expression of the asymmetric genes cer1 and snai1 in the LPM, resulting in mispositioned hearts. We conclude that N-cadherin stops the leftward cell movements and that this termination is an essential step in the establishment of LR asymmetry. Copyright © 2014 Elsevier Inc. All rights reserved.
Al-Eisa, Einas; Egan, David; Deluzio, Kevin; Wassersug, Richard
2006-02-01
Comparative analysis and correlational research design were used to investigate the association between anthropometry and biomechanical performance among asymptomatic subjects and patients with low back pain (LBP). To examine the association between pelvic asymmetry and patterns of trunk motion in asymptomatic and LBP subjects. Secondary objective was to investigate the association between restricted trunk motion, laterality of referred pain, and pelvic asymmetry. Subtle pelvic asymmetry (exhibited as either lateral pelvic tilt or iliac rotational asymmetry), which is common among normal individuals, has not been convincingly linked to abnormalities in back movements. Given the difficulty in diagnosing most LBP, a classification using pelvic asymmetry and patterns of movement could be helpful in establishing a rational treatment plan. Fifty-nine subjects with no history of LBP and 54 patients with mechanical unilateral LBP were tested. An anthropometric frame was used to measure pelvic asymmetry in standing. Dynamic motion data, comprised of the principal and coupled movements, were collected using the Qualysis Motion Capture System. While the groups did not differ in the total range of lumbar movement, the LBP group exhibited significantly higher asymmetry in the principal motion. The groups differed significantly in the pattern of coupled rotation during lateral flexion. Asymmetry in lumbar lateral flexion was highly related to two types of pelvic asymmetry: lateral pelvic tilt (LPT) and iliac rotation asymmetry (IRA). Asymmetry in lumbar axial rotation was highly related to IRA but weakly related to LPT. This study demonstrates objective differences in patterns of lumbar movement between asymptomatic subjects and patients with LBP. The study also demonstrates that subtle anatomic abnormality in the pelvis is associated with altered mechanics in the lumbar spine. We suggest that asymmetry of lumbar movement may be a better indicator of functional deficit than the absolute range of movement in LBP.
Wang, Danhong; Buckner, Randy L.
2013-01-01
Asymmetry of the human cerebellum was investigated using intrinsic functional connectivity. Regions of functional asymmetry within the cerebellum were identified during resting-state functional MRI (n = 500 subjects) and replicated in an independent cohort (n = 500 subjects). The most strongly right lateralized cerebellar regions fell within the posterior lobe, including crus I and crus II, in regions estimated to link to the cerebral association cortex. The most strongly left lateralized cerebellar regions were located in lobules VI and VIII in regions linked to distinct cerebral association networks. Comparison of cerebellar asymmetry with independently estimated cerebral asymmetry revealed that the lateralized regions of the cerebellum belong to the same networks that are strongly lateralized in the cerebrum. The degree of functional asymmetry of the cerebellum across individuals was significantly correlated with cerebral asymmetry and varied with handedness. In addition, cerebellar asymmetry estimated at rest predicted cerebral lateralization during an active language task. These results demonstrate that functional lateralization is likely a unitary feature of large-scale cerebrocerebellar networks, consistent with the hypothesis that the cerebellum possesses a roughly homotopic map of the cerebral cortex including the prominent asymmetries of the association cortex. PMID:23076113
Auxin Asymmetry during Gravitropism by Tomato Hypocotyls 1
Harrison, Marcia A.; Pickard, Barbara G.
1989-01-01
Gravitropic asymmetry of auxin was observed in hypocotyls of tomato (Lycopersicon esculentum Mill.) soon after horizontal placement: the ratio of apically supplied [3H]IAA collected from the lower sides to that from the upper sides was about 1.4 between 5 and 10 minutes. This was adequately early to account for the beginning of curvature. The auxin asymmetry ratio rose to about 2.5 between 20 and 25 minutes, and to 3.5 during the main phase of curvature. This compares reasonably well with the roughly 3.9 ratio for elongation on the lower side to elongation on the upper side that is the basis for the curvature. These data extend evidence that the Went-Cholodny theory for the mediation of tropisms is valid for dicot stems. Also consistent with the theory, an auxin asymmetry ratio of 2.5 was observed when wrong-way gravitropic curvature developed following application of a high level of auxin. In addition to reversing the asymmetry of elongation, the large supplement of auxin resulted in lower net elongation. Previous data established that ethylene is not involved in this decrease of growth as a function of increasing level of auxin. PMID:11537450
Auxin asymmetry during gravitropism by tomato hypocotyls
NASA Technical Reports Server (NTRS)
Harrison, M. A.; Pickard, B. G.
1989-01-01
Gravitropic asymmetry of auxin was observed in hypocotyls of tomato (Lycopersicon esculentum Mill.) soon after horizontal placement: the ratio of apically supplied [3H]IAA collected from the lower sides to that from the upper sides was about 1.4 between 5 and 10 minutes. This was adequately early to account for the beginning of curvature. The auxin asymmetry ratio rose to about 2.5 between 20 and 25 minutes, and to 3.5 during the main phase of curvature. This compares reasonably well with the roughly 3.9 ratio for elongation on the lower side to elongation on the upper side that is the basis for the curvature. These data extend evidence that the Went-Cholodny theory for the mediation of tropisms is valid for dicot stems. Also consistent with the theory, an auxin asymmetry ratio of 2.5 was observed when wrong-way gravitropic curvature developed following application of a high level of auxin. In addition to reversing the asymmetry of elongation, the large supplement of auxin resulted in lower net elongation. Previous data established that ethylene is not involved in this decrease of growth as a function of increasing level of auxin.
Genetic specification of left-right asymmetry in the diaphragm muscles and their motor innervation.
Charoy, Camille; Dinvaut, Sarah; Chaix, Yohan; Morlé, Laurette; Sanyas, Isabelle; Bozon, Muriel; Kindbeiter, Karine; Durand, Bénédicte; Skidmore, Jennifer M; De Groef, Lies; Seki, Motoaki; Moons, Lieve; Ruhrberg, Christiana; Martin, James F; Martin, Donna M; Falk, Julien; Castellani, Valerie
2017-06-22
The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left-right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L-R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry.
Baryogenesis in nonminimally coupled f (R ) theories
NASA Astrophysics Data System (ADS)
Ramos, M. P. L. P.; Páramos, J.
2017-11-01
We generalize the mechanism for gravitational baryogensis in the context of f (R ) theories of gravity, including a nonminimal coupling between curvature and matter. In these models, the baryon asymmetry is generated through an effective coupling between the Ricci scalar curvature and the net baryon current that dynamically breaks Charge conjugation, parity and time reversal (C P T ) invariance. We study the combinations of characteristic mass scales and exponents for both nontrivial functions present in the modified action functional and establish the allowed region for these parameters: we find that very small deviations from general relativity are consistent with the observed baryon asymmetry and lead to temperatures compatible with the subsequent formation of the primordial abundances of light elements. In particular, we show the viability of a power-law nonminimal coupling function f2(R )˜Rn with 0
Gokey, Jason J; Dasgupta, Agnik; Amack, Jeffrey D
2015-11-01
Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. Copyright © 2015 Elsevier Inc. All rights reserved.
Levchenko, Anastasia; Davtian, Stepan; Petrova, Natalia; Malashichev, Yegor
2014-04-01
Schizophrenia is a severe psychiatric disorder, affecting ∼1% of the human population. The genetic contribution to schizophrenia is significant, but the genetics are complex and many aspects of brain functioning, from neural development to synapse structure, seem to be involved in the pathogenesis. A novel way to study the molecular causes of schizophrenia is to study the genetics of left-right (LR) brain asymmetry, the disease feature often observed in schizophrenic patients. In this study, we analyzed by sequencing five candidate LR cerebral asymmetry genes in a cohort of 95 schizophrenia and schizotypal disorder patients from Saint Petersburg, Russia. The gene list included LMO4, LRRTM1, FOXP2, the PCDH11X/Y gene pair, and SRY. We found 17 previously unreported variants in the genes LRRTM1, FOXP2, LMO4, and PCDH11X in the 3'-UTR and 5'-UTR. The variants might contribute toward an altered mRNA processing, which could lead to altered mRNA amounts in developing neurons of the brain and establishment of an incorrect LR asymmetry profile. This is the first study in which multiple candidate genes for cerebral LR asymmetry and schizophrenia have been analyzed by sequencing. The approach to study the genetics of schizophrenia from the perspective of an LR cerebral asymmetry disturbance deserves more attention.
Genetic specification of left–right asymmetry in the diaphragm muscles and their motor innervation
Charoy, Camille; Dinvaut, Sarah; Chaix, Yohan; Morlé, Laurette; Sanyas, Isabelle; Bozon, Muriel; Kindbeiter, Karine; Durand, Bénédicte; Skidmore, Jennifer M; De Groef, Lies; Seki, Motoaki; Moons, Lieve; Ruhrberg, Christiana; Martin, James F; Martin, Donna M; Falk, Julien; Castellani, Valerie
2017-01-01
The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left–right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L–R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry. DOI: http://dx.doi.org/10.7554/eLife.18481.001 PMID:28639940
Vandenberg, Laura N.; Levin, Michael
2013-01-01
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events’ linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology. PMID:23583583
Vandenberg, Laura N; Levin, Michael
2013-07-01
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events' linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology. Copyright © 2013 Elsevier Inc. All rights reserved.
Silva, Erica; Betleja, Ewelina; John, Emily; Spear, Philip; Moresco, James J; Zhang, Siwei; Yates, John R; Mitchell, Brian J; Mahjoub, Moe R
2016-01-01
The establishment of left-right (L-R) asymmetry in vertebrates is dependent on the sensory and motile functions of cilia during embryogenesis. Mutations in CCDC11 disrupt L-R asymmetry and cause congenital heart disease in humans, yet the molecular and cellular functions of the protein remain unknown. Here we demonstrate that Ccdc11 is a novel component of centriolar satellites-cytoplasmic granules that serve as recruitment sites for proteins destined for the centrosome and cilium. Ccdc11 interacts with core components of satellites, and its loss disrupts the subcellular organization of satellite proteins and perturbs primary cilium assembly. Ccdc11 colocalizes with satellite proteins in human multiciliated tracheal epithelia, and its loss inhibits motile ciliogenesis. Similarly, depletion of CCDC11 in Xenopus embryos causes defective assembly and motility of cilia in multiciliated epidermal cells. To determine the role of CCDC11 during vertebrate development, we generated mutant alleles in zebrafish. Loss of CCDC11 leads to defective ciliogenesis in the pronephros and within the Kupffer's vesicle and results in aberrant L-R axis determination. Our results highlight a critical role for Ccdc11 in the assembly and function of motile cilia and implicate centriolar satellite-associated proteins as a new class of proteins in the pathology of L-R patterning and congenital heart disease. © 2016 Silva, Betleja, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
The functional and structural asymmetries of the superior temporal sulcus.
Specht, Karsten; Wigglesworth, Philip
2018-02-01
The superior temporal sulcus (STS) is an anatomical structure that increasingly interests researchers. This structure appears to receive multisensory input and is involved in several perceptual and cognitive core functions, such as speech perception, audiovisual integration, (biological) motion processing and theory of mind capacities. In addition, the superior temporal sulcus is not only one of the longest sulci of the brain, but it also shows marked functional and structural asymmetries, some of which have only been found in humans. To explore the functional-structural relationships of these asymmetries in more detail, this study combines functional and structural magnetic resonance imaging. Using a speech perception task, an audiovisual integration task, and a theory of mind task, this study again demonstrated an involvement of the STS in these processes, with an expected strong leftward asymmetry for the speech perception task. Furthermore, this study confirmed the earlier described, human-specific asymmetries, namely that the left STS is longer than the right STS and that the right STS is deeper than the left STS. However, this study did not find any relationship between these structural asymmetries and the detected brain activations or their functional asymmetries. This can, on the other hand, give further support to the notion that the structural asymmetry of the STS is not directly related to the functional asymmetry of the speech perception and the language system as a whole, but that it may have other causes and functions. © 2018 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Alimardani, N.; Conley, J. F.
2013-09-01
We combine nanolaminate bilayer insulator tunnel barriers (Al2O3/HfO2, HfO2/Al2O3, Al2O3/ZrO2) deposited via atomic layer deposition (ALD) with asymmetric work function metal electrodes to produce MIIM diodes with enhanced I-V asymmetry and non-linearity. We show that the improvements in MIIM devices are due to step tunneling rather than resonant tunneling. We also investigate conduction processes as a function of temperature in MIM devices with Nb2O5 and Ta2O5 high electron affinity insulators. For both Nb2O5 and Ta2O5 insulators, the dominant conduction process is established as Schottky emission at small biases and Frenkel-Poole emission at large biases. The energy depth of the traps that dominate Frenkel-Poole emission in each material are estimated.
Hibino, Taku; Nishino, Atsuo; Amemiya, Shonan
2006-12-01
Chordates and echinoderms are two of the three major deuterostome phyla and show conspicuous left-right (LR) asymmetry. The establishment of LR asymmetry has been explored in vertebrates, but is largely unknown in echinoderms. Here, we report the expression pattern of genes that are orthologous to the chordate left-side specific gene Pitx, cloned from the sea urchin Hemicentrotus pulcherrimus (HpPitx) and the starfish Asterina pectinifera (ApPitx). HpPitx transcripts were first detected bilaterally in one cell of the ventrolateral primary mesenchyme-cell aggregate of early prism larvae. New expression was detected asymmetrically in the right counterpart of a bilateral pair of mesodermal coelomic pouches and in the right ectoderm. In starfish bipinnaria larvae, the ApPitx signal was detected in the right coelomic pouch and in the right half of the ectoderm along the ciliary bands. These results suggest that the function of Pitx in establishing LR asymmetry was introduced in the last common ancestor of echinoderms and chordates. However, the right-side specific expression in echinoderm larvae is inverted compared to chordate embryos. This indicates that the LR axis is inversely represented between echinoderms and chordates, which supports the scenario that dorsoventral axis inversion was introduced into the chordate lineage by turning upside down.
Lai, Shih-Lei; Yao, Wan-Ling; Tsao, Ku-Chi; Houben, Anna J S; Albers, Harald M H G; Ovaa, Huib; Moolenaar, Wouter H; Lee, Shyh-Jye
2012-12-01
Left-right (L-R) patterning is essential for proper organ morphogenesis and function. Calcium fluxes in dorsal forerunner cells (DFCs) are known to regulate the formation of Kupffer's vesicle (KV), a central organ for establishing L-R asymmetry in zebrafish. Here, we identify the lipid mediator lysophosphatidic acid (LPA) as a regulator of L-R asymmetry in zebrafish embryos. LPA is produced by Autotaxin (Atx), a secreted lysophospholipase D, and triggers various cellular responses through activation of specific G protein-coupled receptors (Lpar1-6). Knockdown of Atx or LPA receptor 3 (Lpar3) by morpholino oligonucleotides perturbed asymmetric gene expression in lateral plate mesoderm and disrupted organ L-R asymmetries, whereas overexpression of lpar3 partially rescued those defects in both atx and lpar3 morphants. Similar defects were observed in embryos treated with the Atx inhibitor HA130 and the Lpar1-3 inhibitor Ki16425. Knockdown of either Atx or Lpar3 impaired calcium fluxes in DFCs during mid-epiboly stage and compromised DFC cohesive migration, KV formation and ciliogenesis. Application of LPA to DFCs rescued the calcium signal and laterality defects in atx morphants. This LPA-dependent L-R asymmetry is mediated via Wnt signaling, as shown by the accumulation of β-catenin in nuclei at the dorsal side of both atx and lpar3 morphants. Our results suggest a major role for the Atx/Lpar3 signaling axis in regulating KV formation, ciliogenesis and L-R asymmetry via a Wnt-dependent pathway.
Temporo-Parietal Junction Activity in Theory-of-Mind Tasks: Falseness, Beliefs, or Attention
ERIC Educational Resources Information Center
Aichhorn, Markus; Perner, Josef; Weiss, Benjamin; Kronbichler, Martin; Staffen, Wolfgang; Ladurner, Gunther
2009-01-01
By combining the false belief (FB) and photo (PH) vignettes to identify theory-of-mind areas with the false sign (FS) vignettes, we re-establish the functional asymmetry between the left and right temporo-parietal junction (TPJ). The right TPJ (TPJ-R) is specially sensitive to processing belief information, whereas the left TPJ (TPJ-L) is equally…
Music-induced changes in functional cerebral asymmetries.
Hausmann, Markus; Hodgetts, Sophie; Eerola, Tuomas
2016-04-01
After decades of research, it remains unclear whether emotion lateralization occurs because one hemisphere is dominant for processing the emotional content of the stimuli, or whether emotional stimuli activate lateralised networks associated with the subjective emotional experience. By using emotion-induction procedures, we investigated the effect of listening to happy and sad music on three well-established lateralization tasks. In a prestudy, Mozart's piano sonata (K. 448) and Beethoven's Moonlight Sonata were rated as the most happy and sad excerpts, respectively. Participants listened to either one emotional excerpt, or sat in silence before completing an emotional chimeric faces task (Experiment 1), visual line bisection task (Experiment 2) and a dichotic listening task (Experiment 3 and 4). Listening to happy music resulted in a reduced right hemispheric bias in facial emotion recognition (Experiment 1) and visuospatial attention (Experiment 2) and increased left hemispheric bias in language lateralization (Experiments 3 and 4). Although Experiments 1-3 revealed an increased positive emotional state after listening to happy music, mediation analyses revealed that the effect on hemispheric asymmetries was not mediated by music-induced emotional changes. The direct effect of music listening on lateralization was investigated in Experiment 4 in which tempo of the happy excerpt was manipulated by controlling for other acoustic features. However, the results of Experiment 4 made it rather unlikely that tempo is the critical cue accounting for the effects. We conclude that listening to music can affect functional cerebral asymmetries in well-established emotional and cognitive laterality tasks, independent of music-induced changes in the emotion state. Copyright © 2016 Elsevier Inc. All rights reserved.
Functional asymmetry of posture and body system regulation
NASA Technical Reports Server (NTRS)
Boloban, V. N.; Otsupok, A. P.
1980-01-01
The manifestation of functional asymmetry during the regulation of an athlete's posture and a system of bodies and its effect on the execution of individual and group acrobatic exercises were studied. Functional asymmetry of posture regulation was recorded in acrobats during the execution of individual and group exercises. It was shown that stability is maintained at the expense of bending and twisting motions. It is important to consider whether the functional asymmetry of posture regulation is left or right sided in making up pairs and groups of acrobats.
Asymmetry in the epithalamus of vertebrates
L. CONCHA, MIGUEL; W. WILSON, STEPHEN
2001-01-01
The epithalamus is a major subdivision of the diencephalon constituted by the habenular nuclei and pineal complex. Structural asymmetries in this region are widespread amongst vertebrates and involve differences in size, neuronal organisation, neurochemistry and connectivity. In species that possess a photoreceptive parapineal organ, this structure projects asymmetrically to the left habenula, and in teleosts it is also situated on the left side of the brain. Asymmetries in size between the left and right sides of the habenula are often associated with asymmetries in neuronal organisation, although these two types of asymmetry follow different evolutionary courses. While the former is more conspicuous in fishes (with the exception of teleosts), asymmetries in neuronal organisation are more robust in amphibia and reptiles. Connectivity of the parapineal organ with the left habenula is not always coupled with asymmetries in habenular size and/or neuronal organisation suggesting that, at least in some species, assignment of parapineal and habenular asymmetries may be independent events. The evolutionary origins of epithalamic structures are uncertain but asymmetry in this region is likely to have existed at the origin of the vertebrate, perhaps even the chordate, lineage. In at least some extant vertebrate species, epithalamic asymmetries are established early in development, suggesting a genetic regulation of asymmetry. In some cases, epigenetic factors such as hormones also influence the development of sexually dimorphic habenular asymmetries. Although the genetic and developmental mechanisms by which neuroanatomical asymmetries are established remain obscure, some clues regarding the mechanisms underlying laterality decisions have recently come from studies in zebrafish. The Nodal signalling pathway regulates laterality by biasing an otherwise stochastic laterality decision to the left side of the epithalamus. This genetic mechanism ensures a consistency of epithalamic laterality within the population. Between species, the laterality of asymmetry is variable and a clear evolutionary picture is missing. We propose that epithalamic structural asymmetries per se and not the laterality of these asymmetries are important for the behaviour of individuals within a species. A consistency of the laterality within a population may play a role in social behaviours between individuals of the species. PMID:11523830
Time-scale effects on the gain-loss asymmetry in stock indices
NASA Astrophysics Data System (ADS)
Sándor, Bulcsú; Simonsen, Ingve; Nagy, Bálint Zsolt; Néda, Zoltán
2016-08-01
The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2 % , and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.
Knutson, Gary A
2005-01-01
Background Part II of this review examines the functional "short leg" or unloaded leg length alignment asymmetry, including the relationship between an anatomic and functional leg-length inequality. Based on the reviewed evidence, an outline for clinical decision making regarding functional and anatomic leg-length inequality will be provided. Methods Online databases: Medline, CINAHL and Mantis. Plus library searches for the time frame of 1970–2005 were done using the term "leg-length inequality". Results and Discussion The evidence suggests that an unloaded leg-length asymmetry is a different phenomenon than an anatomic leg-length inequality, and may be due to suprapelvic muscle hypertonicity. Anatomic leg-length inequality and unloaded functional or leg-length alignment asymmetry may interact in a loaded (standing) posture, but not in an unloaded (prone/supine) posture. Conclusion The unloaded, functional leg-length alignment asymmetry is a likely phenomenon, although more research regarding reliability of the measurement procedure and validity relative to spinal dysfunction is needed. Functional leg-length alignment asymmetry should be eliminated before any necessary treatment of anatomic LLI. PMID:16080787
NASA Astrophysics Data System (ADS)
Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha
2018-04-01
We study the low-virtuality inclusive leptoproduction of open charm, p↑l →D0+X as a probe of the gluon Sivers function. We perform the analysis in a generalized parton model framework. At leading order, this process is sensitive only to the gluon content of the proton. Hence any detection of a transverse single-spin asymmetry in this process would be clear indication of a non-zero gluon Sivers function (GSF). Considering COMPASS and a future Electron-Ion Collider (EIC), we present predictions for asymmetry using fits for the GSF available in literature. Predictions for peak asymmetry values lie in the range of 0.8% to 13%. We also present estimates of the upper bound on the asymmetry as obtained with a maximal gluon Sivers function. Further, for the case of the Electron-Ion Collider, we evaluate the asymmetry in the muons decaying from the D -meson and find that the asymmetry is well preserved in the kinematics of the muons. Peak values of the muon asymmetry are close to those obtained for the D -meson and lie in the range 0.75% to 11%.
Stochastic left-right neuronal asymmetry in Caenorhabditis elegans.
Alqadah, Amel; Hsieh, Yi-Wen; Xiong, Rui; Chuang, Chiou-Fen
2016-12-19
Left-right asymmetry in the nervous system is observed across species. Defects in left-right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing 'C' (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWC OFF (default) and AWC ON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).
Is the planum temporale surface area a marker of hemispheric or regional language lateralization?
Tzourio-Mazoyer, Nathalie; Crivello, Fabrice; Mazoyer, Bernard
2018-04-01
We investigated the association between the left planum temporale (PT) surface area or asymmetry and the hemispheric or regional functional asymmetries during language production and perception tasks in 287 healthy adults (BIL&GIN) who were matched for sex and handedness. The measurements of the PT surface area were performed after manually delineating the region using brain magnetic resonance images (MRI) and considering the Heschl's gyrus (HG) duplication pattern; the measurements either included (PT tot ) or did not include (PT post ) the second gyrus. A region encompassing both the PT and HG (HGPT) was also studied. Regardless of the ROI measured, 80% of the sample had a positive left minus right PT asymmetry. We first tested whether the PT tot , PT post and HGPT surface areas in the left or right hemispheres or PT asymmetries differed in groups of individuals varying in language lateralization by assessing their hemispheric index during a sentence production minus word list production task. We then investigated the association between these different measures of the PT anatomy and the regional asymmetries measured during the task. Regardless of the anatomical definition used, we observed no correlations between the left surface areas or asymmetries and the hemispheric or regional functional asymmetries during the language production task. We then performed a similar analysis using the same sample measuring language functional lateralization during speech listening tasks (i.e., listening to sentences and lists of words). Although the hemispheric lateralization during speech listening was not correlated with the left PT tot , PT post or HGPT surface areas or the PT asymmetries, significant positive correlations were observed between the asymmetries in these regions and the regional functional asymmetries measured in areas adjacent to the end of the Sylvian fissure while participants listened to the word lists or sentences. The PT asymmetry thus appears to be associated with the local functional asymmetries in auditory areas but is not a marker of inter-individual variability in language dominance.
Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei
2017-01-01
Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197
Gnat, Rafał; Saulicz, Edward
2008-03-01
This study evaluates the hypothesis that triggering and eliminating induced static pelvic asymmetry (SPA) may be followed by immediate change in functional asymmetry of the lumbo-pelvo-hip complex. Repeated measures experimental design with 2 levels of independent variable, that is, induced SPA triggered and induced SPA eliminated, was implemented. Three series of measurements were performed, that is, baseline, after triggering SPA, and after eliminating SPA. A group of 84 subjects with no initial symptoms of SPA was studied. Different forms of mechanical stimulation were applied aiming to induce SPA, and the 2 manual stretching-manipulating techniques were performed aiming to eliminate it. A hand inclinometer was used to measure SPA in standing posture. Selected ranges of motion of the hip joints and lumbar spine were used to depict functional asymmetry of the lumbo-pelvo-hip complex. The functional asymmetry indices for individual movements were calculated. Repeated measures design of analysis of variance, dependent data Student t test, and linear Pearson's correlation test were used. Assessment of the SPA showed its significant increase between baseline and series 2 measurements, with a subsequent significant decrease between series 2 and series 3 measurements. Values of the functional asymmetry indices changed accordingly, that is, they increased significantly between series 1 and series 2 and had returned to their initial level in series 3 measurements. Induced SPA shows considerable association with functional asymmetry of the lumbo-pelvo-hip complex.
Wnt/PCP Instructions for Cilia in Left-Right Asymmetry.
Wu, Jun; Mlodzik, Marek
2017-03-13
Wnt-Frizzled/planar cell polarity (PCP) signaling establishes cell orientation within the epithelial plane, but whether Wnts are instructive or permissive is debated. Reporting in Developmental Cell, Minegishi et al. (2017) uncover an instructive link from Wnt5a/b gradients to PCP-factor-regulated polarized cilia positioning that is essential to mouse embryo left-right asymmetry establishment. Copyright © 2017. Published by Elsevier Inc.
Cilia in vertebrate left-right patterning.
Dasgupta, Agnik; Amack, Jeffrey D
2016-12-19
Understanding how left-right (LR) asymmetry is generated in vertebrate embryos is an important problem in developmental biology. In humans, a failure to align the left and right sides of cardiovascular and/or gastrointestinal systems often results in birth defects. Evidence from patients and animal models has implicated cilia in the process of left-right patterning. Here, we review the proposed functions for cilia in establishing LR asymmetry, which include creating transient leftward fluid flows in an embryonic 'left-right organizer'. These flows direct asymmetric activation of a conserved Nodal (TGFβ) signalling pathway that guides asymmetric morphogenesis of developing organs. We discuss the leading hypotheses for how cilia-generated asymmetric fluid flows are translated into asymmetric molecular signals. We also discuss emerging mechanisms that control the subcellular positioning of cilia and the cellular architecture of the left-right organizer, both of which are critical for effective cilia function during left-right patterning. Finally, using mosaic cell-labelling and time-lapse imaging in the zebrafish embryo, we provide new evidence that precursor cells maintain their relative positions as they give rise to the ciliated left-right organizer. This suggests the possibility that these cells acquire left-right positional information prior to the appearance of cilia.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).
Willigenburg, Nienke; Hewett, Timothy E
2017-03-01
To define the relationship between Functional Movement Screen (FMS) scores and hop performance, hip strength, and knee strength in collegiate football players. Cross-sectional cohort. Freshmen of a Division I collegiate American football team (n = 59). The athletes performed the FMS, and also a variety of hop tests, isokinetic knee strength, and isometric hip strength tasks. We recorded total FMS score, peak strength, and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman correlation coefficients quantified the relationships between these measures, and χ analyses compared the number of athletes with asymmetries on the different tasks. We observed significant correlations (r = 0.38-0.56, P ≤ 0.02) between FMS scores and hop distance but not between FMS scores and hip or knee strength (all P ≥ 0.21). The amount of asymmetry on the FMS test was significantly correlated to the amount of asymmetry on the timed 6-m hop (r = 0.44, P < 0.01) but not to hip or knee strength asymmetries between limbs (all P ≥ 0.34). Functional Movement Screen score was positively correlated to hop distance, and limb asymmetry in FMS tasks was correlated to limb asymmetry in 6-m hop time in football players. No significant correlations were observed between FMS score and hip and knee strength or between FMS asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time-efficient and cost-efficient alternative to FMS testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries.
Essner, Jeffrey J; Amack, Jeffrey D; Nyholm, Molly K; Harris, Erin B; Yost, H Joseph
2005-03-01
Monocilia have been proposed to establish the left-right (LR) body axis in vertebrate embryos by creating a directional fluid flow that triggers asymmetric gene expression. In zebrafish, dorsal forerunner cells (DFCs) express a conserved ciliary dynein gene (left-right dynein-related1, lrdr1) and form a ciliated epithelium inside a fluid-filled organ called Kupffer's vesicle (KV). Here, videomicroscopy demonstrates that cilia inside KV are motile and create a directional fluid flow just prior to the onset of asymmetric gene expression in lateral cells. Laser ablation of DFCs and surgical disruption of KV provide direct evidence that ciliated KV cells are required during early somitogenesis for subsequent LR patterning in the brain, heart and gut. Antisense morpholinos against lrdr1 disrupt KV fluid flow and perturb LR development. Furthermore, lrdr1 morpholinos targeted to DFC/KV cells demonstrate that Lrdr1 functions in these ciliated cells to control LR patterning. This provides the first direct evidence, in any vertebrate, that impairing cilia function in derivatives of the dorsal organizer, and not in other cells that express ciliogenic genes, alters LR development. Finally, genetic analysis reveals novel roles for the T-box transcription factor no tail and the Nodal signaling pathway as upstream regulators of lrdr1 expression and KV morphogenesis. We propose that KV is a transient embryonic 'organ of asymmetry' that directs LR development by establishing a directional fluid flow. These results suggest that cilia are an essential component of a conserved mechanism that controls the transition from bilateral symmetry to LR asymmetry in vertebrates.
NASA Astrophysics Data System (ADS)
Wang, Xiaoyu; Lu, Zhun
2018-03-01
We investigate the Sivers asymmetry in the pion-induced single polarized Drell-Yan process in the theoretical framework of the transverse momentum dependent factorization up to next-to-leading logarithmic order of QCD. Within the TMD evolution formalism of parton distribution functions, the recently extracted nonperturbative Sudakov form factor for the pion distribution functions as well as the one for the Sivers function of the proton are applied to numerically estimate the Sivers asymmetry in the π-p Drell-Yan at the kinematics of the COMPASS at CERN. In the low b region, the Sivers function in b -space can be expressed as the convolution of the perturbatively calculable hard coefficients and the corresponding collinear correlation function, of which the Qiu-Sterman function is the most relevant one. The effect of the energy-scale dependence of the Qiu-Sterman function to the asymmetry is also studied. We find that our prediction on the Sivers asymmetries as functions of xp, xπ, xF and q⊥ is consistent with the recent COMPASS measurement.
Gokey, Jason J.; Dasgupta, Agnik; Amack, Jeffrey D.
2015-01-01
Asymmetric fluid flows generated by motile cilia in a transient ‘organ of asymmetry’ are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H+-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer’s vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures—neuromasts and olfactory placodes—suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. PMID:26254189
Stochastic left–right neuronal asymmetry in Caenorhabditis elegans
Alqadah, Amel; Hsieh, Yi-Wen; Xiong, Rui
2016-01-01
Left–right asymmetry in the nervous system is observed across species. Defects in left–right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing ‘C’ (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWCOFF (default) and AWCON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821536
Right across the tree of life: the evolution of left-right asymmetry in the Bilateria.
Namigai, Erica K O; Kenny, Nathan J; Shimeld, Sebastian M
2014-06-01
Directional left/right (LR) asymmetries, in which there are consistent, heritable differences in morphology between the left and right sides of bilaterally symmetrical organisms, are found in animals across the Bilateria. For many years, we have lacked evidence for shared mechanisms underlying their development. This led to the supposition that the mechanisms driving establishment of LR asymmetries, and consequently the asymmetries themselves, had evolved separately in the three major Superphyla that constitute the Bilateria. The recent discovery that the transforming growth factor-beta (TGF-B) ligand Nodal plays a role in the regulation of LR asymmetry in both Deuterostomia and Lophotrochozoa has reignited debate in this field, as it suggests that at least this aspect of the development of the LR axis is conserved. In this review, we discuss evidence for shared mechanisms of LR asymmetry establishment across the bilaterian tree of life and consider how these mechanisms might have diverged across the Metazoa over the last 500 million years or so of evolution. As well as the likelihood that Nodal is an ancestral mechanism for regulating LR asymmetry, we reemphasize cytoskeletal architecture as a potential shared mechanism underlying symmetry breaking. However, convergent evolution remains a distinct possibility and study of a wider diversity of species will be needed to distinguish between conserved and lineage-specific mechanisms. © 2014 Wiley Periodicals, Inc.
Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite
NASA Astrophysics Data System (ADS)
Pizzarello, Sandra; Huang, Yongsong; Alexandre, Marcelo R.
2008-03-01
The nonracemic amino acids of meteorites provide the only natural example of molecular asymmetry measured so far outside the biosphere. Because extant life depends on chiral homogeneity for the structure and function of biopolymers, the study of these meteoritic compounds may offer insights into the establishment of prebiotic attributes in chemical evolution as well as the origin of terrestrial homochirality. However, all efforts to understand the origin, distribution, and scope of these amino acids' enantiomeric excesses (ee) have been frustrated by the ready exposure of meteorites to terrestrial contaminants and the ubiquitous homochirality of such contamination. We have analyzed the soluble organic composition of a carbonaceous meteorite from Antarctica that was collected and stored under controlled conditions, largely escaped terrestrial contamination and offers an exceptionally pristine sample of prebiotic material. Analyses of the meteorite diastereomeric amino acids alloisoleucine and isoleucine allowed us to show that their likely precursor molecules, the aldehydes, also carried a sizable molecular asymmetry of up to 14% in the asteroidal parent body. Aldehydes are widespread and abundant interstellar molecules; that they came to be present, survived, and evolved in the solar system carrying ee gives support to the idea that biomolecular traits such as chiral asymmetry could have been seeded in abiotic chemistry ahead of life.
Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite.
Pizzarello, Sandra; Huang, Yongsong; Alexandre, Marcelo R
2008-03-11
The nonracemic amino acids of meteorites provide the only natural example of molecular asymmetry measured so far outside the biosphere. Because extant life depends on chiral homogeneity for the structure and function of biopolymers, the study of these meteoritic compounds may offer insights into the establishment of prebiotic attributes in chemical evolution as well as the origin of terrestrial homochirality. However, all efforts to understand the origin, distribution, and scope of these amino acids' enantiomeric excesses (ee) have been frustrated by the ready exposure of meteorites to terrestrial contaminants and the ubiquitous homochirality of such contamination. We have analyzed the soluble organic composition of a carbonaceous meteorite from Antarctica that was collected and stored under controlled conditions, largely escaped terrestrial contamination and offers an exceptionally pristine sample of prebiotic material. Analyses of the meteorite diastereomeric amino acids alloisoleucine and isoleucine allowed us to show that their likely precursor molecules, the aldehydes, also carried a sizable molecular asymmetry of up to 14% in the asteroidal parent body. Aldehydes are widespread and abundant interstellar molecules; that they came to be present, survived, and evolved in the solar system carrying ee gives support to the idea that biomolecular traits such as chiral asymmetry could have been seeded in abiotic chemistry ahead of life.
Hemispheric Asymmetries and Cognitive Flexibility: An ERP and sLORETA Study
ERIC Educational Resources Information Center
Ocklenburg, Sebastian; Gunturkun, Onur; Beste, Christian
2012-01-01
Although functional cerebral asymmetries (FCAs) affect all cognitive domains, their modulation of the efficacy of specific executive functions is largely unexplored. In the present study, we used a lateralized version of the task switching paradigm to investigate the relevance of hemispheric asymmetries for cognitive control processes. Words were…
Gu, Feng; Zhang, Caicai; Hu, Axu; Zhao, Guoping
2013-12-01
For nontonal language speakers, speech processing is lateralized to the left hemisphere and musical processing is lateralized to the right hemisphere (i.e., function-dependent brain asymmetry). On the other hand, acoustic temporal processing is lateralized to the left hemisphere and spectral/pitch processing is lateralized to the right hemisphere (i.e., acoustic-dependent brain asymmetry). In this study, we examine whether the hemispheric lateralization of lexical pitch and acoustic pitch processing in tonal language speakers is consistent with the patterns of function- and acoustic-dependent brain asymmetry in nontonal language speakers. Pitch contrast in both speech stimuli (syllable /ji/ in Experiment 1) and nonspeech stimuli (harmonic tone in Experiment 1; pure tone in Experiment 2) was presented to native Cantonese speakers in passive oddball paradigms. We found that the mismatch negativity (MMN) elicited by lexical pitch contrast was lateralized to the left hemisphere, which is consistent with the pattern of function-dependent brain asymmetry (i.e., left hemisphere lateralization for speech processing) in nontonal language speakers. However, the MMN elicited by acoustic pitch contrast was also left hemisphere lateralized (harmonic tone in Experiment 1) or showed a tendency for left hemisphere lateralization (pure tone in Experiment 2), which is inconsistent with the pattern of acoustic-dependent brain asymmetry (i.e., right hemisphere lateralization for acoustic pitch processing) in nontonal language speakers. The consistent pattern of function-dependent brain asymmetry and the inconsistent pattern of acoustic-dependent brain asymmetry between tonal and nontonal language speakers can be explained by the hypothesis that the acoustic-dependent brain asymmetry is the consequence of a carryover effect from function-dependent brain asymmetry. Potential evolutionary implication of this hypothesis is discussed. © 2013.
Menstrual cycle-related changes of functional cerebral asymmetries in fine motor coordination.
Bayer, Ulrike; Hausmann, Markus
2012-06-01
Fluctuating sex hormone levels during the menstrual cycle have been shown to affect functional cerebral asymmetries in cognitive domains. These effects seem to result from the neuromodulatory properties of sex hormones and their metabolites on interhemispheric processing. The present study was carried out to investigate whether functional cerebral asymmetries in fine motor coordination as reflected by manual asymmetries are also susceptible to natural sex hormonal variations during the menstrual cycle. Sixteen right-handed women with a regular menstrual cycle performed a finger tapping paradigm consisting of two conditions (simple, sequential) during the low hormone menstrual phase and the high estrogen and progesterone luteal phase. To validate the luteal phase, saliva levels of free progesterone (P) were analysed using chemiluminescence assays. As expected, normally cycling women showed a substantial decrease in manual asymmetries in a more demanding sequential tapping condition involving four fingers compared with simple (repetitive) finger tapping. This reduction in the degree of dominant (right) hand manual asymmetries was evident during the luteal phase. During the menstrual phase, however, manual asymmetries were even reversed in direction, indicating a slight advantage in favour of the non-dominant (left) hand. These findings suggest that functional cerebral asymmetries in fine motor coordination are affected by sex hormonal changes during the menstrual cycle, probably via hormonal modulations of interhemispheric interaction. © 2012 Elsevier Inc. All rights reserved.
Dhamoon, Mandip S; Cheung, Ying-Kuen; Bagci, Ahmet; Alperin, Noam; Sacco, Ralph L; Elkind, Mitchell S V; Wright, Clinton B
2017-01-01
Asymmetry of brain dysfunction may disrupt brain network efficiency. We hypothesized that greater left-right white matter hyperintensity volume (WMHV) asymmetry was associated with functional trajectories. Methods: In the Northern Manhattan Study, participants underwent brain MRI with axial T1, T2, and fluid attenuated inversion recovery sequences, with baseline interview and examination. Volumetric WMHV distribution across 14 brain regions was determined separately by combining bimodal image intensity distribution and atlas based methods. Participants had annual functional assessments with the Barthel index (BI, range 0-100) over a mean of 7.3 years. Generalized estimating equations (GEE) models estimated associations of regional WMHV and regional left-right asymmetry with baseline BI and change over time, adjusted for baseline medical risk factors, sociodemographics, and cognition, and stroke and myocardial infarction during follow-up. Results: Among 1,195 participants, greater WMHV asymmetry in the parietal lobes (-8.46 BI points per unit greater WMHV on the right compared to left, 95% CI -3.07, -13.86) and temporal lobes (-2.48 BI points, 95% CI -1.04, -3.93) was associated with lower overall function. Greater WMHV asymmetry in the parietal lobes (-1.09 additional BI points per year per unit greater WMHV on the left compared to right, 95% CI -1.89, -0.28) was independently associated with accelerated functional decline. Conclusions: In this large population-based study with long-term repeated measures of function, greater regional WMHV asymmetry was associated with lower function and functional decline. In addition to global WMHV, WHMV asymmetry may be an important predictor of long-term functional status.
Yonehara, Keisuke; Fiscella, Michele; Drinnenberg, Antonia; Esposti, Federico; Trenholm, Stuart; Krol, Jacek; Franke, Felix; Scherf, Brigitte Gross; Kusnyerik, Akos; Müller, Jan; Szabo, Arnold; Jüttner, Josephine; Cordoba, Francisco; Reddy, Ashrithpal Police; Németh, János; Nagy, Zoltán Zsolt; Munier, Francis; Hierlemann, Andreas; Roska, Botond
2016-01-01
Summary Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract PMID:26711119
RICE, JOHN; SEELEY, MATTHEW K.
2010-01-01
Functional asymmetry is an idea that is often used to explain documented bilateral asymmetries during able-bodied gait. Within this context, this idea suggests that the non-dominant and dominant legs, considered as whole entities, contribute asymmetrically to support and propulsion during walking. The degree of functional asymmetry may depend upon walking speed. The purpose of this study was to better understand the potential relationship between functional asymmetry and walking speed. Bilateral ground reaction forces (GRF) were measured for 20 healthy subjects who walked at nine different speeds: preferred, +10%, +20%, +30%, +40, −10%, −20%, −30%, and −40%. Contribution to support was determined to be the support impulse: the time integral of the vertical GRF during stance. Contribution to propulsion was determined to be the propulsion impulse: the time integral of the anterior-posterior GRF, while this force was directed forward. Repeated measures ANOVA (α = 0.05) revealed leg × speed interactions for normalized support (p = 0.001) and propulsion (p = 0.001) impulse, indicating that speed does affect the degree of functional asymmetry during gait. Post hoc comparisons (α = 0.05) showed that support impulse was approximately 2% greater for the dominant leg, relative to the non-dominant leg, for the −10%, −20%, and −40% speeds. Propulsion impulse was 12% greater for the dominant leg than for the non-dominant leg at the +20% speed. Speed does appear to affect the magnitude of bilateral asymmetry during walking, however, only the bilateral difference for propulsion impulse at one fast speed (+20%) was supportive of the functional asymmetry idea. PMID:27182346
McDowell, Gary; Rajadurai, Suvithan; Levin, Michael
2016-12-19
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).
Substrate Stiffness Regulates the Development of Left-Right Asymmetry in Cell Orientation.
Bao, Yuanye; Huang, Yaozhun; Lam, Miu Ling; Xu, Ting; Zhu, Ninghao; Guo, Zhaobin; Cui, Xin; Lam, Raymond H W; Chen, Ting-Hsuan
2016-07-20
Left-right (LR) asymmetry of tissue/organ structure is a morphological feature essential for many tissue functions. The ability to incorporate the LR formation in constructing tissue/organ replacement is important for recapturing the inherent tissue structure and functions. However, how LR asymmetry is formed remains largely underdetermined, which creates significant hurdles to reproduce and regulate the formation of LR asymmetry in an engineering context. Here, we report substrate rigidity functioning as an effective switch that turns on the development of LR asymmetry. Using micropatterned cell-adherent stripes on rigid substrates, we found that cells collectively oriented at a LR-biased angle relative to the stripe boundary. This LR asymmetry was initiated by a LR-biased migration of cells at stripe boundary, which later generated a velocity gradient propagating from stripe boundary to the center. After a series of cell translocations and rotations, ultimately, an LR-biased cell orientation within the micropatterned stripe was formed. Importantly, this initiation and propagation of LR asymmetry was observed only on rigid but not on soft substrates, suggesting that the LR asymmetry was regulated by rigid substrate probably through the organization of actin cytoskeleton. Together, we demonstrated substrate rigidity as a determinant factor that mediates the self-organizing LR asymmetry being unfolded from single cells to multicellular organization. More broadly, we anticipate that our findings would pave the way for rebuilding artificial tissue constructs with inherent LR asymmetry in the future.
Desvignes, Thomas; Nguyen, Thaovi; Chesnel, Franck; Bouleau, Aurélien; Fauvel, Christian; Bobe, Julien
2015-08-01
Retinitis pigmentosa 2 (RP2) gene is responsible for up to 20% of X-linked retinitis pigmentosa, a severe heterogeneous genetic disorder resulting in progressive retinal degeneration in humans. In vertebrates, several bodies of evidence have clearly established the role of Rp2 protein in cilia genesis and/or function. Unexpectedly, some observations in zebrafish have suggested the oocyte-predominant expression of the rp2 gene, a typical feature of maternal-effect genes. In the present study, we investigate the maternal inheritance of rp2 gene products in zebrafish eggs in order to address whether rp2 could be a novel maternal-effect gene required for normal development. Although both rp2 mRNA and corresponding protein are expressed during oogenesis, rp2 mRNA is maternally inherited, in contrast to Rp2 protein. A knockdown of the protein transcribed from both rp2 maternal and zygotic mRNA results in delayed epiboly and severe developmental defects, including eye malformations, that were not observed when only the protein from zygotic origin was knocked down. Moreover, the knockdown of maternal and zygotic Rp2 revealed a high incidence of left-right asymmetry establishment defects compared to only zygotic knockdown. Here we show that rp2 is a novel maternal-effect gene exclusively expressed in oocytes within the zebrafish ovary and demonstrate that maternal rp2 mRNA is essential for successful embryonic development and thus contributes to egg developmental competence. Our observations also reveal that Rp2 protein translated from maternal mRNA is important to allow normal heart loop formation, thus providing evidence of a direct maternal contribution to left-right asymmetry establishment. © 2015 by the Society for the Study of Reproduction, Inc.
Ermakov, A S
2013-01-01
During individual development of vertebrates, the anteroposterior, dorsoventral, and left-right axes of the body are established. Although the vertebrates are bilaterally symmetric outside, their internal structure is asymmetric. Of special interest is the insight into establishment of visceral left-right asymmetry in mammals, since it has not only basic but also an applied medical significance. As early as 1976, it was hypothesized that the ciliary action could be associated with the establishment of left-right asymmetry in mammals. Currently, the majority of researchers agree that the ciliary action in the region of Hensen's node and the resulting leftward laminar fluid flow play a key role in the loss of bilateral symmetry and triggering of expression of the genes constituting the Nodal-Ptx2 signaling cascade, specific of the left side of the embryo. The particular mechanism underlying this phenomenon is still insufficiently clear. There are three competing standpoints on how leftward fluid flow induces expression of several genes in the left side of the embryo. The morphogen gradient hypothesis postulates that the leftward flow creates a high concentration of a signaling biomolecule in the left side of Hensen's node, which, in turn, stimulates triggering of.gene expression of the Nodal-Ptx2 cascade. The biomechanical hypothesis (or two-cilia model) states that the immotile cilia located in the periphery of Hensen's node act as mechanosensors, activate mechanosensory ion channels, and trigger calcium signaling in the left side of the embryo. Finally, the "shuttle-bus model" holds that leftward fluid flow carries the lipid vesicles, which are crashed when colliding immotile cilia in the periphery of Hensen's node to release the contained signaling biomolecules. It is also noteworthy that the association between the ciliary action and establishment of asymmetry has been recently discovered in representatives of the lower invertebrates. In this paper, the author considers evolution of concepts on the mechanisms underlying establishment of visceral left-right asymmetry since 1976 until the present and critically reexamines the current concepts in this field of science. According to the author, serious arguments favoring the biomechanical hypothesis for determination of left-right asymmetry in mammals have been obtained.
Nodal signalling and asymmetry of the nervous system
Signore, Iskra A.; Palma, Karina
2016-01-01
The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left–right asymmetry of the nervous system. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821531
Can theories of visual representation help to explain asymmetries in amygdala function?
McMenamin, Brenton W; Marsolek, Chad J
2013-06-01
Emotional processing differs between the left and right hemispheres of the brain, and functional differences have been reported more specifically between the left and right amygdalae, subcortical structures heavily implicated in emotional processing. However, the empirical pattern of amygdalar asymmetries is inconsistent with extant theories of emotional asymmetries. Here we review this discrepancy, and we hypothesize that hemispheric differences in visual object processing help to explain the previously reported functional differences between the left and right amygdalae. The implication that perceptual factors play a large role in determining amygdalar asymmetries may help to explain amygdalar dysfunction in the development and maintenance of posttraumatic stress disorder.
Wei, Lei; Xu, Fei; Wang, Yuzhi; Cai, Zhongqiang; Yu, Wenchao; He, Cheng; Jiang, Qiuyun; Xu, Xiqiang; Guo, Wen; Wang, Xiaotong
2018-03-28
Left-right (L-R) asymmetry is controlled by gene regulation pathways for the L-R axis, and in vertebrates, the gene Pitx2 in TGF-β signaling pathway plays important roles in the asymmetrical formation of organs. However, less is known about the asymmetries of anatomically identical paired organs, as well as the transcriptional regulation mechanism of the gene Pitx in invertebrates. Here, we report the molecular biological differences between the left and right mantles of an invertebrate, the Pacific oyster Crassostrea gigas, and propose one possible mechanism underlying those differences. RNA sequencing (RNA-seq) analysis indicated that the paired organs showed different gene expression patterns, suggesting possible functional differences in shell formation, pheromone signaling, nerve conduction, the stress response, and other physiological processes. RNA-seq and real-time qPCR analysis indicated high right-side expression of the Pitx homolog (cgPitx) in oyster mantle, supporting a conserved role for Pitx in controlling asymmetry. Methylation-dependent restriction-site associated DNA sequencing (MethylRAD) identified a methylation site in the promoter region of cgPitx and showed significantly different methylation levels between the left and right mantles. This is the first report, to our knowledge, of such a difference in methylation in spiralians, and it was further confirmed in 18 other individuals by using a pyrosequencing assay. The miRNome analysis and the TGF-β receptor/Smad inhibition experiment further supported that several genes in TGF-β signaling pathway may be related with the L/R asymmetry of oyster mantles. These results suggested that the molecular differentiation of the oyster's paired left and right mantles is significant, TGF-β signaling pathway could be involved in establishing or maintaining the asymmetry, and the cgPitx gene as one of genes in this pathway; the different methylation levels in its promoter regions between L/R mantles was the one of possible mechanisms regulating the left-right functional differentiation.
Bishop, Chris; Read, Paul; McCubbine, Jermaine; Turner, Anthony
2018-02-27
Inter-limb asymmetries have been shown to be greater during vertical jumping compared to horizontal jumping. Notable inter-limb differences have also been established at an early age in male youth soccer players. Furthermore, given the multi-planar nature of soccer, establishing between-limb differences from multiple jump tests is warranted. At present, a paucity of data exists regarding asymmetries in youth female soccer players and their effects on physical performance. The aims of this study were to quantify inter-limb asymmetries from unilateral jump tests and examine their effects on speed and jump performance. Nineteen elite youth female soccer players performed a single leg countermovement jump (SLCMJ), single, triple, and crossover hops for distance and a 20 m sprint test. Test reliability was good to excellent (ICC = 0.81-0.99) and variability acceptable (CV = 1.74-5.42%). A one-way ANOVA highlighted larger asymmetries from the SLCMJ compared to all other jump tests (p < 0.05). Pearson's correlations portrayed significant relationships between vertical asymmetries from the SLCMJ and slower sprint times (r = 0.49-0.59). Significant negative relationships were also found between horizontal asymmetries during the triple hop test and horizontal jump performance (r = -0.47 to -0.58) and vertical asymmetries during the SLCMJ and vertical jump performance (r = -0.47 to -0.53). The results from this study highlight that the SLCMJ appears to be the most appropriate jump test for identifying between-limb differences with values ∼12% showing negative associations with sprint times. Furthermore, larger asymmetries are associated with reduced jump performance and would appear to be direction-specific. Practitioners can use this information as normative data to be mindful of when quantifying inter-limb asymmetries and assessing their potential impact on physical performance in youth female soccer players.
NASA Astrophysics Data System (ADS)
Grayson, M.; Zhou, Wang; Yoo, Heun-Mo; Prabhu-Gaunkar, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.
A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients. Results will be shown of various semoconductor systems where this method is applied, from bulk doped semiconductors, to exfoliated 2D materials. McCormick Catalyst Award from Northwestern University, EECS Bridge Funding, and AFOSR FA9550-15-1-0247.
Rysavy, Noel M; Shimoda, Lori M N; Dixon, Alyssa M; Speck, Mark; Stokes, Alexander J; Turner, Helen; Umemoto, Eric Y
2014-01-01
Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation.
It's never too early to get it Right: A conserved role for the cytoskeleton in left-right asymmetry.
Vandenberg, Laura N; Lemire, Joan M; Levin, Michael
2013-11-01
For centuries, scientists and physicians have been captivated by the consistent left-right (LR) asymmetry of the heart, viscera, and brain. A recent study implicated tubulin proteins in establishing laterality in several experimental models, including asymmetric chemosensory receptor expression in C. elegans neurons, polarization of HL-60 human neutrophil-like cells in culture, and asymmetric organ placement in Xenopus. The same mutations that randomized asymmetry in these diverse systems also affect chirality in Arabidopsis, revealing a remarkable conservation of symmetry-breaking mechanisms among kingdoms. In Xenopus, tubulin mutants only affected LR patterning very early, suggesting that this axis is established shortly after fertilization. This addendum summarizes and extends the knowledge of the cytoskeleton's role in the patterning of the LR axis. Results from many species suggest a conserved role for the cytoskeleton as the initiator of asymmetry, and indicate that symmetry is first broken during early embryogenesis by an intracellular process.
NASA Astrophysics Data System (ADS)
Williams, Alex C.; Hitt, Austin; Voisin, Sophie; Tourassi, Georgia
2013-03-01
The biological concept of bilateral symmetry as a marker of developmental stability and good health is well established. Although most individuals deviate slightly from perfect symmetry, humans are essentially considered bilaterally symmetrical. Consequently, increased fluctuating asymmetry of paired structures could be an indicator of disease. There are several published studies linking bilateral breast size asymmetry with increased breast cancer risk. These studies were based on radiologists' manual measurements of breast size from mammographic images. We aim to develop a computerized technique to assess fluctuating breast volume asymmetry in screening mammograms and investigate whether it correlates with the presence of breast cancer. Using a large database of screening mammograms with known ground truth we applied automated breast region segmentation and automated breast size measurements in CC and MLO views using three well established methods. All three methods confirmed that indeed patients with breast cancer have statistically significantly higher fluctuating asymmetry of their breast volumes. However, statistically significant difference between patients with cancer and benign lesions was observed only for the MLO views. The study suggests that automated assessment of global bilateral asymmetry could serve as a breast cancer risk biomarker for women undergoing mammographic screening. Such biomarker could be used to alert radiologists or computer-assisted detection (CAD) systems to exercise increased vigilance if higher than normal cancer risk is suspected.
MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates.
Guimier, Anne; Gabriel, George C; Bajolle, Fanny; Tsang, Michael; Liu, Hui; Noll, Aaron; Schwartz, Molly; El Malti, Rajae; Smith, Laurie D; Klena, Nikolai T; Jimenez, Gina; Miller, Neil A; Oufadem, Myriam; Moreau de Bellaing, Anne; Yagi, Hisato; Saunders, Carol J; Baker, Candice N; Di Filippo, Sylvie; Peterson, Kevin A; Thiffault, Isabelle; Bole-Feysot, Christine; Cooley, Linda D; Farrow, Emily G; Masson, Cécile; Schoen, Patric; Deleuze, Jean-François; Nitschké, Patrick; Lyonnet, Stanislas; de Pontual, Loic; Murray, Stephen A; Bonnet, Damien; Kingsmore, Stephen F; Amiel, Jeanne; Bouvagnet, Patrice; Lo, Cecilia W; Gordon, Christopher T
2015-11-01
Heterotaxy results from a failure to establish normal left-right asymmetry early in embryonic development. By whole-exome sequencing, whole-genome sequencing and high-throughput cohort resequencing, we identified recessive mutations in MMP21 (encoding matrix metallopeptidase 21) in nine index cases with heterotaxy. In addition, Mmp21-mutant mice and mmp21-morphant zebrafish displayed heterotaxy and abnormal cardiac looping, respectively, suggesting a new role for extracellular matrix remodeling in the establishment of laterality in vertebrates.
MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates
Guimier, Anne; Gabriel, George C.; Bajolle, Fanny; Tsang, Michael; Liu, Hui; Noll, Aaron; Schwartz, Molly; El Malti, Rajae; Smith, Laurie D.; Klena, Nikolai T.; Jimenez, Gina; Miller, Neil A.; Oufadem, Myriam; Moreau de Bellaing, Anne; Yagi, Hisato; Saunders, Carol J.; Baker, Candice N.; Di Filippo, Sylvie; Peterson, Kevin A.; Thiffault, Isabelle; Bole-Feysot, Christine; Cooley, Linda D.; Farrow, Emily G.; Masson, Cécile; Schoen, Patric; Deleuze, Jean-François; Nitschké, Patrick; Lyonnet, Stanislas; de Pontual, Loic; Murray, Stephen A.; Bonnet, Damien; Kingsmore, Stephen F.; Amiel, Jeanne; Bouvagnet, Patrice; Lo, Cecilia W.; Gordon, Christopher T.
2017-01-01
Heterotaxy results from a failure to establish normal left-right asymmetry early in embryonic development. By whole exome sequencing, whole genome sequencing and high-throughput cohort resequencing we identified recessive mutations in matrix metallopeptidase 21 (MMP21), in nine index cases with heterotaxy. In addition, Mmp21 mutant mice and morphant zebrafish display heterotaxy and abnormal cardiac looping, respectively, suggesting a novel role for extra-cellular remodeling in the establishment of laterality in vertebrates. PMID:26437028
Soft cooperation systems and games
NASA Astrophysics Data System (ADS)
Fernández, J. R.; Gallego, I.; Jiménez-Losada, A.; Ordóñez, M.
2018-04-01
A cooperative game for a set of agents establishes a fair allocation of the profit obtained for their cooperation. In order to obtain this allocation, a characteristic function is known. It establishes the profit of each coalition of agents if this coalition decides to act alone. Originally players are considered symmetric and then the allocation only depends on the characteristic function; this paper is about cooperative games with an asymmetric set of agents. We introduced cooperative games with a soft set of agents which explains those parameters determining the asymmetry among them in the cooperation. Now the characteristic function is defined not over the coalitions but over the soft coalitions, namely the profit depends not only on the formed coalition but also on the attributes considered for the players in the coalition. The best known of the allocation rules for cooperative games is the Shapley value. We propose a Shapley kind solution for soft games.
Cerberus-Nodal-Lefty-Pitx signaling cascade controls left-right asymmetry in amphioxus.
Li, Guang; Liu, Xian; Xing, Chaofan; Zhang, Huayang; Shimeld, Sebastian M; Wang, Yiquan
2017-04-04
Many bilaterally symmetrical animals develop genetically programmed left-right asymmetries. In vertebrates, this process is under the control of Nodal signaling, which is restricted to the left side by Nodal antagonists Cerberus and Lefty. Amphioxus, the earliest diverging chordate lineage, has profound left-right asymmetry as a larva. We show that Cerberus , Nodal , Lefty , and their target transcription factor Pitx are sequentially activated in amphioxus embryos. We then address their function by transcription activator-like effector nucleases (TALEN)-based knockout and heat-shock promoter (HSP)-driven overexpression. Knockout of Cerberus leads to ectopic right-sided expression of Nodal , Lefty , and Pitx , whereas overexpression of Cerberus represses their left-sided expression. Overexpression of Nodal in turn represses Cerberus and activates Lefty and Pitx ectopically on the right side. We also show Lefty represses Nodal , whereas Pitx activates Nodal These data combine in a model in which Cerberus determines whether the left-sided gene expression cassette is activated or repressed. These regulatory steps are essential for normal left-right asymmetry to develop, as when they are disrupted embryos may instead form two phenotypic left sides or two phenotypic right sides. Our study shows the regulatory cassette controlling left-right asymmetry was in place in the ancestor of amphioxus and vertebrates. This includes the Nodal inhibitors Cerberus and Lefty, both of which operate in feedback loops with Nodal and combine to establish asymmetric Pitx expression. Cerberus and Lefty are missing from most invertebrate lineages, marking this mechanism as an innovation in the lineage leading to modern chordates.
Transverse single-spin asymmetries: Challenges and recent progress
Metz, Andreas; Pitonyak, Daniel; Schafer, Andreas; ...
2014-11-25
In this study, transverse single-spin asymmetries are among the most intriguing observables in hadronic physics. Though such asymmetries were already measured for the first time about four decades ago, their origin is still under debate. Here we consider transverse single-spin asymmetries in semi-inclusive lepton–nucleon scattering, in nucleon–nucleon scattering, and in inclusive lepton–nucleon scattering. It is argued that, according to recent work, the single-spin asymmetries for those three processes may be simultaneously described in perturbative QCD, where the re-scattering of the active partons plays a crucial role. A comparison of single-spin asymmetries in different reactions can also shed light on themore » universality of transverse momentum dependent parton correlation functions. In particular, we discuss what existing data may tell us about the predicted process dependence of the Sivers function.« less
Symmetry and asymmetry in the human brain
NASA Astrophysics Data System (ADS)
Hugdahl, Kenneth
2005-10-01
Structural and functional asymmetry in the human brain and nervous system is reviewed in a historical perspective, focusing on the pioneering work of Broca, Wernicke, Sperry, and Geschwind. Structural and functional asymmetry is exemplified from work done in our laboratory on auditory laterality using an empirical procedure called dichotic listening. This also involves different ways of validating the dichotic listening procedure against both invasive and non-invasive techniques, including PET and fMRI blood flow recordings. A major argument is that the human brain shows a substantial interaction between structurally, or "bottom-up" asymmetry and cognitively, or "top-down" modulation, through a focus of attention to the right or left side in auditory space. These results open up a more dynamic and interactive view of functional brain asymmetry than the traditional static view that the brain is lateralized, or asymmetric, only for specific stimuli and stimulus properties.
Rysavy, Noel M.; Shimoda, Lori M. N.; Dixon, Alyssa M.; Speck, Mark; Stokes, Alexander J.; Turner, Helen; Umemoto, Eric Y.
2014-01-01
Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911
ERIC Educational Resources Information Center
Bullock, Daniel; And Others
1987-01-01
This commentary, written in response to Witelson's work (1987), examines alternative ways of determining how the developmentally stable functional asymmetry (hemispheric specialization) observed in neurologically intact children can be reconciled with the dramatic recovery of function often displayed following unilateral brain damage. (PCB)
Asaoka, Yoichi; Nagai, Yoko; Namae, Misako; Furutani-Seiki, Makoto; Nishina, Hiroshi
2016-05-20
The precise government of the left-right (LR) specification of an organ is an essential aspect of its morphogenesis. Multiple signaling cascades have been implicated in the establishment of vertebrate LR asymmetry. Recently, mTOR signaling was found to critically regulate the development of LR asymmetry in zebrafish. However, the upstream factor(s) that activate mTOR signaling in the context of LR specification are as yet unknown. In this study, we identify the SLC7 amino acid transporters Slc7a7 and Slc7a8 as novel regulators of LR asymmetry development in the small fish medaka. Knockdown of Slc7a7 and/or Slc7a8 in medaka embryos disrupted LR organ asymmetries. Depletion of Slc7a7 hindered left-sided expression of the southpaw (spaw) gene, which is responsible for LR axis determination. Work at the cellular level revealed that Slc7a7 coordinates ciliogenesis in the epithelium of Kupffer's vesicle and thereby the generation of the nodal fluid flow required for LR asymmetry. Interestingly, knockdown of Slc7a7 depressed mTOR signaling activity in medaka embryos. Treatment with rapamycin, an inhibitor of mTOR signaling, together with Slc7a7 knockdown synergistically perturbed spaw expression, indicating an interaction between Slc7a7 and mTOR signaling affecting gene expression required for LR specification. Taken together, our results demonstrate that Slc7a7 governs the regulation of LR asymmetry development via the activation of mTOR signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
``Green's function'' approach & low-mode asymmetries
NASA Astrophysics Data System (ADS)
Masse, Laurent; Clark, Dan; Salmonson, Jay; MacLaren, Steve; Ma, Tammy; Khan, Shahab; Pino, Jesse; Ralph, Jo; Czajka, C.; Tipton, Robert; Landen, Otto; Kyrala, Georges; 2 Team; 1 Team
2017-10-01
Long wavelength, low mode asymmetries are believed to play a leading role in limiting the performance of current ICF implosions on NIF. These long wavelength modes are initiated and driven by asymmetries in the x-ray flux from the hohlraum; however, the underlying hydrodynamics of the implosion also act to amplify these asymmetries. The work presented here aim to deepen our understanding of the interplay of the drive asymmetries and the underlying implosion hydrodynamics in determining the final imploded configuration. This is accomplished through a synthesis of numerical modeling, analytic theory, and experimental data. In detail, we use a Green's function approach to connect the drive asymmetry seen by the capsule to the measured inflight and hot spot symmetries. The approach has been validated against a suite of numerical simulations. Ultimately, we hope this work will identify additional measurements to further constrain the asymmetries and increase hohlraum illumination design flexibility on the NIF. The technique and derivation of associated error bars will be presented. LLC, (LLNS) Contract No. DE-AC52-07NA27344.
Asymmetric forceps increase fighting success among males of similar size in the maritime earwig
Munoz, Nicole E.; Zink, Andrew G.
2012-01-01
Extreme asymmetric morphologies are hypothesized to serve an adaptive function that counteracts sexual selection for symmetry. However direct tests of function for asymmetries are lacking, particularly in the context of animal weapons. The weapon of the maritime earwig, Anisolabis maritima, exhibits sizeable variation in the extent of directional asymmetry within and across body sizes, making it an ideal candidate for investigating the function of asymmetry. In this study, we characterized the extent of weapon asymmetry, characterized the manner in which asymmetric weapons are used in contests, staged dyadic contests between males of different size classes and analyzed the correlates of fighting success. In contests between large males, larger individuals won more fights and emerged as the dominant male. In contests between small males, however, weapon asymmetry was more influential in predicting overall fighting success than body size. This result reveals an advantage of asymmetric weaponry among males that are below the mean size in the population. A forceps manipulation experiment suggests that asymmetry may be an indirect, correlate of a morphologically independent factor that affects fighting ability. PMID:22984320
Behavioral and Physiological Findings of Gender Differences in Global-Local Visual Processing
ERIC Educational Resources Information Center
Roalf, David; Lowery, Natasha; Turetsky, Bruce I.
2006-01-01
Hemispheric asymmetries in global-local visual processing are well-established, as are gender differences in cognition. Although hemispheric asymmetry presumably underlies gender differences in cognition, the literature on gender differences in global-local processing is sparse. We employed event related brain potential (ERP) recordings during…
The myosin ID pathway and left-right asymmetry in Drosophila.
Géminard, Charles; González-Morales, Nicanor; Coutelis, Jean-Baptiste; Noselli, Stéphane
2014-06-01
Drosophila is a classical model to study body patterning, however left-right (L/R) asymmetry had remained unexplored, until recently. The discovery of the conserved myosin ID gene as a major determinant of L/R asymmetry has revealed a novel L/R pathway involving the actin cytoskeleton and the adherens junction. In this process, the HOX gene Abdominal-B plays a major role through the control of myosin ID expression and therefore symmetry breaking. In this review, we present organs and markers showing L/R asymmetry in Drosophila and discuss our current understanding of the underlying molecular genetic mechanisms. Drosophila represents a valuable model system revealing novel strategies to establish L/R asymmetry in invertebrates and providing an evolutionary perspective to the problem of laterality in bilateria. © 2014 Wiley Periodicals, Inc.
Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan
2016-07-01
Hemispheric asymmetries are a central principle of nervous system architecture and shape the functional organization of most cognitive systems. Structural gray matter asymmetries and callosal interactions have been identified as contributing neural factors but always fell short to constitute a full explanans. Meanwhile, recent advances in in vivo white matter tractography have unrevealed the asymmetrical organization of many intrahemispheric white matter pathways, which might serve as the missing link to explain the substrate of functional lateralization. By taking into account callosal interactions, gray matter asymmetries and asymmetrical interhemispheric pathways, we opt for a new triadic model that has the potential to explain many observations which cannot be elucidated within the current frameworks of lateralized cognition.
Dichotic listening in patients with situs inversus: brain asymmetry and situs asymmetry.
Tanaka, S; Kanzaki, R; Yoshibayashi, M; Kamiya, T; Sugishita, M
1999-06-01
In order to investigate the relation between situs asymmetry and functional asymmetry of the human brain, a consonant-vowel syllable dichotic listening test known as the Standard Dichotic Listening Test (SDLT) was administered to nine subjects with situs inversus (SI) that ranged in age from 6 to 46 years old (mean of 21.8 years old, S.D. = 15.6); the four males and five females all exhibited strong right-handedness. The SDLT was also used to study twenty four age-matched normal subjects that were from 6 to 48 years old (mean 21.7 years old, S.D. = 15.3); the twelve males and twelve females were all strongly right-handed and served as a control group. Eight out of the nine subjects (88.9%) with SI more often reproduced the sounds from the right ear than sounds from the left ear; this is called right ear advantage (REA). The ratio of REA in the control group was almost the same, i.e., nineteen out of the twenty-four subjects (79.1%) showed REA. Results of the present study suggest that the left-right reversal in situs inversus does not involve functional asymmetry of the brain. As such, the system that produces functional asymmetry in the human brain must independently recognize laterality from situs asymmetry.
Mechanisms of left-right asymmetry and patterning: driver, mediator and responder.
Hamada, Hiroshi; Tam, Patrick P L
2014-01-01
The establishment of a left-right (LR) organizer in the form of the ventral node is an absolute prerequisite for patterning the tissues on contralateral sides of the body of the mouse embryo. The experimental findings to date are consistent with a mechanistic paradigm that the laterality information, which is generated in the ventral node, elicits asymmetric molecular activity and cellular behaviour in the perinodal tissues. This information is then relayed to the cells in the lateral plate mesoderm (LPM) when the left-specific signal is processed and translated into LR body asymmetry. Here, we reflect on our current knowledge and speculate on the following: (a) what are the requisite anatomical and functional attributes of an LR organizer, (b) what asymmetric information is emanated from this organizer, and (c) how this information is transferred across the paraxial tissue compartment and elicits a molecular response specifically in the LPM.
Solovenchuk, L L; Arshavskiĭ, V V
1988-05-01
Clearly definable polymorphism of hemisphere interrelations represented by three phenotypes was established by the method of EEG cross-correlation analysis. Each phenotype of the three, representing polymorphism, is characterized by marked specificity of perception and the processing of information, which determines certain integral physiological characteristics of individuals. Phenotype frequencies in aboriginal and new-come populations of the North-East of the USSR differ significantly. In comparison with the inhabitants, Moscow Russians of Magadan are significantly closer to aboriginal population, judging by their frequency distribution, and this may be due to the strategy specificity in adaptation of populations to environmental conditions. Significant difference in phenotype frequencies is shown in representatives of both sexes, this being more pronounced in the aboriginal population. The establishment of interhemispheric reaction type by approx. 10th year of individual's life is confirmed. Phenotype frequency correlations, depending on parental phenotype, were analyzed in children. The role of genetic and environmental factors in manifestation of the hemisphere relationship type is discussed. Rationality of the population analysis of hemisphere asymmetry types is grounded, according to the study of behavioural genetics and population adaptation.
Lahvic, Jamie L.; Ji, Yongchang; Marin, Paloma; Zuflacht, Jonah P.; Springel, Mark W.; Wosen, Jonathan E.; Davis, Leigh; Hutson, Lara D.; Amack, Jeffrey D.; Marvin, Martha J.
2013-01-01
Small heat shock proteins (sHsps) regulate cellular functions not only under stress, but also during normal development, when they are expressed in organ-specific patterns. Here we demonstrate that two small heat shock proteins expressed in embryonic zebrafish heart, hspb7 and hspb12, have roles in the development of left-right asymmetry. In zebrafish, laterality is determined by the motility of cilia in Kupffer’s vesicle (KV), where hspb7 is expressed; knockdown of hspb7 causes laterality defects by disrupting the motility of these cilia. In embryos with reduced hspb7, the axonemes of KV cilia have a 9+0 structure, while control embyros have a predominately 9+2 structure. Reduction of either hspb7 or hspb12 alters the expression pattern of genes that propagate the signals that establish left-right asymmetry: the nodal-related gene southpaw (spaw) in the lateral plate mesoderm, and its downstream targets pitx2, lefty1 and lefty2. Partial depletion of hspb7 causes concordant heart, brain and visceral laterality defects, indicating that loss of KV cilia motility leads causes coordinated but randomized laterality. Reducing hspb12 leads to similar alterations in the expression of downstream laterality genes, but at a lower penetrance. Simultaneous reduction of hspb7 and hspb12 randomizes heart, brain and visceral laterality, suggesting that these two genes have partially redundant functions in the establishment of left-right asymmetry. In addition, both hspb7 and hspb12 are expressed in the precardiac mesoderm and in the yolk syncytial layer, which supports the migration and fusion of mesodermal cardiac precursors. In embryos in which the reduction of hspb7 or hspb12 was limited to the yolk, migration defects predominated, suggesting that the yolk expression of these genes rather than heart expression is responsible for the migration defects. PMID:24140541
May-Simera, Helen L; Kai, Masatake; Hernandez, Victor; Osborn, Daniel P S; Tada, Masazumi; Beales, Philip L
2010-09-15
Laterality defects such as situs inversus are not uncommonly encountered in humans, either in isolation or as part of another syndrome, but can have devastating developmental consequences. The events that break symmetry during early embryogenesis are highly conserved amongst vertebrates and involve the establishment of unidirectional flow by cilia within an organising centre such as the node in mammals or Kupffer's vesicle (KV) in teleosts. Disruption of this flow can lead to the failure to successfully establish left-right asymmetry. The correct apical-posterior cellular position of each node/KV cilium is critical for its optimal radial movement which serves to sweep fluid (and morphogens) in the same direction as its neighbours. Planar cell polarity (PCP) is an important conserved process that governs ciliary position and posterior tilt; however the underlying mechanism by which this occurs remains unclear. Here we show that Bbs8, a ciliary/basal body protein important for intraciliary/flagellar transport and the core PCP protein Vangl2 interact and are required for establishment and maintenance of left-right asymmetry during early embryogenesis in zebrafish. We discovered that loss of bbs8 and vangl2 results in laterality defects due to cilia disruption at the KV. We showed that perturbation of cell polarity following abrogation of vangl2 causes nuclear mislocalisation, implying defective centrosome/basal body migration and apical docking. Moreover, upon loss of bbs8 and vangl2, we observed defective actin organisation. These data suggest that bbs8 and vangl2 act synergistically on cell polarization to establish and maintain the appropriate length and number of cilia in the KV and thereby facilitate correct LR asymmetry. (c) 2010. Published by Elsevier Inc.
Cell chirality: emergence of asymmetry from cell culture.
Wan, Leo Q; Chin, Amanda S; Worley, Kathryn E; Ray, Poulomi
2016-12-19
Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left-right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Maji, Tanmay; Chakrabarti, Dipankar; Mukherjee, Asmita
2018-01-01
The spin asymmetries in SIDIS associated with T -odd TMDs are presented in a light-front quark-diquark model of a proton. To incorporate the effects of the final-state interaction, the light front wave functions are modified to have a phase factor which is essential to have Sivers or Boer-Mulders functions. The Sivers and Boer-Mulder asymmetries are compared with HERMES and COMPASS data.
Westerhausen, René; Kompus, Kristiina; Hugdahl, Kenneth
2014-01-01
Functional hemispheric differences for speech and language processing have been traditionally studied by using verbal dichotic-listening paradigms. The commonly observed right-ear preference for the report of dichotically presented syllables is taken to reflect the left hemispheric dominance for speech processing. However, the results of recent functional imaging studies also show that both hemispheres - not only the left - are engaged by dichotic listening, suggesting a more complex relationship between behavioral laterality and functional hemispheric activation asymmetries. In order to more closely examine the hemispheric differences underlying dichotic-listening performance, we report an analysis of functional magnetic resonance imaging (fMRI) data of 104 right-handed subjects, for the first time combining an interhemispheric difference and conjunction analysis. This approach allowed for a distinction of homotopic brain regions which showed symmetrical (i.e., brain region significantly activated in both hemispheres and no activation difference between the hemispheres), relative asymmetrical (i.e., activated in both hemispheres but significantly stronger in one than the other hemisphere), and absolute asymmetrical activation patterns (i.e., activated only in one hemisphere and this activation is significantly stronger than in the other hemisphere). Symmetrical activation was found in large clusters encompassing temporal, parietal, inferior frontal, and medial superior frontal regions. Relative and absolute left-ward asymmetries were found in the posterior superior temporal gyrus, located adjacent to symmetrically activated areas, and creating a lateral-medial gradient from symmetrical towards absolute asymmetrical activation within the peri-Sylvian region. Absolute leftward asymmetry was also found in the post-central and medial superior frontal gyri, while rightward asymmetries were found in middle temporal and middle frontal gyri. We conclude that dichotic listening engages a bihemispheric cortical network, showing a symmetrical and mostly leftward asymmetrical pattern. The here obtained functional (a)symmetry map might serve as a basis for future studies which - by studying the relevance of the here identified regions - clarify the relationship between behavioral laterality measures and hemispheric asymmetry. © 2013 Elsevier Inc. All rights reserved.
Combined Henyey-Greenstein and Rayleigh phase function.
Liu, Quanhua; Weng, Fuzhong
2006-10-01
The phase function is an important parameter that affects the distribution of scattered radiation. In Rayleigh scattering, a scatterer is approximated by a dipole, and its phase function is analytically related to the scattering angle. For the Henyey-Greenstein (HG) approximation, the phase function preserves only the correct asymmetry factor (i.e., the first moment), which is essentially important for anisotropic scattering. When the HG function is applied to small particles, it produces a significant error in radiance. In addition, the HG function is applied only for an intensity radiative transfer. We develop a combined HG and Rayleigh (HG-Rayleigh) phase function. The HG phase function plays the role of modulator extending the application of the Rayleigh phase function for small asymmetry scattering. The HG-Rayleigh phase function guarantees the correct asymmetry factor and is valid for a polarization radiative transfer. It approaches the Rayleigh phase function for small particles. Thus the HG-Rayleigh phase function has wider applications for both intensity and polarimetric radiative transfers. For microwave radiative transfer modeling in this study, the largest errors in the brightness temperature calculations for weak asymmetry scattering are generally below 0.02 K by using the HG-Rayleigh phase function. The errors can be much larger, in the 1-3 K range, if the Rayleigh and HG functions are applied separately.
Low-Virtuality Leptoproduction of Open-Charm as a Probe of the Gluon Sivers Function
NASA Astrophysics Data System (ADS)
Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha
2018-05-01
We propose low-virtuality leptoproduction of open-charm, p^\\uparrow l→ D^0+X, as a probe of the gluon Sivers function (GSF). At leading-order, this process directly probes the gluon content of the proton, making detection of a trasverse single-spin asymmetry in the process a clear indication of a non-zero GSF. Considering the kinematics of the proposed future Electron-Ion Collider, we present predictions for asymmetry using fits of the GSF available in literature. We also study the asymmetry at the level of muons produced in D-meson decays and find that the asymmetry is preserved therein as well.
Rajadurai, Suvithan
2016-01-01
Consistent left–right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs. Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key ‘determinant’ genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821521
COMPARATIVE STUDY OF ASYMMETRY ORIGIN OF GALAXIES IN DIFFERENT ENVIRONMENTS. I. OPTICAL OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plauchu-Frayn, I.; Coziol, R., E-mail: plauchuf@astro.ugto.m, E-mail: rcoziol@astro.ugto.m
2010-06-15
This paper presents the first of two analyses about the influence of environment on the formation and evolution of galaxies observed in the nearby universe. For our study, we used three different samples representing different density environments: galaxies in Compact Groups (HCGs), Isolated Pairs of Galaxies (KPGs), and Isolated Galaxies (KIGs), which were taken as references. Usingboth characteristic isophotal parameters and evidence of asymmetries in the optical and the near-infrared, we are able to establish differences in the characteristics of galaxies with different morphologies in different environments, allowing us to better understand their different formation histories. In this first paper,more » we present the isophotal and asymmetry analyses of a sample of 214 galaxies in different environments observed in the optical (V and I images). For each galaxy, we have determined different characteristic isophotal parameters and V - I color profiles, as a function of semi-major axis, and performed a full asymmetry analysis in residual images using the V filter. Evidence of asymmetry in the optical is almost missing in the KIG sample and significantly more common in the KPG than in the HCG samples. Our isophotal analysis suggests that the stellar populations in the HCG galaxies are older and more dynamically relaxed than in the KPG. The HCG galaxies seem to be at a more advanced stage of interaction than the KPGs. One possible explanation is that these structures formed at different epochs: compact groups of galaxies would have formed before close pairs of galaxies, which only began interacting recently. However, similarities in the formation process of galaxies with same morphology suggest CGs and close pairs of galaxies share similar conditions; they are new structures forming relatively late in low-density environments.« less
Hemispheric asymmetry and theory of mind: is there an association?
Herzig, Daniela A; Sullivan, Sarah; Evans, Jonathan; Corcoran, Rhiannon; Mohr, Christine
2012-01-01
In autism and schizophrenia attenuated/atypical functional hemispheric asymmetry and theory of mind impairments have been reported, suggesting common underlying neuroscientific correlates. We here investigated whether impaired theory of mind performance is associated with attenuated/atypical hemispheric asymmetry. An association may explain the co-occurrence of both dysfunctions in psychiatric populations. Healthy participants (n=129) performed a left hemisphere (lateralised lexical decision task) and right hemisphere (lateralised face decision task) dominant task as well as a visual cartoon task to assess theory of mind performance. Linear regression analyses revealed inconsistent associations between theory of mind performance and functional hemisphere asymmetry: enhanced theory of mind performance was only associated with (1) faster right hemisphere language processing, and (2) reduced right hemisphere dominance for face processing (men only). The majority of non-significant findings suggest that theory of mind and functional hemispheric asymmetry are unrelated. Instead of "overinterpreting" the two significant results, discrepancies in the previous literature relating to the problem of the theory of mind concept, the variety of tasks, and the lack of normative data are discussed. We also suggest how future studies could explore a possible link between hemispheric asymmetry and theory of mind.
Characterization of Asymmetry in Magnetoacoustic Emission Burst by Numerical Processes
NASA Technical Reports Server (NTRS)
Namkung, M.; Fulton, J. P.; Wincheski, B.; DeNale, R.
1991-01-01
It has been well known that the pattern of the magnetoacoustic emission (MAE) burst observed during the sweep over one half-cycle of the hysteresis loop becomes asymmetric depending on the strength of the magnetic domain wall-defect interaction and the state of residual stresses in a ferromagnet. The ascending asymmetry due to the former has been observed at a very low frequency (.7 Hz) of applied AC magnetic field at a given amplitude. The descending asymmetry due to uniaxial compressive stress has been typically observed at the AC applied magnetic field frequency of 20 Hz. The physical interpretation of both types of asymmetry has been well established. It is, however, necessary to perform investigations of the dependence of asymmetry on externally controlled parameters such as the amplitude and frequency of the AC applied magnetic fields. The purpose of the present study is therefore to devise a mathematical means that describes the degree of asymmetry of the MAE burst and apply this scheme to investigate the AC magnetic field amplitude dependence of the asymmetry.
Gardinier, Emily S.; Di Stasi, Stephanie; Manal, Kurt; Buchanan, Thomas S.; Snyder-Mackler, Lynn
2015-01-01
Background After anterior cruciate ligament (ACL) injury, contact forces are decreased in the injured knee when compared with the uninjured knee. The persistence of contact force asymmetries after ACL reconstruction may increase the risk of reinjury and may play an important role in the development of knee osteoarthritis in these patients. Functional performance may also be useful in identifying patients who demonstrate potentially harmful joint contact force asymmetries after ACL reconstruction. Hypothesis Knee joint contact force asymmetries would be present during gait after ACL reconstruction, and performance on a specific set of validated return-to-sport (RTS) readiness criteria would discriminate between those who demonstrated contact force asymmetries and those who did not. Study Design Descriptive laboratory study. Methods A total of 29 patients with ACL ruptures participated in gait analysis and RTS readiness testing 6 months after reconstruction. Muscle and joint contact forces were estimated using an electromyography (EMG)–driven musculoskeletal model of the knee. The magnitude of typical limb asymmetry in uninjured controls was used to define limits of meaningful limb asymmetry in patients after ACL reconstruction. The RTS testing included isometric quadriceps strength testing, 4 unilateral hop tests, and 2 self-report questionnaires. Paired t tests were used to assess limb symmetry for peak medial and tibiofemoral contact forces in all patients, and a mixed-design analysis of variance was used to analyze the effect of passing or failing RTS testing on contact force asymmetry. Results Among all patients, neither statistically significant nor meaningful contact force asymmetries were identified. However, patients who failed RTS testing exhibited meaningful contact force asymmetries, with tibiofemoral contact force being significantly lower for the involved knee. Conversely, patients who passed RTS testing exhibited neither significant nor meaningful contact force asymmetries. Conclusion Joint contact force asymmetries during gait are present in some patients 6 months after ACL reconstruction. Patients who demonstrated poor functional performance on RTS readiness testing exhibited significant and meaningful contact force asymmetries. Clinical Relevance When assessing all patients together, variability in the functional status obscured significant and meaningful differences in contact force asymmetry in patients 6 months after ACL reconstruction. These specific RTS readiness criteria appear to differentiate between those who demonstrate joint contact force symmetry after ACL reconstruction and those who do not. PMID:25318940
Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers
NASA Astrophysics Data System (ADS)
Schulze, Morgan W.; Lewis, Ronald M.; Lettow, James H.; Hickey, Robert J.; Gillard, Timothy M.; Hillmyer, Marc A.; Bates, Frank S.
2017-05-01
Small angle x-ray scattering experiments on three model low molar mass diblock copolymer systems containing minority polylactide and majority hydrocarbon blocks demonstrate that conformational asymmetry stabilizes the Frank-Kasper σ phase. Differences in block flexibility compete with space filling at constant density inducing the formation of polyhedral shaped particles that assemble into this low symmetry ordered state with local tetrahedral coordination. These results confirm predictions from self-consistent field theory that establish the origins of symmetry breaking in the ordering of block polymer melts subjected to compositional and conformational asymmetry.
NASA Astrophysics Data System (ADS)
Barone, Vincenzo; Ratcliffe, Philip G.
Introduction. Purpose and status of the Italian Transversity Project / F. Bradamante -- Opening lecture. Transversity / M. Anselmino -- Experimental lectures. Azimuthal single-spin asymmetries from polarized and unpolarized hydrogen targets at HERMES / G. Schnell (for the HERMES Collaboration). Collins and Sivers asymmetries on the deuteron from COMPASS data / I. Horn (for the COMPASS Collaboration). First measurement of interference fragmentation on a transversely polarized hydrogen target / P. B. van der Nat (for the HERMES Collaboration). Two-hadron asymmetries at the COMPASS experiment / A. Mielech (for the COMPASS Collaboration). Measurements of chiral-odd fragmentation functions at Belle / R. Seidl ... [et al.]. Lambda asymmetries / A. Ferrero (for the COMPASS Collaboration). Transverse spin at PHENIX: results and prospects / C. Aidala (for the PHENIX Collaboration). Transverse spin and RHIC / L. Bland. Studies of transverse spin effects at JLab / H. Avakian ... [et al.] (for the CLAS Collaboration). Neutron transversity at Jefferson Lab / J. P. Chen ... [et al.] (for the Jefferson Lab Hall A Collaboration). PAX: polarized antiproton experiments / M. Contalbrigo. Single and double spin N-N interactions at GSI / M. Maggiora (for the ASSIA Collaboration). Spin filtering in storage rings / N. N. Nikolaev & F. F. Pavlov -- Theory lectures. Single-spin asymmetries and transversity in QCD / S. J. Brodsky. The relativistic hydrogen atom: a theoretical laboratory for structure functions / X. Artru & K. Benhizia. GPD's and SSA's / M. Burkardt. Time reversal odd distribution functions in chiral models / A. Drago. Soffer bound and transverse spin densities from lattice QCD / M. Diehl ... [et al.]. Single-spin asymmetries and Qiu-Sterman effect(s) / A. Bacchetta. Sivers function: SIDIS data, fits and predictions / M. Anselmino ... [et al.]. Twist-3 effects in semi-inclusive deep inelastic scattering / M. Schlegel, K. Goeke & A. Metz. Quark and gluon Sivers functions / I. Schmidt. Sivers effect in semi-inclusive deeply inelastic scattering and Drell-Yan / J. C. Collins ... [et al.]. Helicity formalism and spin asymmetries in hadronic processes / M. Anselmino ... [et al.]. Including Cahn and Sivers effects into event generators / A. Kotzinian. Comparing extractions of Sivers functions / M. Anselmino ... [et al.]. Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects / D. Boer. "T-odd" effects in transverse spin and azimuthal asymmetries in SIDIS / L. P. Gamberg & G. R. Goldstein. T-odd effects in unpolarized Drell-Yan scattering / G. R. Goldstein & L. P. Gamberg. Alternative approaches to transversity: how convenient and feasible are they? / M. Radici. Relations between single and double transverse asymmetries / O. V. Teryaev. Cross sections, error bars and event distributions in simulated Drell-Yan azimuthal asymmetry measurements / A. Bianconi. Next-to-leading order QCD corrections for transversely polarized pp and p¯p collisions / A. Mukherjee, M. Stratmann & W. Vogelsang. Double transverse-spin asymmetries in Drell-Yan and J/[symbol] production from proton-antiproton collisions / M. Guzzi ... [et al.]. The quark-quark correlator: theory and phenomenology / E. Di Salvo. Chiral quark model spin filtering mechanism and hyperon polarization / S. M. Troshin & N. E. Tyurin -- Closing lecture. Where we've been ... and where we're going / G. Bunce.
Brain structural and functional asymmetry in human situs inversus totalis.
Vingerhoets, Guy; Li, Xiang; Hou, Lewis; Bogaert, Stephanie; Verhelst, Helena; Gerrits, Robin; Siugzdaite, Roma; Roberts, Neil
2018-05-01
Magnetic resonance imaging was used to investigate brain structural and functional asymmetries in 15 participants with complete visceral reversal (situs inversus totalis, SIT). Language-related brain structural and functional lateralization of SIT participants, including peri-Sylvian gray and white matter asymmetries and hemispheric language dominance, was similar to those of 15 control participants individually matched for sex, age, education, and handedness. In contrast, the SIT cohort showed reversal of the brain (Yakovlevian) torque (occipital petalia and occipital bending) compared to the control group. Secondary findings suggested different asymmetry patterns between SIT participants with (n = 6) or without (n = 9) primary ciliary dyskinesia (PCD, also known as Kartagener syndrome) although the small sample sizes warrant cautious interpretation. In particular, reversed brain torque was mainly due to the subgroup with PCD-unrelated SIT and this group also included 55% left handers, a ratio close to a random allocation of handedness. We conclude that complete visceral reversal has no effect on the lateralization of brain structural and functional asymmetries associated with language, but seems to reverse the typical direction of the brain torque in particular in participants that have SIT unrelated to PCD. The observed differences in asymmetry patterns of SIT groups with and without PCD seem to suggest that symmetry breaking of visceral laterality, brain torque, and language dominance rely on different mechanisms.
Asymmetry of the Brain: Development and Implications.
Duboc, Véronique; Dufourcq, Pascale; Blader, Patrick; Roussigné, Myriam
2015-01-01
Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.
Menstrual Cycle-Related Changes of Functional Cerebral Asymmetries in Fine Motor Coordination
ERIC Educational Resources Information Center
Bayer, Ulrike; Hausmann, Markus
2012-01-01
Fluctuating sex hormone levels during the menstrual cycle have been shown to affect functional cerebral asymmetries in cognitive domains. These effects seem to result from the neuromodulatory properties of sex hormones and their metabolites on interhemispheric processing. The present study was carried out to investigate whether functional cerebral…
Gait asymmetry: composite scores for mechanical analyses of sprint running.
Exell, T A; Gittoes, M J R; Irwin, G; Kerwin, D G
2012-04-05
Gait asymmetry analyses are beneficial from clinical, coaching and technology perspectives. Quantifying overall athlete asymmetry would be useful in allowing comparisons between participants, or between asymmetry and other factors, such as sprint running performance. The aim of this study was to develop composite kinematic and kinetic asymmetry scores to quantify athlete asymmetry during maximal speed sprint running. Eight male sprint trained athletes (age 22±5 years, mass 74.0±8.7 kg and stature 1.79±0.07 m) participated in this study. Synchronised sagittal plane kinematic and kinetic data were collected via a CODA motion analysis system, synchronised to two Kistler force plates. Bilateral, lower limb data were collected during the maximal velocity phase of sprint running (velocity=9.05±0.37 ms(-1)). Kinematic and kinetic composite asymmetry scores were developed using the previously established symmetry angle for discrete variables associated with successful sprint performance and comparisons of continuous joint power data. Unlike previous studies quantifying gait asymmetry, the scores incorporated intra-limb variability by excluding variables from the composite scores that did not display significantly larger (p<0.05) asymmetry than intra-limb variability. The variables that contributed to the composite scores and the magnitude of asymmetry observed for each measure varied on an individual participant basis. The new composite scores indicated the inter-participant differences that exist in asymmetry during sprint running and may serve to allow comparisons between overall athlete asymmetry with other important factors such as performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Alfano, Keith M.; Cimino, Cynthia R.
2008-01-01
The relative advantage of the left (LH) over the right hemisphere (RH) in processing of verbal material for most individuals is well established. Nevertheless, several studies have reported the ability of positively and negatively valenced stimuli to enhance and reverse, respectively, the usual LH greater than RH asymmetry. These studies, however,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuns, Edward William
This dissertation presents a measurement of the tau charge asymmetry in events where the taus are produced by W decays. This charge asymmetry appears as different rapidity distributions for positive and negative taus. Two competing effects generate tau charge asymmetry. The production mechanism for the W gauge boson generates a charge asymmetry which is a function of the ratio of parton distribution functions, d(x)=u(x), measured at x ~ M W/√s. This is the dominant effect for tau charge asymmetry at small rapidity. At higher rapidity, however, the competing charge asymmetry from parity violation in W decay to taus becomes dominant. This tau asymmetry measurement is consistent with the Standard Model with a x 2 per degree of freedom equal to 2.5 for 4 degrees of freedom when the asymmetry measurement is folded about y = 0, taking advantage of the CP symmetry of the underlying physics, and 8.9 for 8 degrees of freedom when it is not. This measurement introduces some methods and variables of interest to future analyses using hadronic decay modes of taus. This work was done using the CDF detector inmore » $$\\bar{p}$$p collisions at √s = 1.8 TeV at Fermilab's Tevatron accelerator.« less
Successful physiological aging and episodic memory: a brain stimulation study.
Manenti, Rosa; Cotelli, Maria; Miniussi, Carlo
2011-01-01
Functional neuroimaging studies have shown that younger adults tend to asymmetrically recruit specific regions of an hemisphere in an episodic memory task (Hemispheric Encoding Retrieval Asymmetry-HERA model). In older adults, this hemispheric asymmetry is generally reduced as suggested by the Hemispheric Asymmetry Reduction for OLDer Adults-HAROLD-model. Recent works suggest that while low-performing older adults do not show this reduced asymmetry, high-performing older adults counteract age-related neural decline through a plastic reorganization of cerebral networks that results in reduced functional asymmetry. However, the issue of whether high- and low-performing older adults show different degrees of asymmetry and the relevance of this process for counteracting aging have not been clarified. We used transcranial magnetic stimulation (TMS) to transiently interfere with the function of the dorsolateral prefrontal cortex (DLPFC) during encoding or retrieval of associated and non-associated word pairs. A group of healthy older adults was studied during encoding and retrieval of word pairs. The subjects were divided in two subgroups according to their experimental performance (i.e., high- and low-performing). TMS effects on retrieval differed according to the subject's subgroup. In particular, the predominance of left vs. right DLPFC effects during encoding, predicted by the HERA model, was observed only in low-performing older adults, while the asymmetry reduction predicted by the HAROLD model was selectively shown for the high-performing group. The present data confirm that older adults with higher memory performance show less prefrontal asymmetry as an efficient strategy to counteract age-related memory decline. Copyright © 2010 Elsevier B.V. All rights reserved.
It’s never too early to get it Right
Vandenberg, Laura N; Lemire, Joan M; Levin, Michael
2013-01-01
For centuries, scientists and physicians have been captivated by the consistent left-right (LR) asymmetry of the heart, viscera, and brain. A recent study implicated tubulin proteins in establishing laterality in several experimental models, including asymmetric chemosensory receptor expression in C. elegans neurons, polarization of HL-60 human neutrophil-like cells in culture, and asymmetric organ placement in Xenopus. The same mutations that randomized asymmetry in these diverse systems also affect chirality in Arabidopsis, revealing a remarkable conservation of symmetry-breaking mechanisms among kingdoms. In Xenopus, tubulin mutants only affected LR patterning very early, suggesting that this axis is established shortly after fertilization. This addendum summarizes and extends the knowledge of the cytoskeleton’s role in the patterning of the LR axis. Results from many species suggest a conserved role for the cytoskeleton as the initiator of asymmetry, and indicate that symmetry is first broken during early embryogenesis by an intracellular process. PMID:24505508
Donix, Markus; Burggren, Alison C.; Scharf, Maria; Marschner, Kira; Suthana, Nanthia A.; Siddarth, Prabha; Krupa, Allison K.; Jones, Michael; Martin-Harris, Laurel; Ercoli, Linda M.; Miller, Karen J.; Werner, Annett; von Kummer, Rüdiger; Sauer, Cathrin; Small, Gary W.; Holthoff, Vjera A.; Bookheimer, Susan Y.
2013-01-01
Across species structural and functional hemispheric asymmetry is a fundamental feature of the brain. Environmental and genetic factors determine this asymmetry during brain development and modulate its interaction with brain disorders. The e4 allele of the apolipoprotein E gene (APOE-4) is a risk factor for Alzheimer’s disease, associated with regionally specific effects on brain morphology and function during the life span. Furthermore, entorhinal and hippocampal hemispheric asymmetry could be modified by pathology during Alzheimer’s disease development. Using high-resolution magnetic resonance imaging and a cortical unfolding technique we investigated whether carrying the APOE-4 allele influences hemispheric asymmetry in the entorhinal cortex and the hippocampus among patients with Alzheimer’s disease as well as in middle-aged and older cognitively healthy individuals. APOE-4 carriers showed a thinner entorhinal cortex in the left hemisphere when compared with the right hemisphere across all participants. Non-carriers of the allele showed this asymmetry only in the patient group. Cortical thickness in the hippocampus did not vary between hemispheres among APOE-4 allele carriers and non-carriers. The APOE-4 allele modulates hemispheric asymmetry in entorhinal cortical thickness. Among Alzheimer’s disease patients, this asymmetry might be less dependent on the APOE genotype and a more general marker of incipient disease pathology. PMID:24080518
Bastos, A M; Litvak, V; Moran, R; Bosman, C A; Fries, P; Friston, K J
2015-03-01
This paper reports a dynamic causal modeling study of electrocorticographic (ECoG) data that addresses functional asymmetries between forward and backward connections in the visual cortical hierarchy. Specifically, we ask whether forward connections employ gamma-band frequencies, while backward connections preferentially use lower (beta-band) frequencies. We addressed this question by modeling empirical cross spectra using a neural mass model equipped with superficial and deep pyramidal cell populations-that model the source of forward and backward connections, respectively. This enabled us to reconstruct the transfer functions and associated spectra of specific subpopulations within cortical sources. We first established that Bayesian model comparison was able to discriminate between forward and backward connections, defined in terms of their cells of origin. We then confirmed that model selection was able to identify extrastriate (V4) sources as being hierarchically higher than early visual (V1) sources. Finally, an examination of the auto spectra and transfer functions associated with superficial and deep pyramidal cells confirmed that forward connections employed predominantly higher (gamma) frequencies, while backward connections were mediated by lower (alpha/beta) frequencies. We discuss these findings in relation to current views about alpha, beta, and gamma oscillations and predictive coding in the brain. Copyright © 2015. Published by Elsevier Inc.
Atypical Alpha Asymmetry in Adults with ADHD
ERIC Educational Resources Information Center
Hale, T. Sigi; Smalley, Susan L.; Hanada, Grant; Macion, James; McCracken, James T.; McGough, James J.; Loo, Sandra K.
2009-01-01
Introduction: A growing body of literature suggests atypical cerebral asymmetry and interhemispheric interaction in ADHD. A common means of assessing lateralized brain function in clinical populations has been to examine the relative proportion of EEG alpha activity (8-12 Hz) in each hemisphere (i.e., alpha asymmetry). Increased rightward alpha…
Transverse single spin asymmetry in e +p↑→e +J /ψ +X and Q2 evolution of Sivers function-II
NASA Astrophysics Data System (ADS)
Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha; Rawoot, Vaibhav S.
2015-01-01
We present estimates of single spin asymmetry in the electroproduction of J /ψ taking into account the transverse momentum-dependent (TMD) evolution of the gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS and eRHIC energies using the color evaporation model of J /ψ . We have calculated the asymmetry using recent parameters extracted by Echevarria et al. using the Collins-Soper-Sterman approach to TMD evolution. These recent TMD evolution fits are based on the evolution kernel in which the perturbative part is resummed up to next-to-leading logarithmic accuracy. We have also estimated the asymmetry by using parameters which had been obtained by a fit by Anselmino et al., using both an exact numerical and an approximate analytical solution of the TMD evolution equations. We find that the variation among the different estimates obtained using TMD evolution is much smaller than between these on one hand and the estimates obtained using DGLAP evolution on the other. Even though the use of TMD evolution causes an overall reduction in asymmetries compared to the ones obtained without it, they remain sizable. Overall, upon use of TMD evolution, predictions for asymmetries stabilize.
Seizeur, Romuald; Magro, Elsa; Prima, Sylvain; Wiest-Daesslé, Nicolas; Maumet, Camille; Morandi, Xavier
2014-03-01
Cerebral hemispheres represent both structural and functional asymmetry, which differs among right- and left-handers. The left hemisphere is specialised for language and task execution of the right hand in right-handers. We studied the corticospinal tract in right- and left-handers by diffusion tensor imaging and tractography. The present study aimed at revealing a morphological difference resulting from a region of interest (ROI) obtained by functional MRI (fMRI). Twenty-five healthy participants (right-handed: 15, left-handed: 10) were enrolled in our assessment of morphological, functional and diffusion tensor MRI. Assessment of brain fibre reconstruction (tractography) was done using a deterministic algorithm. Fractional anisotropy (FA) and mean diffusivity (MD) were studied on the tractography traces of the reference slices. We observed a significant difference in number of leftward fibres based on laterality. The significant difference in regard to FA and MD was based on the slices obtained at different levels and the laterality index. We found left-hand asymmetry and right-hand asymmetry, respectively, for the MD and FA. Our study showed the presence of hemispheric asymmetry based on laterality index in right- and left-handers. These results are inconsistent with some studies and consistent with others. The reported difference in hemispheric asymmetry could be related to dexterity (manual skill).
Heng, Jiamin Gladys; Wu, Chiao-Yi; Archer, Josephine Astrid; Miyakoshi, Makoto; Nakai, Toshiharu; Chen, Shen-Hsing Annabel
2017-10-09
Neuroimaging literature has documented age-related hemispheric asymmetry reduction in frontal regions during task performances. As most studies employed working memory paradigms, it is therefore less clear if this pattern of neural reorganization is constrained by working memory processes or it would also emerge in other cognitive domains which are predominantly lateralized. Using blocked functional magnetic resonance imaging (fMRI), the present study used a homophone judgment task and a line judgment task to investigate age-related differences in functional hemispheric asymmetry in language and visuospatial processing respectively. Young and older adults achieved similar task accuracy although older adults required a significantly longer time. Age-related functional hemispheric asymmetry reduction was found only in dorsal inferior frontal gyrus and was associated with better performance when the homophone condition was contrasted against fixation, and not line condition. Our data thus highlights the importance of considering regional heterogeneity of aging effects together with general age-related cognitive processes.
Bilateral asymmetry of humeral torsion and length in African apes and humans.
Barros, Anna; Soligo, Christophe
2013-01-01
Few studies have directly compared human and African ape upper limb skeletal asymmetries despite the potential such comparisons have for understanding the origins of functional lateralization in humans and non-human primates. Here, we report the magnitude and direction of asymmetries in humeral torsion and humeral length in paired humeri of 40 Gorilla gorilla, 40 Pan troglodytes and 40 Homo sapiens. We test whether absolute and directional asymmetries differ between measurements, species and sexes. Our results show that humans are unique in being lateralized to the right for both measurements, consistent with human population-level handedness patterns, while apes show no significant directionality at the species level in either measurement. However, absolute torsion asymmetries in apes occur in the same magnitude as in humans, suggesting the existence of functional lateralization at the individual level. Copyright © 2013 S. Karger AG, Basel
Willigenburg, Nienke; Hewett, Timothy E.
2016-01-01
Objective To define the relationship between FMS™ scores and hop performance, hip strength, and knee strength in collegiate football players. Design Cross-sectional cohort. Participants Freshmen of a division I collegiate American football team (n=59). Main Outcome Measures The athletes performed the FMS™, as well as a variety of hop tests, isokinetic knee strength and isometric hip strength tasks. We recorded total FMS™ score, peak strength and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman’s correlation coefficients quantified the relationships these measures, and chi-square analyses compared the number of athletes with asymmetries on the different tasks. Results We observed significant correlations (r=0.38–0.56, p≤0.02) between FMS™ scores and hop distance, but not between FMS™ scores and hip or knee strength (all p≥0.21). The amount of asymmetry on the FMS™ test was significantly correlated to the amount of asymmetry on the timed 6m hop (r=0.44, p<0.01), but not to hip or knee strength asymmetries between limbs (all p≥0.34). Conclusions FMS™ score was positively correlated to hop distance, and limb asymmetry in FMS™ tasks was correlated to limb asymmetry in 6m hop time in football players. No significant correlations were observed between FMS™ score and hip and knee strength, or between FMS™ asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time and cost efficient alternative to FMS™ testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries. PMID:26886801
Asymmetry dependence of the caloric curve for mononuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoel, C.; Sobotka, L. G.; Charity, R. J.
2007-01-15
The asymmetry dependence of the caloric curve, for mononuclear configurations, is studied as a function of neutron-to-proton asymmetry with a model that allows for independent variation of the neutron and proton surface diffusenesses. The evolution of the effective mass with density and excitation is included in a schematic fashion and the entropies are extracted in a local density approximation. The plateau in the caloric curve displays only a slight sensitivity to the asymmetry.
The influence of sex chromosome aneuploidy on brain asymmetry.
Rezaie, Roozbeh; Daly, Eileen M; Cutter, William J; Murphy, Declan G M; Robertson, Dene M W; DeLisi, Lynn E; Mackay, Clare E; Barrick, Thomas R; Crow, Timothy J; Roberts, Neil
2009-01-05
The cognitive deficits present in individuals with sex chromosome aneuploidies suggest that hemispheric differentiation of function is determined by an X-Y homologous gene [Crow (1993); Lancet 342:594-598]. In particular, females with Turner's syndrome (TS) who have only one X-chromosome exhibit deficits of spatial ability whereas males with Klinefelter's syndrome (KS) who possess a supernumerary X-chromosome are delayed in acquiring words. Since spatial and verbal abilities are generally associated with right and left hemispheric function, such deficits may relate to anomalies of cerebral asymmetry. We therefore applied a novel image analysis technique to investigate the relationship between sex chromosome dosage and structural brain asymmetry. Specifically, we tested Crow's prediction that the magnitude of the brain torque (i.e., a combination of rightward frontal and leftward occipital asymmetry) would, as a function of sex chromosome dosage, be respectively decreased in TS women and increased in KS men, relative to genotypically normal controls. We found that brain torque was not significantly different in TS women and KS men, in comparison to controls. However, TS women exhibited significantly increased leftward brain asymmetry, restricted to the posterior of the brain and focused on the superior temporal and parietal-occipital association cortex, while KS men showed a trend for decreased brain asymmetry throughout the frontal lobes. The findings suggest that the number of sex chromosomes influences the development of brain asymmetry not simply to modify the torque but in a complex pattern along the antero-posterior axis. 2008 Wiley-Liss, Inc.
Left‐right asymmetry in the light of TOR: An update on what we know so far
Casar Tena, Teresa
2015-01-01
The internal left‐right (LR) asymmetry is a characteristic that exists throughout the animal kingdom from roundworms over flies and fish to mammals. Cilia, which are antenna‐like structures protruding into the extracellular space, are involved in establishing LR asymmetry during early development. Humans who suffer from dysfunctional cilia often develop conditions such as heterotaxy, where internal organs appear to be placed randomly. As a consequence to this failure in asymmetry development, serious complications such as congenital heart defects (CHD) occur. The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has recently emerged as an important regulator regarding symmetry breaking. The mTOR pathway governs fundamental processes such as protein translation or metabolism. Its activity can be transduced by two complexes, which are called TORC1 and TORC2, respectively. So far, only TORC1 has been implicated with asymmetry development and appears to require very precise regulation. A number of recent papers provided evidence that dysregulated TORC1 results in alterations of motile cilia and asymmetry defects. In here, we give an update on what we know so far of mTORC1 in LR asymmetry development. PMID:25943139
Targeted presurgical decompensation in patients with yaw-dependent facial asymmetry
Kim, Kyung-A; Lee, Ji-Won; Park, Jeong-Ho; Kim, Byoung-Ho; Ahn, Hyo-Won
2017-01-01
Facial asymmetry can be classified into the rolling-dominant type (R-type), translation-dominant type (T-type), yawing-dominant type (Y-type), and atypical type (A-type) based on the distorted skeletal components that cause canting, translation, and yawing of the maxilla and/or mandible. Each facial asymmetry type represents dentoalveolar compensations in three dimensions that correspond to the main skeletal discrepancies. To obtain sufficient surgical correction, it is necessary to analyze the main skeletal discrepancies contributing to the facial asymmetry and then the skeletal-dental relationships in the maxilla and mandible separately. Particularly in cases of facial asymmetry accompanied by mandibular yawing, it is not simple to establish pre-surgical goals of tooth movement since chin deviation and posterior gonial prominence can be either aggravated or compromised according to the direction of mandibular yawing. Thus, strategic dentoalveolar decompensations targeting the real basal skeletal discrepancies should be performed during presurgical orthodontic treatment to allow for sufficient skeletal correction with stability. In this report, we document targeted decompensation of two asymmetry patients focusing on more complicated yaw-dependent types than others: Y-type and A-type. This may suggest a clinical guideline on the targeted decompensation in patient with different types of facial asymmetries. PMID:28523246
Targeted presurgical decompensation in patients with yaw-dependent facial asymmetry.
Kim, Kyung-A; Lee, Ji-Won; Park, Jeong-Ho; Kim, Byoung-Ho; Ahn, Hyo-Won; Kim, Su-Jung
2017-05-01
Facial asymmetry can be classified into the rolling-dominant type (R-type), translation-dominant type (T-type), yawing-dominant type (Y-type), and atypical type (A-type) based on the distorted skeletal components that cause canting, translation, and yawing of the maxilla and/or mandible. Each facial asymmetry type represents dentoalveolar compensations in three dimensions that correspond to the main skeletal discrepancies. To obtain sufficient surgical correction, it is necessary to analyze the main skeletal discrepancies contributing to the facial asymmetry and then the skeletal-dental relationships in the maxilla and mandible separately. Particularly in cases of facial asymmetry accompanied by mandibular yawing, it is not simple to establish pre-surgical goals of tooth movement since chin deviation and posterior gonial prominence can be either aggravated or compromised according to the direction of mandibular yawing. Thus, strategic dentoalveolar decompensations targeting the real basal skeletal discrepancies should be performed during presurgical orthodontic treatment to allow for sufficient skeletal correction with stability. In this report, we document targeted decompensation of two asymmetry patients focusing on more complicated yaw-dependent types than others: Y-type and A-type. This may suggest a clinical guideline on the targeted decompensation in patient with different types of facial asymmetries.
Choosing sides--asymmetric centriole and basal body assembly.
Pearson, Chad G
2014-07-01
Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly. © 2014. Published by The Company of Biologists Ltd.
Choosing sides – asymmetric centriole and basal body assembly
Pearson, Chad G.
2014-01-01
ABSTRACT Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly. PMID:24895399
Genetic control of floral zygomorphy in pea (Pisum sativum L.).
Wang, Zheng; Luo, Yonghai; Li, Xin; Wang, Liping; Xu, Shilei; Yang, Jun; Weng, Lin; Sato, Shusei; Tabata, Satoshi; Ambrose, Mike; Rameau, Catherine; Feng, Xianzhong; Hu, Xiaohe; Luo, Da
2008-07-29
Floral zygomorphy (flowers with bilateral symmetry) has multiple origins and typically manifests two kinds of asymmetries, dorsoventral (DV) and organ internal (IN) asymmetries in floral and organ planes, respectively, revealing the underlying key regulators in plant genomes that generate and superimpose various mechanisms to build up complexity and different floral forms during plant development. In this study, we investigate the loci affecting these asymmetries during the development of floral zygomorphy in pea (Pisum sativum L.). Two genes, LOBED STANDARD 1 (LST1) and KEELED WINGS (K), were cloned that encode TCP transcription factors and have divergent functions to constitute the DV asymmetry. A previously undescribed regulator, SYMMETRIC PETALS 1 (SYP1), has been isolated as controlling IN asymmetry. Genetic analysis demonstrates that DV and IN asymmetries could be controlled independently by the two kinds of regulators in pea, and their interactions help to specify the type of zygomorphy. Based on the genetic analysis in pea, we suggest that variation in both the functions and interactions of these regulators could give rise to the wide spectrum of floral symmetries among legume species and other flowering plants.
Total neuron numbers in CA1-4 sectors of the dog hippocampus.
Rağbetli, Murat Cetin; Aydinlioğlu, Atif; Koyun, Necat; Yayici, Recep; Arslan, Kadir
2010-06-01
Early reports addressed morphological asymmetry in the cross-sectional width of the rat hippocampus. The present study was aimed at counting total number of neurons in CA1-4 sectors and the subiculum of the dog hippocampus as well as investigating possible left /right and male/female asymmetry. Adult mongrel dogs (8 female and 5 male) were assessed by the right and left pawedness and sacrificed by exsanguinations. In each hippocampus dissected, the total neuron numbers of CAs and subiculum were estimated by the physical fractioning method. Significant hemispheric asymmetries were found in the number of pyramidal cells of CA1, CA3/2, CA4 and the subiculum. Sex difference was also found in the subiculum, in favour of the males. Our study indicated a left dominant asymmetry in males and right dominancy in females as well as no functional asymmetry in specific regions of the dog hippocampus. Further investigations are necessary to verify the hypothesis that hippocampal morphological asymmetries in normal subjects are functionally related in memory or in cognitive skills.
Takeuchi, Yuichi; Hori, Michio; Tada, Shinya; Oda, Yoichi
2016-01-01
The scale-eating cichlid Perissodus microlepis with asymmetric mouth is an attractive model of behavioral laterality: each adult tears off scales from prey fishes’ left or right flanks according to the direction in which its mouth is skewed. To investigate the development of behavioral laterality and mouth asymmetry, we analyzed stomach contents and lower jaw-bone asymmetry of various-sized P. microlepis (22≤SL<115mm) sampled in Lake Tanganyika. The shapes of the pored scales found in each specimen’s stomach indicated its attack side preference. Early-juvenile specimens (SL<45mm) feeding mainly on zooplankton exhibited slight but significant mouth asymmetry. As the fish acquired scale-eating (45mm≤SL), attack side preference was gradually strengthened, as was mouth asymmetry. Among size-matched individuals, those with more skewed mouths ate more scales. These findings show that behavioral laterality in scale-eating P. microlepis is established in association with development of mouth asymmetry which precedes the behavioral acquisition, and that this synergistic interaction between physical and behavioral literalities may contribute to efficient scale-eating. PMID:26808293
Collins fragmentation function measurements at BABAR
NASA Astrophysics Data System (ADS)
Brown, David Norvil
2016-05-01
We present the results of the measurement of Collins asymmetries in electron-positron annihilation events with the BABAR detector in the process e+e- → h1h2X, for charged hadrons where h1h2 = KK, Kπ, or ππ. Using 468 fb-1 of data collected by BABAR at the SLAC PEP-II B factory, we observe distinct azimuthal asymmetries for hadrons in opposite thrust hemispheres of events, with the asymmetries increasing in proportion to the hadron energies. We find Kπ asymmetries similar to those for ππ pairs, with the high-energy KK asymmetries generally larger.
Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry.
Wan, Leo Q; Ronaldson, Kacey; Park, Miri; Taylor, Grace; Zhang, Yue; Gimble, Jeffrey M; Vunjak-Novakovic, Gordana
2011-07-26
Left-right (LR) asymmetry (handedness, chirality) is a well-conserved biological property of critical importance to normal development. Changes in orientation of the LR axis due to genetic or environmental factors can lead to malformations and disease. While the LR asymmetry of organs and whole organisms has been extensively studied, little is known about the LR asymmetry at cellular and multicellular levels. Here we show that the cultivation of cell populations on micropatterns with defined boundaries reveals intrinsic cell chirality that can be readily determined by image analysis of cell alignment and directional motion. By patterning 11 different types of cells on ring-shaped micropatterns of various sizes, we found that each cell type exhibited definite LR asymmetry (p value down to 10(-185)) that was different between normal and cancer cells of the same type, and not dependent on surface chemistry, protein coating, or the orientation of the gravitational field. Interestingly, drugs interfering with actin but not microtubule function reversed the LR asymmetry in some cell types. Our results show that micropatterned cell populations exhibit phenotype-specific LR asymmetry that is dependent on the functionality of the actin cytoskeleton. We propose that micropatterning could potentially be used as an effective in vitro tool to study the initiation of LR asymmetry in cell populations, to diagnose disease, and to study factors involved with birth defects in laterality.
Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex.
Guadalupe, Tulio; Mathias, Samuel R; vanErp, Theo G M; Whelan, Christopher D; Zwiers, Marcel P; Abe, Yoshinari; Abramovic, Lucija; Agartz, Ingrid; Andreassen, Ole A; Arias-Vásquez, Alejandro; Aribisala, Benjamin S; Armstrong, Nicola J; Arolt, Volker; Artiges, Eric; Ayesa-Arriola, Rosa; Baboyan, Vatche G; Banaschewski, Tobias; Barker, Gareth; Bastin, Mark E; Baune, Bernhard T; Blangero, John; Bokde, Arun L W; Boedhoe, Premika S W; Bose, Anushree; Brem, Silvia; Brodaty, Henry; Bromberg, Uli; Brooks, Samantha; Büchel, Christian; Buitelaar, Jan; Calhoun, Vince D; Cannon, Dara M; Cattrell, Anna; Cheng, Yuqi; Conrod, Patricia J; Conzelmann, Annette; Corvin, Aiden; Crespo-Facorro, Benedicto; Crivello, Fabrice; Dannlowski, Udo; de Zubicaray, Greig I; de Zwarte, Sonja M C; Deary, Ian J; Desrivières, Sylvane; Doan, Nhat Trung; Donohoe, Gary; Dørum, Erlend S; Ehrlich, Stefan; Espeseth, Thomas; Fernández, Guillén; Flor, Herta; Fouche, Jean-Paul; Frouin, Vincent; Fukunaga, Masaki; Gallinat, Jürgen; Garavan, Hugh; Gill, Michael; Suarez, Andrea Gonzalez; Gowland, Penny; Grabe, Hans J; Grotegerd, Dominik; Gruber, Oliver; Hagenaars, Saskia; Hashimoto, Ryota; Hauser, Tobias U; Heinz, Andreas; Hibar, Derrek P; Hoekstra, Pieter J; Hoogman, Martine; Howells, Fleur M; Hu, Hao; Hulshoff Pol, Hilleke E; Huyser, Chaim; Ittermann, Bernd; Jahanshad, Neda; Jönsson, Erik G; Jurk, Sarah; Kahn, Rene S; Kelly, Sinead; Kraemer, Bernd; Kugel, Harald; Kwon, Jun Soo; Lemaitre, Herve; Lesch, Klaus-Peter; Lochner, Christine; Luciano, Michelle; Marquand, Andre F; Martin, Nicholas G; Martínez-Zalacaín, Ignacio; Martinot, Jean-Luc; Mataix-Cols, David; Mather, Karen; McDonald, Colm; McMahon, Katie L; Medland, Sarah E; Menchón, José M; Morris, Derek W; Mothersill, Omar; Maniega, Susana Munoz; Mwangi, Benson; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswaamy, Janardhanan C; Nees, Frauke; Nordvik, Jan E; Onnink, A Marten H; Opel, Nils; Ophoff, Roel; Paillère Martinot, Marie-Laure; Papadopoulos Orfanos, Dimitri; Pauli, Paul; Paus, Tomáš; Poustka, Luise; Reddy, Janardhan Yc; Renteria, Miguel E; Roiz-Santiáñez, Roberto; Roos, Annerine; Royle, Natalie A; Sachdev, Perminder; Sánchez-Juan, Pascual; Schmaal, Lianne; Schumann, Gunter; Shumskaya, Elena; Smolka, Michael N; Soares, Jair C; Soriano-Mas, Carles; Stein, Dan J; Strike, Lachlan T; Toro, Roberto; Turner, Jessica A; Tzourio-Mazoyer, Nathalie; Uhlmann, Anne; Hernández, Maria Valdés; van den Heuvel, Odile A; van der Meer, Dennis; van Haren, Neeltje E M; Veltman, Dick J; Venkatasubramanian, Ganesan; Vetter, Nora C; Vuletic, Daniella; Walitza, Susanne; Walter, Henrik; Walton, Esther; Wang, Zhen; Wardlaw, Joanna; Wen, Wei; Westlye, Lars T; Whelan, Robert; Wittfeld, Katharina; Wolfers, Thomas; Wright, Margaret J; Xu, Jian; Xu, Xiufeng; Yun, Je-Yeon; Zhao, JingJing; Franke, Barbara; Thompson, Paul M; Glahn, David C; Mazoyer, Bernard; Fisher, Simon E; Francks, Clyde
2017-10-01
The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.
Advances in Dyslexia Genetics-New Insights Into the Role of Brain Asymmetries.
Paracchini, S; Diaz, R; Stein, J
2016-01-01
Dyslexia is a common condition affecting up to 10% school-aged children. There is strong evidence that genetics plays an important role in dyslexia and is expected to be complex in nature. Few specific susceptibility factors have been identified so far, but their functional characterization has provided novel insights into the biology of dyslexia. In particular, they point to an unexpected role of candidate genes for dyslexia in the biology of cilia, cellular organelles required in many processes including the establishment of left-right asymmetries early in development. This observation has brought back into the spotlight the old idea of a link between dyslexia and handedness. Yet much of the genetics contributing to dyslexia remains unexplained. The lack of biological markers, clear diagnostic criteria, and homogeneous assessment strategies are just some of the factors preventing the collection of the cohorts powered enough for large-scale genetic studies. While the technology and methods to generate and handle large-scale data have reached unprecedented potential, the main challenge remains in establishing universal guidelines to collect suitable phenotype information across independent studies. These difficulties reflect the complex nature of dyslexia which is highly heterogeneous and often co-occurs with other neurodevelopmental disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of fatigue on bilateral ground reaction force asymmetries during the squat exercise.
Hodges, Stephanie J; Patrick, Ryan J; Reiser, Raoul F
2011-11-01
Physical performance and injury risk have been related to functional asymmetries of the lower extremity. The effect of fatigue on asymmetries is not well understood. The goal of this investigation was to examine asymmetries during fatiguing repetitions and sets of the free-weight barbell back squat exercise. Seventeen healthy recreationally trained men and women (age = 22.3 ± 2.5 years; body mass = 73.4 ± 13.8 kg; squat 8 repetition maximum [8RM] = 113 ± 35% body mass [mean ± SD]) performed 5 sets of 8 repetitions with 90% 8RM while recording bilateral vertical ground reaction force (GRFv). The GRFv asymmetry during the first 2 (R1 and R2) and the last 2 (R7 and R8) repetitions of each set was calculated by subtracting the % load on the right foot from that of the left foot. Most subjects placed more load on their left foot (also their preferred non-kicking foot). Average absolute asymmetry level across all sets was 4.3 ± 2.5 and 3.6 ± 2.3% for R1 and R2 and R7 and R8, respectively. There were no effects of fatigue on GRFv asymmetries in whole-group analysis (n = 17). However, when initially highly symmetric subjects (±1.7% Left-Right) were removed, average absolute GRFv asymmetry dropped from the beginning to the end of a set (n = 12, p = 0.044) as did peak instantaneous GRFv asymmetry when exploring general shifts toward the left or right leg (n = 12, p = 0.042). The GRFv asymmetries were highly repeatable for 8 subjects that repeated the protocol (Cronbach's α ≥ 0.733, p ≤ 0.056). These results suggest that functional asymmetries, though low, are present in healthy people during the squat exercise and remain consistent. Asymmetries do not increase with fatigue, potentially even decreasing, suggesting that healthy subjects load limbs similarly as fatigue increases, exposing each to similar training stimuli.
Planar Cell Polarity Pathway – Coordinating morphogenetic cell behaviors with embryonic polarity
Gray, Ryan S.; Roszko, Isabelle; Solnica-Krezel, Lilianna
2011-01-01
Planar cell polarization entails establishment of cellular asymmetries within the tissue plane. An evolutionarily conserved Planar Cell Polarity (PCP) signaling system employs intra- and intercellular feedback interactions between its core components, including Frizzled, Van Gogh, Flamingo, Prickle and Dishevelled, to establish their characteristic asymmetric intracellular distributions and coordinate planar polarity of cell populations. By translating global patterning information into asymmetries of cell membranes and intracellular organelles, PCP signaling coordinates morphogenetic behaviors of individual cells and cell populations with the embryonic polarity. In vertebrates, by polarizing cilia in the node/Kupffer’s vesicle, PCP signaling links the anteroposterior to left-right embryonic polarity. PMID:21763613
[Diagnosis of facial and craniofacial asymmetry].
Arnaud, E; Marchac, D; Renier, D
2001-10-01
Craniofacial asymmetry is caused by various aetiologies but clinical examination remains the most important criteria since minor asymmetry is always present. The diagnosis can be confirmed by anthropometric measurements and radiological examinations but only severe asymmetries or asymmetries with an associated functional impairment should be treated. The treatment depends on the cause, and on the time of appearance. Congenital asymmetries might be treated early, during the first year of life if a craniosynostosis is present. Hemifacial microsomia are treated later if there is no breathing impairment. Since the pediatricians have recommended the dorsal position for infant sleeping, an increasing number of posterior flattening of the skull has been appearing, and could be prevented by adequate nursing. Other causes of craniofacial asymmetries are rare and should be adapted to the cause (tumors, atrophies, neurological paralysis, hypertrophies) by a specialized multidisciplinar team.
Acoustic and Perceptual Effects of Left-Right Laryngeal Asymmetries Based on Computational Modeling
ERIC Educational Resources Information Center
Samlan, Robin A.; Story, Brad H.; Lotto, Andrew J.; Bunton, Kate
2014-01-01
Purpose: Computational modeling was used to examine the consequences of 5 different laryngeal asymmetries on acoustic and perceptual measures of vocal function. Method: A kinematic vocal fold model was used to impose 5 laryngeal asymmetries: adduction, edge bulging, nodal point ratio, amplitude of vibration, and starting phase. Thirty /a/ and /?/…
Functional asymmetry of pelvic floor innervation--myth or fact?
Enck, Paul
2004-01-01
Neurophysiology of the pelvic floor is not completely understood yet. The importance of its symmetry and asymmetry of innervation has been pointed out lately. These facts have the clinical relevance in case of pelvic floor trauma or incontinence surgery. New techniques of EMG are necessary to confirm correlations between symptoms development and asymmetry of sphincter innervation.
Visual Field Asymmetries in Attention Vary with Self-Reported Attention Deficits
ERIC Educational Resources Information Center
Poynter, William; Ingram, Paul; Minor, Scott
2010-01-01
The purpose of this study was to determine whether an index of self-reported attention deficits predicts the pattern of visual field asymmetries observed in behavioral measures of attention. Studies of "normal" subjects do not present a consistent pattern of asymmetry in attention functions, with some studies showing better left visual field (LVF)…
J/ψ production in polarized and unpolarized ep collision and Sivers and cos 2φ asymmetries
NASA Astrophysics Data System (ADS)
Mukherjee, Asmita; Rajesh, Sangem
2017-12-01
We calculate the Sivers and cos 2φ azimuthal asymmetries in J/ψ production in the polarized and unpolarized semi-inclusive ep collision, respectively, using the formalism based on the transverse momentum-dependent parton distributions (TMDs). The non-relativistic QCD-based color octet model is employed in calculating the J/ψ production rate. The Sivers asymmetry in this process directly probes the gluon Sivers function. The estimated Sivers asymmetry at z=1 is negative, which is in good agreement with the COMPASS data. The effect of TMD evolution on the Sivers asymmetry is also investigated. The cos 2φ asymmetry is sizable and probes the linearly polarized gluon distribution in an unpolarized proton.
Zhavoronkova, L A
2007-01-01
Data of literature about morphological, functional and biochemical specificity of the brain interhemispheric asymmetry of healthy right-handers and left-handers and about peculiarity of dynamics of cerebral pathology in patients with different individual asymmetry profiles are presented at the present article. Results of our investigation by using coherence parameters of electroencephalogram (EEG) in healthy right-handers and left-handers in state of rest, during functional tests and sleeping and in patients with different forms of the brain organic damage were analyzed too. EEG coherence analysis revealed the reciprocal changing of alpha-beta and theta-delta spectral bands in right-handers whilein left-handers synchronous changing of all EEG spectral bands were observed. Data about regional-frequent specificity of EEG coherence, peculiarity of EEG asymmetry in right-handers and left-handers, aslo about specificity of EEG spectral band genesis and point of view about a role of the brain regulator systems in forming of interhemispheric asymmetry in different functional states allowed to propose the conception about principle of interhermispheric brain asymmetry formation in left-handers and left-handers. Following this conception in dextrals elements of concurrent (summary-reciprocal) cooperation are predominant at the character of interhemispheric and cortical-subcortical interaction while in sinistrals a principle of concordance (supplementary) is preferable. These peculiarities the brain organization determine, from the first side, the quicker revovery of functions damaged after cranio-cerebral trauma in left-handers in comparison right-handers and from the other side - they determine the forming of the more expressed pathology in the remote terms after exposure the low dose of radiation.
Rovira-Lastra, B; Flores-Orozco, E I; Ayuso-Montero, R; Peraire, M; Martinez-Gomis, J
2016-04-01
The aim of this cross-sectional study was to determine the preferred chewing side and whether chewing side preference is related to peripheral, functional or postural lateral preferences. One hundred and forty-six adults with natural dentition performed three masticatory assays, each consisting of five trials of chewing three pieces of silicon placed into a latex bag for 20 cycles, either freestyle or unilaterally on the right- or left-hand side. Occlusal contact area in the intercuspal position, maximum bite force, masticatory performance and cycle duration were measured and the lateral asymmetry of these variables was calculated. Laterality tests were performed to determine handedness, footedness, earedness and eyedness as functional preferences, and hand-clasping, arm-folding and leg-crossing as postural lateral preferences. The preferred chewing side was determined using three different methods: assessment of the first chewing cycle for each trial, calculation of the asymmetry index from all cycles and application of a visual analogue scale. Bivariate relationship and multiple linear regression analyses were performed. Among unilateral chewers, 77% of them preferred the right side for chewing. The factors most closely related to the preferred chewing side were asymmetry of bite force, asymmetry of masticatory performance and earedness, which explained up to 16% of the variance. Although several functional or postural lateral preferences seem to be related to the preferred chewing side, peripheral factors such as asymmetry of bite force and of masticatory performance are the most closely related to the preferred chewing side in adults with natural dentition. © 2015 John Wiley & Sons Ltd.
The Influence of Sex Hormones on Functional Cerebral Asymmetries in Postmenopausal Women
ERIC Educational Resources Information Center
Bayer, Ulrike; Erdmann, Gisela
2008-01-01
Studies investigating changes in functional cerebral asymmetries (FCAs) with hormonal fluctuations during the menstrual cycle in young women have led to controversial hypotheses about an influence of estrogen (E) and/or progesterone (P) on FCAs. Based on methodical, but also on principal problems in deriving conclusions about hormone effects from…
Cetera, Maureen; Leybova, Liliya; Joyce, Bradley; Devenport, Danelle
2018-05-01
Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.
Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium.
Kong, Xiang-Zhen; Mathias, Samuel R; Guadalupe, Tulio; Glahn, David C; Franke, Barbara; Crivello, Fabrice; Tzourio-Mazoyer, Nathalie; Fisher, Simon E; Thompson, Paul M; Francks, Clyde
2018-05-29
Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here, the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium presents the largest-ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and intracranial volume. Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets ( n = 1,443 and 1,113, respectively), we found several asymmetries showing significant, replicable heritability. The structural asymmetries identified and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders.
Analysis of gait symmetry during over-ground walking in children with autism spectrum disorder.
Eggleston, Jeffrey D; Harry, John R; Hickman, Robbin A; Dufek, Janet S
2017-06-01
Gait symmetry is utilized as an indicator of neurologic function. Healthy gait often exhibits minimal asymmetries, while pathological gait exhibits exaggerated asymmetries. The purpose of this study was to examine symmetry of mechanical gait parameters during over-ground walking in children with Autism Spectrum Disorder (ASD). Kinematic and kinetic data were obtained from 10 children (aged 5-12 years) with ASD. The Model Statistic procedure (α=0.05) was used to compare gait related parameters between limbs. Analysis revealed children with ASD exhibit significant lower extremity joint position and ground reaction force asymmetries throughout the gait cycle. The observed asymmetries were unique for each subject. These data do not support previous research relative to gait symmetry in children with ASD. Many individuals with ASD do not receive physical therapy interventions, however, precision medicine based interventions emphasizing lower extremity asymmetries may improve gait function and improve performance during activities of daily living. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lauter, Judith
2002-05-01
As Research Director of CID, Ira emphasized the importance of combining information from biology with rigorous studies of behavior, such as psychophysics, to better understand how the brain and body accomplish the goals of everyday life. In line with this philosophy, my doctoral dissertation sought to explain brain functional asymmetries (studied with dichotic listening) in terms of the physical dimensions of a library of test sounds designed to represent a speech-music continuum. Results highlighted individual differences plus similarities in terms of patterns of relative ear advantages, suggesting an organizational basis for brain asymmetries depending on physical dimensions of stimulus and gesture with analogs in auditory, visual, somatosensory, and motor systems. My subsequent work has employed a number of noninvasive methods (OAEs, EPs, qEEG, PET, MRI) to explore the neurobiological bases of individual differences in general and functional asymmetries in particular. This research has led to (1) the AXS test battery for assessing the neurobiology of human sensory-motor function; (2) the handshaking model of brain function, describing dynamic relations along all three body/brain axes; (3) the four-domain EPIC model of functional asymmetries; and (4) the trimodal brain, a new model of individual differences based on psychoimmunoneuroendocrinology.
Genetic basis of human left-right asymmetry disorders.
Deng, Hao; Xia, Hong; Deng, Sheng
2015-01-27
Humans and other vertebrates exhibit left-right (LR) asymmetric arrangement of the internal organs, and failure to establish normal LR asymmetry leads to internal laterality disorders, including situs inversus and heterotaxy. Situs inversus is complete mirror-imaged arrangement of the internal organs along LR axis, whereas heterotaxy is abnormal arrangement of the internal thoraco-abdominal organs across LR axis of the body, most of which are associated with complex cardiovascular malformations. Both disorders are genetically heterogeneous with reduced penetrance, presumably because of monogenic, polygenic or multifactorial causes. Research in genetics of LR asymmetry disorders has been extremely prolific over the past 17 years, and a series of loci and disease genes involved in situs inversus and heterotaxy have been described. The review highlights the classification, chromosomal abnormalities, pathogenic genes and the possible mechanism of human LR asymmetry disorders.
Concha, M L; Burdine, R D; Russell, C; Schier, A F; Wilson, S W
2000-11-01
Animals show behavioral asymmetries that are mediated by differences between the left and right sides of the brain. We report that the laterality of asymmetric development of the diencephalic habenular nuclei and the photoreceptive pineal complex is regulated by the Nodal signaling pathway and by midline tissue. Analysis of zebrafish embryos with compromised Nodal signaling reveals an early role for this pathway in the repression of asymmetrically expressed genes in the diencephalon. Later signaling mediated by the EGF-CFC protein One-eyed pinhead and the forkhead transcription factor Schmalspur is required to overcome this repression. When expression of Nodal pathway genes is either absent or symmetrical, neuroanatomical asymmetries are still established but are randomized. This indicates that Nodal signaling is not required for asymmetric development per se but is essential to determine the laterality of the asymmetry.
NASA Astrophysics Data System (ADS)
Fahlke, Julia M.; Hampe, Oliver
2015-10-01
Odontoceti and Mysticeti (toothed and baleen whales) originated from Eocene archaeocetes that had evolved from terrestrial artiodactyls. Cranial asymmetry is known in odontocetes that can hear ultrasound (>20,000 Hz) and has been linked to the split function of the nasal passage in breathing and vocalization. Recent results indicate that archaeocetes also had asymmetric crania. Their asymmetry has been linked to directional hearing in water, although hearing frequencies are still under debate. Mysticetes capable of low-frequency and infrasonic hearing (<20 Hz) are assumed to have symmetric crania. This study aims to resolve whether mysticete crania are indeed symmetric and whether mysticete cranial symmetry is plesiomorphic or secondary. Cranial shape was analyzed applying geometric morphometrics to three-dimensional (3D) cranial models of fossil and modern mysticetes, Eocene archaeocetes, modern artiodactyls, and modern odontocetes. Statistical tests include analysis of variance, principal components analysis, and discriminant function analysis. Results suggest that symmetric shape difference reflects general trends in cetacean evolution. Asymmetry includes significant fluctuating and directional asymmetry, the latter being very small. Mysticete crania are as symmetric as those of terrestrial artiodactyls and archaeocetes, without significant differences within Mysticeti. Odontocete crania are more asymmetric. These results indicate that (1) all mysticetes have symmetric crania, (2) archaeocete cranial asymmetry is not conspicuous in most of the skull but may yet be conspicuous in the rostrum, (3) directional cranial asymmetry is an odontocete specialization, and (4) directional cranial asymmetry is more likely related to echolocation than hearing.
Fahlke, Julia M; Hampe, Oliver
2015-10-01
Odontoceti and Mysticeti (toothed and baleen whales) originated from Eocene archaeocetes that had evolved from terrestrial artiodactyls. Cranial asymmetry is known in odontocetes that can hear ultrasound (>20,000 Hz) and has been linked to the split function of the nasal passage in breathing and vocalization. Recent results indicate that archaeocetes also had asymmetric crania. Their asymmetry has been linked to directional hearing in water, although hearing frequencies are still under debate. Mysticetes capable of low-frequency and infrasonic hearing (<20 Hz) are assumed to have symmetric crania. This study aims to resolve whether mysticete crania are indeed symmetric and whether mysticete cranial symmetry is plesiomorphic or secondary. Cranial shape was analyzed applying geometric morphometrics to three-dimensional (3D) cranial models of fossil and modern mysticetes, Eocene archaeocetes, modern artiodactyls, and modern odontocetes. Statistical tests include analysis of variance, principal components analysis, and discriminant function analysis. Results suggest that symmetric shape difference reflects general trends in cetacean evolution. Asymmetry includes significant fluctuating and directional asymmetry, the latter being very small. Mysticete crania are as symmetric as those of terrestrial artiodactyls and archaeocetes, without significant differences within Mysticeti. Odontocete crania are more asymmetric. These results indicate that (1) all mysticetes have symmetric crania, (2) archaeocete cranial asymmetry is not conspicuous in most of the skull but may yet be conspicuous in the rostrum, (3) directional cranial asymmetry is an odontocete specialization, and (4) directional cranial asymmetry is more likely related to echolocation than hearing.
Noble, William; Gatehouse, Stuart
2004-02-01
A series of comparative analyses is presented between a group with relatively similar degrees of hearing loss in each ear (n = 103: symmetry group) and one with dissimilar losses (n = 50: asymmetry group). Asymmetry was defined as an interaural difference of more than 10dB in hearing levels averaged over 0.5. 1, 2 and 4kHz. Comparison was focused on self-rated disabilities as reflected in responses on the Speech, Spatial and Qualities of Hearing Scale (SSQ). The connections between SSQ ratings and a global self-rating of handicap were also observed. The interrelationships among SSQ items for the two groups were analysed to determine how the SSQ behaves when applied to groups in whom binaural hearing is more (asymmetry) versus less compromised. As expected, spatial hearing is severely disabled in the group with asymmetry; this group is generally more disabled than the symmetry group across all SSQ domains. In the linkages with handicap, spatial hearing, especially in dynamic settings, was strongly represented in the asymmetry group, while all aspects of hearing were moderately to strongly represented in the symmetry group. Item intercorrelations showed that speech hearing is a relatively autonomous function for the symmetry group, whereas it is enmeshed with segregation, clarity and naturalness factors for the asymmetry group. Spatial functions were more independent of others in the asymmetry group. The SSQ shows promise in the assessment of outcomes in the case of bilateral versus unilateral amplification and/or implantation.
Shaw, Philip; Lalonde, Francois; Lepage, Claude; Rabin, Cara; Eckstrand, Kristen; Sharp, Wendy; Greenstein, Deanna; Evans, Alan; Giedd, J N; Rapoport, Judith
2009-08-01
Just as typical development of anatomical asymmetries in the human brain has been linked with normal lateralization of motor and cognitive functions, disruption of asymmetry has been implicated in the pathogenesis of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). No study has examined the development of cortical asymmetry using longitudinal neuroanatomical data. To delineate the development of cortical asymmetry in children with and without ADHD. Longitudinal study. Government Clinical Research Institute. A total of 218 children with ADHD and 358 typically developing children, from whom 1133 neuroanatomical magnetic resonance images were acquired prospectively. Cortical thickness was estimated at 40 962 homologous points in the left and right hemispheres, and the trajectory of change in asymmetry was defined using mixed-model regression. In right-handed typically developing individuals, a mean (SE) increase in the relative thickness of the right orbitofrontal and inferior frontal cortex with age of 0.011 (0.0018) mm per year (t(337) = 6.2, P < .001) was balanced against a relative left-hemispheric increase in the occipital cortical regions of 0.013 (0.0015) mm per year (t(337) = 8.1, P < .001). Age-related change in asymmetry in non-right-handed typically developing individuals was less extensive and was localized to different cortical regions. In ADHD, the posterior component of this evolving asymmetry was intact, but the prefrontal component was lost. These findings explain the way that, in typical development, the increased dimensions of the right frontal and left occipital cortical regions emerge in adulthood from the reversed pattern of childhood cortical asymmetries. Loss of the prefrontal component of this evolving asymmetry in ADHD is compatible with disruption of prefrontal function in the disorder and demonstrates the way that disruption of typical processes of asymmetry can inform our understanding of neurodevelopmental disorders.
Characteristics of healthy population among the migrants to the North.
Leutin, V P
2001-11-01
The goal of the study was to elucidate psychophysiological characteristics of subjects who can adapt effectively to Arctic and Subarctic conditions. Plasma cortisol and insulin levels, blood pressure as well as functional sensori-motor asymmetry have been examined in the groups of North Selkups and transit workers from the Subarctic regions. The highest level of plasma cortisol was observed in the Selkups with the predominance of the right indices of sensorimotor asymmetry, whereas the lowest cortisol concentrations have been found in the left-handed groups. The level of insulin appeared to be lower in all examined groups of the Selkups. No changes in the blood pressure were found among the northern populations. The maximum incidence of arterial hypertension was revealed among shift workers with the predominance of the right profile of functional asymmetry. The indices of functional asymmetry, giving important information about adaptive abilities of different populations to severe climato-geographical conditions, can be a useful prognostic factor for the professional selection of workers in the North regions.
Bruder, Gerard E.; Stewart, Jonathan W.; Hellerstein, David; Alvarenga, Jorge E.; Alschuler, Daniel; McGrath, Patrick J.
2012-01-01
Prior studies have found abnormalities of functional brain asymmetry in patients having a major depressive disorder (MDD). This study aimed to replicate findings of reduced right hemisphere advantage for perceiving dichotic complex tones in depressed patients, and to determine whether patients having “pure” dysthymia show the same abnormality of perceptual asymmetry as MDD. It also examined gender differences in lateralization, and the extent to which abnormalities of perceptual asymmetry in depressed patients are dependent on gender. Unmedicated patients having either a MDD (n=96) or “pure” dysthymic disorder (n=42) and healthy controls (n=114) were tested on dichotic fused-words and complex-tone tests. Patient and control groups differed in right hemisphere advantage for complex tones, but not left hemisphere advantage for words. Reduced right hemisphere advantage for tones was equally present in MDD and dysthymia, but was more evident among depressed men than depressed women. Also, healthy men had greater hemispheric asymmetry than healthy women for both words and tones, whereas this gender difference was not seen for depressed patients. Dysthymia and MDD share a common abnormality of hemispheric asymmetry for dichotic listening. PMID:22397909
Bruder, Gerard E; Stewart, Jonathan W; Hellerstein, David; Alvarenga, Jorge E; Alschuler, Daniel; McGrath, Patrick J
2012-04-30
Prior studies have found abnormalities of functional brain asymmetry in patients having a major depressive disorder (MDD). This study aimed to replicate findings of reduced right hemisphere advantage for perceiving dichotic complex tones in depressed patients, and to determine whether patients having "pure" dysthymia show the same abnormality of perceptual asymmetry as MDD. It also examined gender differences in lateralization, and the extent to which abnormalities of perceptual asymmetry in depressed patients are dependent on gender. Unmedicated patients having either a MDD (n=96) or "pure" dysthymic disorder (n=42) and healthy controls (n=114) were tested on dichotic fused-words and complex-tone tests. Patient and control groups differed in right hemisphere advantage for complex tones, but not left hemisphere advantage for words. Reduced right hemisphere advantage for tones was equally present in MDD and dysthymia, but was more evident among depressed men than depressed women. Also, healthy men had greater hemispheric asymmetry than healthy women for both words and tones, whereas this gender difference was not seen for depressed patients. Dysthymia and MDD share a common abnormality of hemispheric asymmetry for dichotic listening. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Kahn, Itamar; Wig, Gagan S.; Schacter, Daniel L.
2012-01-01
Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes. PMID:21968568
Stevens, W Dale; Kahn, Itamar; Wig, Gagan S; Schacter, Daniel L
2012-08-01
Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes.
The extraction of the spin structure function, g2 (and g1) at low Bjorken x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ndukum, Luwani Z.
2015-08-01
The Spin Asymmetries of the Nucleon Experiment (SANE) used the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA to investigate the spin structure of the proton. The experiment measured inclusive double polarization electron asymmetries using a polarized electron beam, scattered off a solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were used. The scattered electrons were detected by a novel, non-magnetic arraymore » of detectors observing a four-momentum transfer range of 2.5 to 6.5 GeV*V. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function, g2 (and g1) at low Bjorken x. The spin structure functions were measured as a function of x and W in four Q square bins. A full understanding of the low x region is necessary to get clean results for SANE and extend our understanding of the kinematic region at low x.« less
Emerson, Robert W; Gao, Wei; Lin, Weili
2016-10-19
Asymmetry in the form of left-hemisphere lateralization is a striking characteristic of the cerebral regions involved in the adult language network. In this study, we leverage a large sample of typically developing human infants with longitudinal resting-state functional magnetic resonance imaging scans to delineate the trajectory of interhemispheric functional asymmetry in language-related regions during the first 2 years of life. We derived the trajectory of interhemispheric functional symmetry of the inferior frontal gyrus (IFG) and superior temporal gyrus (STG), the sensory and visual cortices, and two higher-order regions within the intraparietal sulcus and dorsolateral prefrontal cortex. Longitudinal models revealed a best fit with quadratic age terms and showed significant estimated coefficients of determination for both the IFG (r 2 = 0.261, p < 0.001) and the STG (r 2 = 0.142, p < 0.001) regions while all other regions were best modeled by log-linear increases. These inverse-U-shaped functions of the language regions peaked at ∼11.5 months of age, indicating that a transition toward asymmetry began in the second year. This shift was accompanied by an increase in the functional connectivity of these regions within the left hemisphere. Finally, we detected an association between the trajectory of the IFG and language outcomes at 4 years of age (χ 2 = 10.986, p = 0.011). Our results capture the developmental timeline of the transition toward interhemispheric functional asymmetry during the first 2 years of life. More generally, our findings suggest that increasing interhemispheric functional symmetry in the first year might be a general principle of the developing brain, governing different functional systems, including those that will eventually become lateralized in adulthood. Cross-sectional studies of the language system in early infancy suggest that the basic neural mechanisms are in place even before birth. This study represents the first of its kind, using a large longitudinal sample of infants, to delineate the early language-related transition toward interhemispheric functional asymmetry in the brain using resting-state functional MRI. More generally, our findings suggest that increasing interhemispheric functional symmetry in the first year might be a general principle of the developing brain governing multiple functional systems, including those that will eventually become lateralized in adulthood. Although resting-state functional MRI cannot provide direct insights into the developmental mechanisms of language lateralization, this study reveals language-related functional connectivity changes during infancy, marking critical points in the development of the brain's functional architecture. Copyright © 2016 the authors 0270-6474/16/3610883-10$15.00/0.
NASA Astrophysics Data System (ADS)
Hoang, Trang Thi Kieu
This dissertation describes a measurement of the muon charge asymmetry from W → munu decay using 7.3 fb-1 of data collected from April 2002 to July 2010 using the D0 detector at Fermi National Accelerator Laboratory. The measurement for muons with pseudorapidity |eta| < 2 probes the charge asymmetry for momentum fraction x from 0.005 to 0.3. The charge asymmetry is compared with the theory predictions generated from RESBOS with CTEQ6.6 parton distribution functions, and from POWHEG with CT10 and MSTW2008 PDFs. The results show good agreement with the electron charge asymmetry measurement from D0. So far, our measurement is the most precise lepton charge asymmetry measurement done at the Tevatron.
Hand preference and magnetic resonance imaging asymmetries of the central sulcus.
Foundas, A L; Hong, K; Leonard, C M; Heilman, K M
1998-04-01
Hand preference is perhaps the most evident behavioral asymmetry observed in humans. Anatomic brain asymmetries that may be associated with hand preference have not been extensively studied, and no clear relationship between asymmetries of the motor system and hand preference have been established. Therefore, using volumetric magnetic resonance imaging methodologies, the surface area of the hand representation was measured along the length of the central sulcus in 15 consistent right- and 15 left-handers matched for age and gender. There was a significant leftward asymmetry of the motor hand area of the precentral gyrus in the right-handers, but no directional asymmetry was found in the left-handers. When asymmetry quotients were computed to determine the distribution of interhemispheric asymmetries, the left motor bank was greater than the right motor bank in 9 of 15 right-handers, the right motor bank was greater than the left motor bank in 3 of 15 right-handers, and the motor banks were equal in 3 of 15 right-handers. In contrast, among left-handers, the left motor bank was greater than the right motor bank in 5 of 15, the right motor bank was greater than the left motor bank in 5 of 15, and the motor banks were equal in 5 of 15. Although no direct measure of motor dexterity and skill was performed, these data suggest that anatomic asymmetries of the motor hand area may be related to hand preference because of the differences in right-handers and left-handers. Furthermore, the predominant leftward asymmetry in right-handers and the random distribution of asymmetries in the left-handers support Annett's right-shift theory. It is unclear, however, whether these asymmetries are the result of preferential hand use or are a reflection of a biologic preference to use one limb over the other.
Replication-associated mutational asymmetry in the human genome.
Chen, Chun-Long; Duquenne, Lauranne; Audit, Benjamin; Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Huvet, Maxime; d'Aubenton-Carafa, Yves; Hyrien, Olivier; Arneodo, Alain; Thermes, Claude
2011-08-01
During evolution, mutations occur at rates that can differ between the two DNA strands. In the human genome, nucleotide substitutions occur at different rates on the transcribed and non-transcribed strands that may result from transcription-coupled repair. These mutational asymmetries generate transcription-associated compositional skews. To date, the existence of such asymmetries associated with replication has not yet been established. Here, we compute the nucleotide substitution matrices around replication initiation zones identified as sharp peaks in replication timing profiles and associated with abrupt jumps in the compositional skew profile. We show that the substitution matrices computed in these regions fully explain the jumps in the compositional skew profile when crossing initiation zones. In intergenic regions, we observe mutational asymmetries measured as differences between complementary substitution rates; their sign changes when crossing initiation zones. These mutational asymmetries are unlikely to result from cryptic transcription but can be explained by a model based on replication errors and strand-biased repair. In transcribed regions, mutational asymmetries associated with replication superimpose on the previously described mutational asymmetries associated with transcription. We separate the substitution asymmetries associated with both mechanisms, which allows us to determine for the first time in eukaryotes, the mutational asymmetries associated with replication and to reevaluate those associated with transcription. Replication-associated mutational asymmetry may result from unequal rates of complementary base misincorporation by the DNA polymerases coupled with DNA mismatch repair (MMR) acting with different efficiencies on the leading and lagging strands. Replication, acting in germ line cells during long evolutionary times, contributed equally with transcription to produce the present abrupt jumps in the compositional skew. These results demonstrate that DNA replication is one of the major processes that shape human genome composition.
Measurement of the W boson production charge asymmetry in proton-antiproton collisions
NASA Astrophysics Data System (ADS)
Han, Bo-Young
We present a measurement of the W boson production charge asymmetry using the W → enu decay channel. We use data collected the Collider Detector at Fermilab (CDF) from pp¯ collisions at s = 1.96 TeV. The data were collected up to February 2006 (Run II) and represent an integrated luminosity of 1 fb-1. The experimental measurement of W production charge asymmetry is compared to higher order QCD predictions generated using MRST2006 and CTEQ6 parton distribution functions (PDF). The asymmetry provides new input on the momentum fraction dependence of the u and d quark parton distribution functions (PDF) within the proton over the fraction of proton's momentum range from 0.002 < x < 0.8 corresponding to -3.0 < yW < 3.0 at Q 2 ≈ M2W .
Wang, Fang
2016-06-01
In order to detect and quantify asymmetry of two time series, a novel cross-correlation coefficient is proposed based on recent asymmetric detrended cross-correlation analysis (A-DXA), which we called A-DXA coefficient. The A-DXA coefficient, as an important extension of DXA coefficient ρDXA, contains two directional asymmetric cross-correlated indexes, describing upwards and downwards asymmetric cross-correlations, respectively. By using the information of directional covariance function of two time series and directional variance function of each series itself instead of power-law between the covariance function and time scale, the proposed A-DXA coefficient can well detect asymmetry between the two series no matter whether the cross-correlation is significant or not. By means of the proposed A-DXA coefficient conducted over the asymmetry for California electricity market, we found that the asymmetry between the prices and loads is not significant for daily average data in 1999 yr market (before electricity crisis) but extremely significant for those in 2000 yr market (during the crisis). To further uncover the difference of asymmetry between the years 1999 and 2000, a modified H statistic (MH) and ΔMH statistic are proposed. One of the present contributions is that the high MH values calculated for hourly data exist in majority months in 2000 market. Another important conclusion is that the cross-correlation with downwards dominates over the whole 1999 yr in contrast to the cross-correlation with upwards dominates over the 2000 yr.
Tranel, Daniel; Bechara, Antoine
2009-06-01
We have reported previously that there appears to be an intriguing sex-related functional asymmetry of the prefrontal cortices, especially the ventromedial sector, in regard to social conduct, emotional processing, and decision-making, whereby the right-sided sector is important in men but not women and the left-sided sector is important in women but not men. The amygdala is another structure that has been widely implicated in emotion processing and social decision-making, and the question arises as to whether the amygdala, in a manner akin to what has been observed for the prefrontal cortex, might have sex-related functional asymmetry in regard to social and emotional functions. A preliminary test of this question was carried out in the current study, where we used a case-matched lesion approach and contrasted a pair of men cases and a pair of women cases, where in each pair one patient had left amygdala damage and the other had right amygdala damage. We investigated the domains of social conduct, emotional processing and personality, and decision-making. The results provide support for the notion that there is sex-related functional asymmetry of the amygdala in regard to these functions - in the male pair, the patient with right-sided amygdala damage was impaired in these functions, and the patient with left-sided amygdala damage was not, whereas in the female pair, the opposite pattern obtained, with the left-sided woman being impaired and the right-sided woman being unimpaired. These data provide preliminary support for the notion that sex-related functional asymmetry of the amygdala may entail functions such as social conduct, emotional processing, and decision-making, a finding that in turn could reflect (as either a cause or effect) differences in the manner in which men and women apprehend, process, and execute emotion-related information.
Gable, Philip A; Poole, Bryan D
2014-02-01
Behavioral approach and avoidance are fundamental to the experience of emotion and motivation, but the motivational system associated with anger is not well established. Some theories posit that approach motivational processes underlie anger, whereas others posit that avoidance motivational processes underlie anger. The current experiment sought to address whether traits related to behavioral approach or avoidance influence responses to anger stimuli using multiple measures: ERP, electroencephalographic (EEG) α-asymmetry and self-report. After completing the behavioral inhibition system/behavioral approach system (BIS/BAS) scales, participants viewed anger pictures and neutral pictures. BAS predicted larger late positive potentials (LPPs) to anger pictures, but not to neutral pictures. In addition, BAS predicted greater left-frontal asymmetry to anger pictures. Moreover, larger LPPs to anger pictures related to greater left-frontal EEG asymmetry during anger pictures. These results suggest that trait approach motivation relates to neurophysiological responses of anger.
Poole, Bryan D.
2014-01-01
Behavioral approach and avoidance are fundamental to the experience of emotion and motivation, but the motivational system associated with anger is not well established. Some theories posit that approach motivational processes underlie anger, whereas others posit that avoidance motivational processes underlie anger. The current experiment sought to address whether traits related to behavioral approach or avoidance influence responses to anger stimuli using multiple measures: ERP, electroencephalographic (EEG) α-asymmetry and self-report. After completing the behavioral inhibition system/behavioral approach system (BIS/BAS) scales, participants viewed anger pictures and neutral pictures. BAS predicted larger late positive potentials (LPPs) to anger pictures, but not to neutral pictures. In addition, BAS predicted greater left-frontal asymmetry to anger pictures. Moreover, larger LPPs to anger pictures related to greater left-frontal EEG asymmetry during anger pictures. These results suggest that trait approach motivation relates to neurophysiological responses of anger. PMID:23175676
Canonical microcircuits for predictive coding
Bastos, Andre M.; Usrey, W. Martin; Adams, Rick A.; Mangun, George R.; Fries, Pascal; Friston, Karl J.
2013-01-01
Summary This review considers the influential notion of a canonical (cortical) microcircuit in light of recent theories about neuronal processing. Specifically, we conciliate quantitative studies of microcircuitry and the functional logic of neuronal computations. We revisit the established idea that message passing among hierarchical cortical areas implements a form of Bayesian inference – paying careful attention to the implications for intrinsic connections among neuronal populations. By deriving canonical forms for these computations, one can associate specific neuronal populations with specific computational roles. This analysis discloses a remarkable correspondence between the microcircuitry of the cortical column and the connectivity implied by predictive coding. Furthermore, it provides some intuitive insights into the functional asymmetries between feedforward and feedback connections and the characteristic frequencies over which they operate. PMID:23177956
Sleep deprivation compromises resting-state emotional regulatory processes: An EEG study.
Zhang, Jinxiao; Lau, Esther Yuet Ying; Hsiao, Janet H
2018-03-01
Resting-state spontaneous neural activities consume far more biological energy than stimulus-induced activities, suggesting their significance. However, existing studies of sleep loss and emotional functioning have focused on how sleep deprivation modulates stimulus-induced emotional neural activities. The current study aimed to investigate the impacts of sleep deprivation on the brain network of emotional functioning using electroencephalogram during a resting state. Two established resting-state electroencephalogram indexes (i.e. frontal alpha asymmetry and frontal theta/beta ratio) were used to reflect the functioning of the emotion regulatory neural network. Participants completed an 8-min resting-state electroencephalogram recording after a well-rested night or 24 hr sleep deprivation. The Sleep Deprivation group had a heightened ratio of the power density in theta band to beta band (theta/beta ratio) in the frontal area than the Sleep Control group, suggesting an effective approach with reduced frontal cortical regulation of subcortical drive after sleep deprivation. There was also marginally more left-lateralized frontal alpha power (left frontal alpha asymmetry) in the Sleep Deprivation group compared with the Sleep Control group. Besides, higher theta/beta ratio and more left alpha lateralization were correlated with higher sleepiness and lower vigilance. The results converged in suggesting compromised emotional regulatory processes during resting state after sleep deprivation. Our work provided the first resting-state neural evidence for compromised emotional functioning after sleep loss, highlighting the significance of examining resting-state neural activities within the affective brain network as a default functional mode in investigating the sleep-emotion relationship. © 2018 European Sleep Research Society.
Estimation of sex from the anthropometric ear measurements of a Sudanese population.
Ahmed, Altayeb Abdalla; Omer, Nosyba
2015-09-01
The external ear and its prints have multifaceted roles in medico-legal practice, e.g., identification and facial reconstruction. Furthermore, its norms are essential in the diagnosis of congenital anomalies and the design of hearing aids. Body part dimensions vary in different ethnic groups, so the most accurate statistical estimations of biological attributes are developed using population-specific standards. Sudan lacks comprehensive data about ear norms; moreover, there is a universal rarity in assessing the possibility of sex estimation from ear dimensions using robust statistical techniques. Therefore, this study attempts to establish data for normal adult Sudanese Arabs, assessing the existence of asymmetry and developing a population-specific equation for sex estimation. The study sample comprised 200 healthy Sudanese Arab volunteers (100 males and 100 females) in the age range of 18-30years. The physiognomic ear length and width, lobule length and width, and conchal length and width measurements were obtained by direct anthropometry, using a digital sliding caliper. Moreover, indices and asymmetry were assessed. Data were analyzed using basic descriptive statistics and discriminant function analyses employing jackknife validations of classification results. All linear dimensions used were sexually dimorphic except lobular lengths. Some of the variables and indices show asymmetry. Ear dimensions showed cross-validated sex classification accuracy ranging between 60.5% and 72%. Hence, the ear measurements cannot be used as an effective tool in the estimation of sex. However, in the absence of other more reliable means, it still can be considered a supportive trait in sex estimation. Further, asymmetry should be considered in identification from the ear measurements. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Search asymmetry and eye movements in infants and adults.
Adler, Scott A; Gallego, Pamela
2014-08-01
Search asymmetry is characterized by the detection of a feature-present target amidst feature-absent distractors being efficient and unaffected by the number of distractors, whereas detection of a feature-absent target amidst feature-present distractors is typically inefficient and affected by the number of distractors. Although studies have attempted to investigate this phenomenon with infants (e.g., Adler, Inslicht, Rovee-Collier, & Gerhardstein in Infant Behavioral Development, 21, 253-272, 1998; Colombo, Mitchell, Coldren, & Atwater in Journal of Experimental Psychology: Learning, Memory and Cognition, 19, 98-109, 1990), due to methodological limitations, their findings have been unable to definitively establish the development of visual search mechanisms in infants. The present study assessed eye movements as a means to examine an asymmetry in responding to feature-present versus feature-absent targets in 3-month-olds, relative to adults. Saccade latencies to localize a target (or a distractor, as in the homogeneous conditions) were measured as infants and adults randomly viewed feature-present (R among Ps), feature-absent (P among Rs), and homogeneous (either all Rs or all Ps) arrays at set sizes of 1, 3, 5, and 8. Results indicated that neither infants' nor adults' saccade latencies to localize the target in the feature-present arrays were affected by increasing set sizes, suggesting that localization of the target was efficient. In contrast, saccade latencies to localize the target in the feature-absent arrays increased with increasing set sizes for both infants and adults, suggesting an inefficient localization. These findings indicate that infants exhibit an asymmetry consistent with that found with adults, providing support for functional bottom-up selective attention mechanisms in early infancy.
Hellige, J B; Bloch, M I; Cowin, E L; Eng, T L; Eviatar, Z; Sergent, V
1994-09-01
Functional hemispheric asymmetries were examined for right- or left-handed men and women. Tasks involved (a) auditory processing of verbal material, (b) processing of emotions shown on faces, (c) processing of visual categorical and coordinate spatial relations, and (d) visual processing of verbal material. Similar performance asymmetries were found for the right-handed and left-handed groups, but the average asymmetries tended to be smaller for the left-handed group. For the most part, measures of performance asymmetry obtained from the different tasks did not correlate with each other, suggesting that individual subjects cannot be simply characterized as strongly or weakly lateralized. However, ear differences obtained in Task 1 did correlate significantly with certain visual field differences obtained in Task 4, suggesting that both tasks are sensitive to hemispheric asymmetry in similar phonetic or language-related processes.
Measurement of the electron charge asymmetry in pp[over ]-->W+X-->enu+X events at sqrt[s]=1.96 TeV.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalk, J M; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Millet, T; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tamburello, P; Tanasijczuk, A; Taylor, W; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G
2008-11-21
We present a measurement of the electron charge asymmetry in pp[over ]-->W+X-->enu+X events at a center of mass energy of 1.96 TeV using 0.75 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron transverse momentum and pseudorapidity in the interval (-3.2, 3.2) and is compared with expectations from next-to-leading order calculations in perturbative quantum chromodynamics. These measurements will allow more accurate determinations of the proton parton distribution functions.
Direct measurement of the W production charge asymmetry in pp collisions at square root s=1.96 TeV.
Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S
2009-05-08
We present the first direct measurement of the W production charge asymmetry as a function of the W boson rapidity yW in pp collisions at sqrt[s]=1.96 TeV. We use a sample of W-->enu events in data from 1 fb-1 of integrated luminosity collected using the CDF II detector. In the region |yW|<3.0, this measurement is capable of constraining the ratio of up- and down-quark momentum distributions in the proton more directly than in previous measurements of the asymmetry that are functions of the charged-lepton pseudorapidity.
Consistency tests for the extraction of the Boer-Mulders and Sivers functions
NASA Astrophysics Data System (ADS)
Christova, E.; Leader, E.; Stoilov, M.
2018-03-01
At present, the Boer-Mulders (BM) function for a given quark flavor is extracted from data on semi-inclusive deep inelastic scattering (SIDIS) using the simplifying assumption that it is proportional to the Sivers function for that flavor. In a recent paper, we suggested that the consistency of this assumption could be tested using information on so-called difference asymmetries i.e. the difference between the asymmetries in the production of particles and their antiparticles. In this paper, using the SIDIS COMPASS deuteron data on the ⟨cos ϕh⟩ , ⟨cos 2 ϕh⟩ and Sivers difference asymmetries, we carry out two independent consistency tests of the assumption of proportionality, but here applied to the sum of the valence-quark contributions. We find that such an assumption is compatible with the data. We also show that the proportionality assumptions made in the existing parametrizations of the BM functions are not compatible with our analysis, which suggests that the published results for the Boer-Mulders functions for individual flavors are unreliable. The ⟨cos ϕh⟩ and ⟨cos 2 ϕh⟩ asymmetries receive contributions also from the, in principle, calculable Cahn effect. We succeed in extracting the Cahn contributions from experiment (we believe for the first time) and compare with their calculated values, with interesting implications.
Cilia in vertebrate left–right patterning
Dasgupta, Agnik
2016-01-01
Understanding how left–right (LR) asymmetry is generated in vertebrate embryos is an important problem in developmental biology. In humans, a failure to align the left and right sides of cardiovascular and/or gastrointestinal systems often results in birth defects. Evidence from patients and animal models has implicated cilia in the process of left–right patterning. Here, we review the proposed functions for cilia in establishing LR asymmetry, which include creating transient leftward fluid flows in an embryonic ‘left–right organizer’. These flows direct asymmetric activation of a conserved Nodal (TGFβ) signalling pathway that guides asymmetric morphogenesis of developing organs. We discuss the leading hypotheses for how cilia-generated asymmetric fluid flows are translated into asymmetric molecular signals. We also discuss emerging mechanisms that control the subcellular positioning of cilia and the cellular architecture of the left–right organizer, both of which are critical for effective cilia function during left–right patterning. Finally, using mosaic cell-labelling and time-lapse imaging in the zebrafish embryo, we provide new evidence that precursor cells maintain their relative positions as they give rise to the ciliated left–right organizer. This suggests the possibility that these cells acquire left–right positional information prior to the appearance of cilia. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821522
Left-right asymmetry in the light of TOR: An update on what we know so far.
Casar Tena, Teresa; Burkhalter, Martin D; Philipp, Melanie
2015-09-01
The internal left-right (LR) asymmetry is a characteristic that exists throughout the animal kingdom from roundworms over flies and fish to mammals. Cilia, which are antenna-like structures protruding into the extracellular space, are involved in establishing LR asymmetry during early development. Humans who suffer from dysfunctional cilia often develop conditions such as heterotaxy, where internal organs appear to be placed randomly. As a consequence to this failure in asymmetry development, serious complications such as congenital heart defects (CHD) occur. The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has recently emerged as an important regulator regarding symmetry breaking. The mTOR pathway governs fundamental processes such as protein translation or metabolism. Its activity can be transduced by two complexes, which are called TORC1 and TORC2, respectively. So far, only TORC1 has been implicated with asymmetry development and appears to require very precise regulation. A number of recent papers provided evidence that dysregulated TORC1 results in alterations of motile cilia and asymmetry defects. In here, we give an update on what we know so far of mTORC1 in LR asymmetry development. © 2015 The Authors. Biology of the Cell published by John Wiley & Sons Ltd on behalf of Société Française des Microscopies and Société de Biologie Cellulaire de France.
Critical asymmetry in renormalization group theory for fluids.
Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun
2013-06-21
The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.
Gross, Joshua B; Gangidine, Andrew; Powers, Amanda K
2016-11-01
Craniofacial asymmetry is a convergent trait widely distributed across animals that colonize the extreme cave environment. Although craniofacial asymmetry can be discerned easily, other complex phenotypes (such as sensory organ position and numerical variation) are challenging to score and compare. Certain bones of the craniofacial complex demonstrate substantial asymmetry, and co-localize to regions harboring dramatically expanded numbers of mechanosensory neuromasts. To determine if a relationship exists between this expansion and bone fragmentation in cavefish, we developed a quantitative measure of positional symmetry across the left-right axis. We found that three different cave-dwelling populations were significantly more asymmetric compared to surface-dwelling fish. Moreover, cave populations did not differ in the degree of neuromast asymmetry. This work establishes a method for quantifying symmetry of a complex phenotype, and demonstrates that facial bone fragmentation mirrors the asymmetric distribution of neuromasts in different cavefish populations. Further developmental studies will provide a clearer picture of the developmental and cellular changes that accompany this extreme phenotype, and help illuminate the genetic basis for facial asymmetry in vertebrates.
Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.
Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin
2015-01-07
The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. Copyright © 2015 the authors 0270-6474/15/350140-06$15.00/0.
Role of the gut endoderm in relaying left-right patterning in mice.
Viotti, Manuel; Niu, Lei; Shi, Song-Hai; Hadjantonakis, Anna-Katerina
2012-01-01
Establishment of left-right (LR) asymmetry occurs after gastrulation commences and utilizes a conserved cascade of events. In the mouse, LR symmetry is broken at a midline structure, the node, and involves signal relay to the lateral plate, where it results in asymmetric organ morphogenesis. How information transmits from the node to the distantly situated lateral plate remains unclear. Noting that embryos lacking Sox17 exhibit defects in both gut endoderm formation and LR patterning, we investigated a potential connection between these two processes. We observed an endoderm-specific absence of the critical gap junction component, Connexin43 (Cx43), in Sox17 mutants. Iontophoretic dye injection experiments revealed planar gap junction coupling across the gut endoderm in wild-type but not Sox17 mutant embryos. They also revealed uncoupling of left and right sides of the gut endoderm in an isolated domain of gap junction intercellular communication at the midline, which in principle could function as a barrier to communication between the left and right sides of the embryo. The role for gap junction communication in LR patterning was confirmed by pharmacological inhibition, which molecularly recapitulated the mutant phenotype. Collectively, our data demonstrate that Cx43-mediated communication across gap junctions within the gut endoderm serves as a mechanism for information relay between node and lateral plate in a process that is critical for the establishment of LR asymmetry in mice.
A newly identified left-right asymmetry in larval sea urchins.
Hodin, Jason; Lutek, Keegan; Heyland, Andreas
2016-08-01
Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses-including developmental constraints and water column stability-to account for this newly identified asymmetry.
A newly identified left–right asymmetry in larval sea urchins
Hodin, Jason; Lutek, Keegan
2016-01-01
Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses—including developmental constraints and water column stability—to account for this newly identified asymmetry. PMID:27853591
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anselmino, Mauro; Mariaelena, Boglione; D'Alesio, Umberto
2014-06-01
Some estimates for the transverse Single Spin Asymmetry, A_N, in the inclusive processes l p(transv. Pol.) --> h X, given in a previous paper, are expanded and compared with new experimental data. The predictions are based on the Sivers distributions and the Collins fragmentation functions which fit the azimuthal asymmetries measured in Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes (l p(transv. Pol.) --> l' h X). The factorisation in terms of Transverse Momentum Dependent distribution and fragmentation functions (TMD factorisation) -- i.e., the theoretical framework in which SIDIS azimuthal asymmetries are analysed -- is assumed to hold also for the inclusivemore » process l p --> h X at large P_T. The values of A_N thus obtained agree in sign and shape with the data. Some predictions are given for future experiments.« less
Measurement of the W boson production charge asymmetry in p$$\\bar{p}$$ collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Bo-Young
We present a measurement of the W boson production charge asymmetry using the W → ev decay channel. We use data collected the Collider Detector at Fermilab (CDF) from pmore » $$\\bar{p}$$ collisions at √s = 1.96 TeV. The data were collected up to February 2006 (Run II) and represent an integrated luminosity of 1 fb -1. The experimental measurement of W production charge asymmetry is compared to higher order QCD predictions generated using MRST2006 and CTEQ6 parton distribution functions (PDF). The asymmetry provides new input on the momentum fraction dependence of the u and d quark parton distribution functions (PDF) within the proton over the fraction of proton's momentum range from 0.002 < x < 0.8 corresponding to -3.0 < y W < 3.0 at Q 2 ~ M W 2.« less
Hopkins, William D.; Misiura, Maria; Pope, Sarah M.; Latash, Elitaveta M.
2015-01-01
Contrary to many historical views, recent evidence suggest that species-level behavioral and brain asymmetries are evident in nonhuman species. Here, we briefly present evidence of behavioral, perceptual, cognitive, functional, and neuroanatomical asymmetries in nonhuman primates. In addition, we describe two historical accounts of the evolutionary origins of hemispheric specialization and present data from nonhuman primates that address these specific theories. Specifically, we first discuss the evidence of that genes play specific roles in determining left–right differences in anatomical and functional asymmetries in primates. We next consider and present data on the hypothesis that hemispheric specialization evolved as a by-product of increasing brain size relative to the size of the corpus callosum in different primate species. Lastly, we discuss some of the challenges in the study of hemispheric specialization in primates and offer some suggestions on how to advance the field. PMID:26426409
Hopkins, William D; Misiura, Maria; Pope, Sarah M; Latash, Elitaveta M
2015-11-01
Contrary to many historical views, recent evidence suggests that species-level behavioral and brain asymmetries are evident in nonhuman species. Here, we briefly present evidence of behavioral, perceptual, cognitive, functional, and neuroanatomical asymmetries in nonhuman primates. In addition, we describe two historical accounts of the evolutionary origins of hemispheric specialization and present data from nonhuman primates that address these specific theories. Specifically, we first discuss the evidence that genes play specific roles in determining left-right differences in anatomical and functional asymmetries in primates. We next consider and present data on the hypothesis that hemispheric specialization evolved as a by-product of increasing brain size relative to the surface area of the corpus callosum in different primate species. Last, we discuss some of the challenges in the study of hemispheric specialization in primates and offer some suggestions on how to advance the field. © 2015 New York Academy of Sciences.
Ear asymmetries in middle-ear, cochlear, and brainstem responses in human infants
Keefe, Douglas H.; Gorga, Michael P.; Jesteadt, Walt; Smith, Lynette M.
2008-01-01
In 2004, Sininger and Cone-Wesson examined asymmetries in the signal-to-noise ratio (SNR) of otoacoustic emissions (OAE) in infants, reporting that distortion-product (DP)OAE SNR was larger in the left ear, whereas transient-evoked (TE)OAE SNR was larger in the right. They proposed that cochlear and brainstem asymmetries facilitate development of brain-hemispheric specialization for sound processing. Similarly, in 2006 Sininger and Cone-Wesson described ear asymmetries mainly favoring the right ear in infant auditory brainstem responses (ABRs). The present study analyzed 2640 infant responses to further explore these effects. Ear differences in OAE SNR, signal, and noise were evaluated separately and across frequencies (1.5, 2, 3, and 4 kHz), and ABR asymmetries were compared with cochlear asymmetries. Analyses of ear-canal reflectance and admittance showed that asymmetries in middle-ear functioning did not explain cochlear and brainstem asymmetries. Current results are consistent with earlier studies showing right-ear dominance for TEOAE and ABR. Noise levels were higher in the right ear for OAEs and ABRs, causing ear asymmetries in SNR to differ from those in signal level. No left-ear dominance for DPOAE signal was observed. These results do not support a theory that ear asymmetries in cochlear processing mimic hemispheric brain specialization for auditory processing. PMID:18345839
Asymmetries of solar oscillation line profiles
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Jefferies, S. M.; Harvey, J. W.; Osaki, Y.; Pomerantz, M. A.
1993-01-01
Asymmetries of the power spectral line profiles of solar global p-modes are detected in full-disk intensity observations of the Ca II K Fraunhofer line. The asymmetry is a strong function of temporal frequency being strongest at the lowest frequencies observed and vanishing near the peak of the power distribution. The variation with spherical harmonic degree is small. The asymmetry is interpreted in terms of a model in which the solar oscillation cavity is compared to a Fabry-Perot interferometer with the source slightly outside the cavity. A phase difference between an outward direct wave and a corresponding inward wave that passes through the cavity gives rise to the asymmetry. The asymmetry is different in velocity and intensity observations. Neglecting the asymmetry when modeling the power spectrum can lead to systematic errors in the measurement of mode frequencies of as much as 10 exp -4 of the mode frequency. The present observations and interpretation locate the source of the oscillations to be approximately 60 km beneath the photosphere, the shallowest position suggested to date.
Comparison of X-31 Flight and Ground-Based Yawing Moment Asymmetries at High Angles of Attack
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.; Croom, Mark A.
2001-01-01
Significant yawing moment asymmetries were encountered during the high-angle-of-attack envelope expansion of the two X-31 aircraft. These asymmetries caused position saturations of the thrust-vectoring vanes and trailing-edge flaps during some stability-axis rolling maneuvers at high angles of attack. The two test aircraft had different asymmetry characteristics, and ship two has asymmetries that vary as a function of Reynolds number. Several aerodynamic modifications have been made to the X-31 forebody with the goal of minimizing the asymmetry. These modifications include adding transition strips on the forebody and noseboom, using two different length strakes, and increasing nose bluntness. Ultimately, a combination of forebody strakes, nose blunting, and noseboom transition strips reduced the yawing moment asymmetry enough to fully expand the high-angle-of-attack envelope. Analysis of the X-31 flight data is reviewed and compared to wind-tunnel and water-tunnel measurements. Several lessons learned are outlined regarding high-angle-of-attack configuration design and ground testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avakian, Harut; Gamberg, Leonard; Rossi, Patrizia
We review the concept of Bessel weighted asymmetries for semi-inclusive deep inelastic scattering and focus on the cross section in Fourier space, conjugate to the outgoing hadron’s transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized partonmore » model. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy and hard scale Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less
BCI Control of Heuristic Search Algorithms
Cavazza, Marc; Aranyi, Gabor; Charles, Fred
2017-01-01
The ability to develop Brain-Computer Interfaces (BCI) to Intelligent Systems would offer new perspectives in terms of human supervision of complex Artificial Intelligence (AI) systems, as well as supporting new types of applications. In this article, we introduce a basic mechanism for the control of heuristic search through fNIRS-based BCI. The rationale is that heuristic search is not only a basic AI mechanism but also one still at the heart of many different AI systems. We investigate how users’ mental disposition can be harnessed to influence the performance of heuristic search algorithm through a mechanism of precision-complexity exchange. From a system perspective, we use weighted variants of the A* algorithm which have an ability to provide faster, albeit suboptimal solutions. We use recent results in affective BCI to capture a BCI signal, which is indicative of a compatible mental disposition in the user. It has been established that Prefrontal Cortex (PFC) asymmetry is strongly correlated to motivational dispositions and results anticipation, such as approach or even risk-taking, and that this asymmetry is amenable to Neurofeedback (NF) control. Since PFC asymmetry is accessible through fNIRS, we designed a BCI paradigm in which users vary their PFC asymmetry through NF during heuristic search tasks, resulting in faster solutions. This is achieved through mapping the PFC asymmetry value onto the dynamic weighting parameter of the weighted A* (WA*) algorithm. We illustrate this approach through two different experiments, one based on solving 8-puzzle configurations, and the other on path planning. In both experiments, subjects were able to speed up the computation of a solution through a reduction of search space in WA*. Our results establish the ability of subjects to intervene in heuristic search progression, with effects which are commensurate to their control of PFC asymmetry: this opens the way to new mechanisms for the implementation of hybrid cognitive systems. PMID:28197092
BCI Control of Heuristic Search Algorithms.
Cavazza, Marc; Aranyi, Gabor; Charles, Fred
2017-01-01
The ability to develop Brain-Computer Interfaces (BCI) to Intelligent Systems would offer new perspectives in terms of human supervision of complex Artificial Intelligence (AI) systems, as well as supporting new types of applications. In this article, we introduce a basic mechanism for the control of heuristic search through fNIRS-based BCI. The rationale is that heuristic search is not only a basic AI mechanism but also one still at the heart of many different AI systems. We investigate how users' mental disposition can be harnessed to influence the performance of heuristic search algorithm through a mechanism of precision-complexity exchange. From a system perspective, we use weighted variants of the A* algorithm which have an ability to provide faster, albeit suboptimal solutions. We use recent results in affective BCI to capture a BCI signal, which is indicative of a compatible mental disposition in the user. It has been established that Prefrontal Cortex (PFC) asymmetry is strongly correlated to motivational dispositions and results anticipation, such as approach or even risk-taking, and that this asymmetry is amenable to Neurofeedback (NF) control. Since PFC asymmetry is accessible through fNIRS, we designed a BCI paradigm in which users vary their PFC asymmetry through NF during heuristic search tasks, resulting in faster solutions. This is achieved through mapping the PFC asymmetry value onto the dynamic weighting parameter of the weighted A* (WA*) algorithm. We illustrate this approach through two different experiments, one based on solving 8-puzzle configurations, and the other on path planning. In both experiments, subjects were able to speed up the computation of a solution through a reduction of search space in WA*. Our results establish the ability of subjects to intervene in heuristic search progression, with effects which are commensurate to their control of PFC asymmetry: this opens the way to new mechanisms for the implementation of hybrid cognitive systems.
Voxel-wise grey matter asymmetry analysis in left- and right-handers.
Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan
2016-10-28
Handedness is thought to originate in the brain, but identifying its structural correlates in the cortex has yielded surprisingly incoherent results. One idea proclaimed by several authors is that structural grey matter asymmetries might underlie handedness. While some authors have found significant associations with handedness in different brain areas (e.g. in the central sulcus and precentral sulcus), others have failed to identify such associations. One method used by many researchers to determine structural grey matter asymmetries is voxel based morphometry (VBM). However, it has recently been suggested that the standard VBM protocol might not be ideal to assess structural grey matter asymmetries, as it establishes accurate voxel-wise correspondence across individuals but not across both hemispheres. This could potentially lead to biased and incoherent results. Recently, a new toolbox specifically geared at assessing structural asymmetries and involving accurate voxel-wise correspondence across hemispheres has been published [F. Kurth, C. Gaser, E. Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM), Nat Protoc 10 (2015), 293-304]. Here, we used this new toolbox to re-assess grey matter asymmetry differences in left- vs. right-handers and linked them to quantitative measures of hand preference and hand skill. While we identified several significant left-right asymmetries in the overall sample, no difference between left- and right-handers reached significance after correction for multiple comparisons. These findings indicate that the structural brain correlates of handedness are unlikely to be rooted in macroscopic grey matter area differences that can be assessed with VBM. Future studies should focus on other potential structural correlates of handedness, e.g. structural white matter asymmetries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Chandana, Sreenivasa R; Behen, Michael E; Juhász, Csaba; Muzik, Otto; Rothermel, Robert D; Mangner, Thomas J; Chakraborty, Pulak K; Chugani, Harry T; Chugani, Diane C
2005-01-01
The role of serotonin in prenatal and postnatal brain development is well documented in the animal literature. In earlier studies using positron emission tomography (PET) with the tracer alpha[(11)C]methyl-l-tryptophan (AMT), we reported global and focal abnormalities of serotonin synthesis in children with autism. In the present study, we measured brain serotonin synthesis in a large group of autistic children (n = 117) with AMT PET and related these neuroimaging data to handedness and language function. Cortical AMT uptake abnormalities were objectively derived from small homotopic cortical regions using a predefined cutoff asymmetry threshold (>2 S.D. of normal asymmetry). Autistic children demonstrated several patterns of abnormal cortical involvement, including right cortical, left cortical, and absence of abnormal asymmetry. Global brain values for serotonin synthesis capacity (unidirectional uptake rate constant, K-complex) values were plotted as a function of age. K-complex values of autistic children with asymmetry or no asymmetry in cortical AMT uptake followed different developmental patterns, compared to that of a control group of non-autistic children. The autism groups, defined by presence or absence and side of cortical asymmetry, differed on a measure of language as well as handedness. Autistic children with left cortical AMT decreases showed a higher prevalence of severe language impairment, whereas those with right cortical decreases showed a higher prevalence of left and mixed handedness. Global as well as focal abnormally asymmetric development in the serotonergic system could lead to miswiring of the neural circuits specifying hemispheric specialization.
NASA Astrophysics Data System (ADS)
Wang, Fang
2016-06-01
In order to detect and quantify asymmetry of two time series, a novel cross-correlation coefficient is proposed based on recent asymmetric detrended cross-correlation analysis (A-DXA), which we called A-DXA coefficient. The A-DXA coefficient, as an important extension of DXA coefficient ρ D X A , contains two directional asymmetric cross-correlated indexes, describing upwards and downwards asymmetric cross-correlations, respectively. By using the information of directional covariance function of two time series and directional variance function of each series itself instead of power-law between the covariance function and time scale, the proposed A-DXA coefficient can well detect asymmetry between the two series no matter whether the cross-correlation is significant or not. By means of the proposed A-DXA coefficient conducted over the asymmetry for California electricity market, we found that the asymmetry between the prices and loads is not significant for daily average data in 1999 yr market (before electricity crisis) but extremely significant for those in 2000 yr market (during the crisis). To further uncover the difference of asymmetry between the years 1999 and 2000, a modified H statistic (MH) and ΔMH statistic are proposed. One of the present contributions is that the high MH values calculated for hourly data exist in majority months in 2000 market. Another important conclusion is that the cross-correlation with downwards dominates over the whole 1999 yr in contrast to the cross-correlation with upwards dominates over the 2000 yr.
Cell chirality: emergence of asymmetry from cell culture
Wan, Leo Q.; Chin, Amanda S.; Worley, Kathryn E.; Ray, Poulomi
2016-01-01
Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left–right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821525
ERIC Educational Resources Information Center
Di Stefano, Marirosa; Marano, Elena; Viti, Marzia
2004-01-01
The assessment of language laterality by the dichotic fused-words test may be impaired by interference effects revealed by the dominant report of one member of the stimuli-pair. Stimulus-dominance and ear asymmetry were evaluated in normal population (48 subjects of both sex and handedness) and in 2 patients with a single functional hemisphere.…
Talapaneni, Ashok Kumar; Kumar, Karnati Praveen; Kommi, Pradeep Babu; Nuvvula, Sivakumar
2011-01-01
Dentofacial Orthopedics directed to a hypoplastic maxilla in the prepubertal period redirects growth of the maxilla in the vertical, transverse and sagittal planes of space. The orthopedic correction of maxillary hypoplasia in the early mixed dentition period thus intercepts the establishment of permanent structural asymmetry in the mandible and helps in the achievement of optimal dentofacial esthetics. This paper presents the growth redirection in a hypoplastic maxilla of an 8-year-old girl with simultaneous rapid maxillary expansion and protraction headgear therapy for a period of 11 months which corrected the posterior unilateral cross-bite, the positional asymmetry of the mandible and established an orthognathic profile in the individual. PMID:22346162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, Brian M., E-mail: bmhaines@lanl.gov
2015-08-15
In this paper, we perform a series of high-resolution 3D simulations of an OMEGA-type inertial confinement fusion (ICF) capsule implosion with varying levels of initial long-wavelength asymmetries in order to establish the physical energy loss mechanism for observed yield degradation due to long-wavelength asymmetries in symcap (gas-filled capsule) implosions. These simulations demonstrate that, as the magnitude of the initial asymmetries is increased, shell kinetic energy is increasingly retained in the shell instead of being converted to fuel internal energy. This is caused by the displacement of fuel mass away from and shell material into the center of the implosion duemore » to complex vortical flows seeded by the long-wavelength asymmetries. These flows are not fully turbulent, but demonstrate mode coupling through non-linear instability development during shell stagnation and late-time shock interactions with the shell interface. We quantify this effect by defining a separation lengthscale between the fuel mass and internal energy and show that this is correlated with yield degradation. The yield degradation shows an exponential sensitivity to the RMS magnitude of the long-wavelength asymmetries. This strong dependence may explain the lack of repeatability frequently observed in OMEGA ICF experiments. In contrast to previously reported mechanisms for yield degradation due to turbulent instability growth, yield degradation is not correlated with mixing between shell and fuel material. Indeed, an integrated measure of mixing decreases with increasing initial asymmetry magnitude due to delayed shock interactions caused by growth of the long-wavelength asymmetries without a corresponding delay in disassembly.« less
Bessodes, Nathalie; Haillot, Emmanuel; Duboc, Véronique; Röttinger, Eric; Lahaye, François; Lepage, Thierry
2012-01-01
During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the endomesoderm. FGF/ERK and BMP2/4 signaling are required to initiate nodal expression in this organizer, while Delta/Notch signaling is required to suppress formation of this organizer on the left side of the archenteron. Furthermore, we report that the H+/K+-ATPase is critically required in the Notch signaling pathway upstream of the S3 cleavage of Notch. Our results identify several novel players and key early steps responsible for initiation, restriction, and propagation of left-right asymmetry during embryogenesis of a non-chordate deuterostome and uncover a functional link between the H+/K+-ATPase and the Notch signaling pathway. PMID:23271979
Left-right asymmetry is required for the habenulae to respond to both visual and olfactory stimuli.
Dreosti, Elena; Vendrell Llopis, Nuria; Carl, Matthias; Yaksi, Emre; Wilson, Stephen W
2014-02-17
Left-right asymmetries are most likely a universal feature of bilaterian nervous systems and may serve to increase neural capacity by specializing equivalent structures on left and right sides for distinct roles. However, little is known about how asymmetries are encoded within vertebrate neural circuits and how lateralization influences processing of information in the brain. Consequently, it remains unclear the extent to which lateralization of the nervous system is important for normal cognitive and other brain functions and whether defects in lateralization contribute to neurological deficits. Here we show that sensory responses to light and odor are lateralized in larval zebrafish habenulae and that loss of brain asymmetry leads to concomitant loss of responsiveness to either visual or olfactory stimuli. We find that in wild-type zebrafish, most habenular neurons responding to light are present on the left, whereas neurons responding to odor are more frequent on the right. Manipulations that reverse the direction of brain asymmetry reverse the functional properties of habenular neurons, whereas manipulations that generate either double-left- or double-right-sided brains lead to loss of habenular responsiveness to either odor or light, respectively. Our results indicate that loss of brain lateralization has significant consequences upon sensory processing and circuit function. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Connors, M. G.; Wilson, T. J.; Angelopoulos, V.; Anderson, B. J.; Kadokura, A.
2016-12-01
Previous observations have demonstrated that substorm auroras and the associated electric currents can exhibit substantial north-south asymmetry. Possible mechanisms that cause this asymmetry include the penetration of IMF By into the magnetotail, the difference in ionospheric conductivity due to the dipole tilt angle, and the difference in solar wind dynamo efficiency due to IMF Bx combined with the tilt angle. The relative importance of these factors, however, has not been determined, due to paucity of observations in the southern hemisphere. To resolve this difficulty, we propose to establish three new stations in West Antarctica for measuring geomagnetic perturbations. The three magnetometer stations are located at Lepley Lunatak, Union Glacier, and Whitmore Mountains, between -2° W and 7° W magnetic longitude at L-values 4, 6, and 8. These locations are magnetically conjugate to the recently established AUTUMNX magnetometers along the eastern shore of the Hudson Bay, enabling unique conjugate observations by two magnetometer chains at auroral latitudes and subauroral latitudes when close to midnight. These conjugate magnetic field observations, with concurrent satellite measurements by the AMPERE constellation and the Heliophysics System Observatory, can differentiate between magnetospheric and ionospheric contributions in the hemispheric asymmetry. The comparison with the conjugate observations at the Syowa and Iceland stations can shed light on the longitudinal extent of the hemispheric asymmetry. The PRIMO fluxgate magnetometer system includes a dedicated power and data communications platform developed by UNAVCO and successfully operated at ANET stations in the same region. The three PRIMO systems are co-located with existing ANET stations, facilitating logistic efficiencies such as transportation, cross-trained personnel, and common components. Our plan follows recommendations by the latest Heliophysics Decadal Study for ground-based observations, focusing on the American longitudinal sector and leveraging infrastructure through international collaborations.
Measurement of the W charge asymmetry in the pp collisions at √s = 7 TeV with the ATLAS detector
Aad, G.
2011-06-01
This letter reports a measurement of the muon charge asymmetry from W Boson produced in proton-proton collisions at a centre-of-mass energy of 7 TeV with the ATLAS experiment at the LHC. The asymmetry is measured in the W → μν decay mode as a function of the muon pseudorapidity using a data sample corresponding to a total integrated luminosity of 31 pb -1. The results are compared to predictions based on next-to-leading order calculations with various parton distribution functions. The measurement provides information on the u and d quark momentum fractions in the proton.
Li, Wenjing; Li, Jianhong; Xian, Junfang; Lv, Bin; Li, Meng; Wang, Chunheng; Li, Yong; Liu, Zhaohui; Liu, Sha; Wang, Zhenchang; He, Huiguang; Sabel, Bernhard A
2013-01-01
Prelingual deafness has been shown to lead to brain reorganization as demonstrated by functional parameters, but anatomical evidences still remain controversial. The present study investigated hemispheric asymmetry changes in deaf subjects using MRI, hypothesizing auditory-, language- or visual-related regions after early deafness. Prelingually deaf adolescents (n = 16) and age- and gender-matched normal controls (n = 16) were recruited and hemispheric asymmetry was evaluated with voxel-based morphometry (VBM) from MRI combined with analysis of cortical thickness (CTh). Deaf adolescents showed more rightward asymmetries (L < R) of grey matter volume (GMV) in the cerebellum and more leftward CTh asymmetries (L > R) in the posterior cingulate gyrus and gyrus rectus. More rightward CTh asymmetries were observed in the precuneus, middle and superior frontal gyri, and middle occipital gyrus. The duration of hearing aid use was correlated with asymmetry of GMV in the cerebellum and CTh in the gyrus rectus. Interestingly, the asymmetry of the auditory cortex was preserved in deaf subjects. When the brain is deprived of auditory input early in life there are signs of both irreversible morphological asymmetry changes in different brain regions but also signs of reorganization and plasticity which are dependent on hearing aid use, i.e. use-dependent.
The lateralized smell test for detecting Alzheimer's disease: failure to replicate.
Doty, Richard L; Bayona, Edgardo A; Leon-Ariza, Daniel S; Cuadros, Juan; Chung, Inna; Vazquez, Britney; Leon-Sarmiento, Fidias E
2014-05-15
A widely publicized study by Stamps, Bartoshuk and Heilman (2013) reported that a simple measure of left:right naris differences in the ability to detect the odor of peanut butter is a sensitive marker of Alzheimer's disease (AD). AD patients were said to have abnormal smell function on the left side of the nose and normal function on right side of the nose. In light of its implications for medical practice and the world-wide publicity that it engendered, we sought to replicate and expand this work. Two studies were performed. In the first, 15 AD patients were tested according to the procedures described by Stamps et al. in which the nostril contralateral to the tested side was occluded by the patient using lateral pressure from the index finger. Since this can potentially distort the contralateral naris, we repeated the testing using tape for naris occlusion. In the second, 20 AD patients were administered 20 odors of the University of Pennsylvania Smell Identification Test (UPSIT) to each side of the nose, with the contralateral naris being closed with tape. In both studies, the order of the side of testing was systematically counterbalanced. No evidence of a left:right asymmetry on any test measure was observed. Although hyposmia is well-established in AD, no meaningful asymmetry in smell perception is apparent. If olfactory function on the right side of the nose was normal as claimed, then AD patients should exhibit normal function when tested bilaterally, a phenomenon not seen in dozens of AD-related olfactory studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Left-right asymmetry: cilia stir up new surprises in the node.
Babu, Deepak; Roy, Sudipto
2013-05-29
Cilia are microtubule-based hair-like organelles that project from the surface of most eukaryotic cells. They play critical roles in cellular motility, fluid transport and a variety of signal transduction pathways. While we have a good appreciation of the mechanisms of ciliary biogenesis and the details of their structure, many of their functions demand a more lucid understanding. One such function, which remains as intriguing as the time when it was first discovered, is how beating cilia in the node drive the establishment of left-right asymmetry in the vertebrate embryo. The bone of contention has been the two schools of thought that have been put forth to explain this phenomenon. While the 'morphogen hypothesis' believes that ciliary motility is responsible for the transport of a morphogen preferentially to the left side, the 'two-cilia model' posits that the motile cilia generate a leftward-directed fluid flow that is somehow sensed by the immotile sensory cilia on the periphery of the node. Recent studies with the mouse embryo argue in favour of the latter scenario. Yet this principle may not be generally conserved in other vertebrates that use nodal flow to specify their left-right axis. Work with the teleost fish medaka raises the tantalizing possibility that motility as well as sensory functions of the nodal cilia could be residing within the same organelle. In the end, how ciliary signalling is transmitted to institute asymmetric gene expression that ultimately induces asymmetric organogenesis remains unresolved.
Left–right asymmetry: cilia stir up new surprises in the node
Babu, Deepak; Roy, Sudipto
2013-01-01
Cilia are microtubule-based hair-like organelles that project from the surface of most eukaryotic cells. They play critical roles in cellular motility, fluid transport and a variety of signal transduction pathways. While we have a good appreciation of the mechanisms of ciliary biogenesis and the details of their structure, many of their functions demand a more lucid understanding. One such function, which remains as intriguing as the time when it was first discovered, is how beating cilia in the node drive the establishment of left–right asymmetry in the vertebrate embryo. The bone of contention has been the two schools of thought that have been put forth to explain this phenomenon. While the ‘morphogen hypothesis’ believes that ciliary motility is responsible for the transport of a morphogen preferentially to the left side, the ‘two-cilia model’ posits that the motile cilia generate a leftward-directed fluid flow that is somehow sensed by the immotile sensory cilia on the periphery of the node. Recent studies with the mouse embryo argue in favour of the latter scenario. Yet this principle may not be generally conserved in other vertebrates that use nodal flow to specify their left–right axis. Work with the teleost fish medaka raises the tantalizing possibility that motility as well as sensory functions of the nodal cilia could be residing within the same organelle. In the end, how ciliary signalling is transmitted to institute asymmetric gene expression that ultimately induces asymmetric organogenesis remains unresolved. PMID:23720541
Mirror asymmetry for B(GT) of {sup 24}Si induced by Thomas-Ehrman shift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichikawa, Y.; Kubo, T.; Aoi, N.
We carried out the beta-decay spectroscopy on {sup 24}Si in order to investigate a change in configuration in the wave function induced by Thomas-Ehrman shift from a perspective of mirror asymmetry of B(GT). We observed two beta transitions to low-lying bound states in {sup 24}Al for the first time. In this proceeding, the B(GT) of {sup 24}Si is compared with that of the mirror nucleus {sup 24}Ne, and the mirror asymmetry of B(GT) is determined. Then the origin of the B(GT) asymmetry is discussed through the comparison with theoretical calculations.
Perisylvian sulcal morphology and cerebral asymmetry patterns in adults who stutter.
Cykowski, Matthew D; Kochunov, Peter V; Ingham, Roger J; Ingham, Janis C; Mangin, Jean-François; Rivière, Denis; Lancaster, Jack L; Fox, Peter T
2008-03-01
Previous investigations of cerebral anatomy in persistent developmental stutterers have reported bilateral anomalies in the perisylvian region and atypical patterns of cerebral asymmetry. In this study, perisylvian sulcal patterns were analyzed to compare subjects with persistent developmental stuttering (PDS) and an age-, hand-, and gender-matched control group. This analysis was accomplished using software designed for 3-dimensional sulcal identification and extraction. Patterns of cerebral asymmetry were also investigated with standard planimetric measurements. PDS subjects showed a small but significant increase in both the number of sulci connecting with the second segment of the right Sylvian fissure and in the number of suprasylvian gyral banks (of sulci) along this segment. No differences were seen in the left perisylvian region for either sulcal number or gyral bank number. Measurements of asymmetry revealed typical patterns of cerebral asymmetry in both groups with no significant differences in frontal and occipital width asymmetry, frontal and occipital pole asymmetry, or planum temporale and Sylvian fissure asymmetries. The subtle difference in cortical folding of the right perisylvian region observed in PDS subjects may correlate with functional imaging studies that have reported increased right-hemisphere activity during stuttered speech.
Black–white asymmetry in visual perception
Lu, Zhong-Lin; Sperling, George
2012-01-01
With eleven different types of stimuli that exercise a wide gamut of spatial and temporal visual processes, negative perturbations from mean luminance are found to be typically 25% more effective visually than positive perturbations of the same magnitude (range 8–67%). In Experiment 12, the magnitude of the black–white asymmetry is shown to be a saturating function of stimulus contrast. Experiment 13 shows black–white asymmetry primarily involves a nonlinearity in the visual representation of decrements. Black–white asymmetry in early visual processing produces even-harmonic distortion frequencies in all ordinary stimuli and in illusions such as the perceived asymmetry of optically perfect sine wave gratings. In stimuli intended to stimulate exclusively second-order processing in which motion or shape are defined not by luminance differences but by differences in texture contrast, the black–white asymmetry typically generates artifactual luminance (first-order) motion and shape components. Because black–white asymmetry pervades psychophysical and neurophysiological procedures that utilize spatial or temporal variations of luminance, it frequently needs to be considered in the design and evaluation of experiments that involve visual stimuli. Simple procedures to compensate for black–white asymmetry are proposed. PMID:22984221
The Coordinated Noninvasive Studies (CNS) Project. Phase 1
1991-12-01
may reveal functional asymmetries that represent the influence of two factors: 1) the "contralateral effect ," based on the side -of-space source of...asymmetries, where processing on that side of the CNS opposite the side of input is favored, and 2) an effect based J.L. Lauter [CNS Project/AFOSR 88-0352...extent that these exist over and above sidedness bias as well as side -of-space asymmetries -- since in these experiments, contralateral effects are
Curtis, W John; Cicchetti, Dante
2007-01-01
The current study was a multilevel investigation of resilience, emotion regulation, and hemispheric electroencephalogram (EEG) asymmetry in a sample of maltreated and nonmaltreated school age children. It was predicted that the positive emotionality and increased emotion regulatory ability associated with resilient functioning would be associated with relatively greater left frontal EEG activity. The study also investigated differences in pathways to resilience between maltreated and nonmaltreated children. The findings indicated that EEG asymmetry across central cortical regions distinguished between resilient and nonresilient children, with greater left hemisphere activity characterizing those who were resilient. In addition, nonmaltreated children showed greater left hemisphere EEG activity across parietal cortical regions. There was also a significant interaction between resilience, maltreatment status, and gender for asymmetry at anterior frontal electrodes, where nonmaltreated resilient females had greater relative left frontal activity compared to more right frontal activity exhibited by resilient maltreated females. An observational measure of emotion regulation significantly contributed to the prediction of resilience in the maltreated and nonmaltreated children, but EEG asymmetry in central cortical regions independently predicted resilience only in the maltreated group. The findings are discussed in terms of their meaning for the development of resilient functioning.
NASA Astrophysics Data System (ADS)
Baur, Julien; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Boyarsky, Alexey; Ruchayskiy, Oleg; Armengaud, Éric; Lesgourgues, Julien
2017-12-01
We use the large BOSS DR9 sample of quasar spectra to constrain two cases of non-thermal dark matter models: cold-plus-warm dark matter (C+WDM) where the warm component is a thermal relic, and sterile neutrinos resonantly produced in the presence of a lepton asymmetry (RPSN). We establish constraints on the thermal relic mass mx and its relative abundance Fwdm=Ωwdm/Ωdm using a suite of cosmological hydrodynamical simulations in 28 C+WDM configurations. We find that the 3σ bounds in the mx - Fwdm parameter space approximately follow Fwdm ~ 0.35 (keV/mx)-1.37 from BOSS data alone. We also establish constraints on sterile neutrino mass and mixing angle by further producing the non-linear flux power spectrum of 8 RPSN models, where the input linear power spectrum is computed directly from the particles distribution functions. We find values of lepton asymmetries for which sterile neutrinos as light as ~ 6.5 keV (resp. 3.5 keV) are consistent with BOSS data at the 2σ (resp. 3σ) level. These limits tighten by close to a factor of 2 for values of lepton asymmetries departing from those yielding the coolest distribution functions. Our Lyman-α forest bounds can be additionally strengthened if we include higher-resolution data from XQ-100, HIRES and MIKE that allow us to probe smaller scales. At these scales, the measured flux power spectrum exhibits a suppression that can be due to Doppler broadening, IGM pressure smoothing or free-streaming of WDM particles. In order to distinguish between these mechanisms, thermal history at redshifts z >= 5 should be determined. In the current work, we show that if one extrapolates temperatures from lower redshifts via broken power laws in T0 and γ, then our 3σ C+WDM {bounds strengthen to Fwdm ~ 0.20 (keV/mx)-1.37, and the lightest resonantly-produced sterile neutrinos consistent with our extended data set have masses of ~ 7.0 keV at the 3σ level. In particular, using dedicated hydrodynamical simulations, we show that} a hypothetical 7 keV sterile neutrino produced in a lepton asymmetry of Script L = | nνe - nbar nue | / s = 8 × 10-6 is consistent at 1.9 σ (resp. 3.1 σ) with BOSS (resp. BOSS + higher-resolution) data, {for the thermal history models tested in this work. More information about the state of the IGM at redshifts 5-6 will allow one to conclude whether the small-scale suppression of the flux power spectrum is due to such sterile neutrino or to thermal effects.
Tanner, Jared J; Levy, Shellie-Anne; Schwab, Nadine A; Hizel, Loren P; Nguyen, Peter T; Okun, Michael S; Price, Catherine C
2017-04-01
A 71-year-old (MN) with an 11-year history of left onset tremor diagnosed as Parkinson's disease (PD) completed longitudinal brain magnetic resonance imaging (MRI) and neuropsychological testing. MRI scans showed an asymmetric caudate nucleus (right < left volume). We describe this asymmetry at baseline and the progression over time relative to other subcortical gray, frontal white matter, and cortical gray matter regions of interest. Isolated structural changes are compared to MN's cognitive profiles. MN completed yearly MRIs and neuropsychological assessments. For comparison, left onset PD (n = 15) and non-PD (n = 43) peers completed the same baseline protocol. All MRI scans were processed with FreeSurfer and the FMRIB Software Library to analyze gray matter structures and frontal fractional anisotropy (FA) metrics. Processing speed, working memory, language, verbal memory, abstract reasoning, visuospatial, and motor functions were examined using reliable change methods. At baseline, MN had striatal volume and frontal lobe thickness asymmetry relative to peers with mild prefrontal white matter FA asymmetry. Over time only MN's right caudate nucleus showed accelerated atrophy. Cognitively, MN had slowed psychomotor speed and visuospatial-linked deficits with mild visuospatial working memory declines longitudinally. This is a unique report using normative neuroimaging and neuropsychology to describe an individual diagnosed with PD who had striking striatal asymmetry followed secondarily by cortical thickness asymmetry and possible frontal white matter asymmetry. His decline and variability in visual working memory could be linked to ongoing atrophy of his right caudate nucleus.
Tanner, Jared J.; Levy, Shellie-Anne; Schwab, Nadine A.; Hizel, Loren P.; Nguyen, Peter T.; Okun, Michael S.; Price, Catherine C.
2016-01-01
Objective A 71-year old (MN) with an 11-year history of left onset tremor diagnosed as Parkinson’s disease (PD) completed longitudinal brain magnetic resonance imaging (MRI) and neuropsychological testing. MRI scans showed an asymmetric caudate nucleus (right< left volume). We describe this asymmetry at baseline and the progression over time relative to other subcortical gray, frontal white matter, and cortical gray matter regions of interest. Isolated structural changes are compared to MN’s cognitive profiles. Method MN completed yearly MRIs and neuropsychological assessments. For comparison, left onset PD (n=15) and non-PD (n=43) peers completed the same baseline protocol. All MRI scans were processed with FreeSurfer and the FMRIB Software Library (FSL) to analyze gray matter structures and frontal fractional anisotropy (FA) metrics. Processing speed, working memory, language, verbal memory, abstract reasoning, visuospatial, and motor functions were examined using reliable change methods. Results At baseline MN had striatal volume and frontal lobe thickness asymmetry relative to peers with mild prefrontal white matter FA asymmetry. Over time only MN’s right caudate nucleus showed accelerated atrophy. Cognitively, MN had slowed psychomotor speed and visuospatial-linked deficits with mild visuospatial working memory declines longitudinally. Conclusions This is a unique report using normative neuroimaging and neuropsychology to describe an individual diagnosed with PD who had striking striatal asymmetry followed secondarily by cortical thickness asymmetry and possible frontal white matter asymmetry. His decline and variability in visual working memory could be linked to ongoing atrophy of his right caudate nucleus. PMID:27813459
Liu, Wei; Mao, Yu; Wei, Dongtao; Yang, Junyi; Du, Xue; Xie, Peng; Qiu, Jiang
2016-06-01
In this study, we investigated the role of structural asymmetry of the dorsolateral prefrontal cortex (DLPFC) in the continuum of depression from healthy individuals to patients. Structural magnetic resonance imaging was performed in 70 patients with major depressive disorder (MDD), 49 matched controls, and 349 healthy university students to calculate structural asymmetry indexes of the DLPFC. First-episode, treatment-naive MDD patients showed a relatively lower asymmetry index than healthy controls, and their asymmetry index was negatively correlated with the depressive symptoms. This abnormality was normalized by antidepressants in medicated MDD patients. Furthermore, the asymmetry index was negatively correlated with the depressive symptoms in university students; this was replicated at two time points in a subgroup of students, suggesting good test-retest reliability. Our findings are consistent with previous studies that support the imbalance hypothesis of MDD and suggest a potential structural basis underlying the functional asymmetry of the DLPFC in depression. In future, the structural index of the DLPFC may become a potential biomarker to evaluate individuals' risk for the onset of MDD.
Prevalence of frontal plane pelvic postural asymmetry--part 1.
Juhl, John Henry; Ippolito Cremin, Tonya M; Russell, George
2004-10-01
Despite 80 years of study, questions of how leg length difference relates to recurrent pain and somatic dysfunction remain controversial. The authors hypothesize that a correlation exists between leg length inequality and back pain. They further hypothesize that if common compensatory patterns described in classic osteopathic medical literature exist, these patterns should interact with the pelvic postural asymmetry patterns of Lloyd and Eimerbrink in a predictable, most probable, and congruent fashion. This article reviews the osteopathic medical, as well as the allopathic medical and chiropractic literature for studies that meet criteria for evidence-based comparison. Using lumbar radiographic studies produced with subjects standing, the authors examined the prevalence of six types of pelvic postural asymmetry in a consecutive case series of 421 patients with low back pain. Establishing the frequency of pelvic postural asymmetry patterns is a necessary first step in creating an evidence-based foundation to further clarify postural compensatory patterns. Various correlations between and within these patterns are identified.
Response to gravity by Zea mays seedlings. I. Time course of the response
NASA Technical Reports Server (NTRS)
Bandurski, R. S.; Schulze, A.; Dayanandan, P.; Kaufman, P. B.
1984-01-01
Gravistimulation induces an asymmetric distribution of free indole-3-acetic acid (IAA) in the cortex-epidermis of the Zea mays L. cv 'Stowells Evergreen' mesocotyl within 15 minutes, the shortest time tested. IAA was measured by an isotope dilution method as the pentaflurobenzyl ester. The per cent IAA in the lower half of the mescotyl cortex was 56 to 57% at 15, 30, and 90 minutes after stimulus initiation. Curvature is detectable in the mescotyl within 3 minutes after beginning gravitropic stimulation. The rate of curvature of the mesocotyl increases during the first 60 minutes to maximum of about 30 degrees per hour. Thus, the growth asymmetry continues to increase for 45 minutes after hormone asymmetry is established. Free IAA occurs predominantly in the stele of the mesocotyl whereas esterified IAA is mainly in the mesocotyl cortex-epidermis. This compartmentation may permit determining in which tissue the hormone asymmetry arises. Current data suggest the asymmetry originated in the stele.
NASA Astrophysics Data System (ADS)
Kim, Hongjip; Che Tai, Wei; Zhou, Shengxi; Zuo, Lei
2017-11-01
Stochastic resonance is referred to as a physical phenomenon that is manifest in nonlinear systems whereby a weak periodic signal can be significantly amplified with the aid of inherent noise or vice versa. In this paper, stochastic resonance is considered to harvest energy from two typical vibrations in rotating shafts: random whirl vibration and periodic stick-slip vibration. Stick-slip vibrations impose a constant offset in centrifugal force and distort the potential function of the harvester, leading to potential function asymmetry. A numerical analysis based on a finite element method was conducted to investigate stochastic resonance with potential function asymmetry. Simulation results revealed that a harvester with symmetric potential function generates seven times higher power than that with asymmetric potential function. Furthermore, a frequency-sweep analysis also showed that stochastic resonance has hysteretic behavior, resulting in frequency difference between up-sweep and down-sweep excitations. An electromagnetic energy harvesting system was constructed to experimentally verify the numerical analysis. In contrast to traditional stochastic resonance harvesters, the proposed harvester uses magnetic force to compensate the offset in the centrifugal force. System identification was performed to obtain the parameters needed in the numerical analysis. With the identified parameters, the numerical simulations showed good agreement with the experiment results with around 10% error, which verified the effect of potential function asymmetry and frequency sweep excitation condition on stochastic resonance. Finally, attributed to compensating the centrifugal force offset, the proposed harvester generated nearly three times more open-circuit output voltage than its traditional counterpart.
The Atypical Cadherin Dachsous Controls Left-Right Asymmetry in Drosophila.
González-Morales, Nicanor; Géminard, Charles; Lebreton, Gaëlle; Cerezo, Delphine; Coutelis, Jean-Baptiste; Noselli, Stéphane
2015-06-22
Left-right (LR) asymmetry is essential for organ development and function in metazoans, but how initial LR cue is relayed to tissues still remains unclear. Here, we propose a mechanism by which the Drosophila LR determinant Myosin ID (MyoID) transfers LR information to neighboring cells through the planar cell polarity (PCP) atypical cadherin Dachsous (Ds). Molecular interaction between MyoID and Ds in a specific LR organizer controls dextral cell polarity of adjoining hindgut progenitors and is required for organ looping in adults. Loss of Ds blocks hindgut tissue polarization and looping, indicating that Ds is a crucial factor for both LR cue transmission and asymmetric morphogenesis. We further show that the Ds/Fat and Frizzled PCP pathways are required for the spreading of LR asymmetry throughout the hindgut progenitor tissue. These results identify a direct functional coupling between the LR determinant MyoID and PCP, essential for non-autonomous propagation of early LR asymmetry. Copyright © 2015 Elsevier Inc. All rights reserved.
Absence of Auditory M100 Source Asymmetry in Schizophrenia and Bipolar Disorder: A MEG Study
Wang, Ying; Feng, Yigang; Jia, Yanbin; Xie, Yanping; Wang, Wensheng; Guan, Yufang; Zhong, Shuming; Zhu, Dan; Huang, Li
2013-01-01
Background Whether schizophrenia and bipolar disorder are the clinical outcomes of discrete or shared causative processes is much debated in psychiatry. Several studies have demonstrated anomalous structural and functional superior temporal gyrus (STG) symmetries in schizophrenia. We examined bipolar patients to determine if they also have altered STG asymmetry. Methods Whole-head magnetoencephalography (MEG) recordings of auditory evoked fields were obtained for 20 subjects with schizophrenia, 20 with bipolar disorder, and 20 control subjects. Neural generators of the M100 auditory response were modeled using a single equivalent current dipole for each hemisphere. The source location of the M100 response was used as a measure of functional STG asymmetry. Results Control subjects showed the typical M100 asymmetrical pattern with more anterior sources in the right STG. In contrast, both schizophrenia and bipolar disorder patients displayed a symmetrical M100 source pattern. There was no significant difference in the M100 latency and strength in bilateral hemispheres within three groups. Conclusions Our results indicate that disturbed asymmetry of temporal lobe function may reflect a common deviance present in schizophrenia and bipolar disorder, suggesting the two disorders might share etiological and pathophysiological factors. PMID:24340052
Structural connectivity asymmetry in the neonatal brain.
Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi
2013-07-15
Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-world characteristics were exhibited, but did not differ between the two hemispheres, suggesting that neighboring brain regions connect tightly with each other, and that one region is only a few paths away from any other region within each hemisphere. Moreover, the neonatal brain showed greater structural efficiency in the left hemisphere than that in the right. In neonates, brain regions involved in motor, language, and memory functions play crucial roles in efficient communication in the left hemisphere, while brain regions involved in emotional processes play crucial roles in efficient communication in the right hemisphere. These findings suggest that even at birth, the topology of each cerebral hemisphere is organized in an efficient and compact manner that maps onto asymmetric functional specializations seen in adults, implying lateralized brain functions in infancy. Copyright © 2013 Elsevier Inc. All rights reserved.
Stating asymmetry in neural pathways: methodological trends in autonomic neuroscience.
Xavier, Carlos Henrique; Mendonça, Michelle Mendanha; Marins, Fernanda Ribeiro; da Silva, Elder Sales; Ianzer, Danielle; Colugnati, Diego Basile; Pedrino, Gustavo Rodrigues; Fontes, Marco Antonio Peliky
2018-05-22
Many particularities concerning interhemispheric differences still need to be explored and unveiled. Functional and anatomical differential features found between left and right brain sides are best known as asymmetries and are consequence of the unilateral neuronal recruitment or predominance that is set to organize some function. The outflow from different neural pathways involved in the autonomic control of the cardiovascular system may route through asymmetrically relayed efferences (ipsilateral/lateralized and/or contralateral). In spite of this, the literature reporting on the role of central nuclei involved in the autonomic control is not always dedicated on these interhemispheric comparisons. Considering the recent reports demonstrating that asymmetries may set differential functional responses, it is worth checking differences between right and left sides of central regions. This review aims to inspire neuroscientists with the idea that studying the interhemispheric differences may deepen the understanding on several centrally controlled responses, with special regard to the autonomic functions underlying the cardiovascular regulation. Thus, an avenue of knowledge may unfold from a field of research that requires further exploration.
Tests for the extraction of Boer-Mulders functions
NASA Astrophysics Data System (ADS)
Christova, Ekaterina; Leader, Elliot; Stoilov, Michail
2017-12-01
At present, the Boer-Mulders (BM) functions are extracted from asymmetry data using the simplifying assumption of their proportionality to the Sivers functions for each quark flavour. Here we present two independent tests for this assumption. We subject COMPASS data on semi-inclusive deep inelastic scattering on the 〈cos ϕh 〉, 〈cos 2ϕh 〉 and Sivers asymmetries to these tests. Our analysis shows that the tests are satisfied with the available data if the proportionality constant is the same for all quark flavours, which does not correspond to the flavour dependence used in existing analyses. This suggests that the published information on the BM functions may be unreliable. The 〈cos ϕh 〉, 〈cos 2ϕh 〉 asymmetries receive contributions also from the, in principle, calculable Cahn effect. We succeed in extracting the Cahn contributions from experiment (we believe for the first time) and compare with their calculated values, with interesting implications.
Collins azimuthal asymmetries of hadron production inside jets
Kang, Zhong -Bo; Prokudin, Alexei; Ringer, Felix; ...
2017-10-18
Here, we investigate the Collins azimuthal asymmetry of hadrons produced inside jets in transversely polarized proton-proton collisions. Recently, the quark transversity distributions and the Collins fragmentation functions have been extracted within global analyses from data of the processes semi-inclusive deep inelastic scattering and electron-positron annihilation. We calculate the Collins azimuthal asymmetry for charged pions inside jets using these extractions for RHIC kinematics at center-of-mass energies of 200 and 500 GeV. We compare our results with recent data from the STAR Collaboration at RHIC and find good agreement, which confirms the universality of the Collins fragmentation functions. In addition, we furthermore » explore the impact of transverse momentum dependent evolution effects.« less
Compagnucci, Claudia; Fish, Jennifer; Depew, Michael J
2014-06-01
Much of the gnathostome (jawed vertebrate) evolutionary radiation was dependent on the ability to sense and interpret the environment and subsequently act upon this information through utilization of a specialized mode of feeding involving the jaws. While the gnathostome skull, reflective of the vertebrate baüplan, typically is bilaterally symmetric with right (dextral) and left (sinistral) halves essentially representing mirror images along the midline, both adaptive and abnormal asymmetries have appeared. Herein we provide a basic primer on studies of the asymmetric development of the gnathostome skull, touching briefly on asymmetry as a field of study, then describing the nature of cranial development and finally underscoring evolutionary and functional aspects of left-right asymmetric cephalic development. © 2014 Wiley Periodicals, Inc.
The Sivers effect and the Single Spin Asymmetry A_N in p(transv. pol.) p --> h X processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anselmino, Mauro; Boglione, Mariaelena; D'Alesio, Umberto
2013-09-01
The single spin asymmetry A_N, for large P_T single inclusive particle production in p(transv. pol.) p collisions, is considered within a generalised parton model and a transverse momentum dependent factorisation scheme. The focus is on the Sivers effect and the study of its potential contribution to A_N, based on a careful analysis of the Sivers functions extracted from azimuthal asymmetries in semi-inclusive deep inelastic scattering processes. It is found that such Sivers functions could explain most features of the A_N data, including some recent STAR results which show the persistence of a non zero A_N up to surprisingly large P_Tmore » values.« less
Collins azimuthal asymmetries of hadron production inside jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Zhong -Bo; Prokudin, Alexei; Ringer, Felix
Here, we investigate the Collins azimuthal asymmetry of hadrons produced inside jets in transversely polarized proton-proton collisions. Recently, the quark transversity distributions and the Collins fragmentation functions have been extracted within global analyses from data of the processes semi-inclusive deep inelastic scattering and electron-positron annihilation. We calculate the Collins azimuthal asymmetry for charged pions inside jets using these extractions for RHIC kinematics at center-of-mass energies of 200 and 500 GeV. We compare our results with recent data from the STAR Collaboration at RHIC and find good agreement, which confirms the universality of the Collins fragmentation functions. In addition, we furthermore » explore the impact of transverse momentum dependent evolution effects.« less
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Booth, P.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Rocha Gesualdi Mello, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fasching, D.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flammer, J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gieraltowski, G. F.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Fajardo, L. S. Gomez; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Gris, P. L. Y.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruwe, M.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, C. J.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lapin, V. V.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, G. H.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, L.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Moneta, L.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rensch, B.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration
2011-06-01
This Letter reports a measurement of the muon charge asymmetry from W bosons produced in proton-proton collisions at a centre-of-mass energy of 7 TeV with the ATLAS experiment at the LHC. The asymmetry is measured in the W → μν decay mode as a function of the muon pseudorapidity using a data sample corresponding to a total integrated luminosity of 31 pb-1. The results are compared to predictions based on next-to-leading order calculations with various parton distribution functions. This measurement provides information on the u and d quark momentum fractions in the proton.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, Victor Mukhamedovich
Here, we measure the forward-backward asymmetries AFB of charged Ξ and Ω baryons produced inmore » $$p\\overline{p}$$ collisions recorded by the D0 detector at the Fermilab Tevatron collider at √s = 1.96 TeV as a function of the baryon rapidity y. We find that the asymmetries AFB for charged Ξ and Ω baryons are consistent with zero within statistical uncertainties.« less
Abazov, Victor Mukhamedovich
2016-06-01
Here, we measure the forward-backward asymmetries AFB of charged Ξ and Ω baryons produced inmore » $$p\\overline{p}$$ collisions recorded by the D0 detector at the Fermilab Tevatron collider at √s = 1.96 TeV as a function of the baryon rapidity y. We find that the asymmetries AFB for charged Ξ and Ω baryons are consistent with zero within statistical uncertainties.« less
Marinsek, Miha
2016-01-01
The influence of different motor practice types on lateral asymmetry of performance was investigated in 40 preschool children. Lateral preference was measured prior the experiment. For the purpose of present study dribbling a ball with a hand and foot was used to assess lateral asymmetry of performance before and after three different motor practice types. Motor practice with the non-dominant, dominant, and both (contralateral) limbs took place in the indoor facility 4 times/week for 6 weeks. Each session lasted 30-40 min. Our results showed that unilateral practice of dribbling is more beneficial for diminishing lateral asymmetry of performance in comparison to bilateral practice. Moreover, participants who practiced with their dominant limb diminished lateral asymmetry of performance the most and made the largest overall improvement. We did not find important differences between acquisitions of dribbling with upper- and lower-extremity. In this sense, the results support the notion of lateral asymmetry of performance to be task-specific.
Accuracy of saccades to remembered targets as a function of body orientation in space
NASA Technical Reports Server (NTRS)
Vogelstein, Joshua T.; Snyder, Lawrence H.; Angelaki, Dora E.
2003-01-01
A vertical asymmetry in memory-guided saccadic eye movements has been previously demonstrated in humans and in rhesus monkeys. In the upright orientation, saccades generally land several degrees above the target. The origin of this asymmetry has remained unknown. In this study, we investigated whether the asymmetry in memory saccades is dependent on body orientation in space. Thus animals performed memory saccades in four different body orientations: upright, left-side-down (LSD), right-side-down (RSD), and supine. Data in all three rhesus monkeys confirm previous observations regarding a significant upward vertical asymmetry. Saccade errors made from LSD and RSD postures were partitioned into components made along the axis of gravity and along the vertical body axis. Up/down asymmetry persisted only in body coordinates but not in gravity coordinates. However, this asymmetry was generally reduced in tilted positions. Therefore the upward bias seen in memory saccades is egocentric although orientation in space might play a modulatory role.
The Relationship Between Asymmetry and Athletic Performance: A Critical Review.
Maloney, Sean J
2018-05-08
Maloney, SJ. The relationship between asymmetry and athletic performance: A critical review. J Strength Cond Res XX(X): 000-000, 2018-Symmetry may be defined as the quality to demonstrate an exact correspondence of size, shape, and form when split along a given axis. Although it has been widely asserted that the bilateral asymmetries are detrimental to athletic performance, research does not wholly support such an association. Moreover, the research rarely seeks to distinguish between different types of bilateral asymmetry. Fluctuating asymmetries describe bilateral differences in anthropometric attributes, such as nostril width and ear size, and are thought to represent the developmental stability of an organism. There is evidence to suggest that fluctuating asymmetries may be related to impaired athletic performance, although contradictory findings have been reported. Sporting asymmetries is a term that may better describe bilateral differences in parameters, such as force output or jump height. These asymmetries are likely to be a function of limb dominance and magnified by long-standing participation within sport. Sporting asymmetries do not seem to carry a clear influence on athletic performance measures. Given the vast discrepancy in the methodologies used by different investigations, further research is warranted. Recent investigations have demonstrated that training interventions can reduce sporting asymmetries and improve performance. However, studies have not sought to determine whether the influence of sporting asymmetry is independent of improvements in neuromuscular parameters. It may be hypothesized that the deficient (weaker) limb has a greater potential for adaptation in comparison to the strong limb and may demonstrate greater responsiveness to training.
Velickovic, Miroslava
2008-01-01
My research interest was to create a new, simple and tractable mathematical framework for analyzing fluctuating asymmetry (FA) in Aesculus hippocastanum L. palmately compound leaves (each compound leaf with 7 obviate, serrate leaflets). FA, being random differences in the development of both sides of a bilaterally symmetrical character, has been proposed as an indicator of environmental and genetic stress. In the present paper the well-established Palmer's procedure for FA has been modified to improve the suitability of the chosen index (FA1) to be used in compound leaf asymmetry analysis. The processing steps are described in detail, allowing us to apply these modifications for the other Palmer's indices of FA as well as for the compound leaves of other plant species.
NASA Astrophysics Data System (ADS)
Bianconi, A.; Bussa, M. P.; Destefanis, M.; Ferrero, L.; Greco, M.; Maggiora, M.; Spataro, S.
2013-04-01
Fixed-target unpolarized Drell-Yan experiments often feature an acceptance depending on the polar angle of the lepton tracks in the laboratory frame. Typically leptons are detected in a defined angular range, with a dead zone in the forward region. If the cutoffs imposed by the angular acceptance are independent of the azimuth, at first sight they do not appear dangerous for a measurement of the cos(2 φ) asymmetry, which is relevant because of its association with the violation of the Lam-Tung rule and with the Boer-Mulders function. On the contrary, direct simulations show that up to 10 percent asymmetries are produced by these cutoffs. These artificial asymmetries present qualitative features that allow them to mimic the physical ones. They introduce some model dependence in the measurements of the cos(2 φ) asymmetry, since a precise reconstruction of the acceptance in the Collins-Soper frame requires a Monte Carlo simulation, that in turn requires some detailed physical input to generate event distributions. Although experiments in the eighties seem to have been aware of this problem, the possibility of using the Boer-Mulders function as an input parameter in the extraction of transversity has much increased the requirements of precision on this measurement. Our simulations show that the safest approach to these measurements is a strong cutoff on the Collins-Soper polar angle. This reduces statistics, but does not necessarily decrease the precision in a measurement of the Boer-Mulders function.
Temporal processing asymmetries between the cerebral hemispheres: evidence and implications.
Nicholls, M E
1996-07-01
This paper reviews a large body of research which has investigated the capacities of the cerebral hemispheres to process temporal information. This research includes clinical, non-clinical, and electrophysiological experimentation. On the whole, the research supports the notion of a left hemisphere advantage for temporal resolution. The existence of such an asymmetry demonstrates that cerebral lateralisation is not limited to the higher-order functions such as language. The capacity for the resolution of fine temporal events appears to play an important role in other left hemisphere functions which require a rapid sequential processor. The functions that are facilitated by such a processor include verbal, textual, and fine movement skills. The co-development of these functions with an efficient temporal processor can be accounted for with reference to a number of evolutionary scenarios. Physiological evidence favours a temporal processing mechanism located within the left temporal cortex. The function of this mechanism may be described in terms of intermittency or travelling moment models of temporal processing. The travelling moment model provides the most plausible account of the asymmetry.
The basic mechanics of bipedal walking lead to asymmetric behavior.
Gregg, Robert D; Degani, Amir; Dhaher, Yasin; Lynch, Kevin M
2011-01-01
This paper computationally investigates whether gait asymmetries can be attributed in part to basic bipedal mechanics independent of motor control. Using a symmetrical rigid-body model known as the compass-gait biped, we show that changes in environmental or physiological parameters can facilitate asymmetry in gait kinetics at fast walking speeds. In the environmental case, the asymmetric family of high-speed gaits is in fact more stable than the symmetric family of low-speed gaits. These simulations suggest that lower extremity mechanics might play a direct role in functional and pathological asymmetries reported in human walking, where velocity may be a common variable in the emergence and growth of asymmetry. © 2011 IEEE
Goldstein, Brandon L; Shankman, Stewart A; Kujawa, Autumn; Torpey-Newman, Dana C; Dyson, Margaret W; Olino, Thomas M; Klein, Daniel N
2018-04-24
Depression is characterized by low positive emotionality (PE) and high negative emotionality (NE), as well as asymmetries in resting electroencephalography (EEG) alpha power. Moreover, frontal asymmetry has itself been linked to PE, NE, and related constructs. However, little is known about associations of temperamental PE and NE with resting EEG asymmetries in young children and whether this association changes as a function of development. In a longitudinal study of 254 three-year old children, we assessed PE and NE at age 3 using a standard laboratory observation procedure. Frontal EEG asymmetries were assessed at age 3 and three years later at age 6. We observed a significant three-way interaction of preschool PE and NE and age at assessment for asymmetry at F3-F4 electrode sites, such that children with both low PE and high NE developed a pattern of increasingly lower relative left-frontal cortical activity over time. In addition, F7-F8 asymmetry was predicted by a PE by time interaction, such that the frontal asymmetry in children with high PE virtually disappeared by age 6. Overall, these findings suggest that early temperament is associated with developmental changes in frontal asymmetry, and that the combination of low PE and high NE predicts the development of the pattern of frontal symmetry that is associated with depression.
Cell chirality: its origin and roles in left-right asymmetric development.
Inaki, Mikiko; Liu, Jingyang; Matsuno, Kenji
2016-12-19
An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by 'cortical inheritance'. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left-right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Authors.
The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus.
Soukup, Vladimir; Kozmik, Zbynek
2018-02-01
Establishment of asymmetry along the left-right (LR) body axis in vertebrates requires interplay between Nodal and Bmp signaling pathways. In the basal chordate amphioxus, the left-sided activity of the Nodal signaling has been attributed to the asymmetric morphogenesis of paraxial structures and pharyngeal organs, however the role of Bmp signaling in LR asymmetry establishment has not been addressed to date. Here, we show that Bmp signaling is necessary for the development of LR asymmetric morphogenesis of amphioxus larvae through regulation of Nodal signaling. Loss of Bmp signaling results in loss of the left-sided expression of Nodal, Gdf1/3, Lefty and Pitx and in gain of ectopic expression of Cerberus on the left side. As a consequence, the larvae display loss of the offset arrangement of axial structures, loss of the left-sided pharyngeal organs including the mouth, and ectopic development of the right-sided organs on the left side. Bmp inhibition thus phenocopies inhibition of Nodal signaling and results in the right isomerism. We conclude that Bmp and Nodal pathways act in concert to specify the left side and that Bmp signaling plays a fundamental role during LR development in amphioxus. Copyright © 2017 Elsevier Inc. All rights reserved.
Introduction to provocative questions in left-right asymmetry.
Levin, Michael; Klar, Amar J S; Ramsdell, Ann F
2016-12-19
Left-right asymmetry is a phenomenon that has a broad appeal-to anatomists, developmental biologists and evolutionary biologists-because it is a morphological feature of organisms that spans scales of size and levels of organization, from unicellular protists, to vertebrate organs, to social behaviour. Here, we highlight a number of important aspects of asymmetry that encompass several areas of biology-cell-level, physiological, genetic, anatomical and evolutionary components-and that are based on research conducted in diverse model systems, ranging from single cells to invertebrates to human developmental disorders. Together, the contributions in this issue reveal a heretofore-unsuspected variety in asymmetry mechanisms, including ancient chirality elements that could underlie a much more universal basis to asymmetry development, and provide much fodder for thought with far reaching implications in biomedical, developmental, evolutionary and synthetic biology. The new emerging theme of binary cell-fate choice, promoted by asymmetric cell division of a deterministic cell, has focused on investigating asymmetry mechanisms functioning at the single cell level. These include cytoskeleton and DNA chain asymmetry-mechanisms that are amplified and coordinated with those employed for the determination of the anterior-posterior and dorsal-ventral axes of the embryo.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).
Development of the Intrinsic Language Network in Preschool Children from Ages 3 to 5 Years.
Xiao, Yaqiong; Brauer, Jens; Lauckner, Mark; Zhai, Hongchang; Jia, Fucang; Margulies, Daniel S; Friederici, Angela D
2016-01-01
Resting state studies of spontaneous fluctuations in the functional magnetic resonance imaging (fMRI) blood oxygen level dependent signal have shown great potential in mapping the intrinsic functional connectivity of the human brain underlying cognitive functions. The aim of the present study was to explore the developmental changes in functional networks of the developing human brain exemplified with the language network in typically developing preschool children. To this end, resting-sate fMRI data were obtained from native Chinese children at ages of 3 and 5 years, 15 in each age group. Resting-state functional connectivity (RSFC) was analyzed for four regions of interest; these are the left and right anterior superior temporal gyrus (aSTG), left posterior superior temporal gyrus (pSTG), and left inferior frontal gyrus (IFG). The comparison of these RSFC maps between 3- and 5-year-olds revealed that RSFC decreases in the right aSTG and increases in the left hemisphere between aSTG seed and IFG, between pSTG seed and IFG, as well as between IFG seed and posterior superior temporal sulcus. In a subsequent analysis, functional asymmetry of the language network seeding in aSTG, pSTG and IFG was further investigated. The results showed an increase of left lateralization in both RSFC of pSTG and of IFG from ages 3 to 5 years. The IFG showed a leftward lateralized trend in 3-year-olds, while pSTG demonstrated rightward asymmetry in 5-year-olds. These findings suggest clear developmental trajectories of the language network between 3- and 5-year-olds revealed as a function of age, characterized by increasing long-range connections and dynamic hemispheric lateralization with age. Our study provides new insights into the developmental changes of a well-established functional network in young children and also offers a basis for future cross-culture and cross-age studies of the resting-state language network.
Left-Right Asymmetry: Myosin 1D at the Center.
Yuan, Shiaulou; Brueckner, Martina
2018-05-07
While a ciliated organizer generates vertebrate left-right asymmetry, most invertebrates lack an organizer and instead utilize a myosin-based mechanism. A recent study now reveals that this myosin mechanism is conserved in the vertebrate organizer and functions to regulate cilia. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of Temporal Constraints on Hemispheric Asymmetries during Spatial Frequency Processing
ERIC Educational Resources Information Center
Peyrin, Carole; Mermillod, Martial; Chokron, Sylvie; Marendaz, Christian
2006-01-01
Studies on functional hemispheric asymmetries have suggested that the right vs. left hemisphere should be predominantly involved in low vs. high spatial frequency (SF) analysis, respectively. By manipulating exposure duration of filtered natural scene images, we examined whether the temporal characteristics of SF analysis (i.e., the temporal…
Mellet, Emmanuel; Mazoyer, Bernard; Leroux, Gaelle; Joliot, Marc; Tzourio-Mazoyer, Nathalie
2016-01-01
The aim of this study was to characterize, using fMRI, the functional asymmetries of hand laterality task (HLT) in a sample of 295 participants balanced for handedness. During HLT, participants have to decide whether the displayed picture of a hand represent a right or a left hand. Pictures of hands’ back view were presented for 150 ms in the right or left hemifield. At the whole hemisphere level, we evidenced that the laterality of the hand and of the hemifield in which the picture was displayed combined their effects on the hemispheric asymmetry in an additive way. We then identified a set of 17 functional homotopic regions of interest (hROIs) including premotor, motor, somatosensory and parietal regions, whose activity and asymmetry varied with the laterality of the presented hands. When the laterality of a right hand had to be evaluated, these areas showed stronger leftward asymmetry, the hROI located in the primary motor area showing a significant larger effect than all other hROIs. In addition a subset of six parietal regions involved in visuo-motor integration together with two postcentral areas showed a variation in asymmetry with hemifield of presentation. Finally, while handedness had no effect at the hemispheric level, two regions located in the parietal operculum and intraparietal sulcus exhibited larger leftward asymmetry with right handedness independently of the hand of presentation. The present results extend those of previous works in showing a shift of asymmetries during HLT according to the hand presented in sensorimotor areas including primary motor cortex. This shift was not affected by manual preference. They also demonstrate that the coordination of visual information and handedness identification of hands relied on the coexistence of contralateral motor and visual representations in the superior parietal lobe and the postcentral gyrus. PMID:27999536
Spin asymmetries for vector boson production in polarized p + p collisions
Huang, Jin; Kang, Zhong-Bo; Vitev, Ivan; ...
2016-01-28
We study the cross section for vector boson (W ±/Z 0/γ more » $$\\star$$) production in polarized nucleon-nucleon collisions for low transverse momentum of the observed vector boson. For the case where one measures the transverse momentum and azimuthal angle of the vector bosons, we present the cross sections and the associated spin asymmetries in terms of transverse momentum dependent parton distribution functions (TMDs) at tree level within the TMD factorization formalism. To assess the feasibility of experimental measurements, we estimate the spin asymmetries forW ±/Z 0 boson production in polarized proton-proton collisions at the Relativistic Heavy Ion Collider by using current knowledge of the relevant TMDs. Here, we find that some of these asymmetries can be sizable if the suppression effect from TMD evolution is not too strong. The W program at RHIC can, thus, test and constrain spin theory by providing unique information on the universality properties of TMDs, TMD evolution, and the nucleon structure. For example, the single transverse spin asymmetries could be used to probe the well-known Sivers function f$$⊥q\\atop{1T}$$, as well as the transversal helicity distribution g$$q\\atop{1T}$$ via the parity-violating nature of W production.« less
Acoustic and Perceptual Effects of Left–Right Laryngeal Asymmetries Based on Computational Modeling
Samlan, Robin A.; Story, Brad H.; Lotto, Andrew J.; Bunton, Kate
2015-01-01
Purpose Computational modeling was used to examine the consequences of 5 different laryngeal asymmetries on acoustic and perceptual measures of vocal function. Method A kinematic vocal fold model was used to impose 5 laryngeal asymmetries: adduction, edge bulging, nodal point ratio, amplitude of vibration, and starting phase. Thirty /a/ and /I/ vowels were generated for each asymmetry and analyzed acoustically using cepstral peak prominence (CPP), harmonics-to-noise ratio (HNR), and 3 measures of spectral slope (H1*-H2*, B0-B1, and B0-B2). Twenty listeners rated voice quality for a subset of the productions. Results Increasingly asymmetric adduction, bulging, and nodal point ratio explained significant variance in perceptual rating (R2 = .05, p < .001). The same factors resulted in generally decreasing CPP, HNR, and B0-B2 and in increasing B0-B1. Of the acoustic measures, only CPP explained significant variance in perceived quality (R2 = .14, p < .001). Increasingly asymmetric amplitude of vibration or starting phase minimally altered vocal function or voice quality. Conclusion Asymmetries of adduction, bulging, and nodal point ratio drove acoustic measures and perception in the current study, whereas asymmetric amplitude of vibration and starting phase demonstrated minimal influence on the acoustic signal or voice quality. PMID:24845730
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicola, Marcello Santo
Using data from Fermilab xed-target experiment E769, we have measured particleantiparticle production asymmetries for Λ 0 hyperons in π ± - nucleon interactions, K ± - nucleon interactions and p - nucleon interactions at 250 GeV/c. The asymmetries are measured as functions of Feynman-x (x f ) and p T 2 over the ranges 0 ≤ p T 2 ≤ 4(GeV/c) 2 and -0.12 ≤ x F ≤ 0.12 (for positive beam) and 0 ≤ p T 2 ≤ 10(GeV/c) 2 and -0.16 ≤ x F ≤ 0:.0 for the negative beam. We find substantial asymmetries, even at x Fmore » = 0. We also observe leading-particle-type asymmetries which qualitatively agree with theoretical predictions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaumier, Michael J.
This thesis discusses the process of extracting the longitudinal asymmetry, Amore » $$W±\\atop{L}$$ describing W → μ production in forward kinematic regimes. This asymmetry is used to constrain our understanding of the polarized parton distribution functions characterizing $$\\bar{u}$$ and $$\\bar{d}$$ sea quarks in the proton. This asymmetry will be used to constrain the overall contribution of the sea-quarks to the total proton spin. The asymmetry is evaluated over the pseudorapidity range of the PHENIX Muon Arms, 2.1 < |η| 2.6, for longitudinally polarized proton-proton collisions at 510 GeV √s. In particular, I will discuss the statistical methods used to characterize real muonic W decays and the various background processes is presented, including a discussion of likelihood event selection and the Extended Unbinned Maximum Likelihood t. These statistical methods serve estimate the yields of W muonic decays, which are used to calculate the longitudinal asymmetry.« less
Allada, K.; Zhao, Y. X.; Aniol, K.; ...
2014-04-07
We report the first measurement of target single-spin asymmetries (A N) in the inclusive hadron production reaction, e + 3He↑→h+X, using a transversely polarized 3 He target. This experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Three types of hadrons (π ±, K ± and proton) were detected in the transverse hadron momentum range 0.54 < p T < 0.74 GeV/c. The range of x F for pions was -0.29 < x F< -0.23 and for kaons -0.25 < x F<-0.18. The observed asymmetry strongly depends on the type of hadron. A positive asymmetrymore » is observed for π + and K +. A negative asymmetry is observed for π–. The magnitudes of the asymmetries follow |A π –|<|A π +|<|A K +|. The K – and proton asymmetries are consistent with zero within the experimental uncertainties. The π + and π – asymmetries measured for the 3He target and extracted for neutrons are opposite in sign with a small increase observed as a function of p T.« less
Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment
NASA Astrophysics Data System (ADS)
Gallet, B.; Campagne, A.; Cortet, P.-P.; Moisy, F.
2014-03-01
We characterize the statistical and geometrical properties of the cyclone-anticyclone asymmetry in a statistically steady forced rotating turbulence experiment. Turbulence is generated by a set of vertical flaps which continuously inject velocity fluctuations towards the center of a tank mounted on a rotating platform. We first characterize the cyclone-anticyclone asymmetry from conventional single-point vorticity statistics. We propose a phenomenological model to explain the emergence of the asymmetry in the experiment, from which we predict scaling laws for the root-mean-square velocity in good agreement with the experimental data. We further quantify the cyclone-anticyclone asymmetry using a set of third-order two-point velocity correlations. We focus on the correlations which are nonzero only if the cyclone-anticyclone symmetry is broken. They offer two advantages over single-point vorticity statistics: first, they are defined from velocity measurements only, so an accurate resolution of the Kolmogorov scale is not required; second, they provide information on the scale-dependence of the cyclone-anticyclone asymmetry. We compute these correlation functions analytically for a random distribution of independent identical vortices. These model correlations describe well the experimental ones, indicating that the cyclone-anticyclone asymmetry is dominated by the large-scale long-lived cyclones.
Pelvic bone asymmetry in 323 study participants receiving abdominal CT scans.
Badii, Maziar; Shin, Sonya; Torreggiani, William C; Jankovic, Bojana; Gustafson, Paul; Munk, Peter L; Esdaile, John M
2003-06-15
Retrospective review of all CT scans of pelvis and abdomen performed at our institution in October and November 2000. To determine the prevalence and extent of radiographic pelvic asymmetry in a population of patients not preselected for having low back pain. Pelvic asymmetry refers to asymmetric positioning of landmarks on the two sides of the pelvis and may have a structural or functional etiology. Pelvic asymmetry can be associated with the presence of true leg length discrepancy, lead to false diagnosis or inaccurate measurement of leg length discrepancy, or itself be independently associated with back pain. Although the prevalence of pelvic asymmetry has been reported in patients with back pain to be 24-91%, its prevalence in the general population is not known. A total of 323 consecutive CT scans of the pelvis/abdomen were assessed for pelvic asymmetry by one of three examiners. Pelvic asymmetry was defined as an unequal distance from the iliac crests to the acetabuli bilaterally, measured on the anteroposterior scout view of the CT scan. Measurements made on 30 randomly selected scans by the three examiners were used to assess interrater reliability of the measurement method. Pelvic asymmetry ranged in magnitude from -11 mm to 7 mm [right pelvis (mm) - left pelvis (mm)]. Pelvic asymmetry was >5 mm in 17 of 323 (5.3%) and >10 mm in 2 of 323 (0.6%) of the subjects; 172 of 323 (53.3%) had a smaller right hemipelvis (mean asymmetry = -3.0 mm). A total of 95 of 323 (29.4%) had a smaller left hemipelvis (mean asymmetry = 2.1 mm). The intraclass correlation coefficient [ICC(2,1)] between the three observers was high (0.91). Pelvic asymmetry of >5 mm was uncommon, with a prevalence of approximately 5% in the population studied. CT scanography was found to be a practical and reliable method for the assessment of suspected pelvic asymmetry.
NASA Technical Reports Server (NTRS)
Peterka, Robert J.
1993-01-01
Recent studies have identified significant correlations between space motion sickness susceptibility and measures of disconjugate torsional eye movements recorded during parabolic flights. These results support an earlier proposal which hypothesized that an asymmetry of otolith function between the two ears is the cause of space motion sickness. It may be possible to devise experiments that can be performed in the 1 g environment on earth that could identify and quantify the presence of asymmetric otolith function. This paper summarizes the known physiological and anatomical properties of the otolith organs and the properties of the torsional vestibulo-ocular reflex which are relevant to the design of a stimulus to identify otolith asymmetries. A specific stimulus which takes advantage of these properties is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, V. M.; Abbott, B.; Acharya, B. S.
2014-04-18
We present a measurement of the W boson production charge asymmetry in pmore » $$\\bar{p}$$→W+X→eν+X events at a center of mass energy of 1.96 TeV, using 9.7 fb -1 of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The neutrino longitudinal momentum is determined by using a neutrino weighting method, and the asymmetry is measured as a function of the W boson rapidity. The measurement extends over wider electron pseudorapidity region than previous results and is the most precise to date, allowing for precise determination of proton parton distribution functions in global fits.« less
Feo, Teresa J; Prum, Richard O
2014-06-01
Asymmetry in flight feather vane width is a major functional innovation associated with the evolution of flight in the ancestors of birds. However, the developmental and morphological basis of feather shape is not simple, and the developmental processes involved in vane width asymmetry are poorly understood. We present a theoretical model of feather morphology and development that describes the possible ways to modify feather development and produce vane asymmetry. Our model finds that the theoretical morphospace of feather shape is redundant, and that many different combinations of parameters could be responsible for vane asymmetry in a given feather. Next, we empirically measured morphological and developmental model parameters in asymmetric and symmetric feathers from two species of parrots to identify which combinations of parameters create vane asymmetry in real feathers. We found that both longer barbs, and larger barb angles in the relatively wider trailing vane drove asymmetry in tail feathers. Developmentally, longer barbs were the result of an offset of the radial position of the new barb locus, whereas larger barb angles were produced by differential expansion of barbs as the feather unfurls from the tubular feather germ. In contrast, the helical angle of barb ridge development did not contribute to vane asymmetry and could be indicative of a constraint. This research provides the first comprehensive description of both the morphological and developmental modifications responsible for vane asymmetry within real feathers, and identifies key steps that must have occurred during the evolution of vane asymmetry. © 2014 Wiley Periodicals, Inc.
A Surface-based Analysis of Language Lateralization and Cortical Asymmetry
Greve, Douglas N.; Van der Haegen, Lise; Cai, Qing; Stufflebeam, Steven; Sabuncu, Mert R.; Fischl, Bruce; Bysbaert, Marc
2013-01-01
Among brain functions, language is one of the most lateralized. Cortical language areas are also some of the most asymmetrical in the brain. An open question is whether the asymmetry in function is linked to the asymmetry in anatomy. To address this question, we measured anatomical asymmetry in 34 participants shown with fMRI to have language dominance of the left hemisphere (LLD) and 21 participants shown to have atypical right hemisphere dominance (RLD). All participants were healthy and left-handed, and most (80%) were female. Gray matter (GM) volume asymmetry was measured using an automated surface-based technique in both ROIs and exploratory analyses. In the ROI analysis, a significant difference between LLD and RLD was found in the insula. No differences were found in planum temporale (PT), pars opercularis (POp), pars triangularis (PTr), or Heschl’s gyrus (HG). The PT, POp, insula, and HG were all significantly left lateralized in both LLD and RLD participants. Both the positive and negative ROI findings replicate a previous study using manually labeled ROIs in a different cohort [Keller, S. S., Roberts, N., Garcia-Finana, M., Mohammadi, S., Ringelstein, E. B., Knecht, S., et al. Can the language-dominant hemisphere be predicted by brain anatomy? Journal of Cognitive Neuroscience, 23, 2013–2029, 2011]. The exploratory analysis was accomplished using a new surface-based registration that aligns cortical folding patterns across both subject and hemisphere. A small but significant cluster was found in the superior temporal gyrus that overlapped with the PT. A cluster was also found in the ventral occipitotemporal cortex corresponding to the visual word recognition area. The surface-based analysis also makes it possible to disentangle the effects of GM volume, thickness, and surface area while removing the effects of curvature. For both the ROI and exploratory analyses, the difference between LLD and RLD volume laterality was most strongly driven by differences in surface area and not cortical thickness. Overall, there were surprisingly few differences in GM volume asymmetry between LLD and RLD indicating that gross morphometric asymmetry is only subtly related to functional language laterality. PMID:23701459
Alves, Ricardo N; Sundell, Kristina S; Anjos, Liliana; Sundh, Henrik; Harboe, Torstein; Norberg, Birgitta; Power, Deborah M
2018-06-01
To establish if the developmental changes in the primary barrier and osmoregulatory capacity of Atlantic halibut skin are modified during metamorphosis, histological, histochemical, gene expression and electrophysiological measurements were made. The morphology of the ocular and abocular skin started to diverge during the metamorphic climax and ocular skin appeared thicker and more stratified. Neutral mucins were the main glycoproteins produced by the goblet cells in skin during metamorphosis. Moreover, the number of goblet cells producing neutral mucins increased during metamorphosis and asymmetry in their abundance was observed between ocular and abocular skin. The increase in goblet cell number and their asymmetric abundance in skin was concomitant with the period that thyroid hormones (THs) increase and suggests that they may be under the control of these hormones. Several mucin transcripts were identified in metamorphosing halibut transcriptomes and Muc18 and Muc5AC were characteristic of the body skin. Na + , K + -ATPase positive (NKA) cells were observed in skin of all metamorphic stages but their number significantly decreased with the onset of metamorphosis. No asymmetry was observed between ocular and abocular skin in NKA cells. The morphological changes observed were linked to modified skin barrier function as revealed by modifications in its electrophysiological properties. However, the maturation of the skin functional characteristics preceded structural maturation and occurred at stage 8 prior to the metamorphic climax. Treatment of Atlantic halibut with the THs disrupter methimazole (MMI) affected the number of goblet cells producing neutral mucins and the NKA cells. The present study reveals that the asymmetric development of the skin in Atlantic halibut is TH sensitive and is associated with metamorphosis and that this barrier's functional properties mature earlier and are independent of metamorphosis.
Measurement of the Transverse Single-Spin Asymmetry in p↑+p →W±/Z0 at RHIC
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, X.; Huang, H. Z.; Huang, B.; Huang, T.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, Y.; Li, W.; Li, X.; Li, X.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, L.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; McDonald, D.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, Y.; Wang, F.; Wang, Y.; Wang, H.; Wang, G.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, X.; Xie, W.; Xin, K.; Xu, N.; Xu, Y. F.; Xu, Z.; Xu, Q. H.; Xu, J.; Xu, H.; Yang, Q.; Yang, Y.; Yang, S.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, S.; Zhang, Z.; Zhang, S.; Zhang, J. B.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2016-04-01
We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at √{s }=500 GeV by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse-momentum-dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the nonuniversality of the Sivers function, fundamental to our understanding of QCD.
Misestimating betting behavior: the role of negative asymmetries in emotional self prediction.
Andrade, Eduardo B; Claro, Danny P; Islam, Gazi
2014-12-01
This paper addresses the role of negative asymmetries in emotional self-prediction by looking at the extent to which individuals misestimate their own betting behavior in sequential gambles. In a series of three experimental studies, we demonstrate that losses lead to higher than planned bets whereas bets are on average carried over after gains. Such asymmetric deviations from the plan emerge (1) when monetary and non-monetary incentives are used, and (2) when participants face fair and unfair gambles. The asymmetry is based on people's inability to predict how much the negative emotions generated by a bad experience (e.g. the loss) will influence them to put more effort (e.g. bet more) than planned in an attempt to re-establish a homeostatic state in the prospect of a good experience (e.g. winning).
Prajitha, V; Thoppil, J E
2018-02-01
The present study is aimed to identify genetic variability between two species of Amaranthus viz., A. caudatus and A. hybridus subsp. cruentus, two economically important species, cultivated mainly for grain production. Karyomorphological studies in Amaranthus are scarce, probably due to higher number of small sized chromosomes. Karyomorphological studies were conducted using mitotic squash preparation of young healthy root tips. Karyological parameters and karyotypic formula were established using various software programs and tabulated the karyomorphometric and asymmetry indices viz., Disparity index, Variation coefficient, Total forma percentage, Karyotype asymmetry index, Syi index, Rec index, Interchromosomal and Intrachromosomal asymmetry index and Degree of asymmetry of karyotypes. The mitotic chromosome number observed for A. caudatus was 2n = 32 with a gametic number n = 16 and A. hybridus subsp. cruentus was 2n = 34 with a gametic number n = 17. In A. caudatus the chromosome length during somatic metaphase ranged from 0.8698 to 1.7722 μm with a total length of 39.1412 μm. In A. hybridus subsp. cruentus the length of chromosome ranged from 0.7756 to 1.9421 μm with a total length of 44.9922 μm. Various karyomorphometry and asymmetry indices analyzed revealed the extend of interspecific variation and their evolutionary status.
Bilateral Asymmetry in the Human Pelvis.
Kurki, Helen K
2017-04-01
Asymmetry of the human axial skeleton has received much less attention that of the limb skeleton. Pelvic morphology is subject to multiple selective factors, including bipedal locomotion and obstetrics, among others, as well as environmental factors such as biomechanical loading. How these various factors influence or restrict asymmetry of the pelvis is unknown and few studies have investigated levels and patterns of pelvic asymmetry. This study examines percentage directional (%DA) and absolute (%AA) asymmetry in 14 bilaterally paired dimensions of the pelvic canal, non-canal pelvis, and femur in female (n = 111) and male (n = 126) skeletons from nine geographically dispersed skeletal samples. Directional asymmetries were uniformly low for all measures and lacked any consistent patterning across the variables, while %AA was highest in the pelvic canal, particularly the posterior aspects. Few sex differences and no population differences were found for %DA and %AA; however the latter was correlated with coefficients of variation across the 14 variables in both sexes. While sample mean %DA were low, standard deviations of the canal variables were high and the majority of individuals in both sexes displayed %DA values >±0.5, suggesting asymmetry is common, if not directionally consistent. Biomechanical loading of the pelvic girdle may influence asymmetry of both the canal and non-canal aspects of the pelvis; however it is unlikely that these asymmetries negatively affect obstetric function, given the prevalence for %DA found in this study. Anat Rec, 300:653-665, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Preschoolers' Mental Rotation: Sex Differences in Hemispheric Asymmetry
ERIC Educational Resources Information Center
Hahn, Nicola; Jansen, Petra; Heil, Martin
2010-01-01
Mental rotation performance has been found to produce one of the largest sex differences in cognition accompanied by sex differences in functional cerebral asymmetry. Although sex differences in mental rotation performance can be reliably demonstrated as early as age 5 years old, that is, long before puberty, no data exist as to whether…
Age-Related Differences in Bilateral Asymmetry in Cycling Performance
ERIC Educational Resources Information Center
Liu, Ting; Jensen, Jody L.
2012-01-01
Bilateral asymmetry, a form of limb laterality in the context of moving two limbs, emerges in childhood. Children and adults show lateral preference in tasks that involve the upper and lower limbs. The importance of research in limb laterality is the insight it could provide about lateralized functions of the cerebral hemispheres. Analyzing…
The Energy of Substituted Ethanes. Asymmetry Orbitals
Salem, Lionel; Hoffmann, Roald; Otto, Peter
1973-01-01
The leading terms in the energy of a general substituted ethane are derived in explicit form as a function of the torsional angle θ, the substituent electronegativities, and their mutual overlaps. The energy is found to be the sum of all four overlaps between pairs of asymmetry orbitals, and satisfies the requisite symmetry properties. PMID:16592060
Aerodynamic and Nonlinear Dynamic Acoustic Analysis of Tension Asymmetry in Excised Canine Larynges
ERIC Educational Resources Information Center
Devine, Erin E.; Bulleit, Erin E.; Hoffman, Matthew R.; McCulloch, Timothy M.; Jiang, Jack J.
2012-01-01
Purpose: To model tension asymmetry caused by superior laryngeal nerve paralysis (SLNP) in excised larynges and apply perturbation, nonlinear dynamic, and aerodynamic analyses. Method: SLNP was modeled in 8 excised larynges using sutures and weights to mimic cricothyroid (CT) muscle function. Weights were removed from one side to create tension…
NASA Astrophysics Data System (ADS)
Zhao, C.; Song, J.; Leng, H.
2017-12-01
The Tropical Cyclone(TC) center-finding technique plays an important role when diagnostic analyses of TC structure are performed, especially when dealing with low-wavenumber asymmetries. Previous works have already established that structure of TCs can vary greatly depending on the displacement induced by center-finding techniques. As it is difficult to define a true TC center in the real world, this work seeks to explore how low-wavenumber azimuthal Fourier analyses can vary with center displacement using idealized, parametric TC-like vortices with different perturbation structures. It is shown that the errors is sensitive to the location and radial structure of the adding perturbation. In the case of adding azimuthal wavenumber 1 and 3 asymmetries, the increasing radial shear of initial asymmetries will enhance the corresponding spectral energy around radius of maximum wind(RMW) significantly, and they also have a great effect on spectral energy of wavenumber 2. On the contrary, the wavenumber 2 cases show a reduction from 1RMW to outer radius when shear is increasing and has little effect on spectral energy of wavenumber 1 or 2. Pervious findings indicated that the aliasing is dependent on the placement of center relative to the location of the asymmetries, which is also valid in these shearing situations. Moreover, it is found that this aliasing caused by phase displacement is less sensitive with the radial shear in wavenumber 2 and 3 cases, while it shows an significant amplification and deformation when wavenumber 1 asymmetry is added.
Haga, Ken; Iino, Moritoshi
2006-01-01
The relationships between the distribution of the native auxin indole-3-acetic acid (IAA) and tropisms in the epicotyl of red light-grown pea (Pisum sativum L.) seedlings have been investigated. The distribution measurement was made in a defined zone of the third internode, using (3)H-IAA applied from the plumule as a tracer. The tropisms investigated were gravitropism, pulse-induced phototropism, and time-dependent phototropism. The investigation was extended to the phase of autostraightening (autotropism) that followed gravitropic curvature. It was found that IAA is asymmetrically distributed between the two halves of the zone, with a greater IAA level occurring on the convex side, at early stages of gravitropic and phototropic curvatures. This asymmetry was found in epidermal peels and, except for one case (pulse-induced phototropism), no asymmetry was detected in whole tissues. It was concluded, in support of earlier results, that auxin asymmetry mediates gravitropism and phototropism and that the epidermis or peripheral cell layers play an important role in the establishment of auxin asymmetry in pea epicotyls. During autostraightening, which results from a reversal of growth asymmetry, the extent of IAA asymmetry was reduced, but its direction was not reversed. This result demonstrated that autostraightening is not regulated through auxin distribution. In this study, the growth on either side of the investigated zone was also measured. In some cases, the measured IAA distribution could not adequately explain the local growth rate, necessitating further detailed investigation.
Tackling Information Asymmetry in Networks: A New Entropy-Based Ranking Index
NASA Astrophysics Data System (ADS)
Barucca, Paolo; Caldarelli, Guido; Squartini, Tiziano
2018-06-01
Information is a valuable asset in socio-economic systems, a significant part of which is entailed into the network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant, systemic properties (e.g. the risk of contagion in a network of liabilities), agents capable of providing a better estimation of (otherwise) inaccessible network properties, ultimately have a competitive advantage. In this paper, we address the issue of quantifying the information asymmetry of nodes: to this aim, we define a novel index—InfoRank—intended to rank nodes according to their information content. In order to do so, each node ego-network is enforced as a constraint of an entropy-maximization problem and the subsequent uncertainty reduction is used to quantify the node-specific accessible information. We, then, test the performance of our ranking procedure in terms of reconstruction accuracy and show that it outperforms other centrality measures in identifying the "most informative" nodes. Finally, we discuss the socio-economic implications of network information asymmetry.
Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong
2011-01-01
We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.
Francis, Alexander L; Driscoll, Courtney
2006-09-01
We examined the effect of perceptual training on a well-established hemispheric asymmetry in speech processing. Eighteen listeners were trained to use a within-category difference in voice onset time (VOT) to cue talker identity. Successful learners (n=8) showed faster response times for stimuli presented only to the left ear than for those presented only to the right. The development of a left-ear/right-hemisphere advantage for processing a prototypically phonetic cue supports a model of speech perception in which lateralization is driven by functional demands (talker identification vs. phonetic categorization) rather than by acoustic stimulus properties alone.
Magnetic fields and chiral asymmetry in the early hot universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field andmore » lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.« less
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bryslawskyj, J.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; Dedovich, T. G.; Deng, J.; Deppner, I. M.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Herrmann, N.; Hirsch, A.; Horvat, S.; Huang, B.; Huang, T.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Y.; Li, C.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, F.; Liu, P.; Liu, Y.; Liu, H.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, L.; Ma, R.; Ma, Y. G.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Mayes, D.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nemes, D. B.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stewart, D. J.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, Y. F.; Xu, J.; Xu, Q. H.; Xu, N.; Xu, Z.; Yang, S.; Yang, Y.; Yang, C.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, X. P.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration
2018-02-01
We report the first measurements of transverse single-spin asymmetries for inclusive jet and jet+π± production at midrapidity from transversely polarized proton-proton collisions at √{s }=500 GeV . The data were collected in 2011 with the STAR detector sampled from 23 pb-1 integrated luminosity with an average beam polarization of 53%. Asymmetries are reported for jets with transverse momenta 6
Magnetic fields and chiral asymmetry in the early hot universe
NASA Astrophysics Data System (ADS)
Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri
2016-10-01
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.
Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François
2015-04-20
During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.
A ryanodine receptor-dependent Ca(i)(2+) asymmetry at Hensen's node mediates avian lateral identity.
Garic-Stankovic, Ana; Hernandez, Marcos; Flentke, George R; Zile, Maija H; Smith, Susan M
2008-10-01
In mouse, the establishment of left-right (LR) asymmetry requires intracellular calcium (Ca(i)(2+)) enrichment on the left of the node. The use of Ca(i)(2+) asymmetry by other vertebrates, and its origins and relationship to other laterality effectors are largely unknown. Additionally, the architecture of Hensen's node raises doubts as to whether Ca(i)(2+) asymmetry is a broadly conserved mechanism to achieve laterality. We report here that the avian embryo uses a left-side enriched Ca(i)(2+) asymmetry across Hensen's node to govern its lateral identity. Elevated Ca(i)(2+) was first detected along the anterior node at early HH4, and its emergence and left-side enrichment by HH5 required both ryanodine receptor (RyR) activity and extracellular calcium, implicating calcium-induced calcium release (CICR) as the novel source of the Ca(i)(2+). Targeted manipulation of node Ca(i)(2+) randomized heart laterality and affected nodal expression. Bifurcation of the Ca(i)(2+) field by the emerging prechordal plate may permit the independent regulation of LR Ca(i)(2+) levels. To the left of the node, RyR/CICR and H(+)V-ATPase activity sustained elevated Ca(i)(2+). On the right, Ca(i)(2+) levels were actively repressed through the activities of H(+)K(+) ATPase and serotonin-dependent signaling, thus identifying a novel mechanism for the known effects of serotonin on laterality. Vitamin A-deficient quail have a high incidence of situs inversus hearts and had a reversed calcium asymmetry. Thus, Ca(i)(2+) asymmetry across the node represents a more broadly conserved mechanism for laterality among amniotes than had been previously believed.
NASA Astrophysics Data System (ADS)
Badalyan, O. G.; Obridko, V. N.
2017-07-01
Context. Since the occurrence of north-south asymmetry (NSA) of alternating sign may be determined by different mechanisms, the frequency and amplitude characteristics of this phenomenon should be considered separately. Aims: We propose a new approach to the description of the NSA of solar activity. Methods: The asymmetry defined as A = (N-S)/(N + S) (where N and S are, respectively, the indices of activity of the northern and southern hemispheres) is treated as a superposition of two functions: the sign of asymmetry (signature) and its absolute value (modulus). This approach is applied to the analysis of the NSA of sunspot group areas for the period 1874-2013. Results: We show that the sign of asymmetry provides information on the behavior of the asymmetry. In particular, it displays quasi-periodic variation with a period of 12 yr and quasi-biennial oscillations as the asymmetry itself. The statistics of the so-called monochrome intervals (long periods of positive or negative asymmetry) are considered and it is shown that the distribution of these intervals is described by the random distribution law. This means that the dynamo mechanisms governing the cyclic variation of solar activity must involve random processes. At the same time, the asymmetry modulus has completely different statistical properties and is probably associated with processes that determine the amplitude of the cycle. One can reliably isolate an 11-yr cycle in the behavior of the asymmetry absolute value shifted by half a period with respect to the Wolf numbers. It is shown that the asymmetry modulus has a significant prognostic value: the higher the maximum of the asymmetry modulus, the lower the following Wolf number maximum. Conclusions: A fundamental nature of this concept of NSA is discussed in the context of the general methodology of cognizing the world. It is supposed that the proposed description of the NSA will help clarify the nature of this phenomenon.
Speech processing: from peripheral to hemispheric asymmetry of the auditory system.
Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier
2012-01-01
Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, Victor Mukhamedovich
Here, we studymore » $$\\Lambda$$ and $$\\bar{\\Lambda}$$ production asymmetries in $$p \\bar{p} \\rightarrow \\Lambda (\\bar{\\Lambda}) X$$, $$p \\bar{p} \\rightarrow J/\\psi \\Lambda (\\bar{\\Lambda}) X$$, and $$p \\bar{p} \\rightarrow \\mu^\\pm \\Lambda (\\bar{\\Lambda}) X$$ events recorded by the D0 detector at the Fermilab Tevatron collider at $$\\sqrt{s} = 1.96$$ TeV. We find an excess of $$\\Lambda$$'s ($$\\bar{\\Lambda}$$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $$\\bar{\\Lambda}/\\Lambda$$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.« less
Abazov, Victor Mukhamedovich
2016-02-09
Here, we studymore » $$\\Lambda$$ and $$\\bar{\\Lambda}$$ production asymmetries in $$p \\bar{p} \\rightarrow \\Lambda (\\bar{\\Lambda}) X$$, $$p \\bar{p} \\rightarrow J/\\psi \\Lambda (\\bar{\\Lambda}) X$$, and $$p \\bar{p} \\rightarrow \\mu^\\pm \\Lambda (\\bar{\\Lambda}) X$$ events recorded by the D0 detector at the Fermilab Tevatron collider at $$\\sqrt{s} = 1.96$$ TeV. We find an excess of $$\\Lambda$$'s ($$\\bar{\\Lambda}$$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $$\\bar{\\Lambda}/\\Lambda$$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.« less
NASA Technical Reports Server (NTRS)
Peterka, R. J.
1994-01-01
Recent studies by Diamond and Markham have identified significant correlations between space motion sickness susceptibility and measures of disconjugate torsional eye movements recorded during parabolic flights. These results support an earlier proposal by von Baumgarten and Thumler which hypothesized that an asymmetry of otolith function between the two ears is the cause of space motion sickness. It may be possible to devise experiments that can be performed in the 1 g environment on earth that could identify and quantify the presence of asymmetric otolith function. This paper summarizes the known physiological and anatomical properties of the otolith organs and the properties of the torsional vestibulo-ocular reflex which are relevant to the design of a stimulus to identify otolith asymmetries. A specific stimulus which takes advantage of these properties is proposed.
Vincenzo Barone; Melis, Stefano; Prokudin, Alexei
2010-06-17
We present a phenomenological analysis of themore » $$\\cos 2 \\phi$$ asymmetry recently measured by the COMPASS and HERMES collaborations in unpolarized semi-inclusive deep inelastic scattering. In the kinematical regimes explored by these experiments the asymmetry arises from transverse-spin and intrinsic transverse-momentum effects. We consider the leading-twist contribution, related to the so-called Boer-Mulders transverse-polarization distribution $$h_1^{\\perp}(x, k_T^2)$$, and the twist-4 Cahn contribution, involving unpolarized transverse-momentum distribution functions. We show that a reasonably good fit of the data is achieved with a Boer-Mulders function consistent with the main theoretical expectations. Lastly, our conclusion is that the COMPASS and HERMES measurements represent the first experimental evidence of the Boer-Mulders effect in SIDIS.« less
[Epidemiological study of dental and facial asymmetries in a sample of preschool subjects].
Vitale, Marina Consuelo; Barbieri, Federica; Ricotta, Riccardo; Arpesella, Marisa; Emanuelli, Maria Teresa
2015-01-01
to identify the typologies of facial and dental asymmetries in a sample of children aged between 3 and 6 years and to correlate these asymmetries with possible morphological and functional situations. cross-sectional observational study. sample of 95 subjects aged between 3 and 6 years. Clinical data were collected in 10 sessions conducted during school hours in April 2013 by a doctor of Dentistry at two preschools in the city of Sanremo (Liguria Region, Northern Italy) and a kindergarten in the city of Pavia (Lombardy Region, Northern Italy). To collect the data, a weighted clinical questionnaire was used. presence and type of bad habit, type of breathing, presence and type of facial asymmetry, dental formula, presence of diastema, presence and type of occlusal asymmetries, presence and type of dental malocclusions. analysed sample consisted of 53.7% (51/95) of males and 46.3 % (44/95) females; the mean age was 4.3 ± 0.9 years. Most frequent facial asymmetry is orbits asymmetry (35%, 33/95); dental malocclusions are detected in 70%(67/95) of cases. High percentage of subjects (69.5%, 66/95) presents displacement between superior dental midline (SDM) and inferior dental midline (IDM). Several statistically significant associations are observed: in particular, asymmetry of molar ratios is linked to asymmetry of the cheekbones and displacement of the SDM; facial midline has statistical association with asymmetry of the cheekbones (p <0.001). the results of this study agree with scientific literature, in particular as regards the prevalence of compromising habits observed and the close correlation between: the presence of dental malocclusions and the presence of compromising habits, the presence of dental malocclusions and the presence of oral breathing.
TMD evolution of the Sivers asymmetry
NASA Astrophysics Data System (ADS)
Boer, Daniël
2013-09-01
The energy scale dependence of the Sivers asymmetry in semi-inclusive deep inelastic scattering is studied numerically within the framework of TMD factorization that was put forward in 2011. The comparison to previous results in the literature shows that the treatment of next-to-leading logarithmic effects is important for the fall-off of the Sivers asymmetry with energy in the measurable regime. The TMD factorization based approach indicates that the peak of the Sivers asymmetry falls off with energy scale Q to good approximation as 1/Q0.7, somewhat faster than found previously based on the first TMD factorization expressions by Collins and Soper in 1981. It is found that the peak of the asymmetry moves rather slowly towards higher transverse momentum values as Q increases, which may be due to the absence of perturbative tails of the TMDs in the presented treatments. We conclude that the behavior of the peak of the asymmetry as a function of energy and transverse momentum allows for valuable tests of the TMD formalism and the considered approximations. To confront the TMD approach with experiment, high energy experimental data from an Electron-Ion Collider is required. Note that in B01/B09 the Gaussian width of the Sivers TMD appears in the asymmetry expressions, because of the derivative in f1T⊥ ' a(x;Q0).
Blum, Martin; Ott, Tim
2018-04-02
Symmetry is appealing, be it in architecture, art or facial expression, where symmetry is a key feature to finding someone attractive or not. Yet, asymmetries are widespread in nature, not as an erroneous deviation from the norm but as a way to adapt to the prevailing environmental conditions at a time. Asymmetries in many cases are actively selected for: they might well have increased the evolutionary fitness of a species. Even many single-celled organisms are built asymmetrically, such as the pear-shaped ciliate Paramecium, which may depend on its asymmetry to navigate towards the oxygen-richer surface of turbid waters, at least based on modeling. Everybody knows the lobster with its asymmetric pair of claws, the large crusher usually on the left and the smaller cutter on the right. Snail shells coil asymmetrically, as do the organs they house. Organ asymmetries are found throughout the animal kingdom, referring to asymmetric positioning, asymmetric morphology or both, with the vertebrate heart being an example for the latter. Functional asymmetries, such as that of the human brain with its localization of the language center in one hemisphere, add to the complexity of organ asymmetries and presumably played a decisive role for sociocultural evolution. The evolutionary origin of organ asymmetries may have been a longer than body length gut, which allows efficient retrieval of nutrients, and the need to stow a long gut in the body cavity in an orderly manner that ensures optimal functioning. Vertebrate organ asymmetries (situs solitus) are quite sophisticated: in humans, the apex of the asymmetrically built heart points to the left; the lung in turn, due to space restrictions, has fewer lobes on the left than on the right side (two versus three in humans), stomach and spleen are found on the left, the liver on the right, and small and large intestine coil in a chiral manner (Figure 1A). In very rare cases (1:10,000), the organ situs is inverted (situs inversus), while heterotaxia refers to another rare situation (about 1:1,000), in which subsets of organs show normal or aberrant positioning or morphology (Figure 1B). Individuals with situs solitus or situs inversus are healthy, whereas heterotaxia presents severe congenital malformations. Many human syndromes are known in which patients suffer from laterality defects, such as Katagener syndrome, in which the organ situs is inverted in one half of patients and males are sterile. Snail shells and vertebrate organs are examples of biased asymmetries with on average only one inversion in every 10,000 cases. Other asymmetries such as the coiling of the tails of piglets occur randomly with a 50:50 distribution. This primer exclusively deals with organ asymmetries in the animal kingdom, specifically with the mechanisms that ensure the development of biased asymmetries during embryogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analysis of behavioral asymmetries in the elevated plus-maze and in the T-maze.
Schwarting, Rainer K W; Borta, Andreas
2005-02-15
When studying functional asymmetries in normal laboratory rats, several behavioral tests have been applied and proven their utility, including turning in rotometers or open-fields, handedness in paw usage, T-maze alternation, and others. Here, we analyzed male Wistar rats in two tests, namely the elevated plus-maze and the T-maze. In these tests, behavioral asymmetries are rather likely to occur, since the animals have to show several types of turns towards the left or right when ambulating through these environments. In a first study using the plus-maze, we provide detailed data on (A) the types of turns which the animals showed when changing their direction within arms (i.e., 180 degrees turns), and (B) the types of turns when proceeding from one arm to an adjacent one (i.e., 90 degrees turns). With respect to asymmetry, we found moderate biases in favor of the right. On the 1st day of plus-maze testing, there was a trend for more rightward turns within arms. On the 2nd day of testing, there was a trend for turns towards the right when alternating between arms of the plus-maze. In a 2nd study, we asked for asymmetries in the plus-maze in animals, which had been treated acutely with the psychostimulatory amphetamine analogue 3,4-methylene-dioxymethamphetamine (MDMA). Psychostimulants drugs, especially amphetamine, have repeatedly been used before in work on functional asymmetry, since they can enhance or reveal asymmetries in normal rats. MDMA had dose-dependent effects on activity, which affected turns within arms, and turns between arms; however, there was only sparse evidence with respect to asymmetry. Interestingly, and if at all, asymmetry was in favor of the right. Finally, we present data for behavior in the T-maze, where we used a spontaneous test version, that is, the animals could explore the maze but had no task to solve. Asymmetries were measured as turns within the start arm (180 degrees), and as left- or rightward turns between arms (90 degrees ) at the T-point of the maze. In both measures, we again obtained evidence for asymmetries in favor of the right. This work supports previous studies showing that the T-maze is suitable to analyze behavioral asymmetries in rats. In addition, it provides new evidence with respect to the elevated plus-maze, indicating that this standard tool of anxiety research may also be useful in research on behavioral asymmetries and their underlying brain mechanisms. Behavioral biases in favor of the right, as shown here, have often been reported before, especially with Wistar rats. Such biases should be taken into account, since they can serve as an approach to study brain/behavior relationships, and since they may affect the outcome of physiological manipulations or behavioral trainings.
Abazov, Victor Mukhamedovich
2015-04-27
We measure the forward-backward asymmetry in the production of Λ 0 b and Λ ¯0 b baryons as a function of rapidity in pp¯ collisions at √s = 1.96 TeV using 10.4 fb -1 of data collected with the D0 detector at the Fermilab Tevatron collider. The asymmetry is determined by the preference of Λ 0 b or Λ ¯0 b particles to be produced in the direction of the beam protons or antiprotons, respectively. As a result, the measured asymmetry integrated over rapidity y in the range 0.1 < |y| < 2.0 is A = 0.04±0.07(stat)±0.02(syst).
ERIC Educational Resources Information Center
Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Bidelman, Gavin M.; Smalt, Christopher J.
2011-01-01
Pitch processing is lateralized to the right hemisphere; linguistic pitch is further mediated by left cortical areas. This experiment investigates whether ear asymmetries vary in brainstem representation of pitch depending on linguistic status. Brainstem frequency-following responses (FFRs) were elicited by monaural stimulation of the left and…
Contribution of NIRS to the Study of Prefrontal Cortex for Verbal Fluency in Aging
ERIC Educational Resources Information Center
Kahlaoui, Karima; Di Sante, Gabriele; Barbeau, Joannie; Maheux, Manon; Lesage, Frederic; Ska, Bernadette; Joanette, Yves
2012-01-01
Healthy aging is characterized by a number of changes on brain structure and function. Several neuroimaging studies have shown an age-related reduction in hemispheric asymmetry on various cognitive tasks, a phenomenon captured by Cabeza (2002) in the Hemispheric Asymmetry Reduction in Older Adults (HAROLD) model. Although this phenomenon is…
ERIC Educational Resources Information Center
Martens, Ulla; Hubner, Ronald
2013-01-01
While hemispheric differences in global/local processing have been reported by various studies, it is still under dispute at which processing stage they occur. Primarily, it was assumed that these asymmetries originate from an early perceptual stage. Instead, the content-level binding theory (Hubner & Volberg, 2005) suggests that the hemispheres…
The Shape of Mercury's Magnetopause: What Can BepiColombo Tell Us?
NASA Astrophysics Data System (ADS)
Philpott, L. C.; Johnson, C. L.; Anderson, B. J.; Winslow, R. M.
2018-05-01
We investigate how limitations in MESSENGER magnetic field data coverage affect our ability to establish asymmetries in Mercury’s magnetopause and examine how BepiColombo observations will improve our understanding of the magnetopause shape.
Wang, Diancheng; Pan, Kai; Subedi, Ramesh R.; ...
2013-08-22
We report on parity-violating asymmetries in the nucleon resonance region measured using 5 - 6 GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the Δ(1232), and provide a verification of quark-hadron duality in the nucleon electroweak γ Z interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the γ Z box-diagram corrections to elastic parity-violating electron scattering measurements.
Adamczyk, L.
2015-08-26
We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, A LL, in polarized pp collisions at center-of-mass energy √s = 200 GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. Lastly, the measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x > 0.05 .
Measurement of B0, Bs0, B+ and Λb0 production asymmetries in 7 and 8 TeV proton-proton collisions
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kosmyntseva, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration
2017-11-01
The B0, Bs0, B+ and Λb0 hadron production asymmetries are measured using a data sample corresponding to an integrated luminosity of 3.0 fb-1, collected by the LHCb experiment in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. The measurements are performed as a function of transverse momentum and rapidity of the b hadrons within the LHCb detector acceptance. The overall production asymmetries, integrated over transverse momentum and rapidity, are also determined.
Measurement of the Transverse Single-Spin Asymmetry in p ↑ + p → W ± / Z 0 at RHIC
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2016-04-01
In this paper, we present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at √s = 500 GeV by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse-momentum-dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. In conclusion, these data provide the first experimental investigation of the nonuniversality of the Sivers function, fundamental to our understanding of QCD.
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Caringi, A.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Hoshino, T.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kamin, J.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kofarago, M.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nouicer, R.; Novitzky, N.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rowan, Z.; Rubin, J. G.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Themann, H.; Thomas, D.; Thomas, T. L.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration
2014-10-01
We present a measurement of the cross section and transverse single-spin asymmetry (AN) for η mesons at large pseudorapidity from √s =200 GeV p↑+p collisions. The measured cross section for 0.5
Hemispheric and facial asymmetry: faces of academe.
Smith, W M
1998-11-01
Facial asymmetry (facedness) of selected academic faculty members was studied in relation to brain asymmetry and cognitive specialization. Comparisons of facedness were made among humanities faculty (H), faculty members of mathematics and physics (M-P), psychologists (P), and a group of randomly selected individuals (R). Facedness was defined in terms of the relative sizes (in square centimeters) of the two hemifaces. It was predicted that the four groups would show differences in facedness, namely, H, right face bias; M-P, left face bias; P, no bias; and R, no bias. The predictions were confirmed, and the results interpreted in terms of known differences in hemispheric specialization of cognitive functions as they relate to the dominant cognitive activity of each of the different groups. In view of the contralateral control of the two hemifaces (below the eyes) by the two hemispheres of the brain, the two sides of the face undergo differential muscular development, thus creating facial asymmetry. Other factors, such as gender, also may affect facial asymmetry. Suggestions for further research on facedness are discussed.
Posterior N1 asymmetry to English and Welsh words in Early and Late English-Welsh bilinguals.
Grossi, Giordana; Savill, Nicola; Thomas, Enlli; Thierry, Guillaume
2010-09-01
We investigated the lateralization of the posterior event-related potential (ERP) component N1 (120-170 ms) to written words in two groups of bilinguals. Fourteen Early English-Welsh bilinguals and 14 late learners of Welsh performed a semantic categorization task on separate blocks of English and Welsh words. In both groups, the N1 was strongly lateralized over the left posterior sites for both languages. A robust correlation was found between N1 asymmetry for English and N1 asymmetry for Welsh words in both groups. Furthermore, in Late Bilinguals, the N1 asymmetry for Welsh words increased with years of experience in Welsh. These data suggest that, in Late Bilinguals, the lateralization of neural circuits involved in written word recognition for the second language is associated to the organization for the first language, and that increased experience with the second language is associated to a larger functional cerebral asymmetry in favor of the left hemisphere. Copyright (c) 2010 Elsevier B.V. All rights reserved.
MacNeilage, Peter F
2014-03-01
Marine mammals and humans have the strongest manifestations of what is apparently a vertebrate-wide tendency toward a rightward action asymmetry associated with routine behavior. Marine mammal asymmetries usually involve whole-body actions associated with feeding. The human-like strength of these asymmetries may result from a problem of external aquatic support for the reactive component of the demanding lateral maneuvers of large marine mammals in daily pursuit of prey. Our asymmetrical primate heritage may also have begun with a rightward whole-body asymmetry, in prosimians, perhaps also resulting from problems of support for the reactive component of action; in this case arising from the arboreal habitat (and paradoxically including left-handedness). Monkeys and apes (simians) subsequently added right-sided adaptations for manipulation, bimanual coordination, bipedalism, throwing, and manual communication, most importantly by distal elaboration of limb function. The strength of human right-handedness may result partly from further elaboration of these simian action adaptations and partly from an evolving cognitive superstructure for tool use and language.
Silva, Guilherme; Citterio, Alberto
2017-10-01
Introduction Previous studies have shown that the arcuate fasciculus has a leftward asymmetry in right-handers that could be correlated with the language lateralisation defined by functional magnetic resonance imaging. Nonetheless, information about the asymmetry of the other fibres that constitute the dorsal language pathway is scarce. Objectives This study investigated the asymmetry of the white-matter tracts involved in the dorsal language pathway through the diffusion tensor imaging (DTI) technique, in relation to language hemispheric dominance determined by task-dependent functional magnetic resonance imaging (fMRI). Methods We selected 11 patients (10 right-handed) who had been studied with task-dependent fMRI for language areas and DTI and who had no language impairment or structural abnormalities that could compromise magnetic resonance tractography of the fibres involved in the dorsal language pathway. Laterality indices (LI) for fMRI and for the volumes of each tract were calculated. Results In fMRI, all the right-handers had left hemispheric lateralisation, and the ambidextrous subject presented right hemispheric dominance. The arcuate fasciculus LI was strongly correlated with fMRI LI ( r = 0.739, p = 0.009), presenting the same lateralisation of fMRI in seven subjects (including the right hemispheric dominant). It was not asymmetric in three cases and had opposite lateralisation in one case. The other tracts presented predominance for rightward lateralisation, especially superior longitudinal fasciculus (SLF) II/III (nine subjects), but their LI did not correlate (directly or inversely) with fMRI LI. Conclusion The fibres that constitute the dorsal language pathway have an asymmetric distribution in the cerebral hemispheres. Only the asymmetry of the arcuate fasciculus is correlated with fMRI language lateralisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.
In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilizemore » a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.« less
Evolution of mixing width induced by general Rayleigh-Taylor instability.
Zhang, You-Sheng; He, Zhi-Wei; Gao, Fu-Jie; Li, Xin-Liang; Tian, Bao-Lin
2016-06-01
Turbulent mixing induced by Rayleigh-Taylor (RT) instability occurs ubiquitously in many natural phenomena and engineering applications. As the simplest and primary descriptor of the mixing process, the evolution of mixing width of the mixing zone plays a notable role in the flows. The flows generally involve complex varying acceleration histories and widely varying density ratios, two dominant factors affecting the evolution of mixing width. However, no satisfactory theory for predicting the evolution has yet been established. Here a theory determining the evolution of mixing width in general RT flows is established to reproduce, first, all of the documented experiments conducted for diverse (i.e., constant, impulsive, oscillating, decreasing, increasing, and complex) acceleration histories and all density ratios. The theory is established in terms of the conservation principle, with special consideration given to the asymmetry of the volume-averaged density fields occurring in actual flows. The results reveal the sensitivity or insensitivity of the evolution of a mixing front of a neighboring light or heavy fluid to the degree of asymmetry and thus explain the distinct evolutions in two experiments with the same configurations.
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; De Visscher, S; Delaere, C; Delcourt, M; Favart, D; Forthomme, L; Giammanco, A; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Costa, E M Da; Jesus Damiao, D De; Oliveira Martins, C De; De Souza, S Fonseca; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Souza Santos, A De; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Leggat, D; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; El-Khateeb, E; Elkafrawy, T; Mahmoud, M A; Calpas, B; Kadastik, M; Murumaa, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; de Monchenault, G Hamel; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Bihan, A-C Le; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; Mamouni, H El; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Ruiz Alvarez, J D; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Lomidze, D; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Beernaert, K; Behnke, O; Behrens, U; Borras, K; Burgmeier, A; Campbell, A; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Nayak, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Trippkewitz, K D; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schlieckau, E; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Filipovic, N; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; U Bhawandeep; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Jain, Sa; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Rane, A; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Cappello, G; Chiorboli, M; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Redaelli, N; de Fatis, T Tabarelli; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gonella, F; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; Licata, C La; Schizzi, A; Zanetti, A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kong, D J; Lee, S; Lee, S W; Oh, Y D; Sakharov, A; Son, D C; Brochero Cifuentes, J A; Kim, H; Kim, T J; Song, S; Cho, S; Choi, S; Go, Y; Gyun, D; Hong, B; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Ali, M A B Md; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Casimiro Linares, E; Castilla-Valdez, H; Cruz-Burelo, E De La; Cruz, I Heredia-De La; Hernandez-Almada, A; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Qazi, S; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Traczyk, P; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Golutvin, I; Kamenev, A; Karjavin, V; Korenkov, V; Kozlov, G; Lanev, A; Malakhov, A; Matveev, V; Mitsyn, V V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Tikhonenko, E; Voytishin, N; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Chadeeva, M; Chistov, R; Danilov, M; Markin, O; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; Cruz, B De La; Delgado Peris, A; Del Valle, A Escalante; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; De Martino, E Navarro; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; De Saa, J R Castiñeiras; Curras, E; Castro Manzano, P De; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Benhabib, L; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; Pree, T du; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Knünz, V; Kortelainen, M J; Kousouris, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Piparo, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Arbol, P Martinez Ruiz Del; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Tali, B; Topakli, H; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Alimena, J; Benelli, G; Berry, E; Cutts, D; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Jesus, O; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Malberti, M; Olmedo Negrete, M; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Lewis, J; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Barnett, B A; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Baringer, P; Bean, A; Bruner, C; Castle, J; Kenny Iii, R P; Kropivnitskaya, A; Majumder, D; Malek, M; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; De Lima, R Teixeira; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Bhattacharya, S; Hahn, K A; Kubik, A; Low, J F; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Rupprecht, N; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, A W; Jung, K; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Chou, J P; Contreras-Campana, E; Ferencek, D; Gershtein, Y; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Wang, Z; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Verwilligen, P; Woods, N; Collaboration, Authorinst The Cms
2016-01-01
The differential cross section and charge asymmetry for inclusive [Formula: see text] production at [Formula: see text] are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8[Formula: see text] recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from [Formula: see text] to [Formula: see text].
Keller, K; West, J C
1995-01-01
Musculoskeletal injuries to the spine and pelvis are common in dancers. These injuries are associated with mechanical dysfunctions that impair spinal adaptation to the movement demands of the art form. This article introduces the biomechanical asymmetry corrector (BAC), a dynamic assessment and treatment tool, designed to restore normal spinal mechanics and functional movement patterns in dancers. A discussion of lumbo-pelvic mechanics and dance injury provides a theoretical context for describing exercises on the BAC.
Cuts, cancellations and the closed time path: The soft leptogenesis example
NASA Astrophysics Data System (ADS)
Garbrecht, Björn; Ramsey-Musolf, Michael J.
2014-05-01
By including all leading quantum-statistical effects at finite temperature, we show that no net asymmetry of leptons and sleptons is generated from soft leptogenesis, save the possible contribution from the resonant mixing of sneutrinos. This result contrasts with different conclusions appearing in the literature that are based on an incomplete inclusion of quantum statistics. We discuss vertex and wave-function diagrams as well as all different possible kinematic cuts that nominally lead to CP-violating asymmetries. The present example of soft leptogenesis may therefore serve as a paradigm in order to identify more generally applicable caveats relevant to alternative scenarios for baryogenesis and leptogenesis, and it may provide useful guidance in constructing viable models. For the vertex contributions, the intermediate on-shell particle is an out-of equilibrium singlet neutrino N (see Fig. 3). In this case, even when the subtraction of RIS is performed correctly, On the other hand, when the RIS that is to be subtracted corresponds to a particle that is in equilibrium, such as the scalar Higgs doublet H1 in Section 4 (see Fig. 7), no asymmetry is generated in first place. This type of subtraction of equilibrium RIS and the consequent vanishing of the CPV asymmetry has been missed in the context of a different model in Ref. [9]. Alternatively, there exists a way of deriving the leptogenesis kinetic equations following a set of rules that intrinsically respect the unitary evolution of the system while sidestepping the pitfalls of the RIS procedure: the Closed Time Path (CTP) formalism [10-15]. Rather than formulating the problem in terms of S-matrix elements and classical particle distribution functions, the evolution of Green functions of the quantum fields is calculated. In particular, the imaginary parts of self-energies correspond to the inclusive decay and production rates that are necessary in order to track the evolution of the asymmetry. This way, the somewhat heuristic procedure of RIS subtraction can be avoided [16-31].In the present work, we calculate the source terms for the asymmetry using the CTP formalism. As our main result, we demonstrate that the resulting asymmetry of the lepton number vanishes even when taking into account quantum statistical corrections. In particular, the corrections associated with the internal lines precisely cancel those associated with the final states that are included in Refs. [6-8]. Consequently, the sum of the lepton and slepton asymmetries is zero.
Lai, Meng‐Chuan; Auer, Tibor; Lombardo, Michael V.; Ecker, Christine; Chakrabarti, Bhismadev; Wheelwright, Sally J.; Bullmore, Edward T.; Murphy, Declan G.M.; Baron‐Cohen, Simon; Suckling, John
2015-01-01
Abstract In humans, both language and fine motor skills are associated with left‐hemisphere specialization, whereas visuospatial skills are associated with right‐hemisphere specialization. Individuals with autism spectrum conditions (ASC) show a profile of deficits and strengths that involves these lateralized cognitive functions. Here we test the hypothesis that regions implicated in these functions are atypically rightward lateralized in individuals with ASC and, that such atypicality is associated with functional performance. Participants included 67 male, right‐handed adults with ASC and 69 age‐ and IQ‐matched neurotypical males. We assessed group differences in structural asymmetries in cortical regions of interest with voxel‐based analysis of grey matter volumes, followed by correlational analyses with measures of language, motor and visuospatial skills. We found stronger rightward lateralization within the inferior parietal lobule and reduced leftward lateralization extending along the auditory cortex comprising the planum temporale, Heschl's gyrus, posterior supramarginal gyrus, and parietal operculum, which was more pronounced in ASC individuals with delayed language onset compared to those without. Planned correlational analyses showed that for individuals with ASC, reduced leftward asymmetry in the auditory region was associated with more childhood social reciprocity difficulties. We conclude that atypical cerebral structural asymmetry is a potential candidate neurophenotype of ASC. Hum Brain Mapp 37:230–253, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26493275
Mechanisms of polarized membrane trafficking in neurons – focusing in on endosomes
Lasiecka, Zofia M.; Winckler, Bettina
2011-01-01
Neurons are polarized cells that have a complex and unique morphology: long processes (axons and dendrites) extending far from the cell body. In addition, the somatodendritic and axonal domains are further divided into specific subdomains, such as synapses (pre- and postsynaptic specializations), proximal and distal dendrites, axon initial segments, nodes of Ranvier, and axon growth cones. The striking asymmetry and complexity of neuronal cells is necessary for their function in receiving, processing and transferring electrical signals, with each domain playing a precise function in these processes. In order to establish and maintain distinct neuronal domains, mechanisms must exist for protein delivery to specific neuronal compartments, such that each compartment has the correct functional molecular composition. How polarized membrane domains are established and maintained is a long-standing question. Transmembrane proteins, such as receptors and adhesion molecules, can be transported to their proper membrane domains by several pathways. The biosynthetic secretory system delivers newly synthesized transmembrane proteins from the ER-Golgi via the trans-Golgi network (TGN) to the plasma membrane. In addition, the endosomal system is critically involved in many instances in ensuring proper (re)targeting of membrane components because it can internalize and degrade mislocalized proteins, or recycle proteins from one domain to another. The endosomal system is thus crucial for establishing and maintaining neuronal polarity. In this review, we focus mainly on the intracellular compartments that serve as sorting stations for polarized transport, with particular emphasis on the emerging roles of endosomes. PMID:21762782
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.; Adams, J. R.; Adkins, J. K.
In this paper, we report the first measurements of transverse single-spin asymmetries for inclusive jet and jet+π ± production at midrapidity from transversely polarized proton-proton collisions at √s = 500 GeV. The data were collected in 2011 with the STAR detector sampled from 23 pb -1 integrated luminosity with an average beam polarization of 53%. Asymmetries are reported for jets with transverse momenta 6 < p T < 55 GeV/c and pseudorapidity |η| < 1. Presented are measurements of the inclusive-jet azimuthal transverse single-spin asymmetry, sensitive to twist-3 initial-state quarkgluon correlators; the Collins asymmetry, sensitive to quark transversity coupled tomore » the polarized Collins fragmentation function; and the first measurement of the “Collins-like” asymmetry, sensitive to linearly polarized gluons. Within the present statistical precision, inclusive-jet and Collins-like 3 asymmetries are small, with the latter allowing the first experimental constraints on gluon linear polarization in a polarized proton. At higher values of jet transverse momenta, we observe the first non-zero Collins asymmetries in polarized-proton collisions, with a statistical significance of greater than 5σ. The results span a range of x similar to results from SIDIS but at much higher Q 2. Finally, the Collins results enable tests of universality and factorization-breaking in the transverse momentum-dependent formulation of perturbative quantum chromodynamics.« less
Movement asymmetry in working polo horses.
Pfau, T; Parkes, R S; Burden, E R; Bell, N; Fairhurst, H; Witte, T H
2016-07-01
The high, repetitive demands imposed on polo horses in training and competition may predispose them to musculoskeletal injuries and lameness. To quantify movement symmetry and lameness in a population of polo horses, and to investigate the existence of a relationship with age. Convenience sampled cross-sectional study. Sixty polo horses were equipped with inertial measurement units (IMUs) attached to the poll, and between the tubera sacrale. Six movement symmetry measures were calculated for vertical head and pelvic displacement during in-hand trot and compared with values for perfect symmetry, compared between left and right limb lame horses, and compared with published thresholds for lameness. Regression lines were calculated as a function of age of horse. Based on 2 different sets of published asymmetry thresholds 52-53% of the horses were quantified with head movement asymmetry and 27-50% with pelvic movement asymmetry resulting in 60-67% of horses being classified with movement asymmetry outside published guideline values for either the forelimbs, hindlimbs or both. Neither forelimb nor hindlimb asymmetries were preferentially left or right sided, with directional asymmetry values across all horses not different from perfect symmetry and absolute values not different between left and right lame horses (P values >0.6 for all forelimb symmetry measures and >0.2 for all hindlimb symmetry measures). None of the symmetry parameters increased or decreased significantly with age. A large proportion of polo horses show gait asymmetries consistent with previously defined thresholds for lameness. These do not appear to be lateralised or associated with age. © 2015 EVJ Ltd.
Adamczyk, L.; Adams, J. R.; Adkins, J. K.; ...
2018-02-02
In this paper, we report the first measurements of transverse single-spin asymmetries for inclusive jet and jet+π ± production at midrapidity from transversely polarized proton-proton collisions at √s = 500 GeV. The data were collected in 2011 with the STAR detector sampled from 23 pb -1 integrated luminosity with an average beam polarization of 53%. Asymmetries are reported for jets with transverse momenta 6 < p T < 55 GeV/c and pseudorapidity |η| < 1. Presented are measurements of the inclusive-jet azimuthal transverse single-spin asymmetry, sensitive to twist-3 initial-state quarkgluon correlators; the Collins asymmetry, sensitive to quark transversity coupled tomore » the polarized Collins fragmentation function; and the first measurement of the “Collins-like” asymmetry, sensitive to linearly polarized gluons. Within the present statistical precision, inclusive-jet and Collins-like 3 asymmetries are small, with the latter allowing the first experimental constraints on gluon linear polarization in a polarized proton. At higher values of jet transverse momenta, we observe the first non-zero Collins asymmetries in polarized-proton collisions, with a statistical significance of greater than 5σ. The results span a range of x similar to results from SIDIS but at much higher Q 2. Finally, the Collins results enable tests of universality and factorization-breaking in the transverse momentum-dependent formulation of perturbative quantum chromodynamics.« less
A new approach to the measurement of pelvic asymmetry: proposed methods and reliability.
Gnat, Rafael; Biały, Maciej
2015-05-01
This is a methodological study presenting a novel method of pelvic asymmetry (PA) measurement for use in the research laboratory setting. The purpose of the study is (1) to establish intrarater and interrater reliability of the proposed measures of PA, (2) to verify the influence of repeated measurements on the reliability, and (3) to assess correlation between the proposed measures of PA. Twelve healthy volunteers participated, and 2 teams of raters were involved. Registration of anatomic landmarks' positions in the optical motion capture system was repeated 3 times. Two asymmetry indexes were calculated: for pelvic torsion and for lateral pelvic tilt. Interclass correlation coefficients (ICCs), standard errors of measurement, and smallest detectable differences were used to describe the intrarater and interrater reliability of the 2 indexes. After 2 repeated registrations of pelvic landmarks' positions, the reliability of our asymmetry indexes was good and excellent. The ICCs for intrarater reliability ranged from 0.96 to 0.97; the ICCs for interrater reliability ranged 0.81 to 0.90. There was moderate, nonsignificant correlation between asymmetry indexes for pelvis torsion and for lateral pelvic tilt (r = 0.45, P = .14). The 2 proposed asymmetry indexes showed good and excellent intrarater and interrater reliability after 2 repeated registrations of pelvic landmarks' positions and thus may be useful in the research laboratory setting. However, these indexes are not strongly correlated, which suggests that the 2 types of PA may constitute different clinical entities. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
The need for lumbar-pelvic assessment in the resolution of chronic hamstring strain.
Panayi, Stephanie
2010-07-01
A lumbar-pelvic assessment and treatment model based on a review of clinical and anatomical research is presented for consideration in the treatment of chronic hamstring strain. The origin of the biceps femoris muscle attaches to the pelvis at the ischial tuberosity and to the sacrum via the sacrotuberous ligament. The biomechanics of the sacroiliac joint and hip, along with lumbar-pelvic stability, therefore play a significant role in hamstring function. Pelvic asymmetry and/or excessive anterior tilt can lead to increased tension at the biceps origin and increase functional demands on the hamstring group by inhibiting its synergists. Joint proprioceptive mechanisms may play a significant role in re-establishing balance between agonists and antagonists. An appreciation of neuromuscular connections as well as overall lumbar-pelvic structural assessment is recommended in conjunction with lumbar-pelvic strengthening exercises to help resolve chronic hamstring strain. (c) 2009 Elsevier Ltd. All rights reserved.
Chen, Wei-Shen; Antic, Dragana; Matis, Maja; Logan, Catriona Y.; Povelones, Michael; Anderson, Graham; Nusse, Roel; Axelrod, Jeffrey D.
2008-01-01
Acquisition of planar cell polarity (PCP) in epithelia involves intercellular communication, during which cells align their polarity with that of their neighbors. The transmembrane proteins Frizzled (Fz) and Van Gogh (Vang) are essential components of the intercellular communication mechanism, as loss of either strongly perturbs the polarity of neighboring cells. How Fz and Vang communicate polarity information between neighboring cells is poorly understood. The atypical cadherin, Flamingo (Fmi), is implicated in this process, yet whether Fmi acts permissively as a scaffold, or instructively as a signal is unclear. Here, we provide evidence that Fmi functions instructively to mediate Fz-Vang intercellular signal relay, recruiting Fz and Vang to opposite sides of cell boundaries. We propose that two functional forms of Fmi, one of which is induced by and physically interacts with Fz, form cadherin homodimers that signal bidirectionally and asymmetrically, instructing unequal responses in adjacent cell membranes to establish molecular asymmetry. PMID:18555784
The intricate Galaxy disk: velocity asymmetries in Gaia-TGAS
NASA Astrophysics Data System (ADS)
Antoja, T.; de Bruijne, J.; Figueras, F.; Mor, R.; Prusti, T.; Roca-Fàbrega, S.
2017-06-01
We use Gaia-TGAS data to compare the transverse velocities in Galactic longitude (coming from proper motions and parallaxes) in the Milky Way disk for negative and positive longitudes as a function of distance. The transverse velocities are strongly asymmetric and deviate significantly from the expectations for an axisymmetric galaxy. The value and sign of the asymmetry changes at spatial scales of several tens of degrees in Galactic longitude and about 0.5 kpc in distance. The asymmetry is statistically significant at 95% confidence level for 57% of the region probed, which extends up to 1.2 kpc. A percentage of 24% of the region shows absolute differences at this confidence level larger than 5 km s-1 and 7% larger than 10 km s-1. The asymmetry pattern shows mild variations in the vertical direction and with stellar type. A first qualitative comparison with spiral arm models indicates that the arms are probably not the main source of the asymmetry. We briefly discuss alternative origins. This is the first time that global all-sky asymmetries are detected in the Milky Way kinematics beyond the local neighbourhood and with a purely astrometric sample.
Charging-induced asymmetry in molecular conductors
NASA Astrophysics Data System (ADS)
Zahid, F.; Ghosh, A. W.; Paulsson, M.; Polizzi, E.; Datta, S.
2004-12-01
We investigate the origin of asymmetry in various measured current-voltage (I-V) characteristics of molecules with no inherent spatial asymmetry, with particular focus on a recent break junction measurement. We argue that such asymmetry arises due to unequal coupling with the contacts and a consequent difference in charging effects, which can only be captured in a self-consistent model for molecular conduction. The direction of the asymmetry depends on the sign of the majority carriers in the molecule. For conduction through highest occupied molecular orbitals (i.e., HOMO or p -type conduction), the current is smaller for positive voltage on the stronger contact, while for conduction through lowest unoccupied molecular orbitals (i.e., LUMO or n -type conduction), the sense of the asymmetry is reversed. Within an extended Hückel description of the molecular chemistry and the contact microstructure (with two adjustable parameters, the position of the Fermi energy and the sulphur-gold bond length), an appropriate description of Poisson’s equation, and a self-consistently coupled nonequilibrium Green’s function description of transport, we achieve good agreement between theoretical and experimental I-V characteristics, both in shape as well as overall magnitude.
Formin Is Associated with Left-Right Asymmetry in the Pond Snail and the Frog.
Davison, Angus; McDowell, Gary S; Holden, Jennifer M; Johnson, Harriet F; Koutsovoulos, Georgios D; Liu, M Maureen; Hulpiau, Paco; Van Roy, Frans; Wade, Christopher M; Banerjee, Ruby; Yang, Fengtang; Chiba, Satoshi; Davey, John W; Jackson, Daniel J; Levin, Michael; Blaxter, Mark L
2016-03-07
While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signaling of Nodal, downstream of symmetry breaking, may be an ancestral feature of the Bilateria [1 and 2]. Here, we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or overexpression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models [3, 4 and 5], we discovered asymmetric gene expression in 2- and 4-cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro [6 and 7], together these results are consistent with the view that animals with diverse body plans may derive their asymmetries from the same intracellular chiral elements [8]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Strong washout approximation to resonant leptogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbrecht, Björn; Gautier, Florian; Klaric, Juraj, E-mail: garbrecht@tum.de, E-mail: florian.gautier@tum.de, E-mail: juraj.klaric@tum.de
We show that the effective decay asymmetry for resonant Leptogenesis in the strong washout regime with two sterile neutrinos and a single active flavour can in wide regions of parameter space be approximated by its late-time limit ε=Xsin(2φ)/(X{sup 2}+sin{sup 2}φ), where X=8πΔ/(|Y{sub 1}|{sup 2}+|Y{sub 2}|{sup 2}), Δ=4(M{sub 1}-M{sub 2})/(M{sub 1}+M{sub 2}), φ=arg(Y{sub 2}/Y{sub 1}), and M{sub 1,2}, Y{sub 1,2} are the masses and Yukawa couplings of the sterile neutrinos. This approximation in particular extends to parametric regions where |Y{sub 1,2}|{sup 2}>> Δ, i.e. where the width dominates the mass splitting. We generalise the formula for the effective decay asymmetry to themore » case of several flavours of active leptons and demonstrate how this quantity can be used to calculate the lepton asymmetry for phenomenological scenarios that are in agreement with the observed neutrino oscillations. We establish analytic criteria for the validity of the late-time approximation for the decay asymmetry and compare these with numerical results that are obtained by solving for the mixing and the oscillations of the sterile neutrinos. For phenomenologically viable models with two sterile neutrinos, we find that the flavoured effective late-time decay asymmetry can be applied throughout parameter space.« less
Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives.
Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques
2006-01-01
The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of +/- 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation.
Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives
Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques
2006-01-01
The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of ± 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation. PMID:16420376
Adamczyk, L.
2015-06-26
We present measurements of π⁻ and π⁺ elliptic flow, v₂, at midrapidity in Au+Au collisions at √s NN = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV, as a function of event-by-event charge asymmetry, A ch, based on data from the STAR experiment at RHIC. We find that π⁻ (π⁺) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at √s NN = 27 GeV and higher. At √s NN = 200 GeV, the slope of the difference of v₂ between π⁻ and π⁺ as a function of A ch exhibits a centrality dependence, which ismore » qualitatively similar to calculations that incorporate a chiral magnetic wave effect. In addition, similar centrality dependence is also observed at lower energies.« less
NASA Technical Reports Server (NTRS)
Lackner, James R.; Graybiel, Ashton; Johnson, Walter H.; Money, Kenneth E.
1987-01-01
Von Baumgarten and coworkers (1979, 1981) have suggested that asymmetries in otolith function between the left and right labyrinths may result from differences in otoconial mass and could play a role in space motion sickness. Such asymmetries would be centrally compensated for under terrestrial conditions, but on exposure to weightlessness the persisting central compensation would produce a central imbalance that could lead to motion sickness. In this work ocular counterrolling was used as a way of measuring the relative 'efficiency' of the left and right otoliths; the ocular counterrolling scores of individuals were compared with their susceptibility to motion sickness during passive exposure to variations in Gz in parabolic flight maneuvers. The experimental findings indicate that large asymmetries in counterrolling for leftward and rightward body tilts are associated with greater susceptibility to motion sickness in parabolic flight.
Constraints on parton distribution from CDF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodek, A.; CDF Collaboration
1995-10-01
The asymmetry in W{sup -} - W{sup +} production in p{bar p} collisions and Drell-Yan data place tight constraints on parton distributions functions. The W asymmetry data constrain the slope of the quark distribution ratio d(x)/u(x) in the x range 0.007-0.27. The published W asymmetry results from the CDF 1992.3 data ({approx} 20 pb{sup -1}) greatly reduce the systematic error originating from the choice of PDF`s in the W mass measurement at CDF. These published results have also been included in the CTEQ3, MRSA, and GRV94 parton distribution fits. These modern parton distribution functions axe still in good agreement withmore » the new 1993-94 CDF data({approx} 108 pb{sup -1} combined). Preliminary results from CDF for the Drell-Yan cross section in the mass range 11-350 GeV/c{sup 2} are discussed.« less
Kungl, Melanie T.; Leyh, Rainer; Spangler, Gottfried
2016-01-01
Frontal and parietal asymmetries have repeatedly been shown to be related to specific functional mechanisms involved in emotion regulation. From a developmental perspective, attachment representations based on experiences with the caregiver are theorized to serve regulatory functions and influence how individuals deal with emotionally challenging situations throughout the life span. This study aimed to investigate neural substrates of emotion regulation by assessing state- and trait dependent EEG asymmetries in secure, insecure-dismissing and insecure-preoccupied subjects. The sample consisted of 40 late adolescents. The Adult Attachment Interview was administered and they were asked to report upon personally highly salient emotional memories related to anger, happiness and sadness. EEG was recorded at rest and during the retrieval of each of these emotional memories, and frontal and parietal hemispheric asymmetry were analyzed. We found attachment representations to differentially affect both the frontal and parietal organization of hemispheric asymmetry at rest and (for parietal region only) during the retrieval of emotional memories. During rest, insecure-dismissing subjects showed an elevated right-frontal brain activity and a reduced right-parietal brain activity. We interpret this finding in light of a disposition to use withdrawal strategies and low trait arousal in insecure-dismissing subjects. Emotional memory retrieval did not affect frontal asymmetry. However, both insecure groups showed an increase in right-sided parietal activity indicating increased arousal during the emotional task as compared to the resting state suggesting that their emotion regulation capability was especially challenged by the retrieval of emotional memories while securely attached subjects maintained a state of moderate arousal. The specific neurophysiological pattern of insecure-dismissing subjects is discussed with regard to a vulnerability to affective disorders. PMID:28082880
Demirbüken, İlkşan; Özyürek, Seher; Angın, Salih
2016-12-01
Knee osteoarthritis has commonly been associated with a symptom of pain resulting in an inter-limb weight-bearing asymmetry during functional tasks. Patellar tendon strap is one of the non-pharmacologic interventions to alleviate knee pain. To investigate the immediate effect of a patellar tendon strap on weight-bearing asymmetry during squatting in people with unilateral knee osteoarthritis. Cross-sectional study. Ten patients with unilateral knee osteoarthritis and 10 healthy subjects were included in the study. Weight-bearing asymmetry of patients was assessed using a weight-bearing squat test during squatting at 30° and 60° both with and without patellar tendon strap. Pain intensity was assessed during squatting in unstrapped and strapped conditions with Visual Analog Scale. The decrease in weight-bearing asymmetry values immediately after wearing patellar tendon strap during 30° (p = 0.006) and 60° (p = 0.011) of squatting tests was significantly higher in knee osteoarthritis patients than in healthy subjects. Reported pain intensity was similar in unstrapped and strapped conditions (p = 0.066). The results of this study showed improved inter-limb weight-bearing symmetry during squatting. Further research with larger sample sizes investigating the effect of patellar tendon strap on weight-bearing asymmetry during functional activities in people with knee osteoarthritis is warranted. Patellar tendon straps (easily fit and cheap unlike knee braces) had more improvements in inter-limb weight-bearing symmetry during squatting in people with knee osteoarthritis compared to healthy subjects. This study is a new insight for future studies to investigate clinical benefits of wearing patellar tendon straps in this population. © The International Society for Prosthetics and Orthotics 2015.
Hemispheric Asymmetry for Linguistic Prosody: A Study of Stress Perception in Croatian
ERIC Educational Resources Information Center
Mildner, Vesna
2004-01-01
The aim of the study was to test for possible functional cerebral asymmetry in processing one segment of linguistic prosody, namely word stress, in Croatian. The test material consisted of eight tokens of the word "pas" under a falling accent, varying only in vowel duration between 119 and 185ms, attached to the end of a frame sentence. The…
Transverse Single Spin Asymmetry in \\varvec{J}/\\varvec{ψ } Production
NASA Astrophysics Data System (ADS)
Sonawane, Bipin; Misra, Anuradha; Padval, Siddhesh; Rawoot, Vaibhav
2018-05-01
We estimate transverse single spin asymmetry (TSSA) in electroproduction of J/ψ for J-Lab and EIC energies. We present estimates of TSSAs in J/ψ production within generalized parton model (GPM) using recent parametrizations of gluon Sivers function (GSF) and compare the results obtained using color singlet model (CSM) with those obtained using color evaporation model (CEM) of quarkonium production.
Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J
2017-07-01
The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Boylan, Kristin L M; Mische, Sarah; Li, Mingang; Marqués, Guillermo; Morin, Xavier; Chia, William; Hays, Thomas S
2008-02-01
The localization of specific mRNAs can establish local protein gradients that generate and control the development of cellular asymmetries. While all evidence underscores the importance of the cytoskeleton in the transport and localization of RNAs, we have limited knowledge of how these events are regulated. Using a visual screen for motile proteins in a collection of GFP protein trap lines, we identified the Drosophila IGF-II mRNA-binding protein (Imp), an ortholog of Xenopus Vg1 RNA binding protein and chicken zipcode-binding protein. In Drosophila, Imp is part of a large, RNase-sensitive complex that is enriched in two polarized cell types, the developing oocyte and the neuron. Using time-lapse confocal microscopy, we establish that both dynein and kinesin contribute to the transport of GFP-Imp particles, and that regulation of transport in egg chambers appears to differ from that in neurons. In Drosophila, loss-of-function Imp mutations are zygotic lethal, and mutants die late as pharate adults. Imp has a function in Drosophila oogenesis that is not essential, as well as functions that are essential during embryogenesis and later development. Germline clones of Imp mutations do not block maternal mRNA localization or oocyte development, but overexpression of a specific Imp isoform disrupts dorsal/ventral polarity. We report here that loss-of-function Imp mutations, as well as Imp overexpression, can alter synaptic terminal growth. Our data show that Imp is transported to the neuromuscular junction, where it may modulate the translation of mRNA targets. In oocytes, where Imp function is not essential, we implicate a specific Imp domain in the establishment of dorsoventral polarity.
Frontal alpha asymmetry and sexually motivated states.
Prause, Nicole; Staley, Cameron; Roberts, Verena
2014-03-01
Anterior alpha asymmetry of electroencephalographic (EEG) signals has been suggested to index state approach (or avoidance) motivation. This model has not yet been extended to high approach-motivation sexual stimuli, which may represent an important model of reward system function. Sixty-five participants viewed a neutral and a sexually motivating film while their EEG was recorded, and reported their sexual feelings after each film. Greater alpha power in the left hemisphere during sexually motivated states was evident. A positive relationship between self-reported mental sexual arousal and alpha asymmetry was identified, where coherence between these indicators was higher in women. Notably, coherence was stronger when mental versus physical sexual arousal was rated. Alpha asymmetry appears to offer a new method for further examining this novel coherence pattern across men and women. Copyright © 2014 Society for Psychophysiological Research.
Unirhinal Olfactory Testing for the Diagnostic Workup of Mild Cognitive Impairment.
Huart, Caroline; Rombaux, Philippe; Gérard, Thomas; Hanseeuw, Bernard; Lhommel, Renaud; Quenon, Lisa; Ivanoiu, Adrian; Mouraux, André
2015-01-01
Olfactory dysfunction is associated with Alzheimer's disease (AD), and already present at pre-dementia stage. Based on the assumption that early neurodegeneration in AD is asymmetrical and that olfactory input is primarily processed in the ipsilateral hemisphere, we assessed whether unirhinal psychophysical and electrophysiological assessment of olfactory function can contribute to the diagnostic workup of mild cognitive impairment (MCI). Olfactory function of 13 MCI patients with positive amyloid PET, 13 aged-matched controls (AC) with negative amyloid PET and 13 patients with post-infectious olfactory loss (OD) was assessed unirhinally using (1) psychophysical testing of olfactory detection, discrimination and identification performance and (2) the recording of olfactory event-related brain potentials. Time-frequency analysis was used to enhance the signal-to-noise ratio of the electrophysiological responses. Psychophysical and electrophysiological assessment of auditory and trigeminal chemosensory function served as controls. As compared to AC and OD, MCI patients exhibited a significant asymmetry of olfactory performance. This asymmetry efficiently discriminated between MCI and AC (sensitivity: 85% , specificity: 77% ), as well as MCI and OD (sensitivity: 85% , specificity: 70% ). There was also an asymmetry of the electrophysiological responses, but not specific for MCI. In both MCI and OD, olfactory stimulation of the best nostril elicited significantly more activity than stimulation of the worse nostril, between 3-7.5 Hz and 1.2-2.0 s after stimulus onset. Trigeminal and auditory psychophysical testing did not show any difference between groups. MCI patients exhibit a marked asymmetry of behavioral olfactory function, which could be useful for the diagnostic workup of MCI.
Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J; Deliyannides, Deborah; Quitkin, Frederic M
2004-09-01
Patients having a depressive disorder vary widely in their therapeutic responsiveness to a selective serotonin reuptake inhibitor (SSRI), but there are no clinical predictors of treatment outcome. Studies using dichotic listening, electrophysiologic and neuroimaging measures suggest that pretreatment differences among depressed patients in functional brain asymmetry are related to responsiveness to antidepressants. Two new studies replicate differences in dichotic listening asymmetry between fluoxetine responders and nonresponders, and demonstrate the importance of gender in this context. Right-handed outpatients who met DSM-IV criteria for major depression, dysthymia, or depression not otherwise specified were tested on dichotic fused-words and complex tones tests before completing 12 weeks of fluoxetine treatment. Perceptual asymmetry (PA) scores were compared for 75 patients (38 women) who responded to treatment and 39 patients (14 women) who were nonresponders. Normative data were also obtained for 101 healthy adults (61 women). Patients who responded to fluoxetine differed from nonresponders and healthy adults in favoring left- over right-hemisphere processing of dichotic stimuli, and this difference was dependent on gender and test. Heightened left-hemisphere advantage for dichotic words in responders was present among women but not men, whereas reduced right-hemisphere advantage for dichotic tones in responders was present among men but not women. Pretreatment PA was also predictive of change in depression severity following treatment. Responder vs nonresponder differences for verbal dichotic listening in women and nonverbal dichotic listening in men are discussed in terms of differences in cognitive function, hemispheric organization, and neurotransmitter function.
Hu, Guangwei; Li, Guang; Wang, Hui; Wang, Yiquan
2017-12-15
Correct patterning of left-right (LR) asymmetry is essential during the embryonic development of bilaterians. Hedgehog (Hh) signaling is known to play a role in LR asymmetry development of mouse, chicken and sea urchin embryos by regulating Nodal expression. In this study, we report a novel regulatory mechanism for Hh in LR asymmetry development of amphioxus embryos. Our results revealed that Hh -/- embryos abolish Cerberus ( Cer ) transcription, with bilaterally symmetric expression of Nodal , Lefty and Pitx In consequence, Hh -/- mutants duplicated left-side structures and lost right-side characters, displaying an abnormal bilaterally symmetric body plan. These LR defects in morphology and gene expression could be rescued by Hh mRNA injection. Our results indicate that Hh participates in amphioxus LR patterning by controlling Cer gene expression. Curiously, however, upregulation of Hh signaling failed to alter the Cer expression pattern or LR morphology in amphioxus embryos, indicating that Hh might not provide an asymmetric cue for Cer expression. In addition, Hh is required for mouth opening in amphioxus, hinting at a homologous relationship between amphioxus and vertebrate mouth development. © 2017. Published by The Company of Biologists Ltd.
The transmembrane collagen COL-99 guides longitudinally extending axons in C. elegans.
Taylor, Jesse; Unsoeld, Thomas; Hutter, Harald
2018-06-01
We have identified the transmembrane collagen, COL-99, in a genetic screen for novel genes involved in axon guidance in the nematode C. elegans. COL-99 is similar to transmembrane collagens type XIII, XXIII and XXV in vertebrates. col-99 mutants exhibit guidance defects in axons extending along the major longitudinal axon tracts, most prominently the left ventral nerve cord (VNC). COL-99 is expressed in the hypodermis during the time of axon outgrowth. We provide evidence that a furin cleavage site in COL-99 is essential for function, suggesting that COL-99 is released from the cells producing it. Vertebrate homologs of COL-99 have been shown to be expressed in mammalian nervous systems and linked to various neurological disease but have not been associated with guidance of extending neurons. col-99 acts genetically with the discoidin domain receptors ddr-1 and ddr-2, which are expressed by neurons affected in col-99 mutants. Discoidin domain receptors are activated by collagens in vertebrates. DDR-1 and DDR-2 may function as receptors for COL-99. Our results establish a novel role for a transmembrane collagen in axonal guidance and asymmetry establishment of the VNC. Copyright © 2018 Elsevier Inc. All rights reserved.
Impact-generated dust clouds around planetary satellites: asymmetry effects
NASA Astrophysics Data System (ADS)
Sremčević, Miodrag; Krivov, Alexander V.; Spahn, Frank
2003-06-01
In a companion paper (Krivov et al., Impact-generated dust clouds around planetary satellites: spherically symmetric case, Planet. Space. Sci. 2003, 51, 251-269) an analytic model of an impact-generated, steady-state, spherically symmetric dust cloud around an atmosphereless planetary satellite (or planet - Mercury, Pluto) has been developed. This paper lifts the assumption of spherical symmetry and focuses on the asymmetry effects that result from the motion of the parent body through an isotropic field of impactors. As in the spherically symmetric case, we first consider the dust production from the surface and then derive a general phase-space distribution function of the ensemble of ejected dust motes. All quantities of interest, such as particle number densities and fluxes, can be obtained by integrating this phase-space distribution function. As an example, we calculate an asymmetric distribution of dust number density in a cloud. It is found that the deviation from the symmetric case can be accurately described by a cosine function of the colatitude measured from the apex of the satellite motion. This property of the asymmetry is rather robust. It is shown that even an extremely asymmetric dust production at the surface, when nearly all dust is ejected from the leading hemisphere, turns rapidly into the cosine modulation of the number density at distances larger than a few satellite radii. The amplitude of the modulation depends on the ratio of the moon orbital velocity to the speed of impactors and on the initial angular distribution of the ejecta. Furthermore, regardless of the functional form of the initial angular distribution, the number density distribution of the dust cloud is only sensitive to the mean ejecta angle. When the mean angle is small - ejection close to the normal of the surface - the initial dust production asymmetry remains persistent even far from the satellite, but when this angle is larger than about 45°, the asymmetry coefficient drops very rapidly with the increasing distance. The dependence of the asymmetric number density on other parameters is very weak. On the whole, our results provide necessary theoretical guidelines for a dedicated quest of asymmetries in the dust detector data, both those obtained by the Galileo dust detector around the Galilean satellites of Jupiter and those expected from the Cassini dust experiment around outer Saturnian moons.
Hemispheric asymmetry of electroencephalography-based functional brain networks.
Jalili, Mahdi
2014-11-12
Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.
Precise measurements of beam spin asymmetries in semi-inclusive π0 production
NASA Astrophysics Data System (ADS)
Aghasyan, M.; Avakian, H.; Rossi, P.; De Sanctis, E.; Hasch, D.; Mirazita, M.; Adikaram, D.; Amaryan, M. J.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Branford, D.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hanretty, C.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Isupov, E. L.; Jawalkar, S. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McAndrew, J.; McKinnon, B.; Meyer, C. A.; Micherdzinska, A. M.; Mokeev, V.; Moreno, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.
2011-10-01
We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sinϕh amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ϕh of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.
First measurement of the beam asymmetry in photoproduction off the proton near threshold
NASA Astrophysics Data System (ADS)
Levi Sandri, P.; Mandaglio, G.; De Leo, V.; Bartalini, O.; Bellini, V.; Bocquet, J.-P.; Capogni, M.; Curciarello, F.; Didelez, J.-P.; D'Angelo, A.; Di Salvo, R.; Fantini, A.; Franco, D.; Gervino, G.; Ghio, F.; Girolami, B.; Giusa, A.; Lapik, A.; Lleres, A.; Mammoliti, F.; Manganaro, M.; Moricciani, D.; Mushkarenkov, A.; Nedorezov, V.; Randieri, C.; Rebreyend, D.; Rudnev, N.; Russo, G.; Schaerf, C.; Sperduto, M.-L.; Sutera, M.-C.; Turinge, A.; Vegna, V.; Zonta, I.
2015-07-01
The beam asymmetry in photoproduction off the proton was measured at the GrAAL polarised photon beam with incoming photon energies of 1.461 and 1.480 GeV. For both energies the asymmetry as a function of the meson production angle shows a clear structure, more pronounced at the lowest one, with a change of sign around . The observed behaviour is compatible with P-wave D-wave (or S-wave F-wave) interference, the closer to threshold the stronger. The results are compared to the existing state-of-the-art calculations that fail to account for the data.
Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive π 0 production
Aghasyan, M.; Avakian, H.; Rossi, P.; ...
2011-10-01
We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sin Φ h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle Φ h of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.
NASA Technical Reports Server (NTRS)
Grams, G. W.
1981-01-01
A laser nephelometer developed for airborne measurements of polar scattering diagrams of atmospheric aerosols was flown on the NCAR Sabreliner aircraft to obtain data on light-scattering parameters for stratospheric aerosol particles over Alaska during July 1979. Observed values of the angular variation of scattered-light intensity were compared with those calculated for different values of the asymmetry parameter g in the Henyey-Greenstein phase function. The observations indicate that, for the time and location of the experiments, the Henyey-Greenstein phase function could be used to calculate polar scattering diagrams to within experimental errors for an asymmetry parameter value of 0.49 plus or minus 0.07.
Asymmetric Quintuplet Condensation in the Frustrated S=1 Spin Dimer Compound Ba3Mn2O8
NASA Astrophysics Data System (ADS)
Samulon, E. C.; Kohama, Y.; McDonald, R. D.; Shapiro, M. C.; Al-Hassanieh, K. A.; Batista, C. D.; Jaime, M.; Fisher, I. R.
2009-07-01
Ba3Mn2O8 is a spin-dimer compound based on pairs of S=1, 3d2, Mn5+ ions arranged on a triangular lattice. Antiferromagnetic intradimer exchange leads to a singlet ground state in zero field, with excited triplet and quintuplet states at higher energy. High field thermodynamic measurements are used to establish the phase diagram, revealing a substantial asymmetry of the quintuplet condensate. This striking effect, all but absent for the triplet condensate, is due to a fundamental asymmetry in quantum fluctuations of the paramagnetic phases near the various critical fields.
ERIC Educational Resources Information Center
Van Hecke, Amy Vaughan; Stevens, Sheryl; Carson, Audrey M.; Karst, Jeffrey S.; Dolan, Bridget; Schohl, Kirsten; McKindles, Ryan J.; Remmel, Rheanna; Brockman, Scott
2015-01-01
This study examined whether the Program for the Education and Enrichment of Relational Skills ("PEERS: Social skills for teenagers with developmental and autism spectrum disorders: The PEERS treatment manual," Routledge, New York, 2010a) affected neural function, via EEG asymmetry, in a randomized controlled trial of adolescents with…
Bussey, Melanie D
2010-05-01
Pelvic asymmetry has been thought to alter body mechanics and result in increased strain on bony and soft tissues possibly producing asymmetrical skeletal adaptations. The purpose of the present study was to determine if there is a greater prevalence of pelvic skeletal asymmetry in athletes who participate in a sport that requires a lateral dominance combined with increased spinal flexion and rotation. This is a descriptive laboratory study using a cross-sectional design. Sixty healthy female university age elite athletes and non-athletes participated in the study. The height and width of the anterior superior iliac spine (ASIS) and posterior superior iliac spine (PSIS) were measured using an electromagnetic tracking device with stylus. Using these measures a pelvic asymmetry ratio (PAR) was calculated for each athlete based on the difference in slope between the two ASIS and between the two PSIS. PAR was first assessed as a continuous variable to determine any differences in range of asymmetry between groups. All athletes were then assessed for prevalence of asymmetry as defined by a PAR score greater than 0.05. The results showed that there was a significant group effect in the magnitude and prevalence of asymmetry, with the lateral dominant group having significantly more of both. This study demonstrates that potentially there is an association between the asymmetrical nature of lateral dominant sports and pelvic skeletal asymmetry. However, there are possibly two confounding variables in age of initial participation and presence of low back pain that require further exploration. 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2016-08-22
The differential cross section and charge asymmetry for inclusive pp → W ± + X → μ ±ν + X production at √s = 8 TeV are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8 inverse femtobarns recorded with the CMS detector at the LHC. Furthermore, these results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E -3 to 10E -1.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; de Visscher, S.; Delaere, C.; Delcourt, M.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Costa, E. M. Da; Jesus Damiao, D. De; Oliveira Martins, C. De; de Souza, S. Fonseca; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Souza Santos, A. De; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; El-Khateeb, E.; Elkafrawy, T.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Bihan, A.-C. Le; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; Mamouni, H. El; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Ruiz Alvarez, J. D.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Lomidze, D.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; U. Bhawandeep; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Licata, C. La; Schizzi, A.; Zanetti, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; Cruz-Burelo, E. De La; Cruz, I. Heredia-De La; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Qazi, S.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Traczyk, P.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Voytishin, N.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Markin, O.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; Cruz, B. De La; Delgado Peris, A.; Del Valle, A. Escalante; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; de Martino, E. Navarro; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; de Saa, J. R. Castiñeiras; Curras, E.; Castro Manzano, P. De; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Pree, T. Du; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Arbol, P. Martinez Ruiz Del; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; McLean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lewis, J.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Malek, M.; McBrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; de Lima, R. Teixeira; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; CMS Collaboration
2016-08-01
The differential cross section and charge asymmetry for inclusive {p}{p}→ {W}^{± }+X → μ ^{± }ν +X production at √{s}=8 TeV are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8 {fb}^{-1} recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10^{-3} to 10^{-1}.
NASA Technical Reports Server (NTRS)
Temkin, A.; Bhatia, A. K.
1988-01-01
A very sensitive test of the electron-atom ionization threshold law is suggested: for spin-aligned heavy negative ions it consists of measuring the polarization asymmetry A(PA) coming from double detachment by left- versus right-circularly polarized light. The respective yields are worked out for the Te(-) (5p)5 2P(3/2) ion. The Coulomb-dipole theory predicts A(PA) to be the ratio of two oscillating functions in sharp contrast to any power law (specifically that of Wannier, 1953) for which the ratio is expected to be a smooth function of energy.
Girel, Simon; Crauste, Fabien
2018-06-01
Unequal partitioning of the molecular content at cell division has been shown to be a source of heterogeneity in a cell population. We propose to model this phenomenon with the help of a scalar, nonlinear impulsive differential equation (IDE). To study the effect of molecular partitioning at cell division on the effector/memory cell-fate decision in a CD8 T-cell lineage, we study an IDE describing the concentration of the protein Tbet in a CD8 T-cell, where impulses are associated to cell division. We discuss how the degree of asymmetry of molecular partitioning can affect the process of cell differentiation and the phenotypical heterogeneity of a cell population. We show that a moderate degree of asymmetry is necessary and sufficient to observe irreversible differentiation. We consider, in a second part, a general autonomous IDE with fixed times of impulse and a specific form of impulse function. We establish properties of the solutions of that equation, most of them obtained under the hypothesis that impulses occur periodically. In particular, we show how to investigate the existence of periodic solutions and their stability by studying the flow of an autonomous differential equation. Then we apply those properties to prove the results presented in the first part.
Khachatryan, Vardan
2016-07-09
The charge asymmetry inmore » $$t \\bar t$$ events is measured using dilepton final states produced in pp collisions at the LHC at √s = 8 TeV. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 19.5 fb –1. The measurements are performed using events with two oppositely charged leptons (electrons or muons) and two or more jets, where at least one of the jets is identified as originating from a bottom quark. The charge asymmetry is measured from differences in kinematic distributions, unfolded to the parton level, of positively and negatively charged top quarks and leptons. The $$t \\bar t$$ and leptonic charge asymmetries are found to be 0.011 ± 0.011 (stat) ± 0.007 (syst) and 0.003 ± 0.006 (stat) ± 0.003 (syst), respectively. Lastly, These results, as well as charge asymmetry measurements made as a function of $$t \\bar t$$ system kinematic properties, are in agreement with predictions of the standard model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adare, A.; Aidala, C.; Ajitanand, N. N.
2014-10-01
We present a measurement of the cross section and transverse single-spin asymmetry (A N) for η mesons at large pseudorapidity from √s=200 GeV p ↑+p collisions. The measured cross section for 0.5T<5.0 GeV/c and 3.0<|η|<3.8 is well described by a next-to-leading-order perturbative-quantum-chromodynamics calculation. The asymmetries A N have been measured as a function of Feynman-x (x F) from 0.2<|x F|<0.7, as well as transverse momentum (p T) from 1.0T<4.5 GeV/c. The asymmetry averaged over positive x F is (A N) = 0.061±0.014. The results are consistent with prior transverse single-spin measurements of forward η and π⁰ mesons at various energiesmore » in overlapping x F ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in p ↑+p collisions.« less
Measurements of t t ‾ charge asymmetry using dilepton final states in pp collisions at √{ s} = 8TeV
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; de Visscher, S.; Delaere, C.; Delcourt, M.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Ellithi Kamel, A.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Ruiz Alvarez, J. D.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Beernaert, K.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Schizzi, A.; Zanetti, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Traczyk, P.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Voytishin, N.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Markin, O.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; Curras, E.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; McLean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lewis, J.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Bruner, C.; Castle, J.; Kenny, R. P.; Kropivnitskaya, A.; Majumder, D.; Malek, M.; McBrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; Cms Collaboration
2016-09-01
The charge asymmetry in t t ‾ events is measured using dilepton final states produced in pp collisions at the LHC at √{ s} = 8TeV. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 19.5fb-1. The measurements are performed using events with two oppositely charged leptons (electrons or muons) and two or more jets, where at least one of the jets is identified as originating from a bottom quark. The charge asymmetry is measured from differences in kinematic distributions, unfolded to the parton level, of positively and negatively charged top quarks and leptons. The t t ‾ and leptonic inclusive charge asymmetries are found to be 0.011 ± 0.011(stat) ± 0.007(syst) and 0.003 ± 0.006(stat) ± 0.003(syst), respectively. These results, as well as charge asymmetry measurements made as a function of the invariant mass, rapidity, and transverse momentum of the t t ‾ system, are in agreement with predictions of the standard model.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Toriashvili, T.; Bagaturia, I.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Korneeva, N.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Mcginn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2016-06-01
The t t bar charge asymmetry is measured in proton-proton collisions at a centre-of-mass energy of 8 TeV. The data, collected with the CMS experiment at the LHC, correspond to an integrated luminosity of 19.7 fb-1. Selected events contain an electron or a muon and four or more jets, where at least one jet is identified as originating from b-quark hadronization. The inclusive charge asymmetry is found to be 0.0010 ± 0.0068 (stat) ± 0.0037 (syst). In addition, differential charge asymmetries as a function of rapidity, transverse momentum, and invariant mass of the t t bar system are studied. For the first time at the LHC, the measurements are also performed in a reduced fiducial phase space of top quark pair production, with an integrated result of - 0.0035 ± 0.0072 (stat) ± 0.0031 (syst). All measurements are consistent within two standard deviations with zero asymmetry as well as with the predictions of the standard model.
Khachatryan, Vardan
2016-03-29
The tt charge asymmetry is measured in proton-proton collisions at a centre-of-mass energy of 8 TeV. The data, collected with the CMS experiment at the LHC, correspond to an integrated luminosity of 19.7 fb -1 . Selected events contain an electron or a muon and four or more jets, where at least one jet is identified as originating from b-quark hadronization. The inclusive charge asymmetry is found to be 0.0010 ± 0.0068 (stat) ± 0.0037 (syst). In addition, differential charge asymmetries as a function of rapidity, transverse momentum, and invariant mass of the tt system are studied. For the firstmore » time at the LHC, our measurements are also performed in a reduced fiducial phase space of top quark pair production, with an integrated result of -0.0035 ± 0.0072 (stat) ± 0.0031 (syst). Additionally, all measurements are consistent within two standard deviations with zero asymmetry as well as with the predictions of the standard model.« less
First Measurement of Transverse-Spin-Dependent Azimuthal Asymmetries in the Drell-Yan Process.
Aghasyan, M; Akhunzyanov, R; Alexeev, G D; Alexeev, M G; Amoroso, A; Andrieux, V; Anfimov, N V; Anosov, V; Antoshkin, A; Augsten, K; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badełek, B; Balestra, F; Ball, M; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bodlak, M; Bordalo, P; Bradamante, F; Bressan, A; Büchele, M; Chang, W-C; Chatterjee, C; Chiosso, M; Choi, I; Chung, S-U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dreisbach, Ch; Dünnweber, W; Dziewiecki, M; Efremov, A; Eversheim, P D; Faessler, M; Ferrero, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giarra, J; Giordano, F; Gnesi, I; Gorzellik, M; Grasso, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Hahne, D; Hamar, G; von Harrach, D; Heinsius, F H; Heitz, R; Herrmann, F; Horikawa, N; d'Hose, N; Hsieh, C-Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jary, V; Joosten, R; Jörg, P; Kabuß, E; Kerbizi, A; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O M; Kral, Z; Krämer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kulinich, Y; Kunne, F; Kurek, K; Kurjata, R P; Kveton, A; Lednev, A A; Levillain, M; Levorato, S; Lian, Y-S; Lichtenstadt, J; Longo, R; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marianski, B; Martin, A; Marzec, J; Matoušek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G V; Meyer, M; Meyer, W; Mikhailov, Yu V; Mikhasenko, M; Mitrofanov, E; Mitrofanov, N; Miyachi, Y; Nagaytsev, A; Nerling, F; Neyret, D; Nový, J; Nowak, W-D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pešek, M; Peshekhonov, D V; Pierre, N; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Rogacheva, N S; Roskot, M; Ryabchikov, D I; Rybnikov, A; Rychter, A; Salac, R; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sawada, T; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schönning, K; Seder, E; Selyunin, A; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Smolik, J; Srnka, A; Steffen, D; Stolarski, M; Subrt, O; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takewaka, S; Tasevsky, M; Tessaro, S; Terça, G; Tessarotto, F; Thiel, A; Tomsa, J; Tosello, F; Tskhay, V; Uhl, S; Vauth, A; Veloso, J; Virius, M; Vit, M; Vondra, J; Wallner, S; Weisrock, T; Wilfert, M; Ter Wolbeek, J; Zaremba, K; Zavada, P; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M
2017-09-15
The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/c π^{-} beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/c^{2} and 8.5 GeV/c^{2}. Within the experimental uncertainties, the observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of quantum chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic scattering (SIDIS) data. We present two other asymmetries originating from the pion Boer-Mulders TMD PDFs convoluted with either the nucleon transversity or pretzelosity TMD PDFs. A recent COMPASS SIDIS measurement was obtained at a hard scale comparable to that of these DY results. This opens the way for possible tests of fundamental QCD universality predictions.
2017-01-01
The formation of the asymmetric left-right (LR) body axis is one of the fundamental aspects of vertebrate embryonic development, and one still raising passionate discussions among scientists. Although the conserved role of nodal is unquestionable in this process, several of the details around this signaling cascade are still unanswered. To further understand this mechanism, we have been studying Cerberus-like 2 (Cerl2), an inhibitor of Nodal, and its role in the generation of asymmetries in the early vertebrate embryo. The absence of Cerl2 results in a wide spectrum of malformations commonly known as heterotaxia, which comprises defects in either global organ position (e.g., situs inversus totalis), reversed orientation of at least one organ (e.g., situs ambiguus), and mirror images of usually asymmetric paired organs (e.g., left or right isomerisms of the lungs). Moreover, these laterality defects are frequently associated with congenital heart diseases (e.g., transposition of the great arteries, or atrioventricular septal defects). Here, reviewing the knowledge on the establishment of LR asymmetry in mouse embryos, the emerging conclusion is that as necessary as is the activation of the Nodal signaling cascade, the tight control that Cerl2-mediates on Nodal signaling is equally important, and that generates a further regionalized LR genetic program in the proper time and space. PMID:29367552
Like-sign dimuon charge asymmetry at the Tevatron: Corrections from B meson fragmentation
NASA Astrophysics Data System (ADS)
Mitov, Alexander
2011-07-01
The existing predictions for the like-sign dimuon charge asymmetry at the Tevatron are expressed in terms of parameters related to B mesons’ mixing and inclusive production fractions. We show that in the realistic case when phase-space cuts are applied, the asymmetry depends also on the details of the production mechanism for the B mesons. In particular, it is sensitive to the difference in the fragmentation functions of Bd0 and Bs0 mesons. We estimate these fragmentation effects and find that they shift the theory prediction for this observable by approximately 10%. We also point out the approximately 20% sensitivity of the asymmetry depending on which set of values for the B meson production fractions is used: as measured at the Z pole or at the Tevatron. The impact of these effects on the extraction of ASLs from the D0 measurement is presented.
Few-cycle attosecond pulse chirp effects on asymmetries in ionized electron momentum distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Liangyou; Tan Fang; Gong Qihuang
2009-07-15
The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schroedinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger themore » number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse.« less
Rusinova, E V
2011-01-01
The motivational condition of hunger and formation of the hunger dominant after daily food deprivation was studied in the conditions of chronic experiments on rabbits. It was shown, that the hunger condition was accompanied by left sided interhemispher asymmetry on indicators of spectral capacity of EEG frontal and right-hand asymmetry sensorimotor areas of the cortex. A hunger dominant was accompanied by falling of spectral capacity of EEG of areas of both hemispheres. The condition of hunger and a hunger dominant were characterized by right-hand asymmetry on average level of EEG coherence of frontal and sensorimotor areas. At transition of a condition of hunger in a hunger dominant there was an average level of EEG coherence decrease in areas of the right hemisphere. Electric processes of the cortex of the brain at a motivational condition of hunger and a hunger dominant were different.
Parton distributions and cos 2 ϕh asymmetry induced by anomalous photon-quark coupling
NASA Astrophysics Data System (ADS)
Cao, Xu
2018-06-01
In the spectator models of the nucleon with scalar and axial-vector diquarks, we show the effect of Pauli coupling in the photon-quark vertex to the parton distribution functions (PDFs) of nucleon and azimuthal asymmetry in the unpolarized semi-inclusive deep inelastic scattering (SIDIS). This anomalous coupling gives an obvious contribution to unpolarized and polarized PDFs and also leads to a cos 2 ϕh azimuthal asymmetry proportional to the squared Pauli form factor, due to the helicity flip of the struck quark. After determining the model parameters by fitting PDFs to the global fits, this new distribution for cos 2 ϕh asymmetry is given numerically. In the framework of transverse momentum dependence (TMD), we find that it is positive and of a few percent in the kinematical regime of HERMES and COMPASS Collaborations, in the same order of magnitude as the Cahn effect.
NASA Astrophysics Data System (ADS)
Mursula, K.; Virtanen, I. I.
2010-05-01
The heliospheric magnetic field has long been hemispherically asymmetric so that the field in the northern hemisphere is weaker and the area larger than in the south. This asymmetry, also called the bashful ballerina, has existed during three-year intervals in the late declining to minimum phase of solar cycles 16-22. We study here the HMF and its hemispheric asymmetry during solar cycle 23. We find that the latitudinal ordering of HMF sectors at low latitudes is exceptional in SC 23: the normal latitudinal variation was not established in the south by Spring 2009, implying that the Rosenberg-Coleman rule is abnormally delayed or broken during this cycle. Comparing the radial field at 1AU and at the coronal source surface footpoint, we show that the HCS was southward shifted even in SC 23 but the shift is considerably smaller than in earlier cycles. We also study the HMF observations during the third perihelion pass of the Ulysses probe in 2007, and find that the northern field was some 0.2 nT stronger than the southern field and that the whole HCS region was clearly shifted southward by about 2°-5°. Accordingly, the north-south asymmetry existed even in SC 23 but was largely masked out in ecliptic observations due to the exceptionally weak polar fields, leading to an abnormally large HCS tilt angle and a wide equatorial belt region. We also note that historical evidence at the ecliptic suggests a connection between solar dipole strength and the size of north-south asymmetry observed there. Based on this, one can predict that, after the present period of weak solar activity started in SC 23, the hemispheric asymmetry will grow again with increasing activity, but the orientation of the asymmetry will be opposite. Thus, after SC 23, the solar ballerina will not be bashful for some 100-150 years.
Posteroanterior cephalometric changes in subjects with temporomandibular joint disorders
Almăşan, O C; Băciuţ, M; Hedeşiu, M; Bran, S; Almăşan, H; Băciuţ, G
2013-01-01
Objectives The aim of the study was to establish the changes in posteroanterior cephalometric variables in subjects with temporomandibular joint disorders (TMDs). Methods Posteroanterior cephalograms of 61 subjects (age range 16–36.6 years, standard deviation 4.88 years) were used to determine cephalometric differences. Subjects were classified according to the Research Diagnostic Criteria for Temporomandibular Joint Disorders into three groups: unilateral TMD, bilateral TMD and no TMD. 14 linear and angular measurements were assessed on the posteroanterior cephalogram. For assessing facial asymmetry, the asymmetry index for bilateral measurements was calculated between the right and the left side. In cases with unilateral TMD, the asymmetry index was calculated using the difference between the unaffected and affected side. The differences among multiple groups were analysed using the one-way analysis of variance test and Scheffé post hoc test. Results 47 subjects were females (77%) and 14 were males (23%). 19 subjects had unilateral TMDs and 16 subjects had bilateral TMDs. The asymmetry index of the distance from the horizontal plane to the antegonion was higher in subjects with unilateral TMD than in patients with bilateral or no TMD (p < 0.05). Also, the asymmetry index of the distances from the vertical plane to the condyle (p = 0.05), gonion (Go) (p = 0.0004), antegonion (p = 0.002) and chin (Ch) (p = 0.02) was higher in subjects with unilateral TMDs. The asymmetry index of the O point–Go–Go′ and O point–Ch–Ch′ angles differed significantly in subjects with unilateral TMDs (p < 0.05). Conclusions Unilateral TMDs are associated with changes in posteroanterior cephalometric measurements. The assessment of posteroanterior cephalometric variables could be used as a key factor for evaluating the presence of TMDs. PMID:23253565
Speech processing asymmetry revealed by dichotic listening and functional brain imaging.
Hugdahl, Kenneth; Westerhausen, René
2016-12-01
In this article, we review research in our laboratory from the last 25 to 30 years on the neuronal basis for laterality of speech perception focusing on the upper, posterior parts of the temporal lobes, and its functional and structural connections to other brain regions. We review both behavioral and brain imaging data, with a focus on dichotic listening experiments, and using a variety of imaging modalities. The data have come in most parts from healthy individuals and from studies on normally functioning brain, although we also review a few selected clinical examples. We first review and discuss the structural model for the explanation of the right-ear advantage (REA) and left hemisphere asymmetry for auditory language processing. A common theme across many studies have been our interest in the interaction between bottom-up, stimulus-driven, and top-down, instruction-driven, aspects of hemispheric asymmetry, and how perceptual factors interact with cognitive factors to shape asymmetry of auditory language information processing. In summary, our research have shown laterality for the initial processing of consonant-vowel syllables, first observed as a behavioral REA when subjects are required to report which syllable of a dichotic syllable-pair they perceive. In subsequent work we have corroborated the REA with brain imaging, and have shown that the REA is modulated through both bottom-up manipulations of stimulus properties, like sound intensity, and top-down manipulations of cognitive properties, like attention focus. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2018-04-01
The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.
Effect of sea quarks on single-spin asymmetries ANW± in transversely polarized pp collisions at RHIC
NASA Astrophysics Data System (ADS)
Tian, Fang; Gong, Chang; Ma, Bo-Qiang
2017-12-01
We calculate the single-spin asymmetries ANW± of W± bosons produced in transversely polarized pp collisions with the valence part of the up (u) and down (d) quark Sivers functions treated by an available parametrization and the light-cone quark spectator-diquark model respectively, while the sea part Sivers functions of u and d quarks treated as parametrization. Comparing our results with those from experimental data at RHIC, we find that the Sivers functions of sea quarks play an important role in the determination of the shapes of ANW±. It is shown that ANW- is sensitive to u sea Sivers function, while ANW+ to d sea Sivers function intuitively. The results show that the contributions of u and d sea Sivers functions are rather sizable and of the same sign, and their signs agree with that of d valence quarks and are opposite to that of u valence quarks.
First measurement of the Sivers asymmetry for gluons using SIDIS data
NASA Astrophysics Data System (ADS)
Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; Du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; D'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rogacheva, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Vauth, A.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.; Compass Collaboration
2017-09-01
The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. For quarks, it was studied in previous measurements of the azimuthal asymmetry of hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nucleon targets, and it was found to be non-zero. In this letter the evaluation of the Sivers asymmetry for gluons is presented. The contribution of the photon-gluon fusion subprocess is enhanced by requiring two high transverse-momentum hadrons. The analysis method is based on a Monte Carlo simulation that includes three hard processes: photon-gluon fusion, QCD Compton scattering and the leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes are simultaneously extracted using the LEPTO event generator and a neural network approach. The method is applied to samples of events containing at least two hadrons with large transverse momentum from the COMPASS data taken with a 160 GeV/c muon beam scattered off transversely polarised deuterons and protons. With a significance of about two standard deviations, a negative value is obtained for the gluon Sivers asymmetry. The result of a similar analysis for a Collins-like asymmetry for gluons is consistent with zero.
Argyriou, Paraskevi; Byfield, Sarah; Kita, Sotaro
2015-01-01
Research on the neural basis of metaphor provides contradicting evidence about the role of right and left hemispheres. We used the mouth-opening asymmetry technique to investigate the relative involvement of the two hemispheres whilst right-handed healthy male participants explained the meaning of English phrases. This technique is based on the contralateral cortical control of the facial musculature and reflects the relative hemispheric involvement during different cognitive tasks. In particular, right-handers show a right-sided mouth asymmetry (right side of the mouth opens wider than the left) during linguistic tasks, thus reflecting the left-hemisphere specialization for language. In the current study, we compared the right-sided mouth asymmetry during metaphor explanation (e.g., explain the meaning of the phrase "to spin a yarn") and concrete explanation (e.g., explain the meaning of the phrase "to spin a golf ball") and during the production of content and function words. The expected right-sided mouth asymmetry reduced during metaphorical compared to concrete explanations suggesting the relative right-hemispheric involvement for metaphor processing. Crucially, this right-sided mouth asymmetry reduction was particularly pronounced for the production of content words. Thus, we concluded that semantics is crucial to the right-hemispheric involvement for metaphorical speech production.
NASA Astrophysics Data System (ADS)
Darwish, Eed M.; Abou-Elsebaa, Hoda M.; Hassaneen, Khaled S. A.
2018-04-01
Motivated by the recent measurements from the VEPP-3 electron storage ring, we investigate the tensor target polarization asymmetries T 2 M ( M = 0, 1, 2) in the reaction γ d → π 0 d with a particular interest in the effect of the intermediate η N N three-body approach. This approach is based on realistic separable representations of the driving two-body interaction in the π N, η N, and NN subsystems. It is shown that the influence of rescattering effects in the intermediate state on the tensor target spin asymmetries is sizable at extreme backward pion angles. At forward angles, the contribution from the pure impulse approximation is dominated and the spin asymmetries show very little influence of rescattering effects. The sensitivity of results to the elementary pion photoproduction operator and to the NN potential model adopted for the deuteron wave function is investigated, and considerable dependences are found. The predicted spin asymmetries are also compared with available experimental data, and a satisfactory agreement with the recent data from VEPP-3 is obtained at photon energies below 400 MeV. At higher energies, the calculated spin asymmetries slightly underestimate the data.
Fine mapping of the pond snail left-right asymmetry (chirality) locus using RAD-Seq and fibre-FISH.
Liu, Mengning Maureen; Davey, John W; Banerjee, Ruby; Han, Jie; Yang, Fengtang; Aboobaker, Aziz; Blaxter, Mark L; Davison, Angus
2013-01-01
The left-right asymmetry of snails, including the direction of shell coiling, is determined by the delayed effect of a maternal gene on the chiral twist that takes place during early embryonic cell divisions. Yet, despite being a well-established classical problem, the identity of the gene and the means by which left-right asymmetry is established in snails remain unknown. We here demonstrate the power of new genomic approaches for identification of the chirality gene, "D". First, heterozygous (Dd) pond snails Lymnaea stagnalis were self-fertilised or backcrossed, and the genotype of more than six thousand offspring inferred, either dextral (DD/Dd) or sinistral (dd). Then, twenty of the offspring were used for Restriction-site-Associated DNA Sequencing (RAD-Seq) to identify anonymous molecular markers that are linked to the chirality locus. A local genetic map was constructed by genotyping three flanking markers in over three thousand snails. The three markers lie either side of the chirality locus, with one very tightly linked (<0.1 cM). Finally, bacterial artificial chromosomes (BACs) were isolated that contained the three loci. Fluorescent in situ hybridization (FISH) of pachytene cells showed that the three BACs tightly cluster on the same bivalent chromosome. Fibre-FISH identified a region of greater that ∼0.4 Mb between two BAC clone markers that must contain D. This work therefore establishes the resources for molecular identification of the chirality gene and the variation that underpins sinistral and dextral coiling. More generally, the results also show that combining genomic technologies, such as RAD-Seq and high resolution FISH, is a robust approach for mapping key loci in non-model systems.
Fine Mapping of the Pond Snail Left-Right Asymmetry (Chirality) Locus Using RAD-Seq and Fibre-FISH
Han, Jie; Yang, Fengtang; Aboobaker, Aziz; Blaxter, Mark L.; Davison, Angus
2013-01-01
The left-right asymmetry of snails, including the direction of shell coiling, is determined by the delayed effect of a maternal gene on the chiral twist that takes place during early embryonic cell divisions. Yet, despite being a well-established classical problem, the identity of the gene and the means by which left-right asymmetry is established in snails remain unknown. We here demonstrate the power of new genomic approaches for identification of the chirality gene, “D”. First, heterozygous (Dd) pond snails Lymnaea stagnalis were self-fertilised or backcrossed, and the genotype of more than six thousand offspring inferred, either dextral (DD/Dd) or sinistral (dd). Then, twenty of the offspring were used for Restriction-site-Associated DNA Sequencing (RAD-Seq) to identify anonymous molecular markers that are linked to the chirality locus. A local genetic map was constructed by genotyping three flanking markers in over three thousand snails. The three markers lie either side of the chirality locus, with one very tightly linked (<0.1 cM). Finally, bacterial artificial chromosomes (BACs) were isolated that contained the three loci. Fluorescent in situ hybridization (FISH) of pachytene cells showed that the three BACs tightly cluster on the same bivalent chromosome. Fibre-FISH identified a region of greater that ∼0.4 Mb between two BAC clone markers that must contain D. This work therefore establishes the resources for molecular identification of the chirality gene and the variation that underpins sinistral and dextral coiling. More generally, the results also show that combining genomic technologies, such as RAD-Seq and high resolution FISH, is a robust approach for mapping key loci in non-model systems. PMID:23951082
Neurofeedback as a treatment for major depressive disorder--a pilot study.
Peeters, Frenk; Oehlen, Mare; Ronner, Jacco; van Os, Jim; Lousberg, Richel
2014-01-01
There is growing interest in neurofeedback as a treatment for major depressive disorder. Reduction of asymmetry of alpha-activity between left and right prefrontal areas with neurofeedback has been postulated as effective in earlier studies. Unfortunately, methodological shortcomings limit conclusions that can be drawn from these studies. In a pilot-study, we investigated the effectiveness of reduction of asymmetry of alpha-activity with neurofeedback in depressed participants with the use of a stringent methodological approach. Nine participants meeting DSM-IV criteria for major depressive disorder were treated with a maximum of 30 neurofeedback-sessions, aimed at reducing asymmetry of alpha-activity, over a 10-week period. No changes in the use of antidepressants were allowed 6 weeks before and during the intervention. Changes in depressive symptomatology were assessed with the Quick Inventory of Depressive Symptoms, self-report version. We observed response in 1 and remission in 4 out of a total of 9 participants. The effectiveness appeared largest in female participants. The mean asymmetry of alpha-activity decreased significantly over sessions in a quadratic fashion. This decrease was associated with clinical response. This pilot study suggests that neurofeedback aimed at a reduction of frontal asymmetry of alpha-activity may be effective as a treatment for depression. However, this was an open label pilot study. Non-specific effects of the procedure and/or a beneficial natural course may have confounded the results. Randomized controlled trials will have to establish the efficacy of neurofeedback for depression. Nederlands Trial Register NTR1629.
Joliot, M; Tzourio-Mazoyer, N; Mazoyer, B
2016-12-01
Asymmetry in intra-hemispheric intrinsic connectivity, and its association with handedness and hemispheric dominance for language, were investigated in a sample of 290 healthy volunteers enriched in left-handers (52.7%). From the resting-state FMRI data of each participant, we derived an intra-hemispheric intrinsic connectivity asymmetry (HICA) matrix as the difference between the left and right intra-hemispheric matrices of intrinsic correlation computed for each pair of the AICHA atlas ROIs. We defined a similarity measure between the HICA matrices of two individuals as the correlation coefficient of their corresponding elements, and computed for each individual an index of intra-hemispheric intrinsic connectivity asymmetry as the average similarity measure of his HICA matrix to those of the other subjects of the sample (HICAs). Gaussian-mixture modeling of the age-corrected HICAs sample distribution revealed that two types of HICA patterns were present, one (Typical_HICA) including 92.4% of the participants while the other (Atypical_HICA) included only 7.6% of them, mostly left-handers. In addition, we investigated the relationship between asymmetry in intra-hemispheric intrinsic connectivity and language hemispheric dominance, including a potential effect of handedness on this relationship, thanks to an FMRI acquisition during language production from which an hemispheric functional lateralization index for language (HFLI) and a type of hemispheric dominance for language, namely leftward, ambilateral, or rightward, were derived for each individual. There was a significant association between the types of language hemispheric dominance and of intra-hemispheric intrinsic connectivity asymmetry, occurrence of Atypical_HICAs individuals being very high in the group of individuals rightward-lateralized for language (80%), reduced in the ambilateral group (19%) and rare in individuals leftward-lateralized for language (less than 3%). Quantitatively, we found a significant positive linear relationship between the HICAs and HFLI indices, with an effect of handedness on the intercept but not on the slope of this relationship. These findings demonstrate that handedness and hemispheric dominance for language are significantly but independently associated with the asymmetry of intra-hemispheric intrinsic connectivity. These findings suggest that asymmetry in intra-hemispheric connectivity is a variable phenotype shaped in part by hemispheric lateralization for language, but possibly also depending on other lateralized functions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Palmieri-Smith, RM; Lepley, LK
2016-01-01
Background Quadriceps strength deficits are observed clinically following anterior cruciate injury and reconstruction and are often not overcome despite rehabilitation. Given that quadriceps strength may be important for achieving symmetrical joint biomechanics and promoting long-term joint health, determining the magnitude of strength deficits that lead to altered mechanics is critical. Purpose To determine if the magnitude of quadriceps strength asymmetry alters knee and hip biomechanical symmetry, as well as functional performance and self-reported function. Study Design Cross-Sectional study. Methods Seventy-three patients were tested at the time they were cleared for return to activity following ACL reconstruction. Quadriceps strength and activation, scores on the International Knee Documentation Committee form, the hop for distance test, and sagittal plane lower extremity biomechanics were recorded while patients completed a single-legged hop. Results Patients with high and moderate quadriceps strength symmetry had larger central activation ratios as well as greater limb symmetry indices on the hop for distance compared to patients with low quadriceps strength symmetry (P<0.05). Similarly, knee flexion angle and external moment symmetry was higher in the patients with high and moderate quadriceps symmetry compared to those with low symmetry (P<0.05). Quadriceps strength was found to be associated with sagittal plane knee angle and moment symmetry (P<0.05). Conclusion Patients with low quadriceps strength displayed greater movement asymmetries at the knee in the sagittal plane. Quadriceps strength was related to movement asymmetries and functional performance. Rehabilitation following ACL reconstruction needs to focus on maximizing quadriceps strength, which likely will lead to more symmetrical knee biomechanics. PMID:25883169
Palmieri-Smith, Riann M; Lepley, Lindsey K
2015-07-01
Quadriceps strength deficits are observed clinically after anterior cruciate ligament (ACL) injury and reconstruction and are often not overcome despite rehabilitation. Given that quadriceps strength may be important for achieving symmetrical joint biomechanics and promoting long-term joint health, determining the magnitude of strength deficits that lead to altered mechanics is critical. To determine if the magnitude of quadriceps strength asymmetry alters knee and hip biomechanical symmetry as well as functional performance and self-reported function. Cross-sectional study; Level of evidence, 3. A total of 73 patients were tested at the time they were cleared for return to activity after ACL reconstruction. Quadriceps strength and activation, scores on the International Knee Documentation Committee form, the hop for distance test, and sagittal plane lower extremity biomechanics were recorded while patients completed a single-legged hop. Patients with high and moderate quadriceps strength symmetry had larger central activation ratios as well as greater limb symmetry indices on the hop for distance compared with patients with low quadriceps strength symmetry (P < .05). Similarly, knee flexion angle and external moment symmetry were higher in the patients with high and moderate quadriceps symmetry compared with those with low symmetry (P < .05). Quadriceps strength was found to be associated with sagittal plane knee angle and moment symmetry (P < .05). Patients with low quadriceps strength displayed greater movement asymmetries at the knee in the sagittal plane. Quadriceps strength was related to movement asymmetries and functional performance. Rehabilitation after ACL reconstruction needs to focus on maximizing quadriceps strength, which likely will lead to more symmetrical knee biomechanics. © 2015 The Author(s).
The influence of sex hormones on functional cerebral asymmetries in postmenopausal women.
Bayer, Ulrike; Erdmann, Gisela
2008-07-01
Studies investigating changes in functional cerebral asymmetries (FCAs) with hormonal fluctuations during the menstrual cycle in young women have led to controversial hypotheses about an influence of estrogen (E) and/or progesterone (P) on FCAs. Based on methodical, but also on principal problems in deriving conclusions about hormone effects from correlational designs, the present study investigated hemispheric asymmetries in postmenopausal women, who received hormone replacement either with E alone (E group, n=32), an E-P combination (E-P group, n=29) or no hormone substitution (control group, n=31). Speed and accuracy of responses to a word- and a face decision task, both presented laterally by means of the visual half field technique, were assessed. The control group showed the typical pattern of hemispheric asymmetry with more correct responses to verbal stimuli presented in the right visual field (RVF) and to face stimuli presented in the left visual field (LVF). A hormone-effect was demonstrable only for the verbal task, in which the E group showed an enhanced performance of the right hemisphere (LVF). The E-P group showed no significant differences to the control group or the E group. The results suggest a role of E in the modulation of FCAs at least with regard to verbal processing.
Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree
Atkinson, Elizabeth G.; Rogers, Jeffrey; Cheverud, James M.
2016-01-01
Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a population-level trend in length measurements indicating that baboons are genetically predisposed to be asymmetrical, with the right side longer than the left in the anterior cerebrum while the left side is longer than the right posteriorly. We also find a corresponding bias to display a right frontal petalia (overgrowth of the anterior pole of the cerebral cortex on the right side). By quantifying fluctuating asymmetry, we assess canalization of brain features and the susceptibility of the baboon brain to developmental perturbations. We find that features are differentially canalized depending on their ontogenetic timing. We further deduce that development of the two hemispheres is to some degree independent. This independence has important implications for the evolution of cerebral hemispheres and their separate specialization. Asymmetry is a major feature of primate brains and is characteristic of both brain structure and function. PMID:26813679
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, S.J.; Pickering, T.G.; Sos, T.A.
The purpose of this study was to determine the sensitivity, specificity, and clinical usefulness of renography performed in combination with captopril administration (captopril renography) in diagnosing renal artery stenosis. Fifty-five patients with suspected renal artery stenosis underwent renography prior to performance of renal angiography. Renography was performed on two consecutive days using technetium-99m-diethylenetiamine pentaacetic acid (DTPA) as an index of glomerular filtration rate and iodine-131-orthoiodohippurate (OIH) as an index of renal blood flow. Captopril (25 mg orally, crushed) was administered 1 hour before the second study. Renal artery stenosis was defined as a stenosis exceeding 70%. Renographic criteria were thenmore » established, retrospectively, to differentiate renal artery stenosis from essential hypertension based on (1) asymmetry of function and (2) the presence of captopril-induced changes. Renal artery stenosis was detected in 35 of 55 patients (21 with unilateral and 14 with bilateral stenosis). Three criteria were established for diagnosing renal artery stenosis: (1) a percent uptake of DTPA by the affected kidney of less than 40% of the combined bilateral uptake, (2) a delayed time to peak uptake of DTPA, which was more than 5 minutes longer in the affected kidney than in the contralateral kidney, (3) a delayed excretion of DTPA, with retention at 15 minutes, as a fraction of peak activity, more than 20% greater than in the contralateral kidney. The presence of one or more of these criteria was diagnostic of renal artery stenosis, with a sensitivity and specificity of 71% and 75%, respectively before captopril administration, and 94% and 95% after captopril administration. Lesser degrees of asymmetry (i.e., uptake of 40% to 50%) had very poor diagnostic specificity.« less
Physical limits of flow sensing in the left-right organizer
Ferreira, Rita R; Vilfan, Andrej; Jülicher, Frank; Supatto, Willy; Vermot, Julien
2017-01-01
Fluid flows generated by motile cilia are guiding the establishment of the left-right asymmetry of the body in the vertebrate left-right organizer. Competing hypotheses have been proposed: the direction of flow is sensed either through mechanosensation, or via the detection of chemical signals transported in the flow. We investigated the physical limits of flow detection to clarify which mechanisms could be reliably used for symmetry breaking. We integrated parameters describing cilia distribution and orientation obtained in vivo in zebrafish into a multiscale physical study of flow generation and detection. Our results show that the number of immotile cilia is too small to ensure robust left and right determination by mechanosensing, given the large spatial variability of the flow. However, motile cilia could sense their own motion by a yet unknown mechanism. Finally, transport of chemical signals by the flow can provide a simple and reliable mechanism of asymmetry establishment. DOI: http://dx.doi.org/10.7554/eLife.25078.001 PMID:28613157
Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules
Martin, Maud; Veloso, Alexandra; Wu, Jingchao; Katrukha, Eugene A
2018-01-01
Microtubules control different aspects of cell polarization. In cells with a radial microtubule system, a pivotal role in setting up asymmetry is attributed to the relative positioning of the centrosome and the nucleus. Here, we show that centrosome loss had no effect on the ability of endothelial cells to polarize and move in 2D and 3D environments. In contrast, non-centrosomal microtubules stabilized by the microtubule minus-end-binding protein CAMSAP2 were required for directional migration on 2D substrates and for the establishment of polarized cell morphology in soft 3D matrices. CAMSAP2 was also important for persistent endothelial cell sprouting during in vivo zebrafish vessel development. In the absence of CAMSAP2, cell polarization in 3D could be partly rescued by centrosome depletion, indicating that in these conditions the centrosome inhibited cell polarity. We propose that CAMSAP2-protected non-centrosomal microtubules are needed for establishing cell asymmetry by enabling microtubule enrichment in a single-cell protrusion. PMID:29547120
Savopoulos, Priscilla; Lindell, Annukka K
2018-02-15
Over 100 years ago Lombroso [(1876/2006). Criminal man. Durham: Duke University Press] proposed a biological basis for criminality. Based on inspection of criminals' skulls he theorized that an imbalance of the cerebral hemispheres was amongst 18 distinguishing features of the criminal brain. Specifically, criminals were less lateralized than noncriminals. As the advent of neuroscientific techniques makes more fine-grained inspection of differences in brain structure and function possible, we review criminals' and noncriminals' structural, functional, and behavioural lateralization to evaluate the merits of Lombroso's thesis and investigate the evidence for the biological underpinning of criminal behaviour. Although the body of research is presently small, it appears consistent with Lombroso's proposal: criminal psychopaths' brains show atypical structural asymmetries, with reduced right hemisphere grey and white matter volumes, and abnormal interhemispheric connectivity. Functional asymmetries are also atypical, with criminal psychopaths showing a less lateralized cortical response than noncriminals across verbal, visuo-spatial, and emotional tasks. Finally, the incidence of non-right-handedness is higher in criminal than non-criminal populations, consistent with reduced cortical lateralization. Thus despite Lombroso's comparatively primitive and inferential research methods, his conclusion that criminals' lateralization differs from that of noncriminals is borne out by the neuroscientific research. How atypical cortical asymmetries predispose criminal behaviour remains to be determined.
Bieler, Theresa; Magnusson, Stig Peter; Christensen, Helle Elisabeth; Kjaer, Michael; Beyer, Nina
2017-07-01
To investigate between-leg differences in hip and thigh muscle strength and leg extensor power in patients with unilateral hip osteoarthritis. Further, to compare between-leg differences in knee extensor strength and leg extensor power between patients and healthy peers. Seventy-two patients (60-87 years) with radiographic and symptomatic hip osteoarthritis not awaiting hip replacement and 35 healthy peers (63-82 years) were included. Hip and thigh muscle strength and leg extensor power were measured in patients and knee extensor strength and leg extensor power in healthy. The symptomatic extremity in patients was significantly (p < 0.05, paired t-test) weaker compared with the non-symptomatic extremity for five hip muscles (8-17%), knee extensors (11%) and leg extensor power (19%). Healthy older adults had asymmetry in knee extensor strength (6%, p < 0.05) comparable to that found in patients, but had no asymmetry in leg extensor power. Patients had generalized weakening of the affected lower extremity and numerically the largest asymmetry was evident for leg extensor power. In contrast, healthy peers had no asymmetry in leg extensor power. These results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with hip osteoarthritis. Implications for Rehabilitation Even in patients with mild symptoms not awaiting hip replacement a generalized muscle weakening of the symptomatic lower extremity seems to be present. Between-leg differences in leg extensor power (force × velocity) appears to be relatively large (19%) in patients with unilateral hip osteoarthritis in contrast to healthy peers who show no asymmetry. Compared to muscle strength the relationship between functional performance and leg extensor power seems to be stronger, and more strongly related to power of the symptomatic lower extremity. Our results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with mild symptoms not awaiting hip replacement.
Herzig, Daniela A.; Sullivan, Sarah; Lewis, Glyn; Corcoran, Rhiannon; Drake, Richard; Evans, Jonathan; Nutt, David; Mohr, Christine
2015-01-01
Cannabis use has been related to an elevated psychosis risk and attenuated cognitive functioning. Cannabis-related cognitive impairments are also observed in populations along the psychosis dimension. We here investigated whether a potential behavioral marker of the psychosis dimension (attenuated functional hemispheric asymmetry) is even further attenuated in individuals using cannabis (CU) vs those not using cannabis (nCU). We tested 29 patients with first-episode psychosis (FEP; 11 CU) and 90 healthy controls (38 CU) on lateralized lexical decisions assessing left-hemisphere language dominance. In patients, psychotic symptoms were assessed by Positive & Negative Symptom Scale (PANSS). In controls, self-reported schizotypy was assessed (The Oxford-Liverpool Inventory of Feelings and Experiences: O-LIFE). Results indicated that nCU FEP patients had a relative reduced hemispheric asymmetry, as did controls with increasing cognitive disorganization (CogDis) scores, in particular when belonging to the group of nCU controls. Positive, disorganized and negative PANSS scores in patients and negative and positive schizotypy in controls were unrelated to hemispheric asymmetry. These findings suggest that cannabis use potentially balances rather than exacerbates uncommon hemispheric laterality patterns. Moreover, in healthy populations, the potential stabilization of typical hemispheric asymmetry in CU might be most relevant to individuals with elevated CogDis. We discuss the potential beneficial and harmful effects of cannabis use along the psychosis dimension together with propositions for future studies that should account for the mediating role of additional substances (eg nicotine), cannabis composition (eg cannabidiol content), and individual differences (eg physical health, or absence of significant polysubstance use). PMID:25543118
Keller, Simon S.; Roberts, Neil; Hopkins, William
2009-01-01
The frontal operculum—classically considered to be Broca's area—has special significance and interest in clinical, cognitive, and comparative neuroscience given its role in spoken language and the long-held assumption that structural asymmetry of this region of cortex may be related to functional lateralization of human language. We performed a detailed morphological and morphometric analysis of this area of the brain in humans and chimpanzees using identical image acquisition parameters, image analysis techniques, and consistent anatomical boundaries in both species. We report great inter-individual variability of the sulcal contours defining the operculum in both species, particularly discontinuity of the inferior frontal sulcus in humans and bifurcation of the inferior precentral sulcus in chimpanzees. There was no evidence of population-based asymmetry of the frontal opercular gray matter in humans or chimpanzees. The diagonal sulcus was only identified in humans, and its presence was significantly (F = 12.782, p < 0.001) associated with total volume of the ipsilateral operculum. The findings presented here suggest that there is no population-based interhemispheric macroscopic asymmetry of Broca's area in humans or Broca's area homolog in chimpanzees. However, given that previous studies have reported asymmetry in the cytoarchitectonic fields considered to represent Broca's area—which is important given that cytoarchitectonic boundaries are more closely related to the regional functional properties of cortex relative to sulcal landmarks—it may be that the gross morphology of the frontal operculum is not a reliable indicator of Broca's area per se. PMID:19923293
Lepton asymmetry rate from quantum field theory: NLO in the hierarchical limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bödeker, D.; Sangel, M., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: msangel@physik.uni-bielefeld.de
2017-06-01
The rates for generating a matter-antimatter asymmetry in extensions of the Standard Model (SM) containing right-handed neutrinos are the most interesting and least trivial co\\-efficients in the rate equations for baryogenesis through thermal leptogenesis. We obtain a relation of these rates to finite-temperature real-time correlation functions, similar to the Kubo formulas for transport coefficients. Then we consider the case of hierarchical masses for the sterile neutrinos. At leading order in their Yukawa couplings we find a simple master formula which relates the rates to a single finite temperature three-point spectral function. It is valid to all orders in g ,more » where g denotes a SM gauge or quark Yukawa coupling. We use it to compute the rate for generating a matter-antimatter asymmetry at next-to-leading order in g in the non-relativistic regime. The corrections are of order g {sup 2}, and they amount to 4% or less.« less
Adare, A.
2016-03-23
In this article, we present midrapidity measurements from the PHENIX experiment of large parity-violating single-spin asymmetries of high transverse momentum electrons and positrons from W ±/Z decays, produced in longitudinally polarized p+p collisions at center of mass energies of √s=500 and 510 GeV. These asymmetries allow direct access to the antiquark polarized parton distribution functions due to the parity-violating nature of the W-boson coupling to quarks and antiquarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb -1, which exceeds previous PHENIX published results by a factor of moremore » than 27. In addition, these high Q 2 data probe the parton structure of the proton at W mass scale and provide an important addition to our understanding of the antiquark parton helicity distribution functions at an intermediate Bjorken x value of roughly M W/√s=0.16.« less
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, H.-J.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Voas, B.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration
2016-03-01
We present midrapidity measurements from the PHENIX experiment of large parity-violating single-spin asymmetries of high transverse momentum electrons and positrons from W±/Z decays, produced in longitudinally polarized p +p collisions at center of mass energies of √{s }=500 and 510 GeV. These asymmetries allow direct access to the antiquark polarized parton distribution functions due to the parity-violating nature of the W -boson coupling to quarks and antiquarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb-1 , which exceeds previous PHENIX published results by a factor of more than 27. These high Q2 data probe the parton structure of the proton at W mass scale and provide an important addition to our understanding of the antiquark parton helicity distribution functions at an intermediate Bjorken x value of roughly MW/√{s }=0.16 .
Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling
Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Özel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A
2014-01-01
Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001 PMID:24755286
Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets.
Guadalupe, Tulio; Zwiers, Marcel P; Teumer, Alexander; Wittfeld, Katharina; Vasquez, Alejandro Arias; Hoogman, Martine; Hagoort, Peter; Fernandez, Guillen; Buitelaar, Jan; Hegenscheid, Katrin; Völzke, Henry; Franke, Barbara; Fisher, Simon E; Grabe, Hans J; Francks, Clyde
2014-07-01
Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10(-8) ). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries. Copyright © 2013 Wiley Periodicals, Inc.
Lindell, Annukka K; Hudry, Kristelle
2013-09-01
Language is typically a highly lateralized function, with atypically reduced or reversed lateralization linked to language impairments. Given the diagnostic and prognostic role of impaired language for autism spectrum disorders (ASDs), this paper reviews the growing body of literature that examines patterns of lateralization in individuals with ASDs. Including research from structural and functional imaging paradigms, and behavioral evidence from investigations of handedness, the review confirms that atypical lateralization is common in people with ASDs. The evidence indicates reduced structural asymmetry in fronto-temporal language regions, attenuated functional activation in response to language and pre-linguistic stimuli, and more ambiguous (mixed) hand preferences, in individuals with ASDs. Critically, the evidence emphasizes an intimate relationship between atypical lateralization and language impairment, with more atypical asymmetries linked to more substantive language impairment. Such evidence highlights opportunities for the identification of structural and functional biomarkers of ASDs, affording the potential for earlier diagnosis and intervention implementation.
Factorization breaking of A d T for polarized deuteron targets in a relativistic framework
Jeschonnek, Sabine; Van Orden, J. W.
2017-04-17
We discuss the possible factorization of the tensor asymmetrymore » $$A^T_d$$ measured for polarized deuteron targets within a relativistic framework. We define a reduced asymmetry and find that factorization holds only in plane wave impulse approximation and if $p$-waves are neglected. Our numerical results show a strong factorization breaking once final state interactions are included. We also compare the $d$-wave content of the wave functions with the size of the factored, reduced asymmetry and find that there is no systematic relationship of this quantity to the d-wave probability of the various wave functions.« less
On the characteristics of caloric nystagmus in healthy persons. [in response to caloric stimuli
NASA Technical Reports Server (NTRS)
Bodo, D.; Baranova, V. P.; Matsnev, E. I.; Yakovleva, M. Y.
1974-01-01
The asymmetry of reflex activity of labyrinths and directional preponderance of the reaction were studied on healthy persons subjected to caloric tests. Calorization with hot water was accompanied by less pronounced reactions in all parameters of nystagmus than analogous indices at cold water stimulation. The symmetry of labyrinth function shifted to the right in individuals with greater activity of the left central vestibular formations, analogous to right handedness behavior. It is concluded that asymmetry of reflex nystagmus in healthy persons can be due to a certain preponderance of functional activity in structures of the left hemisphere of the brain.
Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting
NASA Astrophysics Data System (ADS)
Gamberg, Leonard
2015-04-01
We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.
Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting
NASA Astrophysics Data System (ADS)
Gamberg, Leonard
2015-10-01
We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.
NASA Technical Reports Server (NTRS)
Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.
2014-01-01
New multi-roll coronagraphic images of the HD181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/ deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain.We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass greater than 1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, Christopher C.; Kuchner, Marc J.; Schneider, Glenn
New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for themore » disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.« less
NASA Astrophysics Data System (ADS)
Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.
2014-07-01
New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
Lower limb strength in professional soccer players: profile, asymmetry, and training age.
Fousekis, Konstantinos; Tsepis, Elias; Vagenas, George
2010-01-01
Kicking and cutting skills in soccer are clearly unilateral, require asymmetrical motor patterns and lead to the development of asymmetrical adaptations in the musculoskeletal function of the lower limbs. Assuming that these adaptations constitute a chronicity-dependent process, this study examined the effects of professional training age (PTA) on the composite strength profile of the knee and ankle joint in soccer players. One hundred soccer players (n=100) with short (5-7 years), intermediate (8-10 years) and long (>11 years) PTA were tested bilaterally for isokinetic concentric and eccentric strength of the knee and ankle muscles. Knee flexion-extension was tested concentrically at 60°, 180° and 300 °/sec and eccentrically at 60° and 180 °/sec. Ankle dorsal and plantar flexions were tested at 60 °/sec for both the concentric and eccentric mode of action. Bilaterally averaged muscle strength [(R+L)/2] increased significantly from short training age to intermediate and stabilized afterwards. These strength adaptations were mainly observed at the concentric function of knee extensors at 60°/sec (p = 0. 023), knee flexors at 60°/sec (p = 0.042) and 180°/sec (p = 0.036), and ankle plantar flexors at 60o/sec (p = 0.044). A linear trend of increase in isokinetic strength with PTA level was observed for the eccentric strength of knee flexors at 60°/sec (p = 0.02) and 180°/sec (p = 0.03). Directional (R/L) asymmetries decreased with PTA, with this being mainly expressed in the concentric function of knee flexors at 180°/sec (p = 0.04) and at 300 °/sec (p = 0.03). These findings confirm the hypothesis of asymmetry in the strength adaptations that take place at the knee and ankle joint of soccer players mainly along with short and intermediate PTA. Players with a longer PTA seem to adopt a more balanced use of their lower extremities to cope with previously developed musculoskeletal asymmetries and possibly reduce injury risk. This has certain implications regarding proper training and injury prevention in relation to professional experience in soccer. Key pointsMuscle strength increased from the low (5-7 years) to the intermediate professional training age (8-10 years) and stabilized thereafter.Soccer practicing and competition at the professional level induces critical strength adaptations (asymmetries) regarding the function of the knee and ankle musculature.Soccer players with long professional training age showed a tendency for lower isokinetic strength asymmetries than players with intermediate and short professional training age.
Local nematic susceptibility in stressed BaFe2As2 from NMR electric field gradient measurements
NASA Astrophysics Data System (ADS)
Kissikov, T.; Sarkar, R.; Lawson, M.; Bush, B. T.; Timmons, E. I.; Tanatar, M. A.; Prozorov, R.; Bud'ko, S. L.; Canfield, P. C.; Fernandes, R. M.; Goh, W. F.; Pickett, W. E.; Curro, N. J.
2017-12-01
The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe2As2 . We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. Our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.
Live Donor Renal Anatomic Asymmetry and Posttransplant Renal Function.
Tanriover, Bekir; Fernandez, Sonalis; Campenot, Eric S; Newhouse, Jeffrey H; Oyfe, Irina; Mohan, Prince; Sandikci, Burhaneddin; Radhakrishnan, Jai; Wexler, Jennifer J; Carroll, Maureen A; Sharif, Sairah; Cohen, David J; Ratner, Lloyd E; Hardy, Mark A
2015-08-01
Relationship between live donor renal anatomic asymmetry and posttransplant recipient function has not been studied extensively. We analyzed 96 live kidney donors, who had anatomical asymmetry (>10% renal length and/or volume difference calculated from computerized tomography angiograms) and their matching recipients. Split function differences (SFD) were quantified with technetium-dimercaptosuccinic acid renography. Implantation biopsies at time 0 were semiquantitatively scored. A comprehensive model using donor renal volume adjusted to recipient weight (Vol/Wgt), SFD, and biopsy score was used to predict recipient estimated glomerular filtration rate (eGFR) at 1 year. Primary analysis consisted of a logistic regression model of outcome (odds of developing eGFR>60 mL/min/1.73 m(2) at 1 year), a linear regression model of outcome (predicting recipient eGFR at one-year, using the chronic kidney disease-epidemiology collaboration formula), and a Monte Carlo simulation based on the linear regression model (N=10,000 iterations). In the study cohort, the mean Vol/Wgt and eGFR at 1 year were 2.04 mL/kg and 60.4 mL/min/1.73 m(2), respectively. Volume and split ratios between 2 donor kidneys were strongly correlated (r = 0.79, P < 0.001). The biopsy scores among SFD categories (<5%, 5%-10%, >10%) were not different (P = 0.190). On multivariate models, only Vol/Wgt was significantly associated with higher odds of having eGFR > 60 mL/min/1.73 m (odds ratio, 8.94, 95% CI 2.47-32.25, P = 0.001) and had a strong discriminatory power in predicting the risk of eGFR less than 60 mL/min/1.73 m(2) at 1 year [receiver operating curve (ROC curve), 0.78, 95% CI, 0.68-0.89]. In the presence of donor renal anatomic asymmetry, Vol/Wgt appears to be a major determinant of recipient renal function at 1 year after transplantation. Renography can be replaced with CT volume calculation in estimating split renal function.
Live Donor Renal Anatomic Asymmetry and Post-Transplant Renal Function
Tanriover, Bekir; Fernandez, Sonalis; Campenot, Eric S.; Newhouse, Jeffrey H.; Oyfe, Irina; Mohan, Prince; Sandikci, Burhaneddin; Radhakrishnan, Jai; Wexler, Jennifer J.; Carroll, Maureen A.; Sharif, Sairah; Cohen, David J.; Ratner, Lloyd E.; Hardy, Mark A.
2014-01-01
Background Relationship between live donor renal anatomic asymmetry and post-transplant recipient function has not been studied extensively. Methods We analyzed 96 live-kidney donors, who had anatomical asymmetry (>10% renal length and/or volume difference calculated from CT angiograms) and their matching recipients. Split function differences (SFD) were quantified with 99mTc-DMSA renography. Implantation biopsies at time-zero were semi-quantitatively scored. A comprehensive model utilizing donor renal volume adjusted to recipient weight (Vol/Wgt), SFD, and biopsy score was used to predict recipient estimated glomerular filtration rate (eGFR) at one-year. Primary analysis consisted of a logistic regression model of outcome (odds of developing eGFR>60ml/min/1.73 m2 at one-year), a linear regression model of outcome (predicting recipient eGFR at one-year, using the CKD-EPI formula), and a Monte Carlo simulation based on the linear regression model (N=10,000 iterations). Results In the study cohort, the mean Vol/Wgt and eGFR at one-year were 2.04 ml/kg and 60.4 ml/min/1.73m2, respectively. Volume and split ratios between two donor kidneys were strongly correlated (r=0.79, p-value<0.001). The biopsy scores among SFD categories (<5%, 5–10%, >10%) were not different (p=0.190). On multivariate models, only Vol/Wgt was significantly associated with higher odds of having eGFR>60ml/min/1.73 m2 (OR=8.94, 95% CI 2.47–32.25, p=0.001) and had a strong discriminatory power in predicting the risk of eGFR<60ml/min/1.73m2 at one-year (ROC curve=0.78, 95% CI 0.68–0.89). Conclusion In the presence of donor renal anatomic asymmetry, Vol/Wgt appears to be a major determinant of recipient renal function at one-year post-transplantation. Renography can be replaced with CT volume calculation in estimating split renal function. PMID:25719258
Lower-extremity strength ratios of professional soccer players according to field position.
Ruas, Cassio V; Minozzo, Felipe; Pinto, Matheus D; Brown, Lee E; Pinto, Ronei S
2015-05-01
Previous investigators have proposed that knee strength, hamstrings to quadriceps, and side-to-side asymmetries may vary according to soccer field positions. However, different results have been found in these variables, and a generalization of this topic could lead to data misinterpretation by coaches and soccer clubs. Thus, the aim of this study was to measure knee strength and asymmetry in soccer players across different field positions. One hundred and two male professional soccer players performed maximal concentric and eccentric isokinetic knee actions on the preferred and nonpreferred legs at a velocity of 60° · s. Players were divided into their field positions for analysis: goalkeepers, side backs, central backs, central defender midfielders, central attacking midfielders, and forwards. Results demonstrated that only goalkeepers (GK) differed from most other field positions on players' characteristics, and concentric peak torque across muscles. Although all players presented functional ratios of the preferred (0.79 ± 0.14) and nonpreferred (0.75 ± 0.13) legs below accepted normative values, there were no differences between positions for conventional or functional strength ratios or side-to-side asymmetry. The same comparisons were made only between field players, without inclusion of the GK, and no differences were found between positions. Therefore, the hamstrings to quadriceps and side-to-side asymmetries found here may reflect knee strength functional balance required for soccer skills performance and game demands across field positions. These results also suggest that isokinetic strength profiles should be considered differently in GK compared with other field positions due to their specific physiological and training characteristics.
Study of Double Spin Asymmetries in Inclusive ep Scattering at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Hoyoung
2014-08-01
The spin structure of the proton has been investigated in the high Bjorken x and low momentum transfer Q 2 region. We used Jefferson Lab's polarized electron beam, a polarized target, and a spectrometer to get both the parallel and perpendicular spin asymmetries Apar and Aperp. These asymmetries produced the physics asymmetries A_1 and A_2 and spin structure functions g_1 and g_2. We found Q 2 dependences of the asymmetries at resonance region and higher-twist effects. Our result increases the available data on the proton spin structure, especially at resonance region with low Q 2. Moreover, A_2 and g_2 datamore » show clear Q 2 evolution, comparing with RSS and SANE-BETA. Negative resonance in A_2 data needs to be examined by theory. It can be an indication of very negative transverse-longitudinal interference contribution at W ~ 1.3 GeV. Higher twist effect appears at the low Q 2 of 1.9 GeV 2, although it is less significant than lower Q 2 data of RSS. Twist03 matrix element d_2 was calculated using our asymmetry fits evaluation at Q 2 – 1.9 GeV 2. D-bar_2 = -0.0087±0.0014 was obtained by integrating 0.47 ≤ x ≤ 0.87.« less
SANE's Measurement of the Proton's Virtual Photon Spin Asymmetry, A p 1, at Large Bjorken x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulholland, Jonathan
2012-05-01
The experiment SANE (Spin Asymmetries of the Nucleon Experiment) measured inclusive double polarization electron asymmetries on a proton target at the Continuous Electron Beam Accelerator Facility at the Thomas Jefferson National Laboratory in Newport News Virgina. Polarized electrons were scattered from a solid 14NH 3 polarized target provided by the University of Virginia target group. Measurements were taken with the target polarization oriented at 80 degrees and 180 degrees relative to the beam direction, and beam energies of 4.7 and 5.9 GeV were used. Scattered electrons were detected by a multi-component novel non-magnetic detector package constructed for this experiment. Asymmetriesmore » measured at the two target orientations allow for the extraction of the virtual Compton asymmetries A 1 p and A 2 p as well as the spin structure functions g 1 p and g 2 p. This work addresses the extraction of the virtual Compton asymmetry A 1 p in the deep inelastic regime. The analysis uses data in the kinematic range from Bjorken x of 0.30 to 0.55, separated into four Q 2 bins from 1.9 to 4.7 GeV 2.« less
Chilly dark sectors and asymmetric reheating
NASA Astrophysics Data System (ADS)
Adshead, Peter; Cui, Yanou; Shelton, Jessie
2016-06-01
In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.
Wehr, Thomas
2008-01-01
In two experiments, the effect of category salience on retrieval experience was investigated. In Experiment 1, participants rated typicality or concreteness of personality traits that differed in stereotype reference (i.e., consistent, inconsistent, and neutral in relation to the age stereotype). More remember judgments were given for consistent and inconsistent traits in contrast to neutral traits, thereby indicating a figure/ground asymmetry. In Experiment 2, neutral traits were excluded and a classical figure/ground phenomenon was demonstrated for the retrieval experience of traits (i.e., reversibility of an ambiguous figure after typicality and untypicality ratings). Altogether, the results suggest that metacognitive trait representations depend on principles of figure/ground asymmetries rather than on functional principles of social information processing.
NASA Technical Reports Server (NTRS)
Hopkins, William D.; Washburn, David A.; Berke, Leslie; Williams, Mary
1992-01-01
Hand preferences were recorded for 35 rhesus monkeys (Macaca mulatta) as they manipulated a joystick in response to 2 computerized tasks. These preferences were then used to contrast 8 left- and 10 right-handed subjects on performance measures of hand skill. Individual hand preferences were found, but no significant population asymmetry was observed across the sample. However, the performance data reveal substantial benefits of right-handedness for joystick manipulation, as this group of monkeys mastered the 2 psychomotor tasks significantly faster than did their left-handed counterparts. The data support earlier reports of a right-hand advantage for joystick manipulation and also support the importance of distinguishing between hand preference and manual performance in research on functional asymmetries.
Measurement of the beam asymmetry Σ for π0 and η photoproduction on the proton at Eγ=9 GeV
NASA Astrophysics Data System (ADS)
Al Ghoul, H.; Anassontzis, E. G.; Austregesilo, A.; Barbosa, F.; Barnes, A.; Beattie, T. D.; Bennett, D. W.; Berdnikov, V. V.; Black, T.; Boeglin, W.; Briscoe, W. J.; Brooks, W. K.; Cannon, B. E.; Chernyshov, O.; Chudakov, E.; Crede, V.; Dalton, M. M.; Deur, A.; Dobbs, S.; Dolgolenko, A.; Dugger, M.; Dzhygadlo, R.; Egiyan, H.; Eugenio, P.; Fanelli, C.; Foda, A. M.; Frye, J.; Furletov, S.; Gan, L.; Gasparian, A.; Gerasimov, A.; Gevorgyan, N.; Goetzen, K.; Goryachev, V. S.; Guo, L.; Hakobyan, H.; Hardin, J.; Henderson, A.; Huber, G. M.; Ireland, D. G.; Ito, M. M.; Jarvis, N. S.; Jones, R. T.; Kakoyan, V.; Kamel, M.; Klein, F. J.; Kliemt, R.; Kourkoumeli, C.; Kuleshov, S.; Kuznetsov, I.; Lara, M.; Larin, I.; Lawrence, D.; Levine, W. I.; Livingston, K.; Lolos, G. J.; Lyubovitskij, V.; Mack, D.; Mattione, P. T.; Matveev, V.; McCaughan, M.; McCracken, M.; McGinley, W.; McIntyre, J.; Mendez, R.; Meyer, C. A.; Miskimen, R.; Mitchell, R. E.; Mokaya, F.; Moriya, K.; Nerling, F.; Nigmatkulov, G.; Ochoa, N.; Ostrovidov, A. I.; Papandreou, Z.; Patsyuk, M.; Pedroni, R.; Pennington, M. R.; Pentchev, L.; Peters, K. J.; Pooser, E.; Pratt, B.; Qiang, Y.; Reinhold, J.; Ritchie, B. G.; Robison, L.; Romanov, D.; Salgado, C.; Schumacher, R. A.; Schwarz, C.; Schwiening, J.; Semenov, A. Yu.; Semenova, I. A.; Seth, K. K.; Shepherd, M. R.; Smith, E. S.; Sober, D. I.; Somov, A.; Somov, S.; Soto, O.; Sparks, N.; Staib, M. J.; Stevens, J. R.; Strakovsky, I. I.; Subedi, A.; Tarasov, V.; Taylor, S.; Teymurazyan, A.; Tolstukhin, I.; Tomaradze, A.; Toro, A.; Tsaris, A.; Vasileiadis, G.; Vega, I.; Walford, N. K.; Werthmüller, D.; Whitlatch, T.; Williams, M.; Wolin, E.; Xiao, T.; Zarling, J.; Zhang, Z.; Zihlmann, B.; Mathieu, V.; Nys, J.; GlueX Collaboration
2017-04-01
We report measurements of the photon beam asymmetry Σ for the reactions γ ⃗p →p π0 and γ ⃗p →p η from the GlueX experiment using a 9 GeV linearly polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous π0 measurements and are the first η measurements in this energy regime. The results are compared with theoretical predictions based on t -channel, quasiparticle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.
Watson, Jason; Hatamleh, Muhanad; Alwahadni, Ahed; Srinivasan, Dilip
2014-05-01
Patients with significant craniofacial asymmetry may have functional problems associated with their occlusion and aesthetic concerns related to the imbalance in soft and hard tissue profiles. This report details a case of facial asymmetry secondary to left mandible angle deficiency due to undergoing previous radiotherapy. We describe the correction of the bony deformity using computer aided design/computer aided manufacturing custom-made titanium onlay using novel direct metal laser sintering. The direct metal laser sintering onlay proved a very accurate operative fit and showed a good aesthetic correction of the bony defect with no reported complications postoperatively. It is a useful low-morbidity technique, and there is no resorption or associated donor-site complications.
Comprehension Asymmetries in Language Acquisition: A Test for Relativized Minimality
ERIC Educational Resources Information Center
Varlokosta, Spyridoula; Nerantzini, Michaela; Papadopoulou, Despina
2015-01-01
Cross-linguistic studies have shown that typically developing children have difficulties comprehending non-canonical structures. These findings have been interpreted within the Relativized Minimality (RM) approach, according to which local relations cannot be established between two terms of a dependency if an intervening element possesses similar…
Afferent Drive Elicits Ongoing Pain in a Model of Advanced Osteoarthritis
Okun, Alec; Liu, Ping; Davis, Peg; Ren, Jiyang; Remeniuk, Bethany; Brion, Triza; Ossipov, Michael H.; Xie, Jennifer; Dussor, Gregory O.; King, Tamara; Porreca, Frank
2012-01-01
Osteoarthritis (OA) is a chronic condition characterized by pain during joint movement. Additionally, patients with advanced disease experience pain at rest (i.e., ongoing pain)that is generally resistant to non-steroidal anti-inflammatory drugs (NSAIDs). Injection of monosodium iodoacetate (MIA) into the intra-articular space of the rodent knee is a well-established model of OA that elicits weight-bearing asymmetry and referred tactile and thermal hypersensitivity. Whether ongoing pain is present in this model is unknown. Additionally, the possible relationship of ongoing pain to MIA dose is not known. MIA produced weight asymmetry, joint osteolysis, and cartilage erosion across a range of doses (1, 3, and 4.8 mg). However, only rats treated with the highest dose of MIA showed conditioned place preference to a context paired with intra-articular lidocaine, indicating relief from ongoing pain. Diclofenac blocked the MIA-induced weight asymmetry but failed to block MIA-induced ongoing pain. Systemic AMG9810, a TRPV1 antagonist, effectively blocked thermal hypersensitivity, but failed to block high dose MIA-induced weight asymmetry or ongoing pain. Additionally, systemic or intra-articular HC030031, a TRPA1 antagonist, failed to block high dose MIA-induced weight asymmetry or ongoing pain. Our studies suggest that a high dose of intra-articular MIA induces ongoing pain originating from the site of injury that is dependent on afferent fiber activity but apparently independent of TRPV1 or TRPA1 activation. Identification of mechanisms driving ongoing pain may enable development of improved treatments for patients with severe OA pain and diminish the need for joint replacement surgery. PMID:22387095
Nonconservation of lepton current and asymmetry of relic neutrinos
NASA Astrophysics Data System (ADS)
Dvornikov, M. S.; Semikoz, V. B.
2017-05-01
The neutrino asymmetry, {n_v} - {n_{\\bar v}} , in the plasma of the early Universe generated both before and after the electroweak phase transition (EWPT) is calculated. It is well known that in the Standard Model the leptogenesis before the EWPT, in particular, for neutrinos, owes to the Abelian anomaly in a massless hypercharge field. At the same time, the generation of neutrino asymmetry in the Higgs phase after the EWPT has not been considered previously due to the absence of any quantum anomaly in an external electromagnetic field for such electroneutral particles as neutrinos, in contrast to the Adler anomaly for charged left- and right-handed massless electrons in the same electromagnetic field. Using the Boltzmann equation for neutrinos modified to include the Berry curvature term in momentum space, we establish a violation of the macroscopic neutrino current in the plasma after the EWPT and exactly reproduce the non-conservation of the lepton current in the symmetric phase before the EWPT that owes to the contribution of the triangle anomaly in an external hypercharge field but already without computing the corresponding Feynman diagrams. We apply the new kinetic equation to calculate the neutrino asymmetry by taking into account the Berry curvature and the electroweak interaction with plasma particles in the Higgs phase, including that after the neutrino decoupling in the absence of their collisions in the plasma. We find that this asymmetry is too small for observations. Thus, a difference between the relic neutrino and antineutrino densities, if it exists, must appear already in the symmetric phase of the early Universe before the EWPT.
Generation of the relic neutrino asymmetry in a hot plasma of the early universe
NASA Astrophysics Data System (ADS)
Semikoz, Victor B.; Dvornikov, Maxim
The neutrino asymmetry in the early universe plasma, nν ‑ nν¯, is calculated both before and after the electroweak phase transition (EWPT). In the Standard Model, before EWPT, the leptogenesis is well known to be driven by the abelian anomaly in a massless hypercharge field. The generation of the neutrino asymmetry in the Higgs phase after EWPT, in its turn, has not been considered previously because of the absence of any quantum anomaly in an external electromagnetic field for such electroneutral particles as neutrino, unlike the Adler-Bell-Jackiw anomaly for charged left and right polarized massless electrons in the same electromagnetic field. Using the neutrino Boltzmann equation, modified by the Berry curvature term in the momentum space, we establish the violation of the macroscopic neutrino current in plasma after EWPT and exactly reproduce the nonconservation of the lepton current in the symmetric phase before EWPT arising in quantum field theory due to the nonzero lepton hypercharge and corresponding triangle anomaly in an external hypercharge field. In the last case, the nonconservation of the lepton current is derived through the kinetic approach without a computation of corresponding Feynman diagrams. Then, the new kinetic equation is applied for the calculation of the neutrino asymmetry accounting for the Berry curvature and the electroweak interaction with background fermions in the Higgs phase. Such an interaction generates a neutrino asymmetry through the electroweak coupling of neutrino currents with electromagnetic fields in plasma, which is ˜ GF2. It turns out that this effect is especially efficient for maximally helical magnetic fields.
Stovall, Bradley A; Kumar, Shrawan
2010-11-01
The objective of this review is to establish the current state of knowledge on the reliability of clinical assessment of asymmetry in the lumbar spine and pelvis. To search the literature, the authors consulted the databases of MEDLINE, CINAHL, AMED, MANTIS, Academic Search Complete, and Web of Knowledge using different combinations of the following keywords: palpation, asymmetry, inter or intraexaminer reliability, tissue texture, assessment, and anatomic landmark. Of the 23 studies identified, 14 did not meet the inclusion criteria and were excluded. The quality and methods of studies investigating the reliability of bony anatomic landmark asymmetry assessment are variable. The κ statistic ranges without training for interexaminer reliability were as follows: anterior superior iliac spine (ASIS), -0.01 to 0.19; posterior superior iliac spine (PSIS), 0.04 to 0.15; inferior lateral angle, transverse plane (ILA-A/P), -0.03 to 0.11; inferior lateral angles, coronal plane (ILA-S/I), -0.01 to 0.08; sacral sulcus (SS), -0.4 to 0.37; lumbar spine transverse processes L1 through L5, 0.04 to 0.17. The corresponding ranges for intraexaminer reliability were higher for all associated landmarks: ASIS, 0.19 to 0.4; PSIS, 0.13 to 0.49; ILA-A/P, 0.1 to 0.2; ILA-S/I, 0.03 to 0.21; SS, 0.24 to 0.28; lumbar spine transverse processes L1 through L5, not applicable. Further research is needed to better understand the reliability of asymmetry assessment methods in manipulative medicine.
Stovall, Bradley A.; Kumar, Shrawan
2011-01-01
The objective of this review is to establish the current state of knowledge on the reliability of clinical assessment of asymmetry in the lumbar spine and pelvis. To search the literature, the authors consulted the databases of MEDLINE, CINAHL, AMED, MANTIS, Academic Search Complete, and Web of Knowledge using different combinations of the following keywords: palpation, asymmetry, inter- or intraex-aminer reliability, tissue texture, assessment, and anatomic landmark. Of the 23 studies identified, 14 did not meet the inclusion criteria and were excluded. The quality and methods of studies investigating the reliability of bony anatomic landmark asymmetry assessment are variable. The κ statistic ranges without training for interexaminer reliability were as follows: anterior superior iliac spine (ASIS), −0.01 to 0.19; posterior superior iliac spine (PSIS), 0.04 to 0.15; inferior lateral angle, transverse plane (ILA-A/P), −0.03 to 0.11; inferior lateral angles, coronal plane (ILA-S/I), −0.01 to 0.08; sacral sulcus (SS), −0.4 to 0.37; lumbar spine transverse processes L1 through L5, 0.04 to 0.17. The corresponding ranges for intraexaminer reliability were higher for all associated landmarks: ASIS, 0.19 to 0.4; PSIS, 0.13 to 0.49; ILA-A/P, 0.1 to 0.2; ILA-S/I, 0.03 to 0.21; SS, 0.24 to 0.28; lumbar spine transverse processes L1 through L5, not applicable. Further research is needed to better understand the reliability of asymmetry assessment methods in manipulative medicine. PMID:21135198
The determination factors of left-right asymmetry disorders- a short review.
Catana, Andreea; Apostu, Adina Patricia
2017-01-01
Laterality defects in humans, situs inversus and heterotaxy, are rare disorders, with an incidence of 1:8000 to 1:10 000 in the general population, and a multifactorial etiology. It has been proved that 1.44/10 000 of all cardiac problems are associated with malformations of left-right asymmetry and heterotaxy accounts for 3% of all congenital heart defects. It is considered that defects of situs appear due to genetic and environmental factors. Also, there is evidence that the ciliopathies (defects of structure or function) are involved in development abnormalities. Over 100 genes have been reported to be involved in left-right patterning in model organisms, but only a few are likely to candidate for left-right asymmetry defects in humans. Left-right asymmetry disorders are genetically heterogeneous and have variable manifestations (from asymptomatic to serious clinical problems). The discovery of the right mechanism of left-right development will help explain the clinical complexity and may contribute to a therapy of these disorders.
Chatrchyan, Serguei
2014-04-30
The t t-bar charge asymmetry in proton-proton collisions atmore » $$\\sqrt{s} =$$ 7 TeV is measured using the dilepton decay channel (ee, e mu, or mu mu). The data correspond to a total integrated luminosity of 5.0 inverse femtobarns, collected by the CMS experiment at the LHC. The t t-bar and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be Ac = -0.010 +/- 0.017 (stat.) +/- 0.008 (syst.) and A c lep = 0.009 +/- 0.010 (stat.) +/- 0.006 (syst). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the t t-bar system. All measurements are consistent with the expectations of the standard model.« less
Forsberg, Björn; Ulander, Johan; Kjellander, Roland
2005-02-08
The effects of ionic size asymmetry on long-range electrostatic interactions in electrolyte solutions are investigated within the primitive model. Using the formalism of dressed ion theory we analyze correlation functions from Monte Carlo simulations and the hypernetted chain approximation for size asymmetric 1:1 electrolytes. We obtain decay lengths of the screened Coulomb potential, effective charges of ions, and effective permittivity of the solution. It is found that the variation of these quantities with the degree of size asymmetry depends in a quite intricate manner on the interplay between the electrostatic coupling and excluded volume effects. In most cases the magnitude of the effective charge of the small ion species is larger than that of the large species; the difference increases with increasing size asymmetry. The effective charges of both species are larger (in absolute value) than the bare ionic charge, except for high asymmetry where the effective charge of the large ions can become smaller than the bare charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solano Salinas, Carlos Javier
Using data from fprmilab fixed-target experiment E791, we have measmed for the first time particle/antiparticle production asymmetries formore » $$\\Lambda^0 \\Xi^-$$ and $$\\Omega^-$$ hyperons in $$\\pi^-$$nucleon interactions at 500 GeV /c as joint functions of $$x_F$$ and $$p^2_{\\tau}$$ over the ranges $$-0.12 \\le x_F \\le 0.12$$ and $$0 \\le p^2_{\\tau} \\le 4 (GeV/c)^2$$. There is now direct evidence of a basic asymmetry, even at $$x_F$$ = 0.0, which may be due to associated production. In addition, there are leading-particle-type effects which are qualitativrly like what one would expect from rrcmnbination models or their alternatives. WP used the Dnal Parton Model (DPM) to cakulate the asymmetry for the $$\\Lambda^0$$ and compared with the Lund model (PYTHIA /JETSET) predictions and with om experimental results.« less
Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bieniek, S P; Biesuz, N V; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E St; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapia Araya, S; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L
This paper reports inclusive and differential measurements of the [Formula: see text] charge asymmetry [Formula: see text] in [Formula: see text] of [Formula: see text][Formula: see text] collisions recorded by the ATLAS experiment at the Large Hadron Collider at CERN. Three differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the [Formula: see text] system. The [Formula: see text] pairs are selected in the single-lepton channels ( e or [Formula: see text]) with at least four jets, and a likelihood fit is used to reconstruct the [Formula: see text] event kinematics. A Bayesian unfolding procedure is performed to infer the asymmetry at parton level from the observed data distribution. The inclusive [Formula: see text] charge asymmetry is measured to be [Formula: see text] (stat. [Formula: see text] syst.). The inclusive and differential measurements are compatible with the values predicted by the Standard Model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, Vardan
The charge asymmetry inmore » $$t \\bar t$$ events is measured using dilepton final states produced in pp collisions at the LHC at √s = 8 TeV. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 19.5 fb –1. The measurements are performed using events with two oppositely charged leptons (electrons or muons) and two or more jets, where at least one of the jets is identified as originating from a bottom quark. The charge asymmetry is measured from differences in kinematic distributions, unfolded to the parton level, of positively and negatively charged top quarks and leptons. The $$t \\bar t$$ and leptonic charge asymmetries are found to be 0.011 ± 0.011 (stat) ± 0.007 (syst) and 0.003 ± 0.006 (stat) ± 0.003 (syst), respectively. Lastly, These results, as well as charge asymmetry measurements made as a function of $$t \\bar t$$ system kinematic properties, are in agreement with predictions of the standard model.« less
Measurement of the semileptonic CP asymmetry in B0-B[over ¯]0 mixing.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R F; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L
2015-01-30
The semileptonic CP asymmetry in B0-B[over ¯]0 mixing, a(sl)(d), is measured in proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb-1, recorded by the LHCb experiment. Semileptonic B0 decays are reconstructed in the inclusive final states D-μ+ and D*-μ+, where the D- meson decays into the K+π-π- final state and the D*- meson into the D[over ¯]0(→K+π-)π- final state. The asymmetry between the numbers of D(*)-μ+ and D(*)+μ- decays is measured as a function of the decay time of the B0 mesons. The CP asymmetry is measured to be a(sl)(d)=(-0.02±0.19±0.30)%, where the first uncertainty is statistical and the second systematic. This is the most precise measurement of a(sl)(d) to date and is consistent with the prediction from the standard model.
Step-doubling at Vicinal Ni(111) Surfaces Investigated with a Curved Crystal
Ilyn, Max; Magana, Ana; Walter, Andrew Leigh; ...
2017-01-25
Here, vicinal surfaces may undergo structural transformations as a function of temperature or in the presence of adsorbates. Step-doubling, in which monatomic steps pair up forming double-atom high staircases, is the simplest example. Here we investigate the case of Ni(111) using a curved crystal surface, which allows us to explore the occurrence of step-doubling as a function of temperature and vicinal plane (miscut α and step type). We find a striking A-type ({100}-like microfacets) versus B-type ({111}-like) asymmetry towards step-doubling. The terrace-width distribution analysis performed from Scanning Tunneling Microscopy data points to elastic step interactions overcoming entropic effects at verymore » small miscut α in A-type vicinals, as compared to B-type steps. For A-type vicinals, we elaborate the temperature/miscut phase diagram, on which we establish a critical miscut α c = 9.3° for step-doubling to take place.« less
Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms
NASA Astrophysics Data System (ADS)
Bhuyan, M.; Carlson, B. V.; Patra, S. K.; Zhou, Shan-Gui
2018-02-01
In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even-even isotopes of Fe, Ni, Zn, Ge, Se, and Kr within the framework of the axially deformed self-consistent relativistic mean field for the nonlinear NL 3* and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure, and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 ≤A ≤96 . From this analysis, we found a notable signature of a shell closure at N =50 in the isotopic chains of Fe, Ni, Zn, Ge, Se, and Kr nuclei. The present study reveals a interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei.
Step-doubling at Vicinal Ni(111) Surfaces Investigated with a Curved Crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilyn, Max; Magana, Ana; Walter, Andrew Leigh
Here, vicinal surfaces may undergo structural transformations as a function of temperature or in the presence of adsorbates. Step-doubling, in which monatomic steps pair up forming double-atom high staircases, is the simplest example. Here we investigate the case of Ni(111) using a curved crystal surface, which allows us to explore the occurrence of step-doubling as a function of temperature and vicinal plane (miscut α and step type). We find a striking A-type ({100}-like microfacets) versus B-type ({111}-like) asymmetry towards step-doubling. The terrace-width distribution analysis performed from Scanning Tunneling Microscopy data points to elastic step interactions overcoming entropic effects at verymore » small miscut α in A-type vicinals, as compared to B-type steps. For A-type vicinals, we elaborate the temperature/miscut phase diagram, on which we establish a critical miscut α c = 9.3° for step-doubling to take place.« less
Left-right dissociation of hippocampal memory processes in mice.
Shipton, Olivia A; El-Gaby, Mohamady; Apergis-Schoute, John; Deisseroth, Karl; Bannerman, David M; Paulsen, Ole; Kohl, Michael M
2014-10-21
Left-right asymmetries have likely evolved to make optimal use of bilaterian nervous systems; however, little is known about the synaptic and circuit mechanisms that support divergence of function between equivalent structures in each hemisphere. Here we examined whether lateralized hippocampal memory processing is present in mice, where hemispheric asymmetry at the CA3-CA1 pyramidal neuron synapse has recently been demonstrated, with different spine morphology, glutamate receptor content, and synaptic plasticity, depending on whether afferents originate in the left or right CA3. To address this question, we used optogenetics to acutely silence CA3 pyramidal neurons in either the left or right dorsal hippocampus while mice performed hippocampus-dependent memory tasks. We found that unilateral silencing of either the left or right CA3 was sufficient to impair short-term memory. However, a striking asymmetry emerged in long-term memory, wherein only left CA3 silencing impaired performance on an associative spatial long-term memory task, whereas right CA3 silencing had no effect. To explore whether synaptic properties intrinsic to the hippocampus might contribute to this left-right behavioral asymmetry, we investigated the expression of hippocampal long-term potentiation. Following the induction of long-term potentiation by high-frequency electrical stimulation, synapses between CA3 and CA1 pyramidal neurons were strengthened only when presynaptic input originated in the left CA3, confirming an asymmetry in synaptic properties. The dissociation of hippocampal long-term memory function between hemispheres suggests that memory is routed via distinct left-right pathways within the mouse hippocampus, and provides a promising approach to help elucidate the synaptic basis of long-term memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Kostryukov, P. V.
It is shown that a quantum system whose Hamiltonian is independent of time is T -invariant if this Hamiltonian contains only those terms that do not change sign upon time reversal. It is also shown that the coincidence of the amplitudes for multistep direct and statistical nuclear reactions with the timereversed amplitudes for the reactions being studied is a condition that ensures the T -invariance of the amplitudes in question, the transition from the original amplitudes to their time-reversed counterparts being accomplished, first, upon introducing the inverse-reactionmatrices T instead of the original-reaction matrix T and, second, upon replacing the wavemore » functions for the initial, final, and intermediate states of the system by the respective time-reversed functions. It is found that the T -even (T -odd) asymmetries in cross sections for nuclear reactions stem from the interference between the amplitudes characterizing these reactions and having identical (opposite) T -parities. It is shown that the T -invariance condition for the above T -even (T -odd) asymmetries is related to the conservation of (change in) the sign of these asymmetries upon going over from original to inverse nuclear reactions. Mechanisms underlying the appearance of possible T -even and T-odd asymmetries in the cross sections for the cold-polarizedneutron- induced binary and ternary fission of oriented target nuclei are analyzed for the case of employing T -invariant Hamiltonians for the systems under study. It is also shown that the asymmetries in question satisfy the T -invariance condition if the reactions being considered have a sequential multistep statistical character. It is concluded that T -invariance is violated in the limiting case where, in ternary nuclear fission, the emission of a light third particle froma fissile compound nucleus formed upon incident-neutron capture by a target nucleus and its separation to two fission fragments are simultaneous events.« less
Posture, Flexibility and Grip Strength in Horse Riders
Hobbs, Sarah Jane; Baxter, Joanna; Broom, Louise; Rossell, Laura-Ann; Sinclair, Jonathan; Clayton, Hilary M
2014-01-01
Since the ability to train the horse to be ambidextrous is considered highly desirable, rider asymmetry is recognized as a negative trait. Acquired postural and functional asymmetry can originate from numerous anatomical regions, so it is difficult to suggest if any is developed due to riding. The aim of this study was therefore to assess symmetry of posture, strength and flexibility in a large population of riders and to determine whether typical traits exist due to riding. 127 right handed riders from the UK and USA were categorized according to years riding (in 20 year increments) and their competition level (using affiliated test levels). Leg length, grip strength and spinal posture were measured and recorded by a physiotherapist. Standing and sitting posture and trunk flexibility were measured with 3-D motion capture technology. Right-left differences were explored in relation to years riding and rider competitive experience. Significant anatomical asymmetry was found for the difference in standing acromion process height for a competition level (−0.07±1.50 cm Intro/Prelim; 0.02±1.31 cm Novice; 0.43±1.27 cm Elementary+; p=0.048) and for sitting iliac crest height for years riding (−0.23±1.36 cm Intro/Prelim; 0.01±1.50 cm Novice; 0.86±0.41 cm Elementary+; p=0.021). For functional asymmetry, a significant interaction was found for lateral bending ROM for years riding x competition level (p=0.047). The demands on dressage riders competing at higher levels may predispose these riders to a higher risk of developing asymmetry and potentially chronic back pain rather than improving their symmetry. PMID:25414745
Korbmacher, Heike; Koch, L; Eggers-Stroeder, G; Kahl-Nieke, B
2007-02-01
The objective of the present study was to detect possible associations between unilateral crossbite and orthopaedic disturbances in children with asymmetry of the upper cervical spine. Fifty-five children aged 3-10 years (22 girls and 33 boys) with a unilateral crossbite and 55 gender- and age-matched children with a symmetric occlusion but no crossbite, who served as the control group, were selected from an orthopaedic cohort of 240 patients. In all children, asymmetry of the upper cervical region was confirmed by radiographs and palpation. The following orthopaedic aspects were investigated: oblique shoulder and pelvis, scoliosis, functional leg length difference, and laxity of ligaments of the foot. The differences between the groups were analysed by means of an unpaired t-test. An increased occurrence of orthopaedic parameters in the frontal plane was observed in children with a unilateral malocclusion. A unilateral crossbite was not necessarily combined with a pathological orthopaedic variable, but statistically, children with a unilateral malocclusion showed more often an oblique shoulder (P = 0.004), scoliosis (P = 0.04), an oblique pelvis (P = 0.007), and a functional leg length difference (P = 0.002) than children with symmetry. The results suggest that a unilateral crossbite in children with asymmetry of the upper cervical spine is associated with orthopaedic disturbances. There is no evidence of a causal link.
Nodal signalling determines biradial asymmetry in Hydra.
Watanabe, Hiroshi; Schmidt, Heiko A; Kuhn, Anne; Höger, Stefanie K; Kocagöz, Yigit; Laumann-Lipp, Nico; Ozbek, Suat; Holstein, Thomas W
2014-11-06
In bilaterians, three orthogonal body axes define the animal form, with distinct anterior-posterior, dorsal-ventral and left-right asymmetries. The key signalling factors are Wnt family proteins for the anterior-posterior axis, Bmp family proteins for the dorsal-ventral axis and Nodal for the left-right axis. Cnidarians, the sister group to bilaterians, are characterized by one oral-aboral body axis, which exhibits a distinct biradiality of unknown molecular nature. Here we analysed the biradial growth pattern in the radially symmetrical cnidarian polyp Hydra, and we report evidence of Nodal in a pre-bilaterian clade. We identified a Nodal-related gene (Ndr) in Hydra magnipapillata, and this gene is essential for setting up an axial asymmetry along the main body axis. This asymmetry defines a lateral signalling centre, inducing a new body axis of a budding polyp orthogonal to the mother polyp's axis. Ndr is expressed exclusively in the lateral bud anlage and induces Pitx, which encodes an evolutionarily conserved transcription factor that functions downstream of Nodal. Reminiscent of its function in vertebrates, Nodal acts downstream of β-Catenin signalling. Our data support an evolutionary scenario in which a 'core-signalling cassette' consisting of β-Catenin, Nodal and Pitx pre-dated the cnidarian-bilaterian split. We presume that this cassette was co-opted for various modes of axial patterning: for example, for lateral branching in cnidarians and left-right patterning in bilaterians.
Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree.
Atkinson, Elizabeth G; Rogers, Jeffrey; Cheverud, James M
2016-03-01
Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution, and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a population-level trend in length measurements indicating that baboons are genetically predisposed to be asymmetrical, with the right side longer than the left in the anterior cerebrum while the left side is longer than the right posteriorly. We also find a corresponding bias to display a right frontal petalia (overgrowth of the anterior pole of the cerebral cortex on the right side). By quantifying fluctuating asymmetry, we assess canalization of brain features and the susceptibility of the baboon brain to developmental perturbations. We find that features are differentially canalized depending on their ontogenetic timing. We further deduce that development of the two hemispheres is to some degree independent. This independence has important implications for the evolution of cerebral hemispheres and their separate specialization. Asymmetry is a major feature of primate brains and is characteristic of both brain structure and function. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... asymmetry detection system to verify proper functioning, and repair if necessary; repetitive replacement of... detection system to verify proper functioning, and repair if necessary; repetitive replacement of the...
Hemispheric Asymmetries during Processing of Immoral Stimuli
Cope, Lora M.; Borg, Jana Schaich; Harenski, Carla L.; Sinnott-Armstrong, Walter; Lieberman, Debra; Nyalakanti, Prashanth K.; Calhoun, Vince D.; Kiehl, Kent A.
2010-01-01
Evolutionary approaches to dissecting our psychological architecture underscore the importance of both function and structure. Here we focus on both the function and structure of our neural circuitry and report a functional bilateral asymmetry associated with the processing of immoral stimuli. Many processes in the human brain are associated with functional specialization unique to one hemisphere. With respect to emotions, most research points to right-hemispheric lateralization. Here we provide evidence that not all emotional stimuli share right-hemispheric lateralization. Across three studies employing different paradigms, the processing of negative morally laden stimuli was found to be highly left-lateralized. Regions of engagement common to the three studies include the left medial prefrontal cortex, left temporoparietal junction, and left posterior cingulate. These data support the hypothesis that processing of immoral stimuli preferentially engages left hemispheric processes and sheds light on our evolved neural architecture. PMID:21344009
Geodakian, V A
1993-01-01
In the paper is presented a unified interpretation of sex differentiation and lateral asymmetry as asynchronous evolution. The operative subsystems, i.e. the male and the left hemisphere of the brain evolutionize earlier than the conservative ones, i.e. the female and the right hemisphere. New functions appear at first in males and after many generations they are transferred to females. The leading centers of their control are at first originated in the left hemisphere, then they are translocated to the right one. The criterion for functions localization in the hemisphere is their evolutionary age: new functions are controlled by the left hemisphere, old functions by the right one. Therefore the left hemisphere is socio-cultural, ethnic, the right one is biological, special. The theory explains from a single standpoint the phenomena of sex, handedness, nervous crossover, as well as many know facts, and predicts the new ones.
Hoefer, M; Tyll, S; Kanowski, M; Brosch, M; Schoenfeld, M A; Heinze, H-J; Noesselt, T
2013-10-01
Although multisensory integration has been an important area of recent research, most studies focused on audiovisual integration. Importantly, however, the combination of audition and touch can guide our behavior as effectively which we studied here using psychophysics and functional magnetic resonance imaging (fMRI). We tested whether task-irrelevant tactile stimuli would enhance auditory detection, and whether hemispheric asymmetries would modulate these audiotactile benefits using lateralized sounds. Spatially aligned task-irrelevant tactile stimuli could occur either synchronously or asynchronously with the sounds. Auditory detection was enhanced by non-informative synchronous and asynchronous tactile stimuli, if presented on the left side. Elevated fMRI-signals to left-sided synchronous bimodal stimulation were found in primary auditory cortex (A1). Adjacent regions (planum temporale, PT) expressed enhanced BOLD-responses for synchronous and asynchronous left-sided bimodal conditions. Additional connectivity analyses seeded in right-hemispheric A1 and PT for both bimodal conditions showed enhanced connectivity with right-hemispheric thalamic, somatosensory and multisensory areas that scaled with subjects' performance. Our results indicate that functional asymmetries interact with audiotactile interplay which can be observed for left-lateralized stimulation in the right hemisphere. There, audiotactile interplay recruits a functional network of unisensory cortices, and the strength of these functional network connections is directly related to subjects' perceptual sensitivity. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.
2016-03-01
Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different hohlraum geometries and picket powers show good agreement with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milovich, J. L., E-mail: milovich1@llnl.gov; Dewald, E. L.; Pak, A.
2016-03-15
Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time.more » However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P{sub 2}), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different hohlraum geometries and picket powers show good agreement with experimental data.« less
Neher, Tobias
2017-02-01
To scrutinize the binaural contribution to speech-in-noise reception, four groups of elderly participants with or without audiometric asymmetry <2 kHz and with or without near-normal binaural intelligibility level difference (BILD) completed tests of monaural and binaural phase sensitivity as well as cognitive function. Groups did not differ in age, overall degree of hearing loss, or cognitive function. Analyses revealed an influence of BILD status but not audiometric asymmetry on monaural phase sensitivity, strong correlations between monaural and binaural detection thresholds, and monaural and binaural but not cognitive BILD contributions. Furthermore, the N 0 S π threshold at 500 Hz predicted BILD performance effectively.
NASA Astrophysics Data System (ADS)
Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Dykiert, M.
2017-09-01
Magnesium sheet alloys have a great potential as a construction material in the aerospace and automotive industry. However, the current state of research regarding temperature dependent material parameters for the description of the plastic behaviour of magnesium sheet alloys is scarce in literature and accurate statements concerning yield criteria and appropriate characterization tests to describe the plastic behaviour of a magnesium sheet alloy at elevated temperatures in deep drawing processes are to define. Hence, in this paper the plastic behaviour of the well-established magnesium sheet alloy AZ31 has been characterized by means of convenient mechanical tests (e. g. tension, compression and biaxial tests) at temperatures between 180 and 230 °C. In this manner, anisotropic and hardening behaviour as well as differences between the tension-compression asymmetry of the yield locus have been estimated. Furthermore, using the evaluated data from the above mentioned tests, two different yield criteria have been parametrized; the commonly used Hill’48 and an orthotropic yield criterion, CPB2006, which was developed especially for materials with hexagonal close packed lattice structure and is able to describe an asymmetrical yielding behaviour regarding tensile and compressive stress states. Numerical simulations have been finally carried out with both yield functions in order to assess the accuracy of the material models.
Intracellular pH gradients in migrating cells.
Martin, Christine; Pedersen, Stine F; Schwab, Albrecht; Stock, Christian
2011-03-01
Cell polarization along the axis of movement is required for migration. The localization of proteins and regulators of the migratory machinery to either the cell front or its rear results in a spatial asymmetry enabling cells to simultaneously coordinate cell protrusion and retraction. Protons might function as such unevenly distributed regulators as they modulate the interaction of focal adhesion proteins and components of the cytoskeleton in vitro. However, an intracellular pH (pH(i)) gradient reflecting a spatial asymmetry of protons has not been shown so far. One major regulator of pH(i), the Na(+)/H(+) exchanger NHE1, is essential for cell migration and accumulates at the cell front. Here, we test the hypothesis that the uneven distribution of NHE1 activity creates a pH(i) gradient in migrating cells. Using the pH-sensitive fluorescent dye BCECF, pH(i) was measured in five cell lines (MV3, B16V, NIH3T3, MDCK-F1, EA.hy926) along the axis of movement. Differences in pH(i) between the front and the rear end (ΔpH(i) front-rear) were present in all cell lines, and inhibition of NHE1 either with HOE642 or by absence of extracellular Na(+) caused the pH(i) gradient to flatten or disappear. In conclusion, pH(i) gradients established by NHE1 activity exist along the axis of movement.
The cortical microstructural basis of lateralized cognition: a review
Chance, Steven A.
2014-01-01
The presence of asymmetry in the human cerebral hemispheres is detectable at both the macroscopic and microscopic scales. The horizontal expansion of cortical surface during development (within individual brains), and across evolutionary time (between species), is largely due to the proliferation and spacing of the microscopic vertical columns of cells that form the cortex. In the asymmetric planum temporale (PT), minicolumn width asymmetry is associated with surface area asymmetry. Although the human minicolumn asymmetry is not large, it is estimated to account for a surface area asymmetry of approximately 9% of the region’s size. Critically, this asymmetry of minicolumns is absent in the equivalent areas of the brains of other apes. The left-hemisphere dominance for processing speech is thought to depend, partly, on a bias for higher resolution processing across widely spaced minicolumns with less overlapping dendritic fields, whereas dense minicolumn spacing in the right hemisphere is associated with more overlapping, lower resolution, holistic processing. This concept refines the simple notion that a larger brain area is associated with dominance for a function and offers an alternative explanation associated with “processing type.” This account is mechanistic in the sense that it offers a mechanism whereby asymmetrical components of structure are related to specific functional biases yielding testable predictions, rather than the generalization that “bigger is better” for any given function. Face processing provides a test case – it is the opposite of language, being dominant in the right hemisphere. Consistent with the bias for holistic, configural processing of faces, the minicolumns in the right-hemisphere fusiform gyrus are thinner than in the left hemisphere, which is associated with featural processing. Again, this asymmetry is not found in chimpanzees. The difference between hemispheres may also be seen in terms of processing speed, facilitated by asymmetric myelination of white matter tracts (Anderson et al., 1999 found that axons of the left posterior superior temporal lobe were more thickly myelinated). By cross-referencing the differences between the active fields of the two hemispheres, via tracts such as the corpus callosum, the relationship of local features to global features may be encoded. The emergent hierarchy of features within features is a recursive structure that may functionally contribute to generativity – the ability to perceive and express layers of structure and their relations to each other. The inference is that recursive generativity, an essential component of language, reflects an interaction between processing biases that may be traceable in the microstructure of the cerebral cortex. Minicolumn organization in the PT and the prefrontal cortex has been found to correlate with cognitive scores in humans. Altered minicolumn organization is also observed in neuropsychiatric disorders including autism and schizophrenia. Indeed, altered interhemispheric connections correlated with minicolumn asymmetry in schizophrenia may relate to language-processing anomalies that occur in the disorder. Schizophrenia is associated with over-interpretation of word meaning at the semantic level and over-interpretation of relevance at the level of pragmatic competence, whereas autism is associated with overly literal interpretation of word meaning and under-interpretation of social relevance at the pragmatic level. Both appear to emerge from a disruption of the ability to interpret layers of meaning and their relations to each other. This may be a consequence of disequilibrium in the processing of local and global features related to disorganization of minicolumnar units of processing. PMID:25126082
Radiative heat transfer in strongly forward scattering media using the discrete ordinates method
NASA Astrophysics Data System (ADS)
Granate, Pedro; Coelho, Pedro J.; Roger, Maxime
2016-03-01
The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta-Eddington phase function and the transport approximation may perform poorly.
Mosmuller, David G M; Maal, Thomas J; Prahl, Charlotte; Tan, Robin A; Mulder, Frans J; Schwirtz, Roderic M F; de Vet, Henrica C W; Bergé, Stefaan J; Don Griot, J P W
2017-08-01
For the assessment of the nasolabial appearance in cleft patients, a widely accepted, reliable scoring system is not available. In this study four different methods of assessment are compared, including 2D and 3D asymmetry and aesthetic assessments. The data and ratings from an earlier study using the Asher-McDade aesthetic index on 3D photographs and the outcomes of 3D facial distance mapping were compared to a 2D aesthetic assessment, the Cleft Aesthetic Rating Scale, and to SymNose, a computerized 2D asymmetry assessment technique. The reliability and correlation between the four assessment techniques were tested using a sample of 79 patients. The 3D asymmetry assessment had the highest reliability and could be performed by just one observer (Intraclass correlation coefficient (ICC): 0.99). The 2D asymmetry assessment of the nose was highly reliable when performed by just one observer (ICC: 0.89). However, for the 2D asymmetry assessment of the lip more observers were needed. For the 2D aesthetic assessments 3 observers were needed. The 3D aesthetic assessment had the lowest single-observer reliability (ICC: 0.38-0.56) of all four techniques. The agreement between the different assessment methods is poor to very poor. The highest correlation (R: 0.48) was found between 2D and 3D aesthetic assessments. Remarkably, the lowest correlations were found between 2D and 3D asymmetry assessments (0.08-0.17). Different assessment methods are not in agreement and seem to measure different nasolabial aspects. More research is needed to establish exactly what each assessment technique measures and which measurements or outcomes are relevant for the patients. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, A.; Avakian, H.; Burkert, V.; Joo, K.; Kim, W.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Badui, R. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garc con, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; McCracken, M. E.; McKinnon, B.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.
2017-05-01
The target and double spin asymmetries of the exclusive pseudoscalar channel e → p → → epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, -t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and EbarT. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang
2013-12-10
It is largely unknown how the typical homomeric ring geometry of ATPases associated with various cellular activities enables them to perform mechanical work. Small-angle solution X-ray scattering, crystallography, and electron microscopy (EM) reconstructions revealed that partial ATP occupancy caused the heptameric closed ring of the bacterial enhancer-binding protein (bEBP) NtrC1 to rearrange into a hexameric split ring of striking asymmetry. The highly conserved and functionally crucial GAFTGA loops responsible for interacting with σ54–RNA polymerase formed a spiral staircase. We propose that splitting of the ensemble directs ATP hydrolysis within the oligomer, and the ring's asymmetry guides interaction between ATPase andmore » the complex of σ54 and promoter DNA. Similarity between the structure of the transcriptional activator NtrC1 and those of distantly related helicases Rho and E1 reveals a general mechanism in homomeric ATPases whereby complex allostery within the ring geometry forms asymmetric functional states that allow these biological motors to exert directional forces on their target macromolecules.« less
Giraldo-Chica, Mónica; Schneider, Keith A
2018-05-01
Human brain asymmetry reflects normal specialization of functional roles and may derive from evolutionary, hereditary, developmental, experiential, and pathological factors (Toga & Thompson, 2003). Geschwind and Galaburda (1985) suggested that processing difficulties in dyslexia are due to structural differences between hemispheres. Because of its potential significance to the controversial magnocellular theory of dyslexia, we investigated hemispheric differences in the human lateral geniculate nucleus (LGN), the primary visual relay and control nucleus in the thalamus, in subjects with dyslexia compared to normal readers. We acquired and averaged multiple high-resolution proton density (PD) weighted structural magnetic resonance imaging (MRI) volumes to measure in detail the anatomical boundaries of the LGN in each hemisphere. We observed hemispheric asymmetries in the orientation of the nucleus in subjects with dyslexia that were absent in controls. We also found differences in the location of the LGN between hemispheres in controls but not in subjects with dyslexia. Neither the precise anatomical differences in the LGN nor their functional consequences are known, nor is it clear whether the differences might be causes or effects of dyslexia. Copyright © 2018 John Wiley & Sons, Ltd.
Kim, A.; Avakian, H.; Burkert, V.; ...
2017-02-22
The target and double spin asymmetries of the exclusive pseudoscalar channelmore » $$\\vec e\\vec p\\to ep\\pi^0$$ were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of $Q^2$, $$x_B$$, $-t$ and $$\\phi$$. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs $$\\tilde{H}_T$$ and $$E_T$$, and complement previous measurements of unpolarized structure functions sensitive to the GPDs $$H_T$$ and $$\\bar E_T$$. Finally, these data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existing theoretical handbag models.« less
NASA Astrophysics Data System (ADS)
Jawalkar, Sucheta Shrikant
Measurements in the late 1980s at CERN revealed that quark spins account for a small fraction of the proton's spin. This so-called spin crisis spurred a number of new experiments to identify the proton's silent spin contributors, namely, the spin of the gluons, which hold the quarks together, and the orbital angular momentum of both quarks and gluons. One such experiment was eg1-dvcs at the Thomas Jefferson National Accelerator Facility in Newport News, Va., which ran in 2009 and collected approximately 19 billion electron triggers for hydrogen. I will present new measurements of the single and double-spin asymmetries ALU, AUL and ALL for pi+, pi - and pi0, measured as a function of Bjorken xB, squared momentum transfer Q2, hadron energy fraction z, and hadron transverse momentum Ph ⊥. These asymmetries, which are convolutions of transverse-momentum-dependent parton distributions and fragmentation functions, correlate with the transverse momentum, and therefore with the orbital motion, of the struck quark.
Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi; Kisslinger, Kim; Stach, Eric A; Shahrjerdi, Davood
2017-07-25
Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). Here, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increases proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. These findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.
Montero, J; Gómez Polo, C; Rosel, E; Barrios, R; Albaladejo, A; López-Valverde, A
2016-01-01
Symmetric, aligned and luminous smiles are usually classified as 'beautiful' and aesthetic. However, smile perception is not strictly governed by standardised rules. Personal traits may influence the perception of non-ideal smiles. We aimed to determine the influence of personality traits in self-rated oral health and satisfaction and in the aesthetic preference for different strategically flawed smiles shown in photographs. Smiles with dark teeth, with uneven teeth, with lip asymmetry and dental asymmetry were ordered from 1 to 4 as a function of the degree of beauty by 548 participants, of which 50·7% were females with a mean age of 41·5 ± 17·6 years (range: 16-89 years). Self-assessment and oral satisfaction were recorded on a Likert scale. Personality was measured by means of the Big Five Inventory (extraversion, agreeableness, conscientiousness, neuroticism and openness), and the Life Orientation Test was used to measure optimism and pessimism. Of the four photographs with imperfect smiles, dental asymmetry was the most highly assessed in 63% of the sample, and the worst was lip asymmetry, in 43·7% of the sample. Some personality traits (above all conscientiousness and openness) were significantly correlated with the position assigned to the photographs with dental and lip asymmetry or with misaligned teeth. The extraversion, agreeableness and openness traits were correlated with the self-perceptions of oral health and aesthetics of the participants. Dental asymmetry seems to be better tolerated than lip asymmetry. Personality traits are weakly but significantly correlated with the aesthetic preference and oral health values, conscientiousness and openness being the most relevant domains in this sense. © 2015 John Wiley & Sons Ltd.
McGeown, Laura; Davis, Ron
2018-02-15
The social modeling of eating effect refers to the consistently demonstrated phenomenon that individuals tend to match their quantity of food intake to their eating companion. The current study sought to explore whether activity within the mirror neuron system (MNS) mediates the social modeling of eating effect as a function of EEG frontal asymmetry and body mass index (BMI). Under the guise of rating empathy, 93 female undergraduates viewed a female video confederate "incidentally" consume either a low or high intake of chips while electroencephalogram (EEG) activity was recorded. Subsequent ad libitum chip consumption was quantified. A first- and second-stage dual moderation model revealed that frontal asymmetry and BMI moderated an indirect effect of model consumption on participants' food consumption as mediated by MNS activity at electrode site C3, a 3 b 3 =-0.718, SE=0.365, 95% CI [-1.632, -0.161]. Left frontal asymmetry was associated with greater mu activity and a positive association between model and participant chip consumption, while right frontal asymmetry was associated with less mu activity and a negative association between model and participant consumption. Across all levels of frontal asymmetry, the effect was only significant among those with a BMI at the 50th percentile or lower. Thus, among leaner individuals, the MNS was demonstrated to mediate social modeling of eating, as moderated by frontal asymmetry. These findings are integrated within the normative account of social modeling of eating. It is proposed that the normative framework may benefit from consideration of both conscious and unconscious operation of intake norms. Copyright © 2017 Elsevier B.V. All rights reserved.
Cormier, Jim; Cone, Katherine; Lanpher, Janell; Kinens, Abigail; Henderson, Terry; Liaw, Lucy; Bilsky, Edward J; King, Tamara; Rosen, Clifford J; Stevenson, Glenn W
2017-07-01
There is great interest in developing and utilizing non-pharmacological/non-invasive forms of therapy for osteoarthritis (OA) pain including exercise and other physical fitness regimens. The present experiments determined the effects of prior wheel running on OA-induced weight asymmetry and trabecular bone microarchitecture. Wheel running included 7 or 21days of prior voluntary access to wheels followed by OA induction, followed by 21days post-OA access to wheels. OA was induced with monosodium iodoacetate (MIA), and weight asymmetry was measured using a hind limb weight bearing apparatus. Bone microarchitecture was characterized using ex vivo μCT. Relative to saline controls, MIA (3.2mg/25μl) produced significant weight asymmetry measured on post-days (PDs) 3, 7, 14, 21 in sedentary rats. Seven days of prior running failed to alter MIA-induced weight asymmetry. In contrast, 21days of prior running resulted in complete reversal of MIA-induced weight asymmetry on all days tested. As a comparator, the opioid agonist morphine (3.2-10mg/kg) dose-dependently reversed weight asymmetry on PDs 3, 7, 14, but was ineffective in later-stage (PD 21) OA. In runners, Cohen's d (effect sizes) for OA vs. controls indicated large increases in bone volume fraction, trabecular number, trabecular thickness, and connective density in lateral compartment, and large decreases in the same parameters in medial compartment. In contrast, effect sizes were small to moderate for sedentary OA vs. Results indicate that voluntary exercise may protect against OA pain, the effect varies as a function of prior exercise duration, and is associated with distinct trabecular bone modifications. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Maciuła, Rafał; Szczurek, Antoni
2018-04-01
We consider unfavored light quark/antiquark to D meson fragmentation. We discuss nonperturbative effects for small transverse momenta. The asymmetry for D+ and D- production measured by the LHCb collaboration provides natural constraints on the parton (quark/antiquark) fragmentation functions. We find that already a fraction of q /q ¯→D fragmentation probability is sufficient to account for the measured asymmetry. We make predictions for similar asymmetry for neutral D mesons. Large D -meson production asymmetries are found for large xF which is related to dominance of light quark/antiquark q /q ¯→D fragmentation over the standard c →D fragmentation. As a consequence, prompt atmospheric neutrino flux at high neutrino energies can be much larger than for the conventional c →D fragmentation. The latter can constitute a sizeable background for the cosmic neutrinos claimed to be observed recently by the IceCube Observatory. Large rapidity-dependent D+/D- and D0/D¯0 asymmetries are predicted for low (√{s }=20 - 100 GeV ) energies. The q /q ¯→D fragmentation leads to enhanced production of D mesons at low energies. At √{s }=20 GeV the enhancement factor with respect to the conventional contribution is larger than a factor of five. In the considered picture the large-xF D mesons are produced dominantly via fragmentation of light quarks/antiquarks. Predictions for fixed target p + 4He collisions relevant for a fixed target LHCb experiment are presented.
Suzuki, Hiroshi; Thiele, Tod R; Faumont, Serge; Ezcurra, Marina; Lockery, Shawn R; Schafer, William R
2008-07-03
Chemotaxis in Caenorhabditis elegans, like chemotaxis in bacteria, involves a random walk biased by the time derivative of attractant concentration, but how the derivative is computed is unknown. Laser ablations have shown that the strongest deficits in chemotaxis to salts are obtained when the ASE chemosensory neurons (ASEL and ASER) are ablated, indicating that this pair has a dominant role. Although these neurons are left-right homologues anatomically, they exhibit marked asymmetries in gene expression and ion preference. Here, using optical recordings of calcium concentration in ASE neurons in intact animals, we demonstrate an additional asymmetry: ASEL is an ON-cell, stimulated by increases in NaCl concentration, whereas ASER is an OFF-cell, stimulated by decreases in NaCl concentration. Both responses are reliable yet transient, indicating that ASE neurons report changes in concentration rather than absolute levels. Recordings from synaptic and sensory transduction mutants show that the ON-OFF asymmetry is the result of intrinsic differences between ASE neurons. Unilateral activation experiments indicate that the asymmetry extends to the level of behavioural output: ASEL lengthens bouts of forward locomotion (runs) whereas ASER promotes direction changes (turns). Notably, the input and output asymmetries of ASE neurons are precisely those of a simple yet novel neuronal motif for computing the time derivative of chemosensory information, which is the fundamental computation of C. elegans chemotaxis. Evidence for ON and OFF cells in other chemosensory networks suggests that this motif may be common in animals that navigate by taste and smell.
NASA Astrophysics Data System (ADS)
Saikia, P.; Bhuyan, H.; Escalona, M.; Favre, M.; Bora, B.; Kakati, M.; Wyndham, E.; Rawat, R. S.; Schulze, J.
2018-05-01
We investigate the electrical asymmetry effect (EAE) and the current dynamics in a geometrically asymmetric capacitively coupled radio frequency plasma driven by multiple consecutive harmonics based on a nonlinear global model. The discharge symmetry is controlled via the EAE, i.e., by varying the total number of harmonics and tuning the phase shifts ( θ k ) between them. Here, we systematically study the EAE in a low pressure (4 Pa) argon discharge with different geometrical asymmetries driven by a multifrequency rf source consisting of 13.56 MHz and its harmonics. We find that the geometrical asymmetry strongly affects the absolute value of the DC self-bias voltage, but its functional dependence on θ k is similar at different values of the geometrical asymmetry. Also, the values of the DC self-bias are enhanced by adding more consecutive harmonics. The voltage drop across the sheath at the powered and grounded electrode is found to increase/decrease, respectively, with the increase in the number of harmonics of the fundamental frequency. For the purpose of validating the model, its outputs are compared with the results obtained in a geometrically and electrically asymmetric 2f capacitively coupled plasmas experiment conducted by Schuengel et al. [J. Appl. Phys. 112, 053302 (2012)]. Finally, we study the self-excitation of nonlinear plasma series resonance oscillations and its dependence on the geometrical asymmetry as well as the phase angles between the driving frequencies.
Gonul, Yucel; Songur, Ahmet; Uzun, Ibrahim; Uygur, Ramazan; Alkoc, Ozan Alper; Caglar, Veli; Kucuker, Hudaverdi
2014-09-01
The cerebral sulci are known as main microanatomical borders that serve as a gateway and surgical passage to reach the ventricles or to the deeper lesions. It is a matter of curiosity that whether there is a convergence between the morphological asymmetry and the functional asymmetry, and also its significance in surgery. The aim of this study is make morphometric measurements and evaluate asymmetry of several sulci on the lateral aspects of the cerebrum in regard to main sulci and related reference key points. A total of 100 cerebral hemispheres from 50 autopsy cadavers were examined. The lengths of several sulci on the superolateral aspect of the hemispheres and the distances between the sulci and nearby sulci and the reference key points were measured. Encountered variations were examined and photographed. Evaluation of the variations: superior frontal sulcus (SFS), inferior frontal sulcus, superior temporal sulcus (STS), precentral sulcus and postcentral sulcus were found to be discontinuous in 60, 46, 41, 84 and 70 % of the hemispheres, respectively. Evaluation of the asymmetry: the distances between SFS posterior end and longitudinal fissure, STS posterior end and lateral sulcus posterior end, as well as lengths of external occipital fissure (EOF), and discontinuous course of STS were significantly different between left and right hemispheres. There is usually a morphological partial asymmetry between the right and left hemispheres for any individual. Also, some of our measurements were found to be compatible with the ones in the literature, while others were incompatible.
Do oarsmen have asymmetries in the strength of their back and leg muscles?
Parkin, S; Nowicky, A V; Rutherford, O M; McGregor, A H
2001-07-01
The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring: quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring: quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P < 0.01). These observations could be related to the high incidence of low back pain in oarsmen.
Rauch, Cyril; Loughna, Paul T
2005-01-01
The plasma membrane is composed of two leaflets that are asymmetric with regard to their phospholipid composition with phosphatidylserine (PS) predominantly located within the inner leaflet whereas other phospholipids such as phosphatidylcholine (PC) are preferentially located in the outer leaflet. An intimate relationship between cellular physiology and the composition of the plasma membrane has been demonstrated, with for example apoptosis requiring PS exposure for macrophage recognition. In skeletal muscle development, differentiation also requires PS exposure in myoblasts to create cell-cell contact areas allowing the formation of multinucleate myotubes. Although it is clearly established that membrane composition/asymmetry plays an important role in cellular physiology, the role of cytokines in regulating this asymmetry is still unclear. When incubated with myoblasts, insulin-like growth factor I (IGF-1) has been shown to promote proliferation versus differentiation in a concentration dependent manner and therefore, may be a potential candidate regulating cell membrane asymmetry. We show, in non-apoptotic C2C12 cells, that relocation of an exogenous PS analogue, from the outer into the inner leaflet, is accelerated by IGF-1 in a concentration-dependent manner and that maintenance of membrane asymmetry triggered by IGF-1 is however independent of the PI3K inhibitor wortmannin. Copyright (c) 2005 John Wiley & Sons, Ltd.
Martins, Emerson Fachin; de Araujo Barbosa, Paulo Henrique Ferreira; de Menezes, Lidiane Teles; de Sousa, Pedro Henrique Côrtes; Costa, Abraão Souza
2011-11-01
Injuries may cause unilateral deterioration of brain areas related to postural control resulting in lateralized motor disability with abnormal asymmetry in weight-bearing distribution. Although overloading toward the nonaffected limb has been described as the preferred posture among individuals with hemiparesis, characterization of the weight-bearing asymmetry is poorly and indirectly described. Therefore, this study aimed to describe weight-bearing distribution during upright stance, establishing criteria to consider asymmetry in hemiparesis when analyzed within the limits defined by controls matched by age and gender. Forty subjects with (n = 20) or without hemiparesis (n = 20) were included in procedures to record weight-bearing values between hemibodies, and these values were used to calculate a symmetry ratio. Control presented 95% confidence interval (CI) of the mean for symmetry ratio ranging from 0.888 to 1.072, defining limits to symmetry. Four subjects with hemiparesis (20%) had symmetry ratios inside limits defined by controls (i.e., weight-bearing symmetrically distributed), and 11 (55%) subjects without hemiparesis showed symmetry ratios outside the limits, suggesting asymmetrical weight-bearing distribution. It was concluded that asymmetry, when present in a control group, was more frequently overloading nonpredominantly used hemibody (nondominant side), differing from a hemiparesis group commonly forced to assume the nonaffected side as the predominantly used hemibody and where the overload was observed.
Time Asymmetric Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bohm, Arno R.; Gadella, Manuel; Kielanowski, Piotr
2011-09-01
The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1) for states or the Heisenberg equation (6a) for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space) of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus) and observables (defined by a registration apparatus (detector)). If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence) one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
Head-turning asymmetries during kissing and their association with lateral preference.
Ocklenburg, Sebastian; Güntürkün, Onur
2009-01-01
A head-turning bias to the right side is one of the earliest functional asymmetries in human development and is already present during the final weeks of gestation. To test whether head-turning preference is related to other lateral preferences in adults, kissing behaviour of participants towards a symmetrical doll was observed to assess their spontaneous head-turning preference. Additionally, participants' individual handedness, footedness, and eye preference were determined using questionnaires. A significant difference in handedness and footedness, but not eye preference, was found between left- and right-kissers, with right-kissers showing a stronger right-sided bias than left-kissers. These results support the assumption that the head-turning bias in humans may be able to induce or enhance other asymmetries of perception and action.
Haddad, Jeffrey M; Rietdyk, Shirley; Ryu, Joong Hyun; Seaman, Jessica M; Silver, Tobin A; Kalish, Julia A; Hughes, Charmayne M L
2011-01-01
The authors examined postural asymmetries during quiet stance and while holding evenly or unevenly distributed loads. Right-hand dominant subjects preferentially loaded their right lower limb when holding no load or a load evenly distributed in both hands, but no differences in center of pressure (CoP) were observed between the left and right limbs. However, longer CoP displacement was observed under the preferentially loaded limb, which may reflect a functional asymmetry that allows quick movement of one limb in response to a potential perturbation. When a load was held only in the nondominant hand, sample entropy decreased in the left (loaded) limb but increased in the right (unloaded) limb, suggesting the unloaded foot compensated for a loss of control flexibility in the loaded foot.
de la Motte, Sarah J; Lisman, Peter; Sabatino, Marc; Beutler, Anthony I; OʼConnor, Francis G; Deuster, Patricia A
2016-06-01
Screening for primary musculoskeletal injury (MSK-I) is costly and time-consuming. Both the Functional Movement Screen (FMS) and the Y-Balance Test (YBT) have been shown to predict future MSK-I. With a goal of optimizing the efficiency of primary MSK-I screening, we studied associations between performance on the FMS and YBT and whether history of MSK-I influenced FMS and YBT scores. In total, 365 deploying Marines performed the FMS and YBT as prescribed. Composite and individual scores were each categorized as high risk or low risk using published injury thresholds: High-risk FMS included composite scores ≤14 and right-to-left (R/L) asymmetry for Shoulder Mobility, In-Line Lunge, Straight Leg Raise, Hurdle Step, or Rotary Stability. High-risk YBT consisted of anterior, posteromedial, and/or posterolateral R/L differences >4 cm and/or composite differences ≥12 cm. Pearson's χ tests evaluated associations between: (a) all FMS and YBT risk groups and (b) previous MSK-I and all FMS and YBT risk groups. Marines with high-risk FMS were twice as likely to have high-risk YBT posteromedial scores (χ = 10.2, p = 0.001; odds ratio [OR] = 2.1, 95% confidence interval [CI] = 1.3-3.2). History of any MSK-I was not associated with high-risk FMS or high-risk YBT. However, previous lower extremity MSK-I was associated with In-Line Lunge asymmetries (χ = 9.8, p = 0.002, OR = 2.2, 95% CI = 1.3-3.6). Overall, we found limited overlap in FMS and YBT risk. Because both methods seem to assess different risk factors for injury, we recommend FMS and YBT continue to be used together in combination with a thorough injury history until their predictive capacities are further established.
Multi-Stakeholder Aid to Education: Power in the Context of Partnership
ERIC Educational Resources Information Center
Menashy, Francine
2018-01-01
This study examines power asymmetries within the largest multi-stakeholder agency in the education sector: the Global Partnership for Education (GPE). Drawing from data collected through key informant interviews and document analyses, this research asks if the establishment of the GPE has altered power arrangements in educational aid. The study…
ERIC Educational Resources Information Center
Woo, Minjung; Kim, Sungwoon; Kim, Jingu; Petruzzello, Steven J.; Hatfield, Bradley D.
2010-01-01
The "feel better" effect of exercise has been well established, but the optimal intensity needed to elicit a positive affective response is controversial. In addition, the mechanisms underlying such a response are unclear. To clarify these issues, female undergraduate students were monitored for electroencephalographic (EEG) and self-reported…
Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential
Wang, Lulu; Habib, Amyn A.; Mintz, Akiva; Li, King C.; Zhao, Dawen
2017-01-01
Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood–brain barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers, are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential image-guided drug delivery to treat brain tumors. PMID:28654387
Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential.
Wang, Lulu; Habib, Amyn A; Mintz, Akiva; Li, King C; Zhao, Dawen
2017-01-01
Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood-brain barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers, are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential image-guided drug delivery to treat brain tumors.
Discriminating Majorana neutrino textures in light of the baryon asymmetry
NASA Astrophysics Data System (ADS)
Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar
2015-06-01
We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.
Giant electron-hole transport asymmetry in ultra-short quantum transistors.
McRae, A C; Tayari, V; Porter, J M; Champagne, A R
2017-05-31
Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e-h charging energy asymmetry). We parameterize the e-h transport asymmetry by the ratio of the hole and electron charging energies η e-h . This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, η e-h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV.
Lateralization of magnetic compass orientation in a migratory bird
NASA Astrophysics Data System (ADS)
Wiltschko, Wolfgang; Traudt, Joachim; Güntürkün, Onur; Prior, Helmut; Wiltschko, Roswitha
2002-10-01
Lateralization of brain functions, once believed to be a human characteristic, has now been found to be widespread among vertebrates. In birds, asymmetries of visual functions are well studied, with each hemisphere being specialized for different tasks. Here we report lateralized functions of the birds' visual system associated with magnetoperception, resulting in an extreme asymmetry of sensing the direction of the magnetic field. We found that captive migrants tested in cages with the magnetic field as the only available orientation cue were well oriented in their appropriate migratory direction when using their right eye only, but failed to show a significant directional preference when using their left eye. This implies that magnetoreception for compass orientation, assumed to take place in the eyes alongside the visual processes, is strongly lateralized, with a marked dominance of the right eye/left brain hemisphere.
Local nematic susceptibility in stressed BaFe 2 As 2 from NMR electric field gradient measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kissikov, T.; Sarkar, R.; Lawson, M.
The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe 2As 2. We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. In conclusion,more » our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.« less
Local nematic susceptibility in stressed BaFe 2 As 2 from NMR electric field gradient measurements
Kissikov, T.; Sarkar, R.; Lawson, M.; ...
2017-12-15
The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe 2As 2. We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. In conclusion,more » our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.« less
NASA Technical Reports Server (NTRS)
Lu, Y. T.; Feldman, L. J.
1997-01-01
Roots of many species grow downward (orthogravitropism) only when illuminated. Previous work suggests that this is a calcium-regulated response and that both calmodulin and calcium/calmodulin-dependent kinases participate in transducing gravity and light stimuli. A genomic sequence has been obtained for a calcium/calmodulin-dependent kinase homolog (MCK1) expressed in root caps, the site of perception for both light and gravity. This homolog consists of 7265 base pairs and contains 11 exons and 10 introns. Since MCK1 is expressed constitutively in both light and dark, it is unlikely that the light directly affects MCK1 expression, though the activity of the protein may be affected by light. In cultivars showing light-regulated gravitropism, we hypothesize that MCK1, or a homolog, functions in establishing the auxin asymmetry necessary for orthogravitropism.
Campbell, W.B.; Emlen, J.M.; Hershberger, W.K.
1998-01-01
Developmental stability, or homeostasis, facilitates the production of consistent phenotypes by buffering against stress. Fluctuating asymmetry is produced by developmental instability and is manifested as small random departures from bilateral symmetry. Increased fluctuating asymmetry is thought to parallel compromised fitness, in part, because stress promotes energy dissipation. Compensatory energy expenditures within the organism are required to complete development, thus promoting instability through reductions in homeostasis. Increased heterozygosity may enhance developmental stability by reducing energy dissipation from stress through increased metabolic efficiency, possibly by providing greater flexibility in metabolic pathways. Traditionally, fluctuating asymmetry has been used as a bioindicator of chronic stress, provided that selective mortality of less fit individuals did not reduce stress-mediated increases in fluctuating asymmetry to background levels produced by natural developmental error, or create data inconsistencies such as higher asymmetry in groups exposed to lower stress. Unfortunately, absence of selective mortality and its effects, while often assumed, can be difficult to substantiate. We integrated measures of early growth, mortality, fluctuating asymmetry (mandibular pores, pectoral finrays, pelvic finrays, and gillrakers on the upper and lower arms of the first branchial arch) and directional asymmetry (branchiostegal rays) to assess chronic thermal stress (fluctuating temperatures as opposed to ambient temperatures) in developing eggs from two different coho salmon (Oncorhynchus kisutch) stocks and their reciprocal hybrids. Hybridization provided insight on the capacity of heterozygosity to reduce stress during development. Although egg losses were consistently higher in crosses exposed to fluctuating temperatures, egg mortality was predominantly a function of maternal stock of origin. Post-hatch losses were higher in crosses exposed to ambient temperatures than in crosses exposed to fluctuating temperatures during embryogenesis. Observed patterns of early growth revealed no heterosis, but instead reflected maternal effects, with some crosses slowing growth and yolk utilization when exposed to fluctuating temperatures. Analyses of fluctuating asymmetry also showed no effects from heterosis. While analyses of composite asymmetry scores and branchiostegal rays were inconclusive, analyses of individual characters showed significantly higher fluctuating asymmetry in pelvic finray counts and a marginal change in the numbers of fish asymmetric for this character in crosses exposed to chronic thermal stress. In contrast, the fluctuating asymmetry in lower gillraker counts was significantly higher in crosses exposed to ambient temperatures and there were significantly more fish asymmetric for this character. Data on mortalities and fluctuating asymmetry indicate pelvic finray development was thermally stressed, while the heightened fluctuating asymmetry in lower gillraker counts under ambient temperatures was due to a greater frequency of less fit fish that had not been culled by thermal stress. Changes in early growth patterns in response to developmental stress yielded no parallel responses in meristic characters. We conclude that chronic thermal stress produced both selectively lethal and sublethal effects that directly shaped fluctuating asymmetry and fitness profiles in these crosses. Implicit in this conclusion is that developmental instability analyses can detect more than just chronic sublethal stress, thus providing substantial credence for using instability studies as proactive bioassessment methodologies.
Callander, Davon C; Alcorn, Melissa R; Birsoy, Bilge; Rothman, Joel H
2014-06-01
Anatomical left-right (L/R) asymmetry in C. elegans is established in the four-cell embryo as a result of anteroposterior skewing of transverse mitotic spindles with a defined handedness. This event creates a chiral embryo and ultimately an adult body plan with fixed L/R positioning of internal organs and components of the nervous system. While this "dextral" configuration is invariant in hermaphrodites, it can be reversed by physical manipulation of the early embryo or by mutations that interfere with mitotic spindle orientation, which leads to viable, mirror-reversed (sinistral) animals. During normal development of the C. elegans male, the gonad develops on the right of the midline, with the gut bilaterally apposed on the left. However, we found that in males of the laboratory N2 strain and Hawaiian ("Hw") wild isolate, the gut/gonad asymmetry is frequently reversed in a temperature-dependent manner, independent of normal embryonic chirality. We also observed sporadic errors in gonad migration occurring naturally during early larval stages of these and other wild strains; however, the incidence of such errors does not correlate with the frequency of L/R gut/gonad reversals in these strains. Analysis of N2/Hw hybrids and recombinant inbred advanced intercross lines (RIAILs) indicate that the L/R organ reversals are likely to result from recessively acting variations in multiple genes. Thus, unlike the highly reproducible L/R asymmetries of most structures in hermaphrodites, the L/R asymmetry of the male C. elegans body plan is less rigidly determined and subject to natural variation that is influenced by a multiplicity of genes. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Revil-Baudard, Benoit; Chandola, Nitin; Cazacu, Oana; Barlat, Frédéric
2014-10-01
The Swift phenomenon, which refers to the occurrence of permanent axial deformation during monotonic free-end torsion, has been known for a very long time. While plastic anisotropy is considered to be its main cause, there is no explanation as to why in certain materials irreversible elongation occurs while in others permanent shortening is observed. In this paper, a correlation between Swift effects and the stress-strain behavior in uniaxial tension and compression is established. It is based on an elastic-plastic model that accounts for the combined influence of anisotropy and tension-compression asymmetry. It is shown that, if for a given orientation the uniaxial yield stress in tension is larger than that in compression, the specimen will shorten when twisted about that direction; however, if the yield stress in uniaxial compression is larger than that in uniaxial tension, axial elongation will occur. Furthermore, it is shown that on the basis of a few simple mechanical tests it is possible to predict the particularities of the plastic response in torsion for both isotropic and initially anisotropic materials. Unlike other previous interpretations of the Swift effects, which were mainly based on crystal plasticity and/or texture evolution, it is explained the occurrence of Swift effects at small to moderate plastic strains. In particular, the very good quantitative agreement between model and data for a strongly anisotropic AZ31-Mg alloy confirm the correlation established in this work between tension-compression asymmetry and Swift effects. Furthermore, it is explained why the sign of the axial plastic strains that develop depends on the twisting direction.
Millar, Keith; Bell, Aileen; Bowman, Adrian; Brown, Denise; Lo, Tsz-Wai; Siebert, Paul; Simmons, David; Ayoub, Ashraf
2013-03-01
Objective : Objective measure of scarring and three-dimensional (3D) facial asymmetry after surgical correction of unilateral cleft lip (UCL) and unilateral cleft lip (UCLP). It was hypothesized that the degree of scarring or asymmetry would be correlated with poorer psychological function. Design : In a cross-sectional design, children underwent 3D imaging of the face and completed standardized assessments of self-esteem, depression, and state and trait anxiety. Parents rated children's adjustment with a standard scale. Setting : Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences. Patients : Fifty-one children aged 10 years with UCLP and 43 with UCL were recruited from the cohort treated with the surgical protocol of the CLEFTSIS managed clinical network in Scotland. Methods : Objective assessment to determine the luminance and redness of the scar and facial asymmetry. Depression, anxiety, and a self-esteem assessment battery were used for the psychological analysis. Results : Cleft cases showed superior psychological adjustment when compared with normative data. Prevalence of depression matched the population norm. The visibility of the scar (luminance ratio) was significantly correlated with lower self-esteem and higher trait anxiety in UCLP children (P = .004). Similar but nonsignificant trends were seen in the UCL group. Parental ratings of poorer adjustment also correlated with greater luminance of the scar. Conclusions : The objectively defined degree of postoperative cleft scarring was associated with subclinical symptoms of anxiety, depression, and low self-esteem.