Sample records for asynchronous optical afterglow

  1. The Faint Optical Afterglow and Host Galaxy of GRB 020124: Implications for the Nature of Dark Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Berger, E.; Kulkarni, S. R.; Bloom, J. S.; Price, P. A.; Fox, D. W.; Frail, D. A.; Axelrod, T. S.; Chevalier, R. A.; Colbert, E.; Costa, E.; Djorgovski, S. G.; Frontera, F.; Galama, T. J.; Halpern, J. P.; Harrison, F. A.; Holtzman, J.; Hurley, K.; Kimble, R. A.; McCarthy, P. J.; Piro, L.; Reichart, D.; Ricker, G. R.; Sari, R.; Schmidt, B. P.; Wheeler, J. C.; Vanderppek, R.; Yost, S. A.

    2002-12-01

    We present ground-based optical observations of GRB 020124 starting 1.6 hr after the burst, as well as subsequent Very Large Array and Hubble Space Telescope (HST) observations. The optical afterglow of GRB 020124 is one of the faintest afterglows detected to date, and it exhibits a relatively rapid decay, Fν~t-1.60+/-0.04, followed by further steepening. In addition, a weak radio source was found coincident with the optical afterglow. The HST observations reveal that a positionally coincident host galaxy must be the faintest host to date, R>~29.5 mag. The afterglow observations can be explained by several models requiring little or no extinction within the host galaxy, AhostV~0-0.9 mag. These observations have significant implications for the interpretation of the so-called dark bursts (bursts for which no optical afterglow is detected), which are usually attributed to dust extinction within the host galaxy. The faintness and relatively rapid decay of the afterglow of GRB 020124, combined with the low inferred extinction, indicate that some dark bursts are intrinsically dim and not dust obscured. Thus, the diversity in the underlying properties of optical afterglows must be observationally determined before substantive inferences can be drawn from the statistics of dark bursts.

  2. The optical afterglow of the short gamma-ray burst GRB 050709.

    PubMed

    Hjorth, Jens; Watson, Darach; Fynbo, Johan P U; Price, Paul A; Jensen, Brian L; Jørgensen, Uffe G; Kubas, Daniel; Gorosabel, Javier; Jakobsson, Páll; Sollerman, Jesper; Pedersen, Kristian; Kouveliotou, Chryssa

    2005-10-06

    It has long been known that there are two classes of gamma-ray bursts (GRBs), mainly distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (those lasting more than approximately 2 s), which ultimately linked them with energetic type Ic supernovae, came from the discovery of their long-lived X-ray and optical 'afterglows', when precise and rapid localizations of the sources could finally be obtained. X-ray localizations have recently become available for short (duration <2 s) GRBs, which have evaded optical detection for more than 30 years. Here we report the first discovery of transient optical emission (R-band magnitude approximately 23) associated with a short burst: GRB 050709. The optical afterglow was localized with subarcsecond accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows of long GRBs, which are attributable to synchrotron emission from ultrarelativistic ejecta. We did not, however, detect a supernova, as found in most nearby long GRB afterglows, which suggests a different origin for the short GRBs.

  3. Short GRB Prompt and Afterglow Correlations

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2007-01-01

    The Swift data set on short GRBs has now grown large enough to study correlations of key parameters. The goal is to compare long and short bursts to better understand similarities and differences in the burst origins. In this study we consider the both prompt and afterglow fluxes. It is found that the optical, X-ray and gamma-ray emissions are linearly correlated - stronger bursts tend to have brighter afterglows, and bursts with brighter X-ray afterglow tend to have brighter optical afterglow. Both the prompt and afterglow fluxes are, on average, lower for short bursts than for long. Although there are short GRBs with undetected optical emission, there is no evidence for "dark" short bursts with anomalously low opt/X ratios. The weakest short bursts have a low X-ray/gamma-ray ratio.

  4. The bright optical flash and afterglow from the gamma-ray burst GRB 130427A.

    PubMed

    Vestrand, W T; Wren, J A; Panaitescu, A; Wozniak, P R; Davis, H; Palmer, D M; Vianello, G; Omodei, N; Xiong, S; Briggs, M S; Elphick, M; Paciesas, W; Rosing, W

    2014-01-03

    The optical light generated simultaneously with x-rays and gamma rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse. We report on the bright optical flash and fading afterglow from powerful burst GRB 130427A. The optical and >100-megaelectron volt (MeV) gamma-ray flux show a close correlation during the first 7000 seconds, which is best explained by reverse shock emission cogenerated in the relativistic burst ejecta as it collides with surrounding material. At later times, optical observations show the emergence of emission generated by a forward shock traversing the circumburst environment. The link between optical afterglow and >100-MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying gamma-ray emission at energies ranging from gigaelectron volts to teraelectron volts.

  5. Investigating the Impact of Optical Selection Effects on Observed Rest-frame Prompt GRB Properties

    NASA Astrophysics Data System (ADS)

    Turpin, D.; Heussaff, V.; Dezalay, J.-P.; Atteia, J.-L.; Klotz, A.; Dornic, D.

    2016-11-01

    Measuring gamma-ray burst (GRB) properties in their rest frame is crucial for understanding the physics at work in GRBs. This can only be done for GRBs with known redshifts. Since redshifts are usually measured from the optical spectrum of the afterglow, correlations between prompt and afterglow emissions may introduce biases into the distribution of the rest-frame properties of the prompt emission, especially considering that we measure the redshift of only one-third of Swift GRBs. In this paper, we study the optical flux of GRB afterglows and its connection to various intrinsic properties of GRBs. We also discuss the impact of the optical selection effect on the distribution of rest-frame prompt properties of GRBs. Our analysis is based on a sample of 90 GRBs with good optical follow-up and well-measured prompt emission. Seventy-six of them have a measure of redshift and 14 have no redshift. We compare the rest-frame prompt properties of GRBs with different afterglow optical fluxes in order to check for possible correlations between the promt properties and the optical flux of the afterglow. The optical flux is measured two hours after the trigger, which is a typical time for the measure of the redshift. We find that the optical flux of GRB afterglows in our sample is mainly driven by their optical luminosity and depends only slightly on their redshift. We show that GRBs with low and high afterglow optical fluxes have similar E {}{{pi}}, E {}{{iso}}, and L {}{{iso}}, indicating that the rest-frame distributions computed from GRBs with a redshift are not significantly distorted by optical selection effects. However, we found that the {T}90{rest} distribution is not immune to optical selection effects, which favor the selection of GRBs with longer durations. Finally, we note that GRBs well above the E {}{{pi}}-E {}{{iso}} relation have lower optical fluxes and we show that optical selection effects favor the detection of GRBs with bright optical afterglows located close to or below the best-fit E {}{{pi}}-E {}{{iso}} relation (Amati relation), whose redshift is easily measurable. With more than 300 GRBs with a redshift, we now have a much better view of the intrinsic properties of these remarkable events. At the same time, increasing statistics allow us to understand the biases acting on the measurements. The optical selection effects induced by the redshift measurement strategies cannot be neglected when we study the properties of GRBs in their rest frame, even for studies focused on prompt emission.

  6. Rapid fading of optical afterglows as evidence for beaming in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Dai, Z. G.; Lu, T.

    2000-03-01

    Based on the refined dynamical model proposed by us earlier for beamed gamma -ray burst ejecta, we carry out detailed numerical procedure to study those gamma -ray bursts with rapidly fading afterglows (i.e., ~ t-2). It is found that optical afterglows from GRB 970228, 980326, 980519, 990123, 990510 and 991208 can be satisfactorily fitted if the gamma -ray burst ejecta are highly collimated, with a universal initial half opening angle theta_0 ~ 0.1. The obvious light curve break observed in GRB 990123 is due to the relativistic-Newtonian transition of the beamed ejecta, and the rapidly fading optical afterglows come from synchrotron emissions during the mildly relativistic and non-relativistic phases. We strongly suggest that the rapid fading of afterglows currently observed in some gamma -ray bursts is evidence for beaming in these cases.

  7. Energy input and response from prompt and early optical afterglow emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wren, J A; Wozniak, P R; Aptekar, R; Golentskii, S; Pal'shin, V; Sakamoto, T; White, R R; Evans, S; Casperson, D; Fenimore, E

    2006-07-13

    The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.

  8. GRB-081029: A Step Towards Understanding Multiple Afterglow Components

    NASA Technical Reports Server (NTRS)

    Holland Stephen T.

    2010-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst-081029 at a redshift of z = 3.8474. We combine X-ray and optical observations from (Swift) with optical and infrared data from REM to obtain a detailed data set extending from approx 10(exp 2)s to approx 10(exp 5)s after the BAT trigger, and from approx.10 keV to 16,000 AA. The X-ray afterglow showed a shallow initial decay followed by u rapid decay after about 18,000 s. The optical afterglow, however, shows an uncharecteristic rise at about 5000 s that has no corresponding feature in the X-ray light curve. The data are not consistent with a single-component jet. It is possible that there are multiple physical components contributing to the afterglow of GRB-081029.

  9. Correlations of Prompt and Afterglow Emission in Swift Long and Short Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrel, Neil; Barthelmy, S. d.; Burrows, D. N.; Cannizzo, J. K.; Chincarini, G.; Feinmore, E.; Kouveliotou, C.; O'Brien, P.; Palmer, D. M.; Racusin, J.; hide

    2008-01-01

    Correlation studies of prompt and afterglow emissions from gamma-ray bursts (GRBs) between different spectral bands has been difficult to do in the past because few bursts had comprehensive and intercomparable afterglow measurements. In this paper we present a large and uniform data set for correlation analysis based on bursts detected by the Swift mission. For the first time, short and long bursts can be analyzed and compared. It is found for both classes that the optical, X-ray and gamma-ray emissions are linearly correlated, but with a large spread about the correlation line; stronger bursts tend to have brighter afterglows, and bursts with brighter X-ray afterglow tend to have brighter optical afterglow. Short bursts are, on average, weaker in both prompt and afterglow emissions. No short bursts are seen with extremely low optical to X-ray ratio as occurs for 'dark' long bursts. Although statistics are still poor for short bursts, there is no evidence yet for a subgroup of short bursts with high extinction as there is for long bursts. Long bursts are detected in the dark category at the same fraction as for pre-Swift bursts. Interesting cases are discovered of long bursts that are detected in the optical, and yet have low enough optical to X-ray ratio to be classified as dark. For the prompt emission, short and long bursts have different average tracks on flux vs fluence plots. In Swift, GRB detections tend to be fluence limited for short bursts and flux limited for long events.

  10. The Late-time Afterglow of the Extremely Energetic Short Burst GRB 090510 Revisited

    NASA Technical Reports Server (NTRS)

    Guelbenzu, A. Nicuesa; Klose, S.; Kruehler, T.; Greiner, J.; Rossi, A.; Kann, D. A.; Olivares, F.; Rau, A.; Afonso, P. M. J.; Elliott, J.; hide

    2012-01-01

    Context. The Swift discovery of the short burst GRB 090510 has raised considerable attention mainly because of two reasons: first, it had a bright optical afterglow, and second it is among the most energetic events detected so far within the entire GRB population (long plus short). The afterglow of GRB 090510 was observed with Swift/UVOT and Swift/XRT and evidence of a jet break around 1.5 ks after the burst has been reported in the literature, implying that after this break the optical and X-ray light curve should fade with the same decay slope. Aims. As noted by several authors, the post-break decay slope seen in the UVOT data is much shallower than the steep decay in the X-ray band, pointing to a (theoretically hard to understand) excess of optical flux at late times. We assess here the validity of this peculiar behavior. Methods. We reduced and analyzed new afterglow light-curve data obtained with the multichannel imager GROND. These additional g'r'i'z' data were then combined with the UVOT and XRT data to study the behavior of the afterglow at late times more stringently. Results. Based on the densely sampled data set obtained with GROND, we find that the optical afterglow of GRB 090510 did indeed enter a steep decay phase starting around 22 ks after the burst. During this time the GROND optical light curve is achromatic, and its slope is identical to the slope of the X-ray data. In combination with the UVOT data this implies that a second break must have occurred in the optical light curve around 22 ks post burst, which, however, has no obvious counterpart in the X-ray band, contradicting the interpretation that this could be another jet break. Conclusions. The GROND data provide the missing piece of evidence that the optical afterglow of GRB 090510 did follow a post-jet break evolution at late times. The break seen in the optical light curve around 22 ks in combination with its missing counterpart in the X-ray band could be due to the passage of the injection frequency across the optical bands, as already theoretically proposed in the literature. This is possibly the first time that this passage has been clearly seen in an optical afterglow. In addition, our results imply that there is no more evidence for an excess of flux in the optical bands at late times.

  11. Constraints on an Optical Afterglow and on Supernova Light Following the Short Burst GRB 050813

    NASA Technical Reports Server (NTRS)

    Ferrero, P.; Sanchez, S. F.; Kann, D. A.; Klose, S.; Greiner, J.; Gorosabel, J.; Hartmann, D. H.; Henden, A. A.; Moller, P.; Palazzi, E.; hide

    2006-01-01

    We report early follow-up observations of the error box of the short burst 050813 using the telescopes at Calar Alto and at Observatorio Sierra Nevada (OSN), followed by deep VLT/FORS2 I-band observations obtained under very good seeing conditions 5.7 and 11.7 days after the event. No evidence for a GRB afterglow was found in our Calar Alto and OSN data, no rising supernova component was detected in our FORS2 images. A potential host galaxy can be identified in our FORS2 images, even though we cannot state with certainty its association with GRB 050813. IN any case, the optical afterglow of GRB 050813 was very faint, well in agreement with what is known so far about the optical properties of afterglows of short bursts. We conclude that all optical data are not in conflict with the interpretation that GRB 050813 was a short burst.

  12. The two-component afterglow of Swift GRB 050802

    NASA Astrophysics Data System (ADS)

    Oates, S. R.; de Pasquale, M.; Page, M. J.; Blustin, A. J.; Zane, S.; McGowan, K.; Mason, K. O.; Poole, T. S.; Schady, P.; Roming, P. W. A.; Page, K. L.; Falcone, A.; Gehrels, N.

    2007-09-01

    This paper investigates GRB 050802, one of the best examples of a Swift gamma-ray burst afterglow that shows a break in the X-ray light curve, while the optical counterpart decays as a single power law. This burst has an optically bright afterglow of 16.5 mag, detected throughout the 170-650nm spectral range of the Ultraviolet and Optical Telescope (UVOT) onboard Swift. Observations began with the X-ray Telescope and UVOT telescopes 286s after the initial trigger and continued for 1.2 ×106s. The X-ray light curve consists of three power-law segments: a rise until 420s, followed by a slow decay with α =0.63 +/-0.03 until 5000s, after which, the light curve decays faster with a slope of α3 =1.59 +/-0.03. The optical light curve decays as a single power law with αO =0.82 +/-0.03 throughout the observation. The X-ray data on their own are consistent with the break at 5000s being due to the end of energy injection. Modelling the optical to X-ray spectral energy distribution, we find that the optical afterglow cannot be produced by the same component as the X-ray emission at late times, ruling out a single-component afterglow. We therefore considered two-component jet models and find that the X-ray and optical emission is best reproduced by a model in which both components are energy injected for the duration of the observed afterglow and the X-ray break at 5000s is due to a jet break in the narrow component. This bright, well-observed burst is likely a guide for interpreting the surprising finding of Swift that bursts seldom display achromatic jet breaks.

  13. Early optical polarization of a gamma-ray burst afterglow.

    PubMed

    Mundell, Carole G; Steele, Iain A; Smith, Robert J; Kobayashi, Shiho; Melandri, Andrea; Guidorzi, Cristiano; Gomboc, Andreja; Mottram, Chris J; Clarke, David; Monfardini, Alessandro; Carter, David; Bersier, David

    2007-03-30

    We report the optical polarization of a gamma-ray burst (GRB) afterglow, obtained 203 seconds after the initial burst of gamma-rays from GRB 060418, using a ring polarimeter on the robotic Liverpool Telescope. Our robust (2sigma) upper limit on the percentage of polarization, less than 8%, coincides with the fireball deceleration time at the onset of the afterglow. The combination of the rate of decay of the optical brightness and the low polarization at this critical time constrains standard models of GRB ejecta, ruling out the presence of a large-scale ordered magnetic field in the emitting region.

  14. GRB 110530A: Peculiar Broad Bump and Delayed Plateau in Early Optical Afterglows

    NASA Astrophysics Data System (ADS)

    Zhong, Shu-Qing; Xin, Li-Ping; Liang, En-Wei; Wei, Jian-Yan; Urata, Yuji; Huang, Kui-Yun; Qiu, Yu-Lei; Deng, Can-Min; Wang, Yuan-Zhu; Deng, Jin-Song

    2016-11-01

    We report our very early optical observations of GRB 110530A and investigate its jet properties together with its X-ray afterglow data. A peculiar broad onset bump followed by a plateau is observed in its early R band afterglow light curve. The optical data in the other bands and the X-ray data are well consistent with the temporal feature of the R band light curve. Our joint spectral fits of the optical and X-ray data show that they are in the same regime, with a photon index of ∼1.70. The optical and X-ray afterglow light curves are well fitted with the standard external shock model by considering a delayed energy injection component. Based on our modeling results, we find that the radiative efficiency of the gamma-ray burst jet is ∼ 1 % and the magnetization parameter of the afterglow jet is \\lt 0.04 with a derived extremely low {ε }B (the ratio of shock energy to the magnetic field) of (1.64+/- 0.25)× {10}-6. These results indicate that the jet may be matter dominated. A discussion on delayed energy injection from the accretion of the late fall-back material of its pre-supernova star is also presented.

  15. MODELING THE MULTI-BAND AFTERGLOW OF GRB 130831A: EVIDENCE FOR A SPINNING-DOWN MAGNETAR DOMINATED BY GRAVITATIONAL WAVE LOSSES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.; Zong, H. S.; Huang, Y. F., E-mail: zonghs@nju.edu.cn, E-mail: hyf@nju.edu.cn

    2016-06-01

    The X-ray afterglow of GRB 130831A shows an “internal plateau” with a decay slope of ∼0.8, followed by a steep drop at around 10{sup 5} s with a slope of ∼6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which themore » magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with an approximately constant flux which is compatible with observation. Assuming that the magnetar wind has a negligible contribution in the optical band, we interpret the optical afterglow as the forward shock emission by invoking the energy injection from a continuously refreshed shock following the prompt emission phase. It is shown that our model can basically describe the temporal evolution of the multi-band afterglow of GRB 130831A.« less

  16. Modeling the Multi-band Afterglow of GRB 130831A: Evidence for a Spinning-down Magnetar Dominated by Gravitational Wave Losses?

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, Y. F.; Zong, H. S.

    2016-06-01

    The X-ray afterglow of GRB 130831A shows an “internal plateau” with a decay slope of ˜0.8, followed by a steep drop at around 105 s with a slope of ˜6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which the magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with an approximately constant flux which is compatible with observation. Assuming that the magnetar wind has a negligible contribution in the optical band, we interpret the optical afterglow as the forward shock emission by invoking the energy injection from a continuously refreshed shock following the prompt emission phase. It is shown that our model can basically describe the temporal evolution of the multi-band afterglow of GRB 130831A.

  17. NuSTAR observations of GRB 130427A establish a single component synchrotron afterglow origin for the late optical to multi-GEV emission

    DOE PAGES

    Kouveliotou, Chryssa; Granot, J.; Racusin, J. L.; ...

    2013-11-21

    Here, GRB 130427A occurred in a relatively nearby galaxy; its prompt emission had the largest GRB fluence ever recorded. The afterglow of GRB 130427A was bright enough for the Nuclear Spectroscopic Telescope ARray ( NuSTAR) to observe it in the 3-79 keV energy range long after its prompt emission (~1.5 and 5 days). This range, where afterglow observations were previously not possible, bridges an important spectral gap. Combined with Swift, Fermi, and ground-based optical data, NuSTAR observations unambiguously establish a single afterglow spectral component from optical to multi-GeV energies a day after the event, which is almost certainly synchrotron radiation.more » Such an origin of the late-time Fermi/Large Area Telescope >10 GeV photons requires revisions in our understanding of collisionless relativistic shock physics.« less

  18. Hidden in the light: Magnetically induced afterglow from trapped chameleon fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gies, Holger; Mota, David F.; Shaw, Douglas J.

    2008-01-15

    We propose an afterglow phenomenon as a unique trace of chameleon fields in optical experiments. The vacuum interaction of a laser pulse with a magnetic field can lead to a production and subsequent trapping of chameleons in the vacuum chamber, owing to their mass dependence on the ambient matter density. Magnetically induced reconversion of the trapped chameleons into photons creates an afterglow over macroscopic timescales that can conveniently be searched for by current optical experiments. We show that the chameleon parameter range accessible to available laboratory technology is comparable to scales familiar from astrophysical stellar energy-loss arguments. We analyze quantitativelymore » the afterglow properties for various experimental scenarios and discuss the role of potential background and systematic effects. We conclude that afterglow searches represent an ideal tool to aim at the production and detection of cosmologically relevant scalar fields in the laboratory.« less

  19. The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003.

    PubMed

    Price, P A; Fox, D W; Kulkarni, S R; Peterson, B A; Schmidt, B P; Soderberg, A M; Yost, S A; Berger, E; Djorgovski, S G; Frail, D A; Harrison, F A; Sari, R; Blain, A W; Chapman, S C

    2003-06-19

    Past studies of cosmological gamma-ray bursts (GRBs) have been hampered by their extreme distances, resulting in faint afterglows. A nearby GRB could potentially shed much light on the origin of these events, but GRBs with a redshift z

  20. An Estimation of the Gamma-Ray Burst Afterglow Apparent Optical Brightness Distribution Function

    NASA Astrophysics Data System (ADS)

    Akerlof, Carl W.; Swan, Heather F.

    2007-12-01

    By using recent publicly available observational data obtained in conjunction with the NASA Swift gamma-ray burst (GRB) mission and a novel data analysis technique, we have been able to make some rough estimates of the GRB afterglow apparent optical brightness distribution function. The results suggest that 71% of all burst afterglows have optical magnitudes with mR<22.1 at 1000 s after the burst onset, the dimmest detected object in the data sample. There is a strong indication that the apparent optical magnitude distribution function peaks at mR~19.5. Such estimates may prove useful in guiding future plans to improve GRB counterpart observation programs. The employed numerical techniques might find application in a variety of other data analysis problems in which the intrinsic distributions must be inferred from a heterogeneous sample.

  1. Identifying the Location in the Host Galaxy of Short GRB 1111l7A with the Chandra Sub- Arcsecond Position

    NASA Technical Reports Server (NTRS)

    Sakamoto, Takanori; Troja, E.; Aoki, K.; Guiriec, S.; Im, M.; Leloudas, G.; Malesani, D.; Melandri, A.; deUgartePostigo, A.; Urata, Y.; hide

    2012-01-01

    We present our successful program using Chandra for identifying the X-ray afterglow with sub-arcsecond accuracy for the short GRB 111117A d iscovered by Swift and Fermi. Thanks to our rapid target of opportuni ty request, Chandra clearly detected the X-ray afterglow, whereas no optical afterglow was found in deep optical observations. Instead, we clearly detect the host galaxy in optica; and also in near-infrared b ands. We found that the best photometric redshift fitofthe host is z = 1.31:(+0.46/-0.23) (90% confidence), making it one of the highest redshift short GRBs. Furthermore, we see an offset of 1.0+/-O.2 arcseco nds, which corresponds to 8.4+/-1.7 kpc aSBuming z= 1.31, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond localization of the afterglow in X -rays for short GRBs to study GRB environments in great detail.

  2. The Swift X-Ray Te1escope: Status and Performance

    NASA Technical Reports Server (NTRS)

    Burrows, David N.; Kennea, J.A.; Abbey, A.F.; Beardmore, A.; Campana, S.; Capalbi, M.; Chincarini, G.; Cusumano, G.; Evans, P.A.; Hill, J.E.; hide

    2007-01-01

    We present science highlights and performance from the Swift X-ray Telescope (XRT), which was launched on November 20,2004. The XRT covers the 0.2-10 keV band, and spends most of its time observing gamma-ray burst (GRB) afterglows, though it has also performed observations of many other objects. By mid-August 2007, the XRT had observed over 220 GRB afterglows, detecting about 96% of them. The XRT positions enable followup ground-based optical observations, with roughly 60% of the afterglows detected at optical or near IR wavelengths. Redshifts are measured for 33% of X-ray afterglows. Science highlights include the discovery of flaring behavior at quite late times, with implications for GRB central engines; localization of short GRBs, leading to observational support for compact merger progenitors for this class of bursts; a mysterious plateau phase to GRB afterglows; as well as many other interesting observations such as X-ray emission from comets, novae, galactic transients, and other objects.

  3. Exploring short-GRB afterglow parameter space for observations in coincidence with gravitational waves

    NASA Astrophysics Data System (ADS)

    Saleem, M.; Resmi, L.; Misra, Kuntal; Pai, Archana; Arun, K. G.

    2018-03-01

    Short duration Gamma Ray Bursts (SGRB) and their afterglows are among the most promising electromagnetic (EM) counterparts of Neutron Star (NS) mergers. The afterglow emission is broad-band, visible across the entire electromagnetic window from γ-ray to radio frequencies. The flux evolution in these frequencies is sensitive to the multidimensional afterglow physical parameter space. Observations of gravitational wave (GW) from BNS mergers in spatial and temporal coincidence with SGRB and associated afterglows can provide valuable constraints on afterglow physics. We run simulations of GW-detected BNS events and assuming that all of them are associated with a GRB jet which also produces an afterglow, investigate how detections or non-detections in X-ray, optical and radio frequencies can be influenced by the parameter space. We narrow down the regions of afterglow parameter space for a uniform top-hat jet model, which would result in different detection scenarios. We list inferences which can be drawn on the physics of GRB afterglows from multimessenger astronomy with coincident GW-EM observations.

  4. On the nature of the extremely fast optical rebrightening of the afterglow of GRB 081029

    NASA Astrophysics Data System (ADS)

    Nardini, M.; Greiner, J.; Krühler, T.; Filgas, R.; Klose, S.; Afonso, P.; Clemens, C.; Guelbenzu, A. N.; Olivares E., F.; Rau, A.; Rossi, A.; Updike, A.; Küpcü Yoldaş, A.; Yoldaş, A.; Burlon, D.; Elliott, J.; Kann, D. A.

    2011-07-01

    Context. After the launch of the Swift satellite, the gamma-ray burst (GRB) optical light-curve smoothness paradigm has been questioned thanks to the faster and better sampled optical follow-up, which has unveiled a very complex behaviour. This complexity is triggering the interest of the whole GRB community. The GROND multi-channel imager is used to study optical and near-infrared (NIR) afterglows of GRBs with unprecedented optical and near-infrared temporal and spectral resolution. The GRB 081029 has a very prominent optical rebrightening event and is an outstanding example of the application of the multi-channel imager to GRB afterglows. Aims: Here we exploit the rich GROND multi-colour follow-up of GRB 081029 combined with XRT observations to study the nature of late-time rebrightenings that appear in the optical-NIR light-curves of some GRB afterglows. Methods: We analyse the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared Detector (GROND) at the 2.2 m MPI/ESO telescope and the X-ray data obtained with the XRT telescope on board the Swift observatory. The multi-wavelength temporal and spectral evolution is discussed in the framework of different physical models. Results: The extremely steep optical and NIR rebrightening observed in GRB 081029 cannot be explained in the framework of the standard forward shock afterglow model. The absence of a contemporaneous X-ray rebrightening and the evidence of a strong spectral evolution in the optical-NIR bands during the rise suggest two separate components that dominate in the early and late-time light-curves, respectively. The steepness of the optical rise cannot be explained even in the framework of the alternative scenarios proposed in the literature unless a late-time activity of the central engine is assumed. Full GROND photometry of GRB 081029 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A39

  5. Optical flashes from internal pairs formed in gamma-ray burst afterglows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panaitescu, A.

    We develop a numerical formalism for calculating the distribution with energy of the (internal) pairs formed in a relativistic source from unscattered MeV–TeV photons. For gamma-ray burst (GRB) afterglows, this formalism is more suitable if the relativistic reverse shock that energizes the ejecta is the source of the GeV photons. The number of pairs formed is set by the source GeV output (calculated from the Fermi-LAT fluence), the unknown source Lorentz factor, and the unmeasured peak energy of the LAT spectral component. We show synchrotron and inverse-Compton light curves expected from pairs formed in the shocked medium and identify some criteria for testing a pair origin of GRB optical counterparts. Pairs formed in bright LAT afterglows with a Lorentz factor in the few hundreds may produce bright optical counterparts (more » $$R\\lt 10$$) lasting for up to one hundred seconds. As a result, the number of internal pairs formed from unscattered seed photons decreases very strongly with the source Lorentz factor, thus bright GRB optical counterparts cannot arise from internal pairs if the afterglow Lorentz factor is above several hundreds.« less

  6. Optical flashes from internal pairs formed in gamma-ray burst afterglows

    DOE PAGES

    Panaitescu, A.

    2015-06-09

    We develop a numerical formalism for calculating the distribution with energy of the (internal) pairs formed in a relativistic source from unscattered MeV–TeV photons. For gamma-ray burst (GRB) afterglows, this formalism is more suitable if the relativistic reverse shock that energizes the ejecta is the source of the GeV photons. The number of pairs formed is set by the source GeV output (calculated from the Fermi-LAT fluence), the unknown source Lorentz factor, and the unmeasured peak energy of the LAT spectral component. We show synchrotron and inverse-Compton light curves expected from pairs formed in the shocked medium and identify some criteria for testing a pair origin of GRB optical counterparts. Pairs formed in bright LAT afterglows with a Lorentz factor in the few hundreds may produce bright optical counterparts (more » $$R\\lt 10$$) lasting for up to one hundred seconds. As a result, the number of internal pairs formed from unscattered seed photons decreases very strongly with the source Lorentz factor, thus bright GRB optical counterparts cannot arise from internal pairs if the afterglow Lorentz factor is above several hundreds.« less

  7. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; DePasquale, Massimiliano; Mao, Jirong; Sakamoto, Taka; Shady, Patricia; Covino, Stefano; Yi-Zhong, Fan; Zhi-Ping, Jin; D'Avanzo, Paolo; Antonelli, Angelo; hide

    2011-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet Optical Telescope with ground-based optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approx. 100000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.

  8. MITSuME Telescope Observation of GRB080506

    NASA Astrophysics Data System (ADS)

    Mori, Y. A.; Kawai, N.; Arimoto, M.; Yoshida, M.; Ohta, K.

    2009-05-01

    We report the multicolor early afterglow observation of a 200 s-long GRB080506 with the 50 cm MITSuME Telescopes at Akeno and Okayama, Japan. We started observations of the afterglow at 117 s after the trigger at Akeno when the prompt emission was still ongoing, and 253 s after the trigger at Okayama. We find no counterpart for the X-ray flare in the optical light curve, implying that the X-ray and optical emission in the early afterglow have different origins. We also found a temporal break at about 1000 s in the optical light curve, which we interpret as the passing of the spectral peak at νm and derive constraints on the physical parameters based on the synchrotron shock model. The SED in the optical band suggests a significant absorption in the host galaxy, well fitted with the LMC dust model with E(B-V)~0.2 and redshift z~2.2.

  9. The Achromatic Light Curve of the Optical Afterglow of GRB 030226 at a Redshift of z Approximately 2

    NASA Technical Reports Server (NTRS)

    Klose, S.; Greiner, J.; Rau, A.; Henden, A. A.; Hartmann, D. H.; Zeh, A.; Masetti, N.; Guenther, E.; Stecklum, B.; Lindsay, K.

    2003-01-01

    Abstract. We report on optical and near-infrared (NIR) follow-up observations of the afterglow of GRB 030226, mainly performed with the telescopes at ESO La Silla and Paranal, with additional data obtained at other places. Our first observations started 0.2 days after the burst when the afterglow was at a magnitude of R approximately equal to 19 . One week later the magnitude of the afterglow had fallen to R=25, and at two weeks after the burst it could no longer be detected (R > 26). Our VLT blueband spectra show two absorption line systems at redshifts z = 1.962 +/- 0.001 and at z = 1.986 +/- 0.001, placing the redshift of the burster close to 2. Within our measurement errors no evidence for variations in the line strengths has been found between 0.2 and 1.2 days after the burst. An overabundance of alpha-group elements might indicate that the burst occurred in a chemically young interstellar region shaped by the nucleosynthesis from type II supernovae. The spectral slope of the afterglow shows no signs for cosmic dust along the line of sight in the GRB host galaxy, which itself remained undetected (R > 26.2). At the given redshift no supernova component affected the light from the GRB afterglow, so that the optical transient was essentially only powered by the radiation from the GRB fireball, allowing for a detailed investigation of the color evolution of the afterglow light. In our data set no obvious evidence for color changes has been found before, during, or after the smooth break in the light curve approximately 1 day after the burst. In comparison with investigations by others, our data favor the interpretation that the afterglow began to develop into a homogeneous interstellar medium before the break in the light curve became apparent.

  10. Gamma-Ray Bursts, their Hosts, and their Supernovae

    NASA Astrophysics Data System (ADS)

    Bersier, David; Rhoads, James; Rest, Armin; Merrill, Michael; Levan, Andrew; Fruchter, Andrew; Gorosabel Urkia, Javier; Kouveliotou, Chryssa; Hjorth, Jens; Castro Cerón, J. M.; Patel, Sandeep; Strolger, Lou; Tanvir, Nial

    2005-08-01

    We request rapid optical and near-IR followup observations of gamma ray bursts (GRBs), which will exploit unique NOAO capabilities to obtain (a) rapid afterglow identifications and (b) detailed physical information on selected events. We will use the Mosaic cameras on the 4m telescopes for rapid identification of GRB afterglows. These instruments provide unsurpassed sensitivity over a wide field. This cycle, they will (a) help identify low-redshift bursts found by HETE-2, which may constitute a large fraction of low-z bursts even in the Swift era; and (b) search for Swift bursts found by the hard X-ray BAT instrument in case the Swift narrow- field instruments do not find a bright counterpart. Afterglow IDs from this program will provide targets for our imaging and spectroscopy programs with Spitzer and Gemini. Large area near-IR imaging with ISPI and FLAMINGOS, and simultaneous multicolor imaging with SQIID, will help address several open questions about GRBs and their afterglows: (1) Are ``dark'' GRBs (without detected optical afterglows) a consequence of dust absorption in the GRB environment? (2) Are observed breaks in GRB light curves truly wavelength-independent, as predicted under models of beamed burst afterglows? (3) Can IR observations find bursts at extreme redshifts? (4) How well do afterglow models stand up to detailed comparison with high precision spectral slope and light curve measurements?

  11. The SEDs and Host Galaxies of the Dustiest GRB Afterglows

    NASA Technical Reports Server (NTRS)

    Kruhler, T.; Greiner, J.; Schady, P.; Savaglio, S.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Filgas, R.; Gruber, D.; Kann, D. A.; hide

    2011-01-01

    The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe, Until recently, however. the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows. biasing all demographic studies against sight-lines that contain large amounts of dust. Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (A(sub v) (Sup GRB) approx > 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry and location of the absorbing dust of these poorly-explored host galaxies. and a comparison to hosts from optically-selected samples. Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line as well as galaxy-integrated characteristics like the host's stellar mass, luminosity. color-excess and star-formation rate. Results. For the eight afterglows considered in this study we report for the first time the redshift of GRBs 081109 (z = 0.97S7 +/- 0.0005). and the visual extinction towards GRBs 0801109 (A(sub v) (Sup GRB) = 3.4(sup +0.4) (sub -0.3) mag) and l00621A (A(sub v) (Sup GRB) = 3.8 +/- 0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs. there is a strong anti-correlation between the afterglow's metals-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder(((R - K)(sub AB)) approximates 1.6 mag), more luminous ( approximates 0.9 L (sup *)) and massive ((log M(sup *) [M(solar]) approximates 9.8) than the hosts of optically-bright events. We hence probe a different galaxy population. suggesting that previous host samples miss most of the massive. chemically-evolved and metal-rich members. This also indicates that the dust along the sight-line is often related to host properties, and thus probably located in the diffuse ISM or interstellar clouds and not in the immediate GRB environment. Some of the hosts in our sample. are blue, young or of small stellar mass illustrating that even apparently non-extinguished galaxies possess very dusty sight-lines due to a patchy dust distribution. Conclusions. The afterglows and host galaxies of the dustiest GRBs provide evidence for a complex dust geometry in star-forming galaxies. In addition, they establish a population of luminous. massive and correspondingly chemically-evolved GRB hosts. This suggests that GRBs trace the global star-formation rate better than studies based on optically-selected host samples indicate, and the previously-claimed deficiency of high-mass host galaxies was at least partially a selection effect.

  12. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; De Pasquale, Massimiliano; Mao, Jirong; Sakamoto, Takanori; Schady, Patricia; Covino, Stefano; Fan, Yi-Zhong; Jin, Zhi-Ping; D'Avanzo, Paolo; Antonelli, Angelo; hide

    2012-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift Ultra Violet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approx.100,000 s after the BAT trigger. Our data covers a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.injection

  13. Observations of Gamma-Ray Bursts by HETE-2

    NASA Technical Reports Server (NTRS)

    Kawai, N.; Matsuoka, M.; Yoshida, A.; Shirasaki, Y.; Ricker, G.; Doty, J.; Vanderspek, R.; Crew, G.; Villasenor, J.; Atteia, J.-L.; hide

    2004-01-01

    The High Energy Transient Explorer 2 (HETE-2), launched in October 2000, is currently localizing gamma-ray bursts (GRBs) at a rate of approximately 20/yr, many in real time. As of August 2003, HETE-2 had localized 43 GRBs; 16 localizations had led to the detection of an X-ray, optical, or radio afterglows. The prompt position notification of HETE-2 enabled probing the nature of so-called "dark bursts" for which no optical afterglows were found despite of accurate localizations. In some cases, the optical afterglow was found to be intrinsically faint , and its flux declined rapidly. In another case, the optical emission was likely to be extinguished by the dust in the vicinity of the GRB source. The bright afterglows of GRB021004 and GRB030329 were observed in unprecedented details by telescopes around the world. Strong evidence for the association of long GRBs with the core-collapse supernovae was found. HETE-2 has localized almost as many X-ray rich GRBs as classical GRBs. The nature of the X-ray rich GRBs and X-ray flashes have been studied systematically with HETE-2, and they are found to have many properties in common with the classical GRBs, suggesting that they are a single phenomenon.

  14. GRB 110715A: the peculiar multiwavelength evolution of the first afterglow detected by ALMA

    NASA Astrophysics Data System (ADS)

    Sánchez-Ramírez, R.; Hancock, P. J.; Jóhannesson, G.; Murphy, Tara; de Ugarte Postigo, A.; Gorosabel, J.; Kann, D. A.; Krühler, T.; Oates, S. R.; Japelj, J.; Thöne, C. C.; Lundgren, A.; Perley, D. A.; Malesani, D.; de Gregorio Monsalvo, I.; Castro-Tirado, A. J.; D'Elia, V.; Fynbo, J. P. U.; Garcia-Appadoo, D.; Goldoni, P.; Greiner, J.; Hu, Y.-D.; Jelínek, M.; Jeong, S.; Kamble, A.; Klose, S.; Kuin, N. P. M.; Llorente, A.; Martín, S.; Nicuesa Guelbenzu, A.; Rossi, A.; Schady, P.; Sparre, M.; Sudilovsky, V.; Tello, J. C.; Updike, A.; Wiersema, K.; Zhang, B.-B.

    2017-02-01

    We present the extensive follow-up campaign on the afterglow of GRB 110715A at 17 different wavelengths, from X-ray to radio bands, starting 81 s after the burst and extending up to 74 d later. We performed for the first time a GRB afterglow observation with the ALMA observatory. We find that the afterglow of GRB 110715A is very bright at optical and radio wavelengths. We use the optical and near-infrared spectroscopy to provide further information about the progenitor's environment and its host galaxy. The spectrum shows weak absorption features at a redshift z = 0.8225, which reveal a host-galaxy environment with low ionization, column density, and dynamical activity. Late deep imaging shows a very faint galaxy, consistent with the spectroscopic results. The broad-band afterglow emission is modelled with synchrotron radiation using a numerical algorithm and we determine the best-fitting parameters using Bayesian inference in order to constrain the physical parameters of the jet and the medium in which the relativistic shock propagates. We fitted our data with a variety of models, including different density profiles and energy injections. Although the general behaviour can be roughly described by these models, none of them are able to fully explain all data points simultaneously. GRB 110715A shows the complexity of reproducing extensive multiwavelength broad-band afterglow observations, and the need of good sampling in wavelength and time and more complex models to accurately constrain the physics of GRB afterglows.

  15. GRB 091208B: FIRST DETECTION OF THE OPTICAL POLARIZATION IN EARLY FORWARD SHOCK EMISSION OF A GAMMA-RAY BURST AFTERGLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, T.; Chiyonobu, S.; Fukazawa, Y.

    We report that the optical polarization in the afterglow of GRB 091208B is measured at t = 149-706 s after the burst trigger, and the polarization degree is P = 10.4( {+-} 2.5%. The optical light curve at this time shows a power-law decay with index -0.75 {+-} 0.02, which is interpreted as the forward shock synchrotron emission, and thus this is the first detection of the early-time optical polarization in the forward shock (rather than that in the reverse shock reported by Steele et al.). This detection disfavors the afterglow model in which the magnetic fields in the emissionmore » region are random on the plasma skin depth scales, such as those amplified by the plasma instabilities, e.g., Weibel instability. We suggest that the fields are amplified by the magnetohydrodynamic instabilities, which would be tested by future observations of the temporal changes of the polarization degrees and angles for other bursts.« less

  16. Multi-wavelength Observations of GRB 111228A and Implications for the Fireball and its Environment

    NASA Astrophysics Data System (ADS)

    Xin, Li-Ping; Wang, Yuan-Zhu; Lin, Ting-Ting; Liang, En-Wei; Lü, Hou-Jun; Zhong, Shu-Qing; Urata, Yuji; Zhao, Xiao-Hong; Wu, Chao; Wei, Jian-Yan; Huang, Kui-Yun; Qiu, Yu-Lei; Deng, Jin-Song

    2016-02-01

    Observations of very early multi-wavelength afterglows are critical to reveal the properties of the radiating fireball and its environment as well as the central engine of gamma-ray bursts (GRBs). We report our optical observations of GRB 111228A from 95 s to about 50 hr after the burst trigger and investigate its properties of the prompt gamma-rays and the ambient medium using our data and the data from the Swift and Fermi missions. Our joint optical and X-ray spectral fits to the afterglow data show that the ambient medium features a low dust-to-gas ratio. Incorporating the energy injection effect, our best fit to the afterglow light curves with the standard afterglow model via the Markov Chain Monte Carlo technique shows that {ɛ }e=(6.9+/- 0.3)× {10}-2, {ɛ }B=(7.73+/- 0.62)× {10}-6,{E}K=(6.32+/- 0.86)× {10}53 {erg}, n=0.100+/- 0.014 cm-3. The low medium density likely implies that the afterglow jet may be in a halo or in a hot ISM. A chromatic shallow decay segment observed in the optical and X-ray bands is well explained with the long-lasting energy injection from the central engine, which would be a magnetar with a period of about 1.92 ms inferred from the data. The Ep of its time-integrated prompt gamma-ray spectrum is ˜26 KeV. Using the initial Lorentz factor ({{{Γ }}}0={476}-237+225) derived from our afterglow model fit, it is found that GRB 111228A satisfies the {L}{{iso}}-{E}p,z-{{{Γ }}}0 relation and bridges the typical GRBs and low luminosity GRBs in this relation.

  17. Gamma-ray burst: evolution of the fireball and afterglow

    NASA Astrophysics Data System (ADS)

    Huang, W. G.; Yang, P. B.; Lu, Y.

    2001-02-01

    After the main part of a GRB, its fireball continuously expands. With the hydrodynamic equations for the postburst fireball, the authors study the distribution of electrons which changes with time. The equations are solved numerically and the relations of the flux density of Optical afterglow in R band as well as the X-ray afterglow with time have been obtained. The results fit the observations quite well. Finally the shortcomings of the fireball + blast model are discussed.

  18. The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

    NASA Astrophysics Data System (ADS)

    Castro-Tirado, A. J.; Sokolov, V. V.; Gorosabel, J.; Castro Cerón, J. M.; Greiner, J.; Wijers, R. A. M. J.; Jensen, B. L.; Hjorth, J.; Toft, S.; Pedersen, H.; Palazzi, E.; Pian, E.; Masetti, N.; Sagar, R.; Mohan, V.; Pandey, A. K.; Pandey, S. B.; Dodonov, S. N.; Fatkhullin, T. A.; Afanasiev, V. L.; Komarova, V. N.; Moiseev, A. V.; Hudec, R.; Simon, V.; Vreeswijk, P.; Rol, E.; Klose, S.; Stecklum, B.; Zapatero-Osorio, M. R.; Caon, N.; Blake, C.; Wall, J.; Heinlein, D.; Henden, A.; Benetti, S.; Magazzù, A.; Ghinassi, F.; Tommasi, L.; Bremer, M.; Kouveliotou, C.; Guziy, S.; Shlyapnikov, A.; Hopp, U.; Feulner, G.; Dreizler, S.; Hartmann, D.; Boehnhardt, H.; Paredes, J. M.; Martí, J.; Xanthopoulos, E.; Kristen, H. E.; Smoker, J.; Hurley, K.

    2001-05-01

    Broad-band optical observations of the extraordinarily bright optical afterglow of the intense gamma-ray burst GRB 991208 started ~2.1 days after the event and continued until 4 Apr. 2000. The flux decay constant of the optical afterglow in the R-band is -2.30 +/- 0.07 up to ~5 days, which is very likely due to the jet effect, and it is followed by a much steeper decay with constant -3.2 +/- 0.2, the fastest one ever seen in a GRB optical afterglow. A negative detection in several all-sky films taken simultaneously with the event, that otherwise would have reached naked eye brightness, implies either a previous additional break prior to ~2 days after the occurrence of the GRB (as expected from the jet effect) or a maximum, as observed in GRB 970508. The existence of a second break might indicate a steepening in the electron spectrum or the superposition of two events, resembling GRB 000301C. Once the afterglow emission vanished, contribution of a bright underlying supernova was found on the basis of the late-time R-band measurements, but the light curve is not sufficiently well sampled to rule out a dust echo explanation. Our redshift determination of z = 0.706 indicates that GRB 991208 is at 3.7 Gpc (for Ho = 60 km s-1 Mpc-1, OMEGAo = 1 and LAMDAo = 0), implying an isotropic energy release of 1.15 x 1053 erg which may be relaxed by beaming by a factor >102. Precise astrometry indicates that the GRB coincides within 0.2" with the host galaxy, thus supporting a massive star origin. The absolute magnitude of the galaxy is MB = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of (11.5 +/- 7.1) Msun yr-1, which is much larger than the present-day rate in our Galaxy. The quasi-simultaneous broad-band photometric spectral energy distribution of the afterglow was determined ~3.5 day after the burst (Dec. 12.0) implying a cooling frequency nuc below the optical band, i.e. supporting a jet model with p = -2.30 as the index of the power-law electron distribution.

  19. Constraining Gamma-ray Burst Initial Lorentz Factor with the Afterglow Onset Feature and Discovery of a Tight Γ0-E γ,iso Correlation

    NASA Astrophysics Data System (ADS)

    Liang, En-Wei; Yi, Shuang-Xi; Zhang, Jin; Lü, Hou-Jun; Zhang, Bin-Bin; Zhang, Bing

    2010-12-01

    The onset of gamma-ray burst (GRB) afterglow is characterized by a smooth bump in the early afterglow light curve as the GRB fireball is decelerated by the circumburst medium. We extensively search for GRBs with such an onset feature in their optical and X-ray light curves from the literature and from the catalog established with the Swift/XRT. Twenty optically selected GRBs and 12 X-ray-selected GRBs are obtained, among which 17 optically selected and 2 X-ray-selected GRBs have redshift measurements. We fit these light curves with a smooth broken power law and measure the width (w), rising timescale (t r), and decaying timescale (t d) at full width at half-maximum. Strong mutual correlations among these timescales and with the peak time (t p) are found. The ratio t r/t d is almost universal among bursts, but the ratio t r/t p varies from 0.3 to ~1. The optical peak luminosity in the R band (L R,p) is anti-correlated with t p and w in the burst frame, indicating a dimmer and broader bump peaking at a later time. The isotropic prompt gamma-ray energy (E γ,iso) is also tightly correlated with L R,p and t p in the burst frame. Assuming that the bumps signal the deceleration of the GRB fireballs in a constant density medium, we calculate the initial Lorentz factor (Γ0) and the deceleration radius (R d) of the GRBs with redshift measurements. The derived Γ0 is typically a few hundreds, and the deceleration radius is R dec ~ 2 × 1017 cm. More intriguingly, a tight correlation between Γ0 and E γ,iso is found, namely Γ0 ~= 182(E γ,iso/1052 erg)0.25. This correlation also applies to the small sample of GRBs which show the signature of the afterglow onset in their X-ray afterglow, and to two bursts (GRBs 990123 and 080319B) whose early optical emission is dominated by a reverse shock. The lower limits of Γ0 derived from a sample of optical afterglow light curves showing a decaying feature from the beginning of the observation are also generally consistent with such a correlation. The tight lower limits of Γ0 of GRBs 080916C and 090902B derived from the opacity constraints with Fermi/LAT observations are also consistent with the correlation at the 2σ confidence level, but the short GRB 090510 is a clear outlier of this relation. This correlation may give insight to GRB physics and could serve as an indicator of Γ0 for long GRBs without early afterglow detections. A comparison of the early X-ray and optical afterglow light curves shows that the early bright X-ray emission is usually dominated by a non-forward-shock component, but occasionally (for one case) the forward shock emission is observable, and an achromatic deceleration feature is observed. The superposition of the internal and external components in X-rays causes the diversity of the observed X-ray light curves.

  20. Multiband Optical Follow-Up Observations of GRB 020813 AT KISO and Bisei Observatories

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Nishiura, S.; Miyata, T.; Mito, H.; Kawabata, T.; Nakada, Y.; Aoki, T.; Soyano, T.; Tarusawa, K.; Yoshida, A.; Tamagawa, T.; Makishima, K.

    Four color (l B,V,R,I) photometric observations of the optical afterglow of GRB 020813 were obtained from 0.346 to 0.516 days after the burst. In order to investigate the early-time (<1 day) evolution of the afterglow, four-band light curves were produced by analyzing the data taken at these two sites, as well as publicly released data taken by the Magellan Baade telescope. The light curves can be approximated by a broken power law, of which the indices are approximately 0.46 and 1.33 before and after a break at ˜0.2 days, respectively. The optical spectral index stayed approximately constant at ˜0.9 over 0.17--4.07 days after the burst. Since the temporal decay index after the break and the spectral index measured at that time are both consistent with those predicted by a spherical expansion model, the early break is unlikely to be a jet break, but likely to represent the end of an early bump in the light curve as was observed in the optical afterglow of GRB 021004.

  1. OT1_mhuang01_1: GRB Afterglow Photometry with Herschel Infrared Cameras

    NASA Astrophysics Data System (ADS)

    Huang, M.

    2010-07-01

    GRB Afterglow Photometry with Herschel Infrared Cameras (GRAPHICS) Gamma-ray bursts (GRBs) are the most luminous explosions in the universe. It has been difficult to obtain a full spectral picture of the phenomena in the short period when GRBs become ``alive'', i.e. when they generate bursts in Gamma-ray and produce afterglows in other wavelengths. Between NIR (12micron) and submillimeter (850micron) there lies nearly two orders of magnitude of spectral range where GRB afterglows have never been detected. Herschel is unique in its cutting edge sensitivity, efficiency, and readiness in FIR observations, and is capable of detecting GRB afterglows. Observing GRB afterglows with Herschel would greatly enrich our understanding of GRB physics and conditions of the Universe in early epochs. We propose Target of Opportunity studies using the SPIRE and PACS instruments of Herschel to observe 3 bright GRB afterglows, each within a few hours to a few tens of days after burst. We will make follow-up observations after the initial one to photometrically measure GRB light curves and IR SEDs. We will make ground optical observations to compliment Herschel data, and have the the GRB community informed. Observing the forward shock peak in the FIR light curve and compare it (both the flux and time) with those in the optical and radio bands would give a unambiguous test to the fireball model, and offer a direct measurement of the density profile of the circumburst material. Catching the short-lived reverse shock emission and measure its magnitude would lead to constraints on some important parameters of the GRB ejecta and address the unknown composition of GRBs, baryonic vs. magnetic.

  2. `Orphan' afterglows in the Universal structured jet model for γ-ray bursts

    NASA Astrophysics Data System (ADS)

    Rossi, Elena M.; Perna, Rosalba; Daigne, Frédéric

    2008-10-01

    The paucity of reliable achromatic breaks in γ-ray burst afterglow light curves motivates independent measurements of the jet aperture. Serendipitous searches of afterglows, especially at radio wavelengths, have long been the classic alternative. These survey data have been interpreted assuming a uniformly emitting jet with sharp edges (`top-hat' jet), in that case the ratio of weakly relativistically beamed afterglows to GRBs scales with the jet solid angle. In this paper, we consider, instead, a very wide outflow with a luminosity that decreases across the emitting surface. In particular, we adopt the universal structured jet (USJ) model, which is an alternative to the top-hat model for the structure of the jet. However, the interpretation of the survey data is very different: in the USJ model, we only observe the emission within the jet aperture and the observed ratio of prompt emission rate to afterglow rate should solely depend on selection effects. We compute the number and rate of afterglows expected in all-sky snapshot observations as a function of the survey sensitivity. We find that the current (negative) results for OA searches are in agreement with our expectations. In radio and X-ray bands, this was mainly due to the low sensitivity of the surveys, while in the optical band the sky coverage was not sufficient. In general, we find that X-ray surveys are poor tools for OA searches, if the jet is structured. On the other hand, the Faint Images of the Radio Sky at Twenty-cm radio survey and future instruments like the Allen Telescope Array (in the radio band) and especially GAIA, Panoramic Survey Telescope and Rapid Response System and Large Synoptic Survey Telescope (in the optical band) will have chances to detect afterglows.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruehler, Thomas; Malesani, Daniele; Milvang-Jensen, Bo

    We present simultaneous optical and near-infrared (NIR) spectroscopy of 19 Swift {gamma}-ray burst (GRB) host galaxies observed with the VLT/X-shooter with the aim of measuring their redshifts. Galaxies were selected from The Optically Unbiased GRB Host (TOUGH) survey (15 of the 19 galaxies) or because they hosted GRBs without a bright optical afterglow. Here we provide emission-line redshifts for 13 of the observed galaxies with brightnesses between F606W > 27 mag and R = 22.9 mag (median R-tilde =24.6 mag). The median redshift is z-tilde =2.1 for all hosts and z-tilde =2.3 for the TOUGH hosts. Our new data significantlymore » improve the redshift completeness of the TOUGH survey, which now stands at 77% (53 out of 69 GRBs). They furthermore provide accurate redshifts for nine prototype dark GRBs (e.g., GRB 071021 at z = 2.452 and GRB 080207 at z = 2.086), which are exemplary of GRBs where redshifts are challenging to obtain via afterglow spectroscopy. This establishes X-shooter spectroscopy as an efficient tool for redshift determination of faint, star-forming, high-redshift galaxies such as GRB hosts. It is hence a further step toward removing the bias in GRB samples that is caused by optically dark events, and provides the basis for a better understanding of the conditions in which GRBs form. The distribution of column densities as measured from X-ray data (N{sub H,X}), for example, is closely related to the darkness of the afterglow and skewed toward low N{sub H,X} values in samples that are dominated by bursts with bright optical afterglows.« less

  4. Go Long, Go Deep: Finding Optical Jet Breaks for Swift-Era GRBs with the LBT

    NASA Astrophysics Data System (ADS)

    Dai, X.; Garnavich, P. M.; Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Bechtold, J.; Bouche, N.; Buschkamp, P.; Diolaiti, E.; Fan, X.; Giallongo, E.; Gredel, R.; Hill, J. M.; Jiang, L.; McClelland, C.; Milne, P.; Pedichini, F.; Pogge, R. W.; Ragazzoni, R.; Rhoads, J.; Smareglia, R.; Thompson, D.; Wagner, R. M.

    2008-08-01

    Using the 8.4 m Large Binocular Telescope, we observed six GRB afterglows from 2.8 hr to 30.8 days after the burst triggers to systematically probe the late-time behaviors of afterglows including jet breaks, flares, and supernova bumps. We detected five afterglows with Sloan r' magnitudes ranging from 23.0 to 26.3 mag. The depth of our observations allows us to extend the temporal baseline for measuring jet breaks by another decade in timescale. We detected two jet breaks and a third candidate, all of which are not detectable without deep, late-time optical observations. In the other three cases, we do not detect the jet breaks either because of contamination from the host galaxy light, the presence of a supernova bump, or the intrinsic faintness of the optical afterglow. This suggests that the basic picture that GRBs are collimated is still valid and that the apparent lack of Swift jet breaks is due to poorly sampled afterglow light curves, particularly at late times. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; the Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, the University of Minnesota, and the University of Virginia.

  5. The afterglow of GRB 050709 and the nature of the short-hard gamma-ray bursts.

    PubMed

    Fox, D B; Frail, D A; Price, P A; Kulkarni, S R; Berger, E; Piran, T; Soderberg, A M; Cenko, S B; Cameron, P B; Gal-Yam, A; Kasliwal, M M; Moon, D-S; Harrison, F A; Nakar, E; Schmidt, B P; Penprase, B; Chevalier, R A; Kumar, P; Roth, K; Watson, D; Lee, B L; Shectman, S; Phillips, M M; Roth, M; McCarthy, P J; Rauch, M; Cowie, L; Peterson, B A; Rich, J; Kawai, N; Aoki, K; Kosugi, G; Totani, T; Park, H-S; MacFadyen, A; Hurley, K C

    2005-10-06

    The final chapter in the long-standing mystery of the gamma-ray bursts (GRBs) centres on the origin of the short-hard class of bursts, which are suspected on theoretical grounds to result from the coalescence of neutron-star or black-hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst, GRB 050709, whose accurate position allows us to associate it unambiguously with a star-forming galaxy at redshift z = 0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates.

  6. Optical GRB Afterglows Detected with UVOT

    NASA Astrophysics Data System (ADS)

    Marshall, F. E.

    2008-05-01

    The automated response of the UltraViolet and Optical Telescope (UVOT) on Swift to new GRBs has several parameters, including exposure time, filter sequence and data mode, that can be adjusted to optimize the science return of early afterglow observations. After some initial changes, the response has remained stable since March 15, 2006. From then through August 10, 2007, UVOT observed 122 of the 130 GRBs detected with Swift's Burst Alert Telescope (BAT). UVOT typically takes an initial 100-s exposure with the White filter (160-650 nm) starting 60-180 s after the trigger and then takes exposures with the other 6 filters. In its first finding chart exposure UVOT detected 39% of the 84 long (T90>2.0 s) GRBs that were not heavily reddened in the Milky Way (EB-V<0.5) and were observed within 500 seconds of the trigger. Another 4% were detected after including subsequent exposures. Afterglow magnitudes ranged from 12.8 to the sensitivity limit of ~21. Only 1 of 11 short GRBs were detected, and its magnitude was near the sensitivity limit. We also report correlations of afterglow magnitudes with other GRB properties.

  7. Near-infrared instrumentation for rapid-response astronomy

    NASA Astrophysics Data System (ADS)

    Capone, John Isaac

    gamma-ray bursts (GRBs) are the Universe's most luminous transient events. Since the discovery of GRBs was announced in 1973, efforts have been ongoing to obtain data over a broader range of the electromagnetic spectrum at the earliest possible times following the initial detection. The discovery of the theorized "afterglow'' emission in radio through X-ray bands in the late 1990s confirmed the cosmological nature of these events. At present, GRB afterglows are among the best probes of the early Universe (z ≥ 9). In addition to informing theories about GRBs themselves, observations of afterglows probe the circum-burst medium (CBM), properties of the host galaxies and the progress of cosmic reionization. To explore the early-time variability of afterglows, I have developed a generalized analysis framework which models near-infrared (NIR), optical, ultra-violet (UV) and X-ray light curves without assuming an underlying model. These fits are then used to construct the spectral energy distribution (SED) of afterglows at arbitrary times within the observed window. Physical models are then used to explore the evolution of the SED parameter space with time. I demonstrate that this framework produces evidence of the photodestruction of dust in the CBM of GRB 120119A, similar to the findings from a previous study of this afterglow. The framework is additionally applied to the afterglows of GRB 140419A and GRB 080607. In these cases the evolution of the SEDs appears consistent with the standard fireball model. Having introduced the scientific motivations for early-time observations, I introduce the Rapid Infrared Imager-Spectrometer (RIMAS). Once commissioned on the 4.3 meter Discovery Channel Telescope (DCT), RIMAS will be used to study the afterglows of GRBs through photometric and spectroscopic observations beginning within minutes of the initial burst. The instrument will operate in the NIR, from 0.97 microm to 2.37 microm, permitting the detection of very high redshift (z ≥ 7) afterglows which are attenuated at shorter wavelengths by Lyman-alpha absorption in the intergalactic medium (IGM). A majority of my graduate work has been spent designing and aligning RIMAS's cryogenic ( 80 K) optical systems. Design efforts have included an original camera used to image the field surrounding spectroscopic slits, tolerancing and optimizing all of the instrument's optics, thermal modeling of optomechanical systems, and modeling the diffraction efficiencies for some of the dispersive elements. To align the cryogenic optics, I developed a procedure that was successfully used for a majority of the instrument's sub-assemblies. My work on this cryogenic instrument has necessitated experimental and computational projects to design and validate designs of several subsystems. Two of these projects describe simple and effective measurements of optomechanical components in vacuum and at cryogenic temperatures using an 8-bit CCD camera. Models of heat transfer via electrical harnesses used to provide current to motors located within the cryostat are also presented.

  8. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  9. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  10. The Ultra-long GRB 111209A. II. Prompt to Afterglow and Afterglow Properties

    NASA Astrophysics Data System (ADS)

    Stratta, G.; Gendre, B.; Atteia, J. L.; Boër, M.; Coward, D. M.; De Pasquale, M.; Howell, E.; Klotz, A.; Oates, S.; Piro, L.

    2013-12-01

    The "ultra-long" gamma-ray burst GRB 111209A at redshift z = 0.677 is the longest GRB ever observed thus far, with a rest frame prompt emission duration of ~4 hr. In order to explain the burst exceptional longevity, a low-metallicity blue supergiant progenitor was invoked. In this article we further constrain the phenomenology and progenitor properties of this peculiar GRB by performing a multiband temporal and spectral analysis of both the prompt and the afterglow emission. We use proprietary and publicly available data from Swift, Konus WIND, XMM-Newton, and TAROT, as well as from other ground-based optical and radio telescopes. We find some peculiar properties that are possibly connected to the exceptional nature of this burst, namely: (1) an unprecedented large optical delay of 410 ± 50 s between the peak time in gamma-rays and the peak time in the optical of a marked multiwavelength flare; (2) multiwavelength prompt emission spectral modeling requires a certain amount of dust in the circumburst environment. The dust produces a rest frame visual extinction of AV = 0.3-1.5 mag, and may undergo destruction at late times; and (3) we detect the presence of a hard spectral extra power-law component at the end of the X-ray steep steep decay phase and before the start of the X-ray afterglow, which has never been revealed thus far in past GRBs. The optical afterglow shows more usual properties; it has a flux power-law decay with an index of 1.6 ± 0.1 and a late rebrightening feature observed at ~1.1 the day after the first Burst Alert Telescope trigger. We discuss our findings in the context of several possible interpretations that have been given thus far of the complex multiband GRB phenomenology and propose a binary channel formation for the blue supergiant progenitor.

  11. GRB 090417B and its Host Galaxy: A Step Towards an Understanding of Optically-Dark Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; Sbarufatti, Boris; Shen, Rongfeng; Schady, Patricia; Cummings, Jay R.; Fonseca, Emmanuel; Fynbo, Johan P. U.; Jakobsson, Pall; Leitet, Elisabet; Linne, Staffan; hide

    2009-01-01

    GRB 090417B was an unusually long burst with a T(sub 90) duration of at least 2130 s and a multi-peaked light curve at energies of 15-150 keV. It was optically dark and has been convincingly associated with a bright star-forming galaxy at a redshift of 0.345 that is broadly similar to the Milky Way. This is one of the few cases where a host galaxy has been clearly identified for a dark gamma-ray burst and thus an ideal candidate for studying the origin of dark bursts. We find that the dark nature of GRB 090417B can not be explained by high redshift, incomplete observations, or unusual physics in the production of the afterglow. The Swift/XRT X-ray data are consistent with the afterglow being obscured by a dense, localized sheet of dust approximately 30-80 pc from the burst along the line of sight. Assuming the standard relativistic fireball model for the afterglow we find that the optical flux is at least 2.5 mag fainter than predicted by the X -ray flux. We are able to explain the lack of an optical afterglow, and the evolution of the X -ray spectrum, by assuming that there is a sheet of dust along the line of sight approximately 30-80 pc from the progenitor. Our results suggest that this dust sheet imparts an extinction of A(sub v)> or = 12 mag, which is sufficient to explain the missing optical flux. GRB 090417B is an example of a gamma-ray burst that is dark due to the localized dust structure in its host galaxy.

  12. Circular polarization in the optical afterglow of GRB 121024A.

    PubMed

    Wiersema, K; Covino, S; Toma, K; van der Horst, A J; Varela, K; Min, M; Greiner, J; Starling, R L C; Tanvir, N R; Wijers, R A M J; Campana, S; Curran, P A; Fan, Y; Fynbo, J P U; Gorosabel, J; Gomboc, A; Götz, D; Hjorth, J; Jin, Z P; Kobayashi, S; Kouveliotou, C; Mundell, C; O'Brien, P T; Pian, E; Rowlinson, A; Russell, D M; Salvaterra, R; di Serego Alighieri, S; Tagliaferri, G; Vergani, S D; Elliott, J; Fariña, C; Hartoog, O E; Karjalainen, R; Klose, S; Knust, F; Levan, A J; Schady, P; Sudilovsky, V; Willingale, R

    2014-05-08

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.

  13. Colour variations in the GRB 120327A afterglow

    NASA Astrophysics Data System (ADS)

    Melandri, A.; Covino, S.; Zaninoni, E.; Campana, S.; Bolmer, J.; Cobb, B. E.; Gorosabel, J.; Kim, J.-W.; Kuin, P.; Kuroda, D.; Malesani, D.; Mundell, C. G.; Nappo, F.; Sbarufatti, B.; Smith, R. J.; Steele, I. A.; Topinka, M.; Trotter, A. S.; Virgili, F. J.; Bernardini, M. G.; D'Avanzo, P.; D'Elia, V.; Fugazza, D.; Ghirlanda, G.; Gomboc, A.; Greiner, J.; Guidorzi, C.; Haislip, J. B.; Hanayama, H.; Hanlon, L.; Im, M.; Ivarsen, K. M.; Japelj, J.; Jelínek, M.; Kawai, N.; Kobayashi, S.; Kopac, D.; LaCluyzé, A. P.; Martin-Carrillo, A.; Murphy, D.; Reichart, D. E.; Salvaterra, R.; Salafia, O. S.; Tagliaferri, G.; Vergani, S. D.

    2017-10-01

    Aims: We present a comprehensive temporal and spectral analysis of the long Swift GRB 120327A afterglow data to investigate possible causes of the observed early-time colour variations. Methods: We collected data from various instruments and telescopes in X-ray, ultraviolet, optical, and near-infrared bands, and determined the shapes of the afterglow early-time light curves. We studied the overall temporal behaviour and the spectral energy distributions from early to late times. Results: The ultraviolet, optical, and near-infrared light curves can be modelled with a single power-law component between 200 and 2 × 104 s after the burst event. The X-ray light curve shows a canonical steep-shallow-steep behaviour that is typical of long gamma-ray bursts. At early times a colour variation is observed in the ultraviolet/optical bands, while at very late times a hint of a re-brightening is visible. The observed early-time colour change can be explained as a variation in the intrinsic optical spectral index, rather than an evolution of the optical extinction. Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A29

  14. Polarimetry and Photometry of Gamma-Ray Bursts with RINGO2

    NASA Astrophysics Data System (ADS)

    Steele, I. A.; Kopač, D.; Arnold, D. M.; Smith, R. J.; Kobayashi, S.; Jermak, H. E.; Mundell, C. G.; Gomboc, A.; Guidorzi, C.; Melandri, A.; Japelj, J.

    2017-07-01

    We present a catalog of early-time (˜ {10}2-{10}4 s) photometry and polarimetry of all gamma-ray burst (GRB) optical afterglows observed with the RINGO2 imaging polarimeter on the Liverpool Telescope. Of the 19 optical afterglows observed, the following nine were bright enough to perform photometry and attempt polarimetry: GRB 100805A, GRB 101112A, GRB 110205A, GRB 110726A, GRB 120119A, GRB 120308A, GRB 120311A, GRB 120326A, and GRB 120327A. We present multiwavelength light curves for these 9 GRBs, together with estimates of their optical polarization degrees and/or limits. We carry out a thorough investigation of detection probabilities, instrumental properties, and systematics. Using two independent methods, we confirm previous reports of significant polarization in GRB 110205A and 120308A, and report the new detection of P={6}-2+3% in GRB101112A. We discuss the results for the sample in the context of the reverse- and forward-shock afterglow scenario, and show that GRBs with detectable optical polarization at early time have clearly identifiable signatures of reverse-shock emission in their optical light curves. This supports the idea that GRB ejecta contain large-scale magnetic fields, and it highlights the importance of rapid-response polarimetry.

  15. Early optical emission from the gamma-ray burst of 4 October 2002.

    PubMed

    Fox, D W; Yost, S; Kulkarni, S R; Torii, K; Kato, T; Yamaoka, H; Sako, M; Harrison, F A; Sari, R; Price, P A; Berger, E; Soderberg, A M; Djorgovski, S G; Barth, A J; Pravdo, S H; Frail, D A; Gal-Yam, A; Lipkin, Y; Mauch, T; Harrison, C; Buttery, H

    2003-03-20

    Observations of the long-lived emission--or 'afterglow'--of long-duration gamma-ray bursts place them at cosmological distances, but the origin of these energetic explosions remains a mystery. Observations of optical emission contemporaneous with the burst of gamma-rays should provide insight into the details of the explosion, as well as into the structure of the surrounding environment. One bright optical flash was detected during a burst, but other efforts have produced negative results. Here we report the discovery of the optical counterpart of GRB021004 only 193 seconds after the event. The initial decline is unexpectedly slow and requires varying energy content in the gamma-ray burst blastwave over the course of the first hour. Further analysis of the X-ray and optical afterglow suggests additional energy variations over the first few days.

  16. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Schrenk, G.; Bartels, A.; Cerna, R.; Kotaidis, V.; Plech, A.; Köhler, K.; Schmitz, J.; Wagner, J.

    2007-12-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 107 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles.

  17. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-Energy Trigger

    NASA Technical Reports Server (NTRS)

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B.; Cao, Yi; Kasliwal, Mansi M.; Lien, Amy; Arcavi, Iair; hide

    2015-01-01

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (Mr >> -27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of Rrel = 610/yr (68% confidence interval of 110-2000/yr). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide "orphan" afterglows (i.e., those lacking detectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.

  18. Solving the Mystery of the Short-Hard Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Fox, Derek

    2004-07-01

    Seven years after the afterglow detections that revolutionized studies of the long-soft gamma-ray bursts, not even one afterglow of a short-hard GRB has been seen, and the nature of these events has become one of the most important problems in GRB research. The forthcoming Swift satellite will report few-arcsecond localizations for short-hard bursts in minutes, however, enabling prompt, deep optical afterglow searches for the first time. Discovery and observation of the first short-hard optical afterglows will answer most of the critical questions about these events: What are their distances and energies? Do they occur in distant galaxies, and if so, in which regions of those galaxies? Are they the result of collimated or quasi-spherical explosions? In combination with an extensive rapid-response ground-based campaign, we propose to make the critical high-sensitivity HST TOO observations that will allow us to answer these questions. If theorists are correct in attributing the short-hard bursts to binary neutron star coalescence events, then the short-hard bursts are signposts to the primary targeted source population for ground-based gravitational-wave detectors, and short-hard burst studies will have a vital role to play in guiding their observations.

  19. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-energy Trigger

    NASA Astrophysics Data System (ADS)

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B.; Cao, Yi; Kasliwal, Mansi M.; Lien, Amy; Arcavi, Iair; Bloom, Joshua S.; Butler, Nat R.; Cucchiara, Antonino; de Diego, José A.; Filippenko, Alexei V.; Gal-Yam, Avishay; Gehrels, Neil; Georgiev, Leonid; Jesús González, J.; Graham, John F.; Greiner, Jochen; Kann, D. Alexander; Klein, Christopher R.; Knust, Fabian; Kulkarni, S. R.; Kutyrev, Alexander; Laher, Russ; Lee, William H.; Nugent, Peter E.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Richer, Michael G.; Rubin, Adam; Urata, Yuji; Varela, Karla; Watson, Alan M.; Wozniak, Przemek R.

    2015-04-01

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous ({{M}r}≈ -27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of {{\\Re }rel}=610 yr-1 (68% confidence interval of 110-2000 yr-1). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide “orphan” afterglows (i.e., those lacking detectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.

  20. Radio observations of GRB 100418a: Test of an energy injection model explaining long-lasting GRB afterglows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moin, A.; Wang, Z.; Chandra, P.

    We present the results of our radio observational campaign of gamma-ray burst (GRB) 100418a, for which we used the Australia Telescope Compact Array, the Very Large Array, and the Very Long Baseline Array. GRB 100418a was a peculiar GRB with unusual X-ray and optical afterglow profiles featuring a plateau phase with a very shallow rise. This observed plateau phase was believed to be due to a continued energy injection mechanism that powered the forward shock, giving rise to an unusual and long-lasting afterglow. The radio afterglow of GRB 100418a was detectable several weeks after the prompt emission. We conducted long-termmore » monitoring observations of the afterglow and attempted to test the energy injection model advocating that the continuous energy injection is due to shells of material moving at a wide range of Lorentz factors. We obtained an upper limit of γ < 7 for the expansion rate of the GRB 100418a radio afterglow, indicating that the range-of-Lorentz factor model could only be applicable for relatively slow-moving ejecta. A preferred explanation could be that continued activity of the central engine may have powered the long-lasting afterglow.« less

  1. Multi-wavelength observations of the GRB 080319B afterglow and the modeling constraints

    NASA Astrophysics Data System (ADS)

    Pandey, S. B.; Castro-Tirado, A. J.; Jelínek, M.; Kamble, A. P.; Gorosabel, J.; de Ugarte Postigo, A.; Prins, S.; Oreiro, R.; Chantry, V.; Trushkin, S.; Bremer, M.; Winters, J. M.; Pozanenko, A.; Krugly, Yu.; Slyusarev, I.; Kornienko, G.; Erofeeva, A.; Misra, K.; Ramprakash, A. N.; Mohan, V.; Bhattacharya, D.; Volnova, A.; Plá, J.; Ibrahimov, M.; Im, M.; Volvach, A.; Wijers, R. A. M. J.

    2009-09-01

    Context: We present observations of the GRB 080319B afterglow at optical, mm, and radio frequencies between a few hours and 67 days after the burst. Aims: We attempt to understand the nature of this extraordinarily bright explosion based on the observed properties and its comparison with afterglow models. Methods: Our observations and other published multiwavelength data were used to reconstruct the light curves and spectral energy distributions of the burst afterglow. Results: Our results indicate that the observed features of the afterglow agrees equally well with the inter stellar matter and the stellar wind density profiles of the circumburst medium. In the case of both density profiles, the maximum synchrotron frequency νm is below optical value and the cooling break frequency νc is below X-rays, ~104 s after the burst. The derived value of the Lorentz factor at the time of naked-eye brightness is also ~300 for a corresponding blast-wave size of ~1018 cm. Conclusions: The numerical fit to the multiwavelength afterglow data constraints the values of physical parameters and the emission mechanism of the burst. Based on observations obtained with the 0.22 m telescope at Russia the 0.7 m telescope at of Kharkov University, Ukraine, the 0.8 m telescope at Observatorio del Teide (IAC-80), Spain the 1.2 m Mercator telescope at La Palma, Spain, the 1.5 m telescope of Maidanak observatory Uzbekistan, the 2.0 m IGO Telescope at IUCAA Pune, India, the 2.5 m NOT, the PdB millimeter interferometric array France, the RATAN-600 Radio Telescope at Russia and the RT-22 radio telescope of CrAO, Ukraine.

  2. GRB 060605: multi-wavelength analysis of the first GRB observed using integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferrero, P.; Klose, S.; Kann, D. A.; Savaglio, S.; Schulze, S.; Palazzi, E.; Maiorano, E.; Böhm, P.; Grupe, D.; Oates, S. R.; Sánchez, S. F.; Amati, L.; Greiner, J.; Hjorth, J.; Malesani, D.; Barthelmy, S. D.; Gorosabel, J.; Masetti, N.; Roth, M. M.

    2009-04-01

    The long and relatively faint gamma-ray burst GRB 060605 detected by Swift/BAT lasted about 20 s. Its afterglow could be observed with Swift/XRT for nearly 1 day, while Swift/UVOT could detect the afterglow during the first 6 h after the event. Here, we report on integral field spectroscopy of its afterglow performed with PMAS/PPak mounted at the Calar Alto 3.5 m telescope. In addition, we report on a detailed analysis of XRT and UVOT data and on the results of deep late-time VLT observations that reveal the GRB host galaxy. We find that the burst occurred at a redshift of z = 3.773, possibly associated with a faint, RC = 26.4 ± 0.3 host. Based on the optical and X-ray data, we deduce information on the SED of the afterglow, the position of the cooling frequency in the SED, the nature of the circumburst environment, its collimation factor, and its energetics. We find that the GRB fireball was expanding into a constant-density medium and that the explosion was collimated with a narrow half-opening angle of about 2.4 degrees. The initial Lorentz factor of the fireball was about 250; however, its beaming-corrected energy release in the gamma-ray band was comparably low. The optical, X-ray afterglow, on the other hand, was rather luminous. Finally, we find that the data are consistent within the error bars with an achromatic evolution of the afterglow during the suspected jet break time at about 0.27 days after the burst. Based on observations collected at the German-Spanish Calar Alto Observatory in Spain (Programme F06-3.5-055) and at the European Southern Observatory, La Silla and Paranal, Chile (ESO Programme 177.D-0591).

  3. The Needle in the 100 deg2 Haystack: Uncovering Afterglows of Fermi GRBs with the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Singer, Leo P.; Kasliwal, Mansi M.; Cenko, S. Bradley; Perley, Daniel A.; Anderson, Gemma E.; Anupama, G. C.; Arcavi, Iair; Bhalerao, Varun; Bue, Brian D.; Cao, Yi; Connaughton, Valerie; Corsi, Alessandra; Cucchiara, Antonino; Fender, Rob P.; Fox, Derek B.; Gehrels, Neil; Goldstein, Adam; Gorosabel, J.; Horesh, Assaf; Hurley, Kevin; Johansson, Joel; Kann, D. A.; Kouveliotou, Chryssa; Huang, Kuiyun; Kulkarni, S. R.; Masci, Frank; Nugent, Peter; Rau, Arne; Rebbapragada, Umaa D.; Staley, Tim D.; Svinkin, Dmitry; Thöne, C. C.; de Ugarte Postigo, A.; Urata, Yuji; Weinstein, Alan

    2015-06-01

    The Fermi Gamma-ray Space Telescope has greatly expanded the number and energy window of observations of gamma-ray bursts (GRBs). However, the coarse localizations of tens to a hundred square degrees provided by the Fermi GRB Monitor instrument have posed a formidable obstacle to locating the bursts’ host galaxies, measuring their redshifts, and tracking their panchromatic afterglows. We have built a target-of-opportunity mode for the intermediate Palomar Transient Factory in order to perform targeted searches for Fermi afterglows. Here, we present the results of one year of this program: 8 afterglow discoveries out of 35 searches. Two of the bursts with detected afterglows (GRBs 130702A and 140606B) were at low redshift (z = 0.145 and 0.384, respectively) and had spectroscopically confirmed broad-line Type Ic supernovae. We present our broadband follow-up including spectroscopy as well as X-ray, UV, optical, millimeter, and radio observations. We study possible selection effects in the context of the total Fermi and Swift GRB samples. We identify one new outlier on the Amati relation. We find that two bursts are consistent with a mildly relativistic shock breaking out from the progenitor star rather than the ultra-relativistic internal shock mechanism that powers standard cosmological bursts. Finally, in the context of the Zwicky Transient Facility, we discuss how we will continue to expand this effort to find optical counterparts of binary neutron star mergers that may soon be detected by Advanced LIGO and Virgo.

  4. Gamma-ray burst theory after Swift.

    PubMed

    Piran, Tsvi; Fan, Yi-Zhong

    2007-05-15

    Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.

  5. Prompt and Afterglow Emission from Short GRB Cocoons

    NASA Astrophysics Data System (ADS)

    Morsony, Brian; Lazzati, Davide; López-Cámara, Diego; Workman, Jared; Moskal, Jeremiah; Cantiello, Matteo; Perna, Rosalba

    2018-01-01

    We present simulations of short GRB jets that create a wide cocoon of mildly relativistic material surrounding the narrow, highly relativistic jet. We model the prompt and afterglow emission from the jet and cocoon at a range of observer angles relative to the jet axis. Even far off axis, prompt X-ray and gamma-ray emission from the cocoon may be detectable by FERMI GBM out to several 10’s of Mpc. Afterglow emission off-axis is dominated by cocoon material at early times (hours - days). The afterglow should be detectable at a wide range of frequencies (radio, optical, X-ray) for a large fraction of off-axis short GRBs within 200 Mpc, the detection range of aLIGO at design sensitivity. Given recent events, cocoon emission may be very important in the future for localizing LIGO-detected neutron star mergers.

  6. The Very Red Afterglow of GRB 000418: Further Evidence for Dust Extinction in a Gamma-Ray Burst Host Galaxy

    NASA Astrophysics Data System (ADS)

    Klose, S.; Stecklum, B.; Masetti, N.; Pian, E.; Palazzi, E.; Henden, A. A.; Hartmann, D. H.; Fischer, O.; Gorosabel, J.; Sánchez-Fernández, C.; Butler, D.; Ott, Th.; Hippler, S.; Kasper, M.; Weiss, R.; Castro-Tirado, A.; Greiner, J.; Bartolini, C.; Guarnieri, A.; Piccioni, A.; Benetti, S.; Ghinassi, F.; Magazzú, A.; Hurley, K.; Cline, T.; Trombka, J.; McClanahan, T.; Starr, R.; Goldsten, J.; Gold, R.; Mazets, E.; Golenetskii, S.; Noeske, K.; Papaderos, P.; Vreeswijk, P. M.; Tanvir, N.; Oscoz, A.; Muñoz, J. A.; Castro Cerón, J. M.

    2000-12-01

    We report near-infrared and optical follow-up observations of the afterglow of the GRB 000418 starting 2.5 days after the occurrence of the burst and extending over nearly 7 weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near-infrared. During the first 10 days its R-band afterglow was well characterized by a single power-law decay with a slope of 0.86. However, at later times the temporal evolution of the afterglow flattens with respect to a simple power-law decay. Attributing this to an underlying host galaxy, we find its magnitude to be R=23.9 and an intrinsic afterglow decay slope of 1.22. The afterglow was very red with R-K~4 mag. The observations can be explained by an adiabatic, spherical fireball solution and a heavy reddening due to dust extinction in the host galaxy. This supports the picture that (long) bursts are associated with events in star-forming regions. Based on observations collected at the Bologna Astronomical Observatory in Loiano, Italy; at the TNG, Canary Islands, Spain; at the German-Spanish Astronomical Centre, Calar Alto, operated by the Max-Planck-Institut for Astronomy, Heidelberg, jointly with the Spanish National Commission for Astronomy; at the US Naval Observatory; and at the UK Infrared Telescope.

  7. Optical light curve of GRB 121011A: a textbook for the onset of GRB afterglow in a mixture of ISM and wind-type medium

    NASA Astrophysics Data System (ADS)

    Xin, Li-Ping; Wei, Jian-Yan; Qiu, Yu-Lei; Deng, Jin-Song; Wang, Jing; Han, Xu-Hui

    2016-01-01

    We report the optical observations of GRB 121011A by the 0.8m TNT facility at Xinglong observatory, China. The light curve of the optical afterglow shows a smooth and featureless bump during the epoch of ˜130 s and ˜5000 s with a rising index of 1.57 ± 0.28 before the break time of 539 ± 44 s, and a decaying index of about 1.29 ± 0.07 up to the end of our observations. Moreover, the X-ray light curve decays in a single power-law with a slope of about 1.51 ± 0.03 observed by XRT onboard Swift from 100 s to about 10 000 s after the burst trigger. The featureless optical light curve could be understood as an onset process under the external-shock model. The typical frequency has been below or near the optical one before the deceleration time, and the cooling frequency is located between the optical and X-ray wavelengths. The external medium density has a transition from a mixed stage of ISM and wind-type medium before the peak time to the ISM at the later phase. The joint-analysis of X-ray and optical light curves shows that the emissions from both frequencies are consistent with the prediction of the standard afterglow model without any energy injections, indicating that the central engine has stopped its activity and does not restart anymore after the prompt phase.

  8. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-Energy Trigger

    DOE PAGES

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; ...

    2015-04-20

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (Msub>r ≈ ₋27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB140226A. This marks the rst unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically dis- tant relativistic explosions) based on iPTF observations, inferring an all-sky value ofmore » $$R_{rel}$$ = 610yr -1 (68% con dence interval of 110{2000 yr -1). Our derived rate is consistent (within the large uncer- tainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we brie y discuss the implications of the nondetection to date of bona de \\orphan" afterglows (i.e., those lacking de- tectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.« less

  9. Solving the Mystery of the Short-Hard Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Fox, Derek

    2005-07-01

    Eight years after the afterglow detections that revolutionized studies of the long-soft gamma-ray bursts, not even one afterglow of a short-hard GRB has been seen, and the nature of these events has become one of the most important problems in GRB research. The Swift satellite, expected to be in full operation throughout Cycle 14, will report few-arcsecond localizations for short-hard bursts in minutes, enabling prompt, deep optical afterglow searches for the first time. Discovery and observation of the first short-hard optical afterglows will answer most of the critical questions about these events: What are their distances and energies? Do they occur in distant galaxies, and if so, in which regions of those galaxies? Are they the result of collimated or quasi-spherical explosions? In combination with an extensive rapid-response ground-based campaign, we propose to make the critical high-sensitivity HST TOO observations that will allow us to answer these questions. If theorists are correct in attributing the short-hard bursts to binary neutron star coalescence events, then they will serve as signposts to the primary targeted source population for ground-based gravitational-wave detectors, and short-hard burst studies will have a vital role to play in guiding those observations.

  10. Discovery of the short gamma-ray burst GRB 050709.

    PubMed

    Villasenor, J S; Lamb, D Q; Ricker, G R; Atteia, J-L; Kawai, N; Butler, N; Nakagawa, Y; Jernigan, J G; Boer, M; Crew, G B; Donaghy, T Q; Doty, J; Fenimore, E E; Galassi, M; Graziani, C; Hurley, K; Levine, A; Martel, F; Matsuoka, M; Olive, J-F; Prigozhin, G; Sakamoto, T; Shirasaki, Y; Suzuki, M; Tamagawa, T; Vanderspek, R; Woosley, S E; Yoshida, A; Braga, J; Manchanda, R; Pizzichini, G; Takagishi, K; Yamauchi, M

    2005-10-06

    Gamma-ray bursts (GRBs) fall into two classes: short-hard and long-soft bursts. The latter are now known to have X-ray and optical afterglows, to occur at cosmological distances in star-forming galaxies, and to be associated with the explosion of massive stars. In contrast, the distance scale, the energy scale and the progenitors of the short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow and (for the first time) the optical afterglow of a short-hard burst; this in turn led to the identification of the host galaxy of the burst as a late-type galaxy at z = 0.16 (ref. 10). These results show that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be caused by the merging of compact binaries.

  11. Gamma Ray Bursts-Afterglows and Counterparts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  12. Wind-Interaction Models for the Early Afterglows of Gamma-Ray Bursts: The Case of GRB 021004

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yun; Chevalier, Roger A.

    2003-06-01

    Wind-interaction models for gamma-ray burst (GRB) afterglows predict that the optical emission from the reverse shock drops below that from the forward shock within hundreds of seconds of the burst. The typical frequency νm of the synchrotron emission from the forward shock passes through the optical band typically on a timescale of minutes to hours. Before the passage of νm, the optical flux evolves as t-1/4, and after the passage, the decay steepens to t-(3p-2)/4, where p is the exponent for the assumed power-law energy distribution of nonthermal electrons and is typically ~2. The steepening in the slope of temporal decay should be readily identifiable in the early afterglow light curves. We propose that such a steepening was observed in the R-band light curve of GRB 021004 around day 0.1. Available data at several radio frequencies are consistent with this interpretation, as are the X-ray observations around day 1. The early evolution of GRB 021004 contrasts with that of GRB 990123, which can be described by emission from interaction with a constant density medium.

  13. A Correlation Between the Intrinsic Brightness and Average Decay Rate of Gamma-Ray Burst X-Ray Afterglow Light Curves

    NASA Technical Reports Server (NTRS)

    Racusin, J. L.; Oates, S. R.; De Pasquale, M.; Kocevski, D.

    2016-01-01

    We present a correlation between the average temporal decay (alpha X,avg, greater than 200 s) and early-time luminosity (LX,200 s) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the gamma-ray trigger. The luminosity â€" average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation.

  14. TESTING MODELS FOR THE SHALLOW DECAY PHASE OF GAMMA-RAY BURST AFTERGLOWS WITH POLARIZATION OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Mi-Xiang; Dai, Zi-Gao; Wu, Xue-Feng, E-mail: dzg@nju.edu.cn

    2016-08-01

    The X-ray afterglows of almost one-half of gamma-ray bursts have been discovered by the Swift satellite to have a shallow decay phase of which the origin remains mysterious. Two main models have been proposed to explain this phase: relativistic wind bubbles (RWBs) and structured ejecta, which could originate from millisecond magnetars and rapidly rotating black holes, respectively. Based on these models, we investigate polarization evolution in the shallow decay phase of X-ray and optical afterglows. We find that in the RWB model, a significant bump of the polarization degree evolution curve appears during the shallow decay phase of both opticalmore » and X-ray afterglows, while the polarization position angle abruptly changes its direction by 90°. In the structured ejecta model, however, the polarization degree does not evolve significantly during the shallow decay phase of afterglows whether the magnetic field configuration in the ejecta is random or globally large-scale. Therefore, we conclude that these two models for the shallow decay phase and relevant central engines would be testable with future polarization observations.« less

  15. Densities of Active species in N2/H2 RF and HF afterglows: application to surface nitriding of TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Ricard, André; Sarrette, Jean-Philippe; Wang, Yunfei; Kim, Yu-Kwon

    2017-10-01

    N2/0-5% H2 flowing afterglows from Radio Frequency (RF) and High Frequency (HF) sources have been analyzed by optical emission spectroscopy. In similar conditions (pressure 5-6 Torr, flow rate 0.5 slm and power 100 W), it is found in pure N2 a nearly constant N-atom density from the pink to the late afterglow, which is higher in HF than in RF: (1-2) and 0.4 × 1015 cm-3, respectively. With a N2/2% H2 gas mixture, the early afterglows is changed to a late afterglow with about the same N-atom density for both RF and HF cases: (8-9) × 1014 cm-3. Anatase TiO2 nanocrystals and Atomic Layer Deposition-grown films were exposed to the RF afterglows at room temperature. XPS analysis of the samples has shown that the highest N/Ti ratio of 0.24 can be achieved with the pure N2 late afterglow. In the HF pure N2 late afterglow, however, the N/Ti coverage was limited to 0.04 in spite of higher N-atom density. Such differences in the N content between the two RF and HF cases are attributed to the presence of a high O-atom impurity of 2 × 1013 cm-3 in HF as compared to that (8 × 1011 cm-3) in RF. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  16. Understanding the flowing atmospheric-pressure afterglow (FAPA) ambient ionization source through optical means.

    PubMed

    Shelley, Jacob T; Chan, George C-Y; Hieftje, Gary M

    2012-02-01

    The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy. Spatial emission profiles of species created in the APGD and afterglow were recorded under a variety of operating conditions, including discharge current, electrode polarity, and plasma-gas flow rate. From these studies, it was found that an appreciable amount of atmospheric H(2)O vapor, N(2), and O(2) diffuses through the hole in the plate electrode into the discharge to become a major source of reagent ions in ADI-MS analyses. Spatially resolved plasma parameters, such as OH rotational temperature (T(rot)) and electron number density (n(e)), were also measured in the APGD. Maximum values for T(rot) and n(e) were found to be ~1100 K and ~4×10(19) m(-3), respectively, and were both located at the pin cathode. In the afterglow, rotational temperatures from OH and N(2)(+) yielded drastically different values, with OH temperatures matching those obtained from infrared thermography measurements. The higher N(2)(+) temperature is believed to be caused by charge-transfer ionization of N(2) by He(2)(+). These findings are discussed in the context of previously reported ADI-MS analyses with the FAPA source. © American Society for Mass Spectrometry, 2011

  17. Understanding the Flowing Atmospheric-Pressure Afterglow (FAPA) Ambient Ionization Source through Optical Means

    NASA Astrophysics Data System (ADS)

    Shelley, Jacob T.; Chan, George C.-Y.; Hieftje, Gary M.

    2012-02-01

    The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy. Spatial emission profiles of species created in the APGD and afterglow were recorded under a variety of operating conditions, including discharge current, electrode polarity, and plasma-gas flow rate. From these studies, it was found that an appreciable amount of atmospheric H2O vapor, N2, and O2 diffuses through the hole in the plate electrode into the discharge to become a major source of reagent ions in ADI-MS analyses. Spatially resolved plasma parameters, such as OH rotational temperature (Trot) and electron number density (ne), were also measured in the APGD. Maximum values for Trot and ne were found to be ~1100 K and ~4 × 1019 m-3, respectively, and were both located at the pin cathode. In the afterglow, rotational temperatures from OH and N{2/+} yielded drastically different values, with OH temperatures matching those obtained from infrared thermography measurements. The higher N{2/+} temperature is believed to be caused by charge-transfer ionization of N2 by He{2/+}. These findings are discussed in the context of previously reported ADI-MS analyses with the FAPA source.

  18. On the non-existence of a sharp cooling break in gamma-ray burst afterglow spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhm, Z. Lucas; Zhang, Bing, E-mail: uhm@physics.unlv.edu, E-mail: zhang@physics.unlv.edu

    Although the widely used analytical afterglow model of gamma-ray bursts (GRBs) predicts a sharp cooling break ν {sub c} in its afterglow spectrum, the GRB observations so far rarely show clear evidence for a cooling break in their spectra or a corresponding temporal break in their light curves. Employing a Lagrangian description of the blast wave, we conduct a sophisticated calculation of the afterglow emission. We precisely follow the cooling history of non-thermal electrons accelerated into each Lagrangian shell. We show that a detailed calculation of afterglow spectra does not in fact give rise to a sharp cooling break atmore » ν {sub c}. Instead, it displays a very mild and smooth transition, which occurs gradually over a few orders of magnitude in energy or frequency. The main source of this slow transition is that different mini shells have different evolutionary histories of the comoving magnetic field strength B, so that deriving the current value of ν {sub c} of each mini shell requires an integration of its cooling rate over the time elapsed since its creation. We present the time evolution of optical and X-ray spectral indices to demonstrate the slow transition of spectral regimes and discuss the implications of our result in interpreting GRB afterglow data.« less

  19. Radio afterglow rebrightening: evidence for multiple active phases in gamma-ray burst central engines

    NASA Astrophysics Data System (ADS)

    Li, Long-Biao; Zhang, Zhi-Bin; Rice, Jared

    2015-09-01

    The rebrightening phenomenon is an interesting feature in some X-ray, optical, and radio afterglows of gamma-ray bursts (GRBs). Here, we propose a possible energy-supply assumption to explain the rebrightenings of radio afterglows, in which the central engine with multiple active phases can supply at least two GRB pulses in a typical GRB duration time. Considering the case of double pulses supplied by the central engine, the double pulses have separate physical parameters, except for the number density of the surrounding interstellar medium (ISM). Their independent radio afterglows are integrated by the ground detectors to form the rebrightening phenomenon. In this Letter, we firstly simulate diverse rebrightening light curves under consideration of different and independent physical parameters. Using this assumption, we also give our best fit to the radio afterglow of GRB 970508 at three frequencies of 1.43, 4.86, and 8.46 GHz. We suggest that the central engine may be active continuously at a timescale longer than that of a typical GRB duration time as many authors have suggested (e.g., Zhang et al., Astrophys. J. 787:66, 2014; Gao and Mészáros, Astrophys. J. 802:90, 2015), and that it may supply enough energy to cause the long-lasting rebrightenings observed in some GRB afterglows.

  20. Universal filtered multi-carrier system for asynchronous uplink transmission in optical access network

    NASA Astrophysics Data System (ADS)

    Kang, Soo-Min; Kim, Chang-Hun; Han, Sang-Kook

    2016-02-01

    In passive optical network (PON), orthogonal frequency division multiplexing (OFDM) has been studied actively due to its advantages such as high spectra efficiency (SE), dynamic resource allocation in time or frequency domain, and dispersion robustness. However, orthogonal frequency division multiple access (OFDMA)-PON requires tight synchronization among multiple access signals. If not, frequency orthogonality could not be maintained. Also its sidelobe causes inter-channel interference (ICI) to adjacent channel. To prevent ICI caused by high sidelobes, guard band (GB) is usually used which degrades SE. Thus, OFDMA-PON is not suitable for asynchronous uplink transmission in optical access network. In this paper, we propose intensity modulation/direct detection (IM/DD) based universal filtered multi-carrier (UFMC) PON for asynchronous multiple access. The UFMC uses subband filtering to subsets of subcarriers. Since it reduces sidelobe of each subband by applying subband filtering, it could achieve better performance compared to OFDM. For the experimental demonstration, different sample delay was applied to subbands to implement asynchronous transmission condition. As a result, time synchronization robustness of UFMC was verified in asynchronous multiple access system.

  1. Multiband Optical Follow-up Observations of GRB 020813 at the Kiso and Bisei Observatories

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Nishiura, S.; Miyata, T.; Mito, H.; Kawabata, T.; Nakada, Y.; Aoki, T.; Soyano, T.; Tarusawa, K.; Yoshida, A.; Tamagawa, T.; Makishima, K.

    2003-09-01

    Observations were made of the optical afterglow of GRB 020813 (Fox, Blake, & Price) with the Kiso observatory 1.05 m Schmidt telescope and the Bisei astronomical observatory 1.01 m telescope. Four-band (B, V, R, and I) photometric data points were obtained on 2002 August 13 (10:52-16:46 UT), or 0.346-0.516 days after the burst. In order to investigate the early-time (<1 day) evolution of the afterglow, four-band light curves were produced by analyzing the data taken at these two astronomical observatories as well as the publicly released data taken using the Magellan Baade telescope (Gladders & Hall). The light curves can be approximated by a broken power law, of which the indices are approximately 0.46 and 1.33 before and after a break at ~0.2 days, respectively. The optical spectral index stayed approximately constant at ~0.9 over 0.17-4.07 days after the burst. Since the temporal decay index after the break and the spectral index measured at that time are both consistent with those predicted by a spherical expansion model, the early break is unlikely to be a jet break but is likely to represent the end of an early bump in the light curve, as was observed in the optical afterglow of GRB 021004.

  2. The influence of the N(2D) and N(2P) states in the ionization of the pink afterglow of the nitrogen flowing DC discharge

    NASA Astrophysics Data System (ADS)

    Levaton, J.; Klein, A. N.; Binder, C.

    2018-01-01

    In the present work, we extensively discuss the role of N(2D) and N(2P) atoms in the ionization processes of pink afterglow based on optical emission spectroscopy analysis and kinetic numerical modelling. We studied the pink afterglow generated by a nitrogen DC discharge operating at 0.6 Slm-1 flow rate, 45 mA discharge current and pressures ranging from 250 to 1050 Pa. The 391.4 nm nitrogen band was monitored along the afterglow furnishing the relative density of the N2+(B2Σ+u, v = 0) state. A numerical model developed to calculate the nitrogen species densities in the afterglow fits the excited ion density profiles well for the experimental conditions. From the modelling results, we determine the densities of the N+, N2+, N3+, and N4+ ions; the calculations show that the N3+ ion density predominates in the afterglow at the typical residence times of the pink afterglow. This behaviour has been observed experimentally and reported in the literature. Furthermore, we calculate the fractional contribution in the ionization for several physical-chemical mechanisms in the post-discharge. Even with the N3+ ion density being dominant in the afterglow, we find through the calculations that the ionization is dominated by the reactions N(2D) + N(2P) → N2+(X2Σ+g) + e and N2(a'1Σ-u) + N2(X 1Σg+, v > 24) → N4+ + e. The ion conversion mechanisms, or ion transfer reactions, which are responsible for the fact that the N3+ density dominates in the post-discharge, are investigated.

  3. Recent Progress on GRBs with Swift

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. In addition, rapid-response telescopes on the ground have new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and supernova physics.

  4. Rates of short-GRB afterglows in association with binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Saleem, M.; Pai, Archana; Misra, Kuntal; Resmi, L.; Arun, K. G.

    2018-03-01

    Assuming all binary neutron star (BNS) mergers produce short gamma-ray bursts, we combine the merger rates of BNS from population synthesis studies, the sensitivities of advanced gravitational wave (GW) interferometer networks, and of the electromagnetic (EM) facilities in various wavebands, to compute the detection rate of associated afterglows in these bands. Using the inclination angle measured from GWs as a proxy for the viewing angle and assuming a uniform distribution of jet opening angle between 3° and 30°, we generate light curves of the counterparts using the open access afterglow hydrodynamics package BOXFIT for X-ray, optical, and radio bands. For different EM detectors, we obtain the fraction of EM counterparts detectable in these three bands by imposing appropriate detection thresholds. In association with BNS mergers detected by five (three) detector networks of advanced GW interferometers, assuming a BNS merger rate of 0.6-774 Gpc-3 yr-1 from population synthesis models, we find the afterglow detection rates (per year) to be 0.04-53 (0.02-27), 0.03-36 (0.01-19), and 0.04-47 (0.02-25) in the X-ray, optical, and radio bands, respectively. Our rates represent maximum possible detections for the given BNS rate since we ignore effects of cadence and field of view in EM follow-up observations.

  5. Study of argon-oxygen flowing afterglow

    NASA Astrophysics Data System (ADS)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon-oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon-oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  6. Evolution of the polarization of the optical afterglow of the gamma-ray burst GRB030329.

    PubMed

    Greiner, Jochen; Klose, Sylvio; Reinsch, Klaus; Schmid, Hans Martin; Sari, Re'em; Hartmann, Dieter H; Kouveliotou, Chryssa; Rau, Arne; Palazzi, Eliana; Straubmeier, Christian; Stecklum, Bringfried; Zharikov, Sergej; Tovmassian, Gaghik; Bärnbantner, Otto; Ries, Christoph; Jehin, Emmanuel; Henden, Arne; Kaas, Anlaug A; Grav, Tommy; Hjorth, Jens; Pedersen, Holger; Wijers, Ralph A M J; Kaufer, Andreas; Park, Hye-Sook; Williams, Grant; Reimer, Olaf

    2003-11-13

    The association of a supernova with GRB030329 strongly supports the 'collapsar' model of gamma-ray bursts, where a relativistic jet forms after the progenitor star collapses. Such jets cannot be spatially resolved because gamma-ray bursts lie at cosmological distances; their existence is instead inferred from 'breaks' in the light curves of the afterglows, and from the theoretical desire to reduce the estimated total energy of the burst by proposing that most of it comes out in narrow beams. Temporal evolution of the polarization of the afterglows may provide independent evidence for the jet structure of the relativistic outflow. Small-level polarization ( approximately 1-3 per cent) has been reported for a few bursts, but its temporal evolution has yet to be established. Here we report polarimetric observations of the afterglow of GRB030329. We establish the polarization light curve, detect sustained polarization at the per cent level, and find significant variability. The data imply that the afterglow magnetic field has a small coherence length and is mostly random, probably generated by turbulence, in contrast with the picture arising from the high polarization detected in the prompt gamma-rays from GRB021206 (ref. 18).

  7. The Effect of Magnetic Fields on Gamma-Ray Bursts Inferred from Multi-Wavelength Observations of the Bursts of 23 January 1999

    NASA Technical Reports Server (NTRS)

    Galama, T. J.; Briggs, M. S.; Wijers, R. A. M. J.; Vreeswijk, P. M.; Rol, E.; Band, D.; vanParadijs, J.; Kouveliotou, C.; Preece, R. D.; Bremer, M.

    1999-01-01

    Gamma-ray bursts (GRBs) are thought to arise when an extremely relativistic outflow of particles from a massive explosion (the nature at which is still unclear) interacts with material surrounding the site of the explosion. Observations of the evolving changes in emission at many wavelengths allow us to investigate the origin of the photons, and so potentially determine the nature of the explosion. Here we report the results of gamma-ray, optical, infrared, submillimeter, millimeter and radio observations of the burst ORB990123 and its afterglow. Our interpretation of the data indicates that the initial and afterglow emissions are associated with three distinct regions in the fireball. The peak flux of the afterglow, one day after the burst, has a lower frequency than observed for other bursts; this explains the short-lived radio emission. We suggest that the differences between bursts reflect variations in the magnetic-field strength in the afterglow-emitting regions.

  8. Afterglow Population Studies from Swift Follow-Up Observations of Fermi LAT GRBs

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.; Oates, S. R.; McEnery, J.; Vasileiou, V.; Troja, E.; Gehrels, N.

    2010-01-01

    The small population of Fermi LAT detected GRBs discovered over the last year has been providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 5 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into other components of GRB emission structure. We explore the new ability to utilize both of these observatories to study the same GRBs over 10 orders of magnitude in energy, although not always concurrently. Almost all LAT GRBs that have been followed-up by Swift within 1-day have been clearly detected and carefully observed. We will present the context of the lower-energy afterglows of this special subset of GRBs that has > 100 MeV emission compared to the hundreds in the Swift database that may or may not have been observed by LAT, and theorize upon the relationship between these properties and the origin of the high energy gamma-ray emission.

  9. Gamma-Ray Bursts: An Overview of Recent Observational Progress

    NASA Astrophysics Data System (ADS)

    McKay, T. A.; Akerlof, C.; Kehoe, B.; Pawl, A.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Hills, J.; Szymanski, J.; Wren, J.; Marshall, S.; Lee, B.

    Gamma-ray bursts have, since their discovery in 1969, been the archetypal astrophysical mystery. Despite the detection of thousands of events, our knowledge of the origin and nature of GRBs remained minimal for nearly 30 years. Progress in understanding gamma-ray bursts has undergone explosive growth since the observation in 1997 of the first optical afterglow of a burst. The discovery of afterglows was followed in 1999 by the first simultaneous optical detection of a GRB. These discoveries constitute the beginning of a new field, the multiwavelength study of GRBs. We review here some highlights of what we have learned over the last two years, and look ahead towards an observational program likely to settle most of the remaining GRB questions.

  10. Can a Double Component Outflow Explain the X-Ray and Optical Lightcurves of Swift Gamma-Ray Bursts?

    NASA Technical Reports Server (NTRS)

    De Pasquale, Massimiliano; Evans, P.; Oates, S.; Page, M.; Zane, S.; Schady, P.; Breeveld, A.; Holland, S.; Still, M.

    2011-01-01

    An increasing sample of Gamma-Ray Bursts (GRBs) observed by Swift show evidence of 'chromatic breaks', i.e. breaks that are present in the X-ray but not in the optical. We find that in a significant fraction of these GRB afterglows the X-ray and the optical emission cannot be produced by the same component. We propose that these afterglow lightcurves are the result of a two-component jet, in which both components undergo energy injection for the whole observation and the X-ray break is due to a jet break in the narrow outflow. Bursts with chromatic breaks also explain another surprising finding, the paucity of late achromatic breaks. We propose a model that may explain the behaviour of GRB emission in both X-ray and optical bands. This model can be a radical and noteworthy alternative to the current interpretation for the 'canonical' XRT and UVOT lightcurves, and it bears fundamental implications for GRB physics.

  11. THE PROPERTIES OF THE 2175 A EXTINCTION FEATURE DISCOVERED IN GRB AFTERGLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zafar, Tayyaba; Watson, Darach; Eliasdottir, Ardis

    The unequivocal, spectroscopic detection of the 2175 A bump in extinction curves outside the Local Group is rare. To date, the properties of the bump have been examined in only two gamma-ray burst (GRB) afterglows (GRB 070802 and GRB 080607). In this work, we analyze in detail the detections of the 2175 Angstrom-Sign extinction bump in the optical spectra of two further GRB afterglows: GRB 080605 and 080805. We gather all available optical/near-infrared photometric, spectroscopic, and X-ray data to construct multi-epoch spectral energy distributions (SEDs) for both GRB afterglows. We fit the SEDs with the Fitzpatrick and Massa model withmore » a single or broken power law. We also fit a sample of 38 GRB afterglows, known to prefer a Small Magellanic Cloud (SMC)-type extinction curve, with the same model. We find that the SEDs of GRB 080605 and GRB 080805 at two epochs are fit well with a single power law with a derived extinction of A{sub V} = 0.52{sup +0.13}{sub -0.16} and 0.50{sup +0.13}{sub -0.10}, and 2.1{sup +0.7}{sub -0.6} and 1.5 {+-} 0.2, respectively. While the slope of the extinction curve of GRB 080805 is not well constrained, the extinction curve of GRB 080605 has an unusual very steep far-UV rise together with the 2175 A bump. Such an extinction curve has previously been found in only a small handful of sightlines in the Milky Way. One possible explanation of such an extinction curve may be dust arising from two different regions with two separate grain populations, however we cannot distinguish the origin of the curve. We finally compare the four 2175 A bump sightlines to the larger GRB afterglow sample and to Local Group sightlines. We find that while the width and central positions of the bumps are consistent with what is observed in the Local Group, the relative strength of the detected bump (A{sub bump}) for GRB afterglows is weaker for a given A{sub V} than for almost any Local Group sightline. Such dilution of the bump strength may offer tentative support to a dual dust-population scenario.« less

  12. Ultrahigh energy neutrino afterglows of nearby long duration gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Thomas, Jessymol K.; Moharana, Reetanjali; Razzaque, Soebur

    2017-11-01

    Detection of ultrahigh energy (UHE, ≳1 PeV ) neutrinos from astrophysical sources will be a major advancement in identifying and understanding the sources of UHE cosmic rays (CRs) in nature. Long duration gamma-ray burst (GRB) blast waves have been considered as potential acceleration sites of UHECRs. These CRs are expected to interact with GRB afterglow photons, which are synchrotron radiation from relativistic electrons coaccelerated with CRs in the blast wave, and naturally produce UHE neutrinos. Fluxes of these neutrinos are uncertain, however, and crucially depend on the observed afterglow modeling. We have selected a sample of 23 long duration GRBs within redshift 0.5 for which adequate electromagnetic afterglow data are available and which could produce high flux of UHE afterglow neutrinos, being nearby. We fit optical, x-ray, and γ -ray afterglow data with an adiabatic blast wave model in a constant density interstellar medium and in a wind environment where the density of the wind decreases as the inverse square of the radius from the center of the GRB. The blast wave model parameters extracted from these fits are then used for calculating UHECR acceleration and p γ interactions to produce UHE neutrino fluxes from these GRBs. We have also explored the detectability of these neutrinos by currently running and upcoming large area neutrino detectors, such as the Pierre Auger Observatory, IceCube Gen-2, and KM3NeT observatories. We find that our realistic flux models from nearby GRBs will be unconstrained in the foreseeable future.

  13. Strategies for Prompt Searches for GRB Afterglows: The Discovery of GRB 001011 Optical/Near-Infrared Counterpart Using Colour-Colour Selection

    NASA Technical Reports Server (NTRS)

    Gorosabel, J.; Fynbo, J. U.; Hjorth, J.; Wolf, C.; Andersen, M. I.; Pedersen, H.; Christensen, L.; Jensen, B. L.; Moller, P.; Afonso, J.; hide

    2001-01-01

    We report the discovery of the optical and near-infrared counterpart to GRB 001011. The GRB 001011 error box determined by Beppo-SAX was simultaneously imaged in the near-infrared by the 3.58-m. New Technology Telescope and in the optical by the 1.54-m Danish Telescope - 8 hr after the gamma-ray event. We implement the colour-colour discrimination technique proposed by Rhoads (2001) and extend it using near-IR data as well. We present the results provided by an automatic colour-colour discrimination pipe-line developed to discern the different populations of objects present in the GRB 001011 error box. Our software revealed three candidates based on single-epoch images. Second-epoch observations carried out approx. 3.2 days after the burst revealed that the most likely candidate had faded thus identifying it with the counterpart to the GRB. In deep R-band images obtained 7 months after the burst a faint (R=25.38 plus or minus 0.25) elongated object, presumably the host galaxy of GRB 001011, was detected at the position of the afterglow. The GRB 001011 afterglow is the first discovered with the assistance of colour-colour diagram techniques. We discuss the advantages of using this method and its application to boxes determined by future missions.

  14. Gamma-Ray Burst Afterglows as Probes of Environment and Blastwave Physics. 1; Absorption by Host Galaxy Gas and Dust

    NASA Technical Reports Server (NTRS)

    Starling, R. L. C.; Wijers, R. A. M. J.; Wiersema, K.; Rol, E.; Curran, P. A.; Kouveliotou, C.; vanderHorst, A. J.; Heemskerk, M. H. M.

    2006-01-01

    We use a new approach to obtain limits on the absorbing columns towards an initial sample of 10 long Gamma-Ray Bursts observed with BeppoSAX and selected on the basis of their good optical and nIR coverage, from simultaneous fits to nIR, optical and X-ray afterglow data, in count space and including the effects of metallicity. In no cases is a MIV-like ext,inction preferred, when testing MW, LMC and SMC extinction laws. The 2175A bump would in principle be detectable in all these afterglows, but is not present in the data. An SMC-like gas-to-dust ratio or lower value can be ruled out for 4 of the hosts analysed here (assuming Sh4C metallicity and extinction law) whilst the remainder of the sample have too large an error to discriminate. We provide a more accurate estimate of the line-of-sight extinction and improve upon the uncertainties for the majority of the extinction measurements made in previous studies of this sample. We discuss this method to determine extinction values in comparison with the most commonly employed existing methods.

  15. Chameleon induced atomic afterglow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Burrage, Clare

    2010-11-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  16. KSC-04pd2074

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, technicians install the blankets around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  17. KSC-04pd2078

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician installs the blankets around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  18. KSC-04pd2104

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is in Hangar AE at Cape Canaveral Air Force Station. Swift has been wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  19. KSC-04pd2081

    NASA Image and Video Library

    2004-10-05

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, a technician performs blanket closeouts on the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  20. KSC-04pd2076

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician works on a blanket installed around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  1. KSC-04pd2082

    NASA Image and Video Library

    2004-10-05

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians perform blanket closeouts on the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  2. KSC-04pd2075

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician works on a blanket installed around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  3. KSC-04pd2077

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - Hangar AE, Cape Canaveral Air Force Station, a technician trims blanket material that will be installed around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  4. KSC-04pd2080

    NASA Image and Video Library

    2004-10-05

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians perform blanket closeouts on the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  5. Gamma-Ray Burst Afterglows with ALMA

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Huang, K.; Takahashi, S.

    2015-12-01

    We present multi-wavelength observations including sub-millimeter follow-ups for two GRB afterglows. The rapid SMA and multi-wavelength observations for GRB120326A revealed their complex emissions as the synchrotron self-inverse Compton radiation from reverse shock. The observations including ALMA for GRB131030A also showed the significant X-ray excess from the standard forward shock synchrotron model. Based on these results, we also discuss further observations for (A) constraining of the mass of progenitor with polarization, (B) the first confirmation of GRB jet collimation, and (C) revealing the origin of optically dark GRBs.

  6. GRB 021211 as a Faint Analogue of GRB 990123: Exploring the Similarities and Differences in the Optical Afterglows

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; Bersier, David; Bloom, J. S.; Garnavich, Peter M.; Caldwell, Nelson; Challis, Peter; Kirshner, Robert; Luhman, Kevin; McLeod, Brian; Stanek, K. Z.

    2004-01-01

    We present BVR(sub c)JHK(sub s) photometry of the optical afterglow of the gamma-ray burst GRB 021211 taken at the Magellan, MMT, and WIYN observatories between 0.7 and 50 days after the burst. We find an intrinsic spectral slope at optical and near-infrared wavelengths of 0.69 +/- 0.14 at 0.87 days. The optical decay during the first day is almost identical to that of GRB 990123 except that GRB 021211's optical afterglow was intrinsically approximately 38 times fainter and the transition from the reverse shock to the forward shock may have occurred earlier than it did for GRB 990123. We find no evidence for a jet break or the cooling break passing through optical frequencies during the first day after the burst. There is weak evidence for a break in the J-band decay between 0.89 and 1.87 days which may be due to a jet. The optical and infrared data are consistent with a relativistic fireball where the shocked electrons are in the slow cooling regime and the electron index is 2.3 +/- 0.1. The burst appears to have occurred in a homogeneous ambient medium. Our analysis suggests that the jet of GRB 021211 may have a small opening angle (1.4 deg-4.4 deg) and that the total gamma-ray energy is much less than the canonical value of 1.33 x 10(exp 51) erg. If, this is the case then most of the energy of the burst may be in another form such as a frozen magnetic field, in supernova ejecta, or in a second jet component. The host galaxy of GRB 021211 is subluminous and has a star formation rate of at least 1 solar mass/yr.

  7. Characterization of a Plasmoid in the Afterglow of a Supersonic Flowing Microwave Discharge

    NASA Technical Reports Server (NTRS)

    Drake, D. J.; Miller, S.; Nikolic, M.; Popovic, S.; Vuskovic, L.

    2009-01-01

    We performed a detailed characterization a plasmoid in the afterglow region of an Ar supersonic microwave cavity discharge. The supersonic flow was generated using a convergent-divergent nozzle upstream of the discharge region. A cylindrical cavity was used to sustain a discharge in the pressure range of 100-600 Pa. Optical emission spectroscopy was used to observe populations of excited and ionic species in the plasmoid region. Plasmoid formation in the supersonic flowing afterglow located downstream from the primary microwave cavity discharge was characterized by measuring the radial and axial distributions of Argon excited states and Argon ions. More experiments are being carried out on the plasmoid to understand the discharge parameters within the region, i.e. rotational temperature, vibrational temperature, electron density, and how the electrodynamic and aerodynamic effects combine to form this plasmoid.

  8. Testing gamma-ray burst models with the afterglow of GRB 090102

    NASA Astrophysics Data System (ADS)

    Gendre, B.; Klotz, A.; Palazzi, E.; Krühler, T.; Covino, S.; Afonso, P.; Antonelli, L. A.; Atteia, J. L.; D'Avanzo, P.; Boër, M.; Greiner, J.; Klose, S.

    2010-07-01

    We present the observations of the afterglow of gamma-ray burst GRB 090102. Optical data taken by the Telescope a Action Rapide pour les Objets Transitoires (TAROT), Rapid Eye Mount (REM), Gamma-Ray burst Optical/Near-Infrared Detector (GROND), together with publicly available data from Palomar, Instituto de Astrofísica de Canarias (IAC) and Nordic Optical Telescope (NOT) telescopes, and X-ray data taken by the XRT instrument on board the Swift spacecraft were used. This event features an unusual light curve. In X-rays, it presents a constant decrease with no hint of temporal break from 0.005 to 6d after the burst. In the optical, the light curve presents a flattening after 1ks. Before this break, the optical light curve is steeper than that of the X-ray. In the optical, no further break is observed up to 10d after the burst. We failed to explain these observations in light of the standard fireball model. Several other models, including the cannonball model were investigated. The explanation of the broad-band data by any model requires some fine-tuning when taking into account both optical and X-ray bands. Based on observations obtained with TAROT, REM, GROND. E-mail: bruce.gendre@asdc.asi.it ‡ Present address: ASDC, Via Galileo Galilei, 00044 Frascati, Italy.

  9. Transient survey rates for orphan afterglows from compact merger jets

    NASA Astrophysics Data System (ADS)

    Lamb, Gavin P.; Tanaka, Masaomi; Kobayashi, Shiho

    2018-06-01

    Orphan afterglows from short γ-ray bursts (GRBs) are potential candidates for electromagnetic (EM) counterpart searches to gravitational wave (GW) detected neutron star or neutron star black hole mergers. Various jet dynamical and structure models have been proposed that can be tested by the detection of a large sample of GW-EM counterparts. We make predictions for the expected rate of optical transients from these jet models for future survey telescopes, without a GW or GRB trigger. A sample of merger jets is generated in the redshift limits 0 ≤ z ≤ 3.0, and the expected peak r-band flux and time-scale above the Large Synoptic Survey Telescope (LSST) or Zwicky Transient Factory (ZTF) detection threshold, mr = 24.5 and 20.4, respectively, is calculated. General all-sky rates are shown for mr ≤ 26.0 and mr ≤ 21.0. The detected orphan and GRB afterglow rate depends on jet model, typically 16≲ R≲ 76 yr-1 for the LSST, and 2≲ R ≲ 8 yr-1 for ZTF. An excess in the rate of orphan afterglows for a survey to a depth of mr ≤ 26 would indicate that merger jets have a dominant low-Lorentz factor population, or the jets exhibit intrinsic jet structure. Careful filtering of transients is required to successfully identify orphan afterglows from either short- or long-GRB progenitors.

  10. The 2175 Å Extinction Feature in the Optical Afterglow Spectrum of GRB 180325A at z = 2.25

    NASA Astrophysics Data System (ADS)

    Zafar, T.; Heintz, K. E.; Fynbo, J. P. U.; Malesani, D.; Bolmer, J.; Ledoux, C.; Arabsalmani, M.; Kaper, L.; Campana, S.; Starling, R. L. C.; Selsing, J.; Kann, D. A.; de Ugarte Postigo, A.; Schweyer, T.; Christensen, L.; Møller, P.; Japelj, J.; Perley, D.; Tanvir, N. R.; D’Avanzo, P.; Hartmann, D. H.; Hjorth, J.; Covino, S.; Sbarufatti, B.; Jakobsson, P.; Izzo, L.; Salvaterra, R.; D’Elia, V.; Xu, D.

    2018-06-01

    The ultraviolet (UV) extinction feature at 2175 Å is ubiquitously observed in the Galaxy but is rarely detected at high redshifts. Here we report the spectroscopic detection of the 2175 Å bump on the sightline to the γ-ray burst (GRB) afterglow GRB 180325A at z = 2.2486, the only unambiguous detection over the past 10 years of GRB follow-up, at four different epochs with the Nordic Optical Telescope (NOT) and the Very Large Telescope (VLT)/X-shooter. Additional photometric observations of the afterglow are obtained with the Gamma-Ray burst Optical and Near-Infrared Detector (GROND). We construct the near-infrared to X-ray spectral energy distributions (SEDs) at four spectroscopic epochs. The SEDs are well described by a single power law and an extinction law with R V ≈ 4.4, A V ≈ 1.5, and the 2175 Å extinction feature. The bump strength and extinction curve are shallower than the average Galactic extinction curve. We determine a metallicity of [Zn/H] > ‑0.98 from the VLT/X-shooter spectrum. We detect strong neutral carbon associated with the GRB with equivalent width of W r(λ 1656) = 0.85 ± 0.05. We also detect optical emission lines from the host galaxy. Based on the Hα emission-line flux, the derived dust-corrected star formation rate is ∼46 ± 4 M ⊙ yr‑1 and the predicted stellar mass is log M */M ⊙ ∼ 9.3 ± 0.4, suggesting that the host galaxy is among the main-sequence star-forming galaxies. Based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO program 0100.D‑0649(A).

  11. KSC-04pd2107

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - Project managers Mike Miller and Rex Eberhardt stand in front of the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. Swift has been wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  12. KSC-04pd2111

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. Swift is wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  13. KSC-04pd2083

    NASA Image and Video Library

    2004-10-05

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians take a final look at the blankets installed on the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  14. KSC-04pd2079

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician (right) watches while another completes installation of the blankets around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  15. Unveiling the population of orphan γ-ray bursts

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Salvaterra, R.; Campana, S.; Vergani, S. D.; Japelj, J.; Bernardini, M. G.; Burlon, D.; D'Avanzo, P.; Melandri, A.; Gomboc, A.; Nappo, F.; Paladini, R.; Pescalli, A.; Salafia, O. S.; Tagliaferri, G.

    2015-06-01

    Gamma-ray bursts (GRBs) are detectable in the γ-ray band if their jets are oriented toward the observer. However, for each GRB with a typical θjet, there should be ~2/θ2jet bursts whose emission cone is oriented elsewhere in space. These off-axis bursts can eventually be detected when, due to the deceleration of their relativistic jets, the beaming angle becomes comparable to the viewing angle. Orphan afterglows (OAs) should outnumber the current population of bursts detected in the γ-ray band even if they have not been conclusively observed so far at any frequency. We compute the expected flux of the population of orphan afterglows in the mm, optical, and X-ray bands through a population synthesis code of GRBs and the standard afterglow emission model. We estimate the detection rate of OAs with ongoing and forthcoming surveys. The average duration of OAs as transients above a given limiting flux is derived and described with analytical expressions: in general OAs should appear as daily transients in optical surveys and as monthly/yearly transients in the mm/radio band. We find that ~2 OA yr-1 could already be detected by Gaia and up to 20 OA yr-1 could be observed by the ZTF survey. A larger number of 50 OA yr-1 should be detected by LSST in the optical band. For the X-ray band, ~26 OA yr-1 could be detected by the eROSITA. For the large population of OA detectable by LSST, the X-ray and optical follow up of the light curve (for the brightest cases) and/or the extensive follow up of their emission in the mm and radio band could be the key to disentangling their GRB nature from other extragalactic transients of comparable flux density.

  16. Extremely Soft X-Ray Flash as the Indicator of Off-axis Orphan GRB Afterglow

    NASA Astrophysics Data System (ADS)

    Urata, Yuji; Huang, Kuiyun; Yamazaki, Ryo; Sakamoto, Takanori

    2015-06-01

    We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRB) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak energy of the prompt spectrum {E}{obs}{src}, (2) redshift measurements, and (3) multicolor observations of an earlier (or brightening) phase. XRF 020903 was the only sample selected on the basis of these criteria. A complete optical multicolor afterglow light curve of XRF 020903 obtained from archived data and photometric results in the literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle (0.21 rad, which is twice the jet opening half-angle, {θ }{jet}) can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis orphan GRB afterglow light curves. Events with a larger viewing angle (\\gt ∼ 2{θ }{jet}) could be discovered using an 8 m class telescope with wide-field imagers such as the Subaru Hyper-Suprime-Cam and the Large Synoptic Survey Telescope.

  17. Early afterglows in wind environments revisited

    NASA Astrophysics Data System (ADS)

    Zou, Y. C.; Wu, X. F.; Dai, Z. G.

    2005-10-01

    When a cold shell sweeps up the ambient medium, a forward shock and a reverse shock will form. We analyse the reverse-forward shocks in a wind environment, including their dynamics and emission. An early afterglow is emitted from the shocked shell, e.g. an optical flash may emerge. The reverse shock behaves differently in two approximations: the relativistic and Newtonian cases, which depend on the parameters, e.g. the initial Lorentz factor of the ejecta. If the initial Lorentz factor is much less than 114E1/453Δ-1/40,12A-1/4*,-1, the early reverse shock is Newtonian. This may take place for the wider of a two-component jet, an orphan afterglow caused by a low initial Lorentz factor and so on. The synchrotron self-absorption effect is significant especially for the Newtonian reverse shock case, as the absorption frequency νa is larger than the cooling frequency νc and the minimum synchrotron frequency νm for typical parameters. For the optical to X-ray band, the flux is nearly unchanged with time during the early period, which may be a diagnostic for the low initial Lorentz factor of the ejecta in a wind environment. We also investigate the early light curves with different wind densities and compare them with those in the interstellar medium model.

  18. Jet simulations and gamma-ray burst afterglow jet breaks

    NASA Astrophysics Data System (ADS)

    van Eerten, H. J.; Meliani, Z.; Wijers, R. A. M. J.; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on circumstances, the radio jet break may be postponed significantly. Using high-accuracy adaptive mesh fluid simulations in one dimension, coupled to a detailed synchrotron radiation code, we demonstrate that this is true even for the standard fireball model and hard-edged jets. We confirm these effects with a simulation in two dimensions. The frequency dependence of the jet break is a result of the angle dependence of the emission, the changing optical depth in the self-absorbed regime and the shape of the synchrotron spectrum in general. In the optically thin case the conventional analysis systematically overestimates the jet break time, leading to inferred opening angles that are underestimated by a factor of ˜1.3 and explosion energies that are underestimated by a factor of ˜1.7, for explosions in a homogeneous environment. The methods presented in this paper can be applied to adaptive mesh simulations of arbitrary relativistic fluid flows. All analysis presented here makes the usual assumption of an on-axis observer.

  19. Multiwavelength Observations of GRB 110731A: GeV Emission From Onset to Afterglow

    DOE PAGES

    Ackermann, M.; Ajello, M.; Asano, K.; ...

    2013-01-09

    In this paper, we report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for whichmore » simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. Lastly, the observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ~ 500-550.« less

  20. Multiwavelength Observations of GRB 110731A: GeV Emission from Onset to Afterglow

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Granot, J.; Greiner, J.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Romoli, C.; Roth, M.; Ryde, F.; Sanchez, D. A.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spinelli, P.; Stamatikos, M.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Gruber, D.; Bhat, P. N.; Bissaldi, E.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Foley, S.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; McGlynn, S.; Paciesas, W. S.; Pelassa, V.; Preece, R.; Rau, A.; van der Horst, A. J.; von Kienlin, A.; Kann, D. A.; Filgas, R.; Klose, S.; Krühler, T.; Fukui, A.; Sako, T.; Tristram, P. J.; Oates, S. R.; Ukwatta, T. N.; Littlejohns, O.

    2013-02-01

    We report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ~ 500-550.

  1. In Search of Progenitors for Supernovaless Gamma-Ray Bursts 060505 and 060614: Re-examination of Their Afterglows

    NASA Astrophysics Data System (ADS)

    Xu, D.; Starling, R. L. C.; Fynbo, J. P. U.; Sollerman, J.; Yost, S.; Watson, D.; Foley, S.; O'Brien, P. T.; Hjorth, J.

    2009-05-01

    GRB 060505 and GRB 060614 are nearby long-duration gamma-ray bursts (LGRBs) without accompanying supernovae (SNe) down to very strict limits. They thereby challenge the conventional LGRB-SN connection and naturally give rise to the question: are there other peculiar features in their afterglows which would help shed light on their progenitors? To answer this question, we combine new observational data with published data and investigate the multiband temporal and spectral properties of the two afterglows. We find that both afterglows can be well interpreted within the framework of the jetted standard external shock wave model, and that the afterglow parameters for both bursts fall well within the range observed for other LGRBs. Hence, from the properties of the afterglows there is nothing to suggest that these bursts should have another progenitor than other LGRBs. Recently, Swift-discovered GRB 080503 also has the spike + tail structure during its prompt γ-ray emission seemingly similar to GRB 060614. We analyze the prompt emission of this burst and find that this GRB is actually a hard-spike + hard-tail burst with a spectral lag of 0.8 ± 0.4 s during its tail emission. Thus, the properties of the prompt emission of GRB 060614 and GRB 080503 are clearly different, motivating further thinking of GRB classification (and even identification of faint core-collapse SNe). Finally, we note that, whereas the progenitor of the two SN-less bursts remains uncertain, the core-collapse origin for the SN-less bursts would be quite certain if a windlike environment can be observationally established, e.g., from an optical decay faster than the X-ray decay in the afterglow's slow cooling phase. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, under programs 077.D-0661 and 177.A-0591.

  2. "Short, Hard Gamma-Ray Bursts - Mystery Solved?????"

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2006-01-01

    After over a decade of speculation about the nature of short-duration hard-spectrum gamma-ray bursts (GRBs), the recent detection of afterglow emission from a small number of short bursts has provided the first physical constraints on possible progenitor models. While the discovery of afterglow emission from long GRBs was a real breakthrough linking their origin to star forming galaxies, and hence the death of massive stars, the progenitors, energetics, and environments for short gamma-ray burst events remain elusive despite a few recent localizations. Thus far, the nature of the host galaxies measured indicates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors. On the other hand, some of the short burst afterglow observations cannot be easily explained in the coalescence scenario. These observations raise the possibility that short GRBs may have different or multiple progenitors systems. The study of the short-hard GRB afterglows has been made possible by the Swift Gamma-ray Burst Explorer, launched in November of 2004. Swift is equipped with a coded aperture gamma-ray telescope that can observe up to 2 steradians of the sky and can compute the position of a gamma-ray burst to within 2-3 arcmin in less than 10 seconds. The Swift spacecraft can slew on to this burst position without human intervention, allowing its on-board x ray and optical telescopes to study the afterglow within 2 minutes of the original GRB trigger. More Swift short burst detections and afterglow measurements are needed before we can declare that the mystery of short gamma-ray burst is solved.

  3. Arbitrary-detuning asynchronous optical sampling pump-probe spectroscopy of bacterial reaction centers.

    PubMed

    Antonucci, Laura; Bonvalet, Adeline; Solinas, Xavier; Jones, Michael R; Vos, Marten H; Joffre, Manuel

    2013-09-01

    A recently reported variant of asynchronous optical sampling compatible with arbitrary unstabilized laser repetition rates is applied to pump-probe spectroscopy. This makes possible the use of a 5.1 MHz chirped pulse oscillator as the pump laser, thus extending the available time window to almost 200 ns with a time resolution as good as about 320 fs. The method is illustrated with the measurement in a single experiment of the complete charge transfer dynamics of the reaction center from Rhodobacter sphaeroides.

  4. An Unusual Supernova in the Error Box of the Gamma-Ray Burst of 25 April 1998

    NASA Technical Reports Server (NTRS)

    Galama , T. J.; Vreeswijk, P. M.; vanParadijs, J.; Kouveliotou, C.; Augusteijn, T.; Boehnhardt, H.; Brewer, J. P.; Doublier, V.; Gonzalez, J.-F.; Leibundgut, B.; hide

    1999-01-01

    The discovery of afterglows associated with gamma-ray bursts at X-ray, optical and radio wavelengths and the measurement of the redshifts of some of these events has established that gamma-ray bursts lie at extreme distances, making them the most powerful photon-emitters known in the Universe. Here we report the discovery of transient optical emission in the error box of the gamma-ray burst GRB980425, the light curve of which was very different from that of previous optical afterglows associated with gamma-ray bursts. The optical transient is located in a spiral arm of the galaxy ESO 184-GS2, which has a redshift velocity of only 2,550 km/ s. Its optical spectrum and location indicate that it is a very luminous supernova, which has been identified as SN1998bw. If this supernova and GRB980425 are indeed associated, the energy radiated in gamma-rays is at least four orders of magnitude less than in other gamma-ray bursts, although its appearance was otherwise unremarkable: this indicates that very different mechanisms can give rise to gamma-ray bursts. But independent of this association, the supernova is itself unusual, exhibiting an unusual light curve at radio wavelengths that requires that the gas emitting the radio photons be expanding relativistically.

  5. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  6. KSC-04pd2109

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. John Batilito, with Quality Assurance Services, is at right. Swift is wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  7. KSC-04pd2110

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. John DiBatilito is at right. Swift is wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  8. KSC-04pd2105

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - Quality Assurance Services technicians Willy Jones and Brian Kittle do some touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. Swift has been wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  9. KSC-04pd2108

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. John DiBatilito, with Quality Assurance Services, is at right. Swift is wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  10. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, J. L.; Oates, S. R.; Schady, P.; Burrows, D. N.; de Pasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; hide

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multiwavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  11. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith I.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  12. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.; Oates, S. R.; Schady, P.; Burrows, D. N.; dePasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; hide

    2011-01-01

    The new and extreme population of GRBs detected by Fermi -LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust dataset of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT detected GRBs and the well studied, fainter, less energetic GRBs detected by Swift -BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi -GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  13. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Superb Collaboration; Jankowski, F.; Keane, E. F.; Petroff, E.

    2017-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results: The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Φγ(E > 350 GeV) < 1.33 × 10-8 m-2 s-1. Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 × 1047 erg/s at 99% C.L.

  14. Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system

    NASA Astrophysics Data System (ADS)

    Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao

    2018-04-01

    We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.

  15. A Search for Early Optical Emission at Gamma-Ray Burst Locations by the Solar Mass Ejection Imager (SMEI)

    NASA Technical Reports Server (NTRS)

    Band, David L.; Buffington, Andrew; Jackson, Bernard V.; Hick, P. Paul; Smith, Aaron C.

    2005-01-01

    The Solar Mass Ejection Imager (SMEI) views nearly every point on the sky once every 102 minutes and can detect point sources as faint as R approx. 10th magnitude. Therefore, SMEI can detect or provide upper limits for the optical afterglow from gamma-ray bursts in the tens of minutes after the burst when different shocked regions may emit optically. Here we provide upper limits for 58 bursts between 2003 February and 2005 April.

  16. KSC-04PD-2186

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Technicians at NASAs Hangar AE, Cape Canaveral Air Force Station (CCAFS), help guide the Swift spacecraft being lowered onto a payload attach fitting, the interface between the spacecraft and the second stage of the Boeing Delta II rocket. Swift is a first-of-its-kind multi- wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts the most comprehensive study of GRB afterglows to date during its 2-year mission. Swift is scheduled to launch in November from Launch Pad 17-A at CCAFS.

  17. KSC-04PD-2187

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Technicians at NASAs Hangar AE, Cape Canaveral Air Force Station (CCAFS), help guide the Swift spacecraft being lowered onto a payload attach fitting, the interface between the spacecraft and the second stage of the Boeing Delta II rocket. Swift is a first-of-its-kind multi- wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts the most comprehensive study of GRB afterglows to date during its 2-year mission. Swift is scheduled to launch in November from Launch Pad 17-A at CCAFS.

  18. KSC-04pd1615

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, the Swift spacecraft is revealed. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7.

  19. KSC-04pd1611

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is being unwrapped in Hangar AE at Cape Canaveral Air Force Station. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7.

  20. KSC-04pd1612

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is being unwrapped in Hangar AE at Cape Canaveral Air Force Station. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7.

  1. KSC-04pd1613

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is being unwrapped in Hangar AE at Cape Canaveral Air Force Station. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7.

  2. An optical spectrum of the afterglow of a gamma-ray burst at a redshift of z = 6.295.

    PubMed

    Kawai, N; Kosugi, G; Aoki, K; Yamada, T; Totani, T; Ohta, K; Iye, M; Hattori, T; Aoki, W; Furusawa, H; Hurley, K; Kawabata, K S; Kobayashi, N; Komiyama, Y; Mizumoto, Y; Nomoto, K; Noumaru, J; Ogasawara, R; Sato, R; Sekiguchi, K; Shirasaki, Y; Suzuki, M; Takata, T; Tamagawa, T; Terada, H; Watanabe, J; Yatsu, Y; Yoshida, A

    2006-03-09

    The prompt gamma-ray emission from gamma-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 A due to Lyman alpha absorption at z approximately 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 +/- 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.

  3. A Motion-Based Feature for Event-Based Pattern Recognition

    PubMed Central

    Clady, Xavier; Maro, Jean-Matthieu; Barré, Sébastien; Benosman, Ryad B.

    2017-01-01

    This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating “spiking” events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition. PMID:28101001

  4. GRB070125: The First Long-Duration Gamma-Ray Burst in a Halo Environment

    NASA Technical Reports Server (NTRS)

    Bradley, Cenko S.; Fox, Derek B.; Penprase, Brian E.; Kulkarni, Shri R.; Price, Paul A.; Berger, Edo; Kulkarni, Shri R.; Harrison, Fiona A.; Gal-Yam, Avishay; Ofek, Eran O.; hide

    2007-01-01

    We present the discovery and high signal-to-noise spectroscopic observations of the optical afterglow of the long-duration gamma-ray burst GRB070125. Unlike all previously observed long-duration afterglows in the redshift range 0.5 < z < 2.0, we find no strong (rest-frame equivalent width W > 1.0 A) absorption features in the wavelength range 4000 - 10000 A. The sole significant feature is a weak doublet we identify as Mg 11 2796 (W = 0.18 +/- 0.02 A), 2803 (W = 0.08 +0I.-01 ) at z = 1.5477 +/- 0.0001. The low observed Mg II and inferred H I column densities are typically observed in galactic halos, far away from the bulk of massive star formation. Deep ground-based imaging reveals no host directly underneath the afterglow to a limit of R > 25.4 mag. Either of the two nearest blue galaxies could host GRB070125; the large offset (d >= 27 kpc) would naturally explain the low column density. To remain consistent with the large local (i.e. parsec scale) circum-burst density inferred from broadband afterglow observations, we speculate GRB070125 may have occurred far away from the disk of its host in a compact star-forming cluster. Such distant stellar clusters, typically formed by dynamical galaxy interactions, have been observed in the nearby universe, and should be more prevalent at z>l where galaxy mergers occur more frequently.

  5. GRB 120729A: External Shock Origin for Both the Prompt Gamma-Ray Emission and Afterglow

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ye; Wang, Xiang-Gao; Zheng, WeiKang; Liang, En-Wei; Lin, Da-bin; Zhong, Shu-Qing; Zhang, Hai-Ming; Huang, Xiao-Li; Filippenko, Alexei V.; Zhang, Bing

    2018-06-01

    Gamma-ray burst (GRB) 120729A was detected by Swift/BAT and Fermi/GBM, and then rapidly observed by Swift/XRT, Swift/UVOT, and ground-based telescopes. It had a single long and smooth γ-ray emission pulse, which extends continuously to the X-rays. We report Lick/KAIT observations of the source, and make temporal and spectral joint fits of the multiwavelength light curves of GRB 120729A. It exhibits achromatic light-curve behavior, consistent with the predictions of the external shock model. The light curves are decomposed into four typical phases: onset bump (Phase I), normal decay (Phase II), shallow decay (Phase III), and post-jet break (Phase IV). The spectral energy distribution (SED) evolves from prompt γ-ray emission to the afterglow with a photon index from Γ γ = 1.36 to Γ ≈ 1.75. There is no obvious evolution of the SED during the afterglow. The multiwavelength light curves from γ-ray to optical can be well modeled with an external shock by considering energy injection, and a time-dependent microphysics model with {ε }B\\propto {t}{α B} for the emission at early times, T< {T}0+157 {{s}}. Therefore, we conclude that both the prompt γ-ray emission and afterglow of GRB 120729A have the same external shock physical origin. Our model indicates that the ɛ B evolution can be described as a broken power-law function with α B,1 = 0.18 ± 0.04 and α B,2 = 0.84 ± 0.04. We also systematically investigate single-pulse GRBs in the Swift era, finding that only a small fraction of GRBs (GRBs 120729A, 051111, and 070318) are likely to originate from an external shock for both the prompt γ-ray emission and afterglow.

  6. Gamma-Ray Burst Optical Afterglows with Two-component Jets: Polarization Evolution Revisited

    NASA Astrophysics Data System (ADS)

    Lan, Mi-Xiang; Wu, Xue-Feng; Dai, Zi-Gao

    2018-06-01

    Gamma-ray bursts have been widely argued to originate from binary compact object mergers or core collapse of massive stars. Jets from these systems may have two components: an inner, narrow sub-jet and an outer, wider sub-jet. Such a jet subsequently interacts with its ambient gas, leading to a reverse shock (RS) and a forward shock. The magnetic field in the narrow sub-jet is very likely to be mixed by an ordered component and a random component during the afterglow phase. In this paper, we calculate light curves and polarization evolution of optical afterglows with this mixed magnetic field in the RS region of the narrow sub-jet in a two-component jet model. The resultant light curve has two peaks: an early peak arising from the narrow sub-jet and a late-time rebrightening due to the wider sub-jet. We find the polarization degree (PD) evolution under such a mixed magnetic field confined in the shock plane is very similar to that under the purely ordered magnetic field condition. The two-dimensional “mixed” magnetic fields confined in the shock plane are essentially the ordered magnetic fields only with different configurations. The position angle (PA) of the two-component jet can change gradually or abruptly by 90°. In particular, an abrupt 90° change of the PA occurs when the PD changes from its decline phase to the rise phase.

  7. A short gamma-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225.

    PubMed

    Gehrels, N; Sarazin, C L; O'Brien, P T; Zhang, B; Barbier, L; Barthelmy, S D; Blustin, A; Burrows, D N; Cannizzo, J; Cummings, J R; Goad, M; Holland, S T; Hurkett, C P; Kennea, J A; Levan, A; Markwardt, C B; Mason, K O; Meszaros, P; Page, M; Palmer, D M; Rol, E; Sakamoto, T; Willingale, R; Angelini, L; Beardmore, A; Boyd, P T; Breeveld, A; Campana, S; Chester, M M; Chincarini, G; Cominsky, L R; Cusumano, G; de Pasquale, M; Fenimore, E E; Giommi, P; Gronwall, C; Grupe, D; Hill, J E; Hinshaw, D; Hjorth, J; Hullinger, D; Hurley, K C; Klose, S; Kobayashi, S; Kouveliotou, C; Krimm, H A; Mangano, V; Marshall, F E; McGowan, K; Moretti, A; Mushotzky, R F; Nakazawa, K; Norris, J P; Nousek, J A; Osborne, J P; Page, K; Parsons, A M; Patel, S; Perri, M; Poole, T; Romano, P; Roming, P W A; Rosen, S; Sato, G; Schady, P; Smale, A P; Sollerman, J; Starling, R; Still, M; Suzuki, M; Tagliaferri, G; Takahashi, T; Tashiro, M; Tueller, J; Wells, A A; White, N E; Wijers, R A M J

    2005-10-06

    Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z approximately 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10'') and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from--and the localization of--the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.

  8. Study of nitrogen flowing afterglow with mercury vapor injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazánková, V., E-mail: mazankova@fch.vutbr.cz; Krčma, F.; Trunec, D.

    2014-10-21

    The reaction kinetics in nitrogen flowing afterglow with mercury vapor addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure nitrogen was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 130 W. The mercury vapors were added into the afterglow at the distance of 30 cm behind the active discharge. The optical emission spectra were measured along the flow tube. Three nitrogen spectral systems – the first positive, the second positive, and the first negative, and after the mercury vapor addition also the mercury resonance line at 254more » nm in the spectrum of the second order were identified. The measurement of the spatial dependence of mercury line intensity showed very slow decay of its intensity and the decay rate did not depend on the mercury concentration. In order to explain this behavior, a kinetic model for the reaction in afterglow was developed. This model showed that the state Hg(6 {sup 3}P{sub 1}), which is the upper state of mercury UV resonance line at 254 nm, is produced by the excitation transfer from nitrogen N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastables to mercury atoms. However, the N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastables are also produced by the reactions following the N atom recombination, and this limits the decay of N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastable concentration and results in very slow decay of mercury resonance line intensity. It was found that N atoms are the most important particles in this late nitrogen afterglow, their volume recombination starts a chain of reactions which produce excited states of molecular nitrogen. In order to explain the decrease of N atom concentration, it was also necessary to include the surface recombination of N atoms to the model. The surface recombination was considered as a first order reaction and wall recombination probability γ = (1.35 ± 0.04) × 10{sup −6} was determined from the experimental data. Also sensitivity analysis was applied for the analysis of kinetic model in order to reveal the main control parameters in the model.« less

  9. Rapid Identification of GRB Afterglows with Swift/UVOT

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.

    2006-01-01

    As part of the automated response to a new gamma-ray burst (GRB), the Ultraviolet and Optical Telescope (UVOT) instrument on Swift starts a 200-second exposure with the V filter within approximately 100 seconds of the BAT burst trigger. The instrument searches for sources in a 8' x 8' region, and sends the list of sources and a 160" x 160" sub-image centered on the burst position to the ground via Tracking and Data Relay Satellite System (TDRSS). These raw products and additional products calculated on the ground are then distributed through the GCN within a few minutes of the trigger. We describe the sensitivity of these data for detecting afterglows, summarize current results, and outline plans for rapidly distributing future detections.

  10. KSC-04pd1528

    NASA Image and Video Library

    2004-07-21

    KENNEDY SPACE CENTER, FLA. - Workers in Hangar AE, Cape Canaveral Air Force Station, meticulously clean the inside of a Boeing Delta fairing that will encapsulate the Swift spacecraft. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched into a low-Earth orbit on a Delta 7320 rocket in October 2004. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  11. KSC-04pd1529

    NASA Image and Video Library

    2004-07-21

    KENNEDY SPACE CENTER, FLA. - Workers in Hangar AE, Cape Canaveral Air Force Station, meticulously clean the inside of a Boeing Delta fairing that will encapsulate the Swift spacecraft. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched into a low-Earth orbit on a Delta 7320 rocket in October 2004. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  12. KSC-04pd1614

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, Spectrum Astro workers look over the Swift spacecraft while removing its protective cover. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7.

  13. KSC-04pd1585

    NASA Image and Video Library

    2004-07-29

    KENNEDY SPACE CENTER, FLA. - - The Swift spacecraft arrives at Hangar AE at Cape Canaveral Air Force Station (CCAFS). Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  14. KSC-04pd1617

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, Spectrum Astro workers remove the final pieces of protective cover on the Swift spacecraft. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7.

  15. KSC-04pd1618

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - - In Hangar AE at Cape Canaveral Air Force Station, the Swift spacecraft waits for final removal of the protective cover (at top). Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7.

  16. KSC-04pd1584

    NASA Image and Video Library

    2004-07-29

    KENNEDY SPACE CENTER, FLA. - The Swift spacecraft is enroute to Hangar AE at Cape Canaveral Air Force Station (CCAFS). Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  17. KSC-04pd1527

    NASA Image and Video Library

    2004-07-21

    KENNEDY SPACE CENTER, FLA. - Workers in Hangar AE, Cape Canaveral Air Force Station, meticulously clean the inside of a Boeing Delta fairing that will encapsulate the Swift spacecraft. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched into a low-Earth orbit on a Delta 7320 rocket in October 2004. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  18. KSC-04PD-1584

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The Swift spacecraft is enroute to Hangar AE at Cape Canaveral Air Force Station (CCAFS). Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma- ray, X-ray and optical wavebands. Swift is part of NASAs medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  19. Physics of gamma-ray bursts and multi-messenger signals from double neutron star mergers

    NASA Astrophysics Data System (ADS)

    Gao, He

    My dissertation includes two parts: Physics of Gamma-Ray Bursts (GRBs): Gamma-ray bursts are multi-wavelength transients, with both prompt gamma-ray emission and late time afterglow emission observed by telescopes in different wavelengths. I have carried out three investigations to understand GRB prompt emission and afterglow. Chapter 2 develops a new method, namely, "Stepwise Filter Correlation" method, to decompose the variability components in a light curve. After proving its reliability through simulations, we apply this method to 266 bright GRBs and find that the majority of the bursts have clear evidence of superposition of fast and slow variability components. Chapter 3 gives a complete presentation of the analytical approximations for synchrotron self-compton emission for all possible orders of the characteristic synchrotron spectral breaks (nua, nu m, and nuc). We identify a "strong absorption" regime whennua > nuc, and derive the critical condition for this regime. The external shock theory is an elegant theory to model GRB afterglows. It invokes a limit number of model parameters, and has well predicted spectral and temporal properties. Chapter 4 gives a complete reference of all the analytical synchrotron external shock afterglow models by deriving the temporal and spectral indices of all the models in all spectral regimes. This complete reference will serve as a useful tool for afterglow observers to quickly identify relevant models to interpret their data and identify new physics when the models fail. Milti-messenger signals from double neutron star merger: As the multi-messenger era of astronomy ushers in, the second part of the dissertation studies the possible electromagnetic (EM) and neutrino emission counterparts of double neutron star mergers. Chapter 6 suggests that if double neutron star mergers leave behind a massive magnetar rather than a black hole, the magnetar wind could push the ejecta launched during the merger process, and under certain conditions, accelerates it to a relativistic speed. Such a magnetar-powered ejecta, when interacting with the ambient medium, would develop a bright broad-band afterglow due to external shock synchrotron radiation. We study this physical scenario in detail, and present the predicted X-ray, optical and radio light curves for a range of magnetar and ejecta parameters. Chapter 7 applies the model to interpret one optical transient discovered recently. In chapter 8, we show that protons accelerated in the external shock would interact with photons generated in the dissipating magnetar wind and emit high energy neutrinos and photons. We find that PeV neutrinos could be emitted from the shock front as long as the ejecta could be accelerated to a relativistic speed. These events would contribute to the diffuse Pev neutrino background and sub-Tev gamma-ray background.

  20. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or colliding compact objects in distant galaxies. The pieces of the puzzle are beginning to fall into place and yet the story isn't quite finished. I will frame the history of gamma-ray bursts as a mystery story and will end with a description of what we still don't know and what we'll have to do to get the next clues.

  1. A Simple Analytical Model for Asynchronous Dense WDM/OOK Systems

    DTIC Science & Technology

    1994-06-01

    asynchronous dense WDM systems employing an external OOK modulator. Our model is based upon a close approximation of the optical Fabry - Perot filter in the...receiver as a single-pole RC filter for signals that are bandlimitr i, & -equency band approximately equal to one sixtieth of the Fabry - Perot filter’s...4 A. INPUT SIGNAL ............................................................................................... 4 B. FABRY - PEROT FILTERED OUTPUT

  2. Self-stabilizing optical clock pulse-train generator using SOA and saturable absorber for asynchronous optical packet processing.

    PubMed

    Nakahara, Tatsushi; Takahashi, Ryo

    2013-05-06

    We propose a novel, self-stabilizing optical clock pulse-train generator for processing preamble-free, asynchronous optical packets with variable lengths. The generator is based on an optical loop that includes a semiconductor optical amplifier (SOA) and a high-extinction spin-polarized saturable absorber (SA), with the loop being self-stabilized by balancing out the gain and absorption provided by the SOA and SA, respectively. The optical pulse train is generated by tapping out a small portion of a circulating seed pulse. The convergence of the generated pulse energy is enabled by the loop round-trip gain function that has a negative slope due to gain saturation in the SOA. The amplified spontaneous emission (ASE) of the SOA is effectively suppressed by the SA, and a backward optical pulse launched into the SOA enables overcoming the carrier-recovery speed mismatch between the SOA and SA. Without external control for the loop gain, a stable optical pulse train consisting of more than 50 pulses with low jitter is generated from a single 10-ps seed optical pulse even with a variation of 10 dB in the seed pulse intensity.

  3. How Else Can We Detect Fast Radio Bursts?

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Lorimer, Duncan R.

    2016-06-01

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (I) prompt short GRB-like emission, (II) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (III) a high-energy afterglow emission. Case (I) could be tested by coordinated radio and high-energy experiments. Case (II) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15-20 mag with an expected optical detection rate of about 0.1 hr-1, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (III) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.

  4. HOW ELSE CAN WE DETECT FAST RADIO BURSTS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyutikov, Maxim; Lorimer, Duncan R., E-mail: lyutikov@purdue.edu

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission. Case (i)more » could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15–20 mag with an expected optical detection rate of about 0.1 hr{sup −1}, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.« less

  5. The Discovery of the Optical Transient For GRB 010222

    NASA Astrophysics Data System (ADS)

    Henden, Arne A.

    2001-04-01

    On February 22, 2001, a very bright gamma-ray burst was detected by the Italian BeppoSAX satellite. The localization was posted about 4 hours after the burst. Prompt notification by phone and by the AAVSO Gamma-Ray Burst Network pager alert system resulted in the discovery of the optical afterglow within the first hour after the locatlization posting. This paper gives a brief history of the event and how the AAVSO was essential to the discovery.

  6. Analysis of the X-ray emission of nine Swift afterglows

    NASA Astrophysics Data System (ADS)

    Panaitescu, A.; Mészáros, P.; Gehrels, N.; Burrows, D.; Nousek, J.

    2006-03-01

    The X-ray light curves of nine Swift XRT afterglows (050126, 050128, 050219A, 050315, 050318, 050319, 050401, 050408 and 050505) display a complex behaviour: a steep t-3.0+/-0.3 decay until ~400 s, followed by a significantly slower t-0.65+/-0.20 fall-off, which at 0.2-2 day after the burst evolves into a t-1.7+/-0.5 decay. We consider three possible models for the geometry of relativistic blast-waves (spherical outflows, non-spreading jets and spreading jets), two possible dynamical regimes for the forward shock (adiabatic and fully radiative), and we take into account a possible angular structure of the outflow and delayed energy injection in the blast-wave to identify the models which reconcile the X-ray light-curve decay with the slope of the X-ray continuum for each of the above three afterglow phases. By piecing together the various models for each phase in a way that makes physical sense, we identify possible models for the entire X-ray afterglow. The major conclusion of this work is that a long-lived episode of energy injection in the blast-wave, during which the shock energy increases at t1.0+/-0.5, is required for five afterglows and could be at work in the other four as well. For some afterglows, there may be other mechanisms that can explain the t < 400 s fast falling-off X-ray light curve (e.g. the large-angle gamma-ray burst emission), the 400 s to 5 h slow decay (e.g. a structured outflow), or the steepening at 0.2-2 day (e.g. a jet-break, a collimated outflow transiting from a wind with a r-3 radial density profile to a homogeneous or outward-increasing density region). Optical observations in conjunction with the X-ray can distinguish among these various models. Our simple tests allow the determination of the location of the cooling frequency relative to the X-ray domain and, thus, of the index of the electron power-law distribution with energy in the blast-wave. The resulting indices are clearly inconsistent with a universal value.

  7. KSC-04PD-1586

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers observe the canister being lifted from the Swift spacecraft, which is enclosed in a protective cover. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASAs medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  8. KSC-04PD-1587

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers observe the canister being lifted from the Swift spacecraft, which is enclosed in a protective cover. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASAs medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  9. KSC-04pd1616

    NASA Image and Video Library

    2004-07-31

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, Spectrum Astro workers look at the final pieces of protective cover on the Swift spacecraft that must be removed. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7.

  10. KSC-04pd1591

    NASA Image and Video Library

    2004-07-29

    KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers secure the Swift spacecraft, wrapped in a protective cover, on a work stand. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  11. KSC-04pd1590

    NASA Image and Video Library

    2004-07-29

    KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers secure the Swift spacecraft, wrapped in a protective cover, on a work stand. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  12. VizieR Online Data Catalog: Polarimetry & photometry of GRB with RINGO2 (Steele+, 2017)

    NASA Astrophysics Data System (ADS)

    Steele, I. A.; Kopac, D.; Arnold, D. M.; Smith, R. J.; Kobayashi, S.; Jermak, H. E.; Mundell, C. G.; Gomboc, A.; Guidorzi, C.; Melandri, A.; Japelj, J.

    2018-03-01

    Between 2010 and 2012, 19 optical afterglows were observed with the RINGO2 polarimeter on the Liverpool Telescope (LT) at La Palma. Table 2 shows observational properties of the complete sample. In addition to the RINGO2 observations, optical band photometry of each burst was carried out using the RATCam CCD imaging camera on the same telescope, using either g'r'i' or r'i'z' filter sequences, in intervals between and after the RINGO2 observations. (3 data files).

  13. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, W.; Berger, E.; Blanchard, P. K.

    Here, we present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range ofmore » $$z \\approx 0.12-2.6$$ discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is $$\\approx 3000$$ times less than the median value of on-axis short GRB X-ray afterglows, and $$\\gtrsim10^{4}$$ times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-IR counterpart to GW170817 is comparatively under-luminous by a factor of $$\\approx 3-5$$, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on $$\\lesssim 1$$ day timescales also rules out a "blue" kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC4993, in the context of short GRB host galaxy stellar population properties. We find that NGC4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced LIGO/VIRGO volume will be crucial in delineating the properties of the host galaxies of NS-NS mergers, and connecting them to their cosmological counterparts.« less

  14. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts

    DOE PAGES

    Fong, W.; Berger, E.; Blanchard, P. K.; ...

    2017-10-16

    Here, we present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range ofmore » $$z \\approx 0.12-2.6$$ discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is $$\\approx 3000$$ times less than the median value of on-axis short GRB X-ray afterglows, and $$\\gtrsim10^{4}$$ times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-IR counterpart to GW170817 is comparatively under-luminous by a factor of $$\\approx 3-5$$, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on $$\\lesssim 1$$ day timescales also rules out a "blue" kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC4993, in the context of short GRB host galaxy stellar population properties. We find that NGC4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced LIGO/VIRGO volume will be crucial in delineating the properties of the host galaxies of NS-NS mergers, and connecting them to their cosmological counterparts.« less

  15. GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perley, D. A.; Metzger, B. D.; Butler, N. R.

    We report on observations of GRB 080503, a short gamma-ray burst (GRB) with very bright extended emission (about 30 times the gamma-ray fluence of the initial spike) in conjunction with a thorough comparison to other short Swift events. In spite of the prompt-emission brightness, however, the optical counterpart is extraordinarily faint, never exceeding 25 mag in deep observations starting at {approx}1 hr after the Burst Alert Telescope (BAT) trigger. The optical brightness peaks at {approx}1 day and then falls sharply in a manner similar to the predictions of Li and Paczynski (1998) for supernova-like emission following compact binary mergers. However,more » a shallow spectral index and similar evolution in X-rays inferred from Chandra observations are more consistent with an afterglow interpretation. The extreme faintness of this probable afterglow relative to the bright gamma-ray emission argues for a very low density medium surrounding the burst (a 'naked' GRB), consistent with the lack of a coincident host galaxy down to 28.5 mag in deep Hubble Space Telescope imaging. The late optical and X-ray peak could be explained by a slightly off-axis jet or by a refreshed shock. Our observations reinforce the notion that short GRBs generally occur outside regions of active star formation, but demonstrate that in some cases the luminosity of the extended prompt emission can greatly exceed that of the short spike, which may constrain theoretical interpretation of this class of events. This extended emission is not the onset of an afterglow, and its relative brightness is probably either a viewing-angle effect or intrinsic to the central engine itself. Because most previous BAT short bursts without observed extended emission are too faint for this signature to have been detectable even if it were present at typical level, conclusions based solely on the observed presence or absence of extended emission in the existing Swift sample are premature.« less

  16. Afterglows and Kilonovae Associated with Nearby Low-luminosity Short-duration Gamma-Ray Bursts: Application to GW170817/GRB 170817A

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Liu, Liang-Duan; Dai, Zi-Gao; Wu, Xue-Feng

    2017-12-01

    Very recently, the gravitational-wave (GW) event GW170817 was discovered to be associated with the short gamma-ray burst (GRB) 170817A. Multi-wavelength follow-up observations were carried out, and X-ray, optical, and radio counterparts to GW170817 were detected. The observations undoubtedly indicate that GRB 170817A originates from a binary neutron star merger. However, the GRB falls into the low-luminosity class that could have a higher statistical occurrence rate and detection probability than the normal (high-luminosity) class. This implies the possibility that GRB 170817A is intrinsically powerful, but we are off-axis and only observe its side emission. In this Letter, we provide a timely modeling of the multi-wavelength afterglow emission from this GRB and the associated kilonova signal from the merger ejecta, under the assumption of a structured jet, a two-component jet, and an intrinsically less-energetic quasi-isotropic fireball, respectively. Comparing the afterglow properties with the multi-wavelength follow-up observations, we can distinguish between these three models. Furthermore, a few model parameters (e.g., the ejecta mass and velocity) can be constrained.

  17. ALMA and RATIR observations of GRB 131030A

    NASA Astrophysics Data System (ADS)

    Huang, Kuiyun; Urata, Yuji; Takahashi, Satoko; Im, Myungshin; Yu, Po-Chieh; Choi, Changsu; Butler, Nathaniel; Watson, Alan M.; Kutyrev, Alexander; Lee, William H.; Klein, Chris; Fox, Ori D.; Littlejohns, Owen; Cucchiara, Nino; Troja, Eleonora; González, Jesús; Richer, Michael G.; Román-Zúñiga, Carlos; Bloom, Josh; Prochaska, J. Xavier; Gehrels, Neil; Moseley, Harvey; Georgiev, Leonid; de Diego, José A.; Ramirez-Ruiz, Enrico

    2017-04-01

    We report on the first open-use based Atacama Large Millimeter/submm Array (ALMA) 345 GHz observation for the late afterglow phase of GRB 131030A. The ALMA observation constrained a deep limit at 17.1 d for the afterglow and host galaxy. We also identified a faint submillimeter source (ALMA J2300-0522) near the GRB 131030A position. The deep limit at 345 GHz and multifrequency observations obtained using Swift and RATIR yielded forward-shock modeling with a two-dimensional relativistic hydrodynamic jet simulation and described X-ray excess in the afterglow. The excess was inconsistent with the synchrotron self-inverse Compton radiation from the forward shock. The host galaxy of GRB 131030A and optical counterpart of ALMA J2300-0522 were also identified in the Subaru image. Based on the deep ALMA limit for the host galaxy, the 3σ upper limits of IR luminosity and the star formation rate (SFR) are estimated as LIR < 1.11 × 1011 L⊙ and SFR <18.7 (M⊙ yr-1), respectively. Although the separation angle from the burst location (3{^''.}5) was rather large, ALMA J2300-0522 may be one component of the GRB 131030A host galaxy, according to previous host galaxy cases.

  18. KSC-04pd1586

    NASA Image and Video Library

    2004-07-29

    KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers observe the canister being lifted from the Swift spacecraft, which is enclosed in a protective cover. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  19. KSC-04pd1587

    NASA Image and Video Library

    2004-07-29

    KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers observe the canister being lifted from the Swift spacecraft, which is enclosed in a protective cover. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  20. KSC-04pd1589

    NASA Image and Video Library

    2004-07-29

    KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), an overhead crane raises the Swift spacecraft, wrapped in a protective cover, to vertical before being placed on a work stand. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  1. The optical rebrightening of GRB100814A: an interplay of forward and reverse shocks?

    NASA Astrophysics Data System (ADS)

    De Pasquale, Massimiliano; Kuin, N. P. M.; Oates, S.; Schulze, S.; Cano, Z.; Guidorzi, C.; Beardmore, A.; Evans, P. A.; Uhm, Z. L.; Zhang, B.; Page, M.; Kobayashi, S.; Castro-Tirado, A.; Gorosabel, J.; Sakamoto, T.; Fatkhullin, T.; Pandey, S. B.; Im, M.; Chandra, P.; Frail, D.; Gao, H.; Kopač, D.; Jeon, Y.; Akerlof, C.; Huang, K. Y.; Pak, S.; Park, W.-K.; Gomboc, A.; Melandri, A.; Zane, S.; Mundell, C. G.; Saxton, C. J.; Holland, S. T.; Virgili, F.; Urata, Y.; Steele, I.; Bersier, D.; Tanvir, N.; Sokolov, V. V.; Moskvitin, A. S.

    2015-05-01

    We present a wide data set of gamma-ray, X-ray, UV/Opt/IR (UVOIR), and radio observations of the Swift GRB100814A. At the end of the slow decline phase of the X-ray and optical afterglow, this burst shows a sudden and prominent rebrightening in the optical band only, followed by a fast decay in both bands. The optical rebrightening also shows chromatic evolution. Such a puzzling behaviour cannot be explained by a single component model. We discuss other possible interpretations, and we find that a model that incorporates a long-lived reverse shock and forward shock fits the temporal and spectral properties of GRB100814 the best.

  2. Method of joint bit rate/modulation format identification and optical performance monitoring using asynchronous delay-tap sampling for radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Guesmi, Latifa; Menif, Mourad

    2016-08-01

    In the context of carrying a wide variety of modulation formats and data rates for home networks, the study covers the radio-over-fiber (RoF) technology, where the need for an alternative way of management, automated fault diagnosis, and formats identification is expressed. Also, RoF signals in an optical link are impaired by various linear and nonlinear effects including chromatic dispersion, polarization mode dispersion, amplified spontaneous emission noise, and so on. Hence, for this purpose, we investigated the sampling method based on asynchronous delay-tap sampling in conjunction with a cross-correlation function for the joint bit rate/modulation format identification and optical performance monitoring. Three modulation formats with different data rates are used to demonstrate the validity of this technique, where the identification accuracy and the monitoring ranges reached high values.

  3. iPTF Archival Search for Fast Optical Transients

    NASA Astrophysics Data System (ADS)

    Ho, Anna Y. Q.; Kulkarni, S. R.; Nugent, Peter E.; Zhao, Weijie; Rusu, Florin; Cenko, S. Bradley; Ravi, Vikram; Kasliwal, Mansi M.; Perley, Daniel A.; Adams, Scott M.; Bellm, Eric C.; Brady, Patrick; Fremling, Christoffer; Gal-Yam, Avishay; Kann, David Alexander; Kaplan, David; Laher, Russ R.; Masci, Frank; Ofek, Eran O.; Sollerman, Jesper; Urban, Alex

    2018-02-01

    There has been speculation about a class of relativistic explosions with an initial Lorentz factor Γinit smaller than that of classical gamma-ray bursts (GRBs). These “dirty fireballs” would lack prompt GRB emission but could be pursued via their optical afterglow, appearing as transients that fade overnight. Here we report a search for such transients (that fade by 5-σ in magnitude overnight) in four years of archival photometric data from the intermediate Palomar Transient Factory (iPTF). Our search criteria yielded 50 candidates. Of these, two were afterglows to GRBs that had been found in dedicated follow-up observations to triggers from the Fermi GRB Monitor. Another (iPTF14yb) was a GRB afterglow discovered serendipitously. Eight were spurious artifacts of reference image subtraction, and one was an asteroid. The remaining 38 candidates have red stellar counterparts in external catalogs. The photometric and spectroscopic properties of the counterparts identify these transients as strong flares from M dwarfs of spectral type M3–M7 at distances of d ≈ 0.15–2.1 kpc; three counterparts were already spectroscopically classified as late-type M stars. With iPTF14yb as the only confirmed relativistic outflow discovered independently of a high-energy trigger, we constrain the all-sky rate of transients that peak at m = 18 and fade by Δm = 2 mag in Δt = 3 hr to be 680 {{yr}}-1, with a 68% confidence interval of 119{--}2236 {{yr}}-1. This implies that the rate of visible dirty fireballs is at most comparable to that of the known population of long-duration GRBs.

  4. iPTF Archival Search for Fast Optical Transients

    DOE PAGES

    Ho, Anna Y. Q.; Kulkarni, S. R.; Nugent, Peter E.; ...

    2018-02-09

    There has been speculation about a class of relativistic explosions with an initial Lorentz factor Γ init smaller than that of classical gamma-ray bursts (GRBs). These "dirty fireballs" would lack prompt GRB emission but could be pursued via their optical afterglow, appearing as transients that fade overnight. We report a search for such transients (that fade by 5-σ in magnitude overnight) in four years of archival photometric data from the intermediate Palomar Transient Factory (iPTF). Our search criteria yielded 50 candidates. Of these, two were afterglows to GRBs that had been found in dedicated follow-up observations to triggers from themore » Fermi GRB Monitor. Another (iPTF14yb) was a GRB afterglow discovered serendipitously. Eight were spurious artifacts of reference image subtraction, and one was an asteroid. The remaining 38 candidates have red stellar counterparts in external catalogs. The photometric and spectroscopic properties of the counterparts identify these transients as strong flares from M dwarfs of spectral type M3-M7 at distances of d ≈ 0.15-2.1 kpc; three counterparts were already spectroscopically classified as late-type M stars. With iPTF14yb as the only confirmed relativistic outflow discovered independently of a high-energy trigger, we constrain the all-sky rate of transients that peak at m = 18 and fade by Δm = 2 mag in Δt = 3 hr to be 680 yr -1, with a 68% confidence interval of 1119-2236 yr -1. This implies that the rate of visible dirty fireballs is at most comparable to that of the known population of long-duration GRBs.« less

  5. Prompt Optical Observations of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Kehoe, Robert; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Szymanski, John; Wren, Jim

    2000-03-01

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

  6. Seven-year Collection of Well-monitored Fermi-LAT Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Panaitescu, A.

    2017-03-01

    We present the light curves and spectra of 24 afterglows that have been monitored by Fermi-LAT at 0.1-100 GeV over more than a decade. All light curves (except 130427) are consistent with a single power law starting from their peaks, which occur in most cases before the burst end. The light curves display a brightness-decay rate correlation, with all but one (130427) of the bright afterglows decaying faster than the dimmer afterglows. We attribute this dichotomy to the quick deposition of relativistic ejecta energy in the external shock for the brighter/faster-decaying afterglows and to an extended energy injection in the afterglow shock for the dimmer/slower-decaying light curves. The spectra of six afterglows (090328, 100414, 110721, 110731, 130427, 140619B) indicate the existence of a harder component above a spectral dip or ankle at energies of 0.3-3 GeV, offering evidence for inverse-Compton emission at higher energies and suggesting that the harder power-law spectra of five other LAT afterglows (130327B, 131231, 150523, 150627, 160509) could also be inverse-Compton, while the remaining, softer LAT afterglows should be synchrotron emission. Marginal evidence for a spectral break and softening at higher energies is found for two afterglows (090902B and 090926).

  7. The microchannel x-ray telescope status

    NASA Astrophysics Data System (ADS)

    Götz, D.; Meuris, A.; Pinsard, F.; Doumayrou, E.; Tourrette, T.; Osborne, J. P.; Willingale, R.; Sykes, J. M.; Pearson, J. F.; Le Duigou, J. M.; Mercier, K.

    2016-07-01

    We present design status of the Microchannel X-ray Telescope, the focussing X-ray telescope on board the Sino- French SVOM mission dedicated to Gamma-Ray Bursts. Its optical design is based on square micro-pore optics (MPOs) in a Lobster-Eye configuration. The optics will be coupled to a low-noise pnCCD sensitive in the 0.2{10 keV energy range. With an expected point spread function of 4.5 arcmin (FWHM) and an estimated sensitivity adequate to detect all the afterglows of the SVOM GRBs, MXT will be able to provide error boxes smaller than 60 (90% c.l.) arc sec after five minutes of observation.

  8. The Bright Gamma-Ray Burst 991208: Tight Constraints on Afterglow Models from Observations of the Early-Time Radio Evolution

    NASA Astrophysics Data System (ADS)

    Galama, T. J.; Bremer, M.; Bertoldi, F.; Menten, K. M.; Lisenfeld, U.; Shepherd, D. S.; Mason, B.; Walter, F.; Pooley, G. G.; Frail, D. A.; Sari, R.; Kulkarni, S. R.; Berger, E.; Bloom, J. S.; Castro-Tirado, A. J.; Granot, J.

    2000-10-01

    The millimeter wavelength emission from GRB 991208 is the second brightest ever detected, yielding a unique data set. We present here well-sampled spectra and light curves over more than two decades in frequency for a 2 week period. This data set has allowed us for the first time to trace the evolution of the characteristic synchrotron self-absorption frequency νa, peak frequency νm, and the peak flux density Fm; we obtain νa~t-0.15+/-0.23, νm~t-1.7+/-0.7, and Fm~t-0.47+/-0.20. From the radio data we find that models of homogeneous or wind-generated ambient media with a spherically symmetric outflow can be ruled out. A model in which the relativistic outflow is collimated (a jet) can account for the observed evolution of the synchrotron parameters, the rapid decay at optical wavelengths, and the observed radio-to-optical spectral flux distributions that we present here, provided that the jet transition has not been fully completed in the first 2 weeks after the event. These observations provide additional evidence that rapidly decaying optical/X-ray afterglows are due to jets and that such transitions either develop very slowly or perhaps never reach the predicted asymptotic decay F(t)~t-p.

  9. The evolution of the X-ray afterglow emission of GW 170817/ GRB 170817A in XMM-Newton observations

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.; Campana, S.; Salafia, O. S.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Bernardini, M. G.; Branchesi, M.; Chassande-Mottin, E.; Covino, S.; D'Elia, V.; Nava, L.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2018-05-01

    We report our observation of the short gamma-ray burst (GRB) GRB 170817A, associated to the binary neutron star merger gravitational wave (GW) event GW 170817, performed in the X-ray band with XMM-Newton 135 d after the event (on 29 December, 2017). We find evidence for a flattening of the X-ray light curve with respect to the previously observed brightening. This is also supported by a nearly simultaneous optical Hubble Space Telescope observation and successive X-ray Chandra and low-frequency radio observations recently reported in the literature. Since the optical-to-X-ray spectral slope did not change with respect to previous observations, we exclude that the change in the temporal evolution of the light curve is due to the passage of the cooling frequency: its origin must be geometric or dynamical. We interpret all the existing afterglow data with two models: i) a structured jet and ii) a jet-less isotropic fireball with some stratification in its radial velocity structure. Both models fit the data and predict that the radio flux must decrease simultaneously with the optical and X-ray emission, making it difficult to distinguish between them at the present stage. Polarimetric measurements and the rate of short GRB-GW associations in future LIGO/Virgo runs will be key to disentangle these two geometrically different scenarios.

  10. Self-similar relativistic blast waves with energy injection

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik

    2014-08-01

    A sufficiently powerful astrophysical source with power-law luminosity in time will give rise to a self-similar relativistic blast wave with a reverse shock travelling into the ejecta and a forward shock moving into the surrounding medium. Once energy injection ceases and the last energy is delivered to the shock front, the blast wave will transit into another self-similar stage depending only on the total amount of energy injected. I describe the effect of limited duration energy injection into environments with density depending on radius as a power law, emphasizing optical/X-ray Gamma-ray Burst afterglows as applications. The blast wave during injection is treated analytically, the transition following last energy injection with one-dimensional simulations. Flux equations for synchrotron emission from the forward and reverse shock regions are provided. The reverse shock emission can easily dominate, especially with different magnetizations for both regions. Reverse shock emission is shown to support both the reported X-ray and optical correlations between afterglow plateau duration and end time flux, independently of the luminosity power-law slope. The model is demonstrated by application to bursts 120521A and 090515, and can accommodate their steep post-plateau light-curve slopes.

  11. DISCOVERY OF SN 2009nz ASSOCIATED WITH GRB 091127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, B. E.; Bloom, J. S.; Perley, D. A.

    2010-08-01

    We report SMARTS, Gemini, and Swift-UVOT observations of the optical transient (OT) associated with gamma-ray burst (GRB) 091127, at redshift 0.49, taken between 0.9 hr and 102 days following the Swift trigger. In our early-time observations, the OT fades in a manner consistent with previously observed GRB afterglows. However, after nine days post-burst, the OT is observed to brighten for a period of {approx}two weeks, after which the source resumes fading. A comparison of this late-time 'bump' to SN 1998bw (the broad-lined Type Ic supernova associated with GRB 980425), and several other GRB supernovae (SNe), indicates that the most straightforwardmore » explanation is that GRB 091127 was accompanied by a contemporaneous SN (SN 2009nz) that peaked at a magnitude of M{sub V} = -19.0 {+-} 0.2. SN 2009nz is globally similar to other GRB SNe, but evolves slightly faster than SN 1998bw and reaches a slightly dimmer peak magnitude. We also analyze the early-time UV-optical-IR spectral energy distribution of the afterglow of GRB 091127 and find that there is little to no reddening in the host galaxy along the line of sight to this burst.« less

  12. RIMAS - Optical Design Development of the Imager/Spectrometer for the Discovery Channel Telescope

    NASA Technical Reports Server (NTRS)

    Capone, John

    2012-01-01

    The Rapid IMAger - Spectrometer (RIMAS) is a collaborative effort between the University of Maryland at College Park, NASA-GSFC and Lowell Observatory designed for use on the 4.3 meter Discovery Channel Telescope at Lowell. The primary science goal of the instrument is the study of gamma-ray burst (ORB) afterglow appearing in the near-infrared. Continuous operation will allow measurements beginning minutes after the prompt emission. We present the results of the RIMAS optical design development. The instrument consists of two arms separated by a dichroic: the first for the Y and J bands (0.9 - 1.35 microns) and the second for the Hand K-bands (1.5 - 1.8 and 2.0 - 2.4 microns). Each arm will be equipped with two broad band filters for imaging, as well as low resolution and echelle grisms. The imaging modes are designed to be diffraction limited, with one pixel corresponding to approx.0.35 arcseconds, while the diffractive modes have resolving powers of approximately 20 and 4,000. With photometric and spectroscopic capabilities, RIMAS will be well positioned to quickly determine redshifts, followed by high resolution spectroscopic studies of ORB afterglow.

  13. The Deep Lens Survey : Real--time Optical Transient and Moving Object Detection

    NASA Astrophysics Data System (ADS)

    Becker, Andy; Wittman, David; Stubbs, Chris; Dell'Antonio, Ian; Loomba, Dinesh; Schommer, Robert; Tyson, J. Anthony; Margoniner, Vera; DLS Collaboration

    2001-12-01

    We report on the real-time optical transient program of the Deep Lens Survey (DLS). Meeting the DLS core science weak-lensing objective requires repeated visits to the same part of the sky, 20 visits for 63 sub-fields in 4 filters, on a 4-m telescope. These data are reduced in real-time, and differenced against each other on all available timescales. Our observing strategy is optimized to allow sensitivity to transients on several minute, one day, one month, and one year timescales. The depth of the survey allows us to detect and classify both moving and stationary transients down to ~ 25th magnitude, a relatively unconstrained region of astronomical variability space. All transients and moving objects, including asteroids, Kuiper belt (or trans-Neptunian) objects, variable stars, supernovae, 'unknown' bursts with no apparent host, orphan gamma-ray burst afterglows, as well as airplanes, are posted on the web in real-time for use by the community. We emphasize our sensitivity to detect and respond in real-time to orphan afterglows of gamma-ray bursts, and present one candidate orphan in the field of Abell 1836. See http://dls.bell-labs.com/transients.html.

  14. The Synchrotron Spectrum of Fast Cooling Electrons Revisited.

    PubMed

    Granot; Piran; Sari

    2000-05-10

    We discuss the spectrum arising from synchrotron emission by fast cooling (FC) electrons, when fresh electrons are continually accelerated by a strong blast wave, into a power-law distribution of energies. The FC spectrum has so far been described by four power-law segments divided by three break frequencies nusa

  15. GRB 050117: Simultaneous Gamma-ray and X-ray Observations with the Swift Satellite

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Morris, D. C.; Sakamoto, T.; Sato, G.; Burrows, D. N.; Angelini, L.; Pagani, C.; Moretti, A.; Abbey, A. F.; Barthelmy, S.

    2005-01-01

    The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB on 2005 January 17, within 193 seconds of the burst trigger by the Swift Burst Alert Telescope. While the burst was still in progress, the X-ray Telescope obtained a position and an image for an un-catalogued X-ray source; simultaneous with the gamma-ray observation. The XRT observed flux during the prompt emission was 1.1 x 10(exp -8) ergs/sq cm/s in the 0.5-10 keV energy band. The emission in the X-ray band decreased by three orders of magnitude within 700 seconds, following the prompt emission. This is found to be consistent with the gamma-ray decay when extrapolated into the XRT energy band. During the following 6.3 hours, the XRT observed the afterglow in an automated sequence for an additional 947 seconds, until the burst became fully obscured by the Earth limb. A faint, extremely slowly decaying afterglow, alpha=-0.21, was detected. Finally, a break in the lightcurve occurred and the flux decayed with alpha<-1.2. The X-ray position triggered many follow-up observations: no optical afterglow could be confirmed, although a candidate was identified 3 arcsecs from the XRT position.

  16. Seven-year Collection of Well-monitored Fermi -LAT Gamma-Ray Burst Afterglows

    DOE PAGES

    Panaitescu, Alin-Daniel

    2017-02-27

    Here we present the light curves and spectra of 24 afterglows that have been monitored by Fermi-LAT at 0.1–100 GeV over more than a decade. All light curves (except 130427) are consistent with a single power law starting from their peaks, which occur in most cases before the burst end. The light curves display a brightness–decay rate correlation, with all but one (130427) of the bright afterglows decaying faster than the dimmer afterglows. We attribute this dichotomy to the quick deposition of relativistic ejecta energy in the external shock for the brighter/faster-decaying afterglows and to an extended energy injection inmore » the afterglow shock for the dimmer/slower-decaying light curves. The spectra of six afterglows (090328, 100414, 110721, 110731, 130427, 140619B) indicate the existence of a harder component above a spectral dip or ankle at energies of 0.3–3 GeV, offering evidence for inverse-Compton emission at higher energies and suggesting that the harder power-law spectra of five other LAT afterglows (130327B, 131231, 150523, 150627, 160509) could also be inverse-Compton, while the remaining, softer LAT afterglows should be synchrotron emission. Finally, marginal evidence for a spectral break and softening at higher energies is found for two afterglows (090902B and 090926).« less

  17. Seven-year Collection of Well-monitored Fermi -LAT Gamma-Ray Burst Afterglows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panaitescu, Alin-Daniel

    Here we present the light curves and spectra of 24 afterglows that have been monitored by Fermi-LAT at 0.1–100 GeV over more than a decade. All light curves (except 130427) are consistent with a single power law starting from their peaks, which occur in most cases before the burst end. The light curves display a brightness–decay rate correlation, with all but one (130427) of the bright afterglows decaying faster than the dimmer afterglows. We attribute this dichotomy to the quick deposition of relativistic ejecta energy in the external shock for the brighter/faster-decaying afterglows and to an extended energy injection inmore » the afterglow shock for the dimmer/slower-decaying light curves. The spectra of six afterglows (090328, 100414, 110721, 110731, 130427, 140619B) indicate the existence of a harder component above a spectral dip or ankle at energies of 0.3–3 GeV, offering evidence for inverse-Compton emission at higher energies and suggesting that the harder power-law spectra of five other LAT afterglows (130327B, 131231, 150523, 150627, 160509) could also be inverse-Compton, while the remaining, softer LAT afterglows should be synchrotron emission. Finally, marginal evidence for a spectral break and softening at higher energies is found for two afterglows (090902B and 090926).« less

  18. Hydrothermal synthesis and afterglow luminescence properties of hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} spheres for potential application in drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Pengfei; Zhang, Jiachi, E-mail: zhangjch@lzu.edu.cn; Qin, Qingsong

    2014-02-01

    Highlights: • We designed a novel afterglow labeling material SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} for the first time. • Hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} spheres with afterglow were prepared by hydrothermal method. • Hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} is a potential afterglow labeling medium for drug delivery. - Abstract: A novel afterglow labeling material SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} with hollow sphere shape and intense afterglow luminescence is prepared by hydrothermal method at 180 °C for the first time. The morphology and the sphere growth process of this material are investigated by scanning electron microscopy in detail. The afterglow measurement shows thatmore » this hydrothermal obtained material exhibits obvious red afterglow luminescence (550–700 nm) of Sm{sup 3+} which can last for 542 s (0.32 mcd/m{sup 2}). The depth of traps in this hydrothermal obtained material is calculated to be as shallow as 0.58 eV. The results demonstrate that although it is necessary to further improve the afterglow performance of the hydrothermal derived hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} spheres, it still can be regarded as a potential afterglow labeling medium for drug delivery.« less

  19. Hydrodynamics of Gamma-Ray Burst Afterglow

    NASA Astrophysics Data System (ADS)

    Sari, Re'em

    1997-11-01

    The detection of delayed emission at X-ray optical and radio wavelengths (``afterglow'') following gamma-ray bursts (GRBs) suggests that the relativistic shell that emitted the initial GRB as the result of internal shocks decelerates on encountering an external medium, giving rise to the afterglow. We explore the interaction of a relativistic shell with a uniform interstellar medium (ISM) up to the nonrelativistic stage. We demonstrate the importance of several effects that were previously ignored and must be included in a detailed radiation analysis. At a very early stage (few seconds), the observed bolometric luminosity increases as t2. On longer timescales (more than ~10 s), the luminosity drops as t-1. If the main burst is long enough, an intermediate stage of constant luminosity will form. In this case, the afterglow overlaps the main burst; otherwise there is a time separation between the two. On the long timescale, the flow decelerates in a self-similar way, reaching nonrelativistic velocities after ~30 days. Explicit expressions for the radial profiles of this self-similar deceleration are given. As a result of the deceleration and the accumulation of ISM material, the relation between the observed time, the shock radius, and its Lorentz factor is given by t=R/16γ2c, which is a factor of 8 different from the usual expression. We show that even though only a small fraction of the internal energy is given to the electrons, most of the energy can be radiated over time. If the fraction of energy in electrons is greater than ~10%, radiation losses will significantly influence the hydrodynamical evolution at early times (less than ~1 day).

  20. MODELING THE EARLY AFTERGLOW IN THE SHORT AND HARD GRB 090510

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraija, N.; Lee, W. H.; Veres, P.

    2016-11-01

    The bright, short, and hard GRB 090510 was detected by all instruments aboard the Fermi and Swift satellites. The multiwavelength observations of this burst presented similar features to the Fermi -LAT-detected gamma-ray bursts. In the framework of the external shock model of early afterglow, a leptonic scenario that evolves in a homogeneous medium is proposed to revisit GRB 090510 and explain the multiwavelength light curve observations presented in this burst. These observations are consistent with the evolution of a jet before and after the jet break. The long-lasting LAT, X-ray, and optical fluxes are explained in the synchrotron emission frommore » the adiabatic forward shock. Synchrotron self-Compton emission from the reverse shock is consistent with the bright LAT peak provided that the progenitor environment is entrained with strong magnetic fields. It could provide compelling evidence of magnetic field amplification in the neutron star merger.« less

  1. Modeling the Early Afterglow in the Short and Hard GRB 090510

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Lee, W. H.; Veres, P.; Barniol Duran, R.

    2016-11-01

    The bright, short, and hard GRB 090510 was detected by all instruments aboard the Fermi and Swift satellites. The multiwavelength observations of this burst presented similar features to the Fermi-LAT-detected gamma-ray bursts. In the framework of the external shock model of early afterglow, a leptonic scenario that evolves in a homogeneous medium is proposed to revisit GRB 090510 and explain the multiwavelength light curve observations presented in this burst. These observations are consistent with the evolution of a jet before and after the jet break. The long-lasting LAT, X-ray, and optical fluxes are explained in the synchrotron emission from the adiabatic forward shock. Synchrotron self-Compton emission from the reverse shock is consistent with the bright LAT peak provided that the progenitor environment is entrained with strong magnetic fields. It could provide compelling evidence of magnetic field amplification in the neutron star merger.

  2. KSC-04pd1588

    NASA Image and Video Library

    2004-07-29

    KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers attach straps from an overhead crane onto the platform under the Swift spacecraft, which is enclosed in a protective cover. Swift will be raised to vertical and placed on a work stand. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  3. IS THE LINE-LIKE OPTICAL AFTERGLOW SED OF GRB 050709 DUE TO A FLARE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Jin, Zhi-Ping; Wei, Da-Ming, E-mail: jin@pmo.ac.cn

    Recently, Jin et al. reanalyzed the optical observation data of GRB 050709 and reported a line-like spectral energy distribution (SED) component observed by the Very Large Telescope at t  ∼ 2.5 days after the trigger of the burst, which had been interpreted as a broadened line signal arising from a macronova dominated by an iron group. In this work, we show that an optical flare origin of such a peculiar optical SED is still possible. Interestingly, even in such a model, an “unusual” origin of the late-time long-lasting Hubble Space Telescope F 814 W -band emission is still needed and a macronova/kilonovamore » is the natural interpretation.« less

  4. High-Speed Optical Wide-Area Data-Communication Network

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Proposed fiber-optic wide-area network (WAN) for digital communication balances input and output flows of data with its internal capacity by routing traffic via dynamically interconnected routing planes. Data transmitted optically through network by wavelength-division multiplexing in synchronous or asynchronous packets. WAN implemented with currently available technology. Network is multiple-ring cyclic shuffle exchange network ensuring traffic reaches its destination with minimum number of hops.

  5. On the Lack of a Radio Afterglow from Some Gamma-Ray Bursts - Insight into Their Progenitors?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd-Ronning, Nicole Marie; Fryer, Christopher L.

    We investigate the intrinsic properties of a sample of bright (with isotropic equivalent energy Eiso > 10 52 erg) gamma-ray bursts (GRBs), comparing those with and without radio afterglow. We find that the sample of bursts with no radio afterglows has a significantly shorter mean intrinsic duration of the prompt gamma-ray radiation, and the distribution of this duration is significantly different from those bursts with a radio afterglow. Although the sample with no radio afterglow has on average lower isotropic energy, the lack of radio afterglow does not appear to be a result of simply energetics of the burst, butmore » a reflection of a separate physical phenomenon likely related to the circumburst density profile. We also find a weak correlation between the isotropic gamma-ray energy and intrinsic duration in the sample with no radio afterglow, but not in the sample that have observed radio afterglows. We give possible explanations for why there may exist a sample of GRBs with no radio afterglow depending on whether the radio emission comes from the forward or reverse shock, and why these bursts appear to have intrinsically shorter prompt emission durations. Lastly, we discuss how our results may have implications for progenitor models of GRBs.« less

  6. On the Lack of a Radio Afterglow from Some Gamma-Ray Bursts - Insight into Their Progenitors?

    DOE PAGES

    Lloyd-Ronning, Nicole Marie; Fryer, Christopher L.

    2017-02-07

    We investigate the intrinsic properties of a sample of bright (with isotropic equivalent energy Eiso > 10 52 erg) gamma-ray bursts (GRBs), comparing those with and without radio afterglow. We find that the sample of bursts with no radio afterglows has a significantly shorter mean intrinsic duration of the prompt gamma-ray radiation, and the distribution of this duration is significantly different from those bursts with a radio afterglow. Although the sample with no radio afterglow has on average lower isotropic energy, the lack of radio afterglow does not appear to be a result of simply energetics of the burst, butmore » a reflection of a separate physical phenomenon likely related to the circumburst density profile. We also find a weak correlation between the isotropic gamma-ray energy and intrinsic duration in the sample with no radio afterglow, but not in the sample that have observed radio afterglows. We give possible explanations for why there may exist a sample of GRBs with no radio afterglow depending on whether the radio emission comes from the forward or reverse shock, and why these bursts appear to have intrinsically shorter prompt emission durations. Lastly, we discuss how our results may have implications for progenitor models of GRBs.« less

  7. On the lack of a radio afterglow from some gamma-ray bursts - insight into their progenitors?

    NASA Astrophysics Data System (ADS)

    Lloyd-Ronning, Nicole M.; Fryer, Christopher L.

    2017-05-01

    We investigate the intrinsic properties of a sample of bright (with isotropic equivalent energy Eiso > 1052 erg) gamma-ray bursts (GRBs), comparing those with and without radio afterglow. We find that the sample of bursts with no radio afterglows has a significantly shorter mean intrinsic duration of the prompt gamma-ray radiation, and the distribution of this duration is significantly different from those bursts with a radio afterglow. Although the sample with no radio afterglow has on average lower isotropic energy, the lack of radio afterglow does not appear to be a result of simply energetics of the burst, but a reflection of a separate physical phenomenon likely related to the circumburst density profile. We also find a weak correlation between the isotropic gamma-ray energy and intrinsic duration in the sample with no radio afterglow, but not in the sample that have observed radio afterglows. We give possible explanations for why there may exist a sample of GRBs with no radio afterglow depending on whether the radio emission comes from the forward or reverse shock, and why these bursts appear to have intrinsically shorter prompt emission durations. We discuss how our results may have implications for progenitor models of GRBs.

  8. The Remarkable Afterglow of GRB 061007: Implications for Optical Flashes and GRB Fireballs

    NASA Astrophysics Data System (ADS)

    Mundell, C. G.; Melandri, A.; Guidorzi, C.; Kobayashi, S.; Steele, I. A.; Malesani, D.; Amati, L.; D'Avanzo, P.; Bersier, D. F.; Gomboc, A.; Rol, E.; Bode, M. F.; Carter, D.; Mottram, C. J.; Monfardini, A.; Smith, R. J.; Malhotra, S.; Wang, J.; Bannister, N.; O'Brien, P. T.; Tanvir, N. R.

    2007-05-01

    We present a multiwavelength analysis of Swift GRB 061007. The 2 m robotic Faulkes Telescope South began observing 137 s after the onset of the γ-ray emission, when the optical counterpart was already decaying from R~10.3 mag, and continued observing for the next 5.5 hr. These observations begin during the final γ-ray flare and continue through and beyond a long, soft tail of γ-ray emission whose flux shows an underlying simple power-law decay identical to that seen at optical and X-ray wavelengths, with temporal slope α~1.7 (F~t-α). This remarkably simple decay in all of these bands is rare for Swift bursts, which often show much more complex light curves. We suggest the afterglow emission begins as early as 30-100 s and is contemporaneous with the ongoing variable prompt emission from the central engine, but originates from a physically distinct region dominated by the forward shock. The observed multiwavelength evolution of GRB 061007 is explained by an expanding fireball whose optical, X-ray, and late-time γ-ray emission is dominated by emission from a forward shock with typical synchrotron frequency, νm, that is already below the optical band as early as t=137 s and a cooling frequency, νc, above the X-ray band to at least t=105 s. In contrast, the typical frequency of the reverse shock lies in the radio band at early time. We suggest that the unexpected lack of bright optical flashes from the majority of Swift GRBs may be explained with a low νm originating from small microphysics parameters, ɛe and ɛB. Finally, the optical light curves imply a minimum jet opening angle θ=4.7deg, and no X-ray jet break before t~106 s makes GRB 061007 a secure outlier to spectral energy correlations.

  9. Hybrid WDM/OCDMA for next generation access network

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Wada, Naoya; Miyazaki, T.; Cincotti, G.; Kitayama, Ken-ichi

    2007-11-01

    Hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) passive optical network (PON), where asynchronous OCDMA traffic transmits over WDM network, can be one potential candidate for gigabit-symmetric fiber-to-the-home (FTTH) services. In a cost-effective WDM/OCDMA network, a large scale multi-port encoder/decoder can be employed in the central office, and a low cost encoder/decoder will be used in optical network unit (ONU). The WDM/OCDMA system could be one promising solution to the symmetric high capacity access network with high spectral efficiency, cost effective, good flexibility and enhanced security. Asynchronous WDM/OCDMA systems have been experimentally demonstrated using superstructured fiber Bragg gratings (SSFBG) and muti-port OCDMA en/decoders. The total throughput has reached above Tera-bit/s with spectral efficiency of about 0.41. The key enabling techniques include ultra-long SSFBG, multi-port E/D with high power contrast ratio, optical thresholding, differential phase shift keying modulation with balanced detection, forward error correction, and etc. Using multi-level modulation formats to carry multi-bit information with single pulse, the total capacity and spectral efficiency could be further enhanced.

  10. GRB 091127: The Cooling Break Race on Magnetic Fuel

    NASA Technical Reports Server (NTRS)

    Filgas, R.; Greiner, J.; Schady, P.; Kruhler, T.; Updike, A. C.; Klose, S.; Nardini, M.; Kann, D. A.; Rossi, A.; Sudilovsky, V.; hide

    2011-01-01

    Using high-quality, broad-band afterglow data for GRB 091127, we investigate the validity of the synchrotron fireball model for gamma-ray bursts, and infer physical parameters of the ultra-relativistic outflow. Methods. We used multi-wavelength (NIR to X-ray) follow-up observations obtained with GROND simultaneously in the g' r' t' i' z' JH filters and the XRT onboard the Swift satellite in the 0.3 to 10 keY energy range. The resulting afterglow light curve is of excellent accuracy with relative photometric errors as low as 1 %, and the spectral energy distribution (SED) is well-sampled over 5 decades in energy. These data present one of the most comprehensive observing campaigns for a single GRB afterglow and allow us to test several proposed emission models and outflow characteristics in unprecedented detail. Results. Both the multi-color light curve and the broad-band SED of the afterglow of GRB 091127 show evidence of a cooling break moving from high to lower energies. The early light curve is well described by a broken power-law, where the initial decay in the optical/NlR wavelength range is considerably flatter than at X-rays. Detailed fitting of the time-resolved SED shows that the break is very smooth with a sharpness index of 2.2 +/- 0.2, and evolves towards lower frequencies as a power-law with index -1.23 +/- 0.06. These are the first accurate and contemporaneous measurements of both the sharpness of the spectral break and its time evolution. Conclusions. The measured evolution of the cooling break (V(sub c) varies as t(sup -1.2) is not consistent with the predictions of the standard model, wherein V(sub c) varies as t(sup -05) is expected. A possible explanation for the observed behavior is a time dependence of the microphysical parameters, in particular the fraction of the total energy in the magnetic field epsilon(sub Beta). This conclusion provides further evidence that the standard fireball model is too simplistic, and time-dependent micro-physical parameters may be required to model the growing number of well-sampled afterglow light curves.

  11. A new method for unambiguous determination of trap parameters from afterglow and TSL curves connection: Example on garnets

    NASA Astrophysics Data System (ADS)

    Khanin, Vasilii; Venevtsev, Ivan; Spoor, Sandra; Boerekamp, Jack; van Dongen, Anne-Marie; Wieczorek, Herfried; Chernenko, Kirill; Buettner, Daniela; Ronda, Cees; Rodnyi, Piotr

    2017-10-01

    Due to presence of charge carrier traps, many scintillating materials exhibit afterglow. The de-trapping mechanisms are usually studied separately via either thermally stimulated luminescence (TSL) or isothermal decay (afterglow) measurements. In this paper, we develop procedures to determine trap parameters such as thermal trap depth and frequency factor in an unambiguous manner by connecting TSL and afterglow measurements. In order to accomplish that, we have devised a special method of extracting the lifetime of trapped carriers from afterglow measurements, independent of kinetic order. The procedures are first shown on simulated TSL and afterglow curves and then illustrated using (Y,Gd)3Al5O12:Ce garnets as example.

  12. X-ray Afterglows of Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Burrows, David N.

    2006-12-01

    The Swift Burst Alert Telescope (BAT) has discovered about 20 short GRBs in its first two years of operation. The Swift X-ray Telescope (XRT) has detected X-ray afterglows for roughly 75% of these, allowing host galaxies, redshifts and source characteristics to be studied for the first time. As a result, our knowledge of the properties of short GRBs and their afterglows has increased tremendously in the past year and a half. I will discuss the X-ray afterglows of short GRBs as observed by the Swift XRT and by Chandra. These afterglows are generally much fainter than those of long GRBs, and therefore fade rapidly below detection thresholds. However, some brighter, long-lived afterglows provide intriguing insights into the properties of the progenitors and their environments.

  13. Asynchronous transfer mode distribution network by use of an optoelectronic VLSI switching chip.

    PubMed

    Lentine, A L; Reiley, D J; Novotny, R A; Morrison, R L; Sasian, J M; Beckman, M G; Buchholz, D B; Hinterlong, S J; Cloonan, T J; Richards, G W; McCormick, F B

    1997-03-10

    We describe a new optoelectronic switching system demonstration that implements part of the distribution fabric for a large asynchronous transfer mode (ATM) switch. The system uses a single optoelectronic VLSI modulator-based switching chip with more than 4000 optical input-outputs. The optical system images the input fibers from a two-dimensional fiber bundle onto this chip. A new optomechanical design allows the system to be mounted in a standard electronic equipment frame. A large section of the switch was operated as a 208-Mbits/s time-multiplexed space switch, which can serve as part of an ATM switch by use of an appropriate out-of-band controller. A larger section with 896 input light beams and 256 output beams was operated at 160 Mbits/s as a slowly reconfigurable space switch.

  14. GRB 060505: A Possible Short-Duration Gamma-Ray Burst in a Star Forming Region at Redshift of 0.09

    NASA Technical Reports Server (NTRS)

    Ofek, E. O.; Cenko, S. B.; Gal-Yam, A.; Fox, D. B.; Nakar, E.; Rau, A.; Frail, D. A.; Kullkarni, S. R.; Price, P. A.; Schmidt, B. P.; hide

    2007-01-01

    On May 5, 2006 a four-second duration, low-energy, approximately 10(exp 59) erg, Gamma-Ray Burst (GRB) was observed, spatially associated with a z=0.0894 galaxy. Here, we report the discovery of the GRB optical afterglow and observations of its environment using gemini-south, Hubble Space Telescope (HST), Chandra, Swift and the Very Large Array. The optical afterglow of this GRB is spatially associated with a prominent star forming region in the Sc-type galaxy 2dFGRS S173Z112. Its proximity to a star forming region suggests that the progenitor delay time, from birth to explosion, is smaller than about 10 Myr. Our HST deep imaging rules out the presence of a supernova brighter than an absolute magnitude of about -11 (or -126 in case of 'maximal' extinction) at about two weeks after the burst, and limits the ejected mass of radioactive Nickel 56 to be less than about 2x10(exp -4) solar mass (assuming no extinction). Although it was suggested that GRB 060505 may belong to a new class of long-duration GRBs with no supernova, we argue that the simplest interpretation is that the physical mechanism for this burst is the same as for short-duration GRBs.

  15. Prompt optical emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.

  16. On the anomalous afterglow seen in a chameleon afterglow search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen, Jason H.; Baumbaugh, Alan; Chou, Aaron S.

    2012-05-01

    We present data from our investigation of the anomalous orange-colored afterglow that was seen in the GammeV Chameleon Afterglow Search (CHASE). These data include information about the broadband color of the observed glow, the relationship between the glow and the temperature of the apparatus, and other data taken prior to, and during the science operations of CHASE. While differing in several details, the generic properties of the afterglow from CHASE are similar to luminescence seen in some vacuum compounds. Contamination from this, or similar, luminescent signatures will likely impact the design of implementation of future experiments involving single photon detectorsmore » and high intensity light sources in a cryogenic environment.« less

  17. X-Ray and Multi-Wavelength Observations of Gamma Ray Bursts (GRBs)

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2009-01-01

    The launch of the Italian (with Dutch participation) satellite BeppoSAX in 1996 enabled the detection of the first X-ray GRB afterglow, which in turn led to GRB counterpart detection in multiple wavelengths. This breakthrough firmly established the cosmological nature of GRBs. However, afterglow observations of GRBs took off in large numbers after the launch of NASA's Swift satellite in 2004. Swift enabled multiple major discoveries, such as the early lightcurves of X-ray afterglows, the first detection of a short GRB afterglow and opened more questions such as where are the elusive breaks in afterglow light curves. I will describe here these results and will discuss future opportunities and improvements in the field.

  18. A Correlation Between Intrinsic Brightness and Average Decay Rate of Swift UVOT GRB Optical/UV Light Curves

    NASA Technical Reports Server (NTRS)

    Oates, S. R.; Page, M. J.; De Pasquale, M.; Schady, P.; Breeveld, A. A.; Holland, S. T.; Kuin, N. P. M.; Marshall, F. E.

    2012-01-01

    We examine a sample of 48 Swift/UVOT long Gamma-ray Burst light curves and find a correlation between the logarithmic luminosity at 200s and average decay rate determined from 200s onwards, with a Spearman rank coefficient of -0.58 at a significance of 99.998% (4.2 sigma ). We discuss the causes of the log L200s - alpha (greater than) 200s correlation, finding it to be an intrinsic property of long GRBs, and not resulting from the selection criteria. We find two ways to produce the correlation. One possibility is that there is some property of the central engine, outflow or external medium that affects the rate of energy release so that the bright afterglows release their energy more quickly and decay faster than the fainter afterglows. Alternatively, the correlation may be produced by variation of the observers viewing angle, with observers at large viewing angles observing fainter and slower decaying light curves.

  19. GRB 020410: A Gamma-ray burst afterglow discovered by its supernova light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levan, Andrew; Nugent, Peter; Fruchter, Andrew

    2004-03-19

    We present the discovery and monitoring of the optical transient (OT) associated with GRB 020410. The fading OT was found by Hubble Space Telescope (HST) observations taken 28 and 65 days after burst at a position consistent with the X-ray afterglow. Subsequent re-examination of early ground based observations revealed that a faint OT was present 6 hours after burst, confirming the source association with GRB 020410. A deep non-detection after one week requires that the OT re-brightened between day 7 and day 28, and further late time HST data taken approximately 100 days after burst imply that it is verymore » red (F{sub nu} proportional to nu-2.7). We compare both the flux and color of the excess with supernova models and show that the data are best explained by the presence of a Type I b/c supernova at a redshift z approx. equal 0.5, which occurred roughly coincident with the day of GRB.« less

  20. Thermal Electrons in Gamma-Ray Burst Afterglows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ressler, Sean M.; Laskar, Tanmoy

    2017-08-20

    To date, nearly all multi-wavelength modeling of long-duration γ -ray bursts has ignored synchrotron radiation from the significant population of electrons expected to pass the shock without acceleration into a power-law distribution. We investigate the effect of including the contribution of thermal, non-accelerated electrons to synchrotron absorption and emission in the standard afterglow model, and show that these thermal electrons provide an additional source of opacity to synchrotron self-absorption, and yield an additional emission component at higher energies. The extra opacity results in an increase in the synchrotron self-absorption frequency by factors of 10–100 for fiducial parameters. The nature ofmore » the additional emission depends on the details of the thermal population, but is generally observed to yield a spectral peak in the optical brighter than radiation from the nonthermal population by similar factors a few seconds after the burst, remaining detectable at millimeter and radio frequencies several days later.« less

  1. Observing a Burst with Sunglasses

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Unique Five-Week VLT Study of the Polarisation of a Gamma-Ray Burst Afterglow "Gamma-ray bursts (GRBs)" are certainly amongst the most dramatic events known in astrophysics. These short flashes of energetic gamma-rays, first detected in the late 1960's by military satellites, last from less than one second to several minutes. GRBs have been found to be situated at extremely large ("cosmological") distances. The energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00. During the past years circumstantial evidence has mounted that GRBs signal the collapse of extremely massive stars, the so-called hypernovae. This was finally demonstrated some months ago when astronomers, using the FORS instrument on ESO's Very Large Telescope (VLT), documented in unprecedented detail the changes in the spectrum of the light source ("the optical afterglow") of the gamma-ray burst GRB 030329 (cf. ESO PR 16/03). A conclusive and direct link between cosmological gamma-ray bursts and explosions of very massive stars was provided on this occasion. Gamma-Ray Burst GRB 030329 was discovered on March 29, 2003 by NASA's High Energy Transient Explorer spacecraft. Follow-up observations with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile) showed the burst to have a redshift of 0.1685 [1]. This corresponds to a distance of about 2,650 million light-years, making GRB 030329 the second-nearest long-duration GRB ever detected. The proximity of GRB 030329 resulted in very bright afterglow emission, permitting the most extensive follow-up observations of any afterglow to date. A team of astronomers [2] led by Jochen Greiner of the Max-Planck-Institut für extraterrestrische Physik (Germany) decided to make use of this unique opportunity to study the polarisation properties of the afterglow of GRB 030329 as it developed after the explosion. Hypernovae, the source of GRBs, are indeed so far away that they can only be seen as unresolved points of light. To probe their spatial structure, astronomers have thus to rely on a trick: polarimetry (see ESO PR 23/03). Polarimetry works as follows: light is composed of electromagnetic waves which oscillate in certain directions (planes). Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflecting off a pond. The radiation in a gamma-ray burst is generated in an ordered magnetic field, as so-called synchrotron radiation [3]. If the hypernova is spherically symmetric, all orientations of the electromagnetic waves will be present equally and will average out, so there will be no net polarisation. If, however, the gas is not ejected symmetrically, but into a jet, a slight net polarisation will be imprinted on the light. This net polarisation will change with time since the opening angle of the jet widens with time, and we see a different fraction of the emission cone. Studying the polarisation properties of the afterglow of a gamma-ray burst thus allows to gain knowledge about the underlying spatial structures and the strength and orientation of the magnetic field in the region where the radiation is generated. " And doing this over a long period of time, as the afterglow fades and evolves, provides us with a unique diagnostic tool for gamma-ray burst studies ", says Jochen Greiner . Although previous single measurements of the polarisation of GRB's optical afterglow exist, no detailed study has ever been done of the evolution of polarisation with time. This is indeed a very demanding task, only possible with an extremely stable instrument on the largest telescope... and a sufficient bright optical afterglow. As soon as GRB 030329 was detected, the team of astronomers therefore turned to the powerful multi-mode FORS1 instrument on the VLT ANTU telescope. They obtained 31 polarimetric observations over a period of 38 days, enabling them to measure, for the first time , the changes of the polarisation of an optical gamma-ray burst afterglow with time. This unique set of observational data documents the physical changes in the remote object in unsurpassed detail. Their data show the presence of polarisation at the level of 0.3 to 2.5 % throughout the 38-day period with significant variability in strength and orientation on timescales down to hours. This particular behaviour has not been predicted by any of the major theories. Unfortunately, the very complex light curve of this GRB afterglow, in itself not understood, prevents a straightforward application of existing polarisation models. " It turns out that deriving the direction of the jet and the magnetic field structure is not as simple as we thought originally ", notes Olaf Reimer , another member of the team. " But the rapid changes of the polarisation properties, even during smooth phases of the afterglow light curve, provide a challenge to afterglow theory ". " Possibly ", adds Jochen Greiner , " the overall low level of polarisation indicates that the strength of the magnetic field in the parallel and perpendicular directions do not differ by more than 10%, thus suggesting a field strongly coupled with the moving material. This is different from the large-scale field which is left-over from the exploding star and which is thought to produce the high-level of polarisation in the gamma-rays. " More Information The research described in this Press Release will appear under the title " The evolution of the polarisation of the afterglow of GRB 030329 " by Jochen Greiner et al. in the November 13, 2003 issue of the science journal "Nature". A German translation of the information of this page can be found at Astronomie.de. Notes [1]: In astronomy, the "redshift" denotes the factor by which the lines in the spectrum of an object are shifted towards longer wavelengths. Since the redshift of a cosmological object increases with distance, the observed redshift of a remote galaxy also provides an estimate of its distance. [2]: Members of the team include Jochen Greiner, Arne Rau (Max-Planck-Institut für extraterrestrische Physik, Germany), Sylvio Klose, Bringfried Stecklum (Thüringer Landessternwarte Tautenburg, Germany), Klaus Reinsch (Universitätssternwarte Göttingen, Germany), Hans Martin Schmid (Institut für Astronomie Zürich, Switzerland ), Re'em Sari (California Institute of Technology, USA), Dieter H. Hartmann (Clemson University, USA), Chryssa Kouveliotou (NSSTC, Huntsville, Alabama, USA), Eliana Palazzi (Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna, Italy), Christian Straubmeier (Physikalisches Institut Köln, Germany), Sergej Zharikov, Gaghik Tovmassian (Instituto de Astronomia Ensenada, Mexico), Otto Bärnbantner, Christop Ries (Wendelstein-Observatorium München, Germany), Emmanuel Jehin, Andreas Kaufer (European Southern Observatory, Chile), Arne Henden (USNO Flagstaff, USA), Anlaug A. Kaas (NOT, La Palma, Spain), Tommy Grav (University of Oslo, N), Jens Hjorth, Holger Pedersen (Astronomical Observatory Copenhagen, Denmark), Ralph A.M.J. Wijers (Astronomical Institute Anton Pannekoek, Amsterdam, The Netherlands), Hye-Sook Park (Lawrence Livermore Nat. Laboratory, USA), Grant Williams (MMT Observatory, Tucson, USA), Olaf Reimer (Theoretische Weltraum- und Astrophysik Universität Bochum, Germany) [3]: When electrons - which are electrically charged - move through a magnetic field, they spiral around an axis defined by the local magnetic field. Electrons of high energy spiral very rapidly, at speeds near the speed of light. Under such conditions, the electrons emit highly polarised electromagnetic radiation. The intensity of this radiation is related to the strength of the magnetic field and the number and energy distribution of the electrons caught in this field. Many cosmic radio sources have been found to emit synchrotron radiation - one of the best examples is the famous Crab Nebula, depicted in ESO PR Photo 40f/99.

  2. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation.

    PubMed

    Jurado-Navas, Antonio; Raddo, Thiago R; Garrido-Balsells, José María; Borges, Ben-Hur V; Olmos, Juan José Vegas; Monroy, Idelfonso Tafur

    2016-07-25

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.

  3. Optical transmission testing based on asynchronous sampling techniques: images analysis containing chromatic dispersion using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Mrozek, T.; Perlicki, K.; Tajmajer, T.; Wasilewski, P.

    2017-08-01

    The article presents an image analysis method, obtained from an asynchronous delay tap sampling (ADTS) technique, which is used for simultaneous monitoring of various impairments occurring in the physical layer of the optical network. The ADTS method enables the visualization of the optical signal in the form of characteristics (so called phase portraits) that change their shape under the influence of impairments such as chromatic dispersion, polarization mode dispersion and ASE noise. Using this method, a simulation model was built with OptSim 4.0. After the simulation study, data were obtained in the form of images that were further analyzed using the convolutional neural network algorithm. The main goal of the study was to train a convolutional neural network to recognize the selected impairment (distortion); then to test its accuracy and estimate the impairment for the selected set of test images. The input data consisted of processed binary images in the form of two-dimensional matrices, with the position of the pixel. This article focuses only on the analysis of images containing chromatic dispersion.

  4. Deep Photometry of GRB 041006 Afterglow: Hypernova Bump at Redshift z = 0.716

    NASA Astrophysics Data System (ADS)

    Stanek, K. Z.; Garnavich, P. M.; Nutzman, P. A.; Hartman, J. D.; Garg, A.; Adelberger, K.; Berlind, P.; Bonanos, A. Z.; Calkins, M. L.; Challis, P.; Gaudi, B. S.; Holman, M. J.; Kirshner, R. P.; McLeod, B. A.; Osip, D.; Pimenova, T.; Reiprich, T. H.; Romanishin, W.; Spahr, T.; Tegler, S. C.; Zhao, X.

    2005-06-01

    We present deep optical photometry of the afterglow of gamma-ray burst (GRB) 041006 and its associated hypernova obtained over 65 days after detection (55 R-band epochs on 10 different nights). Our early data (t<4 days) joined with published GCN data indicate a steepening decay, approaching Fν~t-0.6 at early times (t<<1 day) and Fν~t-1.3 at late times. The break at tb=0.16+/-0.04 days is the earliest reported jet break among all GRB afterglows. During our first night, we obtained 39 exposures spanning 2.15 hr from 0.62 to 0.71 days after the burst that reveal a smooth afterglow, with an rms deviation of 0.024 mag from the local power-law fit, consistent with photometric errors. After t~4 days, the decay slows considerably, and the light curve remains approximately flat at R~24 mag for a month before decaying by another magnitude to reach R~25 mag 2 months after the burst. This ``bump'' is well fit by a k-corrected light curve of supernova SN 1998bw, but only if stretched by a factor of 1.38 in time. In comparison with the other GRB-related SN bumps, GRB 041006 stakes out new parameter space for GRBs/SNe, with a very bright and significantly stretched late-time SN light curve. Within a small sample of fairly well observed GRB/SN bumps, we see a hint of a possible correlation between their peak luminosity and their ``stretch factor,'' broadly similar to the well-studied Phillips relation for the Type Ia supernovae. Based on data from the MMT Observatory 6.5 m telescope, the 1.8 m Vatican Advanced Technology Telescope, the Magellan 6.5 m Baade and Clay telescopes, and the Keck II 10 m telescope.

  5. An Artificial Intelligence Classification Tool and Its Application to Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Haglin, David J.; Roiger, Richard J.; Giblin, Timothy; Paciesas, William S.; Pendleton, Geoffrey N.; Mallozzi, Robert S.

    2004-01-01

    Despite being the most energetic phenomenon in the known universe, the astrophysics of gamma-ray bursts (GRBs) has still proven difficult to understand. It has only been within the past five years that the GRB distance scale has been firmly established, on the basis of a few dozen bursts with x-ray, optical, and radio afterglows. The afterglows indicate source redshifts of z=1 to z=5, total energy outputs of roughly 10(exp 52) ergs, and energy confined to the far x-ray to near gamma-ray regime of the electromagnetic spectrum. The multi-wavelength afterglow observations have thus far provided more insight on the nature of the GRB mechanism than the GRB observations; far more papers have been written about the few observed gamma-ray burst afterglows in the past few years than about the thousands of detected gamma-ray bursts. One reason the GRB central engine is still so poorly understood is that GRBs have complex, overlapping characteristics that do not appear to be produced by one homogeneous process. At least two subclasses have been found on the basis of duration, spectral hardness, and fluence (time integrated flux); Class 1 bursts are softer, longer, and brighter than Class 2 bursts (with two second durations indicating a rough division). A third GRB subclass, overlapping the other two, has been identified using statistical clustering techniques; Class 3 bursts are intermediate between Class 1 and Class 2 bursts in brightness and duration, but are softer than Class 1 bursts. We are developing a tool to aid scientists in the study of GRB properties. In the process of developing this tool, we are building a large gamma-ray burst classification database. We are also scientifically analyzing some GRB data as we develop the tool. Tool development thus proceeds in tandem with the dataset for which it is being designed. The tool invokes a modified KDD (Knowledge Discovery in Databases) process, which is described as follows.

  6. Blue–green afterglow of BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Bao-gai; Ma, Qing-lan; School of Electronics and Information, Nantong University, Jiangsu 226019

    Highlights: • Afterglow can be achieved when Eu{sup 2+} is absent in the DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. • The afterglow of DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors is discernible to naked eyes for minutes. • Dy{sup 3+} introduced trap centers are believed to be responsible for the afterglow. - Abstract: Dy{sup 3+} doped barium aluminate (BaAl{sub 2}O{sub 4}:Dy{sup 3+}) phosphors were prepared via the sol–gel combustion route at the ignition temperature of 600 °C. The phosphors were characterized with X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Regardless of themore » absence of Eu{sup 2+} luminescent centers, broadband blue–green afterglow with its peak at about 490 nm was recorded in the BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. The decay profile of the blue–green afterglow can be best fitted into a two-component exponential function with the two lifetime decay constants to be 8.81 and 45.25 s, respectively. The observation of blue–green afterglow from BaAl{sub 2}O{sub 4}:Dy{sup 3+} in the absence of Eu{sup 2+} provides unique opportunity in unveiling the afterglow mechanisms of rare-earth doped alkaline-metal aluminates. Possible mechanisms on the blue–green afterglow in BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors are discussed in terms of the Dy{sup 3+} ions introduced trap centers as well as luminescent centers in the crystal lattice.« less

  7. A Morphological Analysis of Gamma-Ray Burst Early-optical Afterglows

    NASA Astrophysics Data System (ADS)

    Gao, He; Wang, Xiang-Gao; Mészáros, Peter; Zhang, Bing

    2015-09-01

    Within the framework of the external shock model of gamma-ray burst (GRB) afterglows, we perform a morphological analysis of the early-optical light curves to directly constrain model parameters. We define four morphological types, i.e., the reverse shock-dominated cases with/without the emergence of the forward shock peak (Type I/Type II), and the forward shock-dominated cases without/with νm crossing the band (Type III/IV). We systematically investigate all of the Swift GRBs that have optical detection earlier than 500 s and find 3/63 Type I bursts (4.8%), 12/63 Type II bursts (19.0%), 30/63 Type III bursts (47.6%), 8/63 Type IV bursts (12.7%), and 10/63 Type III/IV bursts (15.9%). We perform Monte Carlo simulations to constrain model parameters in order to reproduce the observations. We find that the favored value of the magnetic equipartition parameter in the forward shock ({ɛ }B{{f}}) ranges from 10-6 to 10-2, and the reverse-to-forward ratio of ɛB ({{R}}B) is about 100. The preferred electron equipartition parameter {ɛ }{{e}}{{r},{{f}}} value is 0.01, which is smaller than the commonly assumed value, e.g., 0.1. This could mitigate the so-called “efficiency problem” for the internal shock model, if ɛe during the prompt emission phase (in the internal shocks) is large (say, ˜0.1). The preferred {{R}}B value is in agreement with the results in previous works that indicate a moderately magnetized baryonic jet for GRBs.

  8. GRB 091127: The cooling break race on magnetic fuel

    NASA Astrophysics Data System (ADS)

    Filgas, R.; Greiner, J.; Schady, P.; Krühler, T.; Updike, A. C.; Klose, S.; Nardini, M.; Kann, D. A.; Rossi, A.; Sudilovsky, V.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Nicuesa Guelbenzu, A.; Olivares E., F.; Rau, A.

    2011-11-01

    Aims: Using high-quality, broad-band afterglow data for GRB 091127, we investigate the validity of the synchrotron fireball model for gamma-ray bursts (GRBs), and infer physical parameters of the ultra-relativistic outflow. Methods: We used multi-wavelength (NIR to X-ray) follow-up observations obtained with GROND simultaneously in the g'r'i'z'JH filters and the XRT onboard the Swift satellite in the 0.3 to 10 keV energy range. The resulting afterglow light curve is of excellent accuracy with relative photometric errors as low as 1%, and the spectral energy distribution (SED) is well-sampled over 5 decades in energy. These data present one of the most comprehensive observing campaigns for a single GRB afterglow and allow us to test several proposed emission models and outflow characteristics in unprecedented detail. Results: Both the multi-color light curve and the broad-band SED of the afterglow of GRB 091127 show evidence of a cooling break moving from high to lower energies. The early light curve is well described by a broken power-law, where the initial decay in the optical/NIR wavelength range is considerably flatter than at X-rays. Detailed fitting of the time-resolved SED shows that the break is very smooth with a sharpness index of 2.2 ± 0.2, and evolves towards lower frequencies as a power-law with index - 1.23 ± 0.06. These are the first accurate and contemporaneous measurements of both the sharpness of the spectral break and its time evolution. Conclusions: The measured evolution of the cooling break (νc ∝ t~-1.2) is not consistent with the predictions of the standard model, wherein νc ∝ t~-0.5 is expected. A possible explanation for the observed behavior is a time dependence of the microphysical parameters, in particular the fraction of the total energy in the magnetic field ɛB. This conclusion provides further evidence that the standard fireball model is too simplistic, and time-dependent micro-physical parameters may be required to model the growing number of well-sampled afterglow light curves. Tables 3 and 4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/535/A57

  9. Gigabit Ethernet: A Technical Assessment.

    ERIC Educational Resources Information Center

    Axner, David

    1997-01-01

    Describes gigabit ethernet for LAN (local area network) technology that will expand ethernet bandwidth. Technical details are discussed, including protocol stacks, optical fiber, deployment strategy for performance improvement, ATM (Asynchronous Transfer Mode), real-time protocol, reserve reservation protocol, and standards. (LRW)

  10. Afterglows from the largest explosions in the universe

    PubMed Central

    Hartmann, Dieter H.

    1999-01-01

    The distinction of “largest explosions in the universe” has been bestowed on cosmic gamma-ray bursts. Their afterglows are brighter than supernovae and therefore are called hypernovae. Photometry and spectroscopy of these afterglows have provided major breakthroughs in our understanding of this mysterious phenomenon. PMID:10220364

  11. A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors

    NASA Astrophysics Data System (ADS)

    Zhang, Haoran; Xue, Zhiping; Lei, Bingfu; Dong, Hanwu; Zhang, Haiming; Deng, Suqing; Zheng, Mingtao; Liu, Yingliang; Xiao, Yong

    2014-09-01

    By using commercial SrAl2O4:Eu2+,Dy3+ phosphor as raw material, we have developed a novel and simple top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets that are useful for potential practical applications, especially as fluorescent labels for biomolecules and mechano-optical nano-devices. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) results demonstrate that the treated samples are still pure-phase of SrAl2O4:Eu2+,Dy3+. The field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the treated SrAl2O4:Eu2+,Dy3+ phosphors are built up by nanosheets bundles. Excitation and emission spectra, afterglow emission spectra and decay curves are used to analyze the luminescence properties of SrAl2O4:Eu2+,Dy3+ nanosheets, and the results show that, compared with commercial samples, the treated samples show similar spectra characteristic including the spectra shapes and the band position. Furthermore, the fluorescence and afterglow intensity of SrAl2O4:Eu2+,Dy3+ nanosheets can be tuned linearly by changing the circumstance temperatures, which further indicates its potential applications in fiber-optical thermometer materials.

  12. Radio Transients in 1333 deg2 of the VLA Sky Survey Pilot

    NASA Astrophysics Data System (ADS)

    Dong, Dillon; Hallinan, Gregg; Myers, Steven T.; Mooley, Kunal; VLASS Survey Team, VLASS Survey Science Group (SSG)

    2018-01-01

    The VLA Sky Survey (VLASS) is an ongoing project by the NRAO to map ~34,000 deg2 of the sky at 3GHz, over 3 epochs spanning 6 years. In preparation for the full survey, a set of fields covering 2480 deg2 was recently observed as the VLASS pilot project. We searched 1333 deg2 of the VLASS pilot for radio transients with characteristic decay timescales between weeks and years, such as the synchrotron afterglows of supernovae, tidal disruption events, and long/short gamma ray bursts. These radio afterglows are thought to be roughly isotropic and extinction-free, allowing us to observe transients that would be missed by optical/high energy surveys due to obscuration or off-axis jetting.Within the searched area, we identified 215 VLASS sources that have no counterpart in the FIRST survey and have a projected distance of < 50kpc from the nearest galaxy by angular distance in the CLU and GWENs galaxy catalogs. By selection, these targets are predominently located near low redshift (z < 0.05) galaxies, allowing us to study their host environments with a sub-kiloparsec spatial resolution. Prioritizing based on visual association with SDSS galaxies, we imaged and/or took spectra of the host environment of 60 targets with the Low Resolution Imaging Spectrometer (LRIS) on Keck 1. In this talk, we present the radio and optical results for the most exciting VLASS transients.

  13. Gamma-Ray Burst Afterglows as Probes of Environment and Blastwave Physics II: The Distribution of p and Structure of the Circumburst Medium

    NASA Technical Reports Server (NTRS)

    Starling, R. L. C.; vanderHorst, A. J.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Wiersema, K.; Curran, P. A.; Weltevrede, P.

    2007-01-01

    We constrain blastwave parameters and the circumburst media of a subsample of BeppoSAX Gamma-Ray Bursts. For this sample we derive the values of the injected electron energy distribution index, p, and the density structure index of the circumburst medium, k, from simultaneous spectral fits to their X-ray, optical and nIR afterglow data. The spectral fits have been done in count space and include the effects of metallicity, and are compared with the previously reported optical and X-ray temporal behaviour. Assuming the fireball model, we can find a mean value of p for the sample as a whole of 2.035. A statistical analysis Of the distribution demonstrates that the p values in this sample are inconsistent with a single universal value for p at the 3sigma level or greater. This approach provides us with a measured distribution of circumburst density structures rather than considering only the cases of k = 0 (homogeneous) and k = 2 (wind-like). We find five GRBs for which k can be well constrained, and in four of these cases the circumburst medium is clearly wind-like. The fifth source has a value of 0 less than or equal to k less than or equal to 1, consistent with a homogeneous circumburst medium.

  14. Optical study of the counterpart to GRB 990712

    NASA Astrophysics Data System (ADS)

    Gorosabel, J.; Castro-Tirado, A. J.; Saizar, P.; Rattenbury, N. J.; Bond, I. A.; Yock, P.; Hearnshaw, J.; Kilmartin, P. M.; Muraki, Y.; Nakamura, T.; Ohnishi, K.; Reid, M.; Saito, To; Noda, S.

    2000-09-01

    Quasi-simultaneous BVR-band observations performed from New Zealand and Argentina ~16 hr after the burst clearly detected the optical counterpart to GR-B 990712. Based on these measurements we construct the optical multi-band spectrum. We report that the spectrum between the R and B bands follows a power law Fv~νβ with index β=-0.50+/-0.16. The spectrum is consistent with a stretch of an afterglow spectrum between the peak frequency, νm, and the cooling break, νc. The photon index derived following the model of Sari et al. (1998), p=2.36+/-0.08 is compatible with β and the power law decay, α, only if no absorption is introduced. Thus, our results support that GRB 990712 occurred in a low density region, resembling GRB 970508. .

  15. Limits on Optical Polarization during the Prompt Phase of GRB 140430A

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Mundell, C. G.; Japelj, J.; Arnold, D. M.; Steele, I. A.; Guidorzi, C.; Dichiara, S.; Kobayashi, S.; Gomboc, A.; Harrison, R. M.; Lamb, G. P.; Melandri, A.; Smith, R. J.; Virgili, F. J.; Castro-Tirado, A. J.; Gorosabel, J.; Järvinen, A.; Sánchez-Ramírez, R.; Oates, S. R.; Jelínek, M.

    2015-11-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles.

  16. TGF Afterglows: A New Radiation Mechanism From Thunderstorms

    NASA Astrophysics Data System (ADS)

    Rutjes, C.; Diniz, G.; Ferreira, I. S.; Ebert, U.

    2017-10-01

    Thunderstorms are known to create terrestrial gamma ray flashes (TGFs) which are microsecond-long bursts created by runaway of thermal electrons from propagating lightning leaders, as well as gamma ray glows that possibly are created by relativistic runaway electron avalanches (RREA) that can last for minutes or more and are sometimes terminated by a discharge. In this work we predict a new intermediate thunderstorm radiation mechanism, which we call TGF afterglow, as it is caused by the capture of photonuclear neutrons produced by a TGF. TGF afterglows are milliseconds to seconds long; this duration is caused by the thermalization time of the intermediate neutrons. TGF afterglows indicate that the primary TGF has produced photons in the energy range of 10-30 MeV; they are nondirectional in contrast to the primary TGF. Gurevich et al. might have reported TGF afterglows in 2011.

  17. H2RG Detector Characterization for RIMAS and Instrument Efficiencies

    NASA Technical Reports Server (NTRS)

    Toy, Vicki L.; Kutyrev, Alexander S.; Capone, John I.; Hams, Thomas; Robinson, F. David; Lotkin, Gennadiy N.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.

    2016-01-01

    The Rapid infrared IMAger-Spectrometer (RIMAS) is a near-infrared (NIR) imager and spectrometer that will quickly follow up gamma-ray burst afterglows on the 4.3-meter Discovery Channel Telescope (DCT). RIMAS has two optical arms which allows simultaneous coverage over two bandpasses (YJ and HK) in either imaging or spectroscopy mode. RIMAS utilizes two Teledyne HgCdTe H2RG detectors controlled by Astronomical Research Cameras, Inc. (ARC/Leach) drivers. We report the laboratory characterization of RIMAS's detectors: conversion gain, read noise, linearity, saturation, dynamic range, and dark current. We also present RIMAS's instrument efficiency from atmospheric transmission models and optics data (both telescope and instrument) in all three observing modes.

  18. The Central Engine of GRB 130831A and the Energy Breakdown of a Relativistic Explosion

    NASA Technical Reports Server (NTRS)

    Pasquale, M. De; Oates, S. R.; Racusin, J. L.; Kann, D. A.; Zhang, B.; Pozanenko, A.; Volnova, A.A.; Trotter, A.; Frank, N.; Cucchiara, A.

    2014-01-01

    Gamma-ray bursts (GRBs) are the most luminous explosions in the Universe, yet the nature and physical properties of their energy sources are far from understood. Very important clues, however, can be inferred by studying the afterglows of these events. We present optical and X-ray observations of GRB 130831A obtained by Swift, Chandra, Skynet, Reionization And Transients Infra-Red camera, Maidanak, International Scientific Optical-Observation Network, Nordic Optical Telescope, Liverpool Telescope and Gran Telescopio Canarias. This burst shows a steep drop in the X-ray light curve at asymptotically equal to 10(exp 5) s after the trigger, with a power-law decay index of alpha that is approximately 6. Such a rare behaviour cannot be explained by the standard forward shock (FS) model and indicates that the emission, up to the fast decay at 10(exp 5) s, must be of internal origin, produced by a dissipation process within an ultrarelativistic outflow. We propose that the source of such an outflow, which must produce the X-ray flux for an asymptotically equal to 1 d in the cosmological rest frame, is a newly born magnetar or black hole. After the drop, the faint X-ray afterglow continues with a much shallower decay. The optical emission, on the other hand, shows no break across the X-ray steep decrease, and the late-time decays of both the X-ray and optical are consistent. Using both the X-ray and optical data, we show that the emission after an asymptotically equal to 10(exp 5) scan be explained well by the FS model. We model our data to derive the kinetic energy of the ejecta and thus measure the efficiency of the central engine of a GRB with emission of internal origin visible for a long time. Furthermore, we break down the energy budget of this GRB into the prompt emission, the late internal dissipation, the kinetic energy of the relativistic ejecta,and compare it with the energy of the associated supernova, SN 2013 fu.

  19. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  20. KSC-04pd1530

    NASA Image and Video Library

    2004-07-21

    KENNEDY SPACE CENTER, FLA. - In Hangar AE, Cape Canaveral Air Force Station, the end of the Boeing Delta fairing is covered to keep the inside clean. The fairing will encapsulate the Swift spacecraft. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration.

  1. Constraining chameleon field theories using the GammeV afterglow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhye, A.; Steffen, J. H.; Weltman, A.

    2010-01-01

    The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and photons. Here, we present a detailed calculation of the chameleon afterglow rate underlying these constraints. The dependence of GammeV constraints on various assumptions in the calculation is studied. We discuss the GammeV-CHameleon Afterglow SEarch, a second-generation GammeV experiment, which will improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow rate, we forecast model-independent constraints achievable by GammeV-CHameleon Afterglow SEarch. We then apply these constraints to a variety of chameleon models, including quartic chameleons and chameleon dark energy models. The new experimentmore » will be able to probe a large region of parameter space that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of distant astrophysical objects, and bounds on the variation of the fine structure constant.« less

  2. Photoluminescence and afterglow luminescence properties of a green-emitting Na2BeGeO4:Mn2+ phosphor

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Shen, Linjiang

    2018-07-01

    Recently, developing free rare-earth (RE) doped afterglow phosphors has received great attentions in the lighting field. In this work, we prepare and report a RE-free phosphor, Na2BeGeO4:Mn2+, which can simultaneously emit the green fluorescence and afterglow luminescence upon excitation at UV light. Our results reveal that the as-prepared samples crystallize in orthorhombic type with the space group of Pmn21 (31). The green emission is a broad band centered at 525 nm, corresponds to the 4T1(4G)-6A1(6S) transition of Mn2+ ions. After exposing to a 254 nm UV lamp for 10 min, the green afterglow luminescence seen with naked eyes can last more than 5 h. Together with the structural analysis and thermoluminescence (TL) spectra, the afterglow luminescence mechanism is also discussed in this work.

  3. GRB 060313: A New Paradigm for Short-Hard Bursts?

    NASA Astrophysics Data System (ADS)

    Roming, Peter W. A.; Vanden Berk, Daniel; Pal'shin, Valentin; Pagani, Claudio; Norris, Jay; Kumar, Pawan; Krimm, Hans; Holland, Stephen T.; Gronwall, Caryl; Blustin, Alex J.; Zhang, Bing; Schady, Patricia; Sakamoto, Takanori; Osborne, Julian P.; Nousek, John A.; Marshall, Frank E.; Mészáros, Peter; Golenetskii, Sergey V.; Gehrels, Neil; Frederiks, Dmitry D.; Campana, Sergio; Burrows, David N.; Boyd, Patricia T.; Barthelmy, Scott; Aptekar, R. L.

    2006-11-01

    We report the simultaneous observations of the prompt emission in the gamma-ray and hard X-ray bands by the Swift BAT and the Konus-Wind instruments of the short-hard burst, GRB 060313. The observations reveal multiple peaks in both the gamma-ray and hard X-ray bands suggesting a highly variable outflow from the central explosion. We also describe the early-time observations of the X-ray and UV/optical afterglows by the Swift XRT and UVOT instruments. The combination of the X-ray and UV/optical observations provides the most comprehensive light curves to date of a short-hard burst at such an early epoch. The afterglows exhibit complex structure with different decay indices and flaring. This behavior can be explained by the combination of a structured jet, radiative loss of energy, and decreasing microphysics parameters occurring in a circumburst medium with densities varying by a factor of approximately two on a length scale of 1017 cm. These density variations are normally associated with the environment of a massive star and inhomogeneities in its windy medium. However, the mean density of the observed medium (n~10-4 cm3) is much less than that expected for a massive star. Although the collapse of a massive star as the origin of GRB 060313 is unlikely, the merger of a compact binary also poses problems for explaining the behavior of this burst. Two possible suggestions for explaining this scenario are that some short bursts may arise from a mechanism that does not invoke the conventional compact binary model, or that soft late-time central engine activity is producing UV/optical but no X-ray flaring.

  4. Significant and variable linear polarization during the prompt optical flash of GRB 160625B.

    PubMed

    Troja, E; Lipunov, V M; Mundell, C G; Butler, N R; Watson, A M; Kobayashi, S; Cenko, S B; Marshall, F E; Ricci, R; Fruchter, A; Wieringa, M H; Gorbovskoy, E S; Kornilov, V; Kutyrev, A; Lee, W H; Toy, V; Tyurina, N V; Budnev, N M; Buckley, D A H; González, J; Gress, O; Horesh, A; Panasyuk, M I; Prochaska, J X; Ramirez-Ruiz, E; Lopez, R Rebolo; Richer, M G; Román-Zúñiga, C; Serra-Ricart, M; Yurkov, V; Gehrels, N

    2017-07-26

    Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent-consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.

  5. Significant and variable linear polarization during the prompt optical flash of GRB 160625B.

    NASA Astrophysics Data System (ADS)

    Troja, E.; Lipunov, V. M.; Mundell, C. G.; Butler, N. R.; Watson, A. M.; Kobayashi, S.; Cenko, S. B.; Marshall, F. E.; Ricci, R.; Fruchter, A.; Wieringa, M. H.; Gorbovskoy, E. S.; Kornilov, V.; Kutyrev, A.; Lee, W. H.; Toy, V.; Tyurina, N. V.; Budnev, N. M.; Buckley, D. A. H.; González, J.; Gress, O.; Horesh, A.; Panasyuk, M. I.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rebolo Lopez, R.; Richer, M. G.; Roman-Zuniga, C.; Serra-Ricart, M.; Yurkov, V.; Gehrels, N.

    2017-07-01

    Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent - consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.

  6. Rock Hill Business, Education, and Community Online Network.

    ERIC Educational Resources Information Center

    Broyles, Alan

    The Business, Education & Community On-line Network (BEACON) is designed to support development and implementation of demonstration applications operating in an asynchronous transfer mode (ATM) fiber optic network environment. Initial origination and destination sites include high schools and universities around Rock Hill (South Carolina). The…

  7. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, B. F., E-mail: Ben.Spencer@manchester.ac.uk; Smith, W. F.; Hibberd, M. T.

    2016-05-23

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10{sup 12 }cm{sup −2} and 9000 cm{sup 2} V{sup −1} s{sup −1} at 77 K. The in-planemore » electron effective mass at the band edge was determined to be 0.228 ± 0.002m{sub 0}.« less

  8. A very energetic supernova associated with the gamma-ray burst of 29 March 2003.

    PubMed

    Hjorth, Jens; Sollerman, Jesper; Møller, Palle; Fynbo, Johan P U; Woosley, Stan E; Kouveliotou, Chryssa; Tanvir, Nial R; Greiner, Jochen; Andersen, Michael I; Castro-Tirado, Alberto J; Castro Cerón, José María; Fruchter, Andrew S; Gorosabel, Javier; Jakobsson, Páll; Kaper, Lex; Klose, Sylvio; Masetti, Nicola; Pedersen, Holger; Pedersen, Kristian; Pian, Elena; Palazzi, Eliana; Rhoads, James E; Rol, Evert; van den Heuvel, Edward P J; Vreeswijk, Paul M; Watson, Darach; Wijers, Ralph A M J

    2003-06-19

    Over the past five years evidence has mounted that long-duration (>2 s) gamma-ray bursts (GRBs)-the most luminous of all astronomical explosions-signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the 'collapsar' model.

  9. GRB 050717: A Long, Short-Lag Burst Observed by Swift and Konus

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Hurkett, C.; Pal'shin, V.; Norris, J. P.; Zhang, B.; Barthelmy, S. D.; Burrows, D. N.; Gehrels, N.; Golenetskii, S.; Osborne, J. P.; hide

    2005-01-01

    The long burst GRB 050717 was observed simultaneously by the Burst Alert Telescope (BAT) on Swift and the Konus instrument on Wind. Significant hard to soft spectral evolution was seen. Early gamma-ray and X-ray emission was detected by both BAT and the X-Ray Telescope (XRT) on Swift. The XRT continued to observe the burst for 7.1 days and detect it for 1.4 days. The X-ray light curve showed a classic decay pattern including evidence of the onset of the external shock emission at approx. 50 s after the trigger; the afterglow was too faint for a jet break to be detected. No optical, infrared or ultraviolet counterpart was discovered despite deep searches within 14 hours of the burst. The spectral lag for GRB 050717 was determined to be 2.5 +/- 2.6 ms, consistent, with zero and unusually short for a long burst. This lag measurement suggests that this burst has a high intrinsic luminosity and hence is at high redshift (z > 2.7). 050717 provides a good example of classic prompt and afterglow behavior for a gamma-ray burst.

  10. Highly polarized light from stable ordered magnetic fields in GRB 120308A.

    PubMed

    Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J

    2013-12-05

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P < 4 per cent), when emission from the shocked ambient medium dominates. Here we report the detection of P =28(+4)(-4) per cent in the immediate afterglow of Swift γ-ray burst GRB 120308A, four minutes after its discovery in the γ-ray band, decreasing to P = 16(+5)(-4) per cent over the subsequent ten minutes. The polarization position angle remains stable, changing by no more than 15 degrees over this time, with a possible trend suggesting gradual rotation and ruling out plasma or magnetohydrodynamic instabilities. Instead, the polarization properties show that GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  11. Structure in the early afterglow light curve of the gamma-ray burst of 29 March 2003.

    PubMed

    Uemura, Makoto; Kato, Taichi; Ishioka, Ryoko; Yamaoka, Hitoshi; Monard, Berto; Nogami, Daisaku; Maehara, Hiroyuki; Sugie, Atsushi; Takahashi, Susumu

    2003-06-19

    Gamma-ray bursts (GRBs) are energetic explosions that for 0.01-100 s are the brightest gamma-ray sources in the sky. Observations of the early evolution of afterglows are expected to provide clues about the nature of the bursts, but their rapid fading has hampered such studies; some recent rapid localizations of bursts have improved the situation. Here we report an early detection of the very bright afterglow of the burst of 29 March 2003 (GRB030329). Our data show that, even early in the afterglow phase, the light curve shows unexpectedly complicated structures superimposed on the fading background.

  12. MODELING THE AFTERGLOW OF THE POSSIBLE FERMI -GBM EVENT ASSOCIATED WITH GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morsony, Brian J.; Workman, Jared C.; Ryan, Dominic M., E-mail: morsony@astro.umd.edu

    2016-07-10

    We model the possible afterglow of the Fermi Gamma-ray Burst Monitor (GBM) event associated with LIGO detection GW150914, under the assumption that the gamma-rays are produced by a short GRB-like relativistic outflow. We model GW150914-GBM as both a weak, on-axis short GRB and normal short GRB seen far off-axis. Given the large uncertainty in the position of GW150914, we determine that the best chance of finding the afterglow is with ASKAP or possibly the Murchinson Widefield Array (MWA), with the flux from an off-axis short GRB reaching 0.2–4 mJy (0.12–16 mJy) at 150 MHz (863.5 MHz) by 1–12 months aftermore » the initial event. At low frequencies, the source would evolve from a hard to soft spectrum over several months. The radio afterglow would be detectable for several months to years after it peaks, meaning the afterglow may still be detectable and increasing in brightness NOW (2016 mid-July). With a localization from the MWA or ASKAP, the afterglow would be detectable at higher radio frequencies with the ATCA and in X-rays with Chandra or XMM .« less

  13. Large-amplitude late-time radio variability in GRB 151027B

    NASA Astrophysics Data System (ADS)

    Greiner, J.; Bolmer, J.; Wieringa, M.; van der Horst, A. J.; Petry, D.; Schulze, S.; Knust, F.; de Bruyn, G.; Krühler, T.; Wiseman, P.; Klose, S.; Delvaux, C.; Graham, J. F.; Kann, D. A.; Moin, A.; Nicuesa-Guelbenzu, A.; Schady, P.; Schmidl, S.; Schweyer, T.; Tanga, M.; Tingay, S.; van Eerten, H.; Varela, K.

    2018-06-01

    Context. Deriving physical parameters from gamma-ray burst (GRB) afterglow observations remains a challenge, even 20 years after the discovery of afterglows. The main reason for the lack of progress is that the peak of the synchrotron emission is in the sub-mm range, thus requiring radio observations in conjunction with X-ray/optical/near-infrared data in order to measure the corresponding spectral slopes and consequently remove the ambiguity with respect to slow vs. fast cooling and the ordering of the characteristic frequencies. Aims: We have embarked on a multifrequency, multi-epoch observing campaign to obtain sufficient data for a given GRB that allows us to test the simplest version of the fireball afterglow model. Methods: We observed GRB 151027B, the 1000th Swift-detected GRB, with GROND in the optical-near-IR, ALMA in the sub-millimeter, ATCA in the radio band; we combined this with public Swift/XRT X-ray data. Results: While some observations at crucial times only return upper limits or surprising features, the fireball model is narrowly constrained by our data set, and allows us to draw a consistent picture with a fully determined parameter set. Surprisingly, we find rapid, large-amplitude flux density variations in the radio band which are extreme not only for GRBs, but generally for any radio source. We interpret them as scintillation effects, though their extreme nature requires the scattering screen to be at a much smaller distance than usually assumed, multiple screens, or a combination of the two. Conclusions: The data are consistent with the simplest fireball scenario for a blast wave moving into a constant-density medium, and slow-cooling electrons. All fireball parameters are constrained at or better than a factor of 2, except for the density and the fraction of the energy in the magnetic field which has a factor of 10 uncertainty in both directions. This paper makes use of the following data: ATCA: Proposal C2955 (PI: Greiner), ALMA: ADS/JAO.ALMA#2015.1.01558.T (PI: Schulze).

  14. Photoionization of radiation-induced traps in quartz and alkali feldspars.

    PubMed

    Hütt, G; Jaek, I; Vasilchenko, V

    2001-01-01

    For the optimization of luminescence dating and dosimetry techniques on the basis of the optically stimulated luminescence, the stimulation spectra of quartz and alkali feldspars were measured in the spectral region of 250-1100 nm using optically stimulated afterglow. Optically stimulated luminescence in all studied spectral regions is induced by the same kind of deep traps, that produce thermoluminescence in the regions of palaeodosimetric peaks for both minerals. The mechanism for photoionization of deep traps was proposed as being due to delocalization of the excited state of the corresponding lattice defects. The excited state overlaps the zone states; i.e. is situated in the conduction band. Because of the high quantum yield of deep electron trap ionization in the UV spectral region, the present aim was to study the possibility of using UV-stimulation for palaeodose reconstruction.

  15. Implementation of a tactical voice/data network over FDDI. [Fiber Distributed Data Interface

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Halloran, F.; Martinez, J.

    1988-01-01

    An asynchronous high-speed fiber-optic local-area network is described that simultaneously supports packet data traffic with synchronous TI voice traffic over a standard asynchronous FDDI (fiber distributed data interface) token-ring channel. A voice interface module was developed that parses, buffers, and resynchronizes the voice data to the packet network. The technique is general, however, and can be applied to any deterministic class of networks, including multitier backbones. In addition, the higher layer packet data protocols may operate independently of those for the voice, thereby permitting great flexibility in reconfiguring the network. Voice call setup and switching functions are performed external to the network with PABX equipment.

  16. Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph and FORS2 spectroscopy of the GRB 081008 afterglow

    NASA Astrophysics Data System (ADS)

    D'Elia, V.; Campana, S.; Covino, S.; D'Avanzo, P.; Piranomonte, S.; Tagliaferri, G.

    2011-11-01

    We aim at studying the gamma-ray burst (GRB), GRB 081008, environment by analysing the spectra of its optical afterglow. Ultraviolet and Visual Echelle Spectrograph/Very Large Telescope (UVES/VLT) high-resolution spectroscopy of GRB 081008 was secured ˜5 h after the Swift-BAT trigger. Our data set also comprises three VLT/FORS2 nearly simultaneous spectra of the same source. The availability of nearly simultaneous high- and low-resolution spectra for a GRB afterglow is an extremely rare event. The GRB-damped Lyman α system at z= 1.9683 shows that the interstellar medium (ISM) of the host galaxy is constituted by at least three components which contribute to the line profiles. Component I is the redmost one, and is 20 and 78 km s-1 redward components II and III, respectively. We detect several ground state and excited absorption features in components I and II. These features have been used to compute the distances between the GRB and the absorbers. Component I is found to be 52 ± 6 pc away from the GRB, while component II presents few excited transitions and its distance is 200+60- 80 pc. Component III only features a few, low-ionization and saturated lines suggesting that it is even farther from the GRB. Component I represents the closest absorber ever detected near a GRB. This (relatively) low distance can possibly be a consequence of a dense GRB environment, which prevents the GRB prompt/afterglow emission to strongly affect the ISM up to higher distances. The hydrogen column density associated with GRB 081008 is log NH/cm-2= 21.11 ± 0.10, and the metallicity of the host galaxy is in the range of [X/H] =-1.29 to -0.52. In particular, we found [Fe/H] =-1.19 ± 0.11 and [Zn/H] =-0.52 ± 0.11 with respect to solar values. This discrepancy can be explained by the presence of dust in the GRB ISM, given the opposite refractory properties of iron and zinc. By deriving the depletion pattern for GRB 081008, we find the optical extinction in the visual band to be AV˜ 0.19 mag. The curve-of-growth analysis applied to the FORS2 spectra brings column densities consistent at the 3σ level to that evaluated from the UVES data using the line-fitting procedure. This reflects the low saturation of the detected GRB 081008 absorption features. Based on observations collected at the European Southern Observatory, ESO, the VLT/Kueyen telescope, Paranal, Chile, in the framework of the programme 082-0755.

  17. GRB afterglows in the nonrelativistic phase

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Lu, T.

    2008-10-01

    When discussing the afterglows of gamma-ray bursts analytically, it is usually assumed that the external shock is always ultra-relativisitc, with the bulk Lorentz factor much larger than 1. However, we show that the deceleration of the external shock is actually very quick. The afterglow may typically enter the nonrelativistic phase in several days to teens of days, and may even enter the deep Newtonian phase in tens of days to several months. One thus should be careful in using those familiar analytical expressions that are derived only under the ultra-relativistic assumption. To explain the observed afterglows that typically last for a few weeks to several months, we need to consider the dynamics and radiation in the nonrelativisitic phase.

  18. [Structure and luminescence properties of MgGa2O4 : Cr3+ with Zn substituted for Mg].

    PubMed

    Zhang, Wan-Xin; Wang, Yin-Hai; Li, Hai-Ling; Wang, Xian-Sheng; Zhao, Hui

    2013-01-01

    A series of red long afterglow phosphors with composition Zn(x) Mg(1-2) Ga2 O4 : Cr3+ (x = 0, 0.2, 0.6, 0.8, 1.0) were synthesized by a high temperature solid-state reaction method. The X-ray diffraction studies show that the phase of the phosphors is face-centered cubic structure. Photoluminescence spectra show that the red emission of Cr3+ originated from the transition of 2E-4A2. Due to the large overlap between absorption band of Cr3+ and emission band of the host. Cr3+ could obtain the excitation energy from the host via the effective energy transfer. The afterglow decay characteristics show that the phosphor samples with different Zn contents have different afterglow time and the afterglow time also changes with the value of x. The measurement of thermoluminescence reveals that the trap depth of the phosphor samples with different Zn contents is different. The samples with deeper traps have longer afterglow time.

  19. GRB 170817A as a jet counterpart to gravitational wave trigger GW 170817

    NASA Astrophysics Data System (ADS)

    Lamb, Gavin P.; Kobayashi, Shiho

    2018-05-01

    Fermi/GBM (Gamma-ray Burst Monitor) and INTEGRAL (the International Gamma-ray Astrophysics Laboratory) reported the detection of the γ-ray counterpart, GRB 170817A, to the LIGO (Light Interferometer Gravitational-wave Observatory)/Virgo gravitational wave detected binary neutron star merger, GW 170817. GRB 170817A is likely to have an internal jet or another origin such as cocoon emission, shock-breakout, or a flare from a viscous disc. In this paper we assume that the γ-ray emission is caused by energy dissipation within a relativistic jet and we model the afterglow synchrotron emission from a reverse- and forward-shock in the outflow. We show the afterglow for a low-luminosity γ-ray burst (GRB) jet with a high Lorentz-factor (Γ); a low-Γ and low-kinetic energy jet; a low-Γ, high kinetic energy jet; structured jets viewed at an inclination within the jet-half-opening angle; and an off-axis `typical' GRB jet. All jet models will produce observable afterglows on various timescales. The late-time afterglow from 10-110 days can be fit by a Gaussian structured jet viewed at a moderate inclination, however the GRB is not directly reproduced by this model. These jet afterglow models can be used for future GW detected NS merger counterparts with a jet afterglow origin.

  20. Electrical characterization of the flowing afterglow of N{sub 2} and N{sub 2}/O{sub 2} microwave plasmas at reduced pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonso Ferreira, J.; Stafford, L., E-mail: luc.stafford@umontreal.ca; Leonelli, R.

    2014-04-28

    A cylindrical Langmuir probe was used to analyze the spatial distribution of the number density of positive ions and electrons as well as the electron energy distribution function (EEDF) in the flowing afterglow of a 6 Torr N{sub 2} and N{sub 2}/O{sub 2} plasma sustained by a propagating electromagnetic surface wave in the microwave regime. In pure N{sub 2} discharges, ion densities were in the mid 10{sup 14} m{sup −3} in the pink afterglow and in the mid 10{sup 12} m{sup −3} early in the late afterglow. In both pink and late afterglows, the ion population was much higher than the electron population,more » indicating non-macroscopically neutral media. The EEDF was close to a Maxwellian with an electron temperature of 0.5 ± 0.1 eV, except in the pink afterglow where the temperature rose to 1.1 ± 0.2 eV. This latter behavior is ascribed to N{sub 2} vibration-vibration pumping in the pink afterglow that increases the concentration of high N{sub 2} vibrational states and thus rises the electron temperature by vibration-electron collisions. After addition of small amounts of O{sub 2} in the nominally pure N{sub 2} discharge, the charged particles densities and average electron energy first strongly increased and then decreased with increasing O{sub 2} concentration. Based on these data and the evolution of the N{sub 2}{sup +}(B) band emission intensities, it is concluded that a significant change in the positive ion composition of the flowing afterglow occurs, going from N{sub 2}{sup +} in nominally pure N{sub 2} discharges to NO{sup +} after addition of trace amounts of O{sub 2} in N{sub 2}.« less

  1. Controlled by Distant Explosions

    NASA Astrophysics Data System (ADS)

    2007-03-01

    VLT Automatically Takes Detailed Spectra of Gamma-Ray Burst Afterglows Only Minutes After Discovery A time-series of high-resolution spectra in the optical and ultraviolet has twice been obtained just a few minutes after the detection of a gamma-ray bust explosion in a distant galaxy. The international team of astronomers responsible for these observations derived new conclusive evidence about the nature of the surroundings of these powerful explosions linked to the death of massive stars. At 11:08 pm on 17 April 2006, an alarm rang in the Control Room of ESO's Very Large Telescope on Paranal, Chile. Fortunately, it did not announce any catastrophe on the mountain, nor with one of the world's largest telescopes. Instead, it signalled the doom of a massive star, 9.3 billion light-years away, whose final scream of agony - a powerful burst of gamma rays - had been recorded by the Swift satellite only two minutes earlier. The alarm was triggered by the activation of the VLT Rapid Response Mode, a novel system that allows for robotic observations without any human intervention, except for the alignment of the spectrograph slit. ESO PR Photo 17a/07 ESO PR Photo 17a/07 Triggered by an Explosion Starting less than 10 minutes after the Swift detection, a series of spectra of increasing integration times (3, 5, 10, 20, 40 and 80 minutes) were taken with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted on Kueyen, the second Unit Telescope of the VLT. "With the Rapid Response Mode, the VLT is directly controlled by a distant explosion," said ESO astronomer Paul Vreeswijk, who requested the observations and is lead-author of the paper reporting the results. "All I really had to do, once I was informed of the gamma-ray burst detection, was to phone the staff astronomers at the Paranal Observatory, Stefano Bagnulo and Stan Stefl, to check that everything was fine." The first spectrum of this time series was the quickest ever taken of a gamma-ray burst afterglow, let alone with an instrument such as UVES, which is capable of splitting the afterglow light with uttermost precision. What is more, this amazing record was broken less than two months later by the same team. On 7 June 2006, the Rapid-Response Mode triggered UVES observations of the afterglow of an even more distant gamma-ray source a mere 7.5 minutes after its detection by the Swift satellite. Gamma-ray bursts are the most intense explosions in the Universe. They are also very brief. They randomly occur in galaxies in the distant Universe and, after the energetic gamma-ray emission has ceased, they radiate an afterglow flux at longer wavelengths (i.e. lower energies). They are classified as long and short bursts according to their duration and burst energetics, but hybrid bursts have also been discovered (see ESO PR 49/06). The scientific community agrees that gamma-ray bursts are associated with the formation of black holes, but the exact nature of the bursts remains enigmatic. ESO PR Photo 17b/07 ESO PR Photo 17b/07 Kueyen at Night Because a gamma-ray burst typically occurs at very large distances, its optical afterglow is faint. In addition, it fades very rapidly: in only a few hours the optical afterglow brightness can fade by as much as a factor of 500. This makes detailed spectral analysis possible only for a few hours after the gamma-ray detection, even with large telescopes. During the first minutes and hours after the explosion, there is also the important opportunity to observe time-dependent phenomena related to the influence of the explosion on its surroundings. The technical challenge therefore consists of obtaining high-resolution spectroscopy with 8-10 m class telescopes as quickly as possible. "The afterglow spectra provide a wealth of information about the composition of the interstellar medium of the galaxy in which the star exploded. Some of us even hoped to characterize the gas in the vicinity of the explosion," said team member Cédric Ledoux (ESO). ESO PR Photo 17c/07 ESO PR Photo 17c/07 The Kueyen Control Room The Rapid Response Mode UVES observations of 17 April 2006 allowed the astronomers to discover variable spectral features associated with a huge gas cloud in the host galaxy of the gamma-ray burst. The cloud was found to be neutral but excited by the radiation from the UV afterglow light. From detailed modelling of these observations, the astronomers were able - for the first time - to not only pinpoint the physical mechanism responsible for the excitation of the atoms, but also determine the distance of the cloud to the GRB. This distance was found to be 5,500 light-years, which is much further out than was previously thought. Either this is a special case, or the common picture that the features seen in optical spectra originate very close to the explosion has to be revised. As a comparison, this distance of 5,500 light-years is more than one fifth of that between the Sun and the centre of our Galaxy. "All the material in this region of space must have been ionised, that is, the atoms have been stripped of most if not all of their electrons," said co-author Alain Smette (ESO). "Were there any life in this region of the Universe, it would most probably have been eradicated." "With the Rapid-Response Mode of the VLT, we are really looking at gamma-ray bursts as quickly as possible," said team member Andreas Jaunsen from the University of Oslo (Norway). "This is crucial if we are to unravel the mysteries of these gigantic explosions and their links with black holes!" More Information The two gamma-ray bursts were discovered with the NASA/ASI/PPARC Swift satellite, which is dedicated to the discovery of these powerful cosmic explosions. Preliminary reports on these observations have been presented in GCN GRB Observation Reports 4974 and 5237. A paper is also in press in the journal Astronomy & Astrophysics ("Rapid-Response Mode VLT/UVES spectroscopy of GRB 060418 - Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations" by P. M. Vreeswijk et al.). DOI: 10.1051/0004-6361:20066780 The team is composed of Paul Vreeswijk, Cédric Ledoux, Alain Smette, Andreas Kaufer and Palle Møller (ESO), Sara Ellison (University of Victoria, Canada), Andreas Jaunsen (University of Oslo, Norway), Morten Andersen (AIP, Potsdam, Germany), Andrew Fruchter (STScI, Baltimore, USA), Johan Fynbo and Jens Hjorth (Dark Cosmology Centre, Copenhagen, Denmark), Patrick Petitjean (IAP, Paris, France), Sandra Savaglio (MPE, Garching, Germany), and Ralph Wijers (Astronomical Institute, University of Amsterdam, The Netherlands). Paul Vreeswijk was at the time of this study also associated with the Universidad de Chile, Santiago.

  2. Fluorescence and afterglow of Ca2Sn2Al2O9:Mn2+

    NASA Astrophysics Data System (ADS)

    Takemoto, Minoru; Iseki, Takahiro

    2018-03-01

    By using a polymerized complex method, we synthesized manganese (Mn)-doped Ca2Sn2Al2O9, which exhibits yellow fluorescence and afterglow at room temperature when excited by UV radiation. The material emits a broad, featureless fluorescence band centered at 564 nm, which we attribute to the presence of Mn2+ ions. The afterglow decay is well fit by a power-law function, rather than an exponential function. In addition, thermoluminescence analyses demonstrate that two different types of electron traps form in this material. Based on experimental results, we conclude that the fluorescence and afterglow both result from thermally assisted tunneling, in which trapped electrons are thermally excited to higher-level traps and subsequently tunnel to recombination centers.

  3. Broadband observations of the naked-eye gamma-ray burst GRB 080319B.

    PubMed

    Racusin, J L; Karpov, S V; Sokolowski, M; Granot, J; Wu, X F; Pal'shin, V; Covino, S; van der Horst, A J; Oates, S R; Schady, P; Smith, R J; Cummings, J; Starling, R L C; Piotrowski, L W; Zhang, B; Evans, P A; Holland, S T; Malek, K; Page, M T; Vetere, L; Margutti, R; Guidorzi, C; Kamble, A P; Curran, P A; Beardmore, A; Kouveliotou, C; Mankiewicz, L; Melandri, A; O'Brien, P T; Page, K L; Piran, T; Tanvir, N R; Wrochna, G; Aptekar, R L; Barthelmy, S; Bartolini, C; Beskin, G M; Bondar, S; Bremer, M; Campana, S; Castro-Tirado, A; Cucchiara, A; Cwiok, M; D'Avanzo, P; D'Elia, V; Valle, M Della; de Ugarte Postigo, A; Dominik, W; Falcone, A; Fiore, F; Fox, D B; Frederiks, D D; Fruchter, A S; Fugazza, D; Garrett, M A; Gehrels, N; Golenetskii, S; Gomboc, A; Gorosabel, J; Greco, G; Guarnieri, A; Immler, S; Jelinek, M; Kasprowicz, G; La Parola, V; Levan, A J; Mangano, V; Mazets, E P; Molinari, E; Moretti, A; Nawrocki, K; Oleynik, P P; Osborne, J P; Pagani, C; Pandey, S B; Paragi, Z; Perri, M; Piccioni, A; Ramirez-Ruiz, E; Roming, P W A; Steele, I A; Strom, R G; Testa, V; Tosti, G; Ulanov, M V; Wiersema, K; Wijers, R A M J; Winters, J M; Zarnecki, A F; Zerbi, F; Mészáros, P; Chincarini, G; Burrows, D N

    2008-09-11

    Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.

  4. Transient astronomy with the Gaia satellite.

    PubMed

    Hodgkin, Simon T; Wyrzykowski, Łukasz; Blagorodnova, Nadejda; Koposov, Sergey

    2013-06-13

    Gaia is a cornerstone European Space Agency astrometry space mission and a successor to the Hipparcos mission. Gaia will observe the whole sky for 5 years, providing a serendipitous opportunity for the discovery of large numbers of transient and anomalous events, e.g. supernovae, novae and microlensing events, gamma-ray burst afterglows, fallback supernovae, as well as theoretical or unexpected phenomena. In this paper, we discuss our preparations to use Gaia to search for transients at optical wavelengths, and briefly describe the early detection, classification and prompt publication of anomalous sources.

  5. Epitaxial Growth of LuAG:Ce and LuAG:Ce,Pr Films and Their Scintillation Properties

    NASA Astrophysics Data System (ADS)

    Douissard, Paul-Antoine; Martin, Thierry; Riva, Federica; Zorenko, Yuriy; Zorenko, Tetiana; Paprocki, Kazimierz; Fedorov, Alexander; Bilski, Pawel; Twardak, Anna

    2016-06-01

    We performed the growth by Liquid Phase Epitaxy (LPE) of Ce and Ce-Pr doped Lu3Al5O12 (LuAG) Single Crystalline Films (SCFs) onto LuAG and Y3Al5O12 (YAG) substrates. The structural properties of LuAG:Ce and LuAG:Ce,Pr SCFs were examined by X-ray diffraction. The optical properties of the SCFs were studied through cathodoluminescence (CL) spectra, scintillation Light Yield (LY), decay kinetic under α-particle (Pu239) excitation, X-ray excited luminescence, thermostimulated luminescence (TSL) and afterglow measurements. The SCFs grown on LuAG substrates displayed good surface quality and structural perfection, whereas the SCFs grown on YAG substrates showed a rough surface and poorer crystalline quality, due to a large lattice mismatch between the film and the substrate (0.82%). Under α-particle excitation, the LY of LuAG:Ce SCF exceeded by 2 times that of the best YAG:Ce SCF sample used as reference. Under X-ray excitation, the LuAG:Ce SCF with optimized Ce concentration showed LY close (77%) to a reference YAG:Ce Single Crystal (SC) scintillator. The afterglow of LuAG:Ce and LuAG:Ce,Pr SCFs was lower (by 1 decade) than that of the tested reference LuAG:Ce SC. However there is not a complete suppression of the afterglow at room temperature (RT), despite the fact that the SCFs present much lower concentration of antisite and vacancy type defects than their SC counterparts. This can be explained by the presence in the films of other trap centers responsible for TSL above RT.

  6. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2008-01-01

    The 'Supercritical Pile' is a very economical gamma ray burst (GRB) model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at an energy sim 1 MeV. We extend this model to include also the evolution of the RBW Lorentz factor Gamma and thus follow the spectral and temporal features of this model into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have begun to explore. In particular, one can this way obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the nu F spectra. Furthermore, the existence of a kinematic threshold in this model provides for a operational distinction of the prompt and afterglow GRB stages; in fact, the afterglow stage sets in when the RBW Lorentz factor cannot anymore fulfill the kinematic condition for pair formation in the photon - proton pair production reactions that constitute the fundamental process for the dissipation of the blast wave kinetic energy. We present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  7. Optical CDMA components requirements

    NASA Astrophysics Data System (ADS)

    Chan, James K.

    1998-08-01

    Optical CDMA is a complementary multiple access technology to WDMA. Optical CDMA potentially provides a large number of virtual optical channels for IXC, LEC and CLEC or supports a large number of high-speed users in LAN. In a network, it provides asynchronous, multi-rate, multi-user communication with network scalability, re-configurability (bandwidth on demand), and network security (provided by inherent CDMA coding). However, optical CDMA technology is less mature in comparison to WDMA. The components requirements are also different from WDMA. We have demonstrated a video transport/switching system over a distance of 40 Km using discrete optical components in our laboratory. We are currently pursuing PIC implementation. In this paper, we will describe the optical CDMA concept/features, the demonstration system, and the requirements of some critical optical components such as broadband optical source, broadband optical amplifier, spectral spreading/de- spreading, and fixed/programmable mask.

  8. Dual-balanced detection scheme with optical hard-limiters in an optical code division multiple access system

    NASA Astrophysics Data System (ADS)

    Liu, Maw-Yang; Hsu, Yi-Kai

    2017-03-01

    Three-arm dual-balanced detection scheme is studied in an optical code division multiple access system. As the MAI and beat noise are the main deleterious source of system performance, we utilize optical hard-limiters to alleviate such channel impairment. In addition, once the channel condition is improved effectively, the proposed two-dimensional error correction code can remarkably enhance the system performance. In our proposed scheme, the optimal thresholds of optical hard-limiters and decision circuitry are fixed, and they will not change with other system parameters. Our proposed scheme can accommodate a large number of users simultaneously and is suitable for burst traffic with asynchronous transmission. Therefore, it is highly recommended as the platform for broadband optical access network.

  9. Optical data communication: fundamentals and future directions

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.

    1998-12-01

    An overview of optical data communications is provided, beginning with a brief history and discussion of the unique requirements that distinguish this subfield from related areas such as telecommunications. Each of the major datacom standards is then discussed, including the physical layer specification, distances and data rates, fiber and connector types, data frame structures, and network considerations. These standards can be categorized by their prevailing applications, either storage [Enterprise System Connection, Fiber Channel Connection, and Fiber Channel], coupling (Fiber Channel), or networking [Fiber Distributed Data Interface, Gigabit Ethernet, and asynchronous transfer mode/synchronous optical network]. We also present some emerging technologies and their applications, including parallel optical interconnects, plastic optical fiber, wavelength multiplexing, and free- space optical links. We conclude with some cost/performance trade-offs and predictions of future bandwidth trends.

  10. The 999th Swift gamma-ray burst: Some like it thermal. A multiwavelength study of GRB 151027A

    NASA Astrophysics Data System (ADS)

    Nappo, F.; Pescalli, A.; Oganesyan, G.; Ghirlanda, G.; Giroletti, M.; Melandri, A.; Campana, S.; Ghisellini, G.; Salafia, O. S.; D'Avanzo, P.; Bernardini, M. G.; Covino, S.; Carretti, E.; Celotti, A.; D'Elia, V.; Nava, L.; Palazzi, E.; Poppi, S.; Prandoni, I.; Righini, S.; Rossi, A.; Salvaterra, R.; Tagliaferri, G.; Testa, V.; Venturi, T.; Vergani, S. D.

    2017-02-01

    We present a multiwavelength study of GRB 151027A. This is the 999th gamma-ray burst detected by the Swift satellite and it has a densely sampled emission in the X-ray and optical band and has been observed and detected in the radio up to 140 days after the prompt. The multiwavelength light curve from 500 s to 140 days can be modelled through a standard forward shock afterglow, but it requires an additional emission component to reproduce the early X-ray and optical emission. We present optical observations performed with the Telescopio Nazionale Galileo (TNG) and the Large Binocular Telescope (LBT) 19.6, 33.9, and 92.3 days after the trigger which show a bump with respect to a standard afterglow flux decay and are interpreted as possibly due to the underlying supernova and host galaxy (at a level of 0.4 μJy in the optical R band, RAB 25). Radio observations, performed with the Sardinia Radio Telescope (SRT) and Medicina in single-dish mode and with the European Very Long Baseline Interferometer (VLBI) Network and the Very Long Baseline Array (VLBA), between day 4 and 140 suggest that the burst exploded in an environment characterized by a density profile scaling with the distance from the source (wind profile). A remarkable feature of the prompt emission is the presence of a bright flare 100 s after the trigger, lasting 70 s in the soft X-ray band, which was simultaneously detected from the optical band up to the MeV energy range. By combining Swift-BAT/XRT and Fermi-GBM data, the broadband (0.3-1000 keV) time resolved spectral analysis of the flare reveals the coexistence of a non-thermal (power law) and thermal blackbody components. The blackbody component contributes up to 35% of the luminosity in the 0.3-1000 keV band. The γ-ray emission observed in Swift-BAT and Fermi-GBM anticipates and lasts less than the soft X-ray emission as observed by Swift-XRT, arguing against a Comptonization origin. The blackbody component could either be produced by an outflow becoming transparent or by the collision of a fast shell with a slow, heavy, and optically thick fireball ejected during the quiescent time interval between the initial and later flares of the burst.

  11. The Origin of the Optical Flashes: The Case Study of GRB 080319B and GRB 130427A

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Veres, P.

    2018-05-01

    Correlations between optical flashes and gamma-ray emissions in gamma-ray bursts (GRBs) have been searched in order to clarify the question of whether these emissions occur at internal and/or external shocks. Among the most powerful GRBs ever recorded are GRB 080319B and GRB 130427A, which at early phases presented bright optical flashes possibly correlated with γ-ray components. Additionally, both bursts were fortuitously located within the field of view of the TeV γ-ray Milagro and HAWC observatories, and although no statistically significant excess of counts were collected, upper limits were placed on the GeV–TeV emission. Considering the synchrotron self-Compton emission from internal shocks and requiring the GeV–TeV upper limits, we found that the optical flashes and the γ-ray components are produced by different electron populations. Analyzing the optical flashes together with the multiwavelength afterglow observation, we found that these flashes can be interpreted in the framework of the synchrotron reverse shock model when outflows have arbitrary magnetizations.

  12. An origin for short gamma-ray bursts unassociated with current star formation.

    PubMed

    Barthelmy, S D; Chincarini, G; Burrows, D N; Gehrels, N; Covino, S; Moretti, A; Romano, P; O'Brien, P T; Sarazin, C L; Kouveliotou, C; Goad, M; Vaughan, S; Tagliaferri, G; Zhang, B; Antonelli, L A; Campana, S; Cummings, J R; D'Avanzo, P; Davies, M B; Giommi, P; Grupe, D; Kaneko, Y; Kennea, J A; King, A; Kobayashi, S; Melandri, A; Meszaros, P; Nousek, J A; Patel, S; Sakamoto, T; Wijers, R A M J

    2005-12-15

    Two short (< 2 s) gamma-ray bursts (GRBs) have recently been localized and fading afterglow counterparts detected. The combination of these two results left unclear the nature of the host galaxies of the bursts, because one was a star-forming dwarf, while the other was probably an elliptical galaxy. Here we report the X-ray localization of a short burst (GRB 050724) with unusual gamma-ray and X-ray properties. The X-ray afterglow lies off the centre of an elliptical galaxy at a redshift of z = 0.258 (ref. 5), coincident with the position determined by ground-based optical and radio observations. The low level of star formation typical for elliptical galaxies makes it unlikely that the burst originated in a supernova explosion. A supernova origin was also ruled out for GRB 050709 (refs 3, 31), even though that burst took place in a galaxy with current star formation. The isotropic energy for the short bursts is 2-3 orders of magnitude lower than that for the long bursts. Our results therefore suggest that an alternative source of bursts--the coalescence of binary systems of neutron stars or a neutron star-black hole pair--are the progenitors of short bursts.

  13. A gamma-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model.

    PubMed

    González, M M; Dingus, B L; Kaneko, Y; Preece, R D; Dermer, C D; Briggs, M S

    2003-08-14

    Gamma-ray bursts are among the most powerful events in nature. These events release most of their energy as photons with energies in the range from 30 keV to a few MeV, with a smaller fraction of the energy radiated in radio, optical, and soft X-ray afterglows. The data are in general agreement with a relativistic shock model, where the prompt and afterglow emissions correspond to synchrotron radiation from shock-accelerated electrons. Here we report an observation of a high-energy (multi-MeV) spectral component in the burst of 17 October 1994 that is distinct from the previously observed lower-energy gamma-ray component. The flux of the high-energy component decays more slowly and its fluence is greater than the lower-energy component; it is described by a power law of differential photon number index approximately -1 up to about 200 MeV. This observation is difficult to explain with the standard synchrotron shock model, suggesting the presence of new phenomena such as a different non-thermal electron process, or the interaction of relativistic protons with photons at the source.

  14. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Wei; Zhang Bing; Li Hui

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jetmore » with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less

  15. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Wei; Zhang, Bing; Li, Hui

    We report that the early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ, of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the "Athena++" relativistic MHD code to simulate amore » relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Finally, such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less

  16. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    DOE PAGES

    Deng, Wei; Zhang, Bing; Li, Hui; ...

    2017-08-03

    We report that the early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ, of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the "Athena++" relativistic MHD code to simulate amore » relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Finally, such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less

  17. Diagnostic of N2(A) concentration in high velocity nitrogen afterglow at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pointu, Anne-Marie; Mintusov, Evgeny

    2009-10-01

    An optical emission diagnostic was used to measure N2(A) concentration in a high velocity (1000 cm/s) N2 flowing afterglow of corona discharge at atmospheric pressure, used for biological decontamination. Introducing impurities of NO (<1e-5) we used two well separated and relatively intense lines of NO gamma and beta bands (248nm and 321 nm), easily studied with a low resolution spectrometer. Based on a simplified transport kinetics, the technique is validated using a variation of lines intensity ratios used as coordinates, for numerous experimental points, measured at different axial distances and for different values of NO injected flow. Moreover, it has been demonstrated that N2(A) creation comes from N+N+N2 atom recombination with a global rate around 2e-33 cm^6/s, a result which agrees with literature, as well as N2(A) loss mechanisms were confirmed to go via quenching with O and N atoms. The order of magnitude of obtained N2(A) concentration, about 1e11 cm-3, coincides with the results of direct measurement (by Vegard-Kaplan band), using a spectrometer of better resolution.

  18. Gamma-Ray Bursts in the Swift Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.; Norris, Jay P.

    2007-01-01

    GRB research has undergone a revolution in the last two years. The launch of Swift, with its rapid slewing capability, has greatly increased the number and quality of GRB localizations and X-ray and optical afterglow lightcurves. Over 160 GRBs have been detected, and nearly all that have been followed up with the on-board narrow field telescopes. Advances in our understanding of short GRBs have been spectacular. The detection of X-ray afterglows has led to accurate localizations from ground based observatories, which have given host identifications and redshifts. Theoretical models for short GRB progenitors have, for the first time, been placed on a sound foundation. The hosts for the short GRBs differ in a fundamental way from the long GRB hosts: short GRBs tend to occur in non-star forming galaxies or regions, whereas long GRBs are strongly concentrated within star forming regions. Observations are consistent with a binary neutron star merger model, but other models involving old stellar populations are also viable. Swift has greatly increased the redshift range of GRB detection. The highest redshift GRBs, at zeta approx. 5-6, are approaching the era of reionization. Ground-based deep optical spectroscopy of high redshift bursts is giving metallicity measurements and other information on the source environment to much greater distance than other techniques. The localization of GRB 060218 to a nearby galaxy, and association with SN 2006aj, added a valuable member to the class of GRBs with detected supernova. The prospects for future progress are excellent given the >10 year orbital lifetime of the Swift satellite.

  19. Brightening X-Ray/Optical/Radio Emission of GW170817/SGRB 170817A: Evidence for an Electron–Positron Wind from the Central Engine?

    NASA Astrophysics Data System (ADS)

    Geng, Jin-Jun; Dai, Zi-Gao; Huang, Yong-Feng; Wu, Xue-Feng; Li, Long-Biao; Li, Bing; Meng, Yan-Zhi

    2018-04-01

    Recent follow-up observations of the binary neutron star (NS) merging event GW170817/SGRB 170817A reveal that its X-ray/optical/radio emissions are brightening continuously up to ∼100 days post-merger. This late-time brightening is unexpected from the kilonova model or the off-axis top-hat jet model for gamma-ray burst (SGRB) afterglows. In this Letter, by assuming that the merger remnant is a long-lived NS, we propose that the interaction between an electron–positron-pair (e + e ‑) wind from the central NS and the jet could produce a long-lived reverse shock, from which a new emission component would rise and can interpret current observations well. The magnetic-field-induced ellipticity of the NS is taken to be 4 × 10‑5 in our modeling, so that the braking of the NS is mainly through the gravitational wave (GW) radiation rather than the magnetic dipole radiation, and the emission luminosity at early times would not exceed the observational limits. In our scenario, because the peak time of the brightening is roughly equal to the spin-down timescale of the NS, the accurate peak time may help constrain the ellipticity of the remnant NS. We suggest that radio polarization observations of the brightening would help to distinguish our scenario from other scenarios. Future observations on a large sample of short gamma-ray burst afterglows or detections of GW signals from merger remnants would test our scenario.

  20. Relaxation of heavy species and gas temperature in the afterglow of a N2 microwave discharge

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2017-10-01

    In this paper we present a self-consistent kinetic model to study the temporal variation of the gas temperature in the afterglow of a 440 Pa microwave nitrogen discharge operating at 433 MHz in a 3.8 cm diameter tube. The initial conditions in the afterglow are determined by a kinetic model that solves the electron Boltzmann equation coupled to the gas thermal balance equation and a system of rate-balance equations for N2(X 1∑g+, v) molecules, electronically excited states of N2, ground and excited states of atomic nitrogen and the main positive ions. Once the initial concentrations of the heavy species and gas temperature are known, their relaxation in the afterglow is obtained from the solutions to the corresponding time-dependent equations. Modelling predictions are found to be in good agreement with previously measured values for the concentrations of N(4S) atoms and N2(A 3∑u+) molecules, and the radially averaged gas temperature Tg along the afterglow of a microwave discharge in N2 under the same working conditions. It is shown that gas heating in the afterglow comes essentially from the energy transfer involving non-resonant vibration-vibration (V-V) collisions between vibrationally excited nitrogen molecules, as well as from energy exchanges in vibration-translation (V-T) on N2-N collisions. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  1. Observational Implications of Gamma-Ray Burst Afterglow Jet Simulations and Numerical Light Curve Calculations

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik J.; MacFadyen, Andrew I.

    2012-06-01

    We discuss jet dynamics for narrow and wide gamma-ray burst (GRB) afterglow jets and the observational implications of numerical simulations of relativistic jets in two dimensions. We confirm earlier numerical results that sideways expansion of relativistic jets during the bulk of the afterglow emission phase is logarithmic in time and find that this also applies to narrow jets with half opening angle of 0.05 rad. As a result, afterglow jets remain highly nonspherical until after they have become nonrelativistic. Although sideways expansion steepens the afterglow light curve after the jet break, the jet edges becoming visible dominates the jet break, which means that the jet break is sensitive to the observer angle even for narrow jets. Failure to take the observer angle into account can lead to an overestimation of the jet energy by up to a factor of four. This weakens the challenge posed to the magneter energy limit by extreme events such as GRB090926A. Late-time radio calorimetry based on a spherical nonrelativistic outflow model remains relevant when the observer is approximately on-axis and where differences of a few in flux level between the model and the simulation are acceptable. However, this does not imply sphericity of the outflow and therefore does not translate to high observer angles relevant to orphan afterglows. For more accurate calorimetry and in order to model significant late-time features such as the rise of the counterjet, detailed jet simulations remain indispensable.

  2. Defect Engineering by Codoping in KCaI3 :Eu2 + Single-Crystalline Scintillators

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Li, Qi; Jones, Steven; Dun, Chaochao; Hu, Sheng; Zhuravleva, Mariya; Lindsey, Adam C.; Stand, Luis; Loyd, Matthew; Koschan, Merry; Auxier, John; Hall, Howard L.; Melcher, Charles L.

    2017-09-01

    Eu2 + -doped alkali or alkali earth iodide scintillators with energy resolutions ≤3 % at 662 keV promise the excellent discrimination ability for radioactive isotopes required for homeland-security and nuclear-nonproliferation applications. To extend their applications to x-ray imaging, such as computed tomography scans, the intense afterglow which delays the response time of such materials is an obstacle that needs to be overcome. However, a clear understanding of the origin of the afterglow and feasible solutions is still lacking. In this work, we present a combined experimental and theoretical investigation of the physical insights of codoping-based defect engineering which can reduce the afterglow effectively in KCaI3:Eu2 + single-crystal scintillators. We illustrate that Sc3 + codoping greatly suppresses the afterglow, whereas Y3 + , Gd3 + , or La3 + codoping enhances the afterglow. Meanwhile, a light yield of 57 000 photons / MeV and an energy resolution of 3.4% at 662 keV can be maintained with the appropriate concentration of Sc3 + codoping, which makes the material promising for medical-imaging applications. Through our thermoluminescence techniques and density-functional-theory calculations, we are able to identify the defect structures and understand the mechanism by which codoping affects the scintillation performance of KCaI3:Eu2 + crystals. The proposed defect-engineering strategy is further validated by achieving afterglow suppression in Mg2 + codoped KCaI3:Eu2 + single crystals.

  3. Asynchronous transfer mode link performance over ground networks

    NASA Technical Reports Server (NTRS)

    Chow, E. T.; Markley, R. W.

    1993-01-01

    The results of an experiment to determine the feasibility of using asynchronous transfer mode (ATM) technology to support advanced spacecraft missions that require high-rate ground communications and, in particular, full-motion video are reported. Potential nodes in such a ground network include Deep Space Network (DSN) antenna stations, the Jet Propulsion Laboratory, and a set of national and international end users. The experiment simulated a lunar microrover, lunar lander, the DSN ground communications system, and distributed science users. The users were equipped with video-capable workstations. A key feature was an optical fiber link between two high-performance workstations equipped with ATM interfaces. Video was also transmitted through JPL's institutional network to a user 8 km from the experiment. Variations in video depending on the networks and computers were observed, the results are reported.

  4. Revisiting gamma-ray burst afterglows with time-dependent parameters

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zou, Yuan-Chuan; Chen, Wei; Liao, Bin; Lei, Wei-Hua; Liu, Yu

    2018-02-01

    The relativistic external shock model of gamma-ray burst (GRB) afterglows has been established with five free parameters, i.e., the total kinetic energy E, the equipartition parameters for electrons {{ε }}{{e}} and for the magnetic field {{ε }}{{B}}, the number density of the environment n and the index of the power-law distribution of shocked electrons p. A lot of modified models have been constructed to consider the variety of GRB afterglows, such as: the wind medium environment by letting n change with radius, the energy injection model by letting kinetic energy change with time and so on. In this paper, by assuming all four parameters (except p) change with time, we obtain a set of formulas for the dynamics and radiation, which can be used as a reference for modeling GRB afterglows. Some interesting results are obtained. For example, in some spectral segments, the radiated flux density does not depend on the number density or the profile of the environment. As an application, through modeling the afterglow of GRB 060607A, we find that it can be interpreted in the framework of the time dependent parameter model within a reasonable range.

  5. Fowler-Nordheim analysis of oxides on 4H-SiC substrates using noncontact metrology

    NASA Astrophysics Data System (ADS)

    Oborina, Elena I.; Benjamin, Helen N.; Hoff, Andrew M.

    2009-10-01

    A noncontact corona-Kelvin metrology technique was applied to investigate stress-induced leakage current (SILC) on thermal and afterglow thermal oxides grown on n-type 4H-SiC substrates. The equivalent oxide thickness was extracted from noncontact C-V measurements and used to obtain the experimental Fowler-Nordheim (F-N) plots. Differences between characteristics calculated from theory and experimental plots were found. Modification of the theoretical F-N characteristics with respect to trapped charge phenomena effectively eliminated the offset between theoretically predicted and experimental curves for thermal oxides grown at atmosphere but was unable to achieve such agreement in the case of afterglow oxides. Only variations in the effective barrier and trapped charge combined provided overlay between calculated and experimental F-N plots for afterglow oxides. In addition, the SILC property VSASS, or self-adjusting steady state voltage, is suggested as a useful monitor characteristic for oxides on SiC. This parameter was larger for afterglow oxides compared to thermal oxides of similar thickness. The SASS voltage also showed that the afterglow oxide interface was stable to substrate injected stress fluence in accumulation compared to thermal oxide of comparable thickness.

  6. ON THE LATE-TIME SPECTRAL SOFTENING FOUND IN X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan-Zhu; Liang, En-Wei; Lu, Zu-Jia

    2016-02-20

    Strong spectral softening has been revealed in the late X-ray afterglows of some gamma-ray bursts (GRBs). The scenario of X-ray scattering around the circumburst dusty medium has been supported by previous works due to its overall successful prediction of both the temporal and spectral evolution of some X-ray afterglows. To further investigate the observed feature of spectral softening we now systematically search the X-ray afterglows detected by the X-ray telescope aboard Swift and collect 12 GRBs with significant late-time spectral softening. We find that dust scattering could be the dominant radiative mechanism for these X-ray afterglows regarding their temporal andmore » spectral features. For some well-observed bursts with high-quality data, the time-resolved spectra could be well-produced within the scattering scenario by taking into account the X-ray absorption from the circumburst medium. We also find that during spectral softening the power-law index in the high-energy end of the spectra does not vary much. The spectral softening is mainly manifested by the spectral peak energy continually moving to the soft end.« less

  7. Spatiotemporal dynamics of charged species in the afterglow of plasmas containing negative ions.

    PubMed

    Kaganovich, I D; Ramamurthi, B N; Economou, D J

    2001-09-01

    The spatiotemporal evolution of charged species densities and wall fluxes during the afterglow of an electronegative discharge has been investigated. The decay of a plasma with negative ions consists of two stages. During the first stage of the afterglow, electrons dominate plasma diffusion and negative ions are trapped inside the vessel by the static electric field; the flux of negative ions to the walls is nearly zero. During this stage, the electron escape frequency increases considerably in the presence of negative ions, and can eventually approach free electron diffusion. During the second stage of the afterglow, electrons have disappeared, and positive and negative ions diffuse to the walls with the ion-ion ambipolar diffusion coefficient. Theories for plasma decay have been developed for equal and strongly different ion (T(i)) and electron (T(e)) temperatures. In the case T(i)=T(e), the species spatial profiles are similar and an analytic solution exists. When detachment is important in the afterglow (weakly electronegative gases, e.g., oxygen) the plasma decay crucially depends on the product of negative ion detachment frequency (gamma(d)) and diffusion time (tau(d)). If gamma(d)tau(d)>2, negative ions convert to electrons during their diffusion towards the walls. The presence of detached electrons results in "self-trapping" of the negative ions, due to emerging electric fields, and the negative ion flux to the walls is extremely small. In the case T(i)

  8. Ag/BiOBr Film in a Rotating-Disk Reactor Containing Long-Afterglow Phosphor for Round-the-Clock Photocatalysis.

    PubMed

    Yin, Haibo; Chen, Xiaofang; Hou, Rujing; Zhu, Huijuan; Li, Shiqing; Huo, Yuning; Li, Hexing

    2015-09-16

    Ag/BiOBr film coated on the glass substrate was synthesized by a solvothermal method and a subsequent photoreduction process. Such a Ag/BiOBr film was then adhered to a hollow rotating disk filled with long-afterglow phosphor inside the chamber. The Ag/BiOBr film exhibited high photocatalytic activity for organic pollutant degradation owing to the improved visible-light harvesting and the separation of photoinduced charges. The long-afterglow phosphor could absorb the excessive daylight and emit light around 488 nm, activating the Ag/BiOBr film to realize round-the-clock photocatalysis. Because the Ag nanoparticles could extend the light absorbance of the Ag/BiOBr film to wavelengths of around 500 nm via a surface plasma resonance effect, they played a key role in realizing photocatalysis induced by long-afterglow phosphor.

  9. Simultaneous and independent optical impairments monitoring using singular spectrum analysis of asynchronously sampled signal amplitudes

    NASA Astrophysics Data System (ADS)

    Guesmi, Latifa; Menif, Mourad

    2015-09-01

    Optical performance monitoring (OPM) becomes an inviting topic in high speed optical communication networks. In this paper, a novel technique of OPM based on a new elaborated computation approach of singular spectrum analysis (SSA) for time series prediction is presented. Indeed, various optical impairments among chromatic dispersion (CD), polarization mode dispersion (PMD) and amplified spontaneous emission (ASE) noise are a major factors limiting quality of transmission data in the systems with data rates lager than 40 Gbit/s. This technique proposed an independent and simultaneous multi-impairments monitoring, where we used SSA of time series analysis and forecasting. It has proven their usefulness in the temporal analysis of short and noisy time series in several fields, that it is based on the singular value decomposition (SVD). Also, advanced optical modulation formats (100 Gbit/s non-return-to zero dual-polarization quadrature phase shift keying (NRZ-DP-QPSK) and 160 Gbit/s DP-16 quadrature amplitude modulation (DP-16QAM)) offering high spectral efficiencies have been successfully employed by analyzing their asynchronously sampled amplitude. The simulated results proved that our method is efficient on CD, first-order PMD, Q-factor and OSNR monitoring, which enabled large monitoring ranges, the CD in the range of 170-1700 ps/nm.Km and 170-1110 ps/nm.Km for 100 Gbit/s NRZ-DP-QPSK and 160 Gbit/s DP-16QAM respectively, and also the DGD up to 20 ps is monitored. We could accurately monitor the OSNR in the range of 10-40 dB with monitoring error remains less than 1 dB in the presence of large accumulated CD.

  10. The Swift Project Contamination Control Program: A Case study of Balancing Cost, Schedule and Risk

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Day, Diane; Secunda, Mark

    2003-01-01

    The Swift Observatory will be launched in early 2004 to examine the dynamic process of gamma ray burst (GRB) events. The multi-wavelength Observatory will study the GRB afterglow characteristics, which will help to answer fundamental questions about both the structure and the evolution of the universe. The Swift Observatory Contamination Control Program has been developed to aid in ensuring the success of the on-orbit performance of two of the primary instruments: the Ultraviolet and Optical Telescope (UVOT) and the X-Ray Telescope (XRT). During the design phase of the Observatory, the contamination control program evolved and trade studies were performed to assess the risk of contaminating the sensitive UVOT and XRT optics during both pre-launch testing and on-orbit operations, within the constraints of the overall program cost and schedule.

  11. The Swift Project Contamination Control Program: A Case Study of Balancing Cost, Schedule and Risk

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Day, Diane T.; Secunda, Mark S.; Rosecrans, Glenn P.

    2004-01-01

    The Swift Observatory will be launched in early 2004 to examine the dynamic process of gamma ray burst (GRB) events. The multi-wavelength Observatory will study the GRB afterglow characteristics, which will help to answer fundamental questions about both the structure and the evolution of the universe. The Swift Observatory Contamination Control Program has been developed to aid in ensuring the success of the on-orbit performance of two of the primary instruments: the Ultraviolet and Optical Telescope (UVOT) and the X-Ray Telescope (XRT). During the design phase of the Observatory, the contamination control program evolved and trade studies were performed to assess the risk of contaminating the sensitive UVOT and XRT optics during both pre-launch testing and on-orbit operations, within the constraints of the overall program cost and schedule.

  12. Early-Time Observations of the GRB 050319 Optical Transient

    NASA Astrophysics Data System (ADS)

    Quimby, R. M.; Rykoff, E. S.; Yost, S. A.; Aharonian, F.; Akerlof, C. W.; Alatalo, K.; Ashley, M. C. B.; Göǧüş, E.; Güver, T.; Horns, D.; Kehoe, R. L.; Kιzιloǧlu, Ü.; Mckay, T. A.; Özel, M.; Phillips, A.; Schaefer, B. E.; Smith, D. A.; Swan, H. F.; Vestrand, W. T.; Wheeler, J. C.; Wren, J.

    2006-03-01

    We present the unfiltered ROTSE-III light curve of the optical transient associated with GRB 050319 beginning 4 s after the cessation of γ-ray activity. We fit a power-law function to the data using the revised trigger time given by Chincarini and coworkers, and a smoothly broken power-law to the data using the original trigger disseminated through the GCN notices. Including the RAPTOR data from Woźniak and coworkers, the best-fit power-law indices are α=-0.854+/-0.014 for the single power-law and α1=-0.364+0.020-0.019, α2=-0.881+0.030-0.031, with a break at tb=418+31-30 s for the smoothly broken fit. We discuss the fit results, with emphasis placed on the importance of knowing the true start time of the optical transient for this multipeaked burst. As Swift continues to provide prompt GRB locations, it becomes more important to answer the question, ``when does the afterglow begin?'' in order to correctly interpret the light curves.

  13. Bright x-ray flares in gamma-ray burst afterglows.

    PubMed

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  14. Afterglow luminescence in sol-gel/Pechini grown oxide materials: persistence or phosphorescence process? (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sontakke, Atul; Ferrier, Alban; Viana, Bruno

    2017-03-01

    Persistent luminescence and phosphorescence, both yields afterglow luminescence, but are completely different mechanisms. Persistent luminescence involves a slow thermal release of trapped electrons stored in defect states, whereas the phosphorescence is caused due to triplet to singlet transition [1,2]. Many persistent luminescence phosphors are based on oxide inorganic hosts, and exhibit long afterglow luminescence after ceasing the excitation. We observed intense and long afterglow luminescence in sol-gel/pechini grown inorganic oxides, and as a first interpretation thought to be due to persistence mechanism. However, some of these materials do not exhibit defect trap centers, and a detailed investigation suggested it is due to phosphorescence, but not the persistence. Phosphorescence is not common in inorganic solids, and that too at room temperature, and therefore usually misinterpreted as persistence luminescence [3]. Here we present a detailed methodology to distinguish phosphorescence from persistence luminescence in inorganic solids, and the process to harvest highly efficient long phosphorescence afterglow at room temperature. 1. Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, Jumpei Ueda, Appl. Phys. Lett. 107, 081903 (2015) 2. Sebastian Reineke, Marc A. Baldo, Scientific Reports, 4, 3797 (2014) 3. Pengchong Xue, Panpan Wang, Peng Chen, Boqi Yao, Peng Gong, Jiabao Sun, Zhenqi Zhang, Ran Lu, Chem. Sci. (2016) DOI: 10.1039/C5SC03739E

  15. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  16. Method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-07-01

    We present a phase fluctuation calibration method for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method uses a low-voltage broadband polarization modulator driven by a synchronized sinusoidal burst waveform rather than an asynchronous waveform, together with the removal of the global phases of the measured Jones matrices by the use of matrix normalization. This makes it possible to average the measured Jones matrices to remove the artifact due to the speckle noise of the signal in the sample without introducing auxiliary optical components into the sample arm. This method was validated on measurements of an equine tendon sample by the PS-SS-OCT system.

  17. Chinese National Optical Education Small Private Online Course system

    NASA Astrophysics Data System (ADS)

    Zhang, XiaoJie; Lin, YuanFang; Liu, Xu; Liu, XiangDong; Cen, ZhaoFeng; Li, XiaoTong; Zheng, XiaoDong; Wang, XiaoPing

    2017-08-01

    In order to realize the sharing of high quality course resources and promote the deep integration of `Internet+' higher education and talent training, a new on-line to off-line specialized courses teaching mode was explored in Chinese colleges and universities, which emphasized different teaching places, being organized asynchronously and localized. The latest progress of the Chinese National Optical Education Small Private On-line Course (CNOESPOC) system set up by Zhejiang University and other colleges and universities having disciplines in the field of optics and photonics under the guidance of the Chinese National Steering Committee of Optics and Photonics (CNSCOP) was introduced in this paper. The On-line to Off-line (O2O) optical education teaching resource sharing practice offers a new good example for higher education in China under the background of Internet +.

  18. Optical flip-flops in a polarization-encoded optical shadow-casting scheme.

    PubMed

    Rizvi, R A; Zubairy, M S

    1994-06-10

    We propose a novel scheme that optically implements various types of binary sequential logic elements. This is based on a polarization-encoded optical shadow-casting system. The proposed system architecture is capable of implementing synchronous as well as asynchronous sequential circuits owing to the inherent structural flexibility of optical shadow casting. By employing the proposed system, we present the design and implementation schemes of a J-K flip-flop and clocked R-S and D latches. The main feature of these flip-flops is that the propagation of the signal from the input plane to the output (i.e., processing) and from the output plane to the source plane (i.e., feedback) is all optical. Consequently the efficiency of these elements in terms of speed is increased. The only electronic part in the system is the detection of the outputs and the switching of the source plane.

  19. Detection of GRB 060927 at zeta = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

    NASA Technical Reports Server (NTRS)

    Ruiz-Velasco, A. E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J. P. U.; Sterling, R. L. C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M. I.; hide

    2007-01-01

    We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture groundbased telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda approx. equals 8070 A, produced by neutral hydrogen absorption at zeta = 5.6. We also detect an absorption line at 8158 A which we interpret as Si II lambda 1260 at zeta = 5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Ly(alpha) profile with a column density with log(N(sub HI)/sq cm) = 22.50 +/- 0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: i) GRB afterglows originating from zeta greater than or approx. equal to 6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; ii) The presence of large H I column densities in some GRBs host galaxies at zeta > 5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; iii) GRBs appear crucial to locate typical star-forming galaxies at zeta > 5 and therefore the type of galaxies responsible for the reionization of the universe.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resmi, Lekshmi; Zhang, Bing, E-mail: l.resmi@iist.ac.in

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that themore » RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10{sup −3} cm{sup −3} for the interstellar medium and A {sub *} < 5 × 10{sup −4} for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.« less

  1. Looking inside jets: optical polarimetry as a probe of Gamma-Ray Bursts physics

    NASA Astrophysics Data System (ADS)

    Kopac, D.; Mundell, C.

    2015-07-01

    It is broadly accepted that gamma-ray bursts (GRBs) are powered by accretion of matter by black holes, formed during massive stellar collapse, which launch ultra-relativistic, collimated outflows or jets. The nature of the progenitor star, the structure of the jet, and thus the underlying mechanisms that drive the explosion and provide collimation, remain some of the key unanswered questions. To approach these problems, and in particular the role of magnetic fields in GRBs, early time-resolved polarimetry is the key, because it is the only direct probe of the magnetic fields structure. Using novel fast RINGO polarimeter developed for use on the 2-m robotic optical Liverpool Telescope, we have made the first measurements of optical linear polarization of the early optical afterglows of GRBs, finding linear percentage polarization as high as 30% and, for the first time, making time-resolved polarization measurements. I will present the past 8 years of RINGO observations, discuss how the results fit into the GRB theoretical picture, and highlight recent data, in particular high-time resolution multi-colour optical photometry performed during the prompt GRB phase, which also provides some limits on polarization.

  2. Air-water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment

    NASA Astrophysics Data System (ADS)

    Bundaleska, N.; Tatarova, E.; Dias, F. M.; Lino da Silva, M.; Ferreira, C. M.; Amorim, J.

    2014-02-01

    The production of cellulosic ethanol from sugarcane biomass is an attractive alternative to the use of fossil fuels. Pretreatment is needed to separate the cellulosic material, which is packed with hemicellulose and lignin in cell wall of sugarcane biomass. A microwave ‘tornado’-type air-water plasma source operating at 2.45 GHz and atmospheric pressure has been applied for this purpose. Samples of dry and wet biomass (˜2 g) have been exposed to the late afterglow plasma stream. The experiments demonstrate that the air-water highly reactive plasma environment provides a number of long-lived active species able to destroy the cellulosic wrapping. Scanning electron microscopy has been applied to analyse the morphological changes occurring due to plasma treatment. The effluent gas streams have been analysed by Fourier-transform infrared spectroscopy (FT-IR). Optical emission spectroscopy and FT-IR have been applied to determine the gas temperature in the discharge and late afterglow plasma zones, respectively. The optimal range of the operational parameters is discussed along with the main active species involved in the treatment process. Synergistic effects can result from the action of singlet O2(a 1Δg) oxygen, NO2, nitrous acid HNO2 and OH hydroxyl radical.

  3. Heterogeneity in Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  4. Heterogeneity in Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Norris, Jay P.; Gehrels, Neil; Scargle, Jeffrey D.

    2011-07-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales—durations, pulse structure widths, and peak intervals—for EE bursts are factors of ~2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts—the anti-correlation of pulse intensity and width—continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts (~6×10-10 erg cm-2 s-1) is gsim20× brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (~60,000 s) is ~30× longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  5. Decay of the electron number density in the nitrogen afterglow using a hairpin resonator probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siefert, Nicholas S.; Ganguly, Biswa N.; Sands, Brian L.

    A hairpin resonator was used to measure the electron number density in the afterglow of a nitrogen glow discharge (p=0.25-0.75 Torr). Electron number densities were measured using a time-dependent approach similar to the approach used by Spencer et al. [J. Phys. D 20, 923 (1987)]. The decay time of the electron number density was used to determine the electron temperature in the afterglow, assuming a loss of electrons via ambipolar diffusion to the walls. The electron temperature in the near afterglow remained between 0.4 and 0.6 eV, depending on pressure. This confirms the work by Guerra et al. [IEEE Trans.more » Plasma. Sci. 31, 542 (2003)], who demonstrated experimentally and numerically that the electron temperature stays significantly above room temperature via superelastic collisions with highly vibrationally excited ground state molecules and metastables, such as A {sup 3}{sigma}{sub u}{sup +}.« less

  6. Afterglow Imaging and Polarization of Misaligned Structured GRB Jets and Cocoons: Breaking the Degeneracy in GRB 170817A

    NASA Astrophysics Data System (ADS)

    Gill, Ramandeep; Granot, Jonathan

    2018-05-01

    The X-ray to radio afterglow emission of GRB 170817A / GW 170817 so far scales as Fν∝ν-0.6t0.8 with observed frequency and time, consistent with a single power-law segment of the synchrotron spectrum from the external shock going into the ambient medium. This requires the effective isotropic equivalent afterglow shock energy in the visible region to increase as ˜t1.7. The two main channels for such an energy increase are (i) radial: more energy carried by slower material (in the visible region) gradually catches up with the afterglow shock and energizes it, and (ii) angular: more energy in relativistic outflow moving at different angles to our line of sight, whose radiation is initially beamed away from us but its beaming cone gradually reaches our line of sight as it decelerates. One cannot distinguish between these explanations (or combinations of them) using only the X-ray to radio Fν(t). Here we demonstrate that the most promising way to break this degeneracy is through afterglow imaging and polarization, by calculating the predicted evolution of the afterglow image (its size, shape and flux centroid) and linear polarization Π(t) for different angular and/or radial outflow structures that fit Fν(t). We consider two angular profiles - a Gaussian and a narrow core with power-law wings in energy per solid angle, as well as a (cocoon motivated) (quasi-) spherical flow with radial velocity profile. For a jet viewed off-axis (and a magnetic field produced in the afterglow shock) Π(t) peaks when the jet's core becomes visible, at ≈2tp where the lightcurve peaks at tp, and the image can be elongated with aspect ratios ≳ 2. A quasi-spherical flow has an almost circular image and a much lower Π(t) (peaking at ≈tp) and flux centroid displacement θfc (a spherical flow has Π(t) = θfc = 0 and a perfectly circular image).

  7. VizieR Online Data Catalog: GRB 160509A VLA monitoring campain results (Laskar+, 2016)

    NASA Astrophysics Data System (ADS)

    Laskar, T.; Alexander, K. D.; Berger, E.; Fong, W.-F.; Margutti, R.; Shivvers, I.; Williams, P. K. G.; Kopac, D.; Kobayashi, S.; Mundell, C.; Gomboc, A.; Zheng, W.; Menten, K. M.; Graham, M. L.; Filippenko, A. V.

    2017-04-01

    GRB 160509A was discovered by the Fermi LAT on 2016 May 09 at 08:59:04.36 UTC (Longo+ 2016GCN..19403...1L). We observed the afterglow with the VLA starting at 0.36 days. We tracked the flux density of the afterglow over multiple epochs spanning 1.2-33.5GHz, using 3C48, 3C286, and 3C147 as flux and bandpass calibrators, and J2005+7752 as the gain calibrator. Our VLA observations spanning 0.36-20 days after the burst clearly reveal the presence of multiple spectral components in the radio afterglow. (1 data file).

  8. Methodology in the Afterglow

    ERIC Educational Resources Information Center

    Hofsess, Brooke Anne

    2013-01-01

    My dissertation study seeks to understand how artist-teacher renewal may be nurtured through aesthetic experiential play in a Masters of Art Education degree program, and beyond, as my former students/participants and myself experience finding ourselves in its afterglow. "Aesthetic experiential play" could be described as a playful,…

  9. The air afterglow revisited

    NASA Technical Reports Server (NTRS)

    Kaufman, F.

    1972-01-01

    The air afterglow, 0 + NO2 chemiluminescence, is discussed in terms of fluorescence, photodissociation, and quantum theoretical calculations of NO2. The experimental results presented include pressure dependence, M-dependence, spectral dependence of P and M, temperature dependence, and infrared measurements. The NO2 energy transfer model is also discussed.

  10. A surface phase transition of supported gold nanoparticles.

    PubMed

    Plech, Anton; Cerna, Roland; Kotaidis, Vassilios; Hudert, Florian; Bartels, Albrecht; Dekorsy, Thomas

    2007-04-01

    A thermal phase transition has been resolved in gold nanoparticles supported on a surface. By use of asynchronous optical sampling with coupled femtosecond oscillators, the Lamb vibrational modes could be resolved as a function of annealing temperature. At a temperature of 104 degrees C the damping rate and phase changes abruptly, indicating a structural transition in the particle, which is explained as the onset of surface melting.

  11. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Kazanas, D.

    2009-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approx. 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor Gamma and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have began to explore. In particular. one can this may obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the (nu)F(sub nu), spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  12. Cryogenic optical systems for the rapid infrared imager/spectrometer (RIMAS)

    NASA Astrophysics Data System (ADS)

    Capone, John I.; Content, David A.; Kutyrev, Alexander S.; Robinson, Frederick D.; Lotkin, Gennadiy N.; Toy, Vicki L.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.

    2014-07-01

    The Rapid Infrared Imager/Spectrometer (RIMAS) is designed to perform follow-up observations of transient astronomical sources at near infrared (NIR) wavelengths (0.9 - 2.4 microns). In particular, RIMAS will be used to perform photometric and spectroscopic observations of gamma-ray burst (GRB) afterglows to compliment the Swift satellite's science goals. Upon completion, RIMAS will be installed on Lowell Observatory's 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The instrument's optical design includes a collimator lens assembly, a dichroic to divide the wavelength coverage into two optical arms (0.9 - 1.4 microns and 1.4 - 2.4 microns respectively), and a camera lens assembly for each optical arm. Because the wavelength coverage extends out to 2.4 microns, all optical elements are cooled to ~70 K. Filters and transmission gratings are located on wheels prior to each camera allowing the instrument to be quickly configured for photometry or spectroscopy. An athermal optomechanical design is being implemented to prevent lenses from loosing their room temperature alignment as the system is cooled. The thermal expansion of materials used in this design have been measured in the lab. Additionally, RIMAS has a guide camera consisting of four lenses to aid observers in passing light from target sources through spectroscopic slits. Efforts to align these optics are ongoing.

  13. Swift and Fermi observations of the early afterglow of the short gamma-ray burst 090510

    DOE PAGES

    De Pasquale, M.

    2010-01-14

    Here, we present the observations of GRB090510 performed by the Fermi Gamma-Ray Space Telescope and the Swift observatory. In a GeV range, we detected a bright, short burst that shows an extended emission. Furthermore, its optical emission initially rises, a feature so far observed only in long bursts, while the X-ray flux shows an initial shallow decrease, followed by a steeper decay. This exceptional behavior enables us to investigate the physical properties of the gamma-ray burst outflow, poorly known in short bursts. Here, we discuss internal and external shock models for the broadband energy emission of this object.

  14. Optical transmission testing based on asynchronous sampling techniques

    NASA Astrophysics Data System (ADS)

    Mrozek, T.; Perlicki, K.; Wilczewski, G.

    2016-09-01

    This paper presents a method of analysis of images obtained with the Asynchronous Delay Tap Sampling technique, which is used for simultaneous monitoring of a number of phenomena in the physical layer of an optical network. This method allows visualization of results in a form of an optical signal's waveform (characteristics depicting phase portraits). Depending on a specific phenomenon being observed (i.e.: chromatic dispersion, polarization mode dispersion and ASE noise), the shape of the waveform changes. Herein presented original waveforms were acquired utilizing the OptSim 4.0 simulation package. After specific simulation testing, the obtained numerical data was transformed into an image form, that was further subjected to the analysis using authors' custom algorithms. These algorithms utilize various pixel operations and creation of reports each image might be characterized with. Each individual report shows the number of black pixels being present in the specific image segment. Afterwards, generated reports are compared with each other, across the original-impaired relationship. The differential report is created which consists of a "binary key" that shows the increase in the number of pixels in each particular segment. The ultimate aim of this work is to find the correlation between the generated binary keys and the analyzed common phenomenon being observed, allowing identification of the type of interference occurring. In the further course of the work it is evitable to determine their respective values. The presented work delivers the first objective - the ability to recognize interference.

  15. A Turnover in the Radio Light Curve of GW170817

    NASA Astrophysics Data System (ADS)

    Dobie, Dougal; Kaplan, David L.; Murphy, Tara; Lenc, Emil; Mooley, Kunal P.; Lynch, Christene; Corsi, Alessandra; Frail, Dale; Kasliwal, Mansi; Hallinan, Gregg

    2018-05-01

    We present 2–9 GHz radio observations of GW170817 covering the period 125–200 days post-merger, taken with the Australia Telescope Compact Array (ATCA) and the Karl G. Jansky Very Large Array (VLA). Our observations demonstrate that the radio afterglow peaked at 149 ± 2 days post-merger and is now declining in flux density. We see no evidence for evolution in the radio-only spectral index, which remains consistent with optically thin synchrotron emission connecting the radio, optical, and X-ray regimes. The peak implies a total energy in the synchrotron-emitting component of a few × 1050 erg. The temporal decay rate is most consistent with mildly or non-relativistic material and we do not see evidence for a very energetic off-axis jet, but we cannot distinguish between a lower-energy jet and more isotropic emission.

  16. High-fidelity entanglement swapping and generation of three-qubit GHZ state using asynchronous telecom photon pair sources.

    PubMed

    Tsujimoto, Yoshiaki; Tanaka, Motoki; Iwasaki, Nobuo; Ikuta, Rikizo; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2018-01-23

    We experimentally demonstrate a high-fidelity entanglement swapping and a generation of the Greenberger-Horne-Zeilinger (GHZ) state using polarization-entangled photon pairs at telecommunication wavelength produced by spontaneous parametric down conversion with continuous-wave pump light. While spatially separated sources asynchronously emit photon pairs, the time-resolved photon detection guarantees the temporal indistinguishability of photons without active timing synchronizations of pump lasers and/or adjustment of optical paths. In the experiment, photons are sufficiently narrowed by fiber-based Bragg gratings with the central wavelengths of 1541 nm & 1580 nm, and detected by superconducting nanowire single-photon detectors with low timing jitters. The observed fidelities of the final states for entanglement swapping and the generated three-qubit state were 0.84 ± 0.04 and 0.70 ± 0.05, respectively.

  17. Ultrafast Single-Shot Optical Oscilloscope based on Time-to-Space Conversion due to Temporal and Spatial Walk-Off Effects in Nonlinear Mixing Crystal

    NASA Astrophysics Data System (ADS)

    Takagi, Yoshihiro; Yamada, Yoshifumi; Ishikawa, Kiyoshi; Shimizu, Seiji; Sakabe, Shuji

    2005-09-01

    A simple method for single-shot sub-picosecond optical pulse diagnostics has been demonstrated by imaging the time evolution of the optical mixing onto the beam cross section of the sum-frequency wave when the interrogating pulse passes over the tested pulse in the mixing crystal as a result of the combined effect of group-velocity difference and walk-off beam propagation. A high linearity of the time-to-space projection is deduced from the process solely dependent upon the spatial uniformity of the refractive indices. A snap profile of the accidental coincidence between asynchronous pulses from separate mode-locked lasers has been detected, which demonstrates the single-shot ability.

  18. Sterilization/disinfection of medical devices using plasma: the flowing afterglow of the reduced-pressure N2-O2 discharge as the inactivating medium

    NASA Astrophysics Data System (ADS)

    Moisan, Michel; Boudam, Karim; Carignan, Denis; Kéroack, Danielle; Levif, Pierre; Barbeau, Jean; Séguin, Jacynthe; Kutasi, Kinga; Elmoualij, Benaïssa; Thellin, Olivier; Zorzi, Willy

    2013-07-01

    Potential sterilization/disinfection of medical devices (MDs) is investigated using a specific plasma process developed at the Université de Montréal over the last decade. The inactivating medium of the microorganisms is the flowing afterglow of a reduced-pressure N2-O2 discharge, which provides, as the main biocidal agent, photons over a broad ultraviolet (UV) wavelength range. The flowing afterglow is considered less damaging to MDs than the discharge itself. Working at gas pressures in the 400—700 Pa range (a few torr) ensures, through species diffusion, the uniform filling of large volume chambers with the species outflowing from the discharge, possibly allowing batch processing within them. As a rule, bacterial endospores are used as bio-indicators (BI) to validate sterilization processes. Under the present operating conditions, Bacillus atrophaeus is found to be the most resistant one and is therefore utilized as BI. The current paper reviews the main experimental results concerning the operation and characterization of this sterilizer/disinfector, updating and completing some of our previously published papers. It uses modeling results as guidelines, which are particularly useful when the corresponding experimental data are not (yet) available, hopefully leading to more insight into this plasma afterglow system. The species flowing out of the N2-O2 discharge can be divided into two groups, depending on the time elapsed after they left the discharge zone as they move toward the chamber, namely the early afterglow and the late afterglow. The early flowing afterglow from a pure N2 discharge (also called pink afterglow) is known to be comprised of N2+ and N4+ ions. In the present N2-O2 mixture discharge, NO+ ions are additionally generated, with a lifetime that extends over a longer period than that of the nitrogen molecular ions. We shall suppose that the disappearance of the NO+ ions marks the end of the early afterglow regime, thereby stressing our intent to work in an ion-free process chamber to minimize damage to MDs. Therefore, operating conditions should be set such that the sterilizer/disinfector chamber is predominantly filled by N and O atoms, possibly together with long-lived metastable-state O2(1 Δg) (singlet-delta) molecules. Various aspects related to the observed survival curves are examined: the actual existence of two “phases” in the inactivation rate, the notion of UV irradiation dose (fluence) and its implications, the UV photon best wavelength range in terms of inactivation efficiency, the influence of substrate temperature and the reduction of UV intensity through surface recombination of N and O atoms on the object/packaging being processed. To preserve their on-shelf sterility, MDs are sealed/wrapped in packaging material. Porous packaging materials utilized in conventional sterilization systems (where MDs are packaged before being subjected to sterilization) were tested and found inadequate for the N2-O2 afterglow system in contrast to a (non-porous) polyolefin polymer. Because the latter is non-porous, its corresponding pouch must be kept unsealed until the end of the process. Even though it is unsealed, but because the opening is very small the O2(1Δg) metastable-state molecules are expected to be strongly quenched by the pouch material as they try to enter it and, as a result, only N and O atoms, together with UV photons, are significantly present within it. Therefore, by examining a given process under pouch and no-pouch conditions, it is possible to determine what are the inactivating agents operating: (i) when packaged, these are predominantly UV photons, (ii) when unpackaged, O2(1Δg) molecules together with UV photons can be acting, (iii) comparing the inactivation efficiency under both packaged and unpackaged conditions allows the determination of the relative contribution of UV photons (if any) and O2(1Δg) metastable-state molecules. Such a method is applied to pyrogenic molecules and to the enzymatic activity of lysozyme proteins once exposed to the N2-O2 flowing afterglow. Finally, the activity of the infectious prion protein is shown to be reduced when exposed to the present flowing afterglow, as demonstrated by both in vitro and in vivo experiments.

  19. A Tale of Two Faint Bursts: GRB 050223 and GRB 050911

    NASA Astrophysics Data System (ADS)

    Page, K. L.; Barthelmy, S. D.; Beardmore, A. P.; Burrows, D. N.; Campana, S.; Chincharini, G.; Cummings, J. R.; Cusumano, G.; Gehrels, N.; Giommi, P.; Goad, M. R.; Godet, O.; Graham, J.; Kaneko, Y.; Kennea, J. A.; Mangano, V.; Markwardt, C. B.; O'Brien, P. T.; Osborne, J. P.; Reichart, D. E.; Rol, E.; Sakamoto, T.; Tagliaferri, G.; Tanvir, N. R.; Wells, A. A.; Zhang, B.

    2006-05-01

    GRBs 050223 and 050911 were discovered by the Swift Burst Alert Telescope (BAT) on 23rd February and 11th September 2005 respectively. The observation of GRB 050223 showed a faint, fading X-ray source, which was identified as the afterglow; GRB 050911, however, was not detected, making any X-ray afterglow extremely faint. The faintness of the afterglow of GRB 050223 could be explained by a large opening or viewing angle, or by the burst being at high redshift. The non-detection of GRB 050911 may indicate the burst occurred in a low-density environment, or, alternatively, was due to a compact object merger, in spite of the apparent long duration of the burst.

  20. Dust reddening and extinction curves toward gamma-ray bursts at z > 4

    NASA Astrophysics Data System (ADS)

    Bolmer, J.; Greiner, J.; Krühler, T.; Schady, P.; Ledoux, C.; Tanvir, N. R.; Levan, A. J.

    2018-01-01

    Context. Dust is known to be produced in the envelopes of asymptotic giant branch (AGB) stars, the expanded shells of supernova (SN) remnants, and in situ grain growth within the interstellar medium (ISM), although the corresponding efficiency of each of these dust formation mechanisms at different redshifts remains a topic of debate. During the first Gyr after the Big Bang, it is widely believed that there was not enough time to form AGB stars in high numbers, hence the dust at this epoch is expected to be purely from SNe or subsequent grain growth in the ISM. The time period corresponding to z 5-6 is thus expected to display the transition from SN-only dust to a mixture of both formation channels as is generally recognized at present. Aims: Here we aim to use afterglow observations of gamma-ray bursts (GRBs) at redshifts larger than z > 4 to derive host galaxy dust column densities along their line of sight and to test if a SN-type dust extinction curve is required for some of the bursts. Methods: We performed GRB afterglow observations with the seven-channel Gamma-Ray Optical and Near-infrared Detector (GROND) at the 2.2 m MPI telescope in La Silla, Chile (ESO), and we combined these observations with quasi-simultaneous data gathered with the XRT telescope on board the Swift satellite. Results: We increase the number of measured AV values for GRBs at z > 4 by a factor of 2-3 and find that, in contrast to samples at mostly lower redshift, all of the GRB afterglows have a visual extinction of AV < 0.5 mag. Analysis of the GROND detection thresholds and results from a Monte Carlo simulation show that although we partly suffer from an observational bias against highly extinguished sight-lines, GRB host galaxies at 4 < z < 6 seem to contain on average less dust than at z 2. Additionally, we find that all of the GRBs can be modeled with locally measured extinction curves and that the SN-like dust extinction curve, as previously found toward GRB 071025, provides a better fit for only two of the afterglow SEDs. However, because of the lack of highly extinguished sight lines and the limited wavelength coverage we cannot distinguish between the different scenarios. For the first time we also report a photometric redshift of zphot = 7.88-0.94+0.75 for GRB 100905A, making it one of the most distant GRBs known to date.

  1. Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective

    NASA Astrophysics Data System (ADS)

    Karlica, Mile

    2015-12-01

    In this talk we present the sponge" model and its possible implications on the GRB afterglow light curves. "Sponge" model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.

  2. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    NASA Astrophysics Data System (ADS)

    Bartle, C. M.; Edgar, A.; Dixie, L.; Varoy, C.; Piltz, R.; Buchanan, S.; Rutherford, K.

    2011-09-01

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a 10B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  3. Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    MacFadyen, Andrew

    2010-01-01

    The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.

  4. Fiber optic cable-based high-resolution, long-distance VGA extenders

    NASA Astrophysics Data System (ADS)

    Rhee, Jin-Geun; Lee, Iksoo; Kim, Heejoon; Kim, Sungjoon; Koh, Yeon-Wan; Kim, Hoik; Lim, Jiseok; Kim, Chur; Kim, Jungwon

    2013-02-01

    Remote transfer of high-resolution video information finds more applications in detached display applications for large facilities such as theaters, sports complex, airports, and security facilities. Active optical cables (AOCs) provide a promising approach for enhancing both the transmittable resolution and distance that standard copper-based cables cannot reach. In addition to the standard digital formats such as HDMI, the high-resolution, long-distance transfer of VGA format signals is important for applications where high-resolution analog video ports should be also supported, such as military/defense applications and high-resolution video camera links. In this presentation we present the development of a compressionless, high-resolution (up to WUXGA, 1920x1200), long-distance (up to 2 km) VGA extenders based on serialized technique. We employed asynchronous serial transmission and clock regeneration techniques, which enables lower cost implementation of VGA extenders by removing the necessity for clock transmission and large memory at the receiver. Two 3.125-Gbps transceivers are used in parallel to meet the required maximum video data rate of 6.25 Gbps. As the data are transmitted asynchronously, 24-bit pixel clock time stamp is employed to regenerate video pixel clock accurately at the receiver side. In parallel to the video information, stereo audio and RS-232 control signals are transmitted as well.

  5. Characterization of X-ray Lobster Optics with a Hybrid CMOS sensor

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy; Falcone, Abraham; Burrows, David N.; Bray, Evan; McQuaide, Maria; Kern, Matthew; Wages, Mitchell; Hull, Samuel; Inneman, Adolf; Hudec, Rene; Stehlikova, Veronika

    2018-01-01

    X-ray lobster optics provide a unique way to focus X-rays onto a small focal plane imager with wide field of view imaging. Such an instrument with angular resolution of a few arcminutes can be used to study GRB afterglows, as well as the variability and spectroscopic characteristics for various astrophysical objects. At Penn State University, we have characterized a lobster optic with an H1RG X-Ray hybrid CMOS detector (100 μm thick Silicon with 18 μm pixel size). The light-weight compact lobster optic with a 25 cm focal length provides two dimensional imaging with ~25 cm2 effective area at 2 keV. We utilize a 47 meter long X-ray beam line at Penn state University to do our experiments where we characterize the overall effective area of the instrument at 1.5 - 8 keV for both on-axis and off-axis angles. In this presentation, we will describe the characterization test stand and methods, as well as the detailed results. While this is simply a proof-of-concept experiment, such an instrument with significant collecting area can be explored for future rocket or CubeSat experiments.

  6. Modeling of N2 and O optical emissions for ionosphere HF powerful heating experiments

    NASA Astrophysics Data System (ADS)

    Sergienko, T.; Gustavsson, B.

    Analyses of experiments of F region ionosphere modification by HF powerful radio waves show that optical observations are very useful tools for diagnosing of the interaction of the probing radio wave with the ionospheric plasma Hitherto the emissions usually measured in the heating experiment have been the 630 0 nm and the 557 7 nm lines of atomic oxygen Other emissions for instance O 844 8 nm and N2 427 8 nm have been measured episodically in only a few experiments although the very rich optical spectrum of molecular nitrogen potentially involves important information about ionospheric plasma in the heated region This study addresses the modeling of optical emissions from the O and the N2 triplet states first positive second positive Vegard-Kaplan infrared afterglow and Wu-Benesch band systems excited under a condition of the ionosphere heating experiment The auroral triplet state population distribution model was modified for the ionosphere heating conditions by using the different electron distribution functions suggested by Mishin et al 2000 2003 and Gustavsson at al 2004 2005 Modeling results are discussed from the point of view of efficiency of measurements of the N2 emissions in future experiments

  7. Asynchronous polar V1500 Cyg: orbital, spin and beat periods

    NASA Astrophysics Data System (ADS)

    Pavlenko, E. P.; Mason, P. A.; Sosnovskij, A. A.; Shugarov, S. Yu; Babina, Ju V.; Antonyuk, K. A.; Andreev, M. V.; Pit, N. V.; Antonyuk, O. I.; Baklanov, A. V.

    2018-06-01

    The bright Nova Cygni 1975 is a rare nova on a magnetic white dwarf (WD). Later it was found to be an asynchronous polar, now called V1500 Cyg. Our multisite photometric campaign occurring 40 years post eruption covered 26-nights (2015-2017). The reflection effect from the heated donor has decreased, but still dominates the optical radiation with an amplitude ˜1m.5. The 0m.3 residual reveals cyclotron emission and ellipsoidal variations. Mean brightness modulation from night-to-night is used to measure the 9.6-d spin-orbit beat period that is due to changing accretion geometry including magnetic pole-switching of the flow. By subtracting the orbital and beat frequencies, spin-phase dependent light curves are obtained. The amplitude and profile of the WD spin light curves track the cyclotron emitting accretion regions on the WD and they vary systematically with beat phase. A weak intermittent signal at 0.137613-d is likely the spin period, which is 1.73(1) min shorter than the orbital period. The O-C diagram of light curve maxima displays phase jumps every one-half beat period, a characteristic of asynchronous polars. The first jump we interpret as pole switching between regions separated by 180°. Then the spot drifts during ˜ 0.1 beat phase before undergoing a second phase jump between spots separated by less than 180°. We trace the cooling of the still hot WD as revealed by the irradiated companion. The post nova evolution and spin-orbit asynchronism of V1500 Cyg continues to be a powerful laboratory for accretion flows onto magnetic white dwarfs.

  8. Afterglow Observations Shed New Light on the Nature of X-ray Flashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granot, J

    X-ray flashes (XRFs) and X-ray rich gamma-ray bursts (XRGRBs) share many observational characteristics with long duration ({approx}> 2 s) GRBs, but the reason for which the spectral energy distribution of their prompt emission peaks at lower photon energies, E{sub p}, is still a subject of debate. Although many different models have been invoked in order to explain the lower values of E{sub p}, their implications for the afterglow emission were not considered in most cases, mainly because observations of XRF afterglows have become available only recently. Here we examine the predictions of the various XRF models for the afterglow emission,more » and test them against the observations of XRF 030723 and XRGRB 041006, the events with the best monitored afterglow light curves in their respective class. We show that most existing XRF models are hard to reconcile with the observed afterglow light curves, which are very flat at early times. Such light curves are, however, naturally produced by a roughly uniform jet with relatively sharp edges that is viewed off-axis (i.e. from outside of the jet aperture). This type of model self consistently accommodates both the observed prompt emission and the afterglow light curves of XRGRB 041006 and XRF 030723, implying viewing angles {theta}{sub obs} from the jet axis of ({theta}{sub obs}-{theta}{sub 0}) {approx} 0.15 {theta}{sub 0} and ({theta}{sub obs}-{theta}{sub 0}) {approx} {theta}{sub 0}, respectively, where {theta}{sub 0} {approx} 3{sup o} is the half-opening angle of the jet. This suggests that GRBs, XRGRBs and XRFs are intrinsically similar relativistic jets viewed from different angles. It is then natural to identify GRBs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}< 1, XRGRBs with 1 {approx}< ({theta}{sub obs} - {theta}{sub 0}) {approx}< a few, and XRFs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}> a few, where {gamma} is the Lorentz factor of the outflow near the edge of the jet from which most of the observed prompt emission arises. Future observations with Swift could help test this unification scheme in which GRBs, XRGRBs and XRFs share the same basic physics and differ only by their orientation relative to our line of sight.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadowski, Greg

    In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state ofmore » the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.« less

  10. Zadoff-Chu sequence-based hitless ranging scheme for OFDMA-PON configured 5G fronthaul uplinks

    NASA Astrophysics Data System (ADS)

    Reza, Ahmed Galib; Rhee, June-Koo Kevin

    2017-05-01

    A Zadoff-Chu (ZC) sequence-based low-complexity hitless upstream time synchronization scheme is proposed for an orthogonal frequency division multiple access passive optical network configured cloud radio access network fronthaul. The algorithm is based on gradual loading of the ZC sequences, where the phase discontinuity due to the cyclic prefix is alleviated by a frequency domain phase precoder, eliminating the requirements of guard bands to mitigate intersymbol interference and inter-carrier interference. Simulation results for uncontrolled-wavelength asynchronous transmissions from four concurrent transmitting optical network units are presented to demonstrate the effectiveness of the proposed scheme.

  11. 24-channel dual microcontroller-based voltage controller for ion optics remote control

    NASA Astrophysics Data System (ADS)

    Bengtsson, L.

    2018-05-01

    The design of a 24-channel voltage control instrument for Wenzel Elektronik N1130 NIM modules is described. This instrument is remote controlled from a LabVIEW GUI on a host Windows computer and is intended for ion optics control in electron affinity measurements on negative ions at the CERN-ISOLDE facility. Each channel has a resolution of 12 bits and has a normally distributed noise with a standard deviation of <1 mV. The instrument is designed as a standard 2-unit NIM module where the electronic hardware consists of a printed circuit board with two asynchronously operating microcontrollers.

  12. X-Ray and Optical Study of the Gamma-ray Source 3FGL J0838.8–2829: Identification of a Candidate Millisecond Pulsar Binary and an Asynchronous Polar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, Jules P.; Bogdanov, Slavko; Thorstensen, John R., E-mail: jules@astro.columbia.edu

    2017-04-01

    We observed the field of the Fermi source 3FGL J0838.8−2829 in optical and X-rays, initially motivated by the cataclysmic variable (CV) 1RXS J083842.1−282723 that lies within its error circle. Several X-ray sources first classified as CVs have turned out to be γ -ray emitting millisecond pulsars (MSPs). We find that 1RXS J083842.1−282723 is in fact an unusual CV, a stream-fed asynchronous polar in which accretion switches between magnetic poles (that are ≈120° apart) when the accretion rate is at minimum. High-amplitude X-ray modulation at periods of 94.8 ± 0.4 minutes and 14.7 ± 1.2 hr are seen. The former appearsmore » to be the spin period, while the latter is inferred to be one-third of the beat period between the spin and the orbit, implying an orbital period of 98.3 ± 0.5 minutes. We also measure an optical emission-line spectroscopic period of 98.413 ± 0.004 minutes, which is consistent with the orbital period inferred from the X-rays. In any case, this system is unlikely to be the γ -ray source. Instead, we find a fainter variable X-ray and optical source, XMMU J083850.38−282756.8, that is modulated on a timescale of hours in addition to exhibiting occasional sharp flares. It resembles the black widow or redback pulsars that have been discovered as counterparts of Fermi sources, with the optical modulation due to heating of the photosphere of a low-mass companion star by, in this case, an as-yet undetected MSP. We propose XMMU J083850.38−282756.8 as the MSP counterpart of 3FGL J0838.8−2829.« less

  13. Robotic Telescopes

    NASA Astrophysics Data System (ADS)

    Akerlof, C. W.

    2001-05-01

    Since the discovery of gamma-ray bursts, a number of groups have attempted to detect correlated optical transients from these elusive objects. Following the flight of the BATSE instrument on the Compton Gamma-Ray Observatory in 1991, a prompt burst coordinate alert service, BACODINE (now GCN) became available to ground-based telescopes. Several instruments were built to take advantage of this facility, culminating in the discovery of a bright optical flash associated with GRB990123. To date, that single observation remains unique - no other prompt flashes have been seen for a dozen or so other bursts observed with comparably short response times. Thus, GRB prompt optical luminosities may be considerably dimmer than observed for the GRB990123 event or even absent altogether. A new generation of instruments is prepared to explore these possibilties using burst coordinates provided by HETE-2, Swift, Ballerina, Agile and other satellite missions. These telescopes have response times as short as a few seconds and reach limiting magnitudes, m_v 20, guaranteeing a sensitivity sufficient to detect the afterglow many hours later. Results from these experiments should provide important new data about the dynamics and locale of GRBs.

  14. A laboratory study on the dissociative recombination of vibrationally excited O2/+/ions

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.

    1980-01-01

    The dissociative recombination of vibrationally excited O2(+) ions is studied in light of the possible importance of this reaction in upper atmospheric chemistry. A plasma spectroscopy experiment was performed in a microwave cavity filled by an argon-oxygen mixture, with O(1S) production monitored by measurements of the 5577-A afterglow, the O2(+) density and the electron concentration. Plasma and optical data reveal the predominant afterglow ions to be Ar2(+) and O2(+), with an effective O(1S) dissociative recombination coefficient of 2.1 x 10 to the -8th cu cm/sec, corresponding to a quantum yield of 10%. Experiments with an argon-krypton-oxygen mixture reveal that vibrationally excited O2(+) ions are the chief source of the O(1S) atoms, with a specific recombination coefficient for the dissociation of O2(+)(2 pi g) into O(1S) and O(1D) of 4.2 x 10 to the -9th cu cm/sec. A comparison of the laboratory results with Atmospheric Explorer data on the 5577-A airglow implies that O2(+) ions in the sunlit ionosphere are vibrationally excited to the same degree as in the laboratory, with the vibrational relaxation of these ions much slower than dissociative recombination. Results also predict a dawn-twilight asymmetry in the effective O(1S) yield due to the normal variation of electron content.

  15. Searching for high-energy gamma-ray counterparts to gravitational-wave sources with Fermi-LAT: A needle in a haystack

    DOE PAGES

    Vianello, G.; Omodei, N.; Chiang, J.; ...

    2017-05-20

    At least a fraction of gravitational-wave (GW) progenitors are expected to emit an electromagnetic (EM) signal in the form of a short gamma-ray burst (sGRB). Discovering such a transient EM counterpart is challenging because the LIGO/VIRGO localization region is much larger (several hundreds of square degrees) than the field of view of X-ray, optical, and radio telescopes. The Fermi Large Area Telescope (LAT) has a wide field of view (~2.4 sr) and detects ~2–3 sGRBs per year above 100 MeV. It can detect them not only during the short prompt phase, but also during their long-lasting high-energy afterglow phase. If other wide-field, high-energy instruments such as Fermi-GBM, Swift-BAT, or INTEGRAL-ISGRI cannot detect or localize with enough precision an EM counterpart during the prompt phase, the LAT can potentially pinpoint it withmore » $$\\lesssim 10$$ arcmin accuracy during the afterglow phase. This routinely happens with gamma-ray bursts. Moreover, the LAT will cover the entire localization region within hours of any triggers during normal operations, allowing the γ-ray flux of any EM counterpart to be measured or constrained. As a result, we illustrate two new ad hoc methods to search for EM counterparts with the LAT and their application to the GW candidate LVT151012.« less

  16. Searching for high-energy gamma-ray counterparts to gravitational-wave sources with Fermi-LAT: A needle in a haystack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianello, G.; Omodei, N.; Chiang, J.

    At least a fraction of gravitational-wave (GW) progenitors are expected to emit an electromagnetic (EM) signal in the form of a short gamma-ray burst (sGRB). Discovering such a transient EM counterpart is challenging because the LIGO/VIRGO localization region is much larger (several hundreds of square degrees) than the field of view of X-ray, optical, and radio telescopes. The Fermi Large Area Telescope (LAT) has a wide field of view (~2.4 sr) and detects ~2–3 sGRBs per year above 100 MeV. It can detect them not only during the short prompt phase, but also during their long-lasting high-energy afterglow phase. If other wide-field, high-energy instruments such as Fermi-GBM, Swift-BAT, or INTEGRAL-ISGRI cannot detect or localize with enough precision an EM counterpart during the prompt phase, the LAT can potentially pinpoint it withmore » $$\\lesssim 10$$ arcmin accuracy during the afterglow phase. This routinely happens with gamma-ray bursts. Moreover, the LAT will cover the entire localization region within hours of any triggers during normal operations, allowing the γ-ray flux of any EM counterpart to be measured or constrained. As a result, we illustrate two new ad hoc methods to search for EM counterparts with the LAT and their application to the GW candidate LVT151012.« less

  17. A method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-06-01

    A phase fluctuation calibration method is presented for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method consists of the generation of a continuous triggered tone-burst waveform rather than an asynchronous waveform by use of a function generator and the removal of the global phases of the measured Jones matrices by use of matrix normalization. This could remove the use of auxiliary optical components for the phase fluctuation compensation in the system, which reduces the system complexity. Phase fluctuation calibration is necessary to obtain the reference Jones matrix by averaging the measured Jones matrices at sample surfaces. Measurements on an equine tendon sample were made by the PS-SS-OCT system to validate the proposed method.

  18. KSC-04PD-2318

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Boeing workers help guide a section of the fairing into place around the Swift spacecraft inside the mobile service tower on Launch Pad 17-A, Cape Canaveral Air Force Station. The fairing is being installed around the payload for protection during launch and ascent. A Boeing Delta II rocket is the launch vehicle for the Swift spacecraft and its Gamma-Ray Burst Mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is scheduled to launch Nov. 17 at 12:09 p.m. EST.

  19. Heat pulse excitability of vestibular hair cells and afferent neurons

    PubMed Central

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at −68 mV and in 67% of hair cells at −60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  20. Effects of optical layer impairments on 2.5 Gb/s optical CDMA transmission.

    PubMed

    Feng, H; Mendez, A; Heritage, J; Lennon, W

    2000-07-03

    We conducted a computer simulation study to assess the effects of optical layer impairments on optical CDMA (O-CDMA) transmission of 8 asynchronous users at 2.5 Gb/s each user over a 214-km link. It was found that with group velocity dispersion compensation, two other residual effects, namely, the nonzero chromatic dispersion slope of the single mode fiber (which causes skew) and the non-uniform EDFA gain (which causes interference power level to exceed signal power level of some codes) degrade the signal to multi-access interference (MAI) ratio. In contrast, four wave mixing and modulation due to the Kerr and Raman contributions to the fiber nonlinear refractive index are less important. Current wavelength-division multiplexing (WDM) technologies, including dispersion management, EDFA gain flattening, and 3 rd order dispersion compensation, are sufficient to overcome the impairments to the O-CDMA transmission system that we considered.

  1. Simulation of the Plasma Afterglow in the Discharge Gap of a Subnanosecond Switch Based on an Open Discharge in Helium

    NASA Astrophysics Data System (ADS)

    Alexandrov, A. L.; Schweigert, I. V.

    2018-05-01

    The phenomenon of subnanosecond electrical breakdown in a strong electric field observed in an open discharge in helium at pressures of 6-20 Torr can be used to create ultrafast plasma switches triggering into a conducting state for a time shorter than 1 ns. To evaluate the possible repetition rate of such a subnanosecond switch, it is interesting to study the decay dynamics of the plasma remaining in the discharge gap after ultrafast breakdown. In this paper, a kinetic model based on the particle-in-cell Monte Carlo collision method is used to study the dynamics of the plasma afterglow in the discharge gap of a subnanosecond switch operating with helium at a pressure of 6 Torr. The simulation results show that the radiative, collisional-radiative, and three-body collision recombination mechanisms significantly contribute to the afterglow decay only while the plasma density remains higher than 1012 cm-3; the main mechanism of the further plasma decay is diffusion of plasma particles onto the wall. Therefore, the effect of recombination in the plasma bulk is observed only during the first 10-20 μs of the afterglow. Over nearly the same time, plasma electrons become thermalized. The afterglow time can be substantially reduced by applying a positive voltage U c to the cathode. Since diffusive losses are limited by the ion mobility, the additional ion drift toward the wall significantly accelerates plasma decay. As U c increases from 0 to +500 V, the characteristic time of plasma decay is reduced from 35 to 10 μs.

  2. Pinus Pinaster surface treatment realized in spatial and temporal afterglow DBD conditions

    NASA Astrophysics Data System (ADS)

    Lecoq, E.; Clément, F.; Panousis, E.; Loiseau, J.-F.; Held, B.; Castetbon, A.; Guimon, C.

    2008-04-01

    This experimental work deals with the exposition of Pinus Pinaster wood samples to a DBD afterglow. Electrical parameters like duty cycle and injected energy in the gas are being varied and the modifications induced by the afterglow on the wood are analysed by several macroscopic and microscopic ways like wettability, XPS analyses and also soaking tests of treated wood in a commercial fungicide solution. Soaking tests show that plasma treatment could enhance the absorption of fungicide into the wood. The wettability results point out that the plasma treatment can inflict on the wood different surface properties, making it hydrophilic or hydrophobic, when varying electrical parameters. XPS analyses reveal several chemical modifications like an increase of the O/C ratio and the presence of carboxyl groups on the surface after plasma treatments.

  3. Synthesis and luminescent properties of Sr3Al2O5Cl2: Eu2+, Dy3+ rod-like nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Zhengliang; Zhang, Qiuhan; Rong, Meizhu; Tan, Huiying; Wang, Qin; Zhou, Qiang; Chen, Guo

    2016-08-01

    White long afterglow phosphor with nano-rods, Sr3Al2O5Cl2: Eu2+, Dy3+, has been successfully synthesized by the solid state reaction. Their structure, morphology, scanning electron microscopy, luminescent properties and long afterglow properties were investigated by X-ray diffraction, transmission electron microscopy luminescence spectra and the luminescence decay curve. The obtained phosphor Sr3Al2O5Cl2: Eu2+, Dy3+ exhibits two broad emission bands, which are located at ∼445 nm and ∼590 nm, respectively. White light can be observed from this phosphor with appropriate CIE values (x = 0.357, y = 0.332). The white afterglow duration of this phosphor is about 0.5 h (>0.35 mcd/m2).

  4. Maintaining High Assurance in Asynchronous Messaging

    DTIC Science & Technology

    2015-10-24

    Assurance in Asynchronous Messaging Kevin E. Foltz and William R. Simpson Abstract—Asynchronous messaging is the delivery of a message without... integrity , and confidentiality guarantees. End-to-end security for asynchronous messaging must be provided by the asynchronous messaging layer itself... continuing its processing. At the completion of message transmission, the sender does not know when or whether the receiver received it. The message

  5. Readout Strategy of an Electro-optical Coupled PET Detector for Time-of-Flight PET/MRI

    PubMed Central

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-01-01

    Combining PET with MRI in a single system provides clinicians with complementary molecular and anatomical information. However, existing integrated PET/MRI systems do not have time-of-flight PET capabilities. This work describes an MRI-compatible front-end electronic system with ToF capabilities. The approach employs a fast arrival-time pickoff comparator to digitize the timing information, and a laser diode to drive a 10m fiber-optic cable to optically transmit asynchronous timing information to a photodiode receiver readout system. The comparator and this electo-optical link show a combined 11.5ps fwhm jitter in response to a fast digital pulse. When configured with LYSO scintillation crystals and Hamamatsu MPPC silicon photo-multipliers the comparator and electro-optical link achieved a 511keV coincidence time resolution of 254.7ps +/− 8.0ps fwhm with 3×3×20mm crystals and 166.5 +/− 2.5ps fwhm with 3×3×5mm crystals. PMID:24061218

  6. A Jet Break in the X-ray Light Curve of Short GRB 111020A: Implications for Energetics and Rates

    NASA Technical Reports Server (NTRS)

    Fong, W.; Berger, E.; Margutti, R.; Zauderer, B. A.; Troja, E.; Czekala, I.; Chornock, R.; Gehrels, N.; Sakamoto, T.; Fox, D. B.; hide

    2012-01-01

    We present broadband observations of the afterglow and environment of the short GRB 111020A. An extensive X-ray light curve from Swift/XRT, XMM-Newton, and Chandra, spanning approx.100 s to 10 days after the burst, reveals a significant break at (delta)t approx. = 2 days with pre- and post-break decline rates of (alpha)X,1 approx. = -0.78 and (alpha)X,2 < or approx. 1.7, respectively. Interpreted as a jet break, we infer a collimated outflow with an opening angle of (theta)j approx. = 3deg - 8deg. The resulting beaming-corrected gamma-ray (10-1000 keV band) and blast-wave kinetic energies are (2-3) x 10(exp 48) erg and (0.3-2) x 10(exp 49) erg, respectively, with the range depending on the unknown redshift of the burst. We report a radio afterglow limit of <39 micro-Jy (3(sigma)) from Expanded Very Large Array observations that, along with our finding that v(sub c) < v(sub X), constrains the circumburst density to n(sub 0) approx.0.01 0.1/cu cm. Optical observations provide an afterglow limit of i > or approx.24.4 mag at 18 hr after the burst and reveal a potential host galaxy with i approx. = 24.3 mag. The subarcsecond localization from Chandra provides a precise offset of 0".80+/-0".11 (1(sigma))from this galaxy corresponding to an offset of 5.7 kpc for z = 0.5-1.5. We find a high excess neutral hydrogen column density of (7.5+/-2.0) x 10(exp 21)/sq cm (z = 0). Our observations demonstrate that a growing fraction of short gamma-ray bursts (GRBs) are collimated, which may lead to a true event rate of > or approx.100-1000 Gpc(sup -3)/yr, in good agreement with the NS-NS merger rate of approx. = 200-3000 Gpc(sup -3)/ yr. This consistency is promising for coincident short GRB-gravitational wave searches in the forthcoming era of Advanced LIGO/VIRGO.

  7. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    PubMed Central

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-01-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident. PMID:27301319

  8. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  9. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy.

    PubMed

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-15

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  10. Thermal Emissions Spanning the Prompt and the Afterglow Phases of the Ultra-long GRB 130925A

    NASA Astrophysics Data System (ADS)

    Basak, Rupal; Rao, A. R.

    2015-07-01

    GRB 130925A is an ultra-long gamma-ray burst (GRB), and it shows clear evidence for thermal emission in the soft X-ray data of the Swift/X-ray Telescope (XRT; ∼0.5 keV), lasting until the X-ray afterglow phase. Due to the long duration of the GRB, the burst could be studied in hard X-rays with high-resolution focusing detectors (NuSTAR). The blackbody temperature, as measured by the Swift/XRT, shows a decreasing trend until the late phase (Piro et al.) whereas the high-energy data reveal a significant blackbody component during the late epochs at an order of magnitude higher temperature (∼5 keV) compared to contemporaneous low energy data (Bellm et al.). We resolve this apparent contradiction by demonstrating that a model with two black bodies and a power law (2BBPL) is consistent with the data right from the late prompt emission to the afterglow phase. Both blackbodies show a similar cooling behavior up to late times. We invoke a structured jet, having a fast spine and a slower sheath layer, to identify the location of these blackbodies. Independent of the physical interpretation, we propose that the 2BBPL model is a generic feature of the prompt emission of all long GRBs, and the thermal emission found in the afterglow phase of different GRBs reflects the lingering thermal component of the prompt emission with different timescales. We strengthen this proposal by pointing out a close similarity between the spectral evolutions of this GRB and GRB 090618, a source with significant wide band data during the early afterglow phase.

  11. Population III Gamma-ray Burst Afterglows: Constraints on Stellar Masses and External Medium Densities

    NASA Astrophysics Data System (ADS)

    Toma, Kenji; Sakamoto, Takanori; Mészáros, Peter

    2011-04-01

    Population (Pop.) III stars are theoretically expected to be prominent around redshifts z ~ 20, consisting of mainly very massive stars with M * >~ 100 M sun, though there is no direct observational evidence for these objects. They may produce collapsar gamma-ray bursts (GRBs), with jets driven by magnetohydrodynamic processes, whose total isotropic-equivalent energy could be as high as E iso >~ 1057 erg over a cosmological-rest-frame duration of td >~ 104 s, depending on the progenitor mass. Here, we calculate the afterglow spectra of such Pop. III GRBs based on the standard external shock model and show that they will be detectable with the Swift Burst Alert Telescope (BAT)/XRT and Fermi Large Area Telescope (LAT) instruments. We find that in some cases a spectral break due to electron-positron pair creation will be observable in the LAT energy range, which can put constraints on the ambient density of the pre-collapse Pop. III star. Thus, high-redshift GRB afterglow observations could be unique and powerful probes of the properties of Pop. III stars and their environments. We examine the trigger threshold of the BAT instrument in detail, focusing on the image trigger system, and show that the prompt emission of Pop. III GRBs could also be detected by BAT. Finally we briefly show that the late-time radio afterglows of Pop. III GRBs for typical parameters, despite the large distances, can be very bright: ~= 140 mJy at 1 GHz, which may lead to a constraint on the Pop. III GRB rate from the current radio survey data, and ~= 2.4 mJy at 70 MHz, which implies that Pop. III GRB radio afterglows could be interesting background source candidates for 21 cm absorption line detections.

  12. Sterilization/disinfection using reduced-pressure plasmas: some differences between direct exposure of bacterial spores to a discharge and their exposure to a flowing afterglow

    NASA Astrophysics Data System (ADS)

    Moisan, M.; Levif, P.; Séguin, J.; Barbeau, J.

    2014-07-01

    The use of plasma for sterilization or disinfection offers a promising alternative to conventional steam or chemical approaches. Plasma can operate at temperatures less damaging to some heat-sensitive medical devices and, in contrast to chemicals, can be non-toxic and non-polluting for the operator and the environment, respectively. Direct exposure to the gaseous discharge (comprising an electric field and ions/electrons) or exposure to its afterglow (no E-field) can both be envisaged a priori, since these two methods can achieve sterility. However, important issues must be considered besides the sterility goal. Direct exposure to the discharge, although yielding a faster inactivation of microorganisms, is shown to be potentially more aggressive to materials and sometimes subjected to the shadowing effect that precludes the sterilization of complex-form items. These two drawbacks can be successfully minimized with an adequate flowing-afterglow exposure. Most importantly, the current paper shows that direct exposure to the discharge can lead to the dislodgment and release of viable microorganisms from their substratum. Such a phenomenon could be responsible for the recontamination of sterilized devices as well as possible contamination of the ambient surroundings, additionally yielding an erroneous over-appreciation of the inactivation efficiency. The operation of the N2-O2 flowing afterglow system being developed in our group is such that there are no ions and electrons left in the process chamber (late-afterglow regime) in full contrast with their presence in the discharge. The dislodgment and release of spores could be attributed, based on the literature, to their electrostatic charging by electrons, leading to an (outward) electrostatic stress that exceeds the adhesion of the spores on their substrate.

  13. The Macronova in GRB 050709 and the GRB-macronova connection

    PubMed Central

    Jin, Zhi-Ping; Hotokezaka, Kenta; Li, Xiang; Tanaka, Masaomi; D'Avanzo, Paolo; Fan, Yi-Zhong; Covino, Stefano; Wei, Da-Ming; Piran, Tsvi

    2016-01-01

    GRB 050709 was the first short Gamma-ray Burst (sGRB) with an identified optical counterpart. Here we report a reanalysis of the publicly available data of this event and the discovery of a Li-Paczynski macronova/kilonova that dominates the optical/infrared signal at t>2.5 days. Such a signal would arise from 0.05 r-process material launched by a compact binary merger. The implied mass ejection supports the suggestion that compact binary mergers are significant and possibly main sites of heavy r-process nucleosynthesis. Furthermore, we have reanalysed all afterglow data from nearby short and hybrid GRBs (shGRBs). A statistical study of shGRB/macronova connection reveals that macronova may have taken place in all these GRBs, although the fraction as low as 0.18 cannot be ruled out. The identification of two of the three macronova candidates in the I-band implies a more promising detection prospect for ground-based surveys. PMID:27659791

  14. Observations of GW170817 by DESGW and the DECam GW-EM Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annis, James

    On August 17, 2017 LIGO/Virgo detected a binary neutron star via gravitational waves. We observed 70 sq-degrees in the LIGO/Virgo spatial localization with the DECam on the 4m Blanco telescope covering 80% of the nal map. Our group independently discovered an optical counterpart in NGC 4993. We searched our entire imaged region: the object in NGC 4993 was the only viable candidate. Our observations of NGC4993 show complicated morphology but simple star formation history. Our x-ray and radio observations indicate an o-axis jet as afterglow. Our high-cadence optical and infrared spectra show a source that must be described by atmore » least two components, one of which is dominated by the r-process nucleosynthesis elements characteristic of a kilonova. Our modeling of the light curve demonstrates such a model in which 0.05 M of material is ejected from the system. Finally, we discuss the first standard siren measurement of H0.« less

  15. Mary, a Pipeline to Aid Discovery of Optical Transients

    NASA Astrophysics Data System (ADS)

    Andreoni, I.; Jacobs, C.; Hegarty, S.; Pritchard, T.; Cooke, J.; Ryder, S.

    2017-09-01

    The ability to quickly detect transient sources in optical images and trigger multi-wavelength follow up is key for the discovery of fast transients. These include events rare and difficult to detect such as kilonovae, supernova shock breakout, and `orphan' Gamma-ray Burst afterglows. We present the Mary pipeline, a (mostly) automated tool to discover transients during high-cadenced observations with the Dark Energy Camera at Cerro Tololo Inter-American Observatory (CTIO). The observations are part of the `Deeper Wider Faster' programme, a multi-facility, multi-wavelength programme designed to discover fast transients, including counterparts to Fast Radio Bursts and gravitational waves. Our tests of the Mary pipeline on Dark Energy Camera images return a false positive rate of 2.2% and a missed fraction of 3.4% obtained in less than 2 min, which proves the pipeline to be suitable for rapid and high-quality transient searches. The pipeline can be adapted to search for transients in data obtained with imagers other than Dark Energy Camera.

  16. Particle-in-cell simulation of ion energy distributions on an electrode by applying tailored bias waveforms in the afterglow of a pulsed plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diomede, Paola; Economou, Demetre J.; Donnelly, Vincent M.

    2011-04-15

    A Particle-in-Cell simulation with Monte Carlo Collisions (PIC-MCC) was conducted of the application of tailored DC voltage steps on an electrode, during the afterglow of a capacitively-coupled pulsed-plasma argon discharge, to control the energy of ions incident on the counter-electrode. Staircase voltage waveforms with selected amplitudes and durations resulted in ion energy distributions (IED) with distinct narrow peaks, with controlled energies and fraction of ions under each peak. Temporary electron heating at the moment of application of a DC voltage step did not influence the electron density decay in the afterglow. The IED peaks were 'smeared' by collisions, especially atmore » the higher pressures of the range (10-40 mTorr) investigated.« less

  17. Overtone spectroscopy of N2H+ molecular ions—application of cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Kálosi, Á.; Dohnal, P.; Shapko, D.; Roučka, Š.; Plašil, R.; Johnsen, R.; Glosík, J.

    2017-10-01

    A stationary afterglow apparatus in conjunction with a laser absorption cavity ring-down spectrometer has been employed to observe absorption lines in the P- and R-branches of the (200) <-- (000) and (2110) <-- (0110) vibrational bands of the N2H+ molecular ion as a part of an ongoing study of the electron-ion recombination of N2H+ in afterglow plasmas. The probed absorption lines lie in the near-infrared spectral region around 1580 nm. The observed transition wavenumbers were fitted to experimental accuracy and improved molecular constants for the (200) vibrational state were obtained. The employed experimental technique enables probing of the translational, rotational and vibrational temperature of the studied ions as well as the determination of the number densities of different quantum states of the ion in discharge and afterglow plasma.

  18. Chameleon fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Upadhye, Amol, E-mail: philippe.brax@cea.fr, E-mail: aupadhye@anl.gov

    2014-02-01

    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signaturemore » which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ{sup 4} and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.« less

  19. Radio Flares from Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  20. Gamma--Ray burst afterglows with the Watcher robotic telescope

    NASA Astrophysics Data System (ADS)

    Topinka, M.; Hanlon, L.; Meehan, S.; Tisdall, P.; Jelínek, M.; Kubánek, P.; van Heerden, H.; Meintjes, P.

    2014-12-01

    The main scientific goal of the Watcher robotic telescope is the rapid follow-up observation of gamma--ray burst afterglows. Some examples of recent observations, including GRB 120327A and GRB 130606A, at a redshift of 5.9, are presented. The telescope has recently been successfully integrated into the GLORIA global robotic telescope network, which allows users to use the array for their own scientific projects.

  1. Fallback accretion on to a newborn magnetar: long GRBs with giant X-ray flares

    NASA Astrophysics Data System (ADS)

    Gibson, S. L.; Wynn, G. A.; Gompertz, B. P.; O'Brien, P. T.

    2018-05-01

    Flares in the X-ray afterglow of gamma-ray bursts (GRBs) share more characteristics with the prompt emission than the afterglow, such as pulse profile and contained fluence. As a result, they are believed to originate from late-time activity of the central engine and can be used to constrain the overall energy budget. In this paper, we collect a sample of 19 long GRBs observed by Swift-XRT that contain giant flares in their X-ray afterglows. We fit this sample with a version of the magnetar propeller model, modified to include fallback accretion. This model has already successfully reproduced extended emission in short GRBs. Our best fits provide a reasonable morphological match to the light curves. However, 16 out of 19 of the fits require efficiencies for the propeller mechanism that approach 100%. The high efficiency parameters are a direct result of the high energy contained in the flares and the extreme duration of the dipole component, which forces either slow spin periods or low magnetic fields. We find that even with the inclusion of significant fallback accretion, in all but a few cases it is energetically challenging to produce prompt emission, afterglow and giant flares within the constraints of the rotational energy budget of a magnetar.

  2. SWIFT Discovery of Gamma-ray Bursts without Jet Break Feature in their X-ray Afterglows

    NASA Technical Reports Server (NTRS)

    Sato, G.; Yamazaki, R.; Sakamoto, T.; Takahashi, T; Nakazawa, K.; Nakamura, T.; Toma, K.; Hullinger, D.; Tashiro, M.; Parsons, A. M.; hide

    2007-01-01

    We analyze Swift gamma-ray bursts (GRBs) and X-ray afterglows for three GRBs with spectroscopic redshift determinations - GRB 050401, XRF 050416a, and GRB 050525a. We find that the relation between spectral peak energy and isotropic energy of prompt emissions (the Amati relation) is consistent with that for the bursts observed in pre-Swift era. However, we find that the X-ray afterglow lightcurves, which extend up to 10 - 70 days, show no sign of the jet break that is expected in the standard framework of collimated outflows. We do so by showing that none of the X-ray afterglow lightcurves in our sample satisfies the relation between the spectral and temporal indices that is predicted for the phase after jet break. The jet break time can be predicted by inverting the tight empirical relation between the peak energy of the spectrum and the collimation-corrected energy of the prompt emission (the Ghirlanda relation). We find that there are no temporal breaks within the predicted time intervals in X-ray band. This requires either that the Ghirlanda relation has a larger scatter than previously thought, that the temporal break in X-rays is masked by some additional source of X-ray emission, or that it does not happen because of some unknown reason.

  3. Light Dawns on Dark Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift data with new observations made using GROND [2] - a dedicated gamma-ray burst follow-up observation instrument, which is attached to the 2.2-metre MPG/ESO telescope at La Silla in Chile. In doing so, astronomers have conclusively solved the puzzle of the missing optical afterglow. What makes GROND exciting for the study of afterglows is its very fast response time - it can observe a burst within minutes of an alert coming from Swift using a special system called the Rapid Response Mode - and its ability to observe simultaneously through seven filters covering both the visible and near-infrared parts of the spectrum. By combining GROND data taken through these seven filters with Swift observations, astronomers were able to accurately determine the amount of light emitted by the afterglow at widely differing wavelengths, all the way from high energy X-rays to the near-infrared. The astronomers used this information to directly measure the amount of obscuring dust that the light passed through en route to Earth. Previously, astronomers had to rely on rough estimates of the dust content [3]. The team used a range of data, including their own measurements from GROND, in addition to observations made by other large telescopes including the ESO Very Large Telescope, to estimate the distances to nearly all of the bursts in their sample. While they found that a significant proportion of bursts are dimmed to about 60-80 percent of the original intensity by obscuring dust, this effect is exaggerated for the very distant bursts, letting the observer see only 30-50 percent of the light [4]. The astronomers conclude that most dark gamma-ray bursts are therefore simply those that have had their small amount of visible light completely stripped away before it reaches us. "Compared to many instruments on large telescopes, GROND is a low cost and relatively simple instrument, yet it has been able to conclusively resolve the mystery surrounding dark gamma-ray bursts," says Greiner. Notes [1] Gamma-ray bursts lasting longer than two seconds are referred to as long bursts and those with a shorter duration are known as short bursts. Long bursts, which were observed in this study, are associated with the supernova explosions of massive young stars in star-forming galaxies. Short bursts are not well understood, but are thought to originate from the merger of two compact objects such as neutron stars. [2] The Gamma-Ray burst Optical and Near-infrared Detector (GROND) was designed and built at the Max-Planck Institute for Extraterrestrial Physics in collaboration with the Tautenburg Observatory, and has been fully operational since August 2007. [3] Other studies relating to dark gamma-ray bursts have been released. Early this year, astronomers used the Subaru Telescope to observe a single gamma-ray burst, from which they hypothesised that dark gamma-ray bursts may indeed be a separate sub-class that form through a different mechanism, such as the merger of binary stars. In another study published last year using the Keck Telescope, astronomers studied the host galaxies of 14 dark GRBs, and based on the derived low redshifts they infer dust as the likely mechanism to create the dark bursts. In the new work reported here, 39 GRBs were studied, including nearly 20 dark bursts, and it is the only study in which no prior assumptions have been made and the amount of dust has been directly measured. [4] Because the afterglow light of very distant bursts is redshifted due to the expansion of the Universe, the light that left the object was originally bluer than the light we detect when it gets to Earth. Since the reduction of light intensity by dust is greater for blue and ultraviolet light than for red, this means that the overall dimming effect of dust is greater for the more distant gamma-ray bursts. This is why GROND's ability to observe near-infrared radiation makes such a difference. More information This research is presented in a paper to appear in the journal Astronomy & Astrophysics on 16 December 2010 The team is composed of: J. Greiner (Max-Planck-Institut für extraterrestrische Physik [MPE], Germany), T. Krühler (MPE, Universe Cluster, Technische Universität München), S. Klose (Thüringer Landessternwarte, Germany), P. Afonso (MPE), C. Clemens (MPE), R. Filgas (MPE), D.H. Hartmann (Clemson University, USA), A. Küpcü Yoldaş¸ (University of Cambridge, UK), M. Nardini (MPE), F. Olivares E. (MPE), A. Rau (MPE), A. Rossi (Thüringer Landessternwarte, Germany), P. Schady (MPE), and A. Updike (Clemson University, USA) ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. VLA Observations Confirm Origin of Gamma Ray Bursts in Short-Lived Stars

    NASA Astrophysics Data System (ADS)

    1998-06-01

    Radio telescope studies of the fiery afterglow of a Gamma Ray Burst have provided astronomers with the best clues yet about the origins of these tremendous cosmic cataclysms since their discovery more than 30 years ago. Observations with the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope confirm that a blast seen to occur on March 29 had its origin in a star-forming region in a distant galaxy. "There are two leading theories for the causes of Gamma Ray Bursts," said Dale Frail of the NSF National Radio Astronomy Observatory (NRAO) in Socorro, NM. "According to one theory, the blasts occur in the death throes of pairs of old stars. The other requires them to arise from exploding, massive, short-lived stars that still reside within the star-forming gas and dust from which they formed. The VLA studies of the burst show that at least this one almost certainly occurred within a star-forming region. This result also explains why half of the Gamma Ray Burst afterglows are not detected by optical telescopes." Frail heads a VLA observing team including Greg Taylor, also of NRAO, and Shri Kulkarni of Caltech, that reported its findings to the American Astronomical Society meeting in San Diego, CA. The March 29 burst was seen clearly by radio telescopes (the accompanying image is GRB 980329 as seen by the VLA) but only very faintly with optical instruments. "That is extremely important," said Taylor. "This burst was very faint at visible wavelengths, brighter at infrared wavelengths and brighter still at radio wavelengths. This is a clear indication that the exploding object was surrounded by dust. Dust is most commonly found in star-forming regions." This strongly favors one of the two leading theories about Gamma Ray Bursts over the other. One explanation for these tremendously energetic fireballs is that a pair of superdense neutron stars collides. The other is that a single, very massive star explodes in a "hypernova," more powerful than a supernova, at the end of its normal life. The hypernova explosion, scientists believe, would come only a few million years after the giant star was formed, while it is still within the cloud of gas and dust from which it formed. Neutron stars, on the other hand, are formed by supernova explosions that give a "kick" to the resulting neutron star, propelling it at high speeds. An orbiting pair of neutron stars, astronomers think, would collide only after hundreds of millions of years of orbital decay, by which time they would be far away from the gas and dust of their birthplace. "The observations already have provided crucial insight; we intend to continue observing the relic of the March 29 burst with the VLA, and in the coming months, we will gain new information that will help further refine our ideas about these fireballs," Frail said. "We're going to learn about the size and expansion rate of the fireball and test predictions made by the models." "These observations indicate the extraordinary importance of radio astronomy for providing information that can be gained in no other way about one of the major frontier areas of astrophysics," said Hugh Van Horn, Director of the NSF's Division of Astronomical Sciences. The March 29 burst (GRB 980329) was the second such blast to have its afterglow detected at radio wavelengths. Last year, the VLA made the first radio detection of a GRB afterglow, finding radio emission coming from the location of a Gamma Ray Burst on May 8, 1997 (GRB 970508). "Of the world's radio telescopes, only the VLA has the sensitivity and resolving power to quickly detect these radio afterglows of Gamma Ray Bursts and study them in detail over extended periods of time," Taylor said. "Even so, we only see the brightest one-third of them. With upgraded capabilities at the VLA, as planned by NRAO, we will see them all." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  5. KSC-04PD-2284

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-A, Cape Canaveral Air Force Station, Boeing technicians help guide the Swift spacecraft as it is lowered toward the Boeing Delta II launch vehicle for mating. Swift is scheduled to launch Nov. 17. The liftoff aboard a Boeing Delta II rocket is targeted at the opening of a one-hour launch window beginning at 12:09 p.m. EST. A first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science, Swifts three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Gamma-ray bursts are distant, yet fleeting explosions that appear to signal the births of black holes.

  6. OH density measured by PLIF in a nanosecond atmospheric pressure diffuse discharge in humid air under steep high voltage pulses

    NASA Astrophysics Data System (ADS)

    Ouaras, K.; Magne, L.; Pasquiers, S.; Tardiveau, P.; Jeanney, P.; Bournonville, B.

    2018-04-01

    The spatiotemporal distributions of the OH radical density are measured using planar laser induced fluorescence in the afterglow of a nanosecond diffuse discharge at atmospheric pressure in humid air. The diffuse discharge is generated between a pin and a grounded plate electrodes within a gap of 18 mm. The high voltage pulse applied to the pin ranges from 65 to 85 kV with a rise time of 2 ns. The specific electrical energy transferred to the gas ranges from 5 to 40 J l‑1. The influence of H2O concentration is studied from 0.5% to 1.5%. An absolute calibration of OH density is performed using a six-level transient rate equation model to simulate the dynamics of OH excitation by the laser, taking into account collisional processes during the optical pumping and the fluorescence. Rayleigh scattering measurements are used to achieve the geometrical part of the calibration. A local maximum of OH density is found in the pin area whatever the operating conditions. For 85 kV and 1% of H2O, this peak reaches a value of 2.0 × 1016 cm‑3 corresponding to 8% of H2O dissociation. The temporal decay of the spatially averaged OH density is found to be similar as in the afterglow of a homogeneous photo-triggered discharge for which a self-consistent modeling is done. These tools are then used to bring discussion elements on OH kinetics.

  7. Tunable Yellow-Red Photoluminescence and Persistent Afterglow in Phosphors Ca4LaO(BO3)3:Eu3+ and Ca4EuO(BO3)3.

    PubMed

    Chen, Zhen; Pan, Yuexiao; Xi, Luqing; Pang, Ran; Huang, Shaoming; Liu, Guokui

    2016-11-07

    In most Eu 3+ activated phosphors, only red luminescence from the 5 D 0 is obtainable, and efficiency is limited by concentration quenching. Herein we report a new phosphor of Ca 4 LaO(BO 3 ) 3 :Eu 3+ (CLBO:Eu) with advanced photoluminescence properties. The yellow luminescence emitted from the 5 D 1,2 states is not thermally quenched at room temperature. The relative intensities of the yellow and red emission bands depend strongly on the Eu 3+ doping concentration. More importantly, concentration quenching of Eu 3+ photoluminescence is absent in this phosphor, and the stoichiometric compound of Ca 4 EuO(BO 3 ) 3 emits stronger luminescence than the Eu 3+ doped compounds of CLBO:Eu; it is three times stronger than that of a commercial red phosphor of Y 2 O 3 :Eu 3+ . Another beneficial phenomenon is that ligand-to-metal charge transfer (CT) transitions occur in the long UV region with the lowest charge transfer band (CTB) stretched down to about 3.67 eV (∼330 nm). The CT transitions significantly enhance Eu 3+ excitation, and thus result in stronger photoluminescence and promote trapping of excitons for persistent afterglow emission. Along with structure characterization, optical spectra and luminescence dynamics measured under various conditions as a function of Eu 3+ doping, temperature, and excitation wavelength are analyzed for a fundamental understanding of electronic interactions and for potential applications.

  8. Where and When: Optimal Scheduling of the Electromagnetic Follow-up of Gravitational-wave Events Based on Counterpart Light-curve Models

    NASA Astrophysics Data System (ADS)

    Salafia, Om Sharan; Colpi, Monica; Branchesi, Marica; Chassande-Mottin, Eric; Ghirlanda, Giancarlo; Ghisellini, Gabriele; Vergani, Susanna D.

    2017-09-01

    The electromagnetic (EM) follow-up of a gravitational-wave (GW) event requires scanning a wide sky region, defined by the so-called “skymap,” to detect and identify a transient counterpart. We propose a novel method that exploits the information encoded in the GW signal to construct a “detectability map,” which represents the time-dependent (“when”) probability of detecting the transient at each position of the skymap (“where”). Focusing on the case of a neutron star binary inspiral, we model the associated short gamma-ray burst afterglow and macronova emission using the probability distributions of binary parameters (sky position, distance, orbit inclination, mass ratio) extracted from the GW signal as inputs. The resulting family of possible light curves is the basis for constructing the detectability map. As a practical example, we apply the method to a simulated GW signal produced by a neutron star merger at 75 Mpc whose localization uncertainty is very large (˜1500 deg2). We construct observing strategies for optical, infrared, and radio facilities based on the detectability maps, taking VST, VISTA, and MeerKAT as prototypes. Assuming limiting fluxes of r˜ 24.5, J˜ 22.4 (AB magnitudes), and 500 μ {Jy} (1.4 {GHz}) for ˜1000 s of exposure each, the afterglow and macronova emissions are successfully detected with a minimum observing time of 7, 15, and 5 hr respectively.

  9. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-04-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd3Ga3Al2O12:0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu)3Ga3Al2O12:1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal.

  10. Acceptability of an Asynchronous Learning Forum on Mobile Devices

    ERIC Educational Resources Information Center

    Chang, Chih-Kai

    2010-01-01

    Mobile learning has recently become noteworthy because mobile devices have become popular. To construct an asynchronous learning forum on mobile devices is important because an asynchronous learning forum is always an essential part of networked asynchronous distance learning. However, the input interface in handheld learning devices, which is…

  11. The Influence of Asynchronous Video Communication on Learner Social Presence: A Narrative Analysis of Four Cases

    ERIC Educational Resources Information Center

    Borup, Jered; West, Richard E.; Graham, Charles R.

    2013-01-01

    Online courses are increasingly using asynchronous video communication. However, little is known about how asynchronous video communication influences students' communication patterns. This study presents four narratives of students with varying characteristics who engaged in asynchronous video communication. The extrovert valued the efficiency of…

  12. Photometric and Spectroscopic Observations of GRB 140629A

    NASA Astrophysics Data System (ADS)

    Xin, Li-Ping; Zhong, Shu-Qing; Liang, En-Wei; Wang, Jing; Liu, Hao; Zhang, Tian-Meng; Huang, Xiao-Li; Li, Hua-Li; Qiu, Yu-Lei; Han, Xu-Hui; Wei, Jian-Yan

    2018-06-01

    We present our optical photometric and spectroscopical observations of GRB 140629A. A redshift of z = 2.275 ±0.043 is measured through the metal absorption lines in our spectroscopic data. Using our photometric data and multiple observational data from other telescopes, we show that its optical light curve is well interpreted with the standard forward shock models in the thin shell case. Its optical–X-ray afterglow spectrum is jointly fitted with a single power-law function, yielding a photon index of ‑1.90 ± 0.05. The optical extinction and neutral hydrogen absorption of the gamma-ray burst (GRB) host galaxy are negligible. The fit to the light curve with the standard models shows that the ambient density is 60 ± 9 cm‑3 and the GRB radiating efficiency is as low as ∼0.24%, likely indicating a baryonic-dominated ejecta of this GRB. This burst agrees well with the {L}{{p},{iso}}{--}{E}p{\\prime }{--}{{{Γ }}}0 relation, but confidently violates those empirical relations involving geometric corrections (or jet break time). This gives rise to an issue of the possible selection effect on these relations since the jet opening angle of this GRB is extremely narrow (0.04 rad).

  13. GRB 080319B: A Naked-Eye Stellar Blast from the Distant Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Racusin, J. L.; Burrows, D. N.

    On behalf of a large international collaboration [1], we present the unprecedented broadband observations of GRB 080319B, whose prompt optical emission peaked at a visual magnitude of 5.3, making it briefly visible with the naked eye. GRB 080319B was discovered by Swift and captured in exquisite detail by ground based wide-field telescopes, imaging the burst location from before the time of the explosion. The combination of these unique optical data with simultaneous {gamma}-ray observations provides powerful diagnostics of the detailed physics of this explosion within seconds of its formation. We show that the prompt optical and {gamma}-ray emissions from thismore » event arise from different spectral components within the same physical region located at a large distance from the source, implying an extremely relativistic outflow. Our observations also provide good evidence for a bright reverse shock component. The chromatic behavior of the broadband afterglow is consistent with viewing the GRB down the very narrow inner core of a two-component jet that is expanding into a wind-like environment consistent with the massive star origin of long GRBs.« less

  14. Interface For Fault-Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Shaver, Charles; Williamson, Michael

    1989-01-01

    Interface unit and controller emulator developed for research on electronic helicopter-flight-control systems equipped with artificial intelligence. Interface unit interrupt-driven system designed to link microprocessor-based, quadruply-redundant, asynchronous, ultra-reliable, fault-tolerant control system (controller) with electronic servocontrol unit that controls set of hydraulic actuators. Receives digital feedforward messages from, and transmits digital feedback messages to, controller through differential signal lines or fiber-optic cables (thus far only differential signal lines have been used). Analog signals transmitted to and from servocontrol unit via coaxial cables.

  15. Development of a Microprocessor-Based Asynchronous Data Communications Line Tester.

    DTIC Science & Technology

    1981-12-01

    either RS232 or 20 mA current loop 13. Current loop optically isolated 14. Current loop selectable for either active or pasive mode 15. Address...Executin Invoking the execution of the software is therefore a matter of power-up and reset. The software will wait for a response from the console (any key...SIO has two channels as previously mentioned. Addressing the SIO then is a matter of addressing these two channels. The port addrecses are user defined

  16. Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2001-01-01

    The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results and some concluding remarks regarding future applications.

  17. Vibrational and Rotational CARS Measurements of Nitrogen in Afterglow of Streamer Discharge in Atmospheric Pressure Fuel/Air Mixtures

    DTIC Science & Technology

    2012-01-01

    in a variety of different ignition regimes, including pulsed detonation engines ( PDEs ) and automobile engines, with experiments demonstrating TPI to...Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures This article...DATE 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Vibrational and rotational CARS measurements of

  18. BOOTES and GTC observations of cosmic gamma-ray bursts and their progenitors

    NASA Astrophysics Data System (ADS)

    Castro-Tirado, Alberto J.

    2016-07-01

    We will summarize the follow-up observations of gamma-ray bursts performed worldwide by the BOOTES Network of robotic telescopes (with some of the data being contemporaneous to the prompt emission) leading to the discovery of many afterglows. Complementary data has been also obtained by the 10.4m GTC telescope in La Palma (mainly spectroscopy), with one of them being the highest extinguished afterglow detected to date.

  19. Luminescence studies of a combustion-synthesized blue-green BaAlxOy:Eu2+,Dy3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Bem, Daniel B.; Dejene, F. B.; Luyt, A. S.; Swart, H. C.

    2012-05-01

    Blue-green emitting BaAlxOy:Eu2+,Dy3+ phosphor was synthesized by the combustion method. The influence of various parameters on the structural, photoluminescence (PL) and thermoluminescence (TL) properties of the phosphor were investigated by various techniques. Phosphor nanocrystallites with high brightness were obtained without significantly changing the crystalline structure of the host. In the PL studies, broad-band excitation and emission spectra were observed with major peaks at 340 and 505 nm, respectively. The observed afterglow is ascribed to the generation of suitable traps due to the presence of the co-doped Dy3+ ions. Though generally broad, the peak structure of the TL glow curves obtained after irradiation with UV light was non-uniform with suggesting the contribution to afterglow from multiple events at the luminescent centers. Further insight on the afterglow behavior of the phosphor was deduced from TL decay results.

  20. A Search for Early High-Energy Afterglows in BATSE Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2003-01-01

    The scope of this project was to perform a detailed search for the early high-energy afterglow component of gamma-ray bursts (GRBs) in the BATSE GRB data archive. GRBs are believed to be the product of shock waves generated in a relativistic outflow from the demise of extremely massive stars and/or binary neutron star mergers. The outflow undeniably encounters the ambient medium of the progenitor object and another shock wave is set up. A forward shock propagates into the medium and a reverse shock propagates through the ejecta. This "external" shock dissipates the kinetic energy of the ejecta in the form of radiation via synchrotron losses and slows the outflow eventually to a non-relativistic state. Radiation from the forward external shock is therefore expected to be long-lived, lasting days, weeks, and even months. This radiation is referred to as the 'afterglow'.

  1. Constraining chameleon field theories using the GammeV afterglow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhye, A.; /Chicago U., EFI /KICP, Chicago; Steffen, J.H.

    2009-11-01

    The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and photons. Here we present a detailed calculation of the chameleon afterglow rate underlying these constraints. The dependence of GammeV constraints on various assumptions in the calculation is studied. We discuss GammeV-CHASE, a second-generation GammeV experiment, which will improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow rate, we forecast model-independent constraints achievable by GammeV-CHASE. We then apply these constraints to a variety of chameleon models, including quartic chameleons and chameleon dark energy models. The new experiment will be able to probemore » a large region of parameter space that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of distant astrophysical objects, and bounds on the variation of the fine structure constant.« less

  2. Pharmacists' perception of synchronous versus asynchronous distance learning for continuing education programs.

    PubMed

    Buxton, Eric C

    2014-02-12

    To evaluate and compare pharmacists' satisfaction with the content and learning environment of a continuing education program series offered as either synchronous or asynchronous webinars. An 8-lecture series of online presentations on the topic of new drug therapies was offered to pharmacists in synchronous and asynchronous webinar formats. Participants completed a 50-question online survey at the end of the program series to evaluate their perceptions of the distance learning experience. Eighty-two participants completed the survey instrument (41 participants from the live webinar series and 41 participants from the asynchronous webinar series.) Responses indicated that while both groups were satisfied with the program content, the asynchronous group showed greater satisfaction with many aspects of the learning environment. The synchronous and asynchronous webinar participants responded positively regarding the quality of the programming and the method of delivery, but asynchronous participants rated their experience more positively overall.

  3. Pharmacists’ Perception of Synchronous Versus Asynchronous Distance Learning for Continuing Education Programs

    PubMed Central

    2014-01-01

    Objective. To evaluate and compare pharmacists’ satisfaction with the content and learning environment of a continuing education program series offered as either synchronous or asynchronous webinars. Methods. An 8-lecture series of online presentations on the topic of new drug therapies was offered to pharmacists in synchronous and asynchronous webinar formats. Participants completed a 50-question online survey at the end of the program series to evaluate their perceptions of the distance learning experience. Results. Eighty-two participants completed the survey instrument (41 participants from the live webinar series and 41 participants from the asynchronous webinar series.) Responses indicated that while both groups were satisfied with the program content, the asynchronous group showed greater satisfaction with many aspects of the learning environment. Conclusion. The synchronous and asynchronous webinar participants responded positively regarding the quality of the programming and the method of delivery, but asynchronous participants rated their experience more positively overall. PMID:24558276

  4. Comparing the force ripple during asynchronous and conventional stimulation.

    PubMed

    Downey, Ryan J; Tate, Mark; Kawai, Hiroyuki; Dixon, Warren E

    2014-10-01

    Asynchronous stimulation has been shown to reduce fatigue during electrical stimulation; however, it may also exhibit a force ripple. We quantified the ripple during asynchronous and conventional single-channel transcutaneous stimulation across a range of stimulation frequencies. The ripple was measured during 5 asynchronous stimulation protocols, 2 conventional stimulation protocols, and 3 volitional contractions in 12 healthy individuals. Conventional 40 Hz and asynchronous 16 Hz stimulation were found to induce contractions that were as smooth as volitional contractions. Asynchronous 8, 10, and 12 Hz stimulation induced contractions with significant ripple. Lower stimulation frequencies can reduce fatigue; however, they may also lead to increased ripple. Future efforts should study the relationship between force ripple and the smoothness of the evoked movements in addition to the relationship between stimulation frequency and NMES-induced fatigue to elucidate an optimal stimulation frequency for asynchronous stimulation. © 2014 Wiley Periodicals, Inc.

  5. Synchronous Office Hours in an Asynchronous Course: Making the Connection

    ERIC Educational Resources Information Center

    Gibbons-Kunka, Beatrice

    2017-01-01

    The notion of synchronous office hours in an asynchronous course seems counterintuitive. After all, one of the tenets of asynchronous education is to not require students to be online and participating at any time during the course. Having taught higher education online asynchronous courses for twenty years, the researcher experimented with online…

  6. Architecture design and performance evaluation of multigranularity optical networks based on optical code division multiplexing

    NASA Astrophysics Data System (ADS)

    Huang, Shaowei; Baba, Ken-Ichi; Murata, Masayuki; Kitayama, Ken-Ichi

    2006-12-01

    In traditional lambda-based multigranularity optical networks, a lambda is always treated as the basic routing unit, resulting in low wavelength utilization. On the basis of optical code division multiplexing (OCDM) technology, a novel OCDM-based multigranularity optical cross-connect (MG-OXC) is proposed. Compared with the traditional lambda-based MG-OXC, its switching capability has been extended to support fiber switching, waveband switching, lambda switching, and OCDM switching. In a network composed of OCDM-based MG-OXCs, a single wavelength can be shared by distinct label switched paths (LSPs) called OCDM-LSPs, and OCDM-LSP switching can be implemented in the optical domain. To improve the network flexibility for an OCDM-LSP provisioning, two kinds of switches enabling hybrid optical code (OC)-wavelength conversion are designed. Simulation results indicate that a blocking probability reduction of 2 orders can be obtained by deploying only five OCs to a single wavelength. Furthermore, compared with time-division-multiplexing LSP (TDM-LSP), owing to the asynchronous accessibility and the OC conversion, OCDM-LSPs have been shown to permit a simpler switch architecture and achieve better blocking performance than TDM-LSPs.

  7. Optical diagnostics in gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Woodruff, Steven D.

    1999-01-01

    Deregulation of the power industry and increasingly tight emission controls are pushing gas turbine manufacturers to develop engines operating at high pressure for efficiency and lean fuel mixtures to control NOx. This combination also gives rise to combustion instabilities which threaten engine integrity through acoustic pressure oscillations and flashback. High speed imaging and OH emission sensors have been demonstrated to be invaluable tools in characterizing and monitoring unstable combustion processes. Asynchronous imaging technique permit detailed viewing of cyclic flame structure in an acoustic environment which may be modeled or utilized in burner design . The response of the flame front to the acoustic pressure cycle may be tracked with an OH emission monitor using a sapphire light pipe for optical access. The OH optical emission can be correlated to pressure sensor data for better understanding of the acoustical coupling of the flame. Active control f the combustion cycle can be implemented using an OH emission sensor for feedback.

  8. Secular Decrease of the Spin Period of the White Dwarf in the Asynchronous AM HER Binary RX J1940.1-1025

    NASA Astrophysics Data System (ADS)

    Staubert, Ruediger

    We propse to perform four 1 day observations of the near-synchronous AM Her binary RX J1940.1-1025, spread equally over Cycle 6, and at phases near 0.25 with respect to its 50 day beat period. The orbital period is 12116.3 s and the spin period of the white dawarf is 12150.7 s. We have evidence for a secular decrease of this spin period at a rate of 5 10^(-9), which is mainly based on optical data. X-ray data (from ROSAT and RXTE) are sparse, but indicate that there might be a systematic phase shift of a feature (the so-called "trough") in the flux profiles between optical and X-rays. If this shift is confirmed and measured accurately, optical and X-ray data can be confidently combined and the synchronisation time scale (about 200 years) determined.

  9. Microspectrometers: an industry and instrumentation overview

    NASA Astrophysics Data System (ADS)

    Neece, Gregory A.

    2008-08-01

    Microspectrometers, miniature spectrometers, portable spectrometers, or Fiber Optic Spectrometers are some of the names typically given to the class small spectrometers that are derived from simple, fixed optics, and low cost detector arrays. The author will use these terms interchangeably. This class of instrument has been available for over 18 years, gaining industry acceptance with each year. From a very basic optical platform to sophisticated instrumentation for scientific investigation and process control, this class of instrument has evolved substantially since its introduction to the market. For instance it is now possible to cover the range from 200 - 2,500 nm utilizing only two channels of spectrometers with either synchronous or asynchronous channel control. On board processing and memory have enabled the instruments to become fully automated, stand alone sensors communicating with their environment via analog, digital, USB2 and even wireless protocols. New detectors have entered the market enabling solutions "tuned" to the demands of specific applications.

  10. An epigenetic state associated with areas of gene duplication

    PubMed Central

    Gimelbrant, Alexander A.; Chess, Andrew

    2006-01-01

    Asynchronous DNA replication is an epigenetically determined feature found in all cases of monoallelic expression, including genomic imprinting, X-inactivation, and random monoallelic expression of autosomal genes such as immunoglobulins and olfactory receptor genes. Most genes of the latter class were identified in experiments focused on genes functioning in the chemosensory and immune systems. We performed an unbiased survey of asynchronous replication in the mouse genome, excluding known asynchronously replicated genes. Fully 10% (eight of 80) of the genes tested exhibited asynchronous replication. A common feature of the newly identified asynchronously replicated areas is their proximity to areas of tandem gene duplication. Testing of other clustered areas supported the idea that such regions are enriched with asynchronously replicated genes. PMID:16687731

  11. Electron-temperature dependence of the recombination of H3O+(H2O)n ions with electrons

    NASA Technical Reports Server (NTRS)

    Johnsen, R.

    1993-01-01

    The T(e) dependence of the recombination of H3O+(H2O)n cluster-ions with electrons has been measured in an afterglow experiment in which the electrons were heated by a radio-frequency electric field. The recombination coefficients were found to vary with T(e) as about T(e) exp -1/2 in better agreement with theoretical expectations than earlier results of microwave-afterglow measurements.

  12. Multigranular integrated services optical network

    NASA Astrophysics Data System (ADS)

    Yu, Oliver; Yin, Leping; Xu, Huan; Liao, Ming

    2006-12-01

    Based on all-optical switches without requiring fiber delay lines and optical-electrical-optical interfaces, the multigranular optical switching (MGOS) network integrates three transport services via unified core control to efficiently support bursty and stream traffic of subwavelength to multiwavelength bandwidth. Adaptive robust optical burst switching (AR-OBS) aggregates subwavelength burst traffic into asynchronous light-rate bursts, transported via slotted-time light paths established by fast two-way reservation with robust blocking recovery control. Multiwavelength optical switching (MW-OS) decomposes multiwavelength stream traffic into a group of timing-related light-rate streams, transported via a light-path group to meet end-to-end delay-variation requirements. Optical circuit switching (OCS) simply converts wavelength stream traffic from an electrical-rate into a light-rate stream. The MGOS network employs decoupled routing, wavelength, and time-slot assignment (RWTA) and novel group routing and wavelength assignment (GRWA) to select slotted-time light paths and light-path groups, respectively. The selected resources are reserved by the unified multigranular robust fast optical reservation protocol (MG-RFORP). Simulation results show that elastic traffic is efficiently supported via AR-OBS in terms of loss rate and wavelength utilization, while connection-oriented wavelength traffic is efficiently supported via wavelength-routed OCS in terms of connection blocking and wavelength utilization. The GRWA-tuning result for MW-OS is also shown.

  13. Implications from the Upper Limit of Radio Afterglow Emission of FRB 131104/Swift J0644.5-5111

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhang, Bing

    2017-02-01

    A γ-ray transient, Swift J0644.5-5111, has been claimed to be associated with FRB 131104. However, a long-term radio imaging follow-up observation only placed an upper limit on the radio afterglow flux of Swift J0644.5-5111. Applying the external shock model, we perform a detailed constraint on the afterglow parameters for the FRB 131104/Swift J0644.5-5111 system. We find that for the commonly used microphysics shock parameters (e.g., {ɛ }e=0.1, {ɛ }B=0.01, and p = 2.3), if the fast radio burst (FRB) is indeed cosmological as inferred from its measured dispersion measure (DM), the ambient medium number density should be ≤slant {10}-3 {{cm}}-3, which is the typical value for a compact binary merger environment but disfavors a massive star origin. Assuming a typical ISM density, one would require that the redshift of the FRB be much smaller than the value inferred from DM (z\\ll 0.1), implying a non-cosmological origin of DM. The constraints are much looser if one adopts smaller {ɛ }B and {ɛ }e values, as observed in some gamma-ray burst afterglows. The FRB 131104/Swift J0644.5-5111 association remains plausible. We critically discuss possible progenitor models for the system.

  14. Off-axis Gamma-ray Burst Afterglow Modeling Based on a Two-dimensional Axisymmetric Hydrodynamics Simulation

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik; Zhang, Weiqun; MacFadyen, Andrew

    2010-10-01

    Starting as highly relativistic collimated jets, gamma-ray burst outflows gradually slow down and become nonrelativistic spherical blast waves. Although detailed analytical solutions describing the afterglow emission received by an on-axis observer during both the early and late phases of the outflow evolution exist, a calculation of the received flux during the intermediate phase and for an off-axis observer requires either a more simplified analytical model or direct numerical simulations of the outflow dynamics. In this paper, we present light curves for off-axis observers covering the long-term evolution of the blast wave, calculated from a high-resolution two-dimensional relativistic hydrodynamics simulation using a synchrotron radiation model. We compare our results to earlier analytical work and calculate the consequence of the observer angle with respect to the jet axis both for the detection of orphan afterglows and for jet break fits to the observational data. We confirm earlier results in the literature finding that only a very small number of local type Ibc supernovae can harbor an orphan afterglow. For off-axis observers, the observable jet break can be delayed up to several weeks, potentially leading to overestimation of the beaming-corrected total energy. In addition we find that, when using our off-axis light curves to create synthetic Swift X-ray data, jet breaks are likely to remain hidden in the data.

  15. Recombination of electrons with water cluster ions in the afterglow of a high-voltage nanosecond discharge

    NASA Astrophysics Data System (ADS)

    Popov, M. A.; Kochetov, I. V.; Starikovskiy, A. Yu; Aleksandrov, N. L.

    2018-07-01

    The results of the experimental and numerical study of high-voltage nanosecond discharge afterglow in H2O:N2 and H2O:O2 mixtures are presented for room temperature and at pressures from 2 to 5 Torr. Time-resolved electron density during the plasma decay was measured with a microwave interferometer for initial electron densities in the range between 1  ×  1012 and 2  ×  1012 cm‑3. Calculations showed that the plasma decay was controlled by recombination of thermalized electrons with H3O+(H2O) n ions for n from 0 to 4. Agreement between calculated and measured electron density histories was obtained only when using the recombination coefficients measured in the pulsed plasma afterglow experiments. The electron densities calculated using the data from the storage ring experiments were consistently greater than the values measured in this work for all conditions. It was concluded that the measurements of recombination coefficients for H3O+(H2O) n ions in the pulsed plasma afterglow were more appropriate for simulating the properties of high-density plasmas with high fractions of H2O, O2 and N2, such as discharge plasmas in water vapor and in humid air instead of the measurements in the storage ring experiments.

  16. Determination of Cosmological Parameters from GRB Correlation between E_iso (gamma) and Afterglow Flux

    NASA Astrophysics Data System (ADS)

    Hannachi, Zitouni; Guessoum, Nidhal; Azzam, Walid

    2016-07-01

    Context: We use the correlation relations between the energy emitted by the GRBs in their prompt phases and the X-ray afterglow fluxes, in an effort to constrain cosmological parameters and construct a Hubble diagram at high redshifts, i.e. beyond those found in Type Ia supernovae. Methods: We use a sample of 128 Swift GRBs, which we have selected among more than 800 ones observed until July 2015. The selection is based on a few observational constraints: GRB flux higher than 0.4 photons/cm^2/s in the band 15-150 keV; spectrum fitted with simple power law; redshift accurately known and given; and X-ray afterglow observed and flux measured. The statistical method of maximum likelihood is then used to determine the best cosmological parameters (Ω_M, Ω_L) that give the best correlation between the isotropic gamma energies E_{iso} and the afterglow fluxes at the break time t_{b}. The χ^2 statistical test is also used as a way to compare results from two methods. Results & Conclusions: Although the number of GRBs with high redshifts is rather small, and despite the notable dispersion found in the data, the results we have obtained are quite encouraging and promising. The values of the cosmological parameters obtained here are close to those currently used.

  17. A Bulk Comptonization Model for the Prompt GRM Emission

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Mastichiadis, A.

    2010-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approximately 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor F and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model are sources of potentially very rich time evolution which we have began to explore. In particular, one can this way obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the nu F(sub nu) spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  18. Modeling the Multiband Afterglows of GRB 060614 and GRB 060908: Further Evidence for a Double Power-law Hard Electron Energy Spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Xiong, S. L.; Song, L. M.

    2018-04-01

    Electrons accelerated in relativistic collisionless shocks are usually assumed to follow a power-law energy distribution with an index of p. Observationally, although most gamma-ray bursts (GRBs) have afterglows that are consistent with p > 2, there are still a few GRBs suggestive of a hard (p < 2) electron energy spectrum. Our previous work showed that GRB 091127 gave strong evidence for a double power-law hard electron energy (DPLH) spectrum with 1 < p 1 < 2, p 2 > 2 and an “injection break” assumed as γ b ∝ γ q in the highly relativistic regime, where γ is the bulk Lorentz factor of the jet. In this paper, we show that GRB 060614 and GRB 060908 provide further evidence for such a DPLH spectrum. We interpret the multiband afterglow of GRB 060614 with the DPLH model in a homogeneous interstellar medium by taking into account a continuous energy injection process, while, for GRB 060908, a wind-like circumburst density profile is used. The two bursts, along with GRB 091127, suggest a similar behavior in the evolution of the injection break, with q ∼ 0.5. Whether this represents a universal law of the injection break remains uncertain and more afterglow observations such as these are needed to test this conjecture.

  19. A Phenomenological Synapse Model for Asynchronous Neurotransmitter Release

    PubMed Central

    Wang, Tao; Yin, Luping; Zou, Xiaolong; Shu, Yousheng; Rasch, Malte J.; Wu, Si

    2016-01-01

    Neurons communicate with each other via synapses. Action potentials cause release of neurotransmitters at the axon terminal. Typically, this neurotransmitter release is tightly time-locked to the arrival of an action potential and is thus called synchronous release. However, neurotransmitter release is stochastic and the rate of release of small quanta of neurotransmitters can be considerably elevated even long after the ceasing of spiking activity, leading to asynchronous release of neurotransmitters. Such asynchronous release varies for tissue and neuron types and has been shown recently to be pronounced in fast-spiking neurons. Notably, it was found that asynchronous release is enhanced in human epileptic tissue implicating a possibly important role in generating abnormal neural activity. Current neural network models for simulating and studying neural activity virtually only consider synchronous release and ignore asynchronous transmitter release. Here, we develop a phenomenological model for asynchronous neurotransmitter release, which, on one hand, captures the fundamental features of the asynchronous release process, and, on the other hand, is simple enough to be incorporated in large-size network simulations. Our proposed model is based on the well-known equations for short-term dynamical synaptic interactions and includes an additional stochastic term for modeling asynchronous release. We use experimental data obtained from inhibitory fast-spiking synapses of human epileptic tissue to fit the model parameters, and demonstrate that our model reproduces the characteristics of realistic asynchronous transmitter release. PMID:26834617

  20. Debris Object Orbit Initialization Using the Probabilistic Admissible Region with Asynchronous Heterogeneous Observations

    NASA Astrophysics Data System (ADS)

    Zaidi, W. H.; Faber, W. R.; Hussein, I. I.; Mercurio, M.; Roscoe, C. W. T.; Wilkins, M. P.

    One of the most challenging problems in treating space debris is the characterization of the orbit of a newly detected and uncorrelated measurement. The admissible region is defined as the set of physically acceptable orbits (i.e. orbits with negative energies) consistent with one or more measurements of a Resident Space Object (RSO). Given additional constraints on the orbital semi-major axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a Probabilistic Admissible Region (PAR), a concept introduced in 2014 as a Monte Carlo uncertainty representation approach using topocentric spherical coordinates. Ultimately, a PAR can be used to initialize a sequential Bayesian estimator and to prioritize orbital propagations in a multiple hypothesis tracking framework such as Finite Set Statistics (FISST). To date, measurements used to build the PAR have been collected concurrently and by the same sensor. In this paper, we allow measurements to have different time stamps. We also allow for non-collocated sensor collections; optical data can be collected by one sensor at a given time and radar data collected by another sensor located elsewhere. We then revisit first principles to link asynchronous optical and radar measurements using both the conservation of specific orbital energy and specific orbital angular momentum. The result from the proposed algorithm is an implicit-Bayesian and non-Gaussian representation of orbital state uncertainty.

  1. Nitric oxide kinetics in the afterglow of a diffuse plasma filament

    NASA Astrophysics Data System (ADS)

    Burnette, D.; Montello, A.; Adamovich, I. V.; Lempert, W. R.

    2014-08-01

    A suite of laser diagnostics is used to study kinetics of vibrational energy transfer and plasma chemical reactions in a nanosecond pulse, diffuse filament electric discharge and afterglow in N2 and dry air at 100 Torr. Laser-induced fluorescence of NO and two-photon absorption laser-induced fluorescence of O and N atoms are used to measure absolute, time-resolved number densities of these species after the discharge pulse, and picosecond coherent anti-Stokes Raman spectroscopy is used to measure time-resolved rotational temperature and ground electronic state N2(v = 0-4) vibrational level populations. The plasma filament diameter, determined from plasma emission and NO planar laser-induced fluorescence images, remains nearly constant after the discharge pulse, over a few hundred microseconds, and does not exhibit expansion on microsecond time scale. Peak temperature in the discharge and the afterglow is low, T ≈ 370 K, in spite of significant vibrational nonequilibrium, with peak N2 vibrational temperature of Tv ≈ 2000 K. Significant vibrational temperature rise in the afterglow is likely caused by the downward N2-N2 vibration-vibration (V-V) energy transfer. Simple kinetic modeling of time-resolved N, O, and NO number densities in the afterglow, on the time scale longer compared to relaxation and quenching time of excited species generated in the plasma, is in good agreement with the data. In nitrogen, the N atom density after the discharge pulse is controlled by three-body recombination and radial diffusion. In air, N, NO and O concentrations are dominated by the reverse Zel'dovich reaction, N + NO → N2 + O, and ozone formation reaction, O + O2 + M → O3 + M, respectively. The effect of vibrationally excited nitrogen molecules and excited N atoms on NO formation kinetics is estimated to be negligible. The results suggest that NO formation in the nanosecond pulse discharge is dominated by reactions of excited electronic states of nitrogen, occurring on microsecond time scale.

  2. Polarization of gamma-ray burst afterglows in the synchrotron self-Compton process from a highly relativistic jet

    NASA Astrophysics Data System (ADS)

    Lin, Hai-Nan; Li, Xin; Chang, Zhe

    2017-04-01

    Linear polarization has been observed in both the prompt phase and afterglow of some bright gamma-ray bursts (GRBs). Polarization in the prompt phase spans a wide range, and may be as high as ≳ 50%. In the afterglow phase, however, it is usually below 10%. According to the standard fireball model, GRBs are produced by synchrotron radiation and Compton scattering process in a highly relativistic jet ejected from the central engine. It is widely accepted that prompt emissions occur in the internal shock when shells with different velocities collide with each other, and the magnetic field advected by the jet from the central engine can be ordered on a large scale. On the other hand, afterglows are often assumed to occur in the external shock when the jet collides with interstellar medium, and the magnetic field produced by the shock through, for example, Weibel instability, is possibly random. In this paper, we calculate the polarization properties of the synchrotron self-Compton process from a highly relativistic jet, in which the magnetic field is randomly distributed in the shock plane. We also consider the generalized situation where a uniform magnetic component perpendicular to the shock plane is superposed on the random magnetic component. We show that it is difficult for the polarization to be larger than 10% if the seed electrons are isotropic in the jet frame. This may account for the observed upper limit of polarization in the afterglow phase of GRBs. In addition, if the random and uniform magnetic components decay with time at different speeds, then the polarization angle may change 90° during the temporal evolution. Supported by Fundamental Research Funds for the Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11375203, 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)

  3. VLT/X-Shooter spectroscopy of the afterglow of the Swift GRB 130606A. Chemical abundances and reionisation at z ~ 6

    NASA Astrophysics Data System (ADS)

    Hartoog, O. E.; Malesani, D.; Fynbo, J. P. U.; Goto, T.; Krühler, T.; Vreeswijk, P. M.; De Cia, A.; Xu, D.; Møller, P.; Covino, S.; D'Elia, V.; Flores, H.; Goldoni, P.; Hjorth, J.; Jakobsson, P.; Krogager, J.-K.; Kaper, L.; Ledoux, C.; Levan, A. J.; Milvang-Jensen, B.; Sollerman, J.; Sparre, M.; Tagliaferri, G.; Tanvir, N. R.; de Ugarte Postigo, A.; Vergani, S. D.; Wiersema, K.; Datson, J.; Salinas, R.; Mikkelsen, K.; Aghanim, N.

    2015-08-01

    Context. The reionisation of the Universe is a process that is thought to have ended around z ~ 6, as inferred from spectroscopy of distant bright background sources, such as quasars (QSO) and gamma-ray burst (GRB) afterglows. Furthermore, spectroscopy of a GRB afterglow provides insight in its host galaxy, which is often too dim and distant to study otherwise. Aims: For the Swift GRB 130606A at z = 5.913 we have obtained a high S/N spectrum covering the full optical and near-IR wavelength region at intermediate spectral resolution with VLT/X-Shooter. We aim to measure the degree of ionisation of the intergalactic medium (IGM) between z = 5.02-5.84 and to study the chemical abundance pattern and dust content of its host galaxy. Methods: We estimated the UV continuum of the GRB afterglow using a power-law extrapolation, then measured the flux decrement due to absorption at Lyα,β, and γ wavelength regions. Furthermore, we fitted the shape of the red damping wing of Lyα. The hydrogen and metal absorption lines formed in the host galaxy were fitted with Voigt profiles to obtain column densities. We investigated whether ionisation corrections needed to be applied. Results: Our measurements of the Lyα-forest optical depth are consistent with previous measurements of QSOs, but have a much smaller uncertainty. The analysis of the red damping wing yields a neutral fraction xH i< 0.05 (3σ). We obtain column density measurements of H, Al, Si, and Fe; for C, O, S and Ni we obtain limits. The ionisation due to the GRB is estimated to be negligible (corrections <0.03 dex), but larger corrections may apply due to the pre-existing radiation field (up to 0.4 dex based on sub-DLA studies). Assuming that [ Si/Fe ] = +0.79 ± 0.13 is due to dust depletion, the dust-to-metal ratio is similar to the Galactic value. Conclusions: Our measurements confirm that the Universe is already predominantly ionised over the redshift range probed in this work, but was slightly more neutral at z> 5.6. GRBs are useful probes of the ionisation state of the IGM in the early Universe, but because of internal scatter we need a larger statistical sample to draw robust conclusions. The high [Si/Fe] in the host can be due to dust depletion, α-element enhancement, or a combination of both. The very high value of [ Al/Fe ] = 2.40 ± 0.78 might be due to a proton capture process and is probably connected to the stellar population history. We estimate the host metallicity to be -1.7 < [ M/H ] < -0.9 (2%-13% of solar). Based on observations carried out under prog. ID 091.C-0934(C) with the X-Shooter spectrograph installed at the Cassegrain focus of the Very Large Telescope (VLT), Unit 2 - Kueyen, operated by the European Southern Observatory (ESO) on Cerro Paranal, Chile. Partly based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Partly based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, under programme A26TAC_63.Appendix A is available in electronic form at http://www.aanda.orgThe reduced spectrum (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A139

  4. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.

  5. Periodic Eclipse Variations in Asynchronous Polar V1432 Aql: Evidence of a Shifting Threading Region

    NASA Technical Reports Server (NTRS)

    Littlefield, Colin; Mukai, Koji; Mumme, Raymond; Cain, Ryan; Magno, Katrina C.; Corpuz, Taylor; Sandefur, Davis; Boyd, David; Cook, Michael; Ulowetz, Joseph; hide

    2015-01-01

    We report the results of a 28-month photometric campaign studying V1432 Aql, the only known eclipsing, asynchronous polar. Our data show that both the residual eclipse flux and eclipse O-C timings vary strongly as a function of the spin-orbit beat period. Relying upon a new model of the system, we show that cyclical changes in the location of the threading region along the ballistic trajectory of the accretion stream could produce both effects. This model predicts that the threading radius is variable, in contrast to previous studies which have assumed a constant threading radius. Additionally, we identify a very strong photometric maximum which is only visible for half of the beat cycle. The exact cause of this maximum is unclear, but we consider the possibility that it is the optical counterpart of the third accreting polecap proposed by Rana et al. Finally, the rate of change of the white dwarf's spin period is consistent with it being proportional to the difference between the spin and orbital periods, implying that the spin period is approaching the orbital period asymptotically.

  6. RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-10-01

    We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.

  7. Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.

    PubMed

    Gedalin, M; Balikhin, M A; Eichler, D

    2008-02-01

    Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows.

  8. The Production and Evolution of Atomic Oxygen in the Afterglow of Streamer Discharge in Atmospheric Pressure Fuel/Air Mixtures

    DTIC Science & Technology

    2013-07-02

    in streamer discharge afterglow in a variety of fueVair mixtures in order to account for the 0 reaction pathways in transient plasma ignition. It is... plasma ignition (TPI), the use of streamers for ignition in combustion engines, holds great promise for improving performance. TPI has been tested...standard spark gap or arc ignition methods [1-4]. These improvements to combustion allow increasing power and efficiency in existing engines such as

  9. KSC-04pd2121

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower at Launch Pad 17-A on Cape Canaveral Air Force Station, workers attach the upper second stage to the lower first stage of the Boeing Delta II launch vehicle. The rocket is the launch vehicle for the Swift spacecraft and its Gamma-Ray Burst Mission, now scheduled for liftoff Nov. 8. Swift is a medium-class Explorer mission managed by NASA’s Goddard Space Flight Center in Greenbelt, Md. It is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. KSC is responsible for Swift’s integration with the Boeing Delta II rocket and the countdown management on launch day.

  10. Designing Asynchronous Communication Tools for Optimization of Patient-Clinician Coordination

    PubMed Central

    Eschler, Jordan; Liu, Leslie S.; Vizer, Lisa M.; McClure, Jennifer B.; Lozano, Paula; Pratt, Wanda; Ralston, James D.

    2015-01-01

    Asynchronous communication outside the clinical setting has both enriched and complicated patient-clinician interactions. Many patients can now interact with a patient portal 24 hours a day, asking questions of their clinicians via secure message, checking lab results, ordering medication refills, or making appointments. However, the mode of communication (asynchronous) and the nature of the interaction (lacking tone or body language) strip valuable information from each side of patient-clinician asynchronous communication. Using interviews with 34 individuals who actively manage a chronic illness of their own, or for a child or partner, we elicited narratives about patients’ experiences and expectations for using asynchronous communication to address medical issues with their clinicians. Based on these perspectives, we present opportunities for designing asynchronous communication tools to better facilitate understanding of and coordination around care activities between patients and clinicians. PMID:26958188

  11. Asynchronous Video Streaming vs. Synchronous Videoconferencing for Teaching a Pharmacogenetic Pharmacotherapy Course

    PubMed Central

    2007-01-01

    Objectives To compare students' performance and course evaluations for a pharmacogenetic pharmacotherapy course taught by synchronous videoconferencing method via the Internet and for the same course taught via asynchronous video streaming via the Internet. Methods In spring 2005, a pharmacogenetic therapy course was taught to 73 students located on Amarillo, Lubbock, and Dallas campuses using synchronous videoconferencing, and in spring 2006, to 78 students located on the same 3 campuses using asynchronous video streaming. A course evaluation was administered to each group at the end of the courses. Results Students in the asynchronous setting had final course grades of 89% ± 7% compared to the mean final course grade of 87% ± 7% in the synchronous group (p = 0.05). Regardless of which technology was used, average course grades did not differ significantly among the 3 campus sites. Significantly more of the students in the asynchronous setting agreed (57%) with the statement that they could read the lecture notes and absorb the content on their own without attending the class than students in the synchronous class (23%; chi-square test; p < 0.001). Conclusions Students in both asynchronous and synchronous settings performed well. However, students taught using asynchronous videotaped lectures had lower satisfaction with the method of content delivery, and preferred live interactive sessions or a mix of interactive sessions and asynchronous videos over delivery of content using the synchronous or asynchronous method alone. PMID:17429516

  12. Global Properties of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by Swift

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takanori; Yamazaki, Ryo; Barthelmy, Scott; Gehrels, Neil; Osborne, Julian; Hullinger, Derek; Sato, Goro; Barbier, Louis; Cummings, Jay; Fenimore, Ed; Krimm, Hans; Lamb, Don; Markwardt, Craig; Palmer, David; Parsons, Ann; Stamatikos, Michael; Tueller, Jack

    Takanori Sakamoto, Taka.Sakamoto@nasa.gov NASA Goddard Space Flight Center, Greenbelt, Maryland, United States Ryo Yamazaki, ryo@theo.phys.sci.hiroshima-u.ac.jp Hiroshima University, Higashi-Hiroshima, Japan Scott Barthelmy, scott@milkyway.gsfc.nasa.gov NASA GSFC, Greenbelt, Maryland, United States Neil Gehrels, gehrels@milkyway.gsfc.nasa.gov NASA Goddard Space Flight Center, Greenbelt, Maryland, United States Julian Osborne, julo@star.le.ac.uk University of Leicester, Leicester, United Kingdom Derek Hullinger, derek.hullinger@gmail.com Moxtek, Inc, Orem, Utah, United States Goro Sato, Goro.Sato@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Louis Barbier, lmb@milkyway.gsfc.nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Jay Cummings, jayc@milkyway.gsfc.nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Ed Fenimore, efenimore@lanl.gov Los Alamos National Laboratory, Los Alamos, California, United States Hans Krimm, hans.krimm@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Don Lamb, d-lamb@uchicago.edu University of Chicago, Chicago, Illinois, United States Craig Markwardt, Craig.Markwardt@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States David Palmer, palmer@lanl.gov Los Alamos National Laboratory, Los Alamos, California, United States Ann Parsons, Ann.M.Parsons@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Michael Stamatikos, michael@milkyway.gsfc.nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Jack Tueller, jack.tueller@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States We present the spectral and temporal characteristics of the prompt emission and X-ray afterglow emission of X-ray flashes (XRFs) and X-ray-rich gamma-ray bursts (XRRs) detected and observed by Swift between December 2004 and September 2006. We compare these characteristics to a sample of conventional classical gamma-ray bursts (C-GRBs) observed during the same period. We confirm the correlation between Epeak and fluence noted by others and find further evidence that XRFs, XRRs and C-GRBs form a continuum. We also confirm that our known redshift sample is consistent with the correlation between the peak energy in the GRB rest frame (Epeak) and the isotropic radiated energy (Eiso), so called the Epeak-Eiso relation. The spectral properties of X-ray afterglows of XRFs and C-GRBs are similar, but the temporal properties of XRFs and C-GRBs are quite different. We found that the light curves of C-GRB afterglows show a break to steeper indices (shallow-to-steep break) at much earlier times than do XRF afterglows. Moreover, the overall luminosity of XRF X-ray afterglows is systematically smaller by a factor of two or more compared to that of C-GRBs. These distinct differences between the X-ray afterglows of XRFs and C-GRBs may be the key to understanding not only the mysterious shallow-to-steep break in X-ray afterglow light curves, but also the unique nature of XRFs.

  13. GRB070610: A Curious Galactic Transient

    NASA Technical Reports Server (NTRS)

    Kasliwal, M. M.; Kulkrarni. S. R.; Cameron, P. B.; Nakar, E.; Ofek, E. O.; Rau, A.; Soderberg, A. M.; Campana, S.; Bloom, J. S.; Perley, D. A.; hide

    2007-01-01

    GRB 070610 is a typical high-energy event with a duration of 5s.Yet within the burst localization we detect a highly unusual X-ray and optical transient, SwiftJ195509.6+261406. We see high amplitude X-ray and optical variability on very short time scares even at late times. Using near-infrared imaging assisted by a laser guide star and adaptive optics, we identified the counterpart of SwiftJl95509.6+261406. Late-time optical and near-infrared imaging constrain the spectral type of the counterpart to be fainter than a K-dwarf assuming it is of Galactic origin. It is possible that GRB 070610 and Swift J195509.6+261406 are unrelated sources. However, the absence of a typical X-ray afterglow from GRB 070610 in conjunction with the spatial and temporal coincidence of the two motivate us to suggest that the sources are related. The closest (imperfect) analog to Swift J195509.6+261406 is V4641 Sgr, an unusual black hole binary. We suggest that Swift J195509.6+261406 along with V4641 Sgr define a sub-class of stellar black hole binaries -- the fast X-ray novae. We further suggest that fast X-ray novae are associated with bursts of gamma-rays. If so, GRB 070610 defines a new class of celestial gamma-ray bursts and these bursts dominate the long-duration GRB demographics

  14. GRB 070610: A Curious Galactic Transient

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Kulkarni, S. R.; Cameron, P. B.; Nakar, E.; Ofek, E. O.; Rau, A.; Soderberg, A. M.; Campana, S.; Bloom, J. S.; Perley, D. A.; Pollack, L. K.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Sato, G.; Chandra, P.; Frail, D.; Fox, D. B.; Price, P. A.; Berger, E.; Grebenev, S. A.; Krivonos, R. A.; Sunyaev, R. A.

    2008-05-01

    GRB 070610 is a typical high-energy event with a duration of 5 s. Yet within the burst localization we detect a highly unusual X-ray and optical transient, Swift J195509.6+261406. We see high-amplitude X-ray and optical variability on very short timescales even at late times. Using near-infrared imaging assisted by a laser guide star and adaptive optics, we identified the counterpart of Swift J195509.6+261406. Late-time optical and near-infrared imaging constrain the spectral type of the counterpart to be fainter than a K-dwarf, assuming it is of Galactic origin. It is possible that GRB 070610 and Swift J195509.6+261406 are unrelated sources. However, the absence of a typical X-ray afterglow from GRB 070610 in conjunction with the spatial and temporal coincidence of the two motivate us to suggest that the sources are related. The closest (imperfect) analog to Swift J195509.6+261406 is V4641 Sgr, an unusual black hole binary. We suggest that Swift J195509.6+261406 along with V4641 Sgr define a subclass of stellar black hole binaries—the fast X-ray novae. We further suggest that fast X-ray novae are associated with bursts of gamma rays. If so, GRB 070610 defines a new class of celestial gamma-ray bursts and these bursts dominate the long-duration GRB demographics.

  15. Southern Fireworks above ESO Telescopes

    NASA Astrophysics Data System (ADS)

    1999-05-01

    New Insights from Observations of Mysterious Gamma-Ray Burst International teams of astronomers are now busy working on new and exciting data obtained during the last week with telescopes at the European Southern Observatory (ESO). Their object of study is the remnant of a mysterious cosmic explosion far out in space, first detected as a gigantic outburst of gamma rays on May 10. Gamma-Ray Bursters (GRBs) are brief flashes of very energetic radiation - they represent by far the most powerful type of explosion known in the Universe and their afterglow in optical light can be 10 million times brighter than the brightest supernovae [1]. The May 10 event ranks among the brightest one hundred of the over 2500 GRB's detected in the last decade. The new observations include detailed images and spectra from the VLT 8.2-m ANTU (UT1) telescope at Paranal, obtained at short notice during a special Target of Opportunity programme. This happened just over one month after that powerful telescope entered into regular service and demonstrates its great potential for exciting science. In particular, in an observational first, the VLT measured linear polarization of the light from the optical counterpart, indicating for the first time that synchrotron radiation is involved . It also determined a staggering distance of more than 7,000 million light-years to this GRB . The astronomers are optimistic that the extensive observations will help them to better understand the true nature of such a dramatic event and thus to bring them nearer to the solution of one of the greatest riddles of modern astrophysics. A prime example of international collaboration The present story is about important new results at the front-line of current research. At the same time, it is also a fine illustration of a successful collaboration among several international teams of astronomers and the very effective way modern science functions. It began on May 10, at 08:49 hrs Universal Time (UT), when the Burst And Transient Source Experiment (BATSE) onboard NASA's Compton Gamma-Ray Observatory (CGRO) high in orbit around the Earth, suddenly registered an intense burst of gamma-ray radiation from a direction less than 10° from the celestial south pole. Independently, the Gamma-Ray Burst Monitor (GRBM) on board the Italian-Dutch BeppoSAX satellite also detected the event (see GCN GRB Observation Report 304 [2]). Following the BATSE alert, the BeppoSAX Wide-Field Cameras (WFC) quickly localized the sky position of the burst within a circle of 3 arcmin radius in the southern constellation Chamaeleon. It was also detected by other satellites, including the ESA/NASA Ulysses spacecraft , since some years in a wide orbit around the Sun. The event was designated GRB 990510 and the measured position was immediately distributed by BeppoSAX Mission Scientist Luigi Piro to a network of astronomers. It was also published on Circular No. 7160 of the International Astronomical Union (IAU). From Amsterdam (The Netherlands), Paul Vreeswijk, Titus Galama , and Evert Rol of the Amsterdam/Huntsville GRB follow-up team (led by Jan van Paradijs ) immediately contacted astronomers at the 1-meter telescope of the South African Astronomical Observatory (SAAO) (Sutherland, South Africa) of the PLANET network microlensing team, an international network led by Penny Sackett in Groningen (The Netherlands). There, John Menzies of SAAO and Karen Pollard (University of Canterbury, New Zealand) were about to begin the last of their 14 nights of observations, part of a continuous world-wide monitoring program looking for evidence of planets around other stars. Other PLANET sites in Australia and Tasmania where it was still nighttime were unfortunately clouded out (some observations were in fact made that night at the Mount Stromlo observatory in Australia, but they were only announced one day later). As soon as possible - immediately after sundown and less than 9 hours after the initial burst was recorded - the PLANET observers turned their telescope and quickly obtained a series of CCD images in visual light of the sky region where the gamma-ray burst was detected, then shipped them off electronically to their Dutch colleagues [3]. Comparing the new photos with earlier ones in the digital sky archive, Vreeswijk, Galama and Rol almost immediately discovered a new, relatively bright visual source in the region of the gamma-ray burst, which they proposed as the optical counterpart of the burst, cf. their dedicated webpage at http://www.astro.uva.nl/~titus/grb990510/. The team then placed a message on the international Gamma-Ray Burster web-noteboard ( GCN Circular 310), thereby alerting their colleagues all over the world. One hour later, the narrow-field instruments on BeppoSax identified a new X-Ray source at the same location ( GCN Circular 311), thus confirming the optical identification. All in all, a remarkable synergy of human and satellite resources! Observations of GRB 990510 at ESO Vreeswijk, Galama and Rol, in collaboration with Nicola Masetti, Eliana Palazzi and Elena Pian of the BeppoSAX GRB optical follow-up team (led by Filippo Frontera ) and the Huntsville optical follow-up team (led by Chryssa Kouveliotou ), also contacted the European Southern Observatory (ESO). Astronomers at this Organization's observatories in Chile were quick to exploit this opportunity and crucial data were soon obtained with several of the main telescopes at La Silla and Paranal, less than 14 hours after the first detection of this event by the satellite. ESO PR Photo 22a/99 ESO PR Photo 22a/99 [Preview - JPEG: 211 x 400 pix - 72k] [Normal - JPEG: 422 x 800 pix - 212k] [High-Res - JPEG: 1582 x 3000 pix - 2.6M] ESO PR Photo 22b/99 ESO PR Photo 22b/99 [Preview - JPEG: 400 x 437 pix - 297k] [Normal - JPEG: 800 x 873 pix - 1.1M] [High-Res - JPEG: 2300 x 2509 pix - 5.9M] Caption to PR Photo 22a/99 : This wide-field photo was obtained with the Wide-Field Imager (WFI) at the MPG/ESO 2.2-m telescope at La Silla on May 11, 1999, at 08:42 UT, under inferior observing conditions (seeing = 1.9 arcsec). The exposure time was 450 sec in a B(lue) filter. The optical image of the afterglow of GRB 990510 is indicated with an arrow in the upper part of the field that measures about 8 x 16 arcmin 2. The original scale is 0.24 pix/arcsec and there are 2k x 4k pixels in the original frame. North is up and East is left. Caption to PR Photo 22b/99 : This is a (false-)colour composite of the area around the optical image of the afterglow of GRB 990510, based on three near-infrared exposures with the SOFI multi-mode instrument at the 3.6-m ESO New Technology Telescope (NTT) at La Silla, obtained on May 10, 1999, between 23:15 and 23:45 UT. The exposure times were 10 min each in the J- (1.2 µm; here rendered in blue), H- (1.6 µm; green) and K-bands (2.2 µm; red); the image quality is excellent (0.6 arcsec). The field measures about 5 x 5 arcmin 2 ; the original pixel size is 0.29 arcsec. North is up and East is left. ESO PR Photo 22c/99 ESO PR Photo 22c/99 [Preview - JPEG: 400 x 235 pix - 81k] [Normal - JPEG: 800 x 469 pix - 244k] [High-Res - JPEG: 2732 x 1603 pix - 2.6M] ESO PR Photo 22d/99 ESO PR Photo 22d/99 [Preview - JPEG: 400 x 441 pix - 154k] [Normal - JPEG: 800 x 887 pix - 561k] [High-Res - JPEG: 2300 x 2537 pix - 2.3M] Caption to PR Photo 22c/99 : To the left is a reproduction of a short (30 sec) centering exposure in the V-band (green-yellow light), obtained with VLT ANTU and the multi-mode FORS1 instrument on May 11, 1999, at 03:48 UT under mediocre observing conditions (image quality 1.0 arcsec).The optical image of the afterglow of GRB 990510 is easily seen in the box, by comparison with an exposure of the same sky field before the explosion, made with the ESO Schmidt Telescope in 1986 (right).The exposure time was 120 min on IIIa-F emulsion behind a R(ed) filter. The field shown measures about 6.2 x 6.2 arcmin 2. North is up and East is left. Caption to PR Photo 22d/99 : Enlargement from the 30 sec V-exposure by the VLT, shown in Photo 22c/99. The field is about 1.9 x 1.9 arcmin 2. North is up and East is left. The data from Chile were sent to Europe where, by quick comparison of images from the Wide-Field Imager (WFI) at the MPG/ESO 2.2-m telescope at La Silla with those from SAAO, the Dutch and Italian astronomers found that the brightness of the suspected optical counterpart was fading rapidly; this was a clear sign that the identification was correct ( GCN Circular 313). With the precise sky position of GRB 990510 now available, the ESO observers at the VLT were informed and, setting other programmes aside under the Target of Opportunity scheme, were then able to obtain polarimetric data as well as a very detailed spectrum of the optical counterpart. Comprehensive early observations of this object were also made at La Silla with the ESO 3.6-m telescope (CCD images in the UBVRI-bands from the ultraviolet to the near-infrared part of the spectrum) and the ESO 3.6-m New Technology Telescope (with the SOFI multimode instrument in the infrared JHK-bands). A series of optical images in the BVRI-bands was secured with the Danish 1.5-m telescope, documenting the rapid fading of the object. Observations at longer wavelengths were made with the 15-m Swedish-ESO Submillimetre Telescope (SEST). All of the involved astronomers concur that a fantastic amount of observations has been obtained. They are still busy analyzing the data, and are confident that much will be learned from this particular burst. The VLT scores a first: Measurement of GRB polarization ESO PR Photo 22e/99 ESO PR Photo 22e/99 [Preview - JPEG: 400 x 434 pix - 92k] [Normal - JPEG: 800 x 867 pix - 228k] Caption to PR Photo 22e/99 : Preliminary polarization measurement of the optical image of the afterglow of GRB 990510, as observed with the VLT 8.2-m ANTU telescope and the multi-mode FORS1 instrument. The abscissa represents the measurement angle; the ordinate the corresponding intensity. The sinusoidal curve shows the best fit to the data points (with error bars); the resulting degree of polarization is 1.7 ± 0.2 percent. A group of Italian astronomers led by Stefano Covino of the Observatory of Brera in Milan, have observed for the first time polarization (some degree of alignment of the electric fields of emitted photons) from the optical afterglow of a gamma-ray burst, see their dedicated webpage at http://www.merate.mi.astro.it/~lazzati/GRB990510/. This yielded a polarization at a level of 1.7 ± 0.2 percent for the optical afterglow of GRB 990510, some 18 hours after the gamma-ray burst event; the magnitude was R = 19.1 at the time of this VLT observation. Independently, the Dutch astronomers Vreeswijk, Galama and Rol measured polarization of the order of 2 percent with another data set from the VLT ANTU and FORS1 obtained during the same night. This important result was made possible by the very large light-gathering power of the 8.2-m VLT-ANTU mirror and the FORS1 imaging polarimeter. Albeit small, the detected degree of polarization is highly significant; it is also one of the most precise measurements of polarization ever made in an object as faint as this one. Most importantly, it provides the strongest evidence to date that the afterglow radiation of gamma-ray bursts is, at least in part, produced by the synchrotron process , i.e. by relativistic electrons spiralling in a magnetized region. This type of process is able to imprint some linear polarization on the produced radiation, if the magnetic field is not completely chaotic. The spectrum ESO PR Photo 22f/99 ESO PR Photo 22f/99 [Preview - JPEG: 400 x 485 pix - 112k] [Normal - JPEG: 800 x 969 pix - 288k] Caption to PR Photo 22f/99 : A spectrum of the afterglow of GRB 990510, obtained with VLT ANTU and the multi-mode FORS1 instrument during the night of May 10-11, 1999. Some of the redshifted absorption lines are identified and the stronger bands from the terrestrial atmosphere are also indicated. A VLT spectrum with the multi-mode FORS1 instrument was obtained a little later and showed a number of absorption lines , e.g. from ionized Aluminium, Chromium and neutral Magnesium. They do not arise in the optical counterpart itself - the gas there is so hot and turbulent that any spectral lines will be extremely broad and hence extremely difficult to identify - but from interstellar gas in a galaxy 'hosting' the GRB source, or from intergalactic clouds along the line of sight. It is possible to measure the distance to this intervening material from the redshift of the lines; astronomers Vreeswijk, Galama and Rol found z = 1.619 ± 0.002 [4]. This allows to establish a lower limit for the distance of the explosion and also its total power. The numbers turn out to be truly enormous. The burst occurred at an epoch corresponding to about one half of the present age of the Universe (at a distance of about 7,000 million light-years [5]), and the total energy of the explosion in gamma-rays must be higher than 1.4 10 53 erg , assuming a spherical emission. This energy corresponds to the entire optical energy emitted by the Milky Way in more than 30 years; yet the gamma-ray burst took less than 100 seconds. Since the optical afterglows of gamma-ray bursts are faint, and their flux decays quite rapidly in time, the combination of large telescopes and fast response through suitable observing programs are crucial and, as demonstrated here, ESO's VLT is ideally suited to this goal! The lightcurve Combining results from a multitude of telescopes has provided most useful information. Interestingly, a "break" was observed in the light curve (the way the light of the optical counterpart fades) of the afterglow. Some 1.5 - 2 days after the explosion, the brightness began to decrease more rapidly; this is well documented with the CCD images from the Danish 1.5-m telescope at La Silla and the corresponding diagrams are available on a dedicated webpage at http://www.astro.ku.dk/~jens/grb990510/ at the Copenhagen University Observatory. Complete, regularly updated lightcurves with all published measurements, also from other observatories, may be found at another webpage in Milan at http://www.merate.mi.astro.it/~gabriele/990510/ . This may happen if the explosion emits radiation in a beam which is pointed towards the Earth. Such beams are predicted by some models for the production of gamma-ray bursts. They are also favoured by many astronomers, because they can overcome the fundamental problem that gamma-ray bursts simply produce too much energy. If the energy is not emitted equally in all directions ("isotropically"), but rather in a preferred one along a beam, less energy is needed to produce the observed phenomenon. Such a break has been observed before, but this time it occurred at a very favourable moment, when the source was still relatively bright so that high-quality spectroscopic and multi-colour information could be obtained with the ESO telescopes. Together, these observations may provide an answer to the question whether beams exist in gamma-ray bursts and thus further help us to understand the as yet unknown cause of these mysterious explosions. Latest News ESO PR Photo 22g/99 ESO PR Photo 22g/99 [Normal - JPEG: 453 x 585 pix - 304k] Caption to PR Photo 22g/99 : V(isual) image of the sky field around GRB 990510 (here denoted "OT"), as obtained with the VLT ANTU telescope and FORS1 on May 18 UT during a 20 min exposure in 0.9 arcsec seeing conditions. The reproduction is in false colours to better show differences in intensity. North is up and east is left. Further photometric and spectroscopic observations with the ESO VLT, performed by Klaus Beuermann, Frederic Hessman and Klaus Reinsch of the Göttingen group of the FORS instrument team (Germany), have revealed the character of some of the objects that are seen close to the image of the afterglow of GRB 990510 (also referred to as the "Optical Transient" - OT). Two objects to the North are cool foreground stars of spectral types dM0 and about dM3, respectively; they are located in our Milky Way Galaxy. The object just to the South of the OT is probably also a star. A V(isual)-band image (PR Photo 22g/99) taken during the night between May 17 and 18 with the VLT/ANTU telescope and FORS1 now shows the OT at magnitude V = 24.5, with still no evidence for the host galaxy that is expected to appear when the afterglow has faded sufficiently. Outlook The great distances (high redshifts) of Gamma-Ray Bursts, plus the fact that a 9th magnitude optical flash was seen when another GRB exploded on January 23 this year, has attracted the attention of astronomers outside the GRB field. In fact, GRBs may soon become a very powerful tool to probe the early universe by guiding us to regions of very early star formation and the (proto)-galaxies and (proto)-clusters of which they are part. They will also allow the study of the chemical composition of absorbing clouds at very large distances. At the end of this year, the NASA satellite HETE-II will be launched, which is expected to provide about 50 GRB alerts per year and, most importantly, accurate localisations in the sky that will allow very fast follow-up observations, while the optical counterparts are still quite bright. It will then be possible to obtain more spectra, also of extremely distant bursts, and many new distance determinations can be made, revealing the distribution of intrinsic brightness of GRB's (the "luminosity function"). Other types of observations (e.g. polarimetry, as above) will also profit, leading to a progressive refinement of the available data. Thus there is good hope that astronomers will soon come closer to identifying the progenitors of these enormous explosions and to understand what is really going on. In this process, the huge light-collecting power of the VLT and the many other facilities at the ESO observatories will undoubtedly play an important role. Notes [1] Gamma-Ray Bursts are brief flashes of high-energy radiation. Satellites in orbit around the Earth and spacecraft in interplanetary orbits have detected several thousand such events since they were first discovered in the late 1960s. Earlier investigations established that they were so evenly distributed in the sky that they must be very distant (and hence very powerful) outbursts of some kind. Only in 1997 it became possible to observe the fading "afterglow" of one of these explosions in visible light, thanks to accurate positions available from the BeppoSAX satellite. Soon thereafter, another optical afterglow was detected; it was located in a faint galaxy whose distance could be measured. In 1998, a gamma-ray burst was detected in a galaxy over 8,300 million light-years away. Even the most exotic ideas proposed for these explosions, e.g. supergiant stars collapsing to black holes, black holes merging with neutron stars or other black holes, and other weird and wonderful notions have trouble accounting for explosions with the power of 10,000 million million suns. [2] The various reports issued by astronomers working on this and other gamma-ray burst events are available as GCN Circulars on the GRB Coordinates Network web-noteboard. [3] See also the Press Release, issued by SAAO on this occasion. [4] In astronomy, the redshift (z) denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy or intergalactic cloud gives a direct estimate of the universal expansion (i.e. the "recession velocity"). The detailed relation between redshift and distance depends on such quantities as the Hubble Constant, the average density of the universe, and the 'cosmological' Constant. For a standard cosmological model, redshift z = 1.6 corresponds to a distance of about 7,000 million light-years. [5] Assuming a Hubble Constant H 0 = 70 km/s/Mpc, mean density Omega 0 = 0.3 and a Cosmological Constant Lambda = 0. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  16. Observations of short gamma-ray bursts.

    PubMed

    Fox, Derek B; Roming, Peter W A

    2007-05-15

    We review recent observations of short-hard gamma-ray bursts and their afterglows. The launch and successful ongoing operations of the Swift satellite, along with several localizations from the High-Energy Transient Explorer mission, have provoked a revolution in short-burst studies: first, by quickly providing high-quality positions to observers; and second, via rapid and sustained observations from the Swift satellite itself. We make a complete accounting of Swift-era short-burst localizations and proposed host galaxies, and discuss the implications of these observations for the distances, energetics and environments of short bursts, and the nature of their progenitors. We then review the physical modelling of short-burst afterglows: while the simplest afterglow models are inadequate to explain the observations, there have been several notable successes. Finally, we address the case of an unusual burst that threatens to upset the simple picture in which long bursts are due to the deaths of massive stars, and short bursts to compact-object merger events.

  17. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  18. Layered host-guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface.

    PubMed

    Gao, Rui; Yan, Dongpeng

    2017-01-01

    Tuning and optimizing the efficiency of light energy transfer play an important role in meeting modern challenges of minimizing energy loss and developing high-performance optoelectronic materials. However, attempts to fabricate systems giving highly efficient energy transfer between luminescent donor and acceptor have achieved limited success to date. Herein, we present a strategy towards phosphorescence energy transfer at a 2D orderly crystalline interface. We first show that new ultrathin nanosheet materials giving long-afterglow luminescence can be obtained by assembling aromatic guests into a layered double hydroxide host. Furthermore, we demonstrate that co-assembly of these long-lived energy donors with an energy acceptor in the same host generates an ordered arrangement of phosphorescent donor-acceptor pairs spatially confined within the 2D nanogallery, which affords energy transfer efficiency as high as 99.7%. Therefore, this work offers an alternative route to develop new types of long-afterglow nanohybrids and efficient light transfer systems with potential energy, illumination and sensor applications.

  19. The effectiveness of strong afterglow phosphor powder in the detection of fingermarks.

    PubMed

    Liu, Li; Zhang, Zhongliang; Zhang, Limei; Zhai, Yuchun

    2009-01-10

    There are numerous types of fluorescent fingermark powders or reagents used with the visualization of latent fingermarks deposited on multicolored substrate surfaces that can present a contrast problem if developed with regular fingermark powders. The developed fingermarks can show bright fluorescence upon exposure to laser, ultraviolet light and other light sources. These kinds of methods share a common concern, where surfaces and other substrates may fluoresce also. To overcome this concern, we have developed a phosphor powder which offers a strong afterglow effect which aid in the establishment of better fingermark detection. With the advent of a phosphor powder no special devices are required and the results obtained from fresh or a few days aged latent fingermarks left on: non-porous; semi-porous and also on some porous surfaces have been good. The strong afterglow effect offered by phosphor powder is also applicable for cyanoacrylate fumed fingermarks. Lift off and photography procedures of the developed fingermarks are incorporated in this paper.

  20. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry.

    PubMed

    Storey, Andrew P; Zeiri, Offer M; Ray, Steven J; Hieftje, Gary M

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data. Graphical Abstract ᅟ.

  1. Long persistent phosphorescence of V3+ centers in MgAl2O4:Ce3+

    NASA Astrophysics Data System (ADS)

    Jia, Dongdong; William, Yen

    2002-03-01

    : Ceramic samples of Ce3+ doped and undoped MgAl2O4 have been prepared and studied. Long persistent phosphorescence was observed at 520nm in Ce3+ doped sample. The persistence time of the 520nm afterglow is longer than 10 hours. The long persistent 520nm afterglow is due to the V3+ centers in MgAl2O4. The V3+ emission is coming from a recombination of the electron from conduction band and the hole of the V3+ center. The hole level of the V3+ center is about 2.4eV below the conduction band. Thermoluminescence spectra of the two samples have been studied. There two hole traps in the MgAl2O4 are found at 41 and 238oC . Doping of Ce3+ also produces two F center like electron traps at 14 and 131oC. Doping of Ce3+ greatly enhanced the afterglow emission of the V3+ center.

  2. Building asynchronous geospatial processing workflows with web services

    NASA Astrophysics Data System (ADS)

    Zhao, Peisheng; Di, Liping; Yu, Genong

    2012-02-01

    Geoscience research and applications often involve a geospatial processing workflow. This workflow includes a sequence of operations that use a variety of tools to collect, translate, and analyze distributed heterogeneous geospatial data. Asynchronous mechanisms, by which clients initiate a request and then resume their processing without waiting for a response, are very useful for complicated workflows that take a long time to run. Geospatial contents and capabilities are increasingly becoming available online as interoperable Web services. This online availability significantly enhances the ability to use Web service chains to build distributed geospatial processing workflows. This paper focuses on how to orchestrate Web services for implementing asynchronous geospatial processing workflows. The theoretical bases for asynchronous Web services and workflows, including asynchrony patterns and message transmission, are examined to explore different asynchronous approaches to and architecture of workflow code for the support of asynchronous behavior. A sample geospatial processing workflow, issued by the Open Geospatial Consortium (OGC) Web Service, Phase 6 (OWS-6), is provided to illustrate the implementation of asynchronous geospatial processing workflows and the challenges in using Web Services Business Process Execution Language (WS-BPEL) to develop them.

  3. Unraveling the Origin of Short Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Barthelmy, S. D.; Chincarini, G.; Burrows, D. N.; Gehrels, N.; Covino, S.; Moretti, A.; Romano, P.; OBrien, P. T.; Sarazin, C. L.; Kouveliotou, C.

    2005-01-01

    The origin of the short (<2 s) class of gamma-ray bursts (GRBs) is finally becoming clear after decades of search. The first one localized to a few arcseconds accuracy, GRB 050509B, was found to have a highly probable association with a nearby (z = 0.225) elliptical galaxy. A second one with arcsecond localization, GRB 050709, was also associated with a low redshift (z = 0.16) galaxy. We report here the detection of short GRB 050724 with remarkable properties; in particular, it has low energy gamma-ray emission that lasts for 100 s after the main short pulse, strong early X-ray afterglow, and an unusual lightcurve that rebrightens at 3x10(exp 4) s. A position on the sky accurate to 9 arcsec was determined and provided as a GCN alert to ground-based telescopes within 80 s. A subsequent high-resolution X-ray image provided a sub-arcsec position coincident with ground-based optical and radio observations of the afterglow. Like GRB 050509B, this burst is located off-center in an elliptical galaxy. The energy output of the GRB at the host distance of z = 0.258 is 2-3 orders of magnitude less than for long bursts. The low level of star formation in such galaxies is strong evidence against a collapsar or hypernova origin like that associated with long GRBs. Based on these new data, it is highly probable that short GRBs are produced by the coalescence of orbiting neutron stars (NSs) or black holes (BHs), with some evidence for a NS-BH merger in this burst.

  4. The nature of unusual luminescence in natural calcite, CaCO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaft, M.; Nagli, L.; Panczer, G.

    2008-11-01

    The unusual luminescence of particular varieties of natural pink calcite (CaCO{sub 3}) samples was studied by laser-induced time-resolved luminescence spectroscopy at different temperatures. The luminescence is characterized by intense blue emission under short-wave UV lamp excitation with an extremely long decay time, accompanied by pink-orange luminescence under long wave UV excitation. Our investigation included optical absorption, natural thermostimulated luminescence (NTL) and Laser-Induced Breakdown Spectroscopy (LIBS) studies. Two luminescence centers were detected: a narrow violet band, with {lambda}{sub max} = 412 nm, {Delta} = 45 nm, two decay components of {tau}{sub 1} = 5 ns and {tau}{sub 2} = 7.2 ms,more » accompanied by very long afterglow, and an orange emission band with {lambda}{sub max} = 595 nm, {Delta} = 90 nm and {tau} = 5 ns. Both luminescence centers are thermally unstable with the blue emission disappearing after heating at 500 C, and the orange emission disappearing after heating at different temperatures starting from 230 C, although sometimes it is stable up to 500 C in different samples. Both centers have spectral-kinetic properties very unusual for mineral luminescence, which in combination with extremely low impurity concentrations, prevent their identification with specific impurity related emission. The most likely explanation of these observations may be the presence of radiation-induced luminescence centers. The long violet afterglow is evidently connected with trapped charge carrier liberation, with their subsequent migration through the valence band and ultimate recombination with a radiation-induced center responsible for the unusual violet luminescence.« less

  5. The Infrared-Optical Telescope (IRT) of the Exist Observatory

    NASA Technical Reports Server (NTRS)

    Kutyrev, Alexander; Bloom, Joshua; Gehrels, Neil; Golisano, Craig; Gong, Quan; Grindlay, Jonathan; Moseley, Samuel; Woodgate, Bruce

    2010-01-01

    The IRT is a 1.1m visible and infrared passively cooled telescope, which can locate, identify and obtain spectra of GRB afterglows at redshifts up to z 20. It will also acquire optical-IR, imaging and spectroscopy of AGN and transients discovered by the EXIST (The Energetic X-ray Imaging Survey Telescope). The IRT imaging and spectroscopic capabilities cover a broad spectral range from 0.32.2m in four bands. The identical fields of view in the four instrument bands are each split in three subfields: imaging, objective prism slitless for the field and objective prism single object slit low resolution spectroscopy, and high resolution long slit on single object. This allows the instrument, to do simultaneous broadband photometry or spectroscopy of the same object over the full spectral range, thus greatly improving the efficiency of the observatory and its detection limits. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events, which is particularly valuable at wavelengths unavailable to the ground based observatories.

  6. Off-axis emission of short γ-ray bursts and the detectability of electromagnetic counterparts of gravitational-wave-detected binary mergers

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide; Deich, Alex; Morsony, Brian J.; Workman, Jared C.

    2017-10-01

    We present calculations of the wide angle emission of short-duration gamma-ray bursts from compact binary merger progenitors. Such events are expected to be localized by their gravitational wave emission, fairly irrespective of the orientation of the angular momentum vector of the system, along which the gamma-ray burst outflow is expected to propagate. We show that both the prompt and afterglow emission are dim and challenging to detect for observers lying outside the cone within which the relativistic outflow is propagating. If the jet initially propagates through a baryon contaminated region surrounding the merger site, however, a hot cocoon forms around it. The cocoon subsequently expands quasi-isotropically producing its own prompt emission and external shock powered afterglow. We show that the cocoon prompt emission is detectable by Swift BAT and Fermi GBM. We also show that the cocoon afterglow peaks a few hours to a few days after the burst and is detectable for up to a few weeks at all wavelengths. The timing and brightness of the transient are however uncertain due to their dependence on unknown quantities such as the density of the ambient medium surrounding the merger site, the cocoon energy and the cocoon Lorentz factor. For a significant fraction of the gravitationally detected neutron-star-binary mergers, the cocoon afterglow could possibly be the only identifiable electromagnetic counterpart, at least at radio and X-ray frequencies.

  7. A fiber optic tactical voice/data network based on FDDI

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Hartmayer, R.; Marelid, S.; Wu, W. H.; Edgar, G.; Cassell, P.; Mancini, R.; Kiernicki, J.; Paul, L. J.; Jeng, J.

    1988-01-01

    An asynchronous high-speed fiber optic local area network is described that supports ordinary data packet traffic simultaneously with synchronous Tl voice traffic over a common FDDI token ring channel. A voice interface module was developed that parses, buffers, and resynchronizes the voice data to the packet network. The technique is general, however, and can be applied to any deterministic class of networks, including multi-tier backbones. A conventional single token access protocol was employed at the lowest layer, with fixed packet sizes for voice and variable for data. In addition, the higher layer packet data protocols are allowed to operate independently of those for the voice thereby permitting great flexibility in reconfiguring the network. Voice call setup and switching functions were performed external to the network with PABX equipment.

  8. Self-stabilized discharge filament in plane-parallel barrier discharge configuration: formation, breakdown mechanism, and memory effects

    NASA Astrophysics Data System (ADS)

    Tschiersch, R.; Nemschokmichal, S.; Bogaczyk, M.; Meichsner, J.

    2017-10-01

    Single self-stabilized discharge filaments were investigated in the plane-parallel electrode configuration. The barrier discharge was operated inside a gap of 3 mm shielded by glass plates to both electrodes, using helium-nitrogen mixtures and a square-wave feeding voltage at a frequency of 2 kHz. The combined application of electrical measurements, ICCD camera imaging, optical emission spectroscopy and surface charge diagnostics via the electro-optic Pockels effect allowed the correlation of the discharge development in the volume and on the dielectric surfaces. The formation criteria and existence regimes were found by systematic variation of the nitrogen admixture to helium, the total pressure and the feeding voltage amplitude. Single self-stabilized discharge filaments can be operated over a wide parameter range, foremost, by significant reduction of the voltage amplitude after the operation in the microdischarge regime. Here, the outstanding importance of the surface charge memory effect on the long-term stability was pointed out by the recalculated spatio-temporally resolved gap voltage. The optical emission revealed discharge characteristics that are partially reminiscent of both the glow-like barrier discharge and the microdischarge regime, such as a Townsend pre-phase, a fast cathode-directed ionization front during the breakdown and radially propagating surface discharges during the afterglow.

  9. Persistent Luminescence Nanophosphor Involved Near-Infrared Optical Bioimaging for Investigation of Foodborne Probiotics Biodistribution in Vivo: A Proof-of-Concept Study.

    PubMed

    Liu, Yaoyao; Liu, Jing-Min; Zhang, Dongdong; Ge, Kun; Wang, Peihua; Liu, Huilin; Fang, Guozhen; Wang, Shuo

    2017-09-20

    Probiotics has attracted great attention in food nutrition and safety research field, but thus far there are limited analytical techniques for visualized and real-time monitoring of the probiotics when they are ingested in vivo. Herein, the optical bioimaging technique has been introduced for investigation of foodborne probiotics biodistribution in vivo, employing the near-infrared (NIR) emitting persistent luminescence nanophosphors (PLNPs) of Cr 3+ -doped zinc gallogermanate (ZGGO) as the contrast nanoprobes. The ultrabrightness, super long afterglow, polydispersed size, low toxicity, and excellent photostability and biocompatibility of PLNPs were demonstrated to be qualified as a tracer for labeling probiotics via antibody (anti-Gram positive bacteria LTA antibody) recognition as well as contrast agent for long-term bioimaging the probiotics. In vivo optical bioimaging assay showed that the LTA antibody functionalized ZGGO nanoprobes that could be efficiently tagged to the probiobics were successfully applied for real-time monitoring and nondamaged probing of the biodistribution of probiotics inside the living body after oral administration. This work presents a proof-of-concept that exploited the bioimaging methodology for real-time and nondamaged researching the foodborne probiotics behaviors in vivo, which would open up a novel way of food safety detection and nutrition investigation.

  10. Path to the stars: the evolution of the species in the hunting to the GRBs

    NASA Astrophysics Data System (ADS)

    Vitali, Fabrizio; Chincarini, Guido; Zannoni, Mario; Covino, Stefano; Molinari, Emilio; Benetti, Stefano; Bonoli, Carlotta; Bortoletto, Favio; Cascone, Enrico; Cosentino, Rosario; D'Alessio, Francesco; D'Avanzo, Paolo; de Caprio, Vincenzo; Della Valle, Massimo; Fernandez-Soto, Alberto; Fugazza, Dino; Giro, Enrico; Magrin, Demetrio; Malaspina, Giuseppe; Mankiewicz, Lech; Margutti, Raffaella; Mazzoleni, Ruben; Nicastro, Luciano; Riva, Alberto; Riva, Marco; Salvaterra, Ruben; Spanò, Paolo; Sperandio, Monica; Stefanon, Mauro; Tosti, Gino; Testa, Vincenzo

    2010-07-01

    During the last years, a number of telescopes and instruments have been dedicated to the follow-up of GRBs: recent studies of the prompt emission (see for instance GRB080319B) and of their afterglows, evidenced a series of phenomena that do not fit very well within the standard fireball model. In those cases, optical observations were fundamental to distinguish among different emission mechanisms and models. In particular, simultaneous observation in various optical filters became essential to understand the physics, and we discovered the need to have a detailed high time resolution follow up. Finally, recent observations of the polarization in GRB 090102 clearly indicate the presence of an ordered magnetic field favoring the electromagnetic outflows models. This is, however, only one case and, in order to detail properly the model, we need a bit of statistics. But, after the Swift launch, the average observed intensity of GRB afterglows showed to be lower than thought before. Robotic telescopes, as demonstrated by REM, ROTSE, TAROT, etc. (but see also the GROND set up) is clearly the winning strategy. Indeed, as we will also briefly discuss later on, the understanding of the prompt emission mechanism depends on the observations covering the first few hundreds seconds since the beginning of the event with high temporal resolution. To tackle these problems and track down a realistic model, we started the conceptual design and phase A study of a 4 meter class, fast-pointing telescope (40 sec on target), equipped with multichannel imagers, from Visible to Near Infrared (Codevisir/Pathos). In the study we explored all the different parts of the project, from the telescope to the instrumental suite to data managing and analysis, to the dome and site issue. Contacts with industry have been fruitful in understanding the actual feasibility of building such a complex machine and no show stoppers have been identified, even if some critical points should be better addressed in the Phase B study. In this paper, we present the main results of the feasibility study we performed.

  11. Characterizing a fast-response, low-afterglow liquid scintillator for neutron time-of-flight diagnostics in fast ignition experiments.

    PubMed

    Abe, Y; Hosoda, H; Arikawa, Y; Nagai, T; Kojima, S; Sakata, S; Inoue, H; Iwasa, Y; Iwano, K; Yamanoi, K; Fujioka, S; Nakai, M; Sarukura, N; Shiraga, H; Norimatsu, T; Azechi, H

    2014-11-01

    The characteristics of oxygen-enriched liquid scintillators with very low afterglow are investigated and optimized for application to a single-hit neutron spectrometer for fast ignition experiments. It is found that 1,2,4-trimethylbenzene has better characteristics as a liquid scintillator solvent than the conventional solvent, p-xylene. In addition, a benzophenon-doped BBQ liquid scintillator is shown to demonstrate very rapid time response, and therefore has potential for further use in neutron diagnostics with fast time resolution.

  12. Magnetic scavengers as carriers of analytes for flowing atmospheric pressure afterglow mass spectrometry (FAPA-MS).

    PubMed

    Cegłowski, Michał; Kurczewska, Joanna; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2015-09-07

    In this paper, a procedure for the preconcentration and transport of mixtures of acids, bases, and drug components to a mass spectrometer using magnetic scavengers is presented. Flowing atmospheric pressure afterglow mass spectrometry (FAPA-MS) was used as an analytical method for identification of the compounds by thermal desorption from the scavengers. The proposed procedure is fast and cheap, and does not involve time-consuming purification steps. The developed methodology can be applied for trapping harmful substances in minute quantities, to transport them to specialized, remotely located laboratories.

  13. Recombination of H3(+) and D3(+) Ions in a Flowing Afterglow Plasma

    NASA Technical Reports Server (NTRS)

    Gougousi, T.; Johnsen, R.; Golde, M. F.

    1995-01-01

    The analysis of flowing afterglow plasmas containing H3(+) or D3(+) ions indicates that the de-ionization of such plasmas does not occur by simple dissociative recombination of ions with electrons. An alternative model of de-ionization is proposed in which electrons are captured into H3(**) auto-ionization Rydberg states that are stabilized by collisional mixing of the Rydberg molecules' angular momenta. The proposed mechanism would enable de-ionization to occur without the need for dissociative recombination by the mechanisms of potential-surface crossings.

  14. VizieR Online Data Catalog: 8 Fermi GRB afterglows follow-up (Singer+, 2015)

    NASA Astrophysics Data System (ADS)

    Singer, L. P.; Kasliwal, M. M.; Cenko, S. B.; Perley, D. A.; Anderson, G. E.; Anupama, G. C.; Arcavi, I.; Bhalerao, V.; Bue, B. D.; Cao, Y.; Connaughton, V.; Corsi, A.; Cucchiara, A.; Fender, R. P.; Fox, D. B.; Gehrels, N.; Goldstein, A.; Gorosabel, J.; Horesh, A.; Hurley, K.; Johansson, J.; Kann, D. A.; Kouveliotou, C.; Huang, K.; Kulkarni, S. R.; Masci, F.; Nugent, P.; Rau, A.; Rebbapragada, U. D.; Staley, T. D.; Svinkin, D.; Thone, C. C.; de Ugarte Postigo, A.; Urata, Y.; Weinstein, A.

    2015-10-01

    In this work, we present the GBM-iPTF (intermediate Palomar Transient Factory) afterglows from the first 13 months of this project. Follow-up observations include R-band photometry from the P48, multicolor photometry from the P60, spectroscopy (acquired with the P200, Keck, Gemini, APO, Magellan, Very Large Telescope (VLT), and GTC), and radio observations with the Very Large Array (VLA), the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Australia Telescope Compact Array (ATCA), and the Arcminute Microkelvin Imager (AMI). (3 data files).

  15. Synchronization of Hierarchical Time-Varying Neural Networks Based on Asynchronous and Intermittent Sampled-Data Control.

    PubMed

    Xiong, Wenjun; Patel, Ragini; Cao, Jinde; Zheng, Wei Xing

    In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.

  16. Digital Synchronizer without Metastability

    NASA Technical Reports Server (NTRS)

    Simle, Robert M.; Cavazos, Jose A.

    2009-01-01

    A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.

  17. A study of topologies and protocols for fiber optic local area network

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Gerla, M.; Rodrigues, P.

    1985-01-01

    The emergence of new applications requiring high data traffic necessitates the development of high speed local area networks. Optical fiber is selected as the transmission medium due to its inherent advantages over other possible media and the dual optical bus architecture is shown to be the most suitable topology. Asynchronous access protocols, including token, random, hybrid random/token, and virtual token schemes, are developed and analyzed. Exact expressions for insertion delay and utilization at light and heavy load are derived, and intermediate load behavior is investigated by simulation. A new tokenless adaptive scheme whose control depends only on the detection of activity on the channel is shown to outperform round-robin schemes under uneven loads and multipacket traffic and to perform optimally at light load. An approximate solution to the queueing delay for an oscillating polling scheme under chaining is obtained and results are compared with simulation. Solutions to the problem of building systems with a large number of stations are presented, including maximization of the number of optical couplers, and the use of passive star/bus topologies, bridges and gateways.

  18. The Effects of Asynchronous Visual Delays on Simulator Flight Performance and the Development of Simulator Sickness Symptomatology

    DTIC Science & Technology

    1986-12-26

    NAVAL TRAINING SYSTEMS CENTER ORLANDO. FLORIDA IT FILE COPY THE EFFECTS OF ASYNCHRONOUS VISUAL DELAYS ON SIMULATOR FLIGHT PERFORMANCE AND THE...ASYNCHRONOUS VISUAL. DELAYS ON SI.WLATOR FLIGHT PERF OMANCE AND THE DEVELOPMENT OF SIMLATOR SICKNESS SYMPTOMATOLOGY K. C. Uliano, E. Y. Lambert, R. S. Kennedy...ACCESSION NO. N63733N SP-01 0785-7P6 I. 4780 11. TITLE (Include Security Classification) The Effects of Asynchronous Visual Delays on Simulator Flight

  19. Modeling and Analysis of Mixed Synchronous/Asynchronous Systems

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin R.; Madl. Gabor; Hall, Brendan

    2012-01-01

    Practical safety-critical distributed systems must integrate safety critical and non-critical data in a common platform. Safety critical systems almost always consist of isochronous components that have synchronous or asynchronous interface with other components. Many of these systems also support a mix of synchronous and asynchronous interfaces. This report presents a study on the modeling and analysis of asynchronous, synchronous, and mixed synchronous/asynchronous systems. We build on the SAE Architecture Analysis and Design Language (AADL) to capture architectures for analysis. We present preliminary work targeted to capture mixed low- and high-criticality data, as well as real-time properties in a common Model of Computation (MoC). An abstract, but representative, test specimen system was created as the system to be modeled.

  20. A novel comparator featured with input data characteristic

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaobo; Ye, Desheng; Xu, Xiangmin; Zheng, Shuai

    2016-03-01

    Two types of low-power asynchronous comparators featured with input data statistical characteristic are proposed in this article. The asynchronous ripple comparator stops comparing at the first unequal bit but delivers the result to the least significant bit. The pre-stop asynchronous comparator can completely stop comparing and obtain results immediately. The proposed and contrastive comparators were implemented in SMIC 0.18 μm process with different bit widths. Simulation shows that the proposed pre-stop asynchronous comparator features the lowest power consumption, shortest average propagation delay and highest area efficiency among the comparators. Data path of low-density parity check decoder using the proposed pre-stop asynchronous comparators are most power efficient compared with other data paths with synthesised, clock gating and bitwise competition logic comparators.

  1. Interactional Coherence in Asynchronous Learning Networks: A Rhetorical Approach

    ERIC Educational Resources Information Center

    Potter, Andrew

    2008-01-01

    Numerous studies have affirmed the value of asynchronous online communication as a learning resource. Several investigations, however, have indicated that discussions in asynchronous environments are often neither interactive nor coherent. The research reported sought to develop an enhanced understanding of interactional coherence, argumentation,…

  2. Theoretical analysis of the performance of code division multiple access communications over multimode optical fiber channels. Part 1: Transmission and detection

    NASA Astrophysics Data System (ADS)

    Walker, Ernest L.

    1994-05-01

    This paper presents results of a theoretical investigation to evaluate the performance of code division multiple access communications over multimode optical fiber channels in an asynchronous, multiuser communication network environment. The system is evaluated using Gold sequences for spectral spreading of the baseband signal from each user employing direct-sequence biphase shift keying and intensity modulation techniques. The transmission channel model employed is a lossless linear system approximation of the field transfer function for the alpha -profile multimode optical fiber. Due to channel model complexity, a correlation receiver model employing a suboptimal receive filter was used in calculating the peak output signal at the ith receiver. In Part 1, the performance measures for the system, i.e., signal-to-noise ratio and bit error probability for the ith receiver, are derived as functions of channel characteristics, spectral spreading, number of active users, and the bit energy to noise (white) spectral density ratio. In Part 2, the overall system performance is evaluated.

  3. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.

  4. Treatment of Streptococcus mutans bacteria by a plasma needle

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhui; Huang, Jun; Liu, Xiaodi; Peng, Lei; Guo, Lihong; Lv, Guohua; Chen, Wei; Feng, Kecheng; Yang, Si-ze

    2009-03-01

    A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O2 does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals.

  5. Treatment of Streptococcus mutans bacteria by a plasma needle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xianhui; School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022; Fujian Key Lab of Plasma and Magnetic Resonance, Department of Aeronautics School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005

    2009-03-15

    A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O{submore » 2} does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals.« less

  6. KSC-04pd1855

    NASA Image and Video Library

    2004-09-19

    KENNEDY SPACE CENTER, FLA. - A closeup of one of the solar cells that will be removed and replaced on the Swift spacecraft’s solar array. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky. Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket.

  7. KSC-04pd1856

    NASA Image and Video Library

    2004-09-19

    KENNEDY SPACE CENTER, FLA. - A closeup of one of the solar cells that will be removed and replaced on the Swift spacecraft’s solar array. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The main mission objectives for Swift are to determine the origin of gamma-ray bursts, classify gamma-ray bursts and search for new types, determine how the blast wave evolves and interacts with the surroundings, use gamma-ray bursts to study the early universe and perform the first sensitive hard X-ray survey of the sky. Swift is scheduled to launch Oct. 26 from Launch Pad 17-A, CCAFS, on a Boeing Delta 7320 rocket.

  8. KSC-04pd2115

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - At Launch Pad 17-A on Cape Canaveral Air Force Station, the second stage of the Boeing Delta II launch vehicle is ready to be lifted up the mobile service tower for mating with the first stage. The rocket is the launch vehicle for the Swift spacecraft and its Gamma-Ray Burst Mission, now scheduled for liftoff Nov. 8. Swift is a medium-class Explorer mission managed by NASA’s Goddard Space Flight Center in Greenbelt, Md. It is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. KSC is responsible for Swift’s integration with the Boeing Delta II rocket and the countdown management on launch day.

  9. KSC-04pd2116

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - At Launch Pad 17-A on Cape Canaveral Air Force Station, the second stage of the Boeing Delta II launch vehicle is being lifted up the mobile service tower for mating with the first stage. The rocket is the launch vehicle for the Swift spacecraft and its Gamma-Ray Burst Mission, now scheduled for liftoff Nov. 8. Swift is a medium-class Explorer mission managed by NASA’s Goddard Space Flight Center in Greenbelt, Md. It is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. KSC is responsible for Swift’s integration with the Boeing Delta II rocket and the countdown management on launch day.

  10. Labeled Postings for Asynchronous Interaction

    ERIC Educational Resources Information Center

    ChanLin, Lih-Juan; Chen, Yong-Ting; Chan, Kung-Chi

    2009-01-01

    The Internet promotes computer-mediated communications, and so asynchronous learning network systems permit more flexibility in time, space, and interaction than synchronous mode of learning. The key point of asynchronous learning is the materials for web-aided teaching and the flow of knowledge. This research focuses on improving online…

  11. An Asynchronous Augmentation to Traditional Course Delivery.

    ERIC Educational Resources Information Center

    Wolverton, Marvin L.; Wolverton, Mimi

    Asynchronous augmentation facilitates distributed learning, which relies heavily on technology and self-learning. This paper reports the results of delivering a real estate principles course using an asynchronous course delivery format. It highlights one of many ways to enhance learning using technology, and it provides information concerning how…

  12. A Taxonomy of Learning through Asynchronous Discussion

    ERIC Educational Resources Information Center

    Knowlton, Dave S.

    2005-01-01

    This article presents a five-tiered taxonomy that describes the nature of participation in, and learning through, asynchronous discussion. The taxonomy is framed by a constructivist view of asynchronous discussion. The five tiers of the taxonomy include the following: (a) passive participation, (b) developmental participation, (c) generative…

  13. Designing Asynchronous Online Discussion Environments: Recent Progress and Possible Future Directions

    ERIC Educational Resources Information Center

    Gao, Fei; Zhang, Tianyi; Franklin, Teresa

    2013-01-01

    Asynchronous online discussion environments are important platforms to support learning. Research suggests, however, threaded forums, one of the most popular asynchronous discussion environments, do not often foster productive online discussions naturally. This paper explores how certain properties of threaded forums have affected or constrained…

  14. Integrating Asynchronous Digital Design Into the Computer Engineering Curriculum

    ERIC Educational Resources Information Center

    Smith, S. C.; Al-Assadi, W. K.; Di, J.

    2010-01-01

    As demand increases for circuits with higher performance, higher complexity, and decreased feature size, asynchronous (clockless) paradigms will become more widely used in the semiconductor industry, as evidenced by the International Technology Roadmap for Semiconductors' (ITRS) prediction of a likely shift from synchronous to asynchronous design…

  15. A Case Study of On-the-fly Wide-field Radio Imaging Applied to the Gravitational Wave Event GW151226

    NASA Astrophysics Data System (ADS)

    Mooley, K. P.; Frail, D. A.; Myers, S. T.; Kulkarni, S. R.; Hotokezaka, K.; Singer, L. P.; Horesh, A.; Kasliwal, M. M.; Cenko, S. B.; Hallinan, G.

    2018-04-01

    We apply a newly developed on-the-fly mosaicing technique on the Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive search for an afterglow from the Advanced LIGO binary black hole merger event GW151226. In three epochs between 1.5 and 6 months post-merger, we observed a 100 deg2 region, with more than 80% of the survey region having an rms sensitivity of better than 150 μJy/beam, in the northern hemisphere with a merger containment probability of 10%. The data were processed in near real time and analyzed to search for transients and variables. No transients were found but we have demonstrated the ability to conduct blind searches in a time-frequency phase space where the predicted afterglow signals are strongest. If the gravitational wave event is contained within our survey region, the upper limit on any late-time radio afterglow from the merger event at an assumed mean distance of 440 Mpc is about 1029 erg s‑1 Hz‑1. Approximately 1.5% of the radio sources in the field showed variability at a level of 30%, and can be attributed to normal activity from active galactic nuclei. The low rate of false positives in the radio sky suggests that wide-field imaging searches at a few Gigahertz can be an efficient and competitive search strategy. We discuss our search method in the context of the recent afterglow detection from GW170817 and radio follow-up in future gravitational wave observing runs.

  16. Temporal Evolution of the Gamma-ray Burst Afterglow Spectrum for an Observer: GeV-TeV Synchrotron Self-Compton Light Curve

    NASA Astrophysics Data System (ADS)

    Fukushima, Takuma; To, Sho; Asano, Katsuaki; Fujita, Yutaka

    2017-08-01

    We numerically simulate the gamma-ray burst (GRB) afterglow emission with a one-zone time-dependent code. The temporal evolutions of the decelerating shocked shell and energy distributions of electrons and photons are consistently calculated. The photon spectrum and light curves for an observer are obtained taking into account the relativistic propagation of the shocked shell and the curvature of the emission surface. We find that the onset time of the afterglow is significantly earlier than the previous analytical estimate. The analytical formulae of the shock propagation and light curve for the radiative case are also different from our results. Our results show that even if the emission mechanism is switching from synchrotron to synchrotron self-Compton, the gamma-ray light curves can be a smooth power law, which agrees with the observed light curve and the late detection of a 32 GeV photon in GRB 130427A. The uncertainty of the model parameters obtained with the analytical formula is discussed, especially in connection with the closure relation between spectral index and decay index.

  17. Stationary-Afterglow measurements of dissociative recombination of H2D+ and HD2+ ions

    NASA Astrophysics Data System (ADS)

    Dohnal, Petr; Kalosi, Abel; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj

    2016-09-01

    Binary recombination rate coefficients of H2D+ and HD2+ ions have been measured at a temperature of 80 K in an afterglow plasma experiment in which the fractional abundances of H3+, H2D+, HD2+, and D3+ ions were varied by adjusting the [D2]/([D2] + [H2]) ratio of the neutral gas. The fractional abundances of the four ion species during the afterglow and their rotational states were determined in situ by continuous-wave cavity ring-down absorption spectroscopy (CRDS), using overtone transitions from the ground vibrational states of the ions. The experimentally determined recombination rate coefficients will be compared to results of advanced theoretical calculations and to the known H3+ and D3+ recombination rate coefficients. We conclude that the recombination coefficients depend only weakly on the isotopic composition. Astrophysical implications of the measured recombination rate coefficients will be also discussed. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.

  18. The signature of supernova ejecta in the X-ray afterglow of the gamma-ray burst 011211.

    PubMed

    Reeves, J N; Watson, D; Osborne, J P; Pounds, K A; O'Brien, P T; Short, A D T; Turner, M J L; Watson, M G; Mason, K O; Ehle, M; Schartel, N

    2002-04-04

    Now that gamma-ray bursts (GRBs) have been determined to lie at cosmological distances, their isotropic burst energies are estimated to be as high as 1054 erg (ref. 2), making them the most energetic phenomena in the Universe. The nature of the progenitors responsible for the bursts remains, however, elusive. The favoured models range from the merger of two neutron stars in a binary system to the collapse of a massive star. Spectroscopic studies of the afterglow emission could reveal details of the environment of the burst, by indicating the elements present, the speed of the outflow and an estimate of the temperature. Here we report an X-ray spectrum of the afterglow of GRB011211, which shows emission lines of magnesium, silicon, sulphur, argon, calcium and possibly nickel, arising in metal-enriched material with an outflow velocity of the order of one-tenth the speed of light. These observations strongly favour models where a supernova explosion from a massive stellar progenitor precedes the burst event and is responsible for the outflowing matter.

  19. Evaluation of fatty acid oxidation by reactive oxygen species induced in liquids using atmospheric-pressure nonthermal plasma jets

    NASA Astrophysics Data System (ADS)

    Tani, Atsushi; Fukui, Satoshi; Ikawa, Satoshi; Kitano, Katsuhisa

    2015-10-01

    We investigated fatty acid oxidation by atmospheric-pressure nonthermal helium plasma using linoleic acid, an unsaturated fatty acid, together with evaluating active species induced in liquids. If the ambient gas contains oxygen, direct plasma such as plasma jets coming into contact with the liquid surface supplies various active species, such as singlet oxygen, ozone, and superoxide anion radicals, to the liquid. The direct plasma easily oxidizes linoleic acid, indicating that fatty acid oxidation will occur in the direct plasma. In contrast, afterglow flow, where the plasma is terminated in a glass tube and does not touch the surface of the liquid sample, supplies mainly superoxide anion radicals. The fact that there was no clear observation of linoleic acid oxidation using the afterglow reveals that it may not affect lipids, even in an atmosphere containing oxygen. The afterglow flow can potentially be used for the sterilization of aqueous solutions using the reduced pH method, in medical and dental applications, because it provides bactericidal activity in the aqueous solution despite containing a smaller amount of active species.

  20. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry andmore » humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.« less

  1. LaAlO3:Mn4+ as Near-Infrared Emitting Persistent Luminescence Phosphor for Medical Imaging: A Charge Compensation Study

    PubMed Central

    De Clercq, Olivier Q.; Korthout, Katleen

    2017-01-01

    Mn4+-activated phosphors are emerging as a novel class of deep red/near-infrared emitting persistent luminescence materials for medical imaging as a promising alternative to Cr3+-doped nanomaterials. Currently, it remains a challenge to improve the afterglow and photoluminescence properties of these phosphors through a traditional high-temperature solid-state reaction method in air. Herein we propose a charge compensation strategy for enhancing the photoluminescence and afterglow performance of Mn4+-activated LaAlO3 phosphors. LaAlO3:Mn4+ (LAO:Mn4+) was synthesized by high-temperature solid-state reaction in air. The charge compensation strategies for LaAlO3:Mn4+ phosphors were systematically discussed. Interestingly, Cl−/Na+/Ca2+/Sr2+/Ba2+/Ge4+ co-dopants were all found to be beneficial for enhancing LaAlO3:Mn4+ luminescence and afterglow intensity. This strategy shows great promise and opens up new avenues for the exploration of more promising near-infrared emitting long persistent phosphors for medical imaging. PMID:29231901

  2. PAIR-DOMINATED GeV-OPTICAL FLASH IN GRB 130427A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vurm, Indrek; Hascoët, Romain; Beloborodov, Andrei M., E-mail: indrek.vurm@gmail.com

    2014-07-10

    We show that the light curve of the double GeV+optical flash in GRB 130427A is consistent with radiation from the blast wave in a wind-type medium with density parameter A = ρr {sup 2} ∼ 5 × 10{sup 10} g cm{sup –1}. The peak of the flash is emitted by copious e {sup ±} pairs created and heated in the blast wave; our first-principle calculation determines the pair-loading factor and temperature of the shocked plasma. Using detailed radiative transfer simulations, we reconstruct the observed double flash. The optical flash is dominated by synchrotron emission from the thermal plasma behind the forward shock, andmore » the GeV flash is produced via inverse Compton (IC) scattering by the same plasma. The seed photons for IC scattering are dominated by the prompt MeV radiation during the first tens of seconds, and by the optical to X-ray afterglow thereafter. IC cooling of the thermal plasma behind the forward shock reproduces all GeV data from a few seconds to ∼1 day. We find that the blast wave Lorentz factor at the peak of the flash is Γ ≈ 200, and the forward shock magnetization is ε{sub B} ∼ 2 × 10{sup –4}. An additional source is required by the data in the optical and X-ray bands at times >10{sup 2} s; we speculate that this additional source may be a long-lived reverse shock in the explosion ejecta.« less

  3. Actively Engaging Students in Asynchronous Online Classes. IDEA Paper #64

    ERIC Educational Resources Information Center

    Riggs, Shannon A.; Linder, Kathryn E.

    2016-01-01

    Active learning activities and pedagogical strategies can look different in online learning environments, particularly in asynchronous courses when students are not interacting with the instructor, or with each other, in real time. This paper suggests a three-pronged approach for conceptualizing active learning in the online asynchronous class:…

  4. Exploring Asynchronous and Synchronous Tool Use in Online Courses

    ERIC Educational Resources Information Center

    Oztok, Murat; Zingaro, Daniel; Brett, Clare; Hewitt, Jim

    2013-01-01

    While the independent contributions of synchronous and asynchronous interaction in online learning are clear, comparatively less is known about the pedagogical consequences of using both modes in the same environment. In this study, we examine relationships between students' use of asynchronous discussion forums and synchronous private messages…

  5. Teaching Presence and Communication Timeliness in Asynchronous Online Courses

    ERIC Educational Resources Information Center

    Skramstad, Erik; Schlosser, Charles; Orellana, Anymir

    2012-01-01

    This study examined student perceptions of teaching presence and communication timeliness in asynchronous online courses. Garrison, Anderson, and Archer's (2000) community of inquiry model provided the framework for the survey research methodology used. Participants were 59 student volunteers taking 1 or more asynchronous online graduate courses.…

  6. Two Studies Examining Argumentation in Asynchronous Computer Mediated Communication

    ERIC Educational Resources Information Center

    Joiner, Richard; Jones, Sarah; Doherty, John

    2008-01-01

    Asynchronous computer mediated communication (CMC) would seem to be an ideal medium for supporting development in student argumentation. This paper investigates this assumption through two studies. The first study compared asynchronous CMC with face-to-face discussions. The transactional and strategic level of the argumentation (i.e. measures of…

  7. Using Television Sitcoms to Facilitate Asynchronous Discussions in the Online Communication Course

    ERIC Educational Resources Information Center

    Tolman, Elizabeth; Asbury, Bryan

    2012-01-01

    Asynchronous discussions are a useful instructional resource in the online communication course. In discussion groups students have the opportunity to actively participate and interact with students and the instructor. Asynchronous communication allows for flexibility because "participants can interact with significant amounts of time between…

  8. Asynchronous Discussion Board Facilitation and Rubric Use in a Blended Learning Environment

    ERIC Educational Resources Information Center

    Giacumo, Lisa

    2012-01-01

    The purpose of this study was to investigate the effects of instructor response prompts and rubrics on students' performance in an asynchronous discussion-board assignment, their learning achievement on an objective-type posttest, and their reported satisfaction levels. Researchers who have studied asynchronous computer-mediated student…

  9. Designing Asynchronous, Text-Based Computer Conferences: Ten Research-Based Suggestions

    ERIC Educational Resources Information Center

    Choitz, Paul; Lee, Doris

    2006-01-01

    Asynchronous computer conferencing refers to the use of computer software and a network enabling participants to post messages that allow discourse to continue even though interactions may be extended over days and weeks. Asynchronous conferences are time-independent, adapting to multiple time zones and learner schedules. Such activities as…

  10. Asynchronous Learning Forums for Business Acculturation

    ERIC Educational Resources Information Center

    Pence, Christine Cope; Wulf, Catharina

    2009-01-01

    The use of IT as a facilitator for student collaboration in higher business education has grown rapidly since 2000. Asynchronous discussion forums are used abundantly for collaborative training purposes and for teaching students business-relevant tools for their future careers. This article presents an analysis of the asynchronous discussion forum…

  11. Comparing face-to-face, synchronous, and asynchronous learning: postgraduate dental resident preferences.

    PubMed

    Kunin, Marc; Julliard, Kell N; Rodriguez, Tobias E

    2014-06-01

    The Department of Dental Medicine of Lutheran Medical Center has developed an asynchronous online curriculum consisting of prerecorded PowerPoint presentations with audio explanations. The focus of this study was to evaluate if the new asynchronous format satisfied the educational needs of the residents compared to traditional lecture (face-to-face) and synchronous (distance learning) formats. Lectures were delivered to 219 dental residents employing face-to-face and synchronous formats, as well as the new asynchronous format; 169 (77 percent) participated in the study. Outcomes were assessed with pretests, posttests, and individual lecture surveys. Results found the residents preferred face-to-face and asynchronous formats to the synchronous format in terms of effectiveness and clarity of presentations. This preference was directly related to the residents' perception of how well the technology worked in each format. The residents also rated the quality of student-instructor and student-student interactions in the synchronous and asynchronous formats significantly higher after taking the lecture series than they did before taking it. However, they rated the face-to-face format as significantly more conducive to student-instructor and student-student interaction. While the study found technology had a major impact on the efficacy of this curricular model, the results suggest that the asynchronous format can be an effective way to teach a postgraduate course.

  12. Asynchronous glimpsing of speech: Spread of masking and task set-size

    PubMed Central

    Ozmeral, Erol J.; Buss, Emily; Hall, Joseph W.

    2012-01-01

    Howard-Jones and Rosen [(1993). J. Acoust. Soc. Am. 93, 2915–2922] investigated the ability to integrate glimpses of speech that are separated in time and frequency using a “checkerboard” masker, with asynchronous amplitude modulation (AM) across frequency. Asynchronous glimpsing was demonstrated only for spectrally wide frequency bands. It is possible that the reduced evidence of spectro-temporal integration with narrower bands was due to spread of masking at the periphery. The present study tested this hypothesis with a dichotic condition, in which the even- and odd-numbered bands of the target speech and asynchronous AM masker were presented to opposite ears, minimizing the deleterious effects of masking spread. For closed-set consonant recognition, thresholds were 5.1–8.5 dB better for dichotic than for monotic asynchronous AM conditions. Results were similar for closed-set word recognition, but for open-set word recognition the benefit of dichotic presentation was more modest and level dependent, consistent with the effects of spread of masking being level dependent. There was greater evidence of asynchronous glimpsing in the open-set than closed-set tasks. Presenting stimuli dichotically supported asynchronous glimpsing with narrower frequency bands than previously shown, though the magnitude of glimpsing was reduced for narrower bandwidths even in some dichotic conditions. PMID:22894234

  13. Asynchronous vs didactic education: it's too early to throw in the towel on tradition.

    PubMed

    Jordan, Jaime; Jalali, Azadeh; Clarke, Samuel; Dyne, Pamela; Spector, Tahlia; Coates, Wendy

    2013-08-08

    Asynchronous, computer based instruction is cost effective, allows self-directed pacing and review, and addresses preferences of millennial learners. Current research suggests there is no significant difference in learning compared to traditional classroom instruction. Data are limited for novice learners in emergency medicine. The objective of this study was to compare asynchronous, computer-based instruction with traditional didactics for senior medical students during a week-long intensive course in acute care. We hypothesized both modalities would be equivalent. This was a prospective observational quasi-experimental study of 4th year medical students who were novice learners with minimal prior exposure to curricular elements. We assessed baseline knowledge with an objective pre-test. The curriculum was delivered in either traditional lecture format (shock, acute abdomen, dyspnea, field trauma) or via asynchronous, computer-based modules (chest pain, EKG interpretation, pain management, trauma). An interactive review covering all topics was followed by a post-test. Knowledge retention was measured after 10 weeks. Pre and post-test items were written by a panel of medical educators and validated with a reference group of learners. Mean scores were analyzed using dependent t-test and attitudes were assessed by a 5-point Likert scale. 44 of 48 students completed the protocol. Students initially acquired more knowledge from didactic education as demonstrated by mean gain scores (didactic: 28.39% ± 18.06; asynchronous 9.93% ± 23.22). Mean difference between didactic and asynchronous = 18.45% with 95% CI [10.40 to 26.50]; p = 0.0001. Retention testing demonstrated similar knowledge attrition: mean gain scores -14.94% (didactic); -17.61% (asynchronous), which was not significantly different: 2.68% ± 20.85, 95% CI [-3.66 to 9.02], p = 0.399. The attitudinal survey revealed that 60.4% of students believed the asynchronous modules were educational and 95.8% enjoyed the flexibility of the method. 39.6% of students preferred asynchronous education for required didactics; 37.5% were neutral; 23% preferred traditional lectures. Asynchronous, computer-based instruction was not equivalent to traditional didactics for novice learners of acute care topics. Interactive, standard didactic education was valuable. Retention rates were similar between instructional methods. Students had mixed attitudes toward asynchronous learning but enjoyed the flexibility. We urge caution in trading in traditional didactic lectures in favor of asynchronous education for novice learners in acute care.

  14. Design and implementation of a prototype micropositioning and fusion of optical fibers

    NASA Astrophysics Data System (ADS)

    Vega, Fabio; Torres, Cesar; Mattos, Lorenzo

    2011-09-01

    We developed an automated system in micro and optical fiber fusion, using stepper motors of 3.6 ° (1.8 ° Medium step) with a threaded system for displacements in the order of microns, a LM016 LCD for User message management, a PIC16F877A microcontroller to control the prototype. We also used internal modules: TMR0, EEPROM, PWM (pulse width modulation) control using a pulse opto-cupped the discharge circuit high voltage (20 to 35 kilovolt transformer for FLYBACK fusion) The USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial interface with the PC. The software platform developed under Visual Basic 6.0, which lets you manipulate the prototype from the PC. The entire program is optimized for microcontroller interrupt, macro-functions and is written in MPLAB 7.31. The prototype is now finished.

  15. Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus

    PubMed Central

    Enoki, Ryosuke; Oda, Yoshiaki; Mieda, Michihiro; Ono, Daisuke; Honma, Sato; Honma, Ken-ichi

    2017-01-01

    The suprachiasmatic nucleus (SCN), the master circadian clock, contains a network composed of multiple types of neurons which are thought to form a hierarchical and multioscillator system. The molecular clock machinery in SCN neurons drives membrane excitability and sends time cue signals to various brain regions and peripheral organs. However, how and at what time of the day these neurons transmit output signals remain largely unknown. Here, we successfully visualized circadian voltage rhythms optically for many days using a genetically encoded voltage sensor, ArcLightD. Unexpectedly, the voltage rhythms are synchronized across the entire SCN network of cultured slices, whereas simultaneously recorded Ca2+ rhythms are topologically specific to the dorsal and ventral regions. We further found that the temporal order of these two rhythms is cell-type specific: The Ca2+ rhythms phase-lead the voltage rhythms in AVP neurons but Ca2+ and voltage rhythms are nearly in phase in VIP neurons. We confirmed that circadian firing rhythms are also synchronous and are coupled with the voltage rhythms. These results indicate that SCN networks with asynchronous Ca2+ rhythms produce coherent voltage rhythms. PMID:28270612

  16. Atmospheric Seeing and Transparency Robotic Observatory

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.

    2002-12-01

    A robotic 12.7 cm telescope and camera (together called OVIEW) have been designed to do photometry of 50 of the brightest stars in the local sky 24 hours a day. Each star is imaged through a broadband 500 nm filter. Software automatically analyzes the brightness of the star and the stellar seeing disk. The results are published in real-time on a web page. Comparison of stellar brightness with known apparent magnitude is a measure of transparency with instrument resolution of one arcsecond. We will describe the observatory, software, and website. We will also describe other telescopes on the Optical Ridge at the Pisgah Astronomical Research Institute (PARI). On the same pier as OVIEW is a second robotic 12.7 cm telescope and camera that image the sun and moon. The solar and lunar images are published live on the Internet. Also on the Optical Ridge is a robotic 20 cm telescope. This telescope is operated by UNC-Chapel Hill and has been operating on the Optical Ridge for more than 2 years surveying the plane of the Milky Way for binary low mass stars. UNC-Chapel Hill also operates a 25 cm telescope with an IR camera for photometry of gamma ray burst optical afterglows. An additional 25 cm telescope with a new 3.2 megapixel CCD is used for undergraduate research and W UMa binary star photometry. We acknowledge the AAS Small Grant Program for partial support of the solar/lunar telescope.

  17. Detection of Brownian Torque in a Magnetically-Driven Rotating Microsystem

    PubMed Central

    Romodina, Maria N.; Lyubin, Evgeny V.; Fedyanin, Andrey A.

    2016-01-01

    Thermal fluctuations significantly affect the behavior of microscale systems rotating in shear flow, such as microvortexes, microbubbles, rotating micromotors, microactuators and other elements of lab-on-a-chip devices. The influence of Brownian torque on the motion of individual magnetic microparticles in a rotating magnetic field is experimentally determined using optical tweezers. Rotational Brownian motion induces the flattening of the breakdown transition between the synchronous and asynchronous modes of microparticle rotation. The experimental findings regarding microparticle rotation in the presence of Brownian torque are compared with the results of numerical Brownian dynamics simulations. PMID:26876334

  18. Model-free distributed learning

    NASA Technical Reports Server (NTRS)

    Dembo, Amir; Kailath, Thomas

    1990-01-01

    Model-free learning for synchronous and asynchronous quasi-static networks is presented. The network weights are continuously perturbed, while the time-varying performance index is measured and correlated with the perturbation signals; the correlation output determines the changes in the weights. The perturbation may be either via noise sources or orthogonal signals. The invariance to detailed network structure mitigates large variability between supposedly identical networks as well as implementation defects. This local, regular, and completely distributed mechanism requires no central control and involves only a few global signals. Thus it allows for integrated on-chip learning in large analog and optical networks.

  19. Swift captures the spectrally evolving prompt emission of GRB070616

    NASA Astrophysics Data System (ADS)

    Starling, R. L. C.; O'Brien, P. T.; Willingale, R.; Page, K. L.; Osborne, J. P.; de Pasquale, M.; Nakagawa, Y. E.; Kuin, N. P. M.; Onda, K.; Norris, J. P.; Ukwatta, T. N.; Kodaka, N.; Burrows, D. N.; Kennea, J. A.; Page, M. J.; Perri, M.; Markwardt, C. B.

    2008-02-01

    The origins of gamma-ray burst (GRB) prompt emission are currently not well understood and in this context long, well-observed events are particularly important to study. We present the case of GRB070616, analysing the exceptionally long-duration multipeaked prompt emission, and later afterglow, captured by all the instruments on-board Swift and by Suzaku Wide-Band All-Sky Monitor (WAM). The high-energy light curve remained generally flat for several hundred seconds before going into a steep decline. Spectral evolution from hard to soft is clearly taking place throughout the prompt emission, beginning at 285s after the trigger and extending to 1200s. We track the movement of the spectral peak energy, whilst observing a softening of the low-energy spectral slope. The steep decline in flux may be caused by a combination of this strong spectral evolution and the curvature effect. We investigate origins for the spectral evolution, ruling out a superposition of two power laws and considering instead an additional component dominant during the late prompt emission. We also discuss origins for the early optical emission and the physics of the afterglow. The case of GRB070616 clearly demonstrates that both broad-band coverage and good time resolution are crucial to pin down the origins of the complex prompt emission in GRBs. This paper is dedicated to the memory of Dr Francesca Tamburelli who died during its production. Francesca played a fundamental role within the team which is in charge of the development of the Swift X-Ray Telescope (XRT) data analysis software at the Italian Space Agency's Science Data Centre in Frascati. She is sadly missed. E-mail: rlcs1@star.le.ac.uk

  20. Halo-shaped Flowing Atmospheric Pressure Afterglow – a Heavenly New Design for Simplified Sample Introduction and Improved Ionization in Ambient Mass Spectrometry

    PubMed Central

    Pfeuffer, Kevin P.; Schaper, J. Niklas; Shelley, Jacob T.; Ray, Steven J.; Chan, George C.-Y.; Bings, Nicolas H.; Hieftje, Gary M.

    2013-01-01

    The flowing atmospheric pressure afterglow (FAPA) is a promising new source for atmospheric pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA. With this new geometry, it is still possible to achieve direct desorption and ionization from a surface; however, sample introduction through the inner capillary is also possible and improves interaction between the sample material (solution, vapor, or aerosol) and the plasma to promote desorption and ionization. The h-FAPA operates with a helium gas flow of 0.60 L/min outer, 0.30 L/min inner, applied current of 30 mA at 200 V for 6 watts of power. In addition, separation of the discharge proper and sample material prevents perturbations to the plasma. Optical-emission characterization and gas rotational temperatures reveal that the temperature of the discharge is not significantly affected (< 3% change at 450K) by water vapor during solution-aerosol sample introduction. The primary mass-spectral background species are protonated water clusters, and the primary analyte ions are protonated molecular ions (M+H+). Flexibility of the new ambient sampling source is demonstrated by coupling it with a laser ablation unit, a concentric nebulizer and a droplet-on-demand system for sample introduction. A novel arrangement is also presented in which the central channel of the h-FAPA is used as the inlet to a mass spectrometer. PMID:23808829

  1. Halo-shaped flowing atmospheric pressure afterglow: a heavenly design for simplified sample introduction and improved ionization in ambient mass spectrometry.

    PubMed

    Pfeuffer, Kevin P; Schaper, J Niklas; Shelley, Jacob T; Ray, Steven J; Chan, George C-Y; Bings, Nicolas H; Hieftje, Gary M

    2013-08-06

    The flowing atmospheric-pressure afterglow (FAPA) is a promising new source for atmospheric-pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA. With this new geometry, it is still possible to achieve direct desorption and ionization from a surface; however, sample introduction through the inner capillary is also possible and improves interaction between the sample material (solution, vapor, or aerosol) and the plasma to promote desorption and ionization. The h-FAPA operates with a helium gas flow of 0.60 L/min outer, 0.30 L/min inner, and applied current of 30 mA at 200 V for 6 W of power. In addition, separation of the discharge proper and sample material prevents perturbations to the plasma. Optical-emission characterization and gas rotational temperatures reveal that the temperature of the discharge is not significantly affected (<3% change at 450 K) by water vapor during solution-aerosol sample introduction. The primary mass-spectral background species are protonated water clusters, and the primary analyte ions are protonated molecular ions (M + H(+)). Flexibility of the new ambient sampling source is demonstrated by coupling it with a laser ablation unit, a concentric nebulizer, and a droplet-on-demand system for sample introduction. A novel arrangement is also presented in which the central channel of the h-FAPA is used as the inlet to a mass spectrometer.

  2. A Large Catalog of Multiwavelength GRB Afterglows. I. Color Evolution and Its Physical Implication

    NASA Astrophysics Data System (ADS)

    Li, Liang; Wang, Yu; Shao, Lang; Wu, Xue-Feng; Huang, Yong-Feng; Zhang, Bing; Ryde, Felix; Yu, Hoi-Fung

    2018-02-01

    The spectrum of gamma-ray burst (GRB) afterglows can be studied with color indices. Here, we present a large comprehensive catalog of 70 GRBs with multiwavelength optical transient data on which we perform a systematic study to find the temporal evolution of color indices. We categorize them into two samples based on how well the color indices are evaluated. The Golden sample includes 25 bursts mostly observed by GROND, and the Silver sample includes 45 bursts observed by other telescopes. For the Golden sample, we find that 96% of the color indices do not vary over time. However, the color indices do vary during short periods in most bursts. The observed variations are consistent with effects of (i) the cooling frequency crossing the studied energy bands in a wind medium (43%) and in a constant-density medium (30%), (ii) early dust extinction (12%), (iii) transition from reverse-shock to forward-shock emission (5%), or (iv) an emergent SN emission (10%). We also study the evolutionary properties of the mean color indices for different emission episodes. We find that 86% of the color indices in the 70 bursts show constancy between consecutive ones. The color index variations occur mainly during the late GRB–SN bump, the flare, and early reverse-shock emission components. We further perform a statistical analysis of various observational properties and model parameters (spectral index {β }o{CI}, electron spectral indices p CI, etc.) using color indices. Overall, we conclude that ∼90% of colors are constant in time and can be accounted for by the simplest external forward-shock model, while the varying color indices call for more detailed modeling.

  3. Fostering Critical Reflection in a Computer-Based, Asynchronously Delivered Diversity Training Course

    ERIC Educational Resources Information Center

    Givhan, Shawn T.

    2013-01-01

    This dissertation study chronicles the creation of a computer-based, asynchronously delivered diversity training course for a state agency. The course format enabled efficient delivery of a mandatory curriculum to the Massachusetts Department of State Police workforce. However, the asynchronous format posed a challenge to achieving the learning…

  4. Anonymity and Motivation in Asynchronous Discussions and L2 Vocabulary Learning

    ERIC Educational Resources Information Center

    Polat, Nihat; Mancilla, Rae; Mahalingappa, Laura

    2013-01-01

    This study investigates L2 attainment in asynchronous online environments, specifically possible relationships among anonymity, L2 motivation, participation in discussions, quality of L2 production, and success in L2 vocabulary learning. It examines, in asynchronous discussions, (a) if participation and (b) motivation contribute to L2 vocabulary…

  5. Exploring the Effect of Scripted Roles on Cognitive Presence in Asynchronous Online Discussions

    ERIC Educational Resources Information Center

    Olesova, Larisa; Slavin, Margaret; Lim, Jieun

    2016-01-01

    The purpose of this study was to identify the effect of scripted roles on students' level of cognitive presence in asynchronous online threaded discussions. A quantitative content analysis was used to investigate: (1) what level of cognitive presence is achieved by students' assigned roles in asynchronous online discussions; (2) differences…

  6. A Multi-Perspective Investigation into Learners' Interaction in Asynchronous Computer-Mediated Communication (CMC)

    ERIC Educational Resources Information Center

    Çardak, Çigdem Suzan

    2016-01-01

    This article focusses on graduate level students' interactions during asynchronous CMC activities of an online course about the teaching profession in Turkey. The instructor of the course designed and facilitated a semester-long asynchronous CMC on forum discussions, and investigated the interaction of learners in multiple perspectives: learners'…

  7. The Negotiation Model in Asynchronous Computer-Mediated Communication (CMC): Negotiation in Task-Based Email Exchanges

    ERIC Educational Resources Information Center

    Kitade, Keiko

    2006-01-01

    Based on recent studies, computer-mediated communication (CMC) has been considered a tool to aid in language learning on account of its distinctive interactional features. However, most studies have referred to "synchronous" CMC and neglected to investigate how "asynchronous" CMC contributes to language learning. Asynchronous CMC possesses…

  8. Integrating the Intangibles into Asynchronous Online Instruction: Strategies for Improving Interaction and Social Presence

    ERIC Educational Resources Information Center

    McGuire, Beverley Foulks

    2016-01-01

    This paper considers how instructors of asynchronous online courses in the Humanities might integrate intangibles associated with face-to-face instruction into their online environments. It presents a case study of asynchronous online instruction in a philosophy and religion department at a midsize public university in the southeastern United…

  9. Postgraduate Students' Knowledge Construction during Asynchronous Computer Conferences in a Blended Learning Environment: A Malaysian Experience

    ERIC Educational Resources Information Center

    Kian-Sam, Hong; Lee, Julia Ai Cheng

    2008-01-01

    Blended learning, using e-learning tools to supplement existing on campus learning, often incorporates asynchronous computer conferencing as a means of augmenting knowledge construction among students. This case study reports findings about levels of knowledge construction amongst adult postgraduate students in six asynchronous computer…

  10. Asynchronous Learning Sources in a High-Tech Organization

    ERIC Educational Resources Information Center

    Bouhnik, Dan; Giat, Yahel; Sanderovitch, Yafit

    2009-01-01

    Purpose: The purpose of this study is to characterize learning from asynchronous sources among research and development (R&D) personnel. It aims to examine four aspects of asynchronous source learning: employee preferences regarding self-learning; extent of source usage; employee satisfaction with these sources and the effect of the sources on the…

  11. Asynchronous reference frame agreement in a quantum network

    NASA Astrophysics Data System (ADS)

    Islam, Tanvirul; Wehner, Stephanie

    2016-03-01

    An efficient implementation of many multiparty protocols for quantum networks requires that all the nodes in the network share a common reference frame. Establishing such a reference frame from scratch is especially challenging in an asynchronous network where network links might have arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem of establishing a common reference frame in an asynchronous network of n nodes of which at most t are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We present a protocol that allows all the correctly functioning nodes to agree on a common reference frame as long as the network graph is complete and not more than t\\lt n/4 nodes are faulty. As the protocol is asynchronous, it can be used with some assumptions to synchronise clocks over a network. Also, the protocol has the appealing property that it allows any existing two-node asynchronous protocol for reference frame agreement to be lifted to a robust protocol for an asynchronous quantum network.

  12. Pediatric emergency medicine asynchronous e-learning: a multicenter randomized controlled Solomon four-group study.

    PubMed

    Chang, Todd P; Pham, Phung K; Sobolewski, Brad; Doughty, Cara B; Jamal, Nazreen; Kwan, Karen Y; Little, Kim; Brenkert, Timothy E; Mathison, David J

    2014-08-01

    Asynchronous e-learning allows for targeted teaching, particularly advantageous when bedside and didactic education is insufficient. An asynchronous e-learning curriculum has not been studied across multiple centers in the context of a clinical rotation. We hypothesize that an asynchronous e-learning curriculum during the pediatric emergency medicine (EM) rotation improves medical knowledge among residents and students across multiple participating centers. Trainees on pediatric EM rotations at four large pediatric centers from 2012 to 2013 were randomized in a Solomon four-group design. The experimental arms received an asynchronous e-learning curriculum consisting of nine Web-based, interactive, peer-reviewed Flash/HTML5 modules. Postrotation testing and in-training examination (ITE) scores quantified improvements in knowledge. A 2 × 2 analysis of covariance (ANCOVA) tested interaction and main effects, and Pearson's correlation tested associations between module usage, scores, and ITE scores. A total of 256 of 458 participants completed all study elements; 104 had access to asynchronous e-learning modules, and 152 were controls who used the current education standards. No pretest sensitization was found (p = 0.75). Use of asynchronous e-learning modules was associated with an improvement in posttest scores (p < 0.001), from a mean score of 18.45 (95% confidence interval [CI] = 17.92 to 18.98) to 21.30 (95% CI = 20.69 to 21.91), a large effect (partial η(2) = 0.19). Posttest scores correlated with ITE scores (r(2) = 0.14, p < 0.001) among pediatric residents. Asynchronous e-learning is an effective educational tool to improve knowledge in a clinical rotation. Web-based asynchronous e-learning is a promising modality to standardize education among multiple institutions with common curricula, particularly in clinical rotations where scheduling difficulties, seasonality, and variable experiences limit in-hospital learning. © 2014 by the Society for Academic Emergency Medicine.

  13. Modeling and Analysis of Asynchronous Systems Using SAL and Hybrid SAL

    NASA Technical Reports Server (NTRS)

    Tiwari, Ashish; Dutertre, Bruno

    2013-01-01

    We present formal models and results of formal analysis of two different asynchronous systems. We first examine a mid-value select module that merges the signals coming from three different sensors that are each asynchronously sampling the same input signal. We then consider the phase locking protocol proposed by Daly, Hopkins, and McKenna. This protocol is designed to keep a set of non-faulty (asynchronous) clocks phase locked even in the presence of Byzantine-faulty clocks on the network. All models and verifications have been developed using the SAL model checking tools and the Hybrid SAL abstractor.

  14. Detection of Failure in Asynchronous Motor Using Soft Computing Method

    NASA Astrophysics Data System (ADS)

    Vinoth Kumar, K.; Sony, Kevin; Achenkunju John, Alan; Kuriakose, Anto; John, Ano P.

    2018-04-01

    This paper investigates the stator short winding failure of asynchronous motor also their effects on motor current spectrums. A fuzzy logic approach i.e., model based technique possibly will help to detect the asynchronous motor failure. Actually, fuzzy logic similar to humanoid intelligent methods besides expected linguistic empowering inferences through vague statistics. The dynamic model is technologically advanced for asynchronous motor by means of fuzzy logic classifier towards investigate the stator inter turn failure in addition open phase failure. A hardware implementation was carried out with LabVIEW for the online-monitoring of faults.

  15. Asynchronous discrete control of continuous processes

    NASA Astrophysics Data System (ADS)

    Kaliski, M. E.; Johnson, T. L.

    1984-07-01

    The research during this second contract year continued to deal with the development of sound theoretical models for asynchronous systems. Two criteria served to shape the research pursued: the first, that the developed models extend and generalize previously developed research for synchronous discrete control; the second, that the models explicitly address the question of how to incorporate system transition times into themselves. The following sections of this report concisely delineate this year's work. Our original proposal for this research identified four general tasks of investigation: (1.1) Analysis of Qualitative Properties of Asynchronous Hybrid Systems; (1.2) Acceptance and Control for Asynchronous Hybrid Systems.

  16. Combining Live Video and Audio Broadcasting, Synchronous Chat, and Asynchronous Open Forum Discussions in Distance Education

    ERIC Educational Resources Information Center

    Teng, Tian-Lih; Taveras, Marypat

    2004-01-01

    This article outlines the evolution of a unique distance education program that began as a hybrid--combining face-to-face instruction with asynchronous online teaching--and evolved to become an innovative combination of synchronous education using live streaming video, audio, and chat over the Internet, blended with asynchronous online discussions…

  17. Utilizing Spectrum Efficiently (USE)

    DTIC Science & Technology

    2011-02-28

    18 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and...numerical results. 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and Spectral Efficiency In [60] multiple...supported at a given signal-to-interference ratio in asynchronous direct-sequence code-division multiple-access ( DS - CDMA ) sys- tems was examined. It was

  18. The Development, Validity, and Reliability of Communication Satisfaction in an Online Asynchronous Discussion Scale

    ERIC Educational Resources Information Center

    Hung, Min-Ling; Chou, Chien

    2014-01-01

    The purpose of this study was to identify dimensions of students' communication satisfaction in an asynchronous discussion forum. An asynchronous discussion may be defined as text-based human-to-human communication via computer networks that provides a platform for the participants to interact with one another to exchange ideas, insights, and…

  19. Web-based Cases in Teaching and Learning - the Quality of Discussions and a Stage of Perspective Taking in Asynchronous Communication.

    ERIC Educational Resources Information Center

    Jarvela, Sanna; Hakkinen, Paivi

    2002-01-01

    Examines the quality of asynchronous interaction in Web-based conferencing among preservice teachers. The study combines asynchronous conferencing with peer and mentor collaboration to electronically apprentice student learning. Results point out different levels of Web-based discussion: higher-level, progressive, and lower-level discussion. A…

  20. DISCOVERY OF SMOOTHLY EVOLVING BLACKBODIES IN THE EARLY AFTERGLOW OF GRB 090618: EVIDENCE FOR A SPINE–SHEATH JET?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basak, Rupal; Rao, A. R., E-mail: rupalb@tifr.res.in, E-mail: arrao@tifr.res.in

    2015-10-20

    GRB 090618 is a bright gamma-ray burst (GRB) with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. Because high-resolution spectral data from the Swift/X-ray Telescope (XRT) are available for the early afterglow, we investigate the shape and evolution of the thermal component in this phase using data from the Swift/Burst Alert Telescope (BAT), the Swift/XRT, and the Fermi/Gamma-ray Burst Monitor detectors. An independent fit to the BAT and XRT data reveals two correlated blackbodies with monotonically decreasing temperatures. Hence, we investigated the combined data with a model consistingmore » of two blackbodies and a power law (2BBPL), a model suggested for several bright GRBs. We elicit the following interesting features of the 2BBPL model: (1) the same model is applicable from the peak of the last pulse in the prompt emission to the afterglow emission, (2) the ratio of temperatures and the fluxes of the two blackbodies remains constant throughout the observations, (3) the blackbody temperatures and fluxes show a monotonic decrease with time, with the BB fluxes dropping about a factor of two faster than that of the power-law (PL) emission, and (4) attributing the blackbody emission to photospheric emissions, we find that the photospheric radii increase very slowly with time, and the lower-temperature blackbody shows a larger emitting radius than that of the higher-temperature blackbody. We find some evidence that the underlying shape of the nonthermal emission is a cutoff power law rather than a PL. We sketch a spine–sheath jet model to explain our observations.« less

Top