Sample records for asynchronous sequential machines

  1. THRESHOLD LOGIC SYNTHESIS OF SEQUENTIAL MACHINES.

    DTIC Science & Technology

    The application of threshold logic to the design of sequential machines is the subject of this research. A single layer of threshold logic units in...advantages of fewer components because of the use of threshold logic, along with very high-speed operation resulting from the use of only a single layer of...logic. In some instances, namely for asynchronous machines, the only delay need be the natural delay of the single layer of threshold elements. It is

  2. Reversible logic gates on Physarum Polycephalum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Andrew

    2015-03-10

    In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum.

  3. The Design of Finite State Machine for Asynchronous Replication Protocol

    NASA Astrophysics Data System (ADS)

    Wang, Yanlong; Li, Zhanhuai; Lin, Wei; Hei, Minglei; Hao, Jianhua

    Data replication is a key way to design a disaster tolerance system and to achieve reliability and availability. It is difficult for a replication protocol to deal with the diverse and complex environment. This means that data is less well replicated than it ought to be. To reduce data loss and to optimize replication protocols, we (1) present a finite state machine, (2) run it to manage an asynchronous replication protocol and (3) report a simple evaluation of the asynchronous replication protocol based on our state machine. It's proved that our state machine is applicable to guarantee the asynchronous replication protocol running in the proper state to the largest extent in the event of various possible events. It also can helpful to build up replication-based disaster tolerance systems to ensure the business continuity.

  4. Performance evaluation of an asynchronous multisensor track fusion filter

    NASA Astrophysics Data System (ADS)

    Alouani, Ali T.; Gray, John E.; McCabe, D. H.

    2003-08-01

    Recently the authors developed a new filter that uses data generated by asynchronous sensors to produce a state estimate that is optimal in the minimum mean square sense. The solution accounts for communications delay between sensors platform and fusion center. It also deals with out of sequence data as well as latent data by processing the information in a batch-like manner. This paper compares, using simulated targets and Monte Carlo simulations, the performance of the filter to the optimal sequential processing approach. It was found that the new asynchronous Multisensor track fusion filter (AMSTFF) performance is identical to that of the extended sequential Kalman filter (SEKF), while the new filter updates its track at a much lower rate than the SEKF.

  5. Control of discrete event systems modeled as hierarchical state machines

    NASA Technical Reports Server (NTRS)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  6. Data Networks Reliability

    DTIC Science & Technology

    1988-10-03

    full achievable region is achievable if there is only a bounded degree of asynchronism. E. Arikan , in a Ph.D. thesis [Ari85], extended sequential...real co-operation is required to reduce the number of transmissions to O(log log N). 14 REFERENCES [Ari85] E. Arikan , "Sequential Decoding for Multiple

  7. Redundant Asynchronous Microprocessor System

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Johnston, J. O.; Dunn, W. R.

    1985-01-01

    Fault-tolerant computer structure called RAMPS (for redundant asynchronous microprocessor system) has simplicity of static redundancy but offers intermittent-fault handling ability of complex, dynamically redundant systems. New structure useful wherever several microprocessors are employed for control - in aircraft, industrial processes, robotics, and automatic machining, for example.

  8. A study of an arbiter function in the structures of a shared bus

    NASA Astrophysics Data System (ADS)

    Seck, J.-P.

    The results of a comparative study of synchronous and asynchronous arbiters for managing user access to a shared bus is presented. The best available method is determined to be modular arbiter structures attached only to the decision module. Linear and circular arbitration strategies are examined for suitability for automatic decision-making. A multiple strategies arbiter scheme is devised, involving the superposition of various strategies of one sequential machine into another. It is then possible to modify the strategy on-line if the current strategy is ineffective. The utilization of a multiple structure of cascading arbiter devices is noted to be effective if response time is not a critical matter. Finally, attention is given to automatic circuit testing and fault detection. An example is furnished in terms of a management system for a shared memory in a multimicroprocessor structure.

  9. An Undergraduate Survey Course on Asynchronous Sequential Logic, Ladder Logic, and Fuzzy Logic

    ERIC Educational Resources Information Center

    Foster, D. L.

    2012-01-01

    For a basic foundation in computer engineering, universities traditionally teach synchronous sequential circuit design, using discrete gates or field programmable gate arrays, and a microcomputers course that includes basic I/O processing. These courses, though critical, expose students to only a small subset of tools. At co-op schools like…

  10. Multiuser signal detection using sequential decoding

    NASA Astrophysics Data System (ADS)

    Xie, Zhenhua; Rushforth, Craig K.; Short, Robert T.

    1990-05-01

    The application of sequential decoding to the detection of data transmitted over the additive white Gaussian noise channel by K asynchronous transmitters using direct-sequence spread-spectrum multiple access is considered. A modification of Fano's (1963) sequential-decoding metric, allowing the messages from a given user to be safely decoded if its Eb/N0 exceeds -1.6 dB, is presented. Computer simulation is used to evaluate the performance of a sequential decoder that uses this metric in conjunction with the stack algorithm. In many circumstances, the sequential decoder achieves results comparable to those obtained using the much more complicated optimal receiver.

  11. Development of Boolean calculus and its application

    NASA Technical Reports Server (NTRS)

    Tapia, M. A.

    1979-01-01

    Formal procedures for synthesis of asynchronous sequential system using commercially available edge-sensitive flip-flops are developed. Boolean differential is defined. The exact number of compatible integrals of a Boolean differential were calculated.

  12. Design, development and use of the finite element machine

    NASA Technical Reports Server (NTRS)

    Adams, L. M.; Voigt, R. C.

    1983-01-01

    Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained.

  13. Asynchronous machine rotor speed estimation using a tabulated numerical approach

    NASA Astrophysics Data System (ADS)

    Nguyen, Huu Phuc; De Miras, Jérôme; Charara, Ali; Eltabach, Mario; Bonnet, Stéphane

    2017-12-01

    This paper proposes a new method to estimate the rotor speed of the asynchronous machine by looking at the estimation problem as a nonlinear optimal control problem. The behavior of the nonlinear plant model is approximated off-line as a prediction map using a numerical one-step time discretization obtained from simulations. At each time-step, the speed of the induction machine is selected satisfying the dynamic fitting problem between the plant output and the predicted output, leading the system to adopt its dynamical behavior. Thanks to the limitation of the prediction horizon to a single time-step, the execution time of the algorithm can be completely bounded. It can thus easily be implemented and embedded into a real-time system to observe the speed of the real induction motor. Simulation results show the performance and robustness of the proposed estimator.

  14. A BMI-based occupational therapy assist suit: asynchronous control by SSVEP

    PubMed Central

    Sakurada, Takeshi; Kawase, Toshihiro; Takano, Kouji; Komatsu, Tomoaki; Kansaku, Kenji

    2013-01-01

    A brain-machine interface (BMI) is an interface technology that uses neurophysiological signals from the brain to control external machines. Recent invasive BMI technologies have succeeded in the asynchronous control of robot arms for a useful series of actions, such as reaching and grasping. In this study, we developed non-invasive BMI technologies aiming to make such useful movements using the subject's own hands by preparing a BMI-based occupational therapy assist suit (BOTAS). We prepared a pre-recorded series of useful actions—a grasping-a-ball movement and a carrying-the-ball movement—and added asynchronous control using steady-state visual evoked potential (SSVEP) signals. A SSVEP signal was used to trigger the grasping-a-ball movement and another SSVEP signal was used to trigger the carrying-the-ball movement. A support vector machine was used to classify EEG signals recorded from the visual cortex (Oz) in real time. Untrained, able-bodied participants (n = 12) operated the system successfully. Classification accuracy and time required for SSVEP detection were ~88% and 3 s, respectively. We further recruited three patients with upper cervical spinal cord injuries (SCIs); they also succeeded in operating the system without training. These data suggest that our BOTAS system is potentially useful in terms of rehabilitation of patients with upper limb disabilities. PMID:24068982

  15. Control strategy for a variable-speed wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Jacob, A.; Veillette, D.; Rajagopalan, V.

    1979-01-01

    A control concept for a variable-speed wind energy conversion system is proposed, for which a self-exited asynchronous cage generator is used along with a system of thyristor converters. The control loops are the following: (1) regulation of the entrainment speed as function of available mechanical energy by acting on the resistance couple of the asynchronous generator; (2) control of electric power delivered to the asynchronous machine, functioning as a motor, for start-up of the vertical axis wind converter; and (3) limitation of the slip value, and by consequence, of the induction currents in the presence of sudden variations of input parameters.

  16. Irredundant Sequential Machines Via Optimal Logic Synthesis

    DTIC Science & Technology

    1989-10-01

    1989 Irredundant Sequential Machines Via Optimal Logic Synthesis NSrinivas Devadas , Hi-Keung Tony Ma, A. Richard Newton, and Alberto Sangiovanni- S...Agency under contract N00014-87-K-0825, and a grant from AT & T Bell Laboratories. Author Information Devadas : Department of Electrical Engineering...Sequential Machines Via Optimal Logic Synthesis Srinivas Devadas * Hi-Keung Tony ha. A. Richard Newton and Alberto Sangiovanni-Viucentelli Department of

  17. Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines

    DTIC Science & Technology

    1989-09-01

    Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Srinivas Devadas and Kurt Keutzer F ( Abstract In this...Projects Agency under contract number N00014-87-K-0825. Author Information Devadas : Department of Electrical Engineering and Computer Science, Room 36...MA 02139; (617) 253-0292. 0 * Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Siivas Devadas

  18. Statistical Discourse Analysis: A Method for Modelling Online Discussion Processes

    ERIC Educational Resources Information Center

    Chiu, Ming Ming; Fujita, Nobuko

    2014-01-01

    Online forums (synchronous and asynchronous) offer exciting data opportunities to analyze how people influence one another through their interactions. However, researchers must address several analytic difficulties involving the data (missing values, nested structure [messages within topics], non-sequential messages), outcome variables (discrete…

  19. Dual stator winding variable speed asynchronous generator: optimal design and experiments

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.

    2015-06-01

    In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].

  20. Porting Gravitational Wave Signal Extraction to Parallel Virtual Machine (PVM)

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Thompson, David E.; Redmon, Jeffery

    2009-01-01

    Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA mission to be launched around 2012. The Gravitational Wave detection is fundamentally the determination of frequency, source parameters, and waveform amplitude derived in a specific order from the interferometric time-series of the rotating LISA spacecrafts. The LISA Science Team has developed a Mock LISA Data Challenge intended to promote the testing of complicated nested search algorithms to detect the 100-1 millihertz frequency signals at amplitudes of 10E-21. However, it has become clear that, sequential search of the parameters is very time consuming and ultra-sensitive; hence, a new strategy has been developed. Parallelization of existing sequential search algorithms of Gravitational Wave signal identification consists of decomposing sequential search loops, beginning with outermost loops and working inward. In this process, the main challenge is to detect interdependencies among loops and partitioning the loops so as to preserve concurrency. Existing parallel programs are based upon either shared memory or distributed memory paradigms. In PVM, master and node programs are used to execute parallelization and process spawning. The PVM can handle process management and process addressing schemes using a virtual machine configuration. The task scheduling and the messaging and signaling can be implemented efficiently for the LISA Gravitational Wave search process using a master and 6 nodes. This approach is accomplished using a server that is available at NASA Ames Research Center, and has been dedicated to the LISA Data Challenge Competition. Historically, gravitational wave and source identification parameters have taken around 7 days in this dedicated single thread Linux based server. Using PVM approach, the parameter extraction problem can be reduced to within a day. The low frequency computation and a proxy signal-to-noise ratio are calculated in separate nodes that are controlled by the master using message and vector of data passing. The message passing among nodes follows a pattern of synchronous and asynchronous send-and-receive protocols. The communication model and the message buffers are allocated dynamically to address rapid search of gravitational wave source information in the Mock LISA data sets.

  1. Practical aspects of the use of three-phase alternating current electric machines in electricity storage system

    NASA Astrophysics Data System (ADS)

    Ciucur, Violeta

    2015-02-01

    Of three-phase alternating current electric machines, it brings into question which of them is more advantageous to be used in electrical energy storage system by pumping water. The two major categories among which are given dispute are synchronous and the asynchronous machine. To consider the synchronous machine with permanent magnet configuration because it brings advantages compared with conventional synchronous machine, first by removing the necessary additional excitation winding. From the point of view of loss of the two types of machines, the optimal adjustment of the magnetic flux density is obtained to minimize the copper loss by hysteresis and eddy currents.

  2. Electromechanical converters for electric vehicles

    NASA Astrophysics Data System (ADS)

    Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Rujanschi, N.

    2018-01-01

    The paper presents the analysis of various constructive schemes of synchronous electromechanical converters with permanent magnets fixed on the rotor and asynchronous with the short-circuit rotor. Various electrical stator winding schemes have also been compared, demonstrating the efficiency of copper utilization in toroidal windings. The electromagnetic calculus of the axial machine has particularities compared to the cylindrical machine, in the paper is presented the method of correlating the geometry of the cylindrical and axial machines. In this case the method and recommendations used in the design of such machines may be used.

  3. Specification and verification of gate-level VHDL models of synchronous and asynchronous circuits

    NASA Technical Reports Server (NTRS)

    Russinoff, David M.

    1995-01-01

    We present a mathematical definition of hardware description language (HDL) that admits a semantics-preserving translation to a subset of VHDL. Our HDL includes the basic VHDL propagation delay mechanisms and gate-level circuit descriptions. We also develop formal procedures for deriving and verifying concise behavioral specifications of combinational and sequential devices. The HDL and the specification procedures have been formally encoded in the computational logic of Boyer and Moore, which provides a LISP implementation as well as a facility for mechanical proof-checking. As an application, we design, specify, and verify a circuit that achieves asynchronous communication by means of the biphase mark protocol.

  4. A Verification System for Distributed Objects with Asynchronous Method Calls

    NASA Astrophysics Data System (ADS)

    Ahrendt, Wolfgang; Dylla, Maximilian

    We present a verification system for Creol, an object-oriented modeling language for concurrent distributed applications. The system is an instance of KeY, a framework for object-oriented software verification, which has so far been applied foremost to sequential Java. Building on KeY characteristic concepts, like dynamic logic, sequent calculus, explicit substitutions, and the taclet rule language, the system presented in this paper addresses functional correctness of Creol models featuring local cooperative thread parallelism and global communication via asynchronous method calls. The calculus heavily operates on communication histories which describe the interfaces of Creol units. Two example scenarios demonstrate the usage of the system.

  5. A formal language for the specification and verification of synchronous and asynchronous circuits

    NASA Technical Reports Server (NTRS)

    Russinoff, David M.

    1993-01-01

    A formal hardware description language for the intended application of verifiable asynchronous communication is described. The language is developed within the logical framework of the Nqthm system of Boyer and Moore and is based on the event-driven behavioral model of VHDL, including the basic VHDL signal propagation mechanisms, the notion of simulation deltas, and the VHDL simulation cycle. A core subset of the language corresponds closely with a subset of VHDL and is adequate for the realistic gate-level modeling of both combinational and sequential circuits. Various extensions to this subset provide means for convenient expression of behavioral circuit specifications.

  6. Auditory Stream Segregation and the Perception of Across-Frequency Synchrony

    ERIC Educational Resources Information Center

    Micheyl, Christophe; Hunter, Cynthia; Oxenham, Andrew J.

    2010-01-01

    This study explored the extent to which sequential auditory grouping affects the perception of temporal synchrony. In Experiment 1, listeners discriminated between 2 pairs of asynchronous "target" tones at different frequencies, A and B, in which the B tone either led or lagged. Thresholds were markedly higher when the target tones were temporally…

  7. Block-Module Electric Machines of Alternating Current

    NASA Astrophysics Data System (ADS)

    Zabora, I.

    2018-03-01

    The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).

  8. Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms.

    PubMed

    De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher

    2015-12-01

    Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specifically, we use our new analysis in three ways: (1) we derive convergence rates for the convex case (Hogwild!) with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild!, that uses lower-precision arithmetic. We show experimentally that our algorithms run efficiently for a variety of problems on modern hardware.

  9. Sequential behavior and its inherent tolerance to memory faults.

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1972-01-01

    Representation of a memory fault of a sequential machine M by a function mu on the states of M and the result of the fault by an appropriately determined machine M(mu). Given some sequential behavior B, its inherent tolerance to memory faults can then be measured in terms of the minimum memory redundancy required to realize B with a state-assigned machine having fault tolerance type tau and fault tolerance level t. A behavior having maximum inherent tolerance is exhibited, and it is shown that behaviors of the same size can have different inherent tolerance.

  10. Topics in programmable automation. [for materials handling, inspection, and assembly

    NASA Technical Reports Server (NTRS)

    Rosen, C. A.

    1975-01-01

    Topics explored in the development of integrated programmable automation systems include: numerically controlled and computer controlled machining; machine intelligence and the emulation of human-like capabilities; large scale semiconductor integration technology applications; and sensor technology for asynchronous local computation without burdening the executive minicomputer which controls the whole system. The role and development of training aids, and the potential application of these aids to augmented teleoperator systems are discussed.

  11. A Unified Approach to the Synthesis of Fully Testable Sequential Machines

    DTIC Science & Technology

    1989-10-01

    N A Unified Approach to the Synthesis of Fully Testable Sequential Machines Srinivas Devadas and Kurt Keutzer Abstract • In this paper we attempt to...research was supported in part by the Defense Advanced Research Projects Agency under contract N00014-87-K-0825. Author Information Devadas : Department...Fully Testable Sequential Maine(S P Sritiivas Devadas Departinent of Electrical Engineerinig anid Comivi Sciec Massachusetts Institute of Technology

  12. Asynchronous decision making in a memorized paddle pressing task

    NASA Astrophysics Data System (ADS)

    Dankert, James R.; Olson, Byron; Si, Jennie

    2008-12-01

    This paper presents a method for asynchronous decision making using recorded neural data in a binary decision task. This is a demonstration of a technique for developing motor cortical neural prosthetics that do not rely on external cued timing information. The system presented in this paper uses support vector machines and leaky integrate-and-fire elements to predict directional paddle presses. In addition to the traditional metrics of accuracy, asynchronous systems must also optimize the time needed to make a decision. The system presented is able to predict paddle presses with a median accuracy of 88% and all decisions are made before the time of the actual paddle press. An alternative bit rate measure of performance is defined to show that the system proposed here is able to perform the task with the same efficiency as the rats.

  13. Exploring the Learner's Knowledge Construction and Cognitive Patterns of Different Asynchronous Platforms: Comparison of an Online Discussion Forum and Facebook

    ERIC Educational Resources Information Center

    Hou, Huei-Tse; Wang, Shu-Ming; Lin, Peng-Chun; Chang, Kuo-En

    2015-01-01

    The primary purpose of this study is to explore the knowledge construction behaviour and cognitive patterns involved in students' online discussion using online forum and Facebook (FB). This study employed quantitative content analysis and lag sequential analysis to examine the content and behavioural patterns of 50 students from a private…

  14. A Sequential Analysis of Responses in Online Debates to Postings of Students Exhibiting High Versus Low Grammar and Spelling Errors

    ERIC Educational Resources Information Center

    Jeong, Allan; Li, Haiying; Pan, Andy Jiaren

    2017-01-01

    Given that grammatical and spelling errors have been found to influence perceived competence and credibility in written communication, this study examined how a student's grammar and spelling errors affect how other students respond to the student's postings in four online debates hosted in asynchronous threaded discussions. Message-response…

  15. Parallel, Asynchronous Executive (PAX): System concepts, facilities, and architecture

    NASA Technical Reports Server (NTRS)

    Jones, W. H.

    1983-01-01

    The Parallel, Asynchronous Executive (PAX) is a software operating system simulation that allows many computers to work on a single problem at the same time. PAX is currently implemented on a UNIVAC 1100/42 computer system. Independent UNIVAC runstreams are used to simulate independent computers. Data are shared among independent UNIVAC runstreams through shared mass-storage files. PAX has achieved the following: (1) applied several computing processes simultaneously to a single, logically unified problem; (2) resolved most parallel processor conflicts by careful work assignment; (3) resolved by means of worker requests to PAX all conflicts not resolved by work assignment; (4) provided fault isolation and recovery mechanisms to meet the problems of an actual parallel, asynchronous processing machine. Additionally, one real-life problem has been constructed for the PAX environment. This is CASPER, a collection of aerodynamic and structural dynamic problem simulation routines. CASPER is not discussed in this report except to provide examples of parallel-processing techniques.

  16. Simulation of an Asynchronous Machine by using a Pseudo Bond Graph

    NASA Astrophysics Data System (ADS)

    Romero, Gregorio; Felez, Jesus; Maroto, Joaquin; Martinez, M. Luisa

    2008-11-01

    For engineers, computer simulation, is a basic tool since it enables them to understand how systems work without actually needing to see them. They can learn how they work in different circumstances and optimize their design with considerably less cost in terms of time and money than if they had to carry out tests on a physical system. However, if computer simulation is to be reliable it is essential for the simulation model to be validated. There is a wide range of commercial brands on the market offering products for electrical domain simulation (SPICE, LabVIEW PSCAD,Dymola, Simulink, Simplorer,...). These are powerful tools, but require the engineer to have a perfect knowledge of the electrical field. This paper shows an alternative methodology to can simulate an asynchronous machine using the multidomain Bond Graph technique and apply it in any program that permit the simulation of models based in this technique; no extraordinary knowledge of this technique and electric field are required to understand the process .

  17. An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities.

    PubMed

    Matsubara, Takashi; Torikai, Hiroyuki

    2016-04-01

    Modeling and implementation approaches for the reproduction of input-output relationships in biological nervous tissues contribute to the development of engineering and clinical applications. However, because of high nonlinearity, the traditional modeling and implementation approaches encounter difficulties in terms of generalization ability (i.e., performance when reproducing an unknown data set) and computational resources (i.e., computation time and circuit elements). To overcome these difficulties, asynchronous cellular automaton-based neuron (ACAN) models, which are described as special kinds of cellular automata that can be implemented as small asynchronous sequential logic circuits have been proposed. This paper presents a novel type of such ACAN and a theoretical analysis of its excitability. This paper also presents a novel network of such neurons, which can mimic input-output relationships of biological and nonlinear ordinary differential equation model neural networks. Numerical analyses confirm that the presented network has a higher generalization ability than other major modeling and implementation approaches. In addition, Field-Programmable Gate Array-implementations confirm that the presented network requires lower computational resources.

  18. Benefits and Limitations of Online Instruction in Natural Science Undergraduate Liberal Arts Courses

    NASA Astrophysics Data System (ADS)

    Liddicoat, Joseph; Roberts, Godfrey; Liddicoat, Kendra; Porzecanski, Ana Luz; Mendez, Martin; McMullen, David

    2013-04-01

    Online courses in the Natural Sciences are taught three ways at New York University to undergraduate students majoring in the liberal arts and professional programs - synchronous courses in which students communicate online with the instructor and classmates in real time, asynchronous courses when faculty present course material for students to access and learn at their leisure, and hybrid or blended courses when part is taught asynchronously and part is taught face-to-face in a classroom with all students present. We have done online courses each way - Global Ecology (synchronous); Stars, Planets, and Life (synchronous and asynchronous); Darwin to DNA: An Overview of Evolution (asynchronous); Biodiversity Conservation (asynchronous); and Biology of Hunger and Population (blended). We will present the advantages and challenges we experienced teaching courses online in this fashion. Besides the advantages listed in the description for this session, another can be programmed learning that allows a set of sequential steps or a more complex branching of steps that allows students to repeat lessons multiple times to master the material. And from an academic standpoint, course content and assessment can be standardized, making it possible for each student to learn the same material. Challenges include resistance to online learning by a host of stakeholders who might be educators, students, parents, and the community. Equally challenging might be the readiness of instructors and students to teach and learn online. Student integrity issues such as plagiarism and cheating are a concern in a course taught online (Thormann and Zimmerman, 2012), so we will discuss our strategies to mitigate them.

  19. Comparaison de méthodes d'identification des paramètres d'une machine asynchrone

    NASA Astrophysics Data System (ADS)

    Bellaaj-Mrabet, N.; Jelassi, K.

    1998-07-01

    Interests, in Genetic Algorithms (G.A.) expands rapidly. This paper consists initially to apply G.A. for identifying induction motor parameters. Next, we compare the performances with classical methods like Maximum Likelihood and classical electrotechnical methods. These methods are applied on three induction motors of different powers to compare results following a set of criteria. Les algorithmes génétiques sont des méthodes adaptatives de plus en plus utilisée pour la résolution de certains problèmes d'optimisation. Le présent travail consiste d'une part, à mettre en œuvre un A.G sur des problèmes d'identification des machines électriques, et d'autre part à comparer ses performances avec les méthodes classiques tels que la méthode du maximum de vraisemblance et la méthode électrotechnique basée sur des essais à vides et en court-circuit. Ces méthodes sont appliquées sur des machines asynchrones de différentes puissances. Les résultats obtenus sont comparés selon certains critères, permettant de conclure sur la validité et la performance de chaque méthode.

  20. Online Sequential Projection Vector Machine with Adaptive Data Mean Update

    PubMed Central

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  1. Online Sequential Projection Vector Machine with Adaptive Data Mean Update.

    PubMed

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.

  2. Delay test generation for synchronous sequential circuits

    NASA Astrophysics Data System (ADS)

    Devadas, Srinivas

    1989-05-01

    We address the problem of generating tests for delay faults in non-scan synchronous sequential circuits. Delay test generation for sequential circuits is a considerably more difficult problem than delay testing of combinational circuits and has received much less attention. In this paper, we present a method for generating test sequences to detect delay faults in sequential circuits using the stuck-at fault sequential test generator STALLION. The method is complete in that it will generate a delay test sequence for a targeted fault given sufficient CPU time, if such a sequence exists. We term faults for which no delay test sequence exists, under out test methodology, sequentially delay redundant. We describe means of eliminating sequential delay redundancies in logic circuits. We present a partial-scan methodology for enhancing the testability of difficult-to-test of untestable sequential circuits, wherein a small number of flip-flops are selected and made controllable/observable. The selection process guarantees the elimination of all sequential delay redundancies. We show that an intimate relationship exists between state assignment and delay testability of a sequential machine. We describe a state assignment algorithm for the synthesis of sequential machines with maximal delay fault testability. Preliminary experimental results using the test generation, partial-scan and synthesis algorithm are presented.

  3. Engineering of Machine tool’s High-precision electric drives

    NASA Astrophysics Data System (ADS)

    Khayatov, E. S.; Korzhavin, M. E.; Naumovich, N. I.

    2018-03-01

    In the article it is shown that in mechanisms with numerical program control, high quality of processes can be achieved only in systems that provide adjustment of the working element’s position with high accuracy, and this requires an expansion of the regulation range by the torque. In particular, the use of synchronous reactive machines with independent excitation control makes it possible to substantially increase the moment overload in the sequential excitation circuit. Using mathematical and physical modeling methods, it is shown that in the electric drive with a synchronous reactive machine with independent excitation in a circuit with sequential excitation, it is possible to significantly expand the range of regulation by the torque and this is achieved by the effect of sequential excitation, which makes it possible to compensate for the transverse reaction of the armature.

  4. Forecasting daily streamflow using online sequential extreme learning machines

    NASA Astrophysics Data System (ADS)

    Lima, Aranildo R.; Cannon, Alex J.; Hsieh, William W.

    2016-06-01

    While nonlinear machine methods have been widely used in environmental forecasting, in situations where new data arrive continually, the need to make frequent model updates can become cumbersome and computationally costly. To alleviate this problem, an online sequential learning algorithm for single hidden layer feedforward neural networks - the online sequential extreme learning machine (OSELM) - is automatically updated inexpensively as new data arrive (and the new data can then be discarded). OSELM was applied to forecast daily streamflow at two small watersheds in British Columbia, Canada, at lead times of 1-3 days. Predictors used were weather forecast data generated by the NOAA Global Ensemble Forecasting System (GEFS), and local hydro-meteorological observations. OSELM forecasts were tested with daily, monthly or yearly model updates. More frequent updating gave smaller forecast errors, including errors for data above the 90th percentile. Larger datasets used in the initial training of OSELM helped to find better parameters (number of hidden nodes) for the model, yielding better predictions. With the online sequential multiple linear regression (OSMLR) as benchmark, we concluded that OSELM is an attractive approach as it easily outperformed OSMLR in forecast accuracy.

  5. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove.

    PubMed

    Kafka, K R P; Austin, D R; Li, H; Yi, A Y; Cheng, J; Chowdhury, E A

    2015-07-27

    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse (probe) from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form asynchronously, with the first one forming after 50 ps and others forming sequentially outward from the groove edge at larger time delays. A 1-D analytical model of electron heating including both the laser pulse and surface plasmon polariton excitation at the groove edge predicts ripple period, melt spot diameter, and qualitatively explains the asynchronous time-evolution of LIPSS formation.

  6. Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors - Performance results

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids (global and local) to provide adaptive resolution and fast solution of PDEs. Like all such methods, it offers parallelism by using possibly many disconnected patches per level, but is hindered by the need to handle these levels sequentially. The finest levels must therefore wait for processing to be essentially completed on all the coarser ones. A recently developed asynchronous version of FAC, called AFAC, completely eliminates this bottleneck to parallelism. This paper describes timing results for AFAC, coupled with a simple load balancing scheme, applied to the solution of elliptic PDEs on an Intel iPSC hypercube. These tests include performance of certain processes necessary in adaptive methods, including moving grids and changing refinement. A companion paper reports on numerical and analytical results for estimating convergence factors of AFAC applied to very large scale examples.

  7. Architecture and method for a burst buffer using flash technology

    DOEpatents

    Tzelnic, Percy; Faibish, Sorin; Gupta, Uday K.; Bent, John; Grider, Gary Alan; Chen, Hsing-bung

    2016-03-15

    A parallel supercomputing cluster includes compute nodes interconnected in a mesh of data links for executing an MPI job, and solid-state storage nodes each linked to a respective group of the compute nodes for receiving checkpoint data from the respective compute nodes, and magnetic disk storage linked to each of the solid-state storage nodes for asynchronous migration of the checkpoint data from the solid-state storage nodes to the magnetic disk storage. Each solid-state storage node presents a file system interface to the MPI job, and multiple MPI processes of the MPI job write the checkpoint data to a shared file in the solid-state storage in a strided fashion, and the solid-state storage node asynchronously migrates the checkpoint data from the shared file in the solid-state storage to the magnetic disk storage and writes the checkpoint data to the magnetic disk storage in a sequential fashion.

  8. French wind generator systems. [as auxiliary power sources for electrical networks

    NASA Technical Reports Server (NTRS)

    Noel, J. M.

    1973-01-01

    The experimental design of a wind driven generator with a rated power of 800 kilovolt amperes and capable of being connected to the main electrical network is reported. The rotor is a three bladed propeller; each blade is twisted but the fixed pitch is adjustable. The asynchronous 800-kilovolt ampere generator is driven by the propeller through a gearbox. A dissipating resistor regulates the machine under no-load conditions. The first propeller on the machine lasted 18 months; replacement of the rigid propeller with a flexible structure resulted in breakdown due to flutter effects.

  9. Continuous EEG signal analysis for asynchronous BCI application.

    PubMed

    Hsu, Wei-Yen

    2011-08-01

    In this study, we propose a two-stage recognition system for continuous analysis of electroencephalogram (EEG) signals. An independent component analysis (ICA) and correlation coefficient are used to automatically eliminate the electrooculography (EOG) artifacts. Based on the continuous wavelet transform (CWT) and Student's two-sample t-statistics, active segment selection then detects the location of active segment in the time-frequency domain. Next, multiresolution fractal feature vectors (MFFVs) are extracted with the proposed modified fractal dimension from wavelet data. Finally, the support vector machine (SVM) is adopted for the robust classification of MFFVs. The EEG signals are continuously analyzed in 1-s segments, and every 0.5 second moves forward to simulate asynchronous BCI works in the two-stage recognition architecture. The segment is first recognized as lifted or not in the first stage, and then is classified as left or right finger lifting at stage two if the segment is recognized as lifting in the first stage. Several statistical analyses are used to evaluate the performance of the proposed system. The results indicate that it is a promising system in the applications of asynchronous BCI work.

  10. Isothermal crystallization of poly(3-hydroxybutyrate) studied by terahertz two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Morisawa, Yusuke; Sato, Harumi; Noda, Isao; Ozaki, Yukihiro; Otani, Chiko

    2012-01-01

    The isothermal crystallization of poly(3-hydroxybutylate) (PHB) was studied by monitoring the temporal evolution of terahertz absorption spectra in conjunction with spectral analysis using two-dimensional correlation spectroscopy. Correlation between the absorption peaks and the sequential order of the changes in spectral intensity extracted from synchronous and asynchronous plots indicated that crystallization of PHB at 90 °C is a two step process, in which C-H...O=C hydrogen bonds are initially formed before well-defined crystal structures are established.

  11. Neural timing signal for precise tactile timing judgments

    PubMed Central

    Watanabe, Junji; Nishida, Shin'ya

    2016-01-01

    The brain can precisely encode the temporal relationship between tactile inputs. While behavioural studies have demonstrated precise interfinger temporal judgments, the underlying neural mechanism remains unknown. Computationally, two kinds of neural responses can act as the information source. One is the phase-locked response to the phase of relatively slow inputs, and the other is the response to the amplitude change of relatively fast inputs. To isolate the contributions of these components, we measured performance of a synchrony judgment task for sine wave and amplitude-modulation (AM) wave stimuli. The sine wave stimulus was a low-frequency sinusoid, with the phase shifted in the asynchronous stimulus. The AM wave stimulus was a low-frequency sinusoidal AM of a 250-Hz carrier, with only the envelope shifted in the asynchronous stimulus. In the experiment, three stimulus pairs, two synchronous ones and one asynchronous one, were sequentially presented to neighboring fingers, and participants were asked to report which one was the asynchronous pair. We found that the asynchrony of AM waves could be detected as precisely as single impulse pair, with the threshold asynchrony being ∼20 ms. On the other hand, the asynchrony of sine waves could not be detected at all in the range from 5 to 30 Hz. Our results suggest that the timing signal for tactile judgments is provided not by the stimulus phase information but by the envelope of the response of the high-frequency-sensitive Pacini channel (PC), although they do not exclude a possible contribution of the envelope of non-PCs. PMID:26843600

  12. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity.

    PubMed

    Xu, Zhiming; So, Rosa Q; Toe, Kyaw Kyar; Ang, Kai Keng; Guan, Cuntai

    2014-01-01

    This paper presents an asynchronously intracortical brain-computer interface (BCI) which allows the subject to continuously drive a mobile robot. This system has a great implication for disabled patients to move around. By carefully designing a multiclass support vector machine (SVM), the subject's self-paced instantaneous movement intents are continuously decoded to control the mobile robot. In particular, we studied the stability of the neural representation of the movement directions. Experimental results on the nonhuman primate showed that the overt movement directions were stably represented in ensemble of recorded units, and our SVM classifier could successfully decode such movements continuously along the desired movement path. However, the neural representation of the stop state for the self-paced control was not stably represented and could drift.

  13. A novel asynchronous access method with binary interfaces

    PubMed Central

    2008-01-01

    Background Traditionally synchronous access strategies require users to comply with one or more time constraints in order to communicate intent with a binary human-machine interface (e.g., mechanical, gestural or neural switches). Asynchronous access methods are preferable, but have not been used with binary interfaces in the control of devices that require more than two commands to be successfully operated. Methods We present the mathematical development and evaluation of a novel asynchronous access method that may be used to translate sporadic activations of binary interfaces into distinct outcomes for the control of devices requiring an arbitrary number of commands to be controlled. With this method, users are required to activate their interfaces only when the device under control behaves erroneously. Then, a recursive algorithm, incorporating contextual assumptions relevant to all possible outcomes, is used to obtain an informed estimate of user intention. We evaluate this method by simulating a control task requiring a series of target commands to be tracked by a model user. Results When compared to a random selection, the proposed asynchronous access method offers a significant reduction in the number of interface activations required from the user. Conclusion This novel access method offers a variety of advantages over traditionally synchronous access strategies and may be adapted to a wide variety of contexts, with primary relevance to applications involving direct object manipulation. PMID:18959797

  14. Machine Shop: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    Intended for use by all machine shop instructors in the Metropolitan Nashville Public Schools, this guide provides a sequential listing of course content and scope. A course description provides a brief overview of the content of the courses offered in the machine shop program. General course objectives are then listed. Outlines of the course…

  15. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  16. PWM Inverter control and the application thereof within electric vehicles

    DOEpatents

    Geppert, Steven

    1982-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  17. UArizona at the CLEF eRisk 2017 Pilot Task: Linear and Recurrent Models for Early Depression Detection

    PubMed Central

    Sadeque, Farig; Xu, Dongfang; Bethard, Steven

    2017-01-01

    The 2017 CLEF eRisk pilot task focuses on automatically detecting depression as early as possible from a users’ posts to Reddit. In this paper we present the techniques employed for the University of Arizona team’s participation in this early risk detection shared task. We leveraged external information beyond the small training set, including a preexisting depression lexicon and concepts from the Unified Medical Language System as features. For prediction, we used both sequential (recurrent neural network) and non-sequential (support vector machine) models. Our models perform decently on the test data, and the recurrent neural models perform better than the non-sequential support vector machines while using the same feature sets. PMID:29075167

  18. Highly Scalable Asynchronous Computing Method for Partial Differential Equations: A Path Towards Exascale

    NASA Astrophysics Data System (ADS)

    Konduri, Aditya

    Many natural and engineering systems are governed by nonlinear partial differential equations (PDEs) which result in a multiscale phenomena, e.g. turbulent flows. Numerical simulations of these problems are computationally very expensive and demand for extreme levels of parallelism. At realistic conditions, simulations are being carried out on massively parallel computers with hundreds of thousands of processing elements (PEs). It has been observed that communication between PEs as well as their synchronization at these extreme scales take up a significant portion of the total simulation time and result in poor scalability of codes. This issue is likely to pose a bottleneck in scalability of codes on future Exascale systems. In this work, we propose an asynchronous computing algorithm based on widely used finite difference methods to solve PDEs in which synchronization between PEs due to communication is relaxed at a mathematical level. We show that while stability is conserved when schemes are used asynchronously, accuracy is greatly degraded. Since message arrivals at PEs are random processes, so is the behavior of the error. We propose a new statistical framework in which we show that average errors drop always to first-order regardless of the original scheme. We propose new asynchrony-tolerant schemes that maintain accuracy when synchronization is relaxed. The quality of the solution is shown to depend, not only on the physical phenomena and numerical schemes, but also on the characteristics of the computing machine. A novel algorithm using remote memory access communications has been developed to demonstrate excellent scalability of the method for large-scale computing. Finally, we present a path to extend this method in solving complex multi-scale problems on Exascale machines.

  19. Scalable asynchronous execution of cellular automata

    NASA Astrophysics Data System (ADS)

    Folino, Gianluigi; Giordano, Andrea; Mastroianni, Carlo

    2016-10-01

    The performance and scalability of cellular automata, when executed on parallel/distributed machines, are limited by the necessity of synchronizing all the nodes at each time step, i.e., a node can execute only after the execution of the previous step at all the other nodes. However, these synchronization requirements can be relaxed: a node can execute one step after synchronizing only with the adjacent nodes. In this fashion, different nodes can execute different time steps. This can be a notable advantageous in many novel and increasingly popular applications of cellular automata, such as smart city applications, simulation of natural phenomena, etc., in which the execution times can be different and variable, due to the heterogeneity of machines and/or data and/or executed functions. Indeed, a longer execution time at a node does not slow down the execution at all the other nodes but only at the neighboring nodes. This is particularly advantageous when the nodes that act as bottlenecks vary during the application execution. The goal of the paper is to analyze the benefits that can be achieved with the described asynchronous implementation of cellular automata, when compared to the classical all-to-all synchronization pattern. The performance and scalability have been evaluated through a Petri net model, as this model is very useful to represent the synchronization barrier among nodes. We examined the usual case in which the territory is partitioned into a number of regions, and the computation associated with a region is assigned to a computing node. We considered both the cases of mono-dimensional and two-dimensional partitioning. The results show that the advantage obtained through the asynchronous execution, when compared to the all-to-all synchronous approach is notable, and it can be as large as 90% in terms of speedup.

  20. On Cognition, Structured Sequence Processing, and Adaptive Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Petersson, Karl Magnus

    2008-11-01

    Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized in terms of information processing. We outline some aspects of this concept and consider a physical system to be an information processing device when a subclass of its physical states can be viewed as representational/cognitive and transitions between these can be conceptualized as a process operating on these states by implementing operations on the corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an asynchronous processing system. We use the human language faculty and natural language processing as a concrete example through out.

  1. Realization of station for testing asynchronous three-phase motors

    NASA Astrophysics Data System (ADS)

    Wróbel, A.; Surma, W.

    2016-08-01

    Nowadays, you cannot imagine the construction and operation of machines without the use of electric motors [13-15]. The proposed position is designed to allow testing of asynchronous three-phase motors. The position consists of a tested engine and the engine running as a load, both engines combined with a mechanical clutch [2]. The value of the load is recorded by measuring shaft created with Strain Gauge Bridge. This concept will allow to study the basic parameters of the engines, visualization motor parameters both vector and scalar controlled, during varying load drive system. In addition, registration during the variable physical parameters of the working electric motor, controlled by a frequency converter or controlled by a contactor will be possible. Position is designed as a teaching and research position to characterize the engines. It will be also possible selection of inverter parameters.

  2. Multipurpose Prepregging Machine

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.; Wilkinson, Steven; Marchello, J. M.; Dixon, D.

    1995-01-01

    Machine designed and built for variety of uses involving coating or impregnating ("prepregging") fibers, tows, yarns, or webs or tapes made of such fibrous materials with thermoplastic or thermosetting resins. Prepreg materials produced used to make matrix/fiber composite materials. Comprises modules operated individually, sequentially, or simultaneously, depending on nature of specific prepreg material and prepregging technique used. Machine incorporates number of safety features.

  3. Assessment of DoD and Industry Networks for Computer Aided Logistics Support (CALS) Telecommunications.

    DTIC Science & Technology

    1987-06-01

    International Business Machines ( IBM ) Corporation compatible synchronous terminals (2780/3780/327X), and the Federal Data Corporation (FDC) has developed...the interfaces for Burroughs look-alike asynchronous and synchronous terminals. Basically, this means that the IBM and Burroughs protocols are...and other vendor computers, such as IBM , UNIVAC, and Honeywell. The Navy has developed file transfer capabilities between Tandem and Burroughs. These

  4. THRESHOLD ELEMENTS AND THE DESIGN OF SEQUENTIAL SWITCHING NETWORKS.

    DTIC Science & Technology

    The report covers research performed from March 1966 to March 1967. The major topics treated are: (1) methods for finding weight- threshold vectors...that realize a given switching function in multi- threshold linear logic; (2) synthesis of sequential machines by means of shift registers and simple

  5. Optical flip-flops in a polarization-encoded optical shadow-casting scheme.

    PubMed

    Rizvi, R A; Zubairy, M S

    1994-06-10

    We propose a novel scheme that optically implements various types of binary sequential logic elements. This is based on a polarization-encoded optical shadow-casting system. The proposed system architecture is capable of implementing synchronous as well as asynchronous sequential circuits owing to the inherent structural flexibility of optical shadow casting. By employing the proposed system, we present the design and implementation schemes of a J-K flip-flop and clocked R-S and D latches. The main feature of these flip-flops is that the propagation of the signal from the input plane to the output (i.e., processing) and from the output plane to the source plane (i.e., feedback) is all optical. Consequently the efficiency of these elements in terms of speed is increased. The only electronic part in the system is the detection of the outputs and the switching of the source plane.

  6. Base drive and overlap protection circuit

    DOEpatents

    Gritter, David J.

    1983-01-01

    An inverter (34) which provides power to an A. C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A. C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A. C. machine is optimized. The control circuit includes a microcomputer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). A base drive and overlap protection circuit is included to insure that both transistors of a complimentary pair are not conducting at the same time. In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  7. The coordination patterns observed when two hands reach-to-grasp separate objects.

    PubMed

    Bingham, Geoffrey P; Hughes, Kirstie; Mon-Williams, Mark

    2008-01-01

    What determines coordination patterns when both hands reach to grasp separate objects at the same time? It is known that synchronous timing is preferred as the most stable mode of bimanual coordination. Nonetheless, normal unimanual prehension behaviour predicts asynchrony when the two hands reach towards unequal targets, with synchrony restricted to targets equal in size and distance. Additionally, sufficiently separated targets require sequential looking. Does synchrony occur in all cases because it is preferred in bimanual coordination or does asynchrony occur because of unimanual task constraints and the need for sequential looking? We investigated coordinative timing when participants (n = 8) moved their right (preferred) hand to the same object at a fixed distance but the left hand to objects of different width (3, 5, and 7 cm) and grip surface size (1, 2, and 3 cm) placed at different distances (20, 30, and 40 cm) over 270 randomised trials. The hand movements consisted of two components: (1) an initial component (IC) during which the hand reached towards the target while forming an appropriate grip aperture, stopping at (but not touching) the object; (2) a completion component (CC) during which the finger and thumb closed on the target. The two limbs started the IC together but did not interact until the deceleration phase when evidence of synchronisation began to appear. Nonetheless, asynchronous timing was present at the end of the IC and preserved through the CC even with equidistant targets. Thus, there was synchrony but requirements for visual information ultimately yielded asynchronous coordinative timing.

  8. AGARD Flight Test Instrumentation Series. Volume 18. Microprocessor Applications in Airborne Flight Test Instrumentation

    DTIC Science & Technology

    1987-02-01

    flowcharting . 3. ProEram Codin in HLL. This stage consists of transcribing the previously designed program into R an t at can be translated into the machine...specified conditios 7. Documentation. Program documentation is necessary for user information, for maintenance, and for future applications. Flowcharts ...particular CP U. Asynchronous. Operating without reference to an overall timing source. BASIC. Beginners ’ All-purpose Symbolic Instruction Code; a widely

  9. Best-First Heuristic Search for Multicore Machines

    DTIC Science & Technology

    2010-01-01

    Otto, 1998) to implement an asynchronous version of PRA* that they call Hash Distributed A* ( HDA *). HDA * distributes nodes using a hash function in...nodes which are being communicated between peers are in transit. In contact with the authors of HDA *, we have created an implementation of HDA * for...Also, our implementation of HDA * allows us to make a fair comparison between algorithms by sharing common data structures such as priority queues and

  10. Contributions a l'etude et a l'application industrielle de la machine asynchrone

    NASA Astrophysics Data System (ADS)

    Ouhrouche, Mohand-Ameziane

    The work presented in this thesis, done in the Electrical Drives Laboratory of Electrical and Computer Engineering Department, deals with the industrial applications of a three-phase induction machine (electrical drives and electricity generation). This thesis, characterized by its multidisciplinary content, has two major parts. The first one deals with the on-line and off-line parametric identification of the induction machine model necessary to achieve accurate vector control strategy. The second part, which is a resume of a research work sponsored by Hydro-Quebec, deals with the application of an induction machine in Asynchronous Non Utility Generators units (ANUG). As it is shown in the following, major scientific contributions are made in both two parts. In the first part of our research work, we propose a new speed sensorless vector control strategy for an induction machine, which is adaptive to the rotor resistance variations. The proposed control strategy is based on the Extended Kalman Filter approach and a decoupling controller which takes into account the rotor resistance variations. The consideration of coupled electrical and mechanical modes leads to a fifth order nonlinear model of the induction machine. The load torque is taken as a function of the rotor angular speed. The Extended Kalman Filter, based on the process's nonlinear (bilinear) model, estimate simultaneously the rotor resistance, angular speed and the flux vector from the startup to the steady state equilibrium point. The machine-converter-control system is implemented in MATLAB/SIMULINK environment and the obtained results confirm the robustness of the proposed scheme. As in the electrical drives erea, the induction machine is now widely used by small to medium power Non Utility Generator units (NUG) to produce electricity. In Quebec, these NUGs units are integrated into the Hydro-Quebec 25 kV distribution system via transformer which exhibit nonlinear characteristics. We have shown by using the ElectroMagnetic Program (EMTP) that, in some islanding scenarios, i.e. that the NUG unit is disconnected from the power grid, in addition to frequency variations, appearence of high an abnormal overvoltages, ferroresonance should occur. As a consequence, normal protective devices could fail to securely operate, which could cause serious damages to the equipment and the maintenance staff. This result, established for the first time , can be useful to improve the reliability of the NUGs units and is considered important by the power engineering community. This has led to a publication in the John Wiley & Sons Encyclopedia of Electrical and Electronics Engineering which will be available in February 1999 ( http://www.engr.wisc.edu/ ece/ece).

  11. Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classification.

    PubMed

    Mirza, Bilal; Lin, Zhiping

    2016-08-01

    In this paper, a meta-cognitive online sequential extreme learning machine (MOS-ELM) is proposed for class imbalance and concept drift learning. In MOS-ELM, meta-cognition is used to self-regulate the learning by selecting suitable learning strategies for class imbalance and concept drift problems. MOS-ELM is the first sequential learning method to alleviate the imbalance problem for both binary class and multi-class data streams with concept drift. In MOS-ELM, a new adaptive window approach is proposed for concept drift learning. A single output update equation is also proposed which unifies various application specific OS-ELM methods. The performance of MOS-ELM is evaluated under different conditions and compared with methods each specific to some of the conditions. On most of the datasets in comparison, MOS-ELM outperforms the competing methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nonsynchronous updating in the multiverse of cellular automata

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Kinouchi, Osame

    2015-04-01

    In this paper we study updating effects on cellular automata rule space. We consider a subset of 6144 order-3 automata from the space of 262144 bidimensional outer-totalistic rules. We compare synchronous to asynchronous and sequential updatings. Focusing on two automata, we discuss how update changes destroy typical structures of these rules. Besides, we show that the first-order phase transition in the multiverse of synchronous cellular automata, revealed with the use of a recently introduced control parameter, seems to be robust not only to changes in update schema but also to different initial densities.

  13. Nonsynchronous updating in the multiverse of cellular automata.

    PubMed

    Reia, Sandro M; Kinouchi, Osame

    2015-04-01

    In this paper we study updating effects on cellular automata rule space. We consider a subset of 6144 order-3 automata from the space of 262144 bidimensional outer-totalistic rules. We compare synchronous to asynchronous and sequential updatings. Focusing on two automata, we discuss how update changes destroy typical structures of these rules. Besides, we show that the first-order phase transition in the multiverse of synchronous cellular automata, revealed with the use of a recently introduced control parameter, seems to be robust not only to changes in update schema but also to different initial densities.

  14. Implementing a finite-state off-normal and fault response system for disruption avoidance in tokamaks

    NASA Astrophysics Data System (ADS)

    Eidietis, N. W.; Choi, W.; Hahn, S. H.; Humphreys, D. A.; Sammuli, B. S.; Walker, M. L.

    2018-05-01

    A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiple events and actuator prioritization. The finite-state logic is implemented in Matlab®/Stateflow® to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies ‘catch and subdue’ electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.

  15. Implementing a finite-state off-normal and fault response system for disruption avoidance in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eidietis, N. W.; Choi, W.; Hahn, S. H.

    A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiplemore » events and actuator prioritization. The finite-state logic is implemented in Matlab*/Stateflow* to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies “catch and subdue” electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.« less

  16. Implementing a finite-state off-normal and fault response system for disruption avoidance in tokamaks

    DOE PAGES

    Eidietis, N. W.; Choi, W.; Hahn, S. H.; ...

    2018-03-29

    A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiplemore » events and actuator prioritization. The finite-state logic is implemented in Matlab*/Stateflow* to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies “catch and subdue” electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.« less

  17. Augmentation of machine structure to improve its diagnosability

    NASA Technical Reports Server (NTRS)

    Hsieh, L.

    1973-01-01

    Two methods of augmenting the structure of a sequential machine so that it is diagnosable are presented. The checkable (checking sequences) and repeated symbol distinguishing sequences (RDS) are discussed. It was found that as few as twice the number of outputs of the given machine is sufficient for constructing a state-output augmentation with RDS. Techniques for minimizing the number of states in resolving convergences and in resolving equivalent and nonreduced cycles are developed.

  18. Financial Statistics. Higher Education General Information Survey (HEGIS) [machine-readable data file].

    ERIC Educational Resources Information Center

    Center for Education Statistics (ED/OERI), Washington, DC.

    The Financial Statistics machine-readable data file (MRDF) is a subfile of the larger Higher Education General Information Survey (HEGIS). It contains basic financial statistics for over 3,000 institutions of higher education in the United States and its territories. The data are arranged sequentially by institution, with institutional…

  19. XMPP for cloud computing in bioinformatics supporting discovery and invocation of asynchronous web services

    PubMed Central

    Wagener, Johannes; Spjuth, Ola; Willighagen, Egon L; Wikberg, Jarl ES

    2009-01-01

    Background Life sciences make heavily use of the web for both data provision and analysis. However, the increasing amount of available data and the diversity of analysis tools call for machine accessible interfaces in order to be effective. HTTP-based Web service technologies, like the Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST) services, are today the most common technologies for this in bioinformatics. However, these methods have severe drawbacks, including lack of discoverability, and the inability for services to send status notifications. Several complementary workarounds have been proposed, but the results are ad-hoc solutions of varying quality that can be difficult to use. Results We present a novel approach based on the open standard Extensible Messaging and Presence Protocol (XMPP), consisting of an extension (IO Data) to comprise discovery, asynchronous invocation, and definition of data types in the service. That XMPP cloud services are capable of asynchronous communication implies that clients do not have to poll repetitively for status, but the service sends the results back to the client upon completion. Implementations for Bioclipse and Taverna are presented, as are various XMPP cloud services in bio- and cheminformatics. Conclusion XMPP with its extensions is a powerful protocol for cloud services that demonstrate several advantages over traditional HTTP-based Web services: 1) services are discoverable without the need of an external registry, 2) asynchronous invocation eliminates the need for ad-hoc solutions like polling, and 3) input and output types defined in the service allows for generation of clients on the fly without the need of an external semantics description. The many advantages over existing technologies make XMPP a highly interesting candidate for next generation online services in bioinformatics. PMID:19732427

  20. XMPP for cloud computing in bioinformatics supporting discovery and invocation of asynchronous web services.

    PubMed

    Wagener, Johannes; Spjuth, Ola; Willighagen, Egon L; Wikberg, Jarl E S

    2009-09-04

    Life sciences make heavily use of the web for both data provision and analysis. However, the increasing amount of available data and the diversity of analysis tools call for machine accessible interfaces in order to be effective. HTTP-based Web service technologies, like the Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST) services, are today the most common technologies for this in bioinformatics. However, these methods have severe drawbacks, including lack of discoverability, and the inability for services to send status notifications. Several complementary workarounds have been proposed, but the results are ad-hoc solutions of varying quality that can be difficult to use. We present a novel approach based on the open standard Extensible Messaging and Presence Protocol (XMPP), consisting of an extension (IO Data) to comprise discovery, asynchronous invocation, and definition of data types in the service. That XMPP cloud services are capable of asynchronous communication implies that clients do not have to poll repetitively for status, but the service sends the results back to the client upon completion. Implementations for Bioclipse and Taverna are presented, as are various XMPP cloud services in bio- and cheminformatics. XMPP with its extensions is a powerful protocol for cloud services that demonstrate several advantages over traditional HTTP-based Web services: 1) services are discoverable without the need of an external registry, 2) asynchronous invocation eliminates the need for ad-hoc solutions like polling, and 3) input and output types defined in the service allows for generation of clients on the fly without the need of an external semantics description. The many advantages over existing technologies make XMPP a highly interesting candidate for next generation online services in bioinformatics.

  1. Multigrid methods in structural mechanics

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Bigelow, C. A.; Taasan, S.; Hussaini, M. Y.

    1986-01-01

    Although the application of multigrid methods to the equations of elasticity has been suggested, few such applications have been reported in the literature. In the present work, multigrid techniques are applied to the finite element analysis of a simply supported Bernoulli-Euler beam, and various aspects of the multigrid algorithm are studied and explained in detail. In this study, six grid levels were used to model half the beam. With linear prolongation and sequential ordering, the multigrid algorithm yielded results which were of machine accuracy with work equivalent to 200 standard Gauss-Seidel iterations on the fine grid. Also with linear prolongation and sequential ordering, the V(1,n) cycle with n greater than 2 yielded better convergence rates than the V(n,1) cycle. The restriction and prolongation operators were derived based on energy principles. Conserving energy during the inter-grid transfers required that the prolongation operator be the transpose of the restriction operator, and led to improved convergence rates. With energy-conserving prolongation and sequential ordering, the multigrid algorithm yielded results of machine accuracy with a work equivalent to 45 Gauss-Seidel iterations on the fine grid. The red-black ordering of relaxations yielded solutions of machine accuracy in a single V(1,1) cycle, which required work equivalent to about 4 iterations on the finest grid level.

  2. PCCEServer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Marcia; Agarwal, Deb

    2003-03-17

    The PCCEServer application is a server that should be used in conjunction with the LBNLSecureMessaging user interface to enable secure synchronous and asynchronous messaging. It provides authentication and authorization services for members of a collaboration group via PKI/SSL and maintains an access control list. Members of collaboration groups using the LBNLSecureMessaging client must register identifying information. including usemame and password and an optional X.509 certificate, with the PCCEServer. This registration not only restricts access to instant messaging, but augments the LBNLSecureMessaging's IRC-based chat facility with persistence. Users register permanent unique user ids by which they are knowTl to other usersmore » in the system and create permanent venues intended for group conversations on a tong-term or continuous basis. In addition, the PCCEServer enhances instant messaging with presence and awareness information such as user availability, and it allows users to leave notes asynchronously for other users who are online or offline. Written in Java, it is a standalone application that can run on any platform that supports a Java Virtual Machine.« less

  3. Test pattern generation for ILA sequential circuits

    NASA Technical Reports Server (NTRS)

    Feng, YU; Frenzel, James F.; Maki, Gary K.

    1993-01-01

    An efficient method of generating test patterns for sequential machines implemented using one-dimensional, unilateral, iterative logic arrays (ILA's) of BTS pass transistor networks is presented. Based on a transistor level fault model, the method affords a unique opportunity for real-time fault detection with improved fault coverage. The resulting test sets are shown to be equivalent to those obtained using conventional gate level models, thus eliminating the need for additional test patterns. The proposed method advances the simplicity and ease of the test pattern generation for a special class of sequential circuitry.

  4. Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission

    DOEpatents

    Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.; Naqvi, Ali K.; Heap, Anthony H.; Sah, Jy-Jen F.

    2014-08-12

    A hybrid transmission includes first and second electric machines. A method for operating the hybrid transmission in response to a command to execute a shift from an initial continuously variable mode to a target continuously variable mode includes increasing torque of an oncoming clutch associated with operating in the target continuously variable mode and correspondingly decreasing a torque of an off-going clutch associated with operating in the initial continuously variable mode. Upon deactivation of the off-going clutch, torque outputs of the first and second electric machines and the torque of the oncoming clutch are controlled to synchronize the oncoming clutch. Upon synchronization of the oncoming clutch, the torque for the oncoming clutch is increased and the transmission is operated in the target continuously variable mode.

  5. Development of Methods of Preparing Materials for Teaching Machines: Professional Paper 29-68.

    ERIC Educational Resources Information Center

    Skinner, B. F.; Zook, Lola M., Ed.

    In the preparation of 12-inch disc teaching machine materials for elementary college courses, a preliminary analysis of subject matter and required skills precedes sequential framing. The programer must assess the beginning level of student competence and frame questions to supply new material until the proper response stands alone. Statements for…

  6. Concurrent computation of attribute filters on shared memory parallel machines.

    PubMed

    Wilkinson, Michael H F; Gao, Hui; Hesselink, Wim H; Jonker, Jan-Eppo; Meijster, Arnold

    2008-10-01

    Morphological attribute filters have not previously been parallelized, mainly because they are both global and non-separable. We propose a parallel algorithm that achieves efficient parallelism for a large class of attribute filters, including attribute openings, closings, thinnings and thickenings, based on Salembier's Max-Trees and Min-trees. The image or volume is first partitioned in multiple slices. We then compute the Max-trees of each slice using any sequential Max-Tree algorithm. Subsequently, the Max-trees of the slices can be merged to obtain the Max-tree of the image. A C-implementation yielded good speed-ups on both a 16-processor MIPS 14000 parallel machine, and a dual-core Opteron-based machine. It is shown that the speed-up of the parallel algorithm is a direct measure of the gain with respect to the sequential algorithm used. Furthermore, the concurrent algorithm shows a speed gain of up to 72 percent on a single-core processor, due to reduced cache thrashing.

  7. Fault Tolerant State Machines

    NASA Technical Reports Server (NTRS)

    Burke, Gary R.; Taft, Stephanie

    2004-01-01

    State machines are commonly used to control sequential logic in FPGAs and ASKS. An errant state machine can cause considerable damage to the device it is controlling. For example in space applications, the FPGA might be controlling Pyros, which when fired at the wrong time will cause a mission failure. Even a well designed state machine can be subject to random errors us a result of SEUs from the radiation environment in space. There are various ways to encode the states of a state machine, and the type of encoding makes a large difference in the susceptibility of the state machine to radiation. In this paper we compare 4 methods of state machine encoding and find which method gives the best fault tolerance, as well as determining the resources needed for each method.

  8. About increasing informativity of diagnostic system of asynchronous electric motor by extracting additional information from values of consumed current parameter

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Y.; Korolev, N.; Koteleva, N.

    2018-05-01

    This article is devoted to expanding the possibilities of assessing the technical state of the current consumption of asynchronous electric drives, as well as increasing the information capacity of diagnostic methods, in conditions of limited access to equipment and incompleteness of information. The method of spectral analysis of the electric drive current can be supplemented by an analysis of the components of the current of the Park's vector. The research of the hodograph evolution in the moment of appearance and development of defects was carried out using the example of current asymmetry in the phases of an induction motor. The result of the study is the new diagnostic parameters of the asynchronous electric drive. During the research, it was proved that the proposed diagnostic parameters allow determining the type and level of the defect. At the same time, there is no need to stop the equipment and taky it out of service for repair. Modern digital control and monitoring systems can use the proposed parameters based on the stator current of an electrical machine to improve the accuracy and reliability of obtaining diagnostic patterns and predicting their changes in order to improve the equipment maintenance systems. This approach can also be used in systems and objects where there are significant parasitic vibrations and unsteady loads. The extraction of useful information can be carried out in electric drive systems in the structure of which there is a power electric converter.

  9. A comparison of stimulus presentation methods in temporal discrimination testing.

    PubMed

    Mc Govern, Eavan M; Butler, John S; Beiser, Ines; Williams, Laura; Quinlivan, Brendan; Narasiham, Shruti; Beck, Rebecca; O'Riordan, Sean; Reilly, Richard B; Hutchinson, Michael

    2017-02-01

    The temporal discrimination threshold (TDT) is the shortest time interval at which an individual detects two stimuli to be asynchronous (normal  =  30-50 ms). It has been shown to be abnormal in patients with disorders affecting the basal ganglia including adult onset idiopathic focal dystonia (AOIFD). Up to 97% of patients have an abnormal TDT with age- and sex-related penetrance in unaffected relatives, demonstrating an autosomal dominant inheritance pattern. These findings support the use of the TDT as a pre-clinical biomarker for AOIFD. The usual stimulus presentation method involves the presentation of progressively asynchronous stimuli; when three sequential stimuli are reported asynchronous is taken as a participant's TDT. To investigate the robustness of the 'staircase' method of presentation, we introduced a method of randomised presentation order to explore any potential 'learning effect' that may be associated with this existing method. The aim of this study was to investigate differences in temporal discrimination using two methods of stimulus presentation. Thirty healthy volunteers were recruited to the study (mean age 33.73  ±  3.4 years). Visual and tactile TDT testing using a staircase and randomised method of presentation order was carried out in a single session. There was a strong relationship between the staircase and random method for TDT values. This observed consistency between testing methods suggests that the existing experimental approach is a robust method of recording an individual's TDT. In addition, our newly devised randomised paradigm is a reproducible and more efficient method for data acquisition in the clinic setting. However, the two presentation methods yield different absolute TDT results and either of the two methods should be used uniformly in all participants in any one particular study.

  10. COMP Superscalar, an interoperable programming framework

    NASA Astrophysics Data System (ADS)

    Badia, Rosa M.; Conejero, Javier; Diaz, Carlos; Ejarque, Jorge; Lezzi, Daniele; Lordan, Francesc; Ramon-Cortes, Cristian; Sirvent, Raul

    2015-12-01

    COMPSs is a programming framework that aims to facilitate the parallelization of existing applications written in Java, C/C++ and Python scripts. For that purpose, it offers a simple programming model based on sequential development in which the user is mainly responsible for (i) identifying the functions to be executed as asynchronous parallel tasks and (ii) annotating them with annotations or standard Python decorators. A runtime system is in charge of exploiting the inherent concurrency of the code, automatically detecting and enforcing the data dependencies between tasks and spawning these tasks to the available resources, which can be nodes in a cluster, clouds or grids. In cloud environments, COMPSs provides scalability and elasticity features allowing the dynamic provision of resources.

  11. Tool setting device

    DOEpatents

    Brown, Raymond J.

    1977-01-01

    The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.

  12. Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent

    PubMed Central

    De Sa, Christopher; Feldman, Matthew; Ré, Christopher; Olukotun, Kunle

    2018-01-01

    Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems. PMID:29391770

  13. Poster — Thur Eve — 74: Distributed, asynchronous, reactive dosimetric and outcomes analysis using DICOMautomaton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Haley; BC Cancer Agency, Surrey, B.C.; BC Cancer Agency, Vancouver, B.C.

    2014-08-15

    Many have speculated about the future of computational technology in clinical radiation oncology. It has been advocated that the next generation of computational infrastructure will improve on the current generation by incorporating richer aspects of automation, more heavily and seamlessly featuring distributed and parallel computation, and providing more flexibility toward aggregate data analysis. In this report we describe how a recently created — but currently existing — analysis framework (DICOMautomaton) incorporates these aspects. DICOMautomaton supports a variety of use cases but is especially suited for dosimetric outcomes correlation analysis, investigation and comparison of radiotherapy treatment efficacy, and dose-volume computation. Wemore » describe: how it overcomes computational bottlenecks by distributing workload across a network of machines; how modern, asynchronous computational techniques are used to reduce blocking and avoid unnecessary computation; and how issues of out-of-date data are addressed using reactive programming techniques and data dependency chains. We describe internal architecture of the software and give a detailed demonstration of how DICOMautomaton could be used to search for correlations between dosimetric and outcomes data.« less

  14. Release of polyester and cotton fibers from textiles in machine washings.

    PubMed

    Sillanpää, Markus; Sainio, Pirjo

    2017-08-01

    Microplastics are widely spread in the environment, which along with still increasing production have aroused concern of their impacts on environmental health. The objective of this study is to quantify the number and mass of two most common textile fibers discharged from sequential machine washings to sewers. The number and mass of microfibers released from polyester and cotton textiles in the first wash varied in the range 2.1 × 10 5 to 1.3 × 10 7 and 0.12 to 0.33% w/w, respectively. Amounts of released microfibers showed a decreasing trend in sequential washes. The annual emission of polyester and cotton microfibers from household washing machines was estimated to be 154,000 (1.0 × 10 14 ) and 411,000 kg (4.9 × 10 14 ) in Finland (population 5.5 × 10 6 ). Due to the high emission values and sorption capacities, the polyester and cotton microfibers may play an important role in the transport and fate of chemical pollutants in the aquatic environment.

  15. Prediction and Real-Time Compensation of Qubit Decoherence Via Machine Learning (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2017-01-16

    ARTICLE Received 24 Sep 2016 | Accepted 29 Nov 2016 | Published 16 Jan 2017 Prediction and real- time compensation of qubit decoherence via machine...information to suppress stochastic, semiclassical decoherence, even when access to measurements is limited. First, we implement a time -division...quantum information experiments. Second, we employ predictive feedback during sequential but time delayed measurements to reduce the Dick effect as

  16. What can neuromorphic event-driven precise timing add to spike-based pattern recognition?

    PubMed

    Akolkar, Himanshu; Meyer, Cedric; Clady, Zavier; Marre, Olivier; Bartolozzi, Chiara; Panzeri, Stefano; Benosman, Ryad

    2015-03-01

    This letter introduces a study to precisely measure what an increase in spike timing precision can add to spike-driven pattern recognition algorithms. The concept of generating spikes from images by converting gray levels into spike timings is currently at the basis of almost every spike-based modeling of biological visual systems. The use of images naturally leads to generating incorrect artificial and redundant spike timings and, more important, also contradicts biological findings indicating that visual processing is massively parallel, asynchronous with high temporal resolution. A new concept for acquiring visual information through pixel-individual asynchronous level-crossing sampling has been proposed in a recent generation of asynchronous neuromorphic visual sensors. Unlike conventional cameras, these sensors acquire data not at fixed points in time for the entire array but at fixed amplitude changes of their input, resulting optimally sparse in space and time-pixel individually and precisely timed only if new, (previously unknown) information is available (event based). This letter uses the high temporal resolution spiking output of neuromorphic event-based visual sensors to show that lowering time precision degrades performance on several recognition tasks specifically when reaching the conventional range of machine vision acquisition frequencies (30-60 Hz). The use of information theory to characterize separability between classes for each temporal resolution shows that high temporal acquisition provides up to 70% more information that conventional spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically increasing the separability between classes of objects. Experiments on real data show that the amount of information loss is correlated with temporal precision. Our information-theoretic study highlights the potentials of neuromorphic asynchronous visual sensors for both practical applications and theoretical investigations. Moreover, it suggests that representing visual information as a precise sequence of spike times as reported in the retina offers considerable advantages for neuro-inspired visual computations.

  17. Electromechanical systems with transient high power response operating from a resonant ac link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.

  18. Fundamentals of Digital Engineering: Designing for Reliability

    NASA Technical Reports Server (NTRS)

    Katz, R.; Day, John H. (Technical Monitor)

    2001-01-01

    The concept of designing for reliability will be introduced along with a brief overview of reliability, redundancy and traditional methods of fault tolerance is presented, as applied to current logic devices. The fundamentals of advanced circuit design and analysis techniques will be the primary focus. The introduction will cover the definitions of key device parameters and how analysis is used to prove circuit correctness. Basic design techniques such as synchronous vs asynchronous design, metastable state resolution time/arbiter design, and finite state machine structure/implementation will be reviewed. Advanced topics will be explored such as skew-tolerant circuit design, the use of triple-modular redundancy and circuit hazards, device transients and preventative circuit design, lock-up states in finite state machines generated by logic synthesizers, device transient characteristics, radiation mitigation techniques. worst-case analysis, the use of timing analyzer and simulators, and others. Case studies and lessons learned from spaceflight designs will be given as examples

  19. Toward Millions of File System IOPS on Low-Cost, Commodity Hardware

    PubMed Central

    Zheng, Da; Burns, Randal; Szalay, Alexander S.

    2013-01-01

    We describe a storage system that removes I/O bottlenecks to achieve more than one million IOPS based on a user-space file abstraction for arrays of commodity SSDs. The file abstraction refactors I/O scheduling and placement for extreme parallelism and non-uniform memory and I/O. The system includes a set-associative, parallel page cache in the user space. We redesign page caching to eliminate CPU overhead and lock-contention in non-uniform memory architecture machines. We evaluate our design on a 32 core NUMA machine with four, eight-core processors. Experiments show that our design delivers 1.23 million 512-byte read IOPS. The page cache realizes the scalable IOPS of Linux asynchronous I/O (AIO) and increases user-perceived I/O performance linearly with cache hit rates. The parallel, set-associative cache matches the cache hit rates of the global Linux page cache under real workloads. PMID:24402052

  20. Toward Millions of File System IOPS on Low-Cost, Commodity Hardware.

    PubMed

    Zheng, Da; Burns, Randal; Szalay, Alexander S

    2013-01-01

    We describe a storage system that removes I/O bottlenecks to achieve more than one million IOPS based on a user-space file abstraction for arrays of commodity SSDs. The file abstraction refactors I/O scheduling and placement for extreme parallelism and non-uniform memory and I/O. The system includes a set-associative, parallel page cache in the user space. We redesign page caching to eliminate CPU overhead and lock-contention in non-uniform memory architecture machines. We evaluate our design on a 32 core NUMA machine with four, eight-core processors. Experiments show that our design delivers 1.23 million 512-byte read IOPS. The page cache realizes the scalable IOPS of Linux asynchronous I/O (AIO) and increases user-perceived I/O performance linearly with cache hit rates. The parallel, set-associative cache matches the cache hit rates of the global Linux page cache under real workloads.

  1. Continuous performance measurement in flight systems. [sequential control model

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.; Sloan, N. A.; Zeskind, R. M.

    1975-01-01

    The desired response of many man machine control systems can be formulated as a solution to an optimal control synthesis problem where the cost index is given and the resulting optimal trajectories correspond to the desired trajectories of the man machine system. Optimal control synthesis provides the reference criteria and the significance of error information required for performance measurement. The synthesis procedure described provides a continuous performance measure (CPM) which is independent of the mechanism generating the control action. Therefore, the technique provides a meaningful method for online evaluation of man's control capability in terms of total man machine performance.

  2. On the theory of 3-phase squirrel-cage induction motors including space harmonics and mutual slotting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, G.C.

    1991-03-01

    In this paper general equations for the asynchronous squirrel-cage motor which contain the influence of space harmonics and the mutual slotting are derived by using among others the power-invariant symmetrical component transformation and a time-dependent transformation with which, under certain circumstances, the rotor-position angle can be removed from the coefficient matrix. The developed models implemented in a machine-independent computer program form powerful tools, with which the influence of space harmonics in relation to the geometric data of specific motors can be analyzed for steady-state and transient performances.

  3. Center for Plasma Edge Simulation (CPES) -- Rutgers University Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, Manish

    2014-03-06

    The CPES scientific simulations run at scale on leadership class machines, collaborate at runtime and produce and exchange large data sizes, which present multiple I/O and data management challenges. During the CPES project, the Rutgers team worked with the rest of the CPES team to address these challenges at different levels, and specifically (1) at the data transport and communication level through the DART (Decoupled and Asynchronous Remote Data Transfers) framework, and (2) at the data management and services level through the DataSpaces and ActiveSpaces frameworks. These frameworks and their impact are briefly described.

  4. Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks

    DTIC Science & Technology

    2014-03-27

    intensity D peak. Reprinted with permission from [38]. The SVM classifier is trained using custom written Java code leveraging the Sequential Minimal...Society Encog is a machine learning framework for Java , C++ and .Net applications that supports Bayesian Networks, Hidden Markov Models, SVMs and ANNs [13...SVM classifiers are trained using Weka libraries and leveraging custom written Java code. The data set is created as an Attribute Relationship File

  5. A high level language for a high performance computer

    NASA Technical Reports Server (NTRS)

    Perrott, R. H.

    1978-01-01

    The proposed computational aerodynamic facility will join the ranks of the supercomputers due to its architecture and increased execution speed. At present, the languages used to program these supercomputers have been modifications of programming languages which were designed many years ago for sequential machines. A new programming language should be developed based on the techniques which have proved valuable for sequential programming languages and incorporating the algorithmic techniques required for these supercomputers. The design objectives for such a language are outlined.

  6. Low latency messages on distributed memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Rosing, Matthew; Saltz, Joel

    1993-01-01

    Many of the issues in developing an efficient interface for communication on distributed memory machines are described and a portable interface is proposed. Although the hardware component of message latency is less than one microsecond on many distributed memory machines, the software latency associated with sending and receiving typed messages is on the order of 50 microseconds. The reason for this imbalance is that the software interface does not match the hardware. By changing the interface to match the hardware more closely, applications with fine grained communication can be put on these machines. Based on several tests that were run on the iPSC/860, an interface that will better match current distributed memory machines is proposed. The model used in the proposed interface consists of a computation processor and a communication processor on each node. Communication between these processors and other nodes in the system is done through a buffered network. Information that is transmitted is either data or procedures to be executed on the remote processor. The dual processor system is better suited for efficiently handling asynchronous communications compared to a single processor system. The ability to send data or procedure is very flexible for minimizing message latency, based on the type of communication being performed. The test performed and the proposed interface are described.

  7. A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)

    NASA Technical Reports Server (NTRS)

    Klarer, P.

    1994-01-01

    An alternative methodology for designing an autonomous navigation and control system is discussed. This generalized hybrid system is based on a less sequential and less anthropomorphic approach than that used in the more traditional artificial intelligence (AI) technique. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules. This is accomplished by intertask communications channels which implement each behavior module and each interconnection node as a stand-alone task. The proposed design architecture allows for construction of hybrid systems which employ both subsumption and traditional AI techniques as well as providing for a teleoperator's interface. Implementation of the architecture is planned for the prototype Robotic All Terrain Lunar Explorer Rover (RATLER) which is described briefly.

  8. A path-level exact parallelization strategy for sequential simulation

    NASA Astrophysics Data System (ADS)

    Peredo, Oscar F.; Baeza, Daniel; Ortiz, Julián M.; Herrero, José R.

    2018-01-01

    Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.

  9. Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism

    PubMed Central

    Pi, Fengmei; Zhao, Zhengyi; Chelikani, Venkata; Yoder, Kristine; Kvaratskhelia, Mamuka

    2016-01-01

    The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially. PMID:27356896

  10. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

    PubMed Central

    Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi

    2017-01-01

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks (LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods. PMID:28146106

  11. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.

    PubMed

    Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi

    2017-01-30

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.

  12. ProperCAD: A portable object-oriented parallel environment for VLSI CAD

    NASA Technical Reports Server (NTRS)

    Ramkumar, Balkrishna; Banerjee, Prithviraj

    1993-01-01

    Most parallel algorithms for VLSI CAD proposed to date have one important drawback: they work efficiently only on machines that they were designed for. As a result, algorithms designed to date are dependent on the architecture for which they are developed and do not port easily to other parallel architectures. A new project under way to address this problem is described. A Portable object-oriented parallel environment for CAD algorithms (ProperCAD) is being developed. The objectives of this research are (1) to develop new parallel algorithms that run in a portable object-oriented environment (CAD algorithms using a general purpose platform for portable parallel programming called CARM is being developed and a C++ environment that is truly object-oriented and specialized for CAD applications is also being developed); and (2) to design the parallel algorithms around a good sequential algorithm with a well-defined parallel-sequential interface (permitting the parallel algorithm to benefit from future developments in sequential algorithms). One CAD application that has been implemented as part of the ProperCAD project, flat VLSI circuit extraction, is described. The algorithm, its implementation, and its performance on a range of parallel machines are discussed in detail. It currently runs on an Encore Multimax, a Sequent Symmetry, Intel iPSC/2 and i860 hypercubes, a NCUBE 2 hypercube, and a network of Sun Sparc workstations. Performance data for other applications that were developed are provided: namely test pattern generation for sequential circuits, parallel logic synthesis, and standard cell placement.

  13. Sequential Nonlinear Learning for Distributed Multiagent Systems via Extreme Learning Machines.

    PubMed

    Vanli, Nuri Denizcan; Sayin, Muhammed O; Delibalta, Ibrahim; Kozat, Suleyman Serdar

    2017-03-01

    We study online nonlinear learning over distributed multiagent systems, where each agent employs a single hidden layer feedforward neural network (SLFN) structure to sequentially minimize arbitrary loss functions. In particular, each agent trains its own SLFN using only the data that is revealed to itself. On the other hand, the aim of the multiagent system is to train the SLFN at each agent as well as the optimal centralized batch SLFN that has access to all the data, by exchanging information between neighboring agents. We address this problem by introducing a distributed subgradient-based extreme learning machine algorithm. The proposed algorithm provides guaranteed upper bounds on the performance of the SLFN at each agent and shows that each of these individual SLFNs asymptotically achieves the performance of the optimal centralized batch SLFN. Our performance guarantees explicitly distinguish the effects of data- and network-dependent parameters on the convergence rate of the proposed algorithm. The experimental results illustrate that the proposed algorithm achieves the oracle performance significantly faster than the state-of-the-art methods in the machine learning and signal processing literature. Hence, the proposed method is highly appealing for the applications involving big data.

  14. Using Pipelined XNOR Logic to Reduce SEU Risks in State Machines

    NASA Technical Reports Server (NTRS)

    Le, Martin; Zheng, Xin; Katanyoutant, Sunant

    2008-01-01

    Single-event upsets (SEUs) pose great threats to avionic systems state machine control logic, which are frequently used to control sequence of events and to qualify protocols. The risks of SEUs manifest in two ways: (a) the state machine s state information is changed, causing the state machine to unexpectedly transition to another state; (b) due to the asynchronous nature of SEU, the state machine's state registers become metastable, consequently causing any combinational logic associated with the metastable registers to malfunction temporarily. Effect (a) can be mitigated with methods such as triplemodular redundancy (TMR). However, effect (b) cannot be eliminated and can degrade the effectiveness of any mitigation method of effect (a). Although there is no way to completely eliminate the risk of SEU-induced errors, the risk can be made very small by use of a combination of very fast state-machine logic and error-detection logic. Therefore, one goal of two main elements of the present method is to design the fastest state-machine logic circuitry by basing it on the fastest generic state-machine design, which is that of a one-hot state machine. The other of the two main design elements is to design fast error-detection logic circuitry and to optimize it for implementation in a field-programmable gate array (FPGA) architecture: In the resulting design, the one-hot state machine is fitted with a multiple-input XNOR gate for detection of illegal states. The XNOR gate is implemented with lookup tables and with pipelines for high speed. In this method, the task of designing all the logic must be performed manually because no currently available logic synthesis software tool can produce optimal solutions of design problems of this type. However, some assistance is provided by a script, written for this purpose in the Python language (an object-oriented interpretive computer language) to automatically generate hardware description language (HDL) code from state-transition rules.

  15. Sequence invariant state machines

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Manjunath, S.

    1990-01-01

    A synthesis method and new VLSI architecture are introduced to realize sequential circuits that have the ability to implement any state machine having N states and m inputs, regardless of the actual sequence specified in the flow table. A design method is proposed that utilizes BTS logic to implement regular and dense circuits. A given state sequence can be programmed with power supply connections or dynamically reallocated if stored in a register. Arbitrary flow table sequences can be modified or programmed to dynamically alter the function of the machine. This allows VLSI controllers to be designed with the programmability of a general purpose processor but with the compact size and performance of dedicated logic.

  16. Sequence-invariant state machines

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling R.; Manjunath, Shamanna K.; Maki, Gary K.

    1991-01-01

    A synthesis method and an MOS VLSI architecture are presented to realize sequential circuits that have the ability to implement any state machine having N states and m inputs, regardless of the actual sequence specified in the flow table. The design method utilizes binary tree structured (BTS) logic to implement regular and dense circuits. The desired state sequence can be hardwired with power supply connections or can be dynamically reallocated if stored in a register. This allows programmable VLSI controllers to be designed with a compact size and performance approaching that of dedicated logic. Results of ICV implementations are reported and an example sequence-invariant state machine is contrasted with implementations based on traditional methods.

  17. Experiments and simulation of thermal behaviors of the dual-drive servo feed system

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Mei, Xuesong; Feng, Bin; Zhao, Liang; Ma, Chi; Shi, Hu

    2015-01-01

    The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the current research of the thermal characteristics of machines mainly focuses on steady simulation. To explore the influence of thermal characterizations on the precision of a jib boring machine assembled dual-drive feed system, the thermal equilibrium tests and the research on thermal-mechanical transient behaviors are carried out. A laser interferometer, infrared thermography and a temperature-displacement acquisition system are applied to measure the temperature distribution and thermal deformation at different feed speeds. Subsequently, the finite element method (FEM) is used to analyze the transient thermal behaviors of the boring machine. The complex boundary conditions, such as heat sources and convective heat transfer coefficient, are calculated. Finally, transient variances in temperatures and deformations are compared with the measured values, and the errors between the measurement and the simulation of the temperature and the thermal error are 2 °C and 2.5 μm, respectively. The researching results demonstrate that the FEM model can predict the thermal error and temperature distribution very well under specified operating condition. Moreover, the uneven temperature gradient is due to the asynchronous dual-drive structure that results in thermal deformation. Additionally, the positioning accuracy decreases as the measured point became further away from the motor, and the thermal error and equilibrium period both increase with feed speeds. The research proposes a systematical method to measure and simulate the boring machine transient thermal behaviors.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadowski, Greg

    In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state ofmore » the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.« less

  19. Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xuanhua; Luo, Xuan; Liang, Junling

    GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weightmore » asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and datasets, Frog is able to significantly outperform existing GPU-based graph processing systems except Gunrock and MapGraph. MapGraph gets better performance than Frog when running BFS on RoadNet-CA. The comparison between Gunrock and Frog is inconclusive. Frog can outperform Gunrock more than 1.04X when running PageRank and SSSP, while the advantage of Frog is not obvious when running BFS and CC on some datasets especially for RoadNet-CA.« less

  20. User Interaction Modeling and Profile Extraction in Interactive Systems: A Groupware Application Case Study †

    PubMed Central

    Tîrnăucă, Cristina; Duque, Rafael; Montaña, José L.

    2017-01-01

    A relevant goal in human–computer interaction is to produce applications that are easy to use and well-adjusted to their users’ needs. To address this problem it is important to know how users interact with the system. This work constitutes a methodological contribution capable of identifying the context of use in which users perform interactions with a groupware application (synchronous or asynchronous) and provides, using machine learning techniques, generative models of how users behave. Additionally, these models are transformed into a text that describes in natural language the main characteristics of the interaction of the users with the system. PMID:28726762

  1. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo.

    PubMed

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-11-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed.

  2. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo

    PubMed Central

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-01-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed. PMID:23336016

  3. A performance study of sparse Cholesky factorization on INTEL iPSC/860

    NASA Technical Reports Server (NTRS)

    Zubair, M.; Ghose, M.

    1992-01-01

    The problem of Cholesky factorization of a sparse matrix has been very well investigated on sequential machines. A number of efficient codes exist for factorizing large unstructured sparse matrices. However, there is a lack of such efficient codes on parallel machines in general, and distributed machines in particular. Some of the issues that are critical to the implementation of sparse Cholesky factorization on a distributed memory parallel machine are ordering, partitioning and mapping, load balancing, and ordering of various tasks within a processor. Here, we focus on the effect of various partitioning schemes on the performance of sparse Cholesky factorization on the Intel iPSC/860. Also, a new partitioning heuristic for structured as well as unstructured sparse matrices is proposed, and its performance is compared with other schemes.

  4. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine.

    PubMed

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-15

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.

  5. Analysis and asynchronous detection of gradually unfolding errors during monitoring tasks

    NASA Astrophysics Data System (ADS)

    Omedes, Jason; Iturrate, Iñaki; Minguez, Javier; Montesano, Luis

    2015-10-01

    Human studies on cognitive control processes rely on tasks involving sudden-onset stimuli, which allow the analysis of these neural imprints to be time-locked and relative to the stimuli onset. Human perceptual decisions, however, comprise continuous processes where evidence accumulates until reaching a boundary. Surpassing the boundary leads to a decision where measured brain responses are associated to an internal, unknown onset. The lack of this onset for gradual stimuli hinders both the analyses of brain activity and the training of detectors. This paper studies electroencephalographic (EEG)-measurable signatures of human processing for sudden and gradual cognitive processes represented as a trajectory mismatch under a monitoring task. Time-locked potentials and brain-source analysis of the EEG of sudden mismatches revealed the typical components of event-related potentials and the involvement of brain structures related to cognitive control processing. For gradual mismatch events, time-locked analyses did not show any discernible EEG scalp pattern, despite related brain areas being, to a lesser extent, activated. However, and thanks to the use of non-linear pattern recognition algorithms, it is possible to train an asynchronous detector on sudden events and use it to detect gradual mismatches, as well as obtaining an estimate of their unknown onset. Post-hoc time-locked scalp and brain-source analyses revealed that the EEG patterns of detected gradual mismatches originated in brain areas related to cognitive control processing. This indicates that gradual events induce latency in the evaluation process but that similar brain mechanisms are present in sudden and gradual mismatch events. Furthermore, the proposed asynchronous detection model widens the scope of applications of brain-machine interfaces to other gradual processes.

  6. A Parallel Saturation Algorithm on Shared Memory Architectures

    NASA Technical Reports Server (NTRS)

    Ezekiel, Jonathan; Siminiceanu

    2007-01-01

    Symbolic state-space generators are notoriously hard to parallelize. However, the Saturation algorithm implemented in the SMART verification tool differs from other sequential symbolic state-space generators in that it exploits the locality of ring events in asynchronous system models. This paper explores whether event locality can be utilized to efficiently parallelize Saturation on shared-memory architectures. Conceptually, we propose to parallelize the ring of events within a decision diagram node, which is technically realized via a thread pool. We discuss the challenges involved in our parallel design and conduct experimental studies on its prototypical implementation. On a dual-processor dual core PC, our studies show speed-ups for several example models, e.g., of up to 50% for a Kanban model, when compared to running our algorithm only on a single core.

  7. Basic difference between brain and computer: integration of asynchronous processes implemented as hardware model of the retina.

    PubMed

    Przybyszewski, Andrzej W; Linsay, Paul S; Gaudiano, Paolo; Wilson, Christopher M

    2007-01-01

    There exists a common view that the brain acts like a Turing machine: The machine reads information from an infinite tape (sensory data) and, on the basis of the machine's state and information from the tape, an action (decision) is made. The main problem with this model lies in how to synchronize a large number of tapes in an adaptive way so that the machine is able to accomplish tasks such as object classification. We propose that such mechanisms exist already in the eye. A popular view is that the retina, typically associated with high gain and adaptation for light processing, is actually performing local preprocessing by means of its center-surround receptive field. We would like to show another property of the retina: The ability to integrate many independent processes. We believe that this integration is implemented by synchronization of neuronal oscillations. In this paper, we present a model of the retina consisting of a series of coupled oscillators which can synchronize on several scales. Synchronization is an analog process which is converted into a digital spike train in the output of the retina. We have developed a hardware implementation of this model, which enables us to carry out rapid simulation of multineuron oscillatory dynamics. We show that the properties of the spike trains in our model are similar to those found in vivo in the cat retina.

  8. Performance evaluation of automated manufacturing systems using generalized stochastic Petri Nets. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Al-Jaar, Robert Y.; Desrochers, Alan A.

    1989-01-01

    The main objective of this research is to develop a generic modeling methodology with a flexible and modular framework to aid in the design and performance evaluation of integrated manufacturing systems using a unified model. After a thorough examination of the available modeling methods, the Petri Net approach was adopted. The concurrent and asynchronous nature of manufacturing systems are easily captured by Petri Net models. Three basic modules were developed: machine, buffer, and Decision Making Unit. The machine and buffer modules are used for modeling transfer lines and production networks. The Decision Making Unit models the functions of a computer node in a complex Decision Making Unit Architecture. The underlying model is a Generalized Stochastic Petri Net (GSPN) that can be used for performance evaluation and structural analysis. GSPN's were chosen because they help manage the complexity of modeling large manufacturing systems. There is no need to enumerate all the possible states of the Markov Chain since they are automatically generated from the GSPN model.

  9. Knowledge Acquisition from Structural Descriptions.

    ERIC Educational Resources Information Center

    Hayes-Roth, Frederick; McDermott, John

    The learning machine described in this paper acquires concepts representable as conjunctive forms of the predicate calculus and behaviors representable as productions (antecedent-consequent pairs of such conjunctive forms): these concepts and behavior rules are inferred from sequentially presented pairs of examples by an algorithm that is probably…

  10. Variable complexity online sequential extreme learning machine, with applications to streamflow prediction

    NASA Astrophysics Data System (ADS)

    Lima, Aranildo R.; Hsieh, William W.; Cannon, Alex J.

    2017-12-01

    In situations where new data arrive continually, online learning algorithms are computationally much less costly than batch learning ones in maintaining the model up-to-date. The extreme learning machine (ELM), a single hidden layer artificial neural network with random weights in the hidden layer, is solved by linear least squares, and has an online learning version, the online sequential ELM (OSELM). As more data become available during online learning, information on the longer time scale becomes available, so ideally the model complexity should be allowed to change, but the number of hidden nodes (HN) remains fixed in OSELM. A variable complexity VC-OSELM algorithm is proposed to dynamically add or remove HN in the OSELM, allowing the model complexity to vary automatically as online learning proceeds. The performance of VC-OSELM was compared with OSELM in daily streamflow predictions at two hydrological stations in British Columbia, Canada, with VC-OSELM significantly outperforming OSELM in mean absolute error, root mean squared error and Nash-Sutcliffe efficiency at both stations.

  11. Maintaining High Assurance in Asynchronous Messaging

    DTIC Science & Technology

    2015-10-24

    Assurance in Asynchronous Messaging Kevin E. Foltz and William R. Simpson Abstract—Asynchronous messaging is the delivery of a message without... integrity , and confidentiality guarantees. End-to-end security for asynchronous messaging must be provided by the asynchronous messaging layer itself... continuing its processing. At the completion of message transmission, the sender does not know when or whether the receiver received it. The message

  12. HiVy automated translation of stateflow designs for model checking verification

    NASA Technical Reports Server (NTRS)

    Pingree, Paula

    2003-01-01

    tool set enables model checking of finite state machines designs. This is acheived by translating state-chart specifications into the input language of the Spin model checker. An abstract syntax of hierarchical sequential automata (HSA) is provided as an intermediate format tool set.

  13. Real-time sensing of lint quality

    USDA-ARS?s Scientific Manuscript database

    Modem cotton gins have the purpose of extracting lint (the cotton) from trash and seeds- usually the sticks, leaves and burrs that are entrained with the cotton. These modem gins include many individual machine components that are operated sequentially to form the gin processing line. Recent on-line...

  14. University of Iowa at TREC 2008 Legal and Relevance Feedback Tracks

    DTIC Science & Technology

    2008-11-01

    Fellbaum, C, [ed.]. Wordnet: An Electronic Lexical Database. Cambridge : MIT Press, 1998. [3] Salton , G. (ed) (1971), The SMART Retrieval System...learning tools and techniques. 2nd Edition. San Francisco : Morgan Kaufmann, 2005. [5] Platt, J . Machines using Sequential Minimal Optimization. [ed.] B

  15. Cluster: Carpentry. Course: Carpentry. Research Project.

    ERIC Educational Resources Information Center

    Sanford - Lee County Schools, NC.

    The course on carpentry is divided into 14 sequential units, with several task packages within each, covering the following topics: carpentry hand tools; portable power tools; working machine tools; lumber; fasteners and adhesives; plans, specifications, and codes for houses; footings and foundations for a house; household cabinets; floor framing…

  16. Sequential allosteric mechanism of ATP hydrolysis by the CCT/TRiC chaperone is revealed through Arrhenius analysis

    PubMed Central

    Gruber, Ranit; Levitt, Michael; Horovitz, Amnon

    2017-01-01

    Knowing the mechanism of allosteric switching is important for understanding how molecular machines work. The CCT/TRiC chaperonin nanomachine undergoes ATP-driven conformational changes that are crucial for its folding function. Here, we demonstrate that insight into its allosteric mechanism of ATP hydrolysis can be achieved by Arrhenius analysis. Our results show that ATP hydrolysis triggers sequential ‟conformational waves.” They also suggest that these waves start from subunits CCT6 and CCT8 (or CCT3 and CCT6) and proceed clockwise and counterclockwise, respectively. PMID:28461478

  17. Sequential allosteric mechanism of ATP hydrolysis by the CCT/TRiC chaperone is revealed through Arrhenius analysis.

    PubMed

    Gruber, Ranit; Levitt, Michael; Horovitz, Amnon

    2017-05-16

    Knowing the mechanism of allosteric switching is important for understanding how molecular machines work. The CCT/TRiC chaperonin nanomachine undergoes ATP-driven conformational changes that are crucial for its folding function. Here, we demonstrate that insight into its allosteric mechanism of ATP hydrolysis can be achieved by Arrhenius analysis. Our results show that ATP hydrolysis triggers sequential ‟conformational waves." They also suggest that these waves start from subunits CCT6 and CCT8 (or CCT3 and CCT6) and proceed clockwise and counterclockwise, respectively.

  18. Poster error probability in the Mu-11 Sequential Ranging System

    NASA Technical Reports Server (NTRS)

    Coyle, C. W.

    1981-01-01

    An expression is derived for the posterior error probability in the Mu-2 Sequential Ranging System. An algorithm is developed which closely bounds the exact answer and can be implemented in the machine software. A computer simulation is provided to illustrate the improved level of confidence in a ranging acquisition using this figure of merit as compared to that using only the prior probabilities. In a simulation of 20,000 acquisitions with an experimentally determined threshold setting, the algorithm detected 90% of the actual errors and made false indication of errors on 0.2% of the acquisitions.

  19. Sequential cooling insert for turbine stator vane

    DOEpatents

    Jones, Russell B.; Krueger, Judson J.; Plank, William L.

    2014-04-01

    A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.

  20. Sequential cooling insert for turbine stator vane

    DOEpatents

    Jones, Russel B; Krueger, Judson J; Plank, William L

    2014-11-04

    A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.

  1. Data flow language and interpreter for a reconfigurable distributed data processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, A.D.; Heath, J.R.

    1982-01-01

    An analytic language and an interpreter whereby an applications data flow graph may serve as an input to a reconfigurable distributed data processor is proposed. The architecture considered consists of a number of loosely coupled computing elements (CES) which may be linked to data and file memories through fully nonblocking interconnect networks. The real-time performance of such an architecture depends upon its ability to alter its topology in response to changes in application, asynchronous data rates and faults. Such a data flow language enhances the versatility of a reconfigurable architecture by allowing the user to specify the machine's topology atmore » a very high level. 11 references.« less

  2. A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine †

    PubMed Central

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-01

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427

  3. Solving a mathematical model integrating unequal-area facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm.

    PubMed

    Ebrahimi, Ahmad; Kia, Reza; Komijan, Alireza Rashidi

    2016-01-01

    In this article, a novel integrated mixed-integer nonlinear programming model is presented for designing a cellular manufacturing system (CMS) considering machine layout and part scheduling problems simultaneously as interrelated decisions. The integrated CMS model is formulated to incorporate several design features including part due date, material handling time, operation sequence, processing time, an intra-cell layout of unequal-area facilities, and part scheduling. The objective function is to minimize makespan, tardiness penalties, and material handling costs of inter-cell and intra-cell movements. Two numerical examples are solved by the Lingo software to illustrate the results obtained by the incorporated features. In order to assess the effects and importance of integration of machine layout and part scheduling in designing a CMS, two approaches, sequentially and concurrent are investigated and the improvement resulted from a concurrent approach is revealed. Also, due to the NP-hardness of the integrated model, an efficient genetic algorithm is designed. As a consequence, computational results of this study indicate that the best solutions found by GA are better than the solutions found by B&B in much less time for both sequential and concurrent approaches. Moreover, the comparisons between the objective function values (OFVs) obtained by sequential and concurrent approaches demonstrate that the OFV improvement is averagely around 17 % by GA and 14 % by B&B.

  4. Scalable Kernel Methods and Algorithms for General Sequence Analysis

    ERIC Educational Resources Information Center

    Kuksa, Pavel

    2011-01-01

    Analysis of large-scale sequential data has become an important task in machine learning and pattern recognition, inspired in part by numerous scientific and technological applications such as the document and text classification or the analysis of biological sequences. However, current computational methods for sequence comparison still lack…

  5. The effects of sequential attention shifts within visual working memory.

    PubMed

    Li, Qi; Saiki, Jun

    2014-01-01

    Previous studies have shown conflicting data as to whether it is possible to sequentially shift spatial attention among visual working memory (VWM) representations. The present study investigated this issue by asynchronously presenting attentional cues during the retention interval of a change detection task. In particular, we focused on two types of sequential attention shifts: (1) orienting attention to one location, and then withdrawing attention from it, and (2) switching the focus of attention from one location to another. In Experiment 1, a withdrawal cue was presented after a spatial retro-cue to measure the effect of withdrawing attention. The withdrawal cue significantly reduced the cost of invalid spatial cues, but surprisingly, did not attenuate the benefit of valid spatial cues. This indicates that the withdrawal cue only triggered the activation of facilitative components but not inhibitory components of attention. In Experiment 2, two spatial retro-cues were presented successively to examine the effect of switching the focus of attention. We observed equivalent benefits of the first and second spatial cues, suggesting that participants were able to reorient attention from one location to another within VWM, and the reallocation of attention did not attenuate memory at the first-cued location. In Experiment 3, we found that reducing the validity of the preceding spatial cue did lead to a significant reduction in its benefit. However, performance was still better at first-cued locations than at uncued and neutral locations, indicating that the first cue benefit might have been preserved both partially under automatic control and partially under voluntary control. Our findings revealed new properties of dynamic attentional control in VWM maintenance.

  6. Genetic Parallel Programming: design and implementation.

    PubMed

    Cheang, Sin Man; Leung, Kwong Sak; Lee, Kin Hong

    2006-01-01

    This paper presents a novel Genetic Parallel Programming (GPP) paradigm for evolving parallel programs running on a Multi-Arithmetic-Logic-Unit (Multi-ALU) Processor (MAP). The MAP is a Multiple Instruction-streams, Multiple Data-streams (MIMD), general-purpose register machine that can be implemented on modern Very Large-Scale Integrated Circuits (VLSIs) in order to evaluate genetic programs at high speed. For human programmers, writing parallel programs is more difficult than writing sequential programs. However, experimental results show that GPP evolves parallel programs with less computational effort than that of their sequential counterparts. It creates a new approach to evolving a feasible problem solution in parallel program form and then serializes it into a sequential program if required. The effectiveness and efficiency of GPP are investigated using a suite of 14 well-studied benchmark problems. Experimental results show that GPP speeds up evolution substantially.

  7. Evolving network simulation study. From regular lattice to scale free network

    NASA Astrophysics Data System (ADS)

    Makowiec, D.

    2005-12-01

    The Watts-Strogatz algorithm of transferring the square lattice to a small world network is modified by introducing preferential rewiring constrained by connectivity demand. The evolution of the network is two-step: sequential preferential rewiring of edges controlled by p and updating the information about changes done. The evolving system self-organizes into stationary states. The topological transition in the graph structure is noticed with respect to p. Leafy phase a graph formed by multiple connected vertices (graph skeleton) with plenty of leaves attached to each skeleton vertex emerges when p is small enough to pretend asynchronous evolution. Tangling phase where edges of a graph circulate frequently among low degree vertices occurs when p is large. There exist conditions at which the resulting stationary network ensemble provides networks which degree distribution exhibit power-law decay in large interval of degrees.

  8. Marionette

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, M.; Anderson, D.P.

    1988-01-01

    Marionette is a system for distributed parallel programming in an environment of networked heterogeneous computer systems. It is based on a master/slave model. The master process can invoke worker operations (asynchronous remote procedure calls to single slaves) and context operations (updates to the state of all slaves). The master and slaves also interact through shared data structures that can be modified only by the master. The master and slave processes are programmed in a sequential language. The Marionette runtime system manages slave process creation, propagates shared data structures to slaves as needed, queues and dispatches worker and context operations, andmore » manages recovery from slave processor failures. The Marionette system also includes tools for automated compilation of program binaries for multiple architectures, and for distributing binaries to remote fuel systems. A UNIX-based implementation of Marionette is described.« less

  9. Acceptability of an Asynchronous Learning Forum on Mobile Devices

    ERIC Educational Resources Information Center

    Chang, Chih-Kai

    2010-01-01

    Mobile learning has recently become noteworthy because mobile devices have become popular. To construct an asynchronous learning forum on mobile devices is important because an asynchronous learning forum is always an essential part of networked asynchronous distance learning. However, the input interface in handheld learning devices, which is…

  10. The Influence of Asynchronous Video Communication on Learner Social Presence: A Narrative Analysis of Four Cases

    ERIC Educational Resources Information Center

    Borup, Jered; West, Richard E.; Graham, Charles R.

    2013-01-01

    Online courses are increasingly using asynchronous video communication. However, little is known about how asynchronous video communication influences students' communication patterns. This study presents four narratives of students with varying characteristics who engaged in asynchronous video communication. The extrovert valued the efficiency of…

  11. Debris Object Orbit Initialization Using the Probabilistic Admissible Region with Asynchronous Heterogeneous Observations

    NASA Astrophysics Data System (ADS)

    Zaidi, W. H.; Faber, W. R.; Hussein, I. I.; Mercurio, M.; Roscoe, C. W. T.; Wilkins, M. P.

    One of the most challenging problems in treating space debris is the characterization of the orbit of a newly detected and uncorrelated measurement. The admissible region is defined as the set of physically acceptable orbits (i.e. orbits with negative energies) consistent with one or more measurements of a Resident Space Object (RSO). Given additional constraints on the orbital semi-major axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a Probabilistic Admissible Region (PAR), a concept introduced in 2014 as a Monte Carlo uncertainty representation approach using topocentric spherical coordinates. Ultimately, a PAR can be used to initialize a sequential Bayesian estimator and to prioritize orbital propagations in a multiple hypothesis tracking framework such as Finite Set Statistics (FISST). To date, measurements used to build the PAR have been collected concurrently and by the same sensor. In this paper, we allow measurements to have different time stamps. We also allow for non-collocated sensor collections; optical data can be collected by one sensor at a given time and radar data collected by another sensor located elsewhere. We then revisit first principles to link asynchronous optical and radar measurements using both the conservation of specific orbital energy and specific orbital angular momentum. The result from the proposed algorithm is an implicit-Bayesian and non-Gaussian representation of orbital state uncertainty.

  12. Pharmacists' perception of synchronous versus asynchronous distance learning for continuing education programs.

    PubMed

    Buxton, Eric C

    2014-02-12

    To evaluate and compare pharmacists' satisfaction with the content and learning environment of a continuing education program series offered as either synchronous or asynchronous webinars. An 8-lecture series of online presentations on the topic of new drug therapies was offered to pharmacists in synchronous and asynchronous webinar formats. Participants completed a 50-question online survey at the end of the program series to evaluate their perceptions of the distance learning experience. Eighty-two participants completed the survey instrument (41 participants from the live webinar series and 41 participants from the asynchronous webinar series.) Responses indicated that while both groups were satisfied with the program content, the asynchronous group showed greater satisfaction with many aspects of the learning environment. The synchronous and asynchronous webinar participants responded positively regarding the quality of the programming and the method of delivery, but asynchronous participants rated their experience more positively overall.

  13. Pharmacists’ Perception of Synchronous Versus Asynchronous Distance Learning for Continuing Education Programs

    PubMed Central

    2014-01-01

    Objective. To evaluate and compare pharmacists’ satisfaction with the content and learning environment of a continuing education program series offered as either synchronous or asynchronous webinars. Methods. An 8-lecture series of online presentations on the topic of new drug therapies was offered to pharmacists in synchronous and asynchronous webinar formats. Participants completed a 50-question online survey at the end of the program series to evaluate their perceptions of the distance learning experience. Results. Eighty-two participants completed the survey instrument (41 participants from the live webinar series and 41 participants from the asynchronous webinar series.) Responses indicated that while both groups were satisfied with the program content, the asynchronous group showed greater satisfaction with many aspects of the learning environment. Conclusion. The synchronous and asynchronous webinar participants responded positively regarding the quality of the programming and the method of delivery, but asynchronous participants rated their experience more positively overall. PMID:24558276

  14. Comparing the force ripple during asynchronous and conventional stimulation.

    PubMed

    Downey, Ryan J; Tate, Mark; Kawai, Hiroyuki; Dixon, Warren E

    2014-10-01

    Asynchronous stimulation has been shown to reduce fatigue during electrical stimulation; however, it may also exhibit a force ripple. We quantified the ripple during asynchronous and conventional single-channel transcutaneous stimulation across a range of stimulation frequencies. The ripple was measured during 5 asynchronous stimulation protocols, 2 conventional stimulation protocols, and 3 volitional contractions in 12 healthy individuals. Conventional 40 Hz and asynchronous 16 Hz stimulation were found to induce contractions that were as smooth as volitional contractions. Asynchronous 8, 10, and 12 Hz stimulation induced contractions with significant ripple. Lower stimulation frequencies can reduce fatigue; however, they may also lead to increased ripple. Future efforts should study the relationship between force ripple and the smoothness of the evoked movements in addition to the relationship between stimulation frequency and NMES-induced fatigue to elucidate an optimal stimulation frequency for asynchronous stimulation. © 2014 Wiley Periodicals, Inc.

  15. Synchronous Office Hours in an Asynchronous Course: Making the Connection

    ERIC Educational Resources Information Center

    Gibbons-Kunka, Beatrice

    2017-01-01

    The notion of synchronous office hours in an asynchronous course seems counterintuitive. After all, one of the tenets of asynchronous education is to not require students to be online and participating at any time during the course. Having taught higher education online asynchronous courses for twenty years, the researcher experimented with online…

  16. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition.

    PubMed

    Zhang, Yifan; Gao, Xunzhang; Peng, Xuan; Ye, Jiaqi; Li, Xiang

    2018-05-16

    The High Resolution Range Profile (HRRP) recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  17. An epigenetic state associated with areas of gene duplication

    PubMed Central

    Gimelbrant, Alexander A.; Chess, Andrew

    2006-01-01

    Asynchronous DNA replication is an epigenetically determined feature found in all cases of monoallelic expression, including genomic imprinting, X-inactivation, and random monoallelic expression of autosomal genes such as immunoglobulins and olfactory receptor genes. Most genes of the latter class were identified in experiments focused on genes functioning in the chemosensory and immune systems. We performed an unbiased survey of asynchronous replication in the mouse genome, excluding known asynchronously replicated genes. Fully 10% (eight of 80) of the genes tested exhibited asynchronous replication. A common feature of the newly identified asynchronously replicated areas is their proximity to areas of tandem gene duplication. Testing of other clustered areas supported the idea that such regions are enriched with asynchronously replicated genes. PMID:16687731

  18. Towards a molecular logic machine

    NASA Astrophysics Data System (ADS)

    Remacle, F.; Levine, R. D.

    2001-06-01

    Finite state logic machines can be realized by pump-probe spectroscopic experiments on an isolated molecule. The most elaborate setup, a Turing machine, can be programmed to carry out a specific computation. We argue that a molecule can be similarly programmed, and provide examples using two photon spectroscopies. The states of the molecule serve as the possible states of the head of the Turing machine and the physics of the problem determines the possible instructions of the program. The tape is written in an alphabet that allows the listing of the different pump and probe signals that are applied in a given experiment. Different experiments using the same set of molecular levels correspond to different tapes that can be read and processed by the same head and program. The analogy to a Turing machine is not a mechanical one and is not completely molecular because the tape is not part of the molecular machine. We therefore also discuss molecular finite state machines, such as sequential devices, for which the tape is not part of the machine. Nonmolecular tapes allow for quite long input sequences with a rich alphabet (at the level of 7 bits) and laser pulse shaping experiments provide concrete examples. Single molecule spectroscopies show that a single molecule can be repeatedly cycled through a logical operation.

  19. On the role of cost-sensitive learning in multi-class brain-computer interfaces.

    PubMed

    Devlaminck, Dieter; Waegeman, Willem; Wyns, Bart; Otte, Georges; Santens, Patrick

    2010-06-01

    Brain-computer interfaces (BCIs) present an alternative way of communication for people with severe disabilities. One of the shortcomings in current BCI systems, recently put forward in the fourth BCI competition, is the asynchronous detection of motor imagery versus resting state. We investigated this extension to the three-class case, in which the resting state is considered virtually lying between two motor classes, resulting in a large penalty when one motor task is misclassified into the other motor class. We particularly focus on the behavior of different machine-learning techniques and on the role of multi-class cost-sensitive learning in such a context. To this end, four different kernel methods are empirically compared, namely pairwise multi-class support vector machines (SVMs), two cost-sensitive multi-class SVMs and kernel-based ordinal regression. The experimental results illustrate that ordinal regression performs better than the other three approaches when a cost-sensitive performance measure such as the mean-squared error is considered. By contrast, multi-class cost-sensitive learning enables us to control the number of large errors made between two motor tasks.

  20. Spatial and temporal accuracy of asynchrony-tolerant finite difference schemes for partial differential equations at extreme scales

    NASA Astrophysics Data System (ADS)

    Kumari, Komal; Donzis, Diego

    2017-11-01

    Highly resolved computational simulations on massively parallel machines are critical in understanding the physics of a vast number of complex phenomena in nature governed by partial differential equations. Simulations at extreme levels of parallelism present many challenges with communication between processing elements (PEs) being a major bottleneck. In order to fully exploit the computational power of exascale machines one needs to devise numerical schemes that relax global synchronizations across PEs. This asynchronous computations, however, have a degrading effect on the accuracy of standard numerical schemes.We have developed asynchrony-tolerant (AT) schemes that maintain order of accuracy despite relaxed communications. We show, analytically and numerically, that these schemes retain their numerical properties with multi-step higher order temporal Runge-Kutta schemes. We also show that for a range of optimized parameters,the computation time and error for AT schemes is less than their synchronous counterpart. Stability of the AT schemes which depends upon history and random nature of delays, are also discussed. Support from NSF is gratefully acknowledged.

  1. A Phenomenological Synapse Model for Asynchronous Neurotransmitter Release

    PubMed Central

    Wang, Tao; Yin, Luping; Zou, Xiaolong; Shu, Yousheng; Rasch, Malte J.; Wu, Si

    2016-01-01

    Neurons communicate with each other via synapses. Action potentials cause release of neurotransmitters at the axon terminal. Typically, this neurotransmitter release is tightly time-locked to the arrival of an action potential and is thus called synchronous release. However, neurotransmitter release is stochastic and the rate of release of small quanta of neurotransmitters can be considerably elevated even long after the ceasing of spiking activity, leading to asynchronous release of neurotransmitters. Such asynchronous release varies for tissue and neuron types and has been shown recently to be pronounced in fast-spiking neurons. Notably, it was found that asynchronous release is enhanced in human epileptic tissue implicating a possibly important role in generating abnormal neural activity. Current neural network models for simulating and studying neural activity virtually only consider synchronous release and ignore asynchronous transmitter release. Here, we develop a phenomenological model for asynchronous neurotransmitter release, which, on one hand, captures the fundamental features of the asynchronous release process, and, on the other hand, is simple enough to be incorporated in large-size network simulations. Our proposed model is based on the well-known equations for short-term dynamical synaptic interactions and includes an additional stochastic term for modeling asynchronous release. We use experimental data obtained from inhibitory fast-spiking synapses of human epileptic tissue to fit the model parameters, and demonstrate that our model reproduces the characteristics of realistic asynchronous transmitter release. PMID:26834617

  2. A fast and accurate online sequential learning algorithm for feedforward networks.

    PubMed

    Liang, Nan-Ying; Huang, Guang-Bin; Saratchandran, P; Sundararajan, N

    2006-11-01

    In this paper, we develop an online sequential learning algorithm for single hidden layer feedforward networks (SLFNs) with additive or radial basis function (RBF) hidden nodes in a unified framework. The algorithm is referred to as online sequential extreme learning machine (OS-ELM) and can learn data one-by-one or chunk-by-chunk (a block of data) with fixed or varying chunk size. The activation functions for additive nodes in OS-ELM can be any bounded nonconstant piecewise continuous functions and the activation functions for RBF nodes can be any integrable piecewise continuous functions. In OS-ELM, the parameters of hidden nodes (the input weights and biases of additive nodes or the centers and impact factors of RBF nodes) are randomly selected and the output weights are analytically determined based on the sequentially arriving data. The algorithm uses the ideas of ELM of Huang et al. developed for batch learning which has been shown to be extremely fast with generalization performance better than other batch training methods. Apart from selecting the number of hidden nodes, no other control parameters have to be manually chosen. Detailed performance comparison of OS-ELM is done with other popular sequential learning algorithms on benchmark problems drawn from the regression, classification and time series prediction areas. The results show that the OS-ELM is faster than the other sequential algorithms and produces better generalization performance.

  3. Proxy-equation paradigm: A strategy for massively parallel asynchronous computations

    NASA Astrophysics Data System (ADS)

    Mittal, Ankita; Girimaji, Sharath

    2017-09-01

    Massively parallel simulations of transport equation systems call for a paradigm change in algorithm development to achieve efficient scalability. Traditional approaches require time synchronization of processing elements (PEs), which severely restricts scalability. Relaxing synchronization requirement introduces error and slows down convergence. In this paper, we propose and develop a novel "proxy equation" concept for a general transport equation that (i) tolerates asynchrony with minimal added error, (ii) preserves convergence order and thus, (iii) expected to scale efficiently on massively parallel machines. The central idea is to modify a priori the transport equation at the PE boundaries to offset asynchrony errors. Proof-of-concept computations are performed using a one-dimensional advection (convection) diffusion equation. The results demonstrate the promise and advantages of the present strategy.

  4. Neuromorphic sensory systems.

    PubMed

    Liu, Shih-Chii; Delbruck, Tobi

    2010-06-01

    Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.

  5. Design of an MR-compatible fNIRS instrument

    NASA Astrophysics Data System (ADS)

    Emir, Uzay; Ademoglu, Ahmet; Ozturk, Cengizhan; Aydin, Kubilay; Demiralp, Tamer; Kurt, Adnan; Dincer, Alp; Akin, Ata

    2005-04-01

    Acquiring functional near infrared spectroscopy (fNIRS) and functional magnetic resonance-imaging (fMRI) data are usually done asynchronously. In order to correlate these two different modalities" data, measurements must be performed at the same time. In this study, we have designed a new MR compatible continuous wave intensity based fNIRS device to overcome this problem. For MR compatible fNIRS, we used two LEDs with wavelengths at 660 and 870 nm. There are four photodiodes for light detection. LEDs operated in a sequential multiplexing mode with adjustable "on" time for each LED. Emitted and diffused light was transferred to and from the tissue through 10 m long single mode plastic optical fibers (INDUSTRIAL FIBER OPTICS, INC.). By using fibers, we overcome MR compatibility problems that can be caused by semi-conductors on probe. This MR compatible fNIRS design can provide synchronous measurements with low cost.

  6. Epstein-Barr Viral Productive Amplification Reprograms Nuclear Architecture, DNA Replication and Histone Deposition

    PubMed Central

    Chiu, Ya-Fang; Sugden, Arthur U.; Sugden, Bill

    2014-01-01

    Summary The spontaneous transition of Epstein-Barr Virus (EBV) from latency to productive infection is infrequent, making its analysis in the resulting mixed cell populations difficult. We engineered cells to support this transition efficiently and developed EBV DNA variants that could be visualized and measured as fluorescent signals over multiple cell cycles. This approach revealed that EBV’s productive replication began synchronously for viral DNAs within a cell but asynchronously between cells. EBV DNA amplification was delayed until early S-phase and occurred in factories characterized by the absence of cellular DNA and histones, by a sequential redistribution of PCNA, and by localization away from the nuclear periphery. The earliest amplified DNAs lacked histones accompanying a decline in four histone chaperones. Thus, EBV transitions from being dependent on the cellular replication machinery during latency to commandeering both that machinery and nuclear structure for its own reproductive needs. PMID:24331459

  7. Designing Asynchronous Communication Tools for Optimization of Patient-Clinician Coordination

    PubMed Central

    Eschler, Jordan; Liu, Leslie S.; Vizer, Lisa M.; McClure, Jennifer B.; Lozano, Paula; Pratt, Wanda; Ralston, James D.

    2015-01-01

    Asynchronous communication outside the clinical setting has both enriched and complicated patient-clinician interactions. Many patients can now interact with a patient portal 24 hours a day, asking questions of their clinicians via secure message, checking lab results, ordering medication refills, or making appointments. However, the mode of communication (asynchronous) and the nature of the interaction (lacking tone or body language) strip valuable information from each side of patient-clinician asynchronous communication. Using interviews with 34 individuals who actively manage a chronic illness of their own, or for a child or partner, we elicited narratives about patients’ experiences and expectations for using asynchronous communication to address medical issues with their clinicians. Based on these perspectives, we present opportunities for designing asynchronous communication tools to better facilitate understanding of and coordination around care activities between patients and clinicians. PMID:26958188

  8. Asynchronous Video Streaming vs. Synchronous Videoconferencing for Teaching a Pharmacogenetic Pharmacotherapy Course

    PubMed Central

    2007-01-01

    Objectives To compare students' performance and course evaluations for a pharmacogenetic pharmacotherapy course taught by synchronous videoconferencing method via the Internet and for the same course taught via asynchronous video streaming via the Internet. Methods In spring 2005, a pharmacogenetic therapy course was taught to 73 students located on Amarillo, Lubbock, and Dallas campuses using synchronous videoconferencing, and in spring 2006, to 78 students located on the same 3 campuses using asynchronous video streaming. A course evaluation was administered to each group at the end of the courses. Results Students in the asynchronous setting had final course grades of 89% ± 7% compared to the mean final course grade of 87% ± 7% in the synchronous group (p = 0.05). Regardless of which technology was used, average course grades did not differ significantly among the 3 campus sites. Significantly more of the students in the asynchronous setting agreed (57%) with the statement that they could read the lecture notes and absorb the content on their own without attending the class than students in the synchronous class (23%; chi-square test; p < 0.001). Conclusions Students in both asynchronous and synchronous settings performed well. However, students taught using asynchronous videotaped lectures had lower satisfaction with the method of content delivery, and preferred live interactive sessions or a mix of interactive sessions and asynchronous videos over delivery of content using the synchronous or asynchronous method alone. PMID:17429516

  9. Timing of pollen release and stigma receptivity period of Piper vicosanum: New insights into sexual reproduction of the genus.

    PubMed

    Valentin-Silva, Adriano; Coelho, Victor Peçanha de Miranda; Ventrella, Marília Contin; Vieira, Milene Faria

    2015-04-01

    Dichogamy is a common characteristic among angiosperms, including Piper species. In this genus, the tiny flowers are morphologically similar and have an asynchronous stamen development. However, there is no information on the duration of stigma receptivity and whether it overlaps with pollen release. To better understand mechanisms of floral function in Piper vicosanum, we provide a detailed characterization of the timing of pollen release from the four stamens and the period of stigma receptivity and exposure mode of the receptive areas. We investigated plants of a natural population in a semideciduous seasonal forest (Viçosa, Minas Gerais State, southeastern Brazil), based on chemical tests, light microscopy, and scanning electron microscopy analyses. Incomplete protogyny-a mechanism that favors outcrossing-was recorded. The period of stigma receptivity was long (14 d), and the sequential exposure and senescence of stigmatic papillae occurred gradually and in a basipetal direction. Pollen release began 2-6 d after the beginning of the pistillate phase, with an average pollen viability of 87.7%, during the bisexual flower phase. Pollen was released for up to 6 d and occurred in one stamen at a time. The fruit set observed in tests of self-pollination indicated self-compatibility. The gradual and sequential exposure of stigmatic papillae in P. vicosanum flowers is described here as the mechanism for the long duration of receptivity. Anther development and pollen release were also sequential. These findings are yet unreported reproductive characteristics of the genus and offer new perspectives for future studies on the floral biology of other Piper species. © 2015 Botanical Society of America, Inc.

  10. The effects of sequential attention shifts within visual working memory

    PubMed Central

    Li, Qi; Saiki, Jun

    2014-01-01

    Previous studies have shown conflicting data as to whether it is possible to sequentially shift spatial attention among visual working memory (VWM) representations. The present study investigated this issue by asynchronously presenting attentional cues during the retention interval of a change detection task. In particular, we focused on two types of sequential attention shifts: (1) orienting attention to one location, and then withdrawing attention from it, and (2) switching the focus of attention from one location to another. In Experiment 1, a withdrawal cue was presented after a spatial retro-cue to measure the effect of withdrawing attention. The withdrawal cue significantly reduced the cost of invalid spatial cues, but surprisingly, did not attenuate the benefit of valid spatial cues. This indicates that the withdrawal cue only triggered the activation of facilitative components but not inhibitory components of attention. In Experiment 2, two spatial retro-cues were presented successively to examine the effect of switching the focus of attention. We observed equivalent benefits of the first and second spatial cues, suggesting that participants were able to reorient attention from one location to another within VWM, and the reallocation of attention did not attenuate memory at the first-cued location. In Experiment 3, we found that reducing the validity of the preceding spatial cue did lead to a significant reduction in its benefit. However, performance was still better at first-cued locations than at uncued and neutral locations, indicating that the first cue benefit might have been preserved both partially under automatic control and partially under voluntary control. Our findings revealed new properties of dynamic attentional control in VWM maintenance. PMID:25237306

  11. Sequential quantum cloning under real-life conditions

    NASA Astrophysics Data System (ADS)

    Saberi, Hamed; Mardoukhi, Yousof

    2012-05-01

    We consider a sequential implementation of the optimal quantum cloning machine of Gisin and Massar and propose optimization protocols for experimental realization of such a quantum cloner subject to the real-life restrictions. We demonstrate how exploiting the matrix-product state (MPS) formalism and the ensuing variational optimization techniques reveals the intriguing algebraic structure of the Gisin-Massar output of the cloning procedure and brings about significant improvements to the optimality of the sequential cloning prescription of Delgado [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.150502 98, 150502 (2007)]. Our numerical results show that the orthodox paradigm of optimal quantum cloning can in practice be realized in a much more economical manner by utilizing a considerably lesser amount of informational and numerical resources than hitherto estimated. Instead of the previously predicted linear scaling of the required ancilla dimension D with the number of qubits n, our recipe allows a realization of such a sequential cloning setup with an experimentally manageable ancilla of dimension at most D=3 up to n=15 qubits. We also address satisfactorily the possibility of providing an optimal range of sequential ancilla-qubit interactions for optimal cloning of arbitrary states under realistic experimental circumstances when only a restricted class of such bipartite interactions can be engineered in practice.

  12. Building asynchronous geospatial processing workflows with web services

    NASA Astrophysics Data System (ADS)

    Zhao, Peisheng; Di, Liping; Yu, Genong

    2012-02-01

    Geoscience research and applications often involve a geospatial processing workflow. This workflow includes a sequence of operations that use a variety of tools to collect, translate, and analyze distributed heterogeneous geospatial data. Asynchronous mechanisms, by which clients initiate a request and then resume their processing without waiting for a response, are very useful for complicated workflows that take a long time to run. Geospatial contents and capabilities are increasingly becoming available online as interoperable Web services. This online availability significantly enhances the ability to use Web service chains to build distributed geospatial processing workflows. This paper focuses on how to orchestrate Web services for implementing asynchronous geospatial processing workflows. The theoretical bases for asynchronous Web services and workflows, including asynchrony patterns and message transmission, are examined to explore different asynchronous approaches to and architecture of workflow code for the support of asynchronous behavior. A sample geospatial processing workflow, issued by the Open Geospatial Consortium (OGC) Web Service, Phase 6 (OWS-6), is provided to illustrate the implementation of asynchronous geospatial processing workflows and the challenges in using Web Services Business Process Execution Language (WS-BPEL) to develop them.

  13. Risk-aware multi-armed bandit problem with application to portfolio selection

    PubMed Central

    Huo, Xiaoguang

    2017-01-01

    Sequential portfolio selection has attracted increasing interest in the machine learning and quantitative finance communities in recent years. As a mathematical framework for reinforcement learning policies, the stochastic multi-armed bandit problem addresses the primary difficulty in sequential decision-making under uncertainty, namely the exploration versus exploitation dilemma, and therefore provides a natural connection to portfolio selection. In this paper, we incorporate risk awareness into the classic multi-armed bandit setting and introduce an algorithm to construct portfolio. Through filtering assets based on the topological structure of the financial market and combining the optimal multi-armed bandit policy with the minimization of a coherent risk measure, we achieve a balance between risk and return. PMID:29291122

  14. Risk-aware multi-armed bandit problem with application to portfolio selection.

    PubMed

    Huo, Xiaoguang; Fu, Feng

    2017-11-01

    Sequential portfolio selection has attracted increasing interest in the machine learning and quantitative finance communities in recent years. As a mathematical framework for reinforcement learning policies, the stochastic multi-armed bandit problem addresses the primary difficulty in sequential decision-making under uncertainty, namely the exploration versus exploitation dilemma, and therefore provides a natural connection to portfolio selection. In this paper, we incorporate risk awareness into the classic multi-armed bandit setting and introduce an algorithm to construct portfolio. Through filtering assets based on the topological structure of the financial market and combining the optimal multi-armed bandit policy with the minimization of a coherent risk measure, we achieve a balance between risk and return.

  15. Training and generalization of laundry skills: a multiple probe evaluation with handicapped persons.

    PubMed Central

    Thompson, T J; Braam, S J; Fugua, R W

    1982-01-01

    An instructional procedure composed of a graded sequence of prompts and token reinforcement was used to train a complex chain of behaviors which included sorting, washing, and drying clothes. A multiple probe design with sequential instruction across seven major components of the laundering routine was used to demonstrate experimental control. Students were taught to launder clothing using machines located in their school and generalization was assessed later on machines located in the public laundromat. A comparison of students' laundry skills with those of normal peers indicated similar levels of proficiency. Follow-up probes demonstrated maintenance of laundry skills over a 10-month period. PMID:7096228

  16. Training and generalization of laundry skills: a multiple probe evaluation with handicapped persons.

    PubMed

    Thompson, T J; Braam, S J; Fugua, R W

    1982-01-01

    An instructional procedure composed of a graded sequence of prompts and token reinforcement was used to train a complex chain of behaviors which included sorting, washing, and drying clothes. A multiple probe design with sequential instruction across seven major components of the laundering routine was used to demonstrate experimental control. Students were taught to launder clothing using machines located in their school and generalization was assessed later on machines located in the public laundromat. A comparison of students' laundry skills with those of normal peers indicated similar levels of proficiency. Follow-up probes demonstrated maintenance of laundry skills over a 10-month period.

  17. Dynamic task allocation for a man-machine symbiotic system

    NASA Technical Reports Server (NTRS)

    Parker, L. E.; Pin, F. G.

    1987-01-01

    This report presents a methodological approach to the dynamic allocation of tasks in a man-machine symbiotic system in the context of dexterous manipulation and teleoperation. This report addresses a symbiotic system containing two symbiotic partners which work toward controlling a single manipulator arm for the execution of a series of sequential manipulation tasks. It is proposed that an automated task allocator use knowledge about the constraints/criteria of the problem, the available resources, the tasks to be performed, and the environment to dynamically allocate task recommendations for the man and the machine. The presentation of the methodology includes discussions concerning the interaction of the knowledge areas, the flow of control, the necessary communication links, and the replanning of the task allocation. Examples of task allocation are presented to illustrate the results of this methodolgy.

  18. Distributed Fading Memory for Stimulus Properties in the Primary Visual Cortex

    PubMed Central

    Singer, Wolf; Maass, Wolfgang

    2009-01-01

    It is currently not known how distributed neuronal responses in early visual areas carry stimulus-related information. We made multielectrode recordings from cat primary visual cortex and applied methods from machine learning in order to analyze the temporal evolution of stimulus-related information in the spiking activity of large ensembles of around 100 neurons. We used sequences of up to three different visual stimuli (letters of the alphabet) presented for 100 ms and with intervals of 100 ms or larger. Most of the information about visual stimuli extractable by sophisticated methods of machine learning, i.e., support vector machines with nonlinear kernel functions, was also extractable by simple linear classification such as can be achieved by individual neurons. New stimuli did not erase information about previous stimuli. The responses to the most recent stimulus contained about equal amounts of information about both this and the preceding stimulus. This information was encoded both in the discharge rates (response amplitudes) of the ensemble of neurons and, when using short time constants for integration (e.g., 20 ms), in the precise timing of individual spikes (≤∼20 ms), and persisted for several 100 ms beyond the offset of stimuli. The results indicate that the network from which we recorded is endowed with fading memory and is capable of performing online computations utilizing information about temporally sequential stimuli. This result challenges models assuming frame-by-frame analyses of sequential inputs. PMID:20027205

  19. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View

    PubMed Central

    2016-01-01

    Background As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. Objective To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. Methods A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. Results The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. Conclusions A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. PMID:27986644

  20. Sequential replication-coupled destruction at G1/S ensures genome stability

    PubMed Central

    Coleman, Kate E.; Grant, Gavin D.; Haggerty, Rachel A.; Brantley, Kristen; Shibata, Etsuko; Workman, Benjamin D.; Dutta, Anindya; Varma, Dileep; Purvis, Jeremy E.; Cook, Jeanette Gowen

    2015-01-01

    Timely ubiquitin-mediated protein degradation is fundamental to cell cycle control, but the precise degradation order at each cell cycle phase transition is still unclear. We investigated the degradation order among substrates of a single human E3 ubiquitin ligase, CRL4Cdt2, which mediates the S-phase degradation of key cell cycle proteins, including Cdt1, PR-Set7, and p21. Our analysis of synchronized cells and asynchronously proliferating live single cells revealed a consistent order of replication-coupled destruction during both S-phase entry and DNA repair; Cdt1 is destroyed first, whereas p21 destruction is always substantially later than that of Cdt1. These differences are attributable to the CRL4Cdt2 targeting motif known as the PIP degron, which binds DNA-loaded proliferating cell nuclear antigen (PCNADNA) and recruits CRL4Cdt2. Fusing Cdt1's PIP degron to p21 causes p21 to be destroyed nearly concurrently with Cdt1 rather than consecutively. This accelerated degradation conferred by the Cdt1 PIP degron is accompanied by more effective Cdt2 recruitment by Cdt1 even though p21 has higher affinity for PCNADNA. Importantly, cells with artificially accelerated p21 degradation display evidence of stalled replication in mid-S phase and sensitivity to replication arrest. We therefore propose that sequential degradation ensures orderly S-phase progression to avoid replication stress and genome instability. PMID:26272819

  1. Synchronization of Hierarchical Time-Varying Neural Networks Based on Asynchronous and Intermittent Sampled-Data Control.

    PubMed

    Xiong, Wenjun; Patel, Ragini; Cao, Jinde; Zheng, Wei Xing

    In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.

  2. Digital Synchronizer without Metastability

    NASA Technical Reports Server (NTRS)

    Simle, Robert M.; Cavazos, Jose A.

    2009-01-01

    A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.

  3. Peer Assessment of Webpage Design: Behavioral Sequential Analysis Based on Eye-Tracking Evidence

    ERIC Educational Resources Information Center

    Hsu, Ting-Chia; Chang, Shao-Chen; Liu, Nan-Cen

    2018-01-01

    This study employed an eye-tracking machine to record the process of peer assessment. Each web page was divided into several regions of interest (ROIs) based on the frame design and content. A total of 49 undergraduate students with a visual learning style participated in the experiment. This study investigated the peer assessment attitudes of the…

  4. Optimal Achievable Encoding for Brain Machine Interface

    DTIC Science & Technology

    2017-12-22

    dictionary-based encoding approach to translate a visual image into sequential patterns of electrical stimulation in real time , in a manner that...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...networks, and by applying linear decoding to complete recorded populations of retinal ganglion cells for the first time . Third, we developed a greedy

  5. Decoding-Accuracy-Based Sequential Dimensionality Reduction of Spatio-Temporal Neural Activities

    NASA Astrophysics Data System (ADS)

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    Performance of a brain machine interface (BMI) critically depends on selection of input data because information embedded in the neural activities is highly redundant. In addition, properly selected input data with a reduced dimension leads to improvement of decoding generalization ability and decrease of computational efforts, both of which are significant advantages for the clinical applications. In the present paper, we propose an algorithm of sequential dimensionality reduction (SDR) that effectively extracts motor/sensory related spatio-temporal neural activities. The algorithm gradually reduces input data dimension by dropping neural data spatio-temporally so as not to undermine the decoding accuracy as far as possible. Support vector machine (SVM) was used as the decoder, and tone-induced neural activities in rat auditory cortices were decoded into the test tone frequencies. SDR reduced the input data dimension to a quarter and significantly improved the accuracy of decoding of novel data. Moreover, spatio-temporal neural activity patterns selected by SDR resulted in significantly higher accuracy than high spike rate patterns or conventionally used spatial patterns. These results suggest that the proposed algorithm can improve the generalization ability and decrease the computational effort of decoding.

  6. The Effects of Asynchronous Visual Delays on Simulator Flight Performance and the Development of Simulator Sickness Symptomatology

    DTIC Science & Technology

    1986-12-26

    NAVAL TRAINING SYSTEMS CENTER ORLANDO. FLORIDA IT FILE COPY THE EFFECTS OF ASYNCHRONOUS VISUAL DELAYS ON SIMULATOR FLIGHT PERFORMANCE AND THE...ASYNCHRONOUS VISUAL. DELAYS ON SI.WLATOR FLIGHT PERF OMANCE AND THE DEVELOPMENT OF SIMLATOR SICKNESS SYMPTOMATOLOGY K. C. Uliano, E. Y. Lambert, R. S. Kennedy...ACCESSION NO. N63733N SP-01 0785-7P6 I. 4780 11. TITLE (Include Security Classification) The Effects of Asynchronous Visual Delays on Simulator Flight

  7. Parallelization and automatic data distribution for nuclear reactor simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebrock, L.M.

    1997-07-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directlymore » affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.« less

  8. Modeling and Analysis of Mixed Synchronous/Asynchronous Systems

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin R.; Madl. Gabor; Hall, Brendan

    2012-01-01

    Practical safety-critical distributed systems must integrate safety critical and non-critical data in a common platform. Safety critical systems almost always consist of isochronous components that have synchronous or asynchronous interface with other components. Many of these systems also support a mix of synchronous and asynchronous interfaces. This report presents a study on the modeling and analysis of asynchronous, synchronous, and mixed synchronous/asynchronous systems. We build on the SAE Architecture Analysis and Design Language (AADL) to capture architectures for analysis. We present preliminary work targeted to capture mixed low- and high-criticality data, as well as real-time properties in a common Model of Computation (MoC). An abstract, but representative, test specimen system was created as the system to be modeled.

  9. A novel comparator featured with input data characteristic

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaobo; Ye, Desheng; Xu, Xiangmin; Zheng, Shuai

    2016-03-01

    Two types of low-power asynchronous comparators featured with input data statistical characteristic are proposed in this article. The asynchronous ripple comparator stops comparing at the first unequal bit but delivers the result to the least significant bit. The pre-stop asynchronous comparator can completely stop comparing and obtain results immediately. The proposed and contrastive comparators were implemented in SMIC 0.18 μm process with different bit widths. Simulation shows that the proposed pre-stop asynchronous comparator features the lowest power consumption, shortest average propagation delay and highest area efficiency among the comparators. Data path of low-density parity check decoder using the proposed pre-stop asynchronous comparators are most power efficient compared with other data paths with synthesised, clock gating and bitwise competition logic comparators.

  10. CT fluoroscopy-assisted puncture of thoracic and abdominal masses: a randomized trial.

    PubMed

    Kirchner, Johannes; Kickuth, Ralph; Laufer, Ulf; Schilling, Esther Maria; Adams, Stephan; Liermann, Dieter

    2002-03-01

    We investigated the benefit of real-time guidance of interventional punctures by means of computed tomography fluoroscopy (CTF) compared with the conventional sequential acquisition guidance. In a prospective randomized trial, 75 patients underwent either CTF-guided (group A, n = 50) or sequential CT-guided (group B, n = 25) punctures of thoracic (n = 29) or abdominal (n = 46) masses. CTF was performed on the CT machine (Somatom Plus 4 Power, Siemens Corp., Forchheim, Germany) equipped with the C.A.R.E. Vision application (tube voltage 120 kV, tube current 50 mA, rotational time 0.75 s, slice thickness 10 mm, 8 frames/s). The average procedure time showed a statistically significant difference between the two study groups (group A: 564 s, group B 795 s, P = 0.0032). The mean total mAs was 7089 mAs for the CTF and 4856 mAs for the sequential image-guided intervention, respectively. The sensitivity was 71% specificity 100% positive predictive value 100% and negative predictive value 60% for the CTF-guided puncture, and 68, 100, 100 and 50% for sequential CT, respectively. CTF guidance realizes a time-saving but increases the radiation exposure dosage.

  11. Interactional Coherence in Asynchronous Learning Networks: A Rhetorical Approach

    ERIC Educational Resources Information Center

    Potter, Andrew

    2008-01-01

    Numerous studies have affirmed the value of asynchronous online communication as a learning resource. Several investigations, however, have indicated that discussions in asynchronous environments are often neither interactive nor coherent. The research reported sought to develop an enhanced understanding of interactional coherence, argumentation,…

  12. Thermal constitutive matrix applied to asynchronous electrical machine using the cell method

    NASA Astrophysics Data System (ADS)

    Domínguez, Pablo Ignacio González; Monzón-Verona, José Miguel; Rodríguez, Leopoldo Simón; Sánchez, Adrián de Pablo

    2018-03-01

    This work demonstrates the equivalence of two constitutive equations. One is used in Fourier's law of the heat conduction equation, the other in electric conduction equation; both are based on the numerical Cell Method, using the Finite Formulation (FF-CM). A 3-D pure heat conduction model is proposed. The temperatures are in steady state and there are no internal heat sources. The obtained results are compared with an equivalent model developed using the Finite Elements Method (FEM). The particular case of 2-D was also studied. The errors produced are not significant at less than 0.2%. The number of nodes is the number of the unknowns and equations to resolve. There is no significant gain in precision with increasing density of the mesh.

  13. Prediction of rat protein subcellular localization with pseudo amino acid composition based on multiple sequential features.

    PubMed

    Shi, Ruijia; Xu, Cunshuan

    2011-06-01

    The study of rat proteins is an indispensable task in experimental medicine and drug development. The function of a rat protein is closely related to its subcellular location. Based on the above concept, we construct the benchmark rat proteins dataset and develop a combined approach for predicting the subcellular localization of rat proteins. From protein primary sequence, the multiple sequential features are obtained by using of discrete Fourier analysis, position conservation scoring function and increment of diversity, and these sequential features are selected as input parameters of the support vector machine. By the jackknife test, the overall success rate of prediction is 95.6% on the rat proteins dataset. Our method are performed on the apoptosis proteins dataset and the Gram-negative bacterial proteins dataset with the jackknife test, the overall success rates are 89.9% and 96.4%, respectively. The above results indicate that our proposed method is quite promising and may play a complementary role to the existing predictors in this area.

  14. Proposed hardware architectures of particle filter for object tracking

    NASA Astrophysics Data System (ADS)

    Abd El-Halym, Howida A.; Mahmoud, Imbaby Ismail; Habib, SED

    2012-12-01

    In this article, efficient hardware architectures for particle filter (PF) are presented. We propose three different architectures for Sequential Importance Resampling Filter (SIRF) implementation. The first architecture is a two-step sequential PF machine, where particle sampling, weight, and output calculations are carried out in parallel during the first step followed by sequential resampling in the second step. For the weight computation step, a piecewise linear function is used instead of the classical exponential function. This decreases the complexity of the architecture without degrading the results. The second architecture speeds up the resampling step via a parallel, rather than a serial, architecture. This second architecture targets a balance between hardware resources and the speed of operation. The third architecture implements the SIRF as a distributed PF composed of several processing elements and central unit. All the proposed architectures are captured using VHDL synthesized using Xilinx environment, and verified using the ModelSim simulator. Synthesis results confirmed the resource reduction and speed up advantages of our architectures.

  15. Use of personalized Dynamic Treatment Regimes (DTRs) and Sequential Multiple Assignment Randomized Trials (SMARTs) in mental health studies

    PubMed Central

    Liu, Ying; ZENG, Donglin; WANG, Yuanjia

    2014-01-01

    Summary Dynamic treatment regimens (DTRs) are sequential decision rules tailored at each point where a clinical decision is made based on each patient’s time-varying characteristics and intermediate outcomes observed at earlier points in time. The complexity, patient heterogeneity, and chronicity of mental disorders call for learning optimal DTRs to dynamically adapt treatment to an individual’s response over time. The Sequential Multiple Assignment Randomized Trial (SMARTs) design allows for estimating causal effects of DTRs. Modern statistical tools have been developed to optimize DTRs based on personalized variables and intermediate outcomes using rich data collected from SMARTs; these statistical methods can also be used to recommend tailoring variables for designing future SMART studies. This paper introduces DTRs and SMARTs using two examples in mental health studies, discusses two machine learning methods for estimating optimal DTR from SMARTs data, and demonstrates the performance of the statistical methods using simulated data. PMID:25642116

  16. Optical flip-flops and sequential logic circuits using a liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Fatehi, M. T.; Collins, S. A., Jr.; Wasmundt, K. C.

    1984-01-01

    This paper is concerned with the application of optics to digital computing. A Hughes liquid crystal light valve is used as an active optical element where a weak light beam can control a strong light beam with either a positive or negative gain characteristic. With this device as the central element the ability to produce bistable states from which different types of flip-flop can be implemented is demonstrated. In this paper, some general comments are first presented on digital computing as applied to optics. This is followed by a discussion of optical implementation of various types of flip-flop. These flip-flops are then used in the design of optical equivalents to a few simple sequential circuits such as shift registers and accumulators. As a typical sequential machine, a schematic layout for an optical binary temporal integrator is presented. Finally, a suggested experimental configuration for an optical master-slave flip-flop array is given.

  17. Labeled Postings for Asynchronous Interaction

    ERIC Educational Resources Information Center

    ChanLin, Lih-Juan; Chen, Yong-Ting; Chan, Kung-Chi

    2009-01-01

    The Internet promotes computer-mediated communications, and so asynchronous learning network systems permit more flexibility in time, space, and interaction than synchronous mode of learning. The key point of asynchronous learning is the materials for web-aided teaching and the flow of knowledge. This research focuses on improving online…

  18. An Asynchronous Augmentation to Traditional Course Delivery.

    ERIC Educational Resources Information Center

    Wolverton, Marvin L.; Wolverton, Mimi

    Asynchronous augmentation facilitates distributed learning, which relies heavily on technology and self-learning. This paper reports the results of delivering a real estate principles course using an asynchronous course delivery format. It highlights one of many ways to enhance learning using technology, and it provides information concerning how…

  19. A Taxonomy of Learning through Asynchronous Discussion

    ERIC Educational Resources Information Center

    Knowlton, Dave S.

    2005-01-01

    This article presents a five-tiered taxonomy that describes the nature of participation in, and learning through, asynchronous discussion. The taxonomy is framed by a constructivist view of asynchronous discussion. The five tiers of the taxonomy include the following: (a) passive participation, (b) developmental participation, (c) generative…

  20. Designing Asynchronous Online Discussion Environments: Recent Progress and Possible Future Directions

    ERIC Educational Resources Information Center

    Gao, Fei; Zhang, Tianyi; Franklin, Teresa

    2013-01-01

    Asynchronous online discussion environments are important platforms to support learning. Research suggests, however, threaded forums, one of the most popular asynchronous discussion environments, do not often foster productive online discussions naturally. This paper explores how certain properties of threaded forums have affected or constrained…

  1. Integrating Asynchronous Digital Design Into the Computer Engineering Curriculum

    ERIC Educational Resources Information Center

    Smith, S. C.; Al-Assadi, W. K.; Di, J.

    2010-01-01

    As demand increases for circuits with higher performance, higher complexity, and decreased feature size, asynchronous (clockless) paradigms will become more widely used in the semiconductor industry, as evidenced by the International Technology Roadmap for Semiconductors' (ITRS) prediction of a likely shift from synchronous to asynchronous design…

  2. Confessions of a robot lobotomist

    NASA Technical Reports Server (NTRS)

    Gottshall, R. Marc

    1994-01-01

    Since its inception, numerically controlled (NC) machining methods have been used throughout the aerospace industry to mill, drill, and turn complex shapes by sequentially stepping through motion programs. However, the recent demand for more precision, faster feeds, exotic sensors, and branching execution have existing computer numerical control (CNC) and distributed numerical control (DNC) systems running at maximum controller capacity. Typical disadvantages of current CNC's include fixed memory capacities, limited communication ports, and the use of multiple control languages. The need to tailor CNC's to meet specific applications, whether it be expanded memory, additional communications, or integrated vision, often requires replacing the original controller supplied with the commercial machine tool with a more powerful and capable system. This paper briefly describes the process and equipment requirements for new controllers and their evolutionary implementation in an aerospace environment. The process of controller retrofit with currently available machines is examined, along with several case studies and their computational and architectural implications.

  3. Implementing finite state machines in a computer-based teaching system

    NASA Astrophysics Data System (ADS)

    Hacker, Charles H.; Sitte, Renate

    1999-09-01

    Finite State Machines (FSM) are models for functions commonly implemented in digital circuits such as timers, remote controls, and vending machines. Teaching FSM is core in the curriculum of many university digital electronic or discrete mathematics subjects. Students often have difficulties grasping the theoretical concepts in the design and analysis of FSM. This has prompted the author to develop an MS-WindowsTM compatible software, WinState, that provides a tutorial style teaching aid for understanding the mechanisms of FSM. The animated computer screen is ideal for visually conveying the required design and analysis procedures. WinState complements other software for combinatorial logic previously developed by the author, and enhances the existing teaching package by adding sequential logic circuits. WinState enables the construction of a students own FSM, which can be simulated, to test the design for functionality and possible errors.

  4. Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device.

    PubMed

    Heath, Daniel J; Grant-Jacob, James A; Feinaeugle, Matthias; Mills, Ben; Eason, Robert W

    2017-08-01

    We present the use of digital micromirror devices as variable illumination masks for pitch-splitting multiple exposures to laser machine the surfaces of materials. Ultrafast laser pulses of length 150 fs and 800 nm central wavelength were used for the sequential machining of contiguous patterns on the surface of samples in order to build up complex structures with sub-diffraction limit features. Machined patterns of tens to hundreds of micrometers in lateral dimensions with feature separations as low as 270 nm were produced in electroless nickel on an optical setup diffraction limited to 727 nm, showing a reduction factor below the Abbe diffraction limit of ∼2.7×. This was compared to similar patterns in a photoresist optimized for two-photon absorption, which showed a reduction factor of only 2×, demonstrating that multiple exposures via ablation can produce a greater resolution enhancement than via two-photon polymerization.

  5. Comparison of Artificial Immune System and Particle Swarm Optimization Techniques for Error Optimization of Machine Vision Based Tool Movements

    NASA Astrophysics Data System (ADS)

    Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod

    2015-10-01

    In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.

  6. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    PubMed Central

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  7. Unraveling Network-induced Memory Contention: Deeper Insights with Machine Learning

    DOE PAGES

    Groves, Taylor Liles; Grant, Ryan; Gonzales, Aaron; ...

    2017-11-21

    Remote Direct Memory Access (RDMA) is expected to be an integral communication mechanism for future exascale systems enabling asynchronous data transfers, so that applications may fully utilize CPU resources while simultaneously sharing data amongst remote nodes. We examine Network-induced Memory Contention (NiMC) on Infiniband networks. We expose the interactions between RDMA, main-memory and cache, when applications and out-of-band services compete for memory resources. We then explore NiMCs resulting impact on application-level performance. For a range of hardware technologies and HPC workloads, we quantify NiMC and show that NiMCs impact grows with scale resulting in up to 3X performance degradation atmore » scales as small as 8K processes even in applications that previously have been shown to be performance resilient in the presence of noise. In addition, this work examines the problem of predicting NiMC's impact on applications by leveraging machine learning and easily accessible performance counters. This approach provides additional insights about the root cause of NiMC and facilitates dynamic selection of potential solutions. Finally, we evaluated three potential techniques to reduce NiMCs impact, namely hardware offloading, core reservation and network throttling.« less

  8. Leveraging human oversight and intervention in large-scale parallel processing of open-source data

    NASA Astrophysics Data System (ADS)

    Casini, Enrico; Suri, Niranjan; Bradshaw, Jeffrey M.

    2015-05-01

    The popularity of cloud computing along with the increased availability of cheap storage have led to the necessity of elaboration and transformation of large volumes of open-source data, all in parallel. One way to handle such extensive volumes of information properly is to take advantage of distributed computing frameworks like Map-Reduce. Unfortunately, an entirely automated approach that excludes human intervention is often unpredictable and error prone. Highly accurate data processing and decision-making can be achieved by supporting an automatic process through human collaboration, in a variety of environments such as warfare, cyber security and threat monitoring. Although this mutual participation seems easily exploitable, human-machine collaboration in the field of data analysis presents several challenges. First, due to the asynchronous nature of human intervention, it is necessary to verify that once a correction is made, all the necessary reprocessing is done in chain. Second, it is often needed to minimize the amount of reprocessing in order to optimize the usage of resources due to limited availability. In order to improve on these strict requirements, this paper introduces improvements to an innovative approach for human-machine collaboration in the processing of large amounts of open-source data in parallel.

  9. Unraveling Network-induced Memory Contention: Deeper Insights with Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groves, Taylor Liles; Grant, Ryan; Gonzales, Aaron

    Remote Direct Memory Access (RDMA) is expected to be an integral communication mechanism for future exascale systems enabling asynchronous data transfers, so that applications may fully utilize CPU resources while simultaneously sharing data amongst remote nodes. We examine Network-induced Memory Contention (NiMC) on Infiniband networks. We expose the interactions between RDMA, main-memory and cache, when applications and out-of-band services compete for memory resources. We then explore NiMCs resulting impact on application-level performance. For a range of hardware technologies and HPC workloads, we quantify NiMC and show that NiMCs impact grows with scale resulting in up to 3X performance degradation atmore » scales as small as 8K processes even in applications that previously have been shown to be performance resilient in the presence of noise. In addition, this work examines the problem of predicting NiMC's impact on applications by leveraging machine learning and easily accessible performance counters. This approach provides additional insights about the root cause of NiMC and facilitates dynamic selection of potential solutions. Finally, we evaluated three potential techniques to reduce NiMCs impact, namely hardware offloading, core reservation and network throttling.« less

  10. Actively Engaging Students in Asynchronous Online Classes. IDEA Paper #64

    ERIC Educational Resources Information Center

    Riggs, Shannon A.; Linder, Kathryn E.

    2016-01-01

    Active learning activities and pedagogical strategies can look different in online learning environments, particularly in asynchronous courses when students are not interacting with the instructor, or with each other, in real time. This paper suggests a three-pronged approach for conceptualizing active learning in the online asynchronous class:…

  11. Exploring Asynchronous and Synchronous Tool Use in Online Courses

    ERIC Educational Resources Information Center

    Oztok, Murat; Zingaro, Daniel; Brett, Clare; Hewitt, Jim

    2013-01-01

    While the independent contributions of synchronous and asynchronous interaction in online learning are clear, comparatively less is known about the pedagogical consequences of using both modes in the same environment. In this study, we examine relationships between students' use of asynchronous discussion forums and synchronous private messages…

  12. Teaching Presence and Communication Timeliness in Asynchronous Online Courses

    ERIC Educational Resources Information Center

    Skramstad, Erik; Schlosser, Charles; Orellana, Anymir

    2012-01-01

    This study examined student perceptions of teaching presence and communication timeliness in asynchronous online courses. Garrison, Anderson, and Archer's (2000) community of inquiry model provided the framework for the survey research methodology used. Participants were 59 student volunteers taking 1 or more asynchronous online graduate courses.…

  13. Two Studies Examining Argumentation in Asynchronous Computer Mediated Communication

    ERIC Educational Resources Information Center

    Joiner, Richard; Jones, Sarah; Doherty, John

    2008-01-01

    Asynchronous computer mediated communication (CMC) would seem to be an ideal medium for supporting development in student argumentation. This paper investigates this assumption through two studies. The first study compared asynchronous CMC with face-to-face discussions. The transactional and strategic level of the argumentation (i.e. measures of…

  14. Using Television Sitcoms to Facilitate Asynchronous Discussions in the Online Communication Course

    ERIC Educational Resources Information Center

    Tolman, Elizabeth; Asbury, Bryan

    2012-01-01

    Asynchronous discussions are a useful instructional resource in the online communication course. In discussion groups students have the opportunity to actively participate and interact with students and the instructor. Asynchronous communication allows for flexibility because "participants can interact with significant amounts of time between…

  15. Asynchronous Discussion Board Facilitation and Rubric Use in a Blended Learning Environment

    ERIC Educational Resources Information Center

    Giacumo, Lisa

    2012-01-01

    The purpose of this study was to investigate the effects of instructor response prompts and rubrics on students' performance in an asynchronous discussion-board assignment, their learning achievement on an objective-type posttest, and their reported satisfaction levels. Researchers who have studied asynchronous computer-mediated student…

  16. Designing Asynchronous, Text-Based Computer Conferences: Ten Research-Based Suggestions

    ERIC Educational Resources Information Center

    Choitz, Paul; Lee, Doris

    2006-01-01

    Asynchronous computer conferencing refers to the use of computer software and a network enabling participants to post messages that allow discourse to continue even though interactions may be extended over days and weeks. Asynchronous conferences are time-independent, adapting to multiple time zones and learner schedules. Such activities as…

  17. Asynchronous Learning Forums for Business Acculturation

    ERIC Educational Resources Information Center

    Pence, Christine Cope; Wulf, Catharina

    2009-01-01

    The use of IT as a facilitator for student collaboration in higher business education has grown rapidly since 2000. Asynchronous discussion forums are used abundantly for collaborative training purposes and for teaching students business-relevant tools for their future careers. This article presents an analysis of the asynchronous discussion forum…

  18. Comparing face-to-face, synchronous, and asynchronous learning: postgraduate dental resident preferences.

    PubMed

    Kunin, Marc; Julliard, Kell N; Rodriguez, Tobias E

    2014-06-01

    The Department of Dental Medicine of Lutheran Medical Center has developed an asynchronous online curriculum consisting of prerecorded PowerPoint presentations with audio explanations. The focus of this study was to evaluate if the new asynchronous format satisfied the educational needs of the residents compared to traditional lecture (face-to-face) and synchronous (distance learning) formats. Lectures were delivered to 219 dental residents employing face-to-face and synchronous formats, as well as the new asynchronous format; 169 (77 percent) participated in the study. Outcomes were assessed with pretests, posttests, and individual lecture surveys. Results found the residents preferred face-to-face and asynchronous formats to the synchronous format in terms of effectiveness and clarity of presentations. This preference was directly related to the residents' perception of how well the technology worked in each format. The residents also rated the quality of student-instructor and student-student interactions in the synchronous and asynchronous formats significantly higher after taking the lecture series than they did before taking it. However, they rated the face-to-face format as significantly more conducive to student-instructor and student-student interaction. While the study found technology had a major impact on the efficacy of this curricular model, the results suggest that the asynchronous format can be an effective way to teach a postgraduate course.

  19. Asynchronous glimpsing of speech: Spread of masking and task set-size

    PubMed Central

    Ozmeral, Erol J.; Buss, Emily; Hall, Joseph W.

    2012-01-01

    Howard-Jones and Rosen [(1993). J. Acoust. Soc. Am. 93, 2915–2922] investigated the ability to integrate glimpses of speech that are separated in time and frequency using a “checkerboard” masker, with asynchronous amplitude modulation (AM) across frequency. Asynchronous glimpsing was demonstrated only for spectrally wide frequency bands. It is possible that the reduced evidence of spectro-temporal integration with narrower bands was due to spread of masking at the periphery. The present study tested this hypothesis with a dichotic condition, in which the even- and odd-numbered bands of the target speech and asynchronous AM masker were presented to opposite ears, minimizing the deleterious effects of masking spread. For closed-set consonant recognition, thresholds were 5.1–8.5 dB better for dichotic than for monotic asynchronous AM conditions. Results were similar for closed-set word recognition, but for open-set word recognition the benefit of dichotic presentation was more modest and level dependent, consistent with the effects of spread of masking being level dependent. There was greater evidence of asynchronous glimpsing in the open-set than closed-set tasks. Presenting stimuli dichotically supported asynchronous glimpsing with narrower frequency bands than previously shown, though the magnitude of glimpsing was reduced for narrower bandwidths even in some dichotic conditions. PMID:22894234

  20. Asynchronous vs didactic education: it's too early to throw in the towel on tradition.

    PubMed

    Jordan, Jaime; Jalali, Azadeh; Clarke, Samuel; Dyne, Pamela; Spector, Tahlia; Coates, Wendy

    2013-08-08

    Asynchronous, computer based instruction is cost effective, allows self-directed pacing and review, and addresses preferences of millennial learners. Current research suggests there is no significant difference in learning compared to traditional classroom instruction. Data are limited for novice learners in emergency medicine. The objective of this study was to compare asynchronous, computer-based instruction with traditional didactics for senior medical students during a week-long intensive course in acute care. We hypothesized both modalities would be equivalent. This was a prospective observational quasi-experimental study of 4th year medical students who were novice learners with minimal prior exposure to curricular elements. We assessed baseline knowledge with an objective pre-test. The curriculum was delivered in either traditional lecture format (shock, acute abdomen, dyspnea, field trauma) or via asynchronous, computer-based modules (chest pain, EKG interpretation, pain management, trauma). An interactive review covering all topics was followed by a post-test. Knowledge retention was measured after 10 weeks. Pre and post-test items were written by a panel of medical educators and validated with a reference group of learners. Mean scores were analyzed using dependent t-test and attitudes were assessed by a 5-point Likert scale. 44 of 48 students completed the protocol. Students initially acquired more knowledge from didactic education as demonstrated by mean gain scores (didactic: 28.39% ± 18.06; asynchronous 9.93% ± 23.22). Mean difference between didactic and asynchronous = 18.45% with 95% CI [10.40 to 26.50]; p = 0.0001. Retention testing demonstrated similar knowledge attrition: mean gain scores -14.94% (didactic); -17.61% (asynchronous), which was not significantly different: 2.68% ± 20.85, 95% CI [-3.66 to 9.02], p = 0.399. The attitudinal survey revealed that 60.4% of students believed the asynchronous modules were educational and 95.8% enjoyed the flexibility of the method. 39.6% of students preferred asynchronous education for required didactics; 37.5% were neutral; 23% preferred traditional lectures. Asynchronous, computer-based instruction was not equivalent to traditional didactics for novice learners of acute care topics. Interactive, standard didactic education was valuable. Retention rates were similar between instructional methods. Students had mixed attitudes toward asynchronous learning but enjoyed the flexibility. We urge caution in trading in traditional didactic lectures in favor of asynchronous education for novice learners in acute care.

  1. Dynamics of gamete production and mating in the parasitic protist Trypanosoma brucei.

    PubMed

    Peacock, Lori; Bailey, Mick; Gibson, Wendy

    2016-07-20

    Sexual reproduction in Plasmodium falciparum and Trypanosoma brucei occurs in the insect vector and is important in generating hybrid strains with different combinations of parental characteristics. Production of hybrid parasite genotypes depends on the likelihood of co-infection of the vector with multiple strains. In mosquitoes, existing infection with Plasmodium facilitates the establishment of a second infection, although the asynchronicity of gamete production subsequently prevents mating. In the trypanosome/tsetse system, flies become increasingly refractory to infection as they age, so the likelihood of a fly acquiring a second infection also decreases. This effectively restricts opportunities for trypanosome mating to co-infections picked up by the fly on its first feed, unless an existing infection increases the chance of successful second infection as in the Plasmodium/mosquito system. Using green and red fluorescent trypanosomes, we compared the rates of trypanosome infection and hybrid production in flies co-infected on the first feed, co-infected on a subsequent feed 18 days after emergence, or fed sequentially with each trypanosome clone 18 days apart. Infection rates were highest in the midguts and salivary glands (SG) of flies that received both trypanosome clones in their first feed, and were halved when the infected feed was delayed to day 18. In flies fed the two trypanosome clones sequentially, the second clone often failed to establish a midgut infection and consequently was not present in the SG. Nevertheless, hybrids were recovered from all three groups of infected flies. Meiotic stages and gametes were produced continuously from day 11 to 42 after the infective feed, and in sequentially infected flies, the co-occurrence of gametes led to hybrid formation. We found that a second trypanosome strain can establish infection in the tsetse SG 18 days after the first infected feed, with co-mingling of gametes and production of trypanosome hybrids. Establishment of the second strain was severely compromised by the strong immune response of the fly to the existing infection. Although sequential infection provides an opportunity for trypanosome mating, the easiest way for a tsetse fly to acquire a mixed infection is by feeding on a co-infected host.

  2. The Bayesian Learning Automaton — Empirical Evaluation with Two-Armed Bernoulli Bandit Problems

    NASA Astrophysics Data System (ADS)

    Granmo, Ole-Christoffer

    The two-armed Bernoulli bandit (TABB) problem is a classical optimization problem where an agent sequentially pulls one of two arms attached to a gambling machine, with each pull resulting either in a reward or a penalty. The reward probabilities of each arm are unknown, and thus one must balance between exploiting existing knowledge about the arms, and obtaining new information.

  3. Sequential Analysis: Hypothesis Testing and Changepoint Detection

    DTIC Science & Technology

    2014-07-11

    it is necessary to estimate in situ the geographical coordinates and other parameters of earthquakes . The standard sensor equipment of a three...components. When an earthquake arises, the sensors begin to record several types of seismic waves (body and surface waves), among which the more important...machines and to increased safety norms. Many structures to be monitored, e.g., civil engineering structures subject to wind and earthquakes , aircraft

  4. Applying Sparse Machine Learning Methods to Twitter: Analysis of the 2012 Change in Pap Smear Guidelines. A Sequential Mixed-Methods Study.

    PubMed

    Lyles, Courtney Rees; Godbehere, Andrew; Le, Gem; El Ghaoui, Laurent; Sarkar, Urmimala

    2016-06-10

    It is difficult to synthesize the vast amount of textual data available from social media websites. Capturing real-world discussions via social media could provide insights into individuals' opinions and the decision-making process. We conducted a sequential mixed methods study to determine the utility of sparse machine learning techniques in summarizing Twitter dialogues. We chose a narrowly defined topic for this approach: cervical cancer discussions over a 6-month time period surrounding a change in Pap smear screening guidelines. We applied statistical methodologies, known as sparse machine learning algorithms, to summarize Twitter messages about cervical cancer before and after the 2012 change in Pap smear screening guidelines by the US Preventive Services Task Force (USPSTF). All messages containing the search terms "cervical cancer," "Pap smear," and "Pap test" were analyzed during: (1) January 1-March 13, 2012, and (2) March 14-June 30, 2012. Topic modeling was used to discern the most common topics from each time period, and determine the singular value criterion for each topic. The results were then qualitatively coded from top 10 relevant topics to determine the efficiency of clustering method in grouping distinct ideas, and how the discussion differed before vs. after the change in guidelines . This machine learning method was effective in grouping the relevant discussion topics about cervical cancer during the respective time periods (~20% overall irrelevant content in both time periods). Qualitative analysis determined that a significant portion of the top discussion topics in the second time period directly reflected the USPSTF guideline change (eg, "New Screening Guidelines for Cervical Cancer"), and many topics in both time periods were addressing basic screening promotion and education (eg, "It is Cervical Cancer Awareness Month! Click the link to see where you can receive a free or low cost Pap test.") It was demonstrated that machine learning tools can be useful in cervical cancer prevention and screening discussions on Twitter. This method allowed us to prove that there is publicly available significant information about cervical cancer screening on social media sites. Moreover, we observed a direct impact of the guideline change within the Twitter messages.

  5. Fostering Critical Reflection in a Computer-Based, Asynchronously Delivered Diversity Training Course

    ERIC Educational Resources Information Center

    Givhan, Shawn T.

    2013-01-01

    This dissertation study chronicles the creation of a computer-based, asynchronously delivered diversity training course for a state agency. The course format enabled efficient delivery of a mandatory curriculum to the Massachusetts Department of State Police workforce. However, the asynchronous format posed a challenge to achieving the learning…

  6. Anonymity and Motivation in Asynchronous Discussions and L2 Vocabulary Learning

    ERIC Educational Resources Information Center

    Polat, Nihat; Mancilla, Rae; Mahalingappa, Laura

    2013-01-01

    This study investigates L2 attainment in asynchronous online environments, specifically possible relationships among anonymity, L2 motivation, participation in discussions, quality of L2 production, and success in L2 vocabulary learning. It examines, in asynchronous discussions, (a) if participation and (b) motivation contribute to L2 vocabulary…

  7. Exploring the Effect of Scripted Roles on Cognitive Presence in Asynchronous Online Discussions

    ERIC Educational Resources Information Center

    Olesova, Larisa; Slavin, Margaret; Lim, Jieun

    2016-01-01

    The purpose of this study was to identify the effect of scripted roles on students' level of cognitive presence in asynchronous online threaded discussions. A quantitative content analysis was used to investigate: (1) what level of cognitive presence is achieved by students' assigned roles in asynchronous online discussions; (2) differences…

  8. A Multi-Perspective Investigation into Learners' Interaction in Asynchronous Computer-Mediated Communication (CMC)

    ERIC Educational Resources Information Center

    Çardak, Çigdem Suzan

    2016-01-01

    This article focusses on graduate level students' interactions during asynchronous CMC activities of an online course about the teaching profession in Turkey. The instructor of the course designed and facilitated a semester-long asynchronous CMC on forum discussions, and investigated the interaction of learners in multiple perspectives: learners'…

  9. The Negotiation Model in Asynchronous Computer-Mediated Communication (CMC): Negotiation in Task-Based Email Exchanges

    ERIC Educational Resources Information Center

    Kitade, Keiko

    2006-01-01

    Based on recent studies, computer-mediated communication (CMC) has been considered a tool to aid in language learning on account of its distinctive interactional features. However, most studies have referred to "synchronous" CMC and neglected to investigate how "asynchronous" CMC contributes to language learning. Asynchronous CMC possesses…

  10. Integrating the Intangibles into Asynchronous Online Instruction: Strategies for Improving Interaction and Social Presence

    ERIC Educational Resources Information Center

    McGuire, Beverley Foulks

    2016-01-01

    This paper considers how instructors of asynchronous online courses in the Humanities might integrate intangibles associated with face-to-face instruction into their online environments. It presents a case study of asynchronous online instruction in a philosophy and religion department at a midsize public university in the southeastern United…

  11. Postgraduate Students' Knowledge Construction during Asynchronous Computer Conferences in a Blended Learning Environment: A Malaysian Experience

    ERIC Educational Resources Information Center

    Kian-Sam, Hong; Lee, Julia Ai Cheng

    2008-01-01

    Blended learning, using e-learning tools to supplement existing on campus learning, often incorporates asynchronous computer conferencing as a means of augmenting knowledge construction among students. This case study reports findings about levels of knowledge construction amongst adult postgraduate students in six asynchronous computer…

  12. Asynchronous Learning Sources in a High-Tech Organization

    ERIC Educational Resources Information Center

    Bouhnik, Dan; Giat, Yahel; Sanderovitch, Yafit

    2009-01-01

    Purpose: The purpose of this study is to characterize learning from asynchronous sources among research and development (R&D) personnel. It aims to examine four aspects of asynchronous source learning: employee preferences regarding self-learning; extent of source usage; employee satisfaction with these sources and the effect of the sources on the…

  13. Asynchronous reference frame agreement in a quantum network

    NASA Astrophysics Data System (ADS)

    Islam, Tanvirul; Wehner, Stephanie

    2016-03-01

    An efficient implementation of many multiparty protocols for quantum networks requires that all the nodes in the network share a common reference frame. Establishing such a reference frame from scratch is especially challenging in an asynchronous network where network links might have arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem of establishing a common reference frame in an asynchronous network of n nodes of which at most t are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We present a protocol that allows all the correctly functioning nodes to agree on a common reference frame as long as the network graph is complete and not more than t\\lt n/4 nodes are faulty. As the protocol is asynchronous, it can be used with some assumptions to synchronise clocks over a network. Also, the protocol has the appealing property that it allows any existing two-node asynchronous protocol for reference frame agreement to be lifted to a robust protocol for an asynchronous quantum network.

  14. A Single-Channel EOG-Based Speller.

    PubMed

    He, Shenghong; Li, Yuanqing

    2017-11-01

    Electrooculography (EOG) signals, which can be used to infer the intentions of a user based on eye movements, are widely used in human-computer interface (HCI) systems. Most existing EOG-based HCI systems incorporate a limited number of commands because they generally associate different commands with a few different types of eye movements, such as looking up, down, left, or right. This paper presents a novel single-channel EOG-based HCI that allows users to spell asynchronously by only blinking. Forty buttons corresponding to 40 characters displayed to the user via a graphical user interface are intensified in a random order. To select a button, the user must blink his/her eyes in synchrony as the target button is flashed. Two data processing procedures, specifically support vector machine (SVM) classification and waveform detection, are combined to detect eye blinks. During detection, we simultaneously feed the feature vectors extracted from the ongoing EOG signal into the SVM classification and waveform detection modules. Decisions are made based on the results of the SVM classification and waveform detection. Three online experiments were conducted with eight healthy subjects. We achieved an average accuracy of 94.4% and a response time of 4.14 s for selecting a character in synchronous mode, as well as an average accuracy of 93.43% and a false positive rate of 0.03/min in the idle state in asynchronous mode. The experimental results, therefore, demonstrated the effectiveness of this single-channel EOG-based speller.

  15. WATERLOPP V2/64: A highly parallel machine for numerical computation

    NASA Astrophysics Data System (ADS)

    Ostlund, Neil S.

    1985-07-01

    Current technological trends suggest that the high performance scientific machines of the future are very likely to consist of a large number (greater than 1024) of processors connected and communicating with each other in some as yet undetermined manner. Such an assembly of processors should behave as a single machine in obtaining numerical solutions to scientific problems. However, the appropriate way of organizing both the hardware and software of such an assembly of processors is an unsolved and active area of research. It is particularly important to minimize the organizational overhead of interprocessor comunication, global synchronization, and contention for shared resources if the performance of a large number ( n) of processors is to be anything like the desirable n times the performance of a single processor. In many situations, adding a processor actually decreases the performance of the overall system since the extra organizational overhead is larger than the extra processing power added. The systolic loop architecture is a new multiple processor architecture which attemps at a solution to the problem of how to organize a large number of asynchronous processors into an effective computational system while minimizing the organizational overhead. This paper gives a brief overview of the basic systolic loop architecture, systolic loop algorithms for numerical computation, and a 64-processor implementation of the architecture, WATERLOOP V2/64, that is being used as a testbed for exploring the hardware, software, and algorithmic aspects of the architecture.

  16. A new method for measuring the rotational accuracy of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Zhao, Xiangsong; Gao, Weiguo; Hu, Gaofeng; Zhang, Shizhen; Zhang, Dawei

    2016-12-01

    The rotational accuracy of a machine tool spindle has critical influence upon the geometric shape and surface roughness of finished workpiece. The rotational performance of the rolling element bearings is a main factor which affects the spindle accuracy, especially in the ultra-precision machining. In this paper, a new method is developed to measure the rotational accuracy of rolling element bearings of machine tool spindles. Variable and measurable axial preload is applied to seat the rolling elements in the bearing races, which is used to simulate the operating conditions. A high-precision (radial error is less than 300 nm) and high-stiffness (radial stiffness is 600 N/μm) hydrostatic reference spindle is adopted to rotate the inner race of the test bearing. To prevent the outer race from rotating, a 2-degrees of freedom flexure hinge mechanism (2-DOF FHM) is designed. Correction factors by using stiffness analysis are adopted to eliminate the influences of 2-DOF FHM in the radial direction. Two capacitive displacement sensors with nano-resolution (the highest resolution is 9 nm) are used to measure the radial error motion of the rolling element bearing, without separating the profile error as the traditional rotational accuracy metrology of the spindle. Finally, experimental measurements are performed at different spindle speeds (100-4000 rpm) and axial preloads (75-780 N). Synchronous and asynchronous error motion values are evaluated to demonstrate the feasibility and repeatability of the developed method and instrument.

  17. Pediatric emergency medicine asynchronous e-learning: a multicenter randomized controlled Solomon four-group study.

    PubMed

    Chang, Todd P; Pham, Phung K; Sobolewski, Brad; Doughty, Cara B; Jamal, Nazreen; Kwan, Karen Y; Little, Kim; Brenkert, Timothy E; Mathison, David J

    2014-08-01

    Asynchronous e-learning allows for targeted teaching, particularly advantageous when bedside and didactic education is insufficient. An asynchronous e-learning curriculum has not been studied across multiple centers in the context of a clinical rotation. We hypothesize that an asynchronous e-learning curriculum during the pediatric emergency medicine (EM) rotation improves medical knowledge among residents and students across multiple participating centers. Trainees on pediatric EM rotations at four large pediatric centers from 2012 to 2013 were randomized in a Solomon four-group design. The experimental arms received an asynchronous e-learning curriculum consisting of nine Web-based, interactive, peer-reviewed Flash/HTML5 modules. Postrotation testing and in-training examination (ITE) scores quantified improvements in knowledge. A 2 × 2 analysis of covariance (ANCOVA) tested interaction and main effects, and Pearson's correlation tested associations between module usage, scores, and ITE scores. A total of 256 of 458 participants completed all study elements; 104 had access to asynchronous e-learning modules, and 152 were controls who used the current education standards. No pretest sensitization was found (p = 0.75). Use of asynchronous e-learning modules was associated with an improvement in posttest scores (p < 0.001), from a mean score of 18.45 (95% confidence interval [CI] = 17.92 to 18.98) to 21.30 (95% CI = 20.69 to 21.91), a large effect (partial η(2) = 0.19). Posttest scores correlated with ITE scores (r(2) = 0.14, p < 0.001) among pediatric residents. Asynchronous e-learning is an effective educational tool to improve knowledge in a clinical rotation. Web-based asynchronous e-learning is a promising modality to standardize education among multiple institutions with common curricula, particularly in clinical rotations where scheduling difficulties, seasonality, and variable experiences limit in-hospital learning. © 2014 by the Society for Academic Emergency Medicine.

  18. Modeling and Analysis of Asynchronous Systems Using SAL and Hybrid SAL

    NASA Technical Reports Server (NTRS)

    Tiwari, Ashish; Dutertre, Bruno

    2013-01-01

    We present formal models and results of formal analysis of two different asynchronous systems. We first examine a mid-value select module that merges the signals coming from three different sensors that are each asynchronously sampling the same input signal. We then consider the phase locking protocol proposed by Daly, Hopkins, and McKenna. This protocol is designed to keep a set of non-faulty (asynchronous) clocks phase locked even in the presence of Byzantine-faulty clocks on the network. All models and verifications have been developed using the SAL model checking tools and the Hybrid SAL abstractor.

  19. Detection of Failure in Asynchronous Motor Using Soft Computing Method

    NASA Astrophysics Data System (ADS)

    Vinoth Kumar, K.; Sony, Kevin; Achenkunju John, Alan; Kuriakose, Anto; John, Ano P.

    2018-04-01

    This paper investigates the stator short winding failure of asynchronous motor also their effects on motor current spectrums. A fuzzy logic approach i.e., model based technique possibly will help to detect the asynchronous motor failure. Actually, fuzzy logic similar to humanoid intelligent methods besides expected linguistic empowering inferences through vague statistics. The dynamic model is technologically advanced for asynchronous motor by means of fuzzy logic classifier towards investigate the stator inter turn failure in addition open phase failure. A hardware implementation was carried out with LabVIEW for the online-monitoring of faults.

  20. Asynchronous discrete control of continuous processes

    NASA Astrophysics Data System (ADS)

    Kaliski, M. E.; Johnson, T. L.

    1984-07-01

    The research during this second contract year continued to deal with the development of sound theoretical models for asynchronous systems. Two criteria served to shape the research pursued: the first, that the developed models extend and generalize previously developed research for synchronous discrete control; the second, that the models explicitly address the question of how to incorporate system transition times into themselves. The following sections of this report concisely delineate this year's work. Our original proposal for this research identified four general tasks of investigation: (1.1) Analysis of Qualitative Properties of Asynchronous Hybrid Systems; (1.2) Acceptance and Control for Asynchronous Hybrid Systems.

  1. Combining Live Video and Audio Broadcasting, Synchronous Chat, and Asynchronous Open Forum Discussions in Distance Education

    ERIC Educational Resources Information Center

    Teng, Tian-Lih; Taveras, Marypat

    2004-01-01

    This article outlines the evolution of a unique distance education program that began as a hybrid--combining face-to-face instruction with asynchronous online teaching--and evolved to become an innovative combination of synchronous education using live streaming video, audio, and chat over the Internet, blended with asynchronous online discussions…

  2. Utilizing Spectrum Efficiently (USE)

    DTIC Science & Technology

    2011-02-28

    18 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and...numerical results. 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and Spectral Efficiency In [60] multiple...supported at a given signal-to-interference ratio in asynchronous direct-sequence code-division multiple-access ( DS - CDMA ) sys- tems was examined. It was

  3. The Development, Validity, and Reliability of Communication Satisfaction in an Online Asynchronous Discussion Scale

    ERIC Educational Resources Information Center

    Hung, Min-Ling; Chou, Chien

    2014-01-01

    The purpose of this study was to identify dimensions of students' communication satisfaction in an asynchronous discussion forum. An asynchronous discussion may be defined as text-based human-to-human communication via computer networks that provides a platform for the participants to interact with one another to exchange ideas, insights, and…

  4. Web-based Cases in Teaching and Learning - the Quality of Discussions and a Stage of Perspective Taking in Asynchronous Communication.

    ERIC Educational Resources Information Center

    Jarvela, Sanna; Hakkinen, Paivi

    2002-01-01

    Examines the quality of asynchronous interaction in Web-based conferencing among preservice teachers. The study combines asynchronous conferencing with peer and mentor collaboration to electronically apprentice student learning. Results point out different levels of Web-based discussion: higher-level, progressive, and lower-level discussion. A…

  5. Asynchronous vs didactic education: it’s too early to throw in the towel on tradition

    PubMed Central

    2013-01-01

    Background Asynchronous, computer based instruction is cost effective, allows self-directed pacing and review, and addresses preferences of millennial learners. Current research suggests there is no significant difference in learning compared to traditional classroom instruction. Data are limited for novice learners in emergency medicine. The objective of this study was to compare asynchronous, computer-based instruction with traditional didactics for senior medical students during a week-long intensive course in acute care. We hypothesized both modalities would be equivalent. Methods This was a prospective observational quasi-experimental study of 4th year medical students who were novice learners with minimal prior exposure to curricular elements. We assessed baseline knowledge with an objective pre-test. The curriculum was delivered in either traditional lecture format (shock, acute abdomen, dyspnea, field trauma) or via asynchronous, computer-based modules (chest pain, EKG interpretation, pain management, trauma). An interactive review covering all topics was followed by a post-test. Knowledge retention was measured after 10 weeks. Pre and post-test items were written by a panel of medical educators and validated with a reference group of learners. Mean scores were analyzed using dependent t-test and attitudes were assessed by a 5-point Likert scale. Results 44 of 48 students completed the protocol. Students initially acquired more knowledge from didactic education as demonstrated by mean gain scores (didactic: 28.39% ± 18.06; asynchronous 9.93% ± 23.22). Mean difference between didactic and asynchronous = 18.45% with 95% CI [10.40 to 26.50]; p = 0.0001. Retention testing demonstrated similar knowledge attrition: mean gain scores −14.94% (didactic); -17.61% (asynchronous), which was not significantly different: 2.68% ± 20.85, 95% CI [−3.66 to 9.02], p = 0.399. The attitudinal survey revealed that 60.4% of students believed the asynchronous modules were educational and 95.8% enjoyed the flexibility of the method. 39.6% of students preferred asynchronous education for required didactics; 37.5% were neutral; 23% preferred traditional lectures. Conclusions Asynchronous, computer-based instruction was not equivalent to traditional didactics for novice learners of acute care topics. Interactive, standard didactic education was valuable. Retention rates were similar between instructional methods. Students had mixed attitudes toward asynchronous learning but enjoyed the flexibility. We urge caution in trading in traditional didactic lectures in favor of asynchronous education for novice learners in acute care. PMID:23927420

  6. [A novel proposal explaining sleep disturbance of children in Japan--asynchronization].

    PubMed

    Kohyama, Jun

    2008-07-01

    It has been reported that more than half of the children in Japan suffer from daytime sleepiness. In contrast, about one quarter of junior high-school students in Japan complain of insomnia. According to the International Classification of Sleep Disorders (Second edition), these children could be diagnosed as having behaviorally-induced insufficient sleep syndrome due to inadequate sleeping habits. Getting on adequate amount of sleep should solve such problems;however, such a therapeutic approach often fails. Although social factors are involved in these sleep disturbances, I feel that a novel notion - asynchronization - leads to an understanding of the pathophysiology of disturbances in these children. Further, it could contribute to resolve their problems. The essence of asynchronization is a disturbance of various aspects (e.g., cycle, amplitude, phase, and interrelationship) of the biological rhythms that normally exhibits circadian oscillation. The main cause of asynchronization is hypothesized to be the combination of light exposure during night and the lack of light exposure in the morning. Asynchronization results in the disturbance of variable systems. Thus, symptoms of asynchronization include disturbances of the autonomic nervous system (sleepiness, insomnia, disturbance of hormonal excretion, gastrointestinal problems, etc.) and higher brain function (disorientation, loss of sociality, loss of will or motivation, impaired alertness and performance, etc.). Neurological (attention deficit, aggression, impulsiveness, hyperactivity, etc.), psychiatric (depressive disorders, personality disorders, anxiety disorders, etc.) and somatic (tiredness, fatigue, etc.) disturbances could also be symptoms of asynchronization. At the initial phase of asynchronization, disturbances are functional and can be resolved relatively easily, such as by the establishment of a regular sleep-wakefulness cycle;however, without adequate intervention the disturbances could gradually worsen and become hard to resolve.

  7. Modeling Search Behaviors during the Acquisition of Expertise in a Sequential Decision-Making Task.

    PubMed

    Moënne-Loccoz, Cristóbal; Vergara, Rodrigo C; López, Vladimir; Mery, Domingo; Cosmelli, Diego

    2017-01-01

    Our daily interaction with the world is plagued of situations in which we develop expertise through self-motivated repetition of the same task. In many of these interactions, and especially when dealing with computer and machine interfaces, we must deal with sequences of decisions and actions. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion and a specific sequence of choices must be performed in order to produce the expected outcome. But, as we become experts in the use of such interfaces, is it possible to identify specific search and learning strategies? And if so, can we use this information to predict future actions? In addition to better understanding the cognitive processes underlying sequential decision making, this could allow building adaptive interfaces that can facilitate interaction at different moments of the learning curve. Here we tackle the question of modeling sequential decision-making behavior in a simple human-computer interface that instantiates a 4-level binary decision tree (BDT) task. We record behavioral data from voluntary participants while they attempt to solve the task. Using a Hidden Markov Model-based approach that capitalizes on the hierarchical structure of behavior, we then model their performance during the interaction. Our results show that partitioning the problem space into a small set of hierarchically related stereotyped strategies can potentially capture a host of individual decision making policies. This allows us to follow how participants learn and develop expertise in the use of the interface. Moreover, using a Mixture of Experts based on these stereotyped strategies, the model is able to predict the behavior of participants that master the task.

  8. Stand-Alone and Hybrid Positioning Using Asynchronous Pseudolites

    PubMed Central

    Gioia, Ciro; Borio, Daniele

    2015-01-01

    global navigation satellite system (GNSS) receivers are usually unable to achieve satisfactory performance in difficult environments, such as open-pit mines, urban canyons and indoors. Pseudolites have the potential to extend GNSS usage and significantly improve receiver performance in such environments by providing additional navigation signals. This also applies to asynchronous pseudolite systems, where different pseudolites operate in an independent way. Asynchronous pseudolite systems require, however, dedicated strategies in order to properly integrate GNSS and pseudolite measurements. In this paper, several asynchronous pseudolite/GNSS integration strategies are considered: loosely- and tightly-coupled approaches are developed and combined with pseudolite proximity and receiver signal strength (RSS)-based positioning. The performance of the approaches proposed has been tested in different scenarios, including static and kinematic conditions. The tests performed demonstrate that the methods developed are effective techniques for integrating heterogeneous measurements from different sources, such as asynchronous pseudolites and GNSS. PMID:25609041

  9. Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.

    PubMed

    Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing

    2016-08-01

    In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.

  10. Hydrodynamic advantages of swimming by salp chains.

    PubMed

    Sutherland, Kelly R; Weihs, Daniel

    2017-08-01

    Salps are marine invertebrates comprising multiple jet-propelled swimming units during a colonial life-cycle stage. Using theory, we show that asynchronous swimming with multiple pulsed jets yields substantial hydrodynamic benefit due to the production of steady swimming velocities, which limit drag. Laboratory comparisons of swimming kinematics of aggregate salps ( Salpa fusiformis and Weelia cylindrica ) using high-speed video supported that asynchronous swimming by aggregates results in a smoother velocity profile and showed that this smoother velocity profile is the result of uncoordinated, asynchronous swimming by individual zooids. In situ flow visualizations of W. cylindrica swimming wakes revealed that another consequence of asynchronous swimming is that fluid interactions between jet wakes are minimized. Although the advantages of multi-jet propulsion have been mentioned elsewhere, this is the first time that the theory has been quantified and the role of asynchronous swimming verified using experimental data from the laboratory and the field. © 2017 The Author(s).

  11. A Survey of Methods for Computing Best Estimates of Endoatmospheric and Exoatmospheric Trajectories

    NASA Technical Reports Server (NTRS)

    Bernard, William P.

    2018-01-01

    Beginning with the mathematical prediction of planetary orbits in the early seventeenth century up through the most recent developments in sensor fusion methods, many techniques have emerged that can be employed on the problem of endo and exoatmospheric trajectory estimation. Although early methods were ad hoc, the twentieth century saw the emergence of many systematic approaches to estimation theory that produced a wealth of useful techniques. The broad genesis of estimation theory has resulted in an equally broad array of mathematical principles, methods and vocabulary. Among the fundamental ideas and methods that are briefly touched on are batch and sequential processing, smoothing, estimation, and prediction, sensor fusion, sensor fusion architectures, data association, Bayesian and non Bayesian filtering, the family of Kalman filters, models of the dynamics of the phases of a rocket's flight, and asynchronous, delayed, and asequent data. Along the way, a few trajectory estimation issues are addressed and much of the vocabulary is defined.

  12. Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions.

    PubMed

    Li, Li; Dong, Ji; Yan, Liying; Yong, Jun; Liu, Xixi; Hu, Yuqiong; Fan, Xiaoying; Wu, Xinglong; Guo, Hongshan; Wang, Xiaoye; Zhu, Xiaohui; Li, Rong; Yan, Jie; Wei, Yuan; Zhao, Yangyu; Wang, Wei; Ren, Yixin; Yuan, Peng; Yan, Zhiqiang; Hu, Boqiang; Guo, Fan; Wen, Lu; Tang, Fuchou; Qiao, Jie

    2017-06-01

    Human fetal germ cells (FGCs) are precursors to sperm and eggs and are crucial for maintenance of the species. However, the developmental trajectories and heterogeneity of human FGCs remain largely unknown. Here we performed single-cell RNA-seq analysis of over 2,000 FGCs and their gonadal niche cells in female and male human embryos spanning several developmental stages. We found that female FGCs undergo four distinct sequential phases characterized by mitosis, retinoic acid signaling, meiotic prophase, and oogenesis. Male FGCs develop through stages of migration, mitosis, and cell-cycle arrest. Individual embryos of both sexes simultaneously contain several subpopulations, highlighting the asynchronous and heterogeneous nature of FGC development. Moreover, we observed reciprocal signaling interactions between FGCs and their gonadal niche cells, including activation of the bone morphogenic protein (BMP) and Notch signaling pathways. Our work provides key insights into the crucial features of human FGCs during their highly ordered mitotic, meiotic, and gametogenetic processes in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. An Analysis of Performance Enhancement Techniques for Overset Grid Applications

    NASA Technical Reports Server (NTRS)

    Djomehri, J. J.; Biswas, R.; Potsdam, M.; Strawn, R. C.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The overset grid methodology has significantly reduced time-to-solution of high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement techniques on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machine. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.

  14. Cellular automata in photonic cavity arrays.

    PubMed

    Li, Jing; Liew, T C H

    2016-10-31

    We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.

  15. Princeton VLSI Project.

    DTIC Science & Technology

    1984-01-01

    software, or using a local area network of personal computers. Since the hardware is not designed around the algorithms, improvements in the sequential...Hall, 1982. [4] Robinson, RW., and N.C. Wormald. Numbers of Cubic Graphs. Journa [5] Lane, T. Carnegie-Mellon University. Personal communication, 1/31...34Amdahl’s constant." It is not entirely clear why commercial machines have stayed close to this value, but market forces appear to have played an

  16. Enhancing the Retrieval Effectiveness of Large Information Systems. Final Report for the Period 1 June 1975-31 December 1976.

    ERIC Educational Resources Information Center

    Becker, David S.; Pyrce, Sharon R.

    The goal of this project was to find ways of enhancing the efficiency of searching machine readable data bases. Ways are sought to transfer to the computer some of the tasks that are normally performed by the user, i.e., to further automate information retrieval. Four experiments were conducted to test the feasibility of a sequential processing…

  17. Synergistic effect of nanotopography and bioactive ions on peri-implant bone response

    PubMed Central

    Su, Yingmin; Komasa, Satoshi; Li, Peiqi; Nishizaki, Mariko; Chen, Luyuan; Terada, Chisato; Yoshimine, Shigeki; Nishizaki, Hiroshi; Okazaki, Joji

    2017-01-01

    Both bioactive ion chemistry and nanoscale surface modifications are beneficial for enhanced osseointegration of endosseous implants. In this study, a facile synthesis approach to the incorporation of bioactive Ca2+ ions into the interlayers of nanoporous structures (Ca-nano) formed on a Ti6Al4V alloy surface was developed by sequential chemical and heat treatments. Samples with a machined surface and an Na+ ion-incorporated nanoporous surface (Na-nano) fabricated by concentrated alkali and heat treatment were used in parallel for comparison. The bone response was investigated by microcomputed tomography assessment, sequential fluorescent labeling analysis, and histological and histomorphometric evaluation after 8 weeks of implantation in rat femurs. No significant differences were found in the nanotopography, surface roughness, or crystalline properties of the Ca-nano and Na-nano surfaces. Bone–implant contact was better in the Ca-nano and Na-nano implants than in the machined implant. The Ca-nano implant was superior to the Na-nano implant in terms of enhancing the volume of new bone formation. The bone formation activity consistently increased for the Ca-nano implant but ceased for the Na-nano implant in the late healing stage. These results suggest that Ca-nano implants have promising potential for application in dentistry and orthopedics. PMID:28184162

  18. Adaptive Online Sequential ELM for Concept Drift Tackling

    PubMed Central

    Basaruddin, Chan

    2016-01-01

    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect “underfitting” condition. PMID:27594879

  19. Merging the Forces of Asynchronous Tutoring and Synchronous Conferencing: A Qualitative Study of Arab ESL Academic Writers Using E-Tutoring

    ERIC Educational Resources Information Center

    Alqadoumi, Omar Mohamed

    2012-01-01

    Previous studies in the field of e-tutoring dealt either with asynchronous tutoring or synchronous conferencing as modes for providing e-tutoring services to English learners. This qualitative research study reports the experiences of Arab ESL tutees with both asynchronous tutoring and synchronous conferencing. It also reports the experiences of…

  20. Differences in Electronic Exchanges in Synchronous and Asynchronous Computer-Mediated Communication: The Effect of Culture as a Mediating Variable

    ERIC Educational Resources Information Center

    Angeli, Charoula; Schwartz, Neil H.

    2016-01-01

    Two hundred and eighty undergraduates from universities in two countries were asked to read didactic material, and then think and write about potential solutions to an ill-defined problem. The writing was conducted within a synchronous or asynchronous computer-mediated communication (CMC) environment. Asynchronous CMC took the form of email…

  1. Localized radio frequency communication using asynchronous transfer mode protocol

    DOEpatents

    Witzke, Edward L [Edgewood, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM

    2007-08-14

    A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.

  2. Features of the Asynchronous Correlation between the China Coal Price Index and Coal Mining Accidental Deaths.

    PubMed

    Huang, Yuecheng; Cheng, Wuyi; Luo, Sida; Luo, Yun; Ma, Chengchen; He, Tailin

    2016-01-01

    The features of the asynchronous correlation between accident indices and the factors that influence accidents can provide an effective reference for warnings of coal mining accidents. However, what are the features of this correlation? To answer this question, data from the China coal price index and the number of deaths from coal mining accidents were selected as the sample data. The fluctuation modes of the asynchronous correlation between the two data sets were defined according to the asynchronous correlation coefficients, symbolization, and sliding windows. We then built several directed and weighted network models, within which the fluctuation modes and the transformations between modes were represented by nodes and edges. Then, the features of the asynchronous correlation between these two variables could be studied from a perspective of network topology. We found that the correlation between the price index and the accidental deaths was asynchronous and fluctuating. Certain aspects, such as the key fluctuation modes, the subgroups characteristics, the transmission medium, the periodicity and transmission path length in the network, were analyzed by using complex network theory, analytical methods and spectral analysis method. These results provide a scientific reference for generating warnings for coal mining accidents based on economic indices.

  3. Stereodivergent synthesis with a programmable molecular machine

    NASA Astrophysics Data System (ADS)

    Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Marcos, Vanesa; Palmer, Leoni I.; Pisano, Simone

    2017-09-01

    It has been convincingly argued that molecular machines that manipulate individual atoms, or highly reactive clusters of atoms, with Ångström precision are unlikely to be realized. However, biological molecular machines routinely position rather less reactive substrates in order to direct chemical reaction sequences, from sequence-specific synthesis by the ribosome to polyketide synthases, where tethered molecules are passed from active site to active site in multi-enzyme complexes. Artificial molecular machines have been developed for tasks that include sequence-specific oligomer synthesis and the switching of product chirality, a photo-responsive host molecule has been described that is able to mechanically twist a bound molecular guest, and molecular fragments have been selectively transported in either direction between sites on a molecular platform through a ratchet mechanism. Here we detail an artificial molecular machine that moves a substrate between different activating sites to achieve different product outcomes from chemical synthesis. This molecular robot can be programmed to stereoselectively produce, in a sequential one-pot operation, an excess of any one of four possible diastereoisomers from the addition of a thiol and an alkene to an α,β-unsaturated aldehyde in a tandem reaction process. The stereodivergent synthesis includes diastereoisomers that cannot be selectively synthesized through conventional iminium-enamine organocatalysis. We anticipate that future generations of programmable molecular machines may have significant roles in chemical synthesis and molecular manufacturing.

  4. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View.

    PubMed

    Luo, Wei; Phung, Dinh; Tran, Truyen; Gupta, Sunil; Rana, Santu; Karmakar, Chandan; Shilton, Alistair; Yearwood, John; Dimitrova, Nevenka; Ho, Tu Bao; Venkatesh, Svetha; Berk, Michael

    2016-12-16

    As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. ©Wei Luo, Dinh Phung, Truyen Tran, Sunil Gupta, Santu Rana, Chandan Karmakar, Alistair Shilton, John Yearwood, Nevenka Dimitrova, Tu Bao Ho, Svetha Venkatesh, Michael Berk. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.12.2016.

  5. Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis.

    PubMed

    Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi

    2013-06-21

    A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well.

  6. Sequential Fuzzy Diagnosis Method for Motor Roller Bearing in Variable Operating Conditions Based on Vibration Analysis

    PubMed Central

    Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi

    2013-01-01

    A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well. PMID:23793021

  7. The Effects on Health Behavior and Health Outcomes of Internet-Based Asynchronous Communication Between Health Providers and Patients With a Chronic Condition: A Systematic Review

    PubMed Central

    Ros, Wynand JG; Schrijvers, Guus

    2014-01-01

    Background In support of professional practice, asynchronous communication between the patient and the provider is implemented separately or in combination with Internet-based self-management interventions. This interaction occurs primarily through electronic messaging or discussion boards. There is little evidence as to whether it is a useful tool for chronically ill patients to support their self-management and increase the effectiveness of interventions. Objective The aim of our study was to review the use and usability of patient-provider asynchronous communication for chronically ill patients and the effects of such communication on health behavior, health outcomes, and patient satisfaction. Methods A literature search was performed using PubMed and Embase. The quality of the articles was appraised according to the National Institute for Health and Clinical Excellence (NICE) criteria. The use and usability of the asynchronous communication was analyzed by examining the frequency of use and the number of users of the interventions with asynchronous communication, as well as of separate electronic messaging. The effectiveness of asynchronous communication was analyzed by examining effects on health behavior, health outcomes, and patient satisfaction. Results Patients’ knowledge concerning their chronic condition increased and they seemed to appreciate being able to communicate asynchronously with their providers. They not only had specific questions but also wanted to communicate about feeling ill. A decrease in visits to the physician was shown in two studies (P=.07, P=.07). Increases in self-management/self-efficacy for patients with back pain, dyspnea, and heart failure were found. Positive health outcomes were shown in 12 studies, where the clinical outcomes for diabetic patients (HbA1c level) and for asthmatic patients (forced expiratory volume [FEV]) improved. Physical symptoms improved in five studies. Five studies generated a variety of positive psychosocial outcomes. Conclusions The effect of asynchronous communication is not shown unequivocally in these studies. Patients seem to be interested in using email. Patients are willing to participate and are taking the initiative to discuss health issues with their providers. Additional testing of the effects of asynchronous communication on self-management in chronically ill patients is needed. PMID:24434570

  8. The effects on health behavior and health outcomes of Internet-based asynchronous communication between health providers and patients with a chronic condition: a systematic review.

    PubMed

    de Jong, Catharina Carolina; Ros, Wynand Jg; Schrijvers, Guus

    2014-01-16

    In support of professional practice, asynchronous communication between the patient and the provider is implemented separately or in combination with Internet-based self-management interventions. This interaction occurs primarily through electronic messaging or discussion boards. There is little evidence as to whether it is a useful tool for chronically ill patients to support their self-management and increase the effectiveness of interventions. The aim of our study was to review the use and usability of patient-provider asynchronous communication for chronically ill patients and the effects of such communication on health behavior, health outcomes, and patient satisfaction. A literature search was performed using PubMed and Embase. The quality of the articles was appraised according to the National Institute for Health and Clinical Excellence (NICE) criteria. The use and usability of the asynchronous communication was analyzed by examining the frequency of use and the number of users of the interventions with asynchronous communication, as well as of separate electronic messaging. The effectiveness of asynchronous communication was analyzed by examining effects on health behavior, health outcomes, and patient satisfaction. Patients' knowledge concerning their chronic condition increased and they seemed to appreciate being able to communicate asynchronously with their providers. They not only had specific questions but also wanted to communicate about feeling ill. A decrease in visits to the physician was shown in two studies (P=.07, P=.07). Increases in self-management/self-efficacy for patients with back pain, dyspnea, and heart failure were found. Positive health outcomes were shown in 12 studies, where the clinical outcomes for diabetic patients (HbA1c level) and for asthmatic patients (forced expiratory volume [FEV]) improved. Physical symptoms improved in five studies. Five studies generated a variety of positive psychosocial outcomes. The effect of asynchronous communication is not shown unequivocally in these studies. Patients seem to be interested in using email. Patients are willing to participate and are taking the initiative to discuss health issues with their providers. Additional testing of the effects of asynchronous communication on self-management in chronically ill patients is needed.

  9. Asynchronous vibration problem of centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Fujikawa, T.; Ishiguro, N.; Ito, M.

    1980-01-01

    An unstable asynchronous vibration problem in a high pressure centrifugal compressor and the remedial actions against it are described. Asynchronous vibration of the compressor took place when the discharge pressure (Pd) was increased, after the rotor was already at full speed. The typical spectral data of the shaft vibration indicate that as the pressure Pd increases, pre-unstable vibration appears and becomes larger, and large unstable asynchronous vibration occurs suddenly (Pd = 5.49MPa). A computer program was used which calculated the logarithmic decrement and the damped natural frequency of the rotor bearing systems. The analysis of the log-decrement is concluded to be effective in preventing unstable vibration in both the design stage and remedial actions.

  10. A self-contained quantum harmonic engine

    NASA Astrophysics Data System (ADS)

    Reid, B.; Pigeon, S.; Antezza, M.; De Chiara, G.

    2017-12-01

    We propose a system made of three quantum harmonic oscillators as a compact quantum engine for producing mechanical work. The three oscillators play respectively the role of the hot bath, the working medium and the cold bath. The working medium performs an Otto cycle during which its frequency is changed and it is sequentially coupled to each of the two other oscillators. As the two environments are finite, the lifetime of the machine is finite and after a number of cycles it stops working and needs to be reset. Remarkably, we show that this machine can extract more than 90% of the available energy during 70 cycles. Differently from usually investigated infinite-reservoir configurations, this machine allows the protection of induced quantum correlations and we analyse the entanglement and quantum discord generated during the strokes. Interestingly, we show that high work generation is always accompanied by large quantum correlations. Our predictions can be useful for energy management at the nanoscale, and can be relevant for experiments with trapped ions and experiments with light in integrated optical circuits.

  11. Generalized SMO algorithm for SVM-based multitask learning.

    PubMed

    Cai, Feng; Cherkassky, Vladimir

    2012-06-01

    Exploiting additional information to improve traditional inductive learning is an active research area in machine learning. In many supervised-learning applications, training data can be naturally separated into several groups, and incorporating this group information into learning may improve generalization. Recently, Vapnik proposed a general approach to formalizing such problems, known as "learning with structured data" and its support vector machine (SVM) based optimization formulation called SVM+. Liang and Cherkassky showed the connection between SVM+ and multitask learning (MTL) approaches in machine learning, and proposed an SVM-based formulation for MTL called SVM+MTL for classification. Training the SVM+MTL classifier requires the solution of a large quadratic programming optimization problem which scales as O(n(3)) with sample size n. So there is a need to develop computationally efficient algorithms for implementing SVM+MTL. This brief generalizes Platt's sequential minimal optimization (SMO) algorithm to the SVM+MTL setting. Empirical results show that, for typical SVM+MTL problems, the proposed generalized SMO achieves over 100 times speed-up, in comparison with general-purpose optimization routines.

  12. Optimization of parameters of special asynchronous electric drives

    NASA Astrophysics Data System (ADS)

    Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.

    2018-03-01

    The article considers the solution of the problem of parameters optimization of special asynchronous electric drives. The solution of the problem will allow one to project and create special asynchronous electric drives for various industries. The created types of electric drives will have optimum mass-dimensional and power parameters. It will allow one to realize and fulfill the set characteristics of management of technological processes with optimum level of expenses of electric energy, time of completing the process or other set parameters. The received decision allows one not only to solve a certain optimizing problem, but also to construct dependences between the optimized parameters of special asynchronous electric drives, for example, with the change of power, current in a winding of the stator or rotor, induction in a gap or steel of magnetic conductors and other parameters. On the constructed dependences, it is possible to choose necessary optimum values of parameters of special asynchronous electric drives and their components without carrying out repeated calculations.

  13. Mu-2 ranging

    NASA Technical Reports Server (NTRS)

    Martin, W. L.; Zygielbaum, A. I.

    1977-01-01

    The Mu-II Dual-Channel Sequential Ranging System designed as a model for future Deep Space Network ranging equipment is described. A list of design objectives is followed by a theoretical explanation of the digital demodulation techniques first employed in this machine. Hardware and software implementation are discussed, together with the details relating to the construction of the device. Two appendixes are included relating to the programming and operation of this equipment to yield the maximum scientific data.

  14. DCF(Registered)-A JAUS and TENA Compliant Agent-Based Framework for Test and Evaluation of Unmanned Vehicles

    DTIC Science & Technology

    2011-03-01

    functions of the vignette editor include visualizing the state of the UAS team, creating T&E scenarios, monitoring the UAS team performance, and...These behaviors are then executed by the robot sequentially (Figure 2). A state machine mission editor allows mission builders to use behaviors from the...include control, robotics, distributed applications, multimedia applications, databases, design patterns, and software engineering. Mr. Lenzi is the

  15. The Modeling, Simulation and Comparison of Interconnection Networks for Parallel Processing.

    DTIC Science & Technology

    1987-12-01

    performs better at a lower hardware cost than do the single stage cube and mesh networks. As a result, the designer of a paralll pro- cessing system is...attempted, and in most cases succeeded, in designing and implementing faster. more powerful systems. Due to design innovations and technological advances...largely to the computational complexity of the algorithms executed. In the von Neumann machine, instructions must be executed in a sequential manner. Design

  16. Asynchronous Communication of TLNS3DMB Boundary Exchange

    NASA Technical Reports Server (NTRS)

    Hammond, Dana P.

    1997-01-01

    This paper describes the recognition of implicit serialization due to coarse-grain, synchronous communication and demonstrates the conversion to asynchronous communication for the exchange of boundary condition information in the Thin-Layer Navier Stokes 3-Dimensional Multi Block (TLNS3DMB) code. The implementation details of using asynchronous communication is provided including buffer allocation, message identification, and barrier control. The IBM SP2 was used for the tests presented.

  17. [Cost-effectiveness of Synchronous vs. Asynchronous Telepsychiatry in Prison Inmates With Depression].

    PubMed

    Barrera-Valencia, Camilo; Benito-Devia, Alexis Vladimir; Vélez-Álvarez, Consuelo; Figueroa-Barrera, Mario; Franco-Idárraga, Sandra Milena

    Telepsychiatry is defined as the use of information and communication technology (ICT) in providing remote psychiatric services. Telepsychiatry is applied using two types of communication: synchronous (real time) and asynchronous (store and forward). To determine the cost-effectiveness of a synchronous and an asynchronous telepsychiatric model in prison inmate patients with symptoms of depression. A cost-effectiveness study was performed on a population consisting of 157 patients from the Establecimiento Penitenciario y Carcelario de Mediana Seguridad de Manizales, Colombia. The sample was determined by applying Zung self-administered surveys for depression (1965) and the Hamilton Depression Rating Scale (HDRS), the latter being the tool used for the comparison. Initial Hamilton score, arrival time, duration of system downtime, and clinical effectiveness variables had normal distributions (P>.05). There were significant differences (P<.001) between care costs for the different models, showing that the mean cost of the asynchronous model is less than synchronous model, and making the asynchronous model more cost-effective. The asynchronous model is the most cost-effective model of telepsychiatry care for patients with depression admitted to a detention centre, according to the results of clinical effectiveness, cost measurement, and patient satisfaction. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  18. Features of the Asynchronous Correlation between the China Coal Price Index and Coal Mining Accidental Deaths

    PubMed Central

    Huang, Yuecheng; Cheng, Wuyi; Luo, Sida; Luo, Yun; Ma, Chengchen; He, Tailin

    2016-01-01

    The features of the asynchronous correlation between accident indices and the factors that influence accidents can provide an effective reference for warnings of coal mining accidents. However, what are the features of this correlation? To answer this question, data from the China coal price index and the number of deaths from coal mining accidents were selected as the sample data. The fluctuation modes of the asynchronous correlation between the two data sets were defined according to the asynchronous correlation coefficients, symbolization, and sliding windows. We then built several directed and weighted network models, within which the fluctuation modes and the transformations between modes were represented by nodes and edges. Then, the features of the asynchronous correlation between these two variables could be studied from a perspective of network topology. We found that the correlation between the price index and the accidental deaths was asynchronous and fluctuating. Certain aspects, such as the key fluctuation modes, the subgroups characteristics, the transmission medium, the periodicity and transmission path length in the network, were analyzed by using complex network theory, analytical methods and spectral analysis method. These results provide a scientific reference for generating warnings for coal mining accidents based on economic indices. PMID:27902748

  19. Efficacy of an asynchronous electronic curriculum in emergency medicine education in the United States.

    PubMed

    Wray, Alisa; Bennett, Kathryn; Boysen-Osborn, Megan; Wiechmann, Warren; Toohey, Shannon

    2017-01-01

    The aim of this study was to measure the effect of an iPad-based asynchronous curriculum on emergency medicine resident performance on the in-training exam (ITE). We hypothesized that the implementation of an asynchronous curriculum (replacing 1 hour of weekly didactic time) would result in non-inferior ITE scores compared to the historical scores of residents who had participated in the traditional 5-hour weekly didactic curriculum. The study was a retrospective, non-inferiority study. conducted at the University of California, Irvine Emergency Medicine Residency Program. We compared ITE scores from 2012 and 2013, when there were 5 weekly hours of didactic content, with scores from 2014 and 2015, when 1 hour of conference was replaced with asynchro-nous content. Examination results were compared using a non-inferiority data analysis with a 10% margin of difference. Using a non-inferiority test with a 95% confidence interval, there was no difference between the 2 groups (before and after implementation of asynchronous learning), as the confidence interval for the change of the ITE was -3.5 to 2.3 points, whereas the 10% non-inferiority margin was 7.8 points. Replacing 1 hour of didactic conference with asynchronous learning showed no negative impact on resident ITE scores.

  20. Spiking, Bursting, and Population Dynamics in a Network of Growth Transform Neurons.

    PubMed

    Gangopadhyay, Ahana; Chakrabartty, Shantanu

    2018-06-01

    This paper investigates the dynamical properties of a network of neurons, each of which implements an asynchronous mapping based on polynomial growth transforms. In the first part of this paper, we present a geometric approach for visualizing the dynamics of the network where each of the neurons traverses a trajectory in a dual optimization space, whereas the network itself traverses a trajectory in an equivalent primal optimization space. We show that as the network learns to solve basic classification tasks, different choices of primal-dual mapping produce unique but interpretable neural dynamics like noise shaping, spiking, and bursting. While the proposed framework is general enough, in this paper, we demonstrate its use for designing support vector machines (SVMs) that exhibit noise-shaping properties similar to those of modulators, and for designing SVMs that learn to encode information using spikes and bursts. It is demonstrated that the emergent switching, spiking, and burst dynamics produced by each neuron encodes its respective margin of separation from a classification hyperplane whose parameters are encoded by the network population dynamics. We believe that the proposed growth transform neuron model and the underlying geometric framework could serve as an important tool to connect well-established machine learning algorithms like SVMs to neuromorphic principles like spiking, bursting, population encoding, and noise shaping.

  1. Towards Cloud-based Asynchronous Elasticity for Iterative HPC Applications

    NASA Astrophysics Data System (ADS)

    da Rosa Righi, Rodrigo; Facco Rodrigues, Vinicius; André da Costa, Cristiano; Kreutz, Diego; Heiss, Hans-Ulrich

    2015-10-01

    Elasticity is one of the key features of cloud computing. It allows applications to dynamically scale computing and storage resources, avoiding over- and under-provisioning. In high performance computing (HPC), initiatives are normally modeled to handle bag-of-tasks or key-value applications through a load balancer and a loosely-coupled set of virtual machine (VM) instances. In the joint-field of Message Passing Interface (MPI) and tightly-coupled HPC applications, we observe the need of rewriting source codes, previous knowledge of the application and/or stop-reconfigure-and-go approaches to address cloud elasticity. Besides, there are problems related to how profit this new feature in the HPC scope, since in MPI 2.0 applications the programmers need to handle communicators by themselves, and a sudden consolidation of a VM, together with a process, can compromise the entire execution. To address these issues, we propose a PaaS-based elasticity model, named AutoElastic. It acts as a middleware that allows iterative HPC applications to take advantage of dynamic resource provisioning of cloud infrastructures without any major modification. AutoElastic provides a new concept denoted here as asynchronous elasticity, i.e., it provides a framework to allow applications to either increase or decrease their computing resources without blocking the current execution. The feasibility of AutoElastic is demonstrated through a prototype that runs a CPU-bound numerical integration application on top of the OpenNebula middleware. The results showed the saving of about 3 min at each scaling out operations, emphasizing the contribution of the new concept on contexts where seconds are precious.

  2. Asynchronous networks: modularization of dynamics theorem

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Field, Michael

    2017-02-01

    Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.

  3. Distributed Data-aggregation Consensus for Sensor Networks: Relaxation of Consensus Concept and Convergence Property

    DTIC Science & Technology

    2014-08-01

    consensus algorithm called randomized gossip is more suitable [7, 8]. In asynchronous randomized gossip algorithms, pairs of neighboring nodes exchange...messages and perform updates in an asynchronous and unattended manner, and they also 1 The class of broadcast gossip algorithms [9, 10, 11, 12] are...dynamics [2] and asynchronous pairwise randomized gossip [7, 8], broadcast gossip algorithms do not require that nodes know the identities of their

  4. Simulating fail-stop in asynchronous distributed systems

    NASA Technical Reports Server (NTRS)

    Sabel, Laura; Marzullo, Keith

    1994-01-01

    The fail-stop failure model appears frequently in the distributed systems literature. However, in an asynchronous distributed system, the fail-stop model cannot be implemented. In particular, it is impossible to reliably detect crash failures in an asynchronous system. In this paper, we show that it is possible to specify and implement a failure model that is indistinguishable from the fail-stop model from the point of view of any process within an asynchronous system. We give necessary conditions for a failure model to be indistinguishable from the fail-stop model, and derive lower bounds on the amount of process replication needed to implement such a failure model. We present a simple one-round protocol for implementing one such failure model, which we call simulated fail-stop.

  5. Asynchronous Video Interviewing as a New Technology in Personnel Selection: The Applicant’s Point of View

    PubMed Central

    Brenner, Falko S.; Ortner, Tuulia M.; Fay, Doris

    2016-01-01

    The present study aimed to integrate findings from technology acceptance research with research on applicant reactions to new technology for the emerging selection procedure of asynchronous video interviewing. One hundred six volunteers experienced asynchronous video interviewing and filled out several questionnaires including one on the applicants’ personalities. In line with previous technology acceptance research, the data revealed that perceived usefulness and perceived ease of use predicted attitudes toward asynchronous video interviewing. Furthermore, openness revealed to moderate the relation between perceived usefulness and attitudes toward this particular selection technology. No significant effects emerged for computer self-efficacy, job interview self-efficacy, extraversion, neuroticism, and conscientiousness. Theoretical and practical implications are discussed. PMID:27378969

  6. Impact of Load Balancing on Unstructured Adaptive Grid Computations for Distributed-Memory Multiprocessors

    NASA Technical Reports Server (NTRS)

    Sohn, Andrew; Biswas, Rupak; Simon, Horst D.

    1996-01-01

    The computational requirements for an adaptive solution of unsteady problems change as the simulation progresses. This causes workload imbalance among processors on a parallel machine which, in turn, requires significant data movement at runtime. We present a new dynamic load-balancing framework, called JOVE, that balances the workload across all processors with a global view. Whenever the computational mesh is adapted, JOVE is activated to eliminate the load imbalance. JOVE has been implemented on an IBM SP2 distributed-memory machine in MPI for portability. Experimental results for two model meshes demonstrate that mesh adaption with load balancing gives more than a sixfold improvement over one without load balancing. We also show that JOVE gives a 24-fold speedup on 64 processors compared to sequential execution.

  7. An active UHF RFID localization system for fawn saving

    NASA Astrophysics Data System (ADS)

    Eberhardt, M.; Lehner, M.; Ascher, A.; Allwang, M.; Biebl, E. M.

    2015-11-01

    We present a localization concept for active UHF RFID transponders which enables mowing machine drivers to detect and localize marked fawns. The whole system design and experimental results with transponders located near the ground in random orientations in a meadow area are shown. The communication flow between reader and transponders is realized as a dynamic master-slave concept. Multiple marked fawns will be localized by processing detected transponders sequentially. With an eight-channel-receiver with integrated calibration method one can estimate the direction-of-arrival by measuring the phases of the transponder signals up to a range of 50 m in all directions. For further troubleshooting array manifolds have been measured. An additional hand-held receiver with a two-channel receiver allows a guided approaching search without endangering the fawn by the mowing machine.

  8. A Scatter-Based Prototype Framework and Multi-Class Extension of Support Vector Machines

    PubMed Central

    Jenssen, Robert; Kloft, Marius; Zien, Alexander; Sonnenburg, Sören; Müller, Klaus-Robert

    2012-01-01

    We provide a novel interpretation of the dual of support vector machines (SVMs) in terms of scatter with respect to class prototypes and their mean. As a key contribution, we extend this framework to multiple classes, providing a new joint Scatter SVM algorithm, at the level of its binary counterpart in the number of optimization variables. This enables us to implement computationally efficient solvers based on sequential minimal and chunking optimization. As a further contribution, the primal problem formulation is developed in terms of regularized risk minimization and the hinge loss, revealing the score function to be used in the actual classification of test patterns. We investigate Scatter SVM properties related to generalization ability, computational efficiency, sparsity and sensitivity maps, and report promising results. PMID:23118845

  9. Sugeno-Fuzzy Expert System Modeling for Quality Prediction of Non-Contact Machining Process

    NASA Astrophysics Data System (ADS)

    Sivaraos; Khalim, A. Z.; Salleh, M. S.; Sivakumar, D.; Kadirgama, K.

    2018-03-01

    Modeling can be categorised into four main domains: prediction, optimisation, estimation and calibration. In this paper, the Takagi-Sugeno-Kang (TSK) fuzzy logic method is examined as a prediction modelling method to investigate the taper quality of laser lathing, which seeks to replace traditional lathe machines with 3D laser lathing in order to achieve the desired cylindrical shape of stock materials. Three design parameters were selected: feed rate, cutting speed and depth of cut. A total of twenty-four experiments were conducted with eight sequential runs and replicated three times. The results were found to be 99% of accuracy rate of the TSK fuzzy predictive model, which suggests that the model is a suitable and practical method for non-linear laser lathing process.

  10. Component Framework for Loosely Coupled High Performance Integrated Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Elwasif, W. R.; Bernholdt, D. E.; Shet, A. G.; Batchelor, D. B.; Foley, S.

    2010-11-01

    We present the design and implementation of a component-based simulation framework for the execution of coupled time-dependent plasma modeling codes. The Integrated Plasma Simulator (IPS) provides a flexible lightweight component model that streamlines the integration of stand alone codes into coupled simulations. Standalone codes are adapted to the IPS component interface specification using a thin wrapping layer implemented in the Python programming language. The framework provides services for inter-component method invocation, configuration, task, and data management, asynchronous event management, simulation monitoring, and checkpoint/restart capabilities. Services are invoked, as needed, by the computational components to coordinate the execution of different aspects of coupled simulations on Massive parallel Processing (MPP) machines. A common plasma state layer serves as the foundation for inter-component, file-based data exchange. The IPS design principles, implementation details, and execution model will be presented, along with an overview of several use cases.

  11. Bi-directional four quadrant (BDQ4) power converter development

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1979-01-01

    The feasibility for implementation of a concept for direct ac/dc multikilowatt power conversion with bidirectional transfer of energy was investigated. A 10 kHz current carrier was derived directly from a common 60 Hz three phase power system. This carrier was modulated to remove the 360 Hz ripple, inherent in the three phase power supply and then demodulated and processed by a high frequency filter. The resulting dc power was then supplied to a load. The process was implemented without the use of low frequency transformers and filters. This power conversion processes was reversible and can operate in the four quadrants as viewed from any of the two of the converter's ports. Areas of application include: power systems on air and spacecraft; terrestrial traction; integration of solar and wind powered systems with utility networks; HVDC; asynchronous coupling of polyphase networks; heat treatment; industrial machine drives; and power supplies for any use including instrumentation.

  12. Speech technology and cinema: can they learn from each other?

    PubMed

    Pauletto, Sandra

    2013-10-01

    The voice is the most important sound of a film soundtrack. It represents a character and it carries language. There are different types of cinematic voices: dialogue, internal monologues, and voice-overs. Conventionally, two main characteristics differentiate these voices: lip synchronization and the voice's attributes that make it appropriate for the character (for example, a voice that sounds very close to the audience can be appropriate for a narrator, but not for an onscreen character). What happens, then, if a film character can only speak through an asynchronous machine that produces a 'robot-like' voice? This article discusses the sound-related work and experimentation done by the author for the short film Voice by Choice. It also attempts to discover whether speech technology design can learn from its cinematic representation, and if such uncommon film protagonists can contribute creatively to transform the conventions of cinematic voices.

  13. Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer

    NASA Technical Reports Server (NTRS)

    Goldberg, J.; Kautz, W. H.; Melliar-Smith, P. M.; Green, M. W.; Levitt, K. N.; Schwartz, R. L.; Weinstock, C. B.

    1984-01-01

    SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness.

  14. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.

    PubMed

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi

    2016-07-15

    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria. Copyright © 2016, American Association for the Advancement of Science.

  15. A Latency-Tolerant Partitioner for Distributed Computing on the Information Power Grid

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biwas, Rupak; Kwak, Dochan (Technical Monitor)

    2001-01-01

    NASA's Information Power Grid (IPG) is an infrastructure designed to harness the power of graphically distributed computers, databases, and human expertise, in order to solve large-scale realistic computational problems. This type of a meta-computing environment is necessary to present a unified virtual machine to application developers that hides the intricacies of a highly heterogeneous environment and yet maintains adequate security. In this paper, we present a novel partitioning scheme. called MinEX, that dynamically balances processor workloads while minimizing data movement and runtime communication, for applications that are executed in a parallel distributed fashion on the IPG. We also analyze the conditions that are required for the IPG to be an effective tool for such distributed computations. Our results show that MinEX is a viable load balancer provided the nodes of the IPG are connected by a high-speed asynchronous interconnection network.

  16. Applying Sparse Machine Learning Methods to Twitter: Analysis of the 2012 Change in Pap Smear Guidelines. A Sequential Mixed-Methods Study

    PubMed Central

    Godbehere, Andrew; Le, Gem; El Ghaoui, Laurent; Sarkar, Urmimala

    2016-01-01

    Background It is difficult to synthesize the vast amount of textual data available from social media websites. Capturing real-world discussions via social media could provide insights into individuals’ opinions and the decision-making process. Objective We conducted a sequential mixed methods study to determine the utility of sparse machine learning techniques in summarizing Twitter dialogues. We chose a narrowly defined topic for this approach: cervical cancer discussions over a 6-month time period surrounding a change in Pap smear screening guidelines. Methods We applied statistical methodologies, known as sparse machine learning algorithms, to summarize Twitter messages about cervical cancer before and after the 2012 change in Pap smear screening guidelines by the US Preventive Services Task Force (USPSTF). All messages containing the search terms “cervical cancer,” “Pap smear,” and “Pap test” were analyzed during: (1) January 1–March 13, 2012, and (2) March 14–June 30, 2012. Topic modeling was used to discern the most common topics from each time period, and determine the singular value criterion for each topic. The results were then qualitatively coded from top 10 relevant topics to determine the efficiency of clustering method in grouping distinct ideas, and how the discussion differed before vs. after the change in guidelines . Results This machine learning method was effective in grouping the relevant discussion topics about cervical cancer during the respective time periods (~20% overall irrelevant content in both time periods). Qualitative analysis determined that a significant portion of the top discussion topics in the second time period directly reflected the USPSTF guideline change (eg, “New Screening Guidelines for Cervical Cancer”), and many topics in both time periods were addressing basic screening promotion and education (eg, “It is Cervical Cancer Awareness Month! Click the link to see where you can receive a free or low cost Pap test.”) Conclusions It was demonstrated that machine learning tools can be useful in cervical cancer prevention and screening discussions on Twitter. This method allowed us to prove that there is publicly available significant information about cervical cancer screening on social media sites. Moreover, we observed a direct impact of the guideline change within the Twitter messages. PMID:27288093

  17. Network evolution induced by asynchronous stimuli through spike-timing-dependent plasticity.

    PubMed

    Yuan, Wu-Jie; Zhou, Jian-Fang; Zhou, Changsong

    2013-01-01

    In sensory neural system, external asynchronous stimuli play an important role in perceptual learning, associative memory and map development. However, the organization of structure and dynamics of neural networks induced by external asynchronous stimuli are not well understood. Spike-timing-dependent plasticity (STDP) is a typical synaptic plasticity that has been extensively found in the sensory systems and that has received much theoretical attention. This synaptic plasticity is highly sensitive to correlations between pre- and postsynaptic firings. Thus, STDP is expected to play an important role in response to external asynchronous stimuli, which can induce segregative pre- and postsynaptic firings. In this paper, we study the impact of external asynchronous stimuli on the organization of structure and dynamics of neural networks through STDP. We construct a two-dimensional spatial neural network model with local connectivity and sparseness, and use external currents to stimulate alternately on different spatial layers. The adopted external currents imposed alternately on spatial layers can be here regarded as external asynchronous stimuli. Through extensive numerical simulations, we focus on the effects of stimulus number and inter-stimulus timing on synaptic connecting weights and the property of propagation dynamics in the resulting network structure. Interestingly, the resulting feedforward structure induced by stimulus-dependent asynchronous firings and its propagation dynamics reflect both the underlying property of STDP. The results imply a possible important role of STDP in generating feedforward structure and collective propagation activity required for experience-dependent map plasticity in developing in vivo sensory pathways and cortices. The relevance of the results to cue-triggered recall of learned temporal sequences, an important cognitive function, is briefly discussed as well. Furthermore, this finding suggests a potential application for examining STDP by measuring neural population activity in a cultured neural network.

  18. FAST: A fully asynchronous and status-tracking pattern for geoprocessing services orchestration

    NASA Astrophysics Data System (ADS)

    Wu, Huayi; You, Lan; Gui, Zhipeng; Gao, Shuang; Li, Zhenqiang; Yu, Jingmin

    2014-09-01

    Geoprocessing service orchestration (GSO) provides a unified and flexible way to implement cross-application, long-lived, and multi-step geoprocessing service workflows by coordinating geoprocessing services collaboratively. Usually, geoprocessing services and geoprocessing service workflows are data and/or computing intensive. The intensity feature may make the execution process of a workflow time-consuming. Since it initials an execution request without blocking other interactions on the client side, an asynchronous mechanism is especially appropriate for GSO workflows. Many critical problems remain to be solved in existing asynchronous patterns for GSO including difficulties in improving performance, status tracking, and clarifying the workflow structure. These problems are a challenge when orchestrating performance efficiency, making statuses instantly available, and constructing clearly structured GSO workflows. A Fully Asynchronous and Status-Tracking (FAST) pattern that adopts asynchronous interactions throughout the whole communication tier of a workflow is proposed for GSO. The proposed FAST pattern includes a mechanism that actively pushes the latest status to clients instantly and economically. An independent proxy was designed to isolate the status tracking logic from the geoprocessing business logic, which assists the formation of a clear GSO workflow structure. A workflow was implemented in the FAST pattern to simulate the flooding process in the Poyang Lake region. Experimental results show that the proposed FAST pattern can efficiently tackle data/computing intensive geoprocessing tasks. The performance of all collaborative partners was improved due to the asynchronous mechanism throughout communication tier. A status-tracking mechanism helps users retrieve the latest running status of a GSO workflow in an efficient and instant way. The clear structure of the GSO workflow lowers the barriers for geospatial domain experts and model designers to compose asynchronous GSO workflows. Most importantly, it provides better support for locating and diagnosing potential exceptions.

  19. Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints

    PubMed Central

    Wolff, Sebastian; Bucher, Christian

    2013-01-01

    This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. PMID:23970806

  20. Within-female plasticity in sex allocation is associated with a behavioural polyphenism in house wrens.

    PubMed

    Bowers, E K; Thompson, C F; Sakaluk, S K

    2016-03-01

    Sex allocation theory assumes individual plasticity in maternal strategies, but few studies have investigated within-individual changes across environments. In house wrens, differences between nests in the degree of hatching synchrony of eggs represent a behavioural polyphenism in females, and its expression varies with seasonal changes in the environment. Between-nest differences in hatching asynchrony also create different environments for offspring, and sons are more strongly affected than daughters by sibling competition when hatching occurs asynchronously over several days. Here, we examined variation in hatching asynchrony and sex allocation, and its consequences for offspring fitness. The number and condition of fledglings declined seasonally, and the frequency of asynchronous hatching increased. In broods hatched asynchronously, sons, which are over-represented in the earlier-laid eggs, were in better condition than daughters, which are over-represented in the later-laid eggs. Nonetheless, asynchronous broods were more productive later within seasons. The proportion of sons in asynchronous broods increased seasonally, whereas there was a seasonal increase in the production of daughters by mothers hatching their eggs synchronously, which was characterized by within-female changes in offspring sex and not by sex-biased mortality. As adults, sons from asynchronous broods were in better condition and produced more broods of their own than males from synchronous broods, and both males and females from asynchronous broods had higher lifetime reproductive success than those from synchronous broods. In conclusion, hatching patterns are under maternal control, representing distinct strategies for allocating offspring within broods, and are associated with offspring sex ratios and differences in offspring reproductive success. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  1. Asynchronous P300-based brain-computer interface to control a virtual environment: initial tests on end users.

    PubMed

    Aloise, Fabio; Schettini, Francesca; Aricò, Pietro; Salinari, Serenella; Guger, Christoph; Rinsma, Johanna; Aiello, Marco; Mattia, Donatella; Cincotti, Febo

    2011-10-01

    Motor disability and/or ageing can prevent individuals from fully enjoying home facilities, thus worsening their quality of life. Advances in the field of accessible user interfaces for domotic appliances can represent a valuable way to improve the independence of these persons. An asynchronous P300-based Brain-Computer Interface (BCI) system was recently validated with the participation of healthy young volunteers for environmental control. In this study, the asynchronous P300-based BCI for the interaction with a virtual home environment was tested with the participation of potential end-users (clients of a Frisian home care organization) with limited autonomy due to ageing and/or motor disabilities. System testing revealed that the minimum number of stimulation sequences needed to achieve correct classification had a higher intra-subject variability in potential end-users with respect to what was previously observed in young controls. Here we show that the asynchronous modality performed significantly better as compared to the synchronous mode in continuously adapting its speed to the users' state. Furthermore, the asynchronous system modality confirmed its reliability in avoiding misclassifications and false positives, as previously shown in young healthy subjects. The asynchronous modality may contribute to filling the usability gap between BCI systems and traditional input devices, representing an important step towards their use in the activities of daily living.

  2. Critical Problems in Very Large Scale Computer Systems

    DTIC Science & Technology

    1989-03-31

    253-6043 Srinivas Devadas (617) 253-0454 Thomas F. Knight, Jr. (617) 253-7807 F. Thomson Leighton (617) 253-3662 Charles E. Leiserson (617) 253-5833...VLSI Memo No. 88-477, October 1988. S. Devadas , "General Decomposition of Sequential Machines: Relationships to State Assignment," to appear in...Perspective, C. Hewitt and G. Agha editors, MIT Press, 1989. Also MIT VLSI Memo No. 88-491, December 1988. * T. Leighton, B . Maggs, and S. Rao, "Universal

  3. Working set selection using functional gain for LS-SVM.

    PubMed

    Bo, Liefeng; Jiao, Licheng; Wang, Ling

    2007-09-01

    The efficiency of sequential minimal optimization (SMO) depends strongly on the working set selection. This letter shows how the improvement of SMO in each iteration, named the functional gain (FG), is used to select the working set for least squares support vector machine (LS-SVM). We prove the convergence of the proposed method and give some theoretical support for its performance. Empirical comparisons demonstrate that our method is superior to the maximum violating pair (MVP) working set selection.

  4. A Novel Online Sequential Extreme Learning Machine for Gas Utilization Ratio Prediction in Blast Furnaces.

    PubMed

    Li, Yanjiao; Zhang, Sen; Yin, Yixin; Xiao, Wendong; Zhang, Jie

    2017-08-10

    Gas utilization ratio (GUR) is an important indicator used to measure the operating status and energy consumption of blast furnaces (BFs). In this paper, we present a soft-sensor approach, i.e., a novel online sequential extreme learning machine (OS-ELM) named DU-OS-ELM, to establish a data-driven model for GUR prediction. In DU-OS-ELM, firstly, the old collected data are discarded gradually and the newly acquired data are given more attention through a novel dynamic forgetting factor (DFF), depending on the estimation errors to enhance the dynamic tracking ability. Furthermore, we develop an updated selection strategy (USS) to judge whether the model needs to be updated with the newly coming data, so that the proposed approach is more in line with the actual production situation. Then, the convergence analysis of the proposed DU-OS-ELM is presented to ensure the estimation of output weight converge to the true value with the new data arriving. Meanwhile, the proposed DU-OS-ELM is applied to build a soft-sensor model to predict GUR. Experimental results demonstrate that the proposed DU-OS-ELM obtains better generalization performance and higher prediction accuracy compared with a number of existing related approaches using the real production data from a BF and the created GUR prediction model can provide an effective guidance for further optimization operation.

  5. A Novel Online Sequential Extreme Learning Machine for Gas Utilization Ratio Prediction in Blast Furnaces

    PubMed Central

    Li, Yanjiao; Yin, Yixin; Xiao, Wendong; Zhang, Jie

    2017-01-01

    Gas utilization ratio (GUR) is an important indicator used to measure the operating status and energy consumption of blast furnaces (BFs). In this paper, we present a soft-sensor approach, i.e., a novel online sequential extreme learning machine (OS-ELM) named DU-OS-ELM, to establish a data-driven model for GUR prediction. In DU-OS-ELM, firstly, the old collected data are discarded gradually and the newly acquired data are given more attention through a novel dynamic forgetting factor (DFF), depending on the estimation errors to enhance the dynamic tracking ability. Furthermore, we develop an updated selection strategy (USS) to judge whether the model needs to be updated with the newly coming data, so that the proposed approach is more in line with the actual production situation. Then, the convergence analysis of the proposed DU-OS-ELM is presented to ensure the estimation of output weight converge to the true value with the new data arriving. Meanwhile, the proposed DU-OS-ELM is applied to build a soft-sensor model to predict GUR. Experimental results demonstrate that the proposed DU-OS-ELM obtains better generalization performance and higher prediction accuracy compared with a number of existing related approaches using the real production data from a BF and the created GUR prediction model can provide an effective guidance for further optimization operation. PMID:28796187

  6. Universal filtered multi-carrier system for asynchronous uplink transmission in optical access network

    NASA Astrophysics Data System (ADS)

    Kang, Soo-Min; Kim, Chang-Hun; Han, Sang-Kook

    2016-02-01

    In passive optical network (PON), orthogonal frequency division multiplexing (OFDM) has been studied actively due to its advantages such as high spectra efficiency (SE), dynamic resource allocation in time or frequency domain, and dispersion robustness. However, orthogonal frequency division multiple access (OFDMA)-PON requires tight synchronization among multiple access signals. If not, frequency orthogonality could not be maintained. Also its sidelobe causes inter-channel interference (ICI) to adjacent channel. To prevent ICI caused by high sidelobes, guard band (GB) is usually used which degrades SE. Thus, OFDMA-PON is not suitable for asynchronous uplink transmission in optical access network. In this paper, we propose intensity modulation/direct detection (IM/DD) based universal filtered multi-carrier (UFMC) PON for asynchronous multiple access. The UFMC uses subband filtering to subsets of subcarriers. Since it reduces sidelobe of each subband by applying subband filtering, it could achieve better performance compared to OFDM. For the experimental demonstration, different sample delay was applied to subbands to implement asynchronous transmission condition. As a result, time synchronization robustness of UFMC was verified in asynchronous multiple access system.

  7. Fault-Tolerant Coding for State Machines

    NASA Technical Reports Server (NTRS)

    Naegle, Stephanie Taft; Burke, Gary; Newell, Michael

    2008-01-01

    Two reliable fault-tolerant coding schemes have been proposed for state machines that are used in field-programmable gate arrays and application-specific integrated circuits to implement sequential logic functions. The schemes apply to strings of bits in state registers, which are typically implemented in practice as assemblies of flip-flop circuits. If a single-event upset (SEU, a radiation-induced change in the bit in one flip-flop) occurs in a state register, the state machine that contains the register could go into an erroneous state or could hang, by which is meant that the machine could remain in undefined states indefinitely. The proposed fault-tolerant coding schemes are intended to prevent the state machine from going into an erroneous or hang state when an SEU occurs. To ensure reliability of the state machine, the coding scheme for bits in the state register must satisfy the following criteria: 1. All possible states are defined. 2. An SEU brings the state machine to a known state. 3. There is no possibility of a hang state. 4. No false state is entered. 5. An SEU exerts no effect on the state machine. Fault-tolerant coding schemes that have been commonly used include binary encoding and "one-hot" encoding. Binary encoding is the simplest state machine encoding and satisfies criteria 1 through 3 if all possible states are defined. Binary encoding is a binary count of the state machine number in sequence; the table represents an eight-state example. In one-hot encoding, N bits are used to represent N states: All except one of the bits in a string are 0, and the position of the 1 in the string represents the state. With proper circuit design, one-hot encoding can satisfy criteria 1 through 4. Unfortunately, the requirement to use N bits to represent N states makes one-hot coding inefficient.

  8. A Binary Array Asynchronous Sorting Algorithm with Using Petri Nets

    NASA Astrophysics Data System (ADS)

    Voevoda, A. A.; Romannikov, D. O.

    2017-01-01

    Nowadays the tasks of computations speed-up and/or their optimization are actual. Among the approaches on how to solve these tasks, a method applying approaches of parallelization and asynchronization to a sorting algorithm is considered in the paper. The sorting methods are ones of elementary methods and they are used in a huge amount of different applications. In the paper, we offer a method of an array sorting that based on a division into a set of independent adjacent pairs of numbers and their parallel and asynchronous comparison. And this one distinguishes the offered method from the traditional sorting algorithms (like quick sorting, merge sorting, insertion sorting and others). The algorithm is implemented with the use of Petri nets, like the most suitable tool for an asynchronous systems description.

  9. Acceleration of discrete stochastic biochemical simulation using GPGPU.

    PubMed

    Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira

    2015-01-01

    For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130.

  10. Acceleration of discrete stochastic biochemical simulation using GPGPU

    PubMed Central

    Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira

    2015-01-01

    For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130. PMID:25762936

  11. Interpolation algorithm for asynchronous ADC-data

    NASA Astrophysics Data System (ADS)

    Bramburger, Stefan; Zinke, Benny; Killat, Dirk

    2017-09-01

    This paper presents a modified interpolation algorithm for signals with variable data rate from asynchronous ADCs. The Adaptive weights Conjugate gradient Toeplitz matrix (ACT) algorithm is extended to operate with a continuous data stream. An additional preprocessing of data with constant and linear sections and a weighted overlap of step-by-step into spectral domain transformed signals improve the reconstruction of the asycnhronous ADC signal. The interpolation method can be used if asynchronous ADC data is fed into synchronous digital signal processing.

  12. Application of intelligent soft start in asynchronous motor

    NASA Astrophysics Data System (ADS)

    Du, Xue; Ye, Ying; Wang, Yuelong; Peng, Lei; Zhang, Suying

    2018-05-01

    The starting way of three phase asynchronous motor has full voltage start and step-down start. Direct starting brings large current impact, causing excessive local temperature to the power grid and larger starting torque will also impact the motor equipment and affect the service life of the motor. Aim at the problem of large current and torque caused by start-up, an intelligent soft starter is proposed. Through the application of intelligent soft start on asynchronous motor, highlights its application advantage in motor control.

  13. Feature Selection based on Machine Learning in MRIs for Hippocampal Segmentation

    NASA Astrophysics Data System (ADS)

    Tangaro, Sabina; Amoroso, Nicola; Brescia, Massimo; Cavuoti, Stefano; Chincarini, Andrea; Errico, Rosangela; Paolo, Inglese; Longo, Giuseppe; Maglietta, Rosalia; Tateo, Andrea; Riccio, Giuseppe; Bellotti, Roberto

    2015-01-01

    Neurodegenerative diseases are frequently associated with structural changes in the brain. Magnetic resonance imaging (MRI) scans can show these variations and therefore can be used as a supportive feature for a number of neurodegenerative diseases. The hippocampus has been known to be a biomarker for Alzheimer disease and other neurological and psychiatric diseases. However, it requires accurate, robust, and reproducible delineation of hippocampal structures. Fully automatic methods are usually the voxel based approach; for each voxel a number of local features were calculated. In this paper, we compared four different techniques for feature selection from a set of 315 features extracted for each voxel: (i) filter method based on the Kolmogorov-Smirnov test; two wrapper methods, respectively, (ii) sequential forward selection and (iii) sequential backward elimination; and (iv) embedded method based on the Random Forest Classifier on a set of 10 T1-weighted brain MRIs and tested on an independent set of 25 subjects. The resulting segmentations were compared with manual reference labelling. By using only 23 feature for each voxel (sequential backward elimination) we obtained comparable state-of-the-art performances with respect to the standard tool FreeSurfer.

  14. Segmentation of remotely sensed data using parallel region growing

    NASA Technical Reports Server (NTRS)

    Tilton, J. C.; Cox, S. C.

    1983-01-01

    The improved spatial resolution of the new earth resources satellites will increase the need for effective utilization of spatial information in machine processing of remotely sensed data. One promising technique is scene segmentation by region growing. Region growing can use spatial information in two ways: only spatially adjacent regions merge together, and merging criteria can be based on region-wide spatial features. A simple region growing approach is described in which the similarity criterion is based on region mean and variance (a simple spatial feature). An effective way to implement region growing for remote sensing is as an iterative parallel process on a large parallel processor. A straightforward parallel pixel-based implementation of the algorithm is explored and its efficiency is compared with sequential pixel-based, sequential region-based, and parallel region-based implementations. Experimental results from on aircraft scanner data set are presented, as is a discussioon of proposed improvements to the segmentation algorithm.

  15. Determination of power and moment on shaft of special asynchronous electric drives

    NASA Astrophysics Data System (ADS)

    Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.

    2018-03-01

    In the article, questions and tasks of determination of power and the moment on a shaft of special asynchronous electric drives are considered. Use of special asynchronous electric drives in mechanical engineering and other industries is relevant. The considered types of electric drives possess the improved mass-dimensional indicators in comparison with singleengine systems. Also these types of electric drives have constructive advantages; the improved characteristics allow one to realize the technological process. But creation and design of new electric drives demands adjustment of existing or development of new methods and approaches of calculation of parameters. Determination of power and the moment on a shaft of special asynchronous electric drives is the main objective during design of electric drives. This task has been solved based on a method of electromechanical transformation of energy.

  16. Distributed asynchronous microprocessor architectures in fault tolerant integrated flight systems

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.

    1983-01-01

    The paper discusses the implementation of fault tolerant digital flight control and navigation systems for rotorcraft application. It is shown that in implementing fault tolerance at the systems level using advanced LSI/VLSI technology, aircraft physical layout and flight systems requirements tend to define a system architecture of distributed, asynchronous microprocessors in which fault tolerance can be achieved locally through hardware redundancy and/or globally through application of analytical redundancy. The effects of asynchronism on the execution of dynamic flight software is discussed. It is shown that if the asynchronous microprocessors have knowledge of time, these errors can be significantly reduced through appropiate modifications of the flight software. Finally, the papear extends previous work to show that through the combined use of time referencing and stable flight algorithms, individual microprocessors can be configured to autonomously tolerate intermittent faults.

  17. The Use of Efficient Broadcast Protocols in Asynchronous Distributed Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Schmuck, Frank Bernhard

    1988-01-01

    Reliable broadcast protocols are important tools in distributed and fault-tolerant programming. They are useful for sharing information and for maintaining replicated data in a distributed system. However, a wide range of such protocols has been proposed. These protocols differ in their fault tolerance and delivery ordering characteristics. There is a tradeoff between the cost of a broadcast protocol and how much ordering it provides. It is, therefore, desirable to employ protocols that support only a low degree of ordering whenever possible. This dissertation presents techniques for deciding how strongly ordered a protocol is necessary to solve a given application problem. It is shown that there are two distinct classes of application problems: problems that can be solved with efficient, asynchronous protocols, and problems that require global ordering. The concept of a linearization function that maps partially ordered sets of events to totally ordered histories is introduced. How to construct an asynchronous implementation that solves a given problem if a linearization function for it can be found is shown. It is proved that in general the question of whether a problem has an asynchronous solution is undecidable. Hence there exists no general algorithm that would automatically construct a suitable linearization function for a given problem. Therefore, an important subclass of problems that have certain commutativity properties are considered. Techniques for constructing asynchronous implementations for this class are presented. These techniques are useful for constructing efficient asynchronous implementations for a broad range of practical problems.

  18. A regularization approach to hydrofacies delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlberg, Brendt; Tartakovsky, Daniel

    2009-01-01

    We consider an inverse problem of identifying complex internal structures of composite (geological) materials from sparse measurements of system parameters and system states. Two conceptual frameworks for identifying internal boundaries between constitutive materials in a composite are considered. A sequential approach relies on support vector machines, nearest neighbor classifiers, or geostatistics to reconstruct boundaries from measurements of system parameters and then uses system states data to refine the reconstruction. A joint approach inverts the two data sets simultaneously by employing a regularization approach.

  19. A novel cause of rebreathing carbon dioxide related to removed CLIC-seal on the Dräger Apollo© anesthesia machine.

    PubMed

    Niknam, B; Bebic, Z; Roseman, A

    2018-05-26

    We present a case report involving two sequential, surgically uneventful, laparoscopic cholecystectomies using the same anesthesia machine (Drager Apollo©) for which the level of inspired carbon dioxide was noted to be elevated following various diagnostic interventions including replacing the sodalime, increasing fresh gas flows, and a full inspection of equipment for malfunction. Eventually it was discovered that a rubber ring seal connecting the Dragersorb CLIC system© to the sodalime canister was inadvertently removed during the initial canister exchange resulting in an apparent bypassing of the absorbent and thus an inability of the exhaled gas to contact the sodalime. To our knowledge this is the first such description of this potential cause of elevated inspired carbon dioxide and should warrant consideration when other conventional interventions have failed.

  20. Performance measurements of the first RAID prototype

    NASA Technical Reports Server (NTRS)

    Chervenak, Ann L.

    1990-01-01

    The performance is examined of Redundant Arrays of Inexpensive Disks (RAID) the First, a prototype disk array. A hierarchy of bottlenecks was discovered in the system that limit overall performance. The most serious is the memory system contention on the Sun 4/280 host CPU, which limits array bandwidth to 2.3 MBytes/sec. The array performs more successfully on small random operations, achieving nearly 300 I/Os per second before the Sun 4/280 becomes CPU limited. Other bottlenecks in the system are the VME backplane, bandwidth on the disk controller, and overheads associated with the SCSI protocol. All are examined in detail. The main conclusion is that to achieve the potential bandwidth of arrays, more powerful CPU's alone will not suffice. Just as important are adequate host memory bandwidth and support for high bandwidth on disk controllers. Current disk controllers are more often designed to achieve large numbers of small random operations, rather than high bandwidth. Operating systems also need to change to support high bandwidth from disk arrays. In particular, they should transfer data in larger blocks, and should support asynchronous I/O to improve sequential write performance.

  1. Increasing processor utilization during parallel computation rundown

    NASA Technical Reports Server (NTRS)

    Jones, W. H.

    1986-01-01

    Some parallel processing environments provide for asynchronous execution and completion of general purpose parallel computations from a single computational phase. When all the computations from such a phase are complete, a new parallel computational phase is begun. Depending upon the granularity of the parallel computations to be performed, there may be a shortage of available work as a particular computational phase draws to a close (computational rundown). This can result in the waste of computing resources and the delay of the overall problem. In many practical instances, strict sequential ordering of phases of parallel computation is not totally required. In such cases, the beginning of one phase can be correctly computed before the end of a previous phase is completed. This allows additional work to be generated somewhat earlier to keep computing resources busy during each computational rundown. The conditions under which this can occur are identified and the frequency of occurrence of such overlapping in an actual parallel Navier-Stokes code is reported. A language construct is suggested and possible control strategies for the management of such computational phase overlapping are discussed.

  2. Calcium handling precedes cardiac differentiation to initiate the first heartbeat

    PubMed Central

    Tyser, Richard CV; Miranda, Antonio MA; Chen, Chiann-mun; Davidson, Sean M

    2016-01-01

    The mammalian heartbeat is thought to begin just prior to the linear heart tube stage of development. How the initial contractions are established and the downstream consequences of the earliest contractile function on cardiac differentiation and morphogenesis have not been described. Using high-resolution live imaging of mouse embryos, we observed randomly distributed spontaneous asynchronous Ca2+-oscillations (SACOs) in the forming cardiac crescent (stage E7.75) prior to overt beating. Nascent contraction initiated at around E8.0 and was associated with sarcomeric assembly and rapid Ca2+ transients, underpinned by sequential expression of the Na+-Ca2+ exchanger (NCX1) and L-type Ca2+ channel (LTCC). Pharmacological inhibition of NCX1 and LTCC revealed rapid development of Ca2+ handling in the early heart and an essential early role for NCX1 in establishing SACOs through to the initiation of beating. NCX1 blockade impacted on CaMKII signalling to down-regulate cardiac gene expression, leading to impaired differentiation and failed crescent maturation. DOI: http://dx.doi.org/10.7554/eLife.17113.001 PMID:27725084

  3. A randomized study of internet parent training accessed from community technology centers.

    PubMed

    Irvine, A Blair; Gelatt, Vicky A; Hammond, Michael; Seeley, John R

    2015-05-01

    Behavioral parent training (BPT) has been shown to be efficacious to improve parenting skills for problematic interactions with adolescents displaying oppositional and antisocial behaviors. Some research suggests that support group curricula might be transferred to the Internet, and some studies suggest that other curriculum designs might also be effective. In this research, a BPT program for parents of at-risk adolescents was tested on the Internet in a randomized trial (N = 307) from computer labs at six community technology centers in or near large metropolitan areas. The instructional design was based on asynchronous scenario-based e-learning, rather than a traditional parent training model where presentation of course material builds content sequentially over multiple class sessions. Pretest to 30-day follow-up analyses indicated significant treatment effects on parent-reported discipline style (Parenting Scale, Adolescent version), child behavior (Eyberg Child Behavior Inventory), and on social cognitive theory constructs of intentions and self-efficacy. The effect sizes were small to medium. These findings suggest the potential to provide effective parent training programs on the Internet.

  4. Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication.

    PubMed

    Qiao, Gang; Gan, Shuwei; Liu, Songzuo; Ma, Lu; Sun, Zongxin

    2018-05-24

    To improve the throughput of underwater acoustic (UWA) networking, the In-band full-duplex (IBFD) communication is one of the most vital pieces of research. The major drawback of IBFD-UWA communication is Self-Interference (SI). This paper presents a digital SI cancellation algorithm for asynchronous IBFD-UWA communication system. We focus on two issues: one is asynchronous communication dissimilar to IBFD radio communication, the other is nonlinear distortion caused by power amplifier (PA). First, we discuss asynchronous IBFD-UWA signal model with the nonlinear distortion of PA. Then, we design a scheme for asynchronous IBFD-UWA communication utilizing the non-overlapping region between SI and intended signal to estimate the nonlinear SI channel. To cancel the nonlinear distortion caused by PA, we propose an Over-Parameterization based Recursive Least Squares (RLS) algorithm (OPRLS) to estimate the nonlinear SI channel. Furthermore, we present the OPRLS with a sparse constraint to estimate the SI channel, which reduces the requirement of the length of the non-overlapping region. Finally, we verify our concept through simulation and the pool experiment. Results demonstrate that the proposed digital SI cancellation scheme can cancel SI efficiently.

  5. A massively asynchronous, parallel brain.

    PubMed

    Zeki, Semir

    2015-05-19

    Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously--with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain.

  6. Automated annotation of functional imaging experiments via multi-label classification

    PubMed Central

    Turner, Matthew D.; Chakrabarti, Chayan; Jones, Thomas B.; Xu, Jiawei F.; Fox, Peter T.; Luger, George F.; Laird, Angela R.; Turner, Jessica A.

    2013-01-01

    Identifying the experimental methods in human neuroimaging papers is important for grouping meaningfully similar experiments for meta-analyses. Currently, this can only be done by human readers. We present the performance of common machine learning (text mining) methods applied to the problem of automatically classifying or labeling this literature. Labeling terms are from the Cognitive Paradigm Ontology (CogPO), the text corpora are abstracts of published functional neuroimaging papers, and the methods use the performance of a human expert as training data. We aim to replicate the expert's annotation of multiple labels per abstract identifying the experimental stimuli, cognitive paradigms, response types, and other relevant dimensions of the experiments. We use several standard machine learning methods: naive Bayes (NB), k-nearest neighbor, and support vector machines (specifically SMO or sequential minimal optimization). Exact match performance ranged from only 15% in the worst cases to 78% in the best cases. NB methods combined with binary relevance transformations performed strongly and were robust to overfitting. This collection of results demonstrates what can be achieved with off-the-shelf software components and little to no pre-processing of raw text. PMID:24409112

  7. Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation

    DOE PAGES

    Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir

    2016-05-01

    We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.

  8. Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching.

    PubMed

    Wu, Yuanyuan; Cao, Jinde; Li, Qingbo; Alsaedi, Ahmed; Alsaadi, Fuad E

    2017-01-01

    This paper deals with the finite-time synchronization problem for a class of uncertain coupled switched neural networks under asynchronous switching. By constructing appropriate Lyapunov-like functionals and using the average dwell time technique, some sufficient criteria are derived to guarantee the finite-time synchronization of considered uncertain coupled switched neural networks. Meanwhile, the asynchronous switching feedback controller is designed to finite-time synchronize the concerned networks. Finally, two numerical examples are introduced to show the validity of the main results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [System of telesonography with synchronous teleconsultations and asynchronous telediagnoses (Togo)].

    PubMed

    Adambounou, K; Farin, F; Boucher, A; Adjenou, K V; Gbeassor, M; N'dakena, K; Vincent, N; Arbeille, P

    2012-01-01

    Ultrasonography is an important nonirradiating diagnostic medical imaging procedure, frequently used, especially in urgent circumstances. This relatively inexpensive noninvasive examination makes it possible to diagnose disorders in various parts of the human body, by examining, for example, the abdomen and pelvis, the cardiovascular system, and the muscles and joints. Ultrasound is also an operator-dependent examination, in that the quality of the result depends on precision in the manipulation of the probe. Unfortunately, many small medical centers and isolated sites do not have an appropriate well-trained sonographer to perform initial evaluations, and an untrained operator cannot capture the appropriate echographic views required for a safe diagnosis of current patients, even with realtime vocal guidance (personal data). The lack of experienced physicians or qualified technicians means that diagnostic ultrasound is not always accessible to patients for rapid examination worldwide, especially in Africa, Amazonia or near the North or South Poles. This situation has led to the development of a new concept of telemedicine: telesonography, with a remote ultrasound diagnosis either in real time (synchronous) or delayed (asynchronous; store-and-forward). These systems of real-time telesonography and data transmission require expensive and complex technology with sophisticated equipment not available in many developing countries. The purpose of this study is to design a low-cost real-time system of telesonography for teleconsultations with experts and a delayed telediagnostic mode between isolated peripheral hospitals and a University Hospital center (UHC). An IP camera and an internet video server were installed in a geographically isolated site equipped with an ultrasound machine and an operator with basic training in its use. Synchronous teleconsultation (second-opinion diagnosis) is possible via internet with a UHC expert. If no ultrasound operator is available at the isolated center, volume capture-and-store software is used. Later on, the UHC expert uses Echo-Cnes 3D software to reconstruct the organs scanned. The expert can then navigate within the reconstructed volume and display any plane. Volume capture is performed by tilting (± 40°) to both sides vertically to the skin. To locate the probe on the organ acoustic window, the novice operator uses acoustic window mapping designed by our laboratory (UMPS-Tours). The system was tested between the Tsévié regional hospital in Togo (40 km from Lomé, Togo, and 4500 km from Tours, France) and the UHC at Lomé and the Trousseau UHC in Tours. With an average internet connection of 2 Mbps, the quality of transmission of the background video and ultrasound sequence videos from Tsévié towards Lomé was satisfactory (16 images/s) with a maximal transmission delay of 1.5 s (almost in real time). A video conference between the Trousseau UHC in Tours, the UHC Campus in Lomé and the Tsévié Hospital was possible and the bandwidth allowed the Lomé experts (radiologists) to perform real-time telesonography with very satisfactory results (ultrasound diagnoses obtained) for abdominal (n = 5), pelvic (n = 3), obstetric (n = 2), prostate (n = 2) and mammary (n = 2) ultrasound, both normal and pathological. Because the doctors at Tsévié had minimal experience with ultrasound, complete ultrasound diagnoses were obtained by combining remote voice instruction for image capture and full diagnosis by Echo-Cnes. Asynchronous telediagnosis was also performed with Tsévié operators who lacked ultrasound expertise but could perform the required tilt movements (after 3 training sessions). The expert at Trousseau UHC performed real-time telesonography with the Tsévié Hospital for two cases requiring abdominal images and another viewing of the prostate. He also performed asynchronous reconstruction of the abdominal organs with Echo-Cnes. A demonstration seminar of our platform was organized successfully for 2 days during the 9(th) Congress of the French-speaking Black Africa Society of Radiology (SRANF in French) held from 4 till 6 May 2011 at the hotel EDA OBA. During this seminar, 4 ultrasound teleconsultations were performed from the hotel by eminent African radiologists. This preliminary study, although limited in the number of patients, allowed us to assess the technical features of our telesonography system. Togo, a developing country with a very modest infrastructure for information and communication, was an ideal site for a first test of this platform. Our system of remote ultrasound requires the local patient center to be equipped simply with a 2D ultrasound machine. The cost is quite low, in comparison to the asynchronous techniques requiring 3D devices. The high cost of 3D or 4D ultrasound machines and their fragility make it difficult to install them at the isolated sites and was a serious obstacle in the development of this system. If the center already has a 2D device and a computer, the cost to equip it with the remaining communications materials is 1,500 €. The experience in Togo clearly highlighted the possibility of teletraining and complete teleradiology with our system. The next stage of this work will seek to validate the results of this preliminary experience on a larger sample with more precise assessment criteria in 2012. The results will allow the widespread dissemination and routine use of this system in developing countries.

  10. Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning.

    PubMed

    Osborne, John D; Wyatt, Matthew; Westfall, Andrew O; Willig, James; Bethard, Steven; Gordon, Geoff

    2016-11-01

    To help cancer registrars efficiently and accurately identify reportable cancer cases. The Cancer Registry Control Panel (CRCP) was developed to detect mentions of reportable cancer cases using a pipeline built on the Unstructured Information Management Architecture - Asynchronous Scaleout (UIMA-AS) architecture containing the National Library of Medicine's UIMA MetaMap annotator as well as a variety of rule-based UIMA annotators that primarily act to filter out concepts referring to nonreportable cancers. CRCP inspects pathology reports nightly to identify pathology records containing relevant cancer concepts and combines this with diagnosis codes from the Clinical Electronic Data Warehouse to identify candidate cancer patients using supervised machine learning. Cancer mentions are highlighted in all candidate clinical notes and then sorted in CRCP's web interface for faster validation by cancer registrars. CRCP achieved an accuracy of 0.872 and detected reportable cancer cases with a precision of 0.843 and a recall of 0.848. CRCP increases throughput by 22.6% over a baseline (manual review) pathology report inspection system while achieving a higher precision and recall. Depending on registrar time constraints, CRCP can increase recall to 0.939 at the expense of precision by incorporating a data source information feature. CRCP demonstrates accurate results when applying natural language processing features to the problem of detecting patients with cases of reportable cancer from clinical notes. We show that implementing only a portion of cancer reporting rules in the form of regular expressions is sufficient to increase the precision, recall, and speed of the detection of reportable cancer cases when combined with off-the-shelf information extraction software and machine learning. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. LEGION: Lightweight Expandable Group of Independently Operating Nodes

    NASA Technical Reports Server (NTRS)

    Burl, Michael C.

    2012-01-01

    LEGION is a lightweight C-language software library that enables distributed asynchronous data processing with a loosely coupled set of compute nodes. Loosely coupled means that a node can offer itself in service to a larger task at any time and can withdraw itself from service at any time, provided it is not actively engaged in an assignment. The main program, i.e., the one attempting to solve the larger task, does not need to know up front which nodes will be available, how many nodes will be available, or at what times the nodes will be available, which is normally the case in a "volunteer computing" framework. The LEGION software accomplishes its goals by providing message-based, inter-process communication similar to MPI (message passing interface), but without the tight coupling requirements. The software is lightweight and easy to install as it is written in standard C with no exotic library dependencies. LEGION has been demonstrated in a challenging planetary science application in which a machine learning system is used in closed-loop fashion to efficiently explore the input parameter space of a complex numerical simulation. The machine learning system decides which jobs to run through the simulator; then, through LEGION calls, the system farms those jobs out to a collection of compute nodes, retrieves the job results as they become available, and updates a predictive model of how the simulator maps inputs to outputs. The machine learning system decides which new set of jobs would be most informative to run given the results so far; this basic loop is repeated until sufficient insight into the physical system modeled by the simulator is obtained.

  12. Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression.

    PubMed

    Amaya, Ronny; Cancel, Limary M; Tarbell, John M

    2016-01-01

    Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle-SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease.

  13. Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression

    PubMed Central

    Amaya, Ronny; Cancel, Limary M.; Tarbell, John M.

    2016-01-01

    Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle–SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease. PMID:27846267

  14. Electrical engineering unit for the reactive power control of the load bus at the voltage instability

    NASA Astrophysics Data System (ADS)

    Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.

    2018-01-01

    For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.

  15. PsychVACS: a system for asynchronous telepsychiatry.

    PubMed

    Odor, Alberto; Yellowlees, Peter; Hilty, Donald; Parish, Michelle Burke; Nafiz, Najia; Iosif, Ana-Maria

    2011-05-01

    To describe the technical development of an asynchronous telepsychiatry application, the Psychiatric Video Archiving and Communication System. A client-server application was developed in Visual Basic.Net with Microsoft(®) SQL database as the backend. It includes the capability of storing video-recorded psychiatric interviews and manages the workflow of the system with automated messaging. Psychiatric Video Archiving and Communication System has been used to conduct the first ever series of asynchronous telepsychiatry consultations worldwide. A review of the software application and the process as part of this project has led to a number of improvements that are being implemented in the next version, which is being written in Java. This is the first description of the use of video recorded data in an asynchronous telemedicine application. Primary care providers and consulting psychiatrists have found it easy to work with and a valuable resource to increase the availability of psychiatric consultation in remote rural locations.

  16. An improved asynchronous brain interface: making use of the temporal history of the LF-ASD feature vectors

    NASA Astrophysics Data System (ADS)

    Bashashati, Ali; Mason, Steve; Ward, Rabab K.; Birch, Gary E.

    2006-06-01

    The low-frequency asynchronous switch design (LF-ASD) has been introduced as a direct brain interface (BI) for asynchronous control applications. Asynchronous interfaces, as opposed to synchronous interfaces, have the advantage of being operational at all times and not only at specific system-defined periods. This paper modifies the LF-ASD design by incorporating into the system more knowledge about the attempted movements. Specifically, the history of feature values extracted from the EEG signal is used to detect a right index finger movement attempt. Using data collected from individuals with high-level spinal cord injuries and able-bodied subjects, it is shown that the error characteristics of the modified design are significantly better than the previous LF-ASD design. The true positive rate percentage increased by up to 15 which corresponds to 50% improvement when the system is operating with false positive rates in the 1-2% range.

  17. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy.

    PubMed

    Hur, Jin; Lee, Bo-Mi

    2011-06-01

    The heterogeneity of copper binding characteristics for dissolved organic matter (DOM) fractions was investigated based on the fluorescence quenching of the synchronous fluorescence spectra upon the addition of copper and two-dimensional correlation spectroscopy (2D-COS). Hydrophobic acid (HoA) and hydrophilic (Hi) fractions of two different DOM (algal and leaf litter DOM) were used for this study. For both DOM, fluorescence quenching occurred at a wider range of wavelengths for the HoA fractions compared to the Hi fractions. The combined information of the synchronous and asynchronous maps derived from 2D-COS provided a clear picture of the heterogeneous distribution of the copper binding sites within each DOM fraction, which was not readily recognized by a simple comparison of the changes in the synchronous fluorescence spectra upon the addition of copper. For the algal DOM, higher stability constants were exhibited for the HoA versus the Hi fractions. The logarithms of the stability constants ranged from 4.8 to 6.1 and from 4.5 to 5.0 for the HoA and the Hi fractions of the algal DOM, respectively, depending on the associated wavelength and the fitted models. In contrast, no distinctive difference in the binding characteristics was found between the two fractions of the leaf litter DOM. This suggests that influences of the structural and chemical properties of DOM on copper binding may differ for DOM from different sources. The relative difference of the calculated stability constants within the DOM fractions were consistent with the sequential orders interpreted from the asynchronous 2D-COS. It is expected that 2D-COS will be widely applied to other DOM studies requiring detailed information on the heterogeneous nature and subsequent effects under a range of environmental conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Etude et simulation de la MADA

    NASA Astrophysics Data System (ADS)

    Defontaines, Remi

    Over the past ten years, the production of electric energy using wind turbines has increased eight times. This production of energy is in full expansion, and different means are now at the dispositions of researchers to finally explore it to the maximum. The DFIG is a type of wind turbine that has been the object of numerous studies over the past several years. This wind turbine functions with the speed of the wind. Its principle particularity is that it is constituted of an asynchronous machine, a wound-rotor and is capable of providing active power to the network by the stator and the rotor. This structure permits a good performance over a wide range of wind speeds, at a reasonable cost. It manages to be cost-effective because it uses weakly dimensioned power converters. Despite its advantages, there is a problem: its connection to the network. The electric network is not always stable; it regularly suffers voltage damage (low voltage, unbalance or overvoltage). This damage can result in fault from poor quality in the machine, and this damages or even destroys the power converters. To avoid this issue, the wind turbine disconnects from the network when it undergoes deterioration. The goal of this research is to find a strategy that allows the wind turbine to function even when the network voltage deteriorates, which in turn results in avoiding disconnection and therefore the loss of electrical power.

  19. Performance Evaluation in Network-Based Parallel Computing

    NASA Technical Reports Server (NTRS)

    Dezhgosha, Kamyar

    1996-01-01

    Network-based parallel computing is emerging as a cost-effective alternative for solving many problems which require use of supercomputers or massively parallel computers. The primary objective of this project has been to conduct experimental research on performance evaluation for clustered parallel computing. First, a testbed was established by augmenting our existing SUNSPARCs' network with PVM (Parallel Virtual Machine) which is a software system for linking clusters of machines. Second, a set of three basic applications were selected. The applications consist of a parallel search, a parallel sort, a parallel matrix multiplication. These application programs were implemented in C programming language under PVM. Third, we conducted performance evaluation under various configurations and problem sizes. Alternative parallel computing models and workload allocations for application programs were explored. The performance metric was limited to elapsed time or response time which in the context of parallel computing can be expressed in terms of speedup. The results reveal that the overhead of communication latency between processes in many cases is the restricting factor to performance. That is, coarse-grain parallelism which requires less frequent communication between processes will result in higher performance in network-based computing. Finally, we are in the final stages of installing an Asynchronous Transfer Mode (ATM) switch and four ATM interfaces (each 155 Mbps) which will allow us to extend our study to newer applications, performance metrics, and configurations.

  20. Electromechanical systems with transient high power response operating from a resonant AC link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).

  1. A Communication Perspective on Sexual Harassment: Affiliative Nonverbal Behaviors in Asynchronous Relationships.

    ERIC Educational Resources Information Center

    Hickson, Mark, III; And Others

    1991-01-01

    Develops a communication perspective on sexual harassment in asynchronous relationships. Presents a six-step process model to predict private harassing behavior among faculty members in higher education. Makes suggestions for prevention of sexual harassment. (SR)

  2. A Predictive Model for Medical Events Based on Contextual Embedding of Temporal Sequences

    PubMed Central

    Wang, Zhimu; Huang, Yingxiang; Wang, Shuang; Wang, Fei; Jiang, Xiaoqian

    2016-01-01

    Background Medical concepts are inherently ambiguous and error-prone due to human fallibility, which makes it hard for them to be fully used by classical machine learning methods (eg, for tasks like early stage disease prediction). Objective Our work was to create a new machine-friendly representation that resembles the semantics of medical concepts. We then developed a sequential predictive model for medical events based on this new representation. Methods We developed novel contextual embedding techniques to combine different medical events (eg, diagnoses, prescriptions, and labs tests). Each medical event is converted into a numerical vector that resembles its “semantics,” via which the similarity between medical events can be easily measured. We developed simple and effective predictive models based on these vectors to predict novel diagnoses. Results We evaluated our sequential prediction model (and standard learning methods) in estimating the risk of potential diseases based on our contextual embedding representation. Our model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.79 on chronic systolic heart failure and an average AUC of 0.67 (over the 80 most common diagnoses) using the Medical Information Mart for Intensive Care III (MIMIC-III) dataset. Conclusions We propose a general early prognosis predictor for 80 different diagnoses. Our method computes numeric representation for each medical event to uncover the potential meaning of those events. Our results demonstrate the efficiency of the proposed method, which will benefit patients and physicians by offering more accurate diagnosis. PMID:27888170

  3. Classification of burn wounds using support vector machines

    NASA Astrophysics Data System (ADS)

    Acha, Begona; Serrano, Carmen; Palencia, Sergio; Murillo, Juan Jose

    2004-05-01

    The purpose of this work is to improve a previous method developed by the authors for the classification of burn wounds into their depths. The inputs of the system are color and texture information, as these are the characteristics observed by physicians in order to give a diagnosis. Our previous work consisted in segmenting the burn wound from the rest of the image and classifying the burn into its depth. In this paper we focus on the classification problem only. We already proposed to use a Fuzzy-ARTMAP neural network (NN). However, we may take advantage of new powerful classification tools such as Support Vector Machines (SVM). We apply the five-folded cross validation scheme to divide the database into training and validating sets. Then, we apply a feature selection method for each classifier, which will give us the set of features that yields the smallest classification error for each classifier. Features used to classify are first-order statistical parameters extracted from the L*, u* and v* color components of the image. The feature selection algorithms used are the Sequential Forward Selection (SFS) and the Sequential Backward Selection (SBS) methods. As data of the problem faced here are not linearly separable, the SVM was trained using some different kernels. The validating process shows that the SVM method, when using a Gaussian kernel of variance 1, outperforms classification results obtained with the rest of the classifiers, yielding an error classification rate of 0.7% whereas the Fuzzy-ARTMAP NN attained 1.6 %.

  4. Nanowire nanocomputer as a finite-state machine.

    PubMed

    Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F; Ellenbogen, James C; Lieber, Charles M

    2014-02-18

    Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom-up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future.

  5. Nanowire nanocomputer as a finite-state machine

    PubMed Central

    Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F.; Ellenbogen, James C.; Lieber, Charles M.

    2014-01-01

    Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom–up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future. PMID:24469812

  6. Student Satisfaction with Asynchronous Learning

    ERIC Educational Resources Information Center

    Dziuban, Charles; Moskal, Patsy; Brophy, Jay; Shea, Peter

    2007-01-01

    The authors discuss elements that potentially impact student satisfaction with asynchronous learning: the media culture, digital, personal and mobile technologies, student learning preferences, pedagogy, complexities of measurement, and the digital generation. They describe a pilot study to identify the underlying dimensions of student…

  7. Software and hardware complex for research and management of the separation process

    NASA Astrophysics Data System (ADS)

    Borisov, A. P.

    2018-01-01

    The article is devoted to the development of a program for studying the operation of an asynchronous electric drive using vector-algorithmic switching of windings, as well as the development of a hardware-software complex for controlling parameters and controlling the speed of rotation of an asynchronous electric drive for investigating the operation of a cyclone. To study the operation of an asynchronous electric drive, a method was used in which the average value of flux linkage is found and a method for vector-algorithmic calculation of the power and electromagnetic moment of an asynchronous electric drive feeding from a single-phase network is developed, with vector-algorithmic commutation, and software for calculating parameters. The software part of the complex allows to regulate the speed of rotation of the motor by vector-algorithmic switching of transistors or, using pulse-width modulation (PWM), set any engine speed. Also sensors are connected to the hardware-software complex at the inlet and outlet of the cyclone. The developed cyclone with an inserted complex allows to receive high efficiency of product separation at various entrance speeds. At an inlet air speed of 18 m / s, the cyclone’s maximum efficiency is achieved. For this, it is necessary to provide the rotational speed of an asynchronous electric drive with a frequency of 45 Hz.

  8. An exploration of teaching presence in online interprofessional education facilitation.

    PubMed

    Evans, Sherryn Maree; Ward, Catherine; Reeves, Scott

    2017-07-01

    Although the prevalence of online asynchronous interprofessional education (IPE) has increased in the last decade, little is known about the processes of facilitation in this environment. The teaching presence element of the Community of Inquiry Framework offers an approach to analyze the contributions of online facilitators, however, to date it has only been used on a limited basis in health professions education literature. Using an exploratory case study design, we explored the types of contributions made by IPE facilitators to asynchronous interprofessional team discussions by applying the notion of teaching presence. Using a purposeful sampling approach, we analyzed 14 facilitators' contributions to asynchronous team discussion boards in an online IPE course. We analyzed data using directed content analysis based on the key indicators of teaching presence. The online IPE facilitators undertook the three critical pedagogical functions identified in teaching presence: facilitating discourse, direct instruction, and instructional design and organization. While our data fitted well with a number of key activities embedded in these three functions, further modification of the teaching presence concept was needed to describe our facilitators' teaching presence. This study provides an initial insight into the key elements of online asynchronous IPE facilitation. Further research is required to continue to illuminate the complexity of online asynchronous IPE facilitation.

  9. Asynchronous P300 classification in a reactive brain-computer interface during an outlier detection task

    NASA Astrophysics Data System (ADS)

    Krumpe, Tanja; Walter, Carina; Rosenstiel, Wolfgang; Spüler, Martin

    2016-08-01

    Objective. In this study, the feasibility of detecting a P300 via an asynchronous classification mode in a reactive EEG-based brain-computer interface (BCI) was evaluated. The P300 is one of the most popular BCI control signals and therefore used in many applications, mostly for active communication purposes (e.g. P300 speller). As the majority of all systems work with a stimulus-locked mode of classification (synchronous), the field of applications is limited. A new approach needs to be applied in a setting in which a stimulus-locked classification cannot be used due to the fact that the presented stimuli cannot be controlled or predicted by the system. Approach. A continuous observation task requiring the detection of outliers was implemented to test such an approach. The study was divided into an offline and an online part. Main results. Both parts of the study revealed that an asynchronous detection of the P300 can successfully be used to detect single events with high specificity. It also revealed that no significant difference in performance was found between the synchronous and the asynchronous approach. Significance. The results encourage the use of an asynchronous classification approach in suitable applications without a potential loss in performance.

  10. Left arm/left leg lead reversals at the cable junction box: A cause for an epidemic of errors.

    PubMed

    Velagapudi, Poonam; Turagam, Mohit K; Ritter, Sherry; Dohrmann, Mary L

    Medical errors, especially due to misinterpretation of electrocardiograms (ECG), are extremely common in patients admitted to the hospital and significantly account for increased morbidity, mortality and health care costs in the United States. Inaccurate performance of an ECG can lead to invalid interpretation and in turn may lead to costly cardiovascular evaluation. We report a retrospective series of 58 sequential cases of ECG limb lead reversals in the ER due to inadvertent interchange in the lead cables at the point where they insert into the cable junction box of one ECG machine. This case series highlights recognition of ECG lead reversal originating in the ECG machine itself. This case series also demonstrates an ongoing need for education regarding standardization of ECG testing and for recognizing technical anomalies to deliver appropriate care for the patient. Copyright © 2016. Published by Elsevier Inc.

  11. Data parallel sorting for particle simulation

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1992-01-01

    Sorting on a parallel architecture is a communications intensive event which can incur a high penalty in applications where it is required. In the case of particle simulation, only integer sorting is necessary, and sequential implementations easily attain the minimum performance bound of O (N) for N particles. Parallel implementations, however, have to cope with the parallel sorting problem which, in addition to incurring a heavy communications cost, can make the minimun performance bound difficult to attain. This paper demonstrates how the sorting problem in a particle simulation can be reduced to a merging problem, and describes an efficient data parallel algorithm to solve this merging problem in a particle simulation. The new algorithm is shown to be optimal under conditions usual for particle simulation, and its fieldwise implementation on the Connection Machine is analyzed in detail. The new algorithm is about four times faster than a fieldwise implementation of radix sort on the Connection Machine.

  12. Nuclear valve manufacturer selects stainless forgings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1976-02-01

    Forged type 316 stainless steel components for nuclear valves are described. Automatic plasma arc welding with powder filler alloys is employed for hardfacing. Seat ring forgings are surfaced four-at-a-time with Stellite No. 156 in a sequential manner to minimize heat input to the individual components. After cladding and machining, seat rings are welded into the valve body using a semiautomatic, hot-wire gas tungsten-arc process. Disc faces and guide slots are surfaced with Stellite No. 6. The valve stem is machined from 17-4PH forged bar stock in the H-1100 condition. The heat treatment is specified to minimize pitting under prolonged exposuremore » to wet packing. A 12 rms (0.3 $mu$m) surface finish minimizes tearing of the packing and subsequent leakage. The link and stem pin are SA 564 Grade 660 (in the H-1100 condition) and ASTM A637 Grade 718 respectively. (JRD)« less

  13. Empty tracks optimization based on Z-Map model

    NASA Astrophysics Data System (ADS)

    Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao

    2017-12-01

    For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.

  14. Learning Objects and Gerontology

    ERIC Educational Resources Information Center

    Weinreich, Donna M.; Tompkins, Catherine J.

    2006-01-01

    Virtual AGE (vAGE) is an asynchronous educational environment that utilizes learning objects focused on gerontology and a learning anytime/anywhere philosophy. This paper discusses the benefits of asynchronous instruction and the process of creating learning objects. Learning objects are "small, reusable chunks of instructional media" Wiley…

  15. A comparison of classroom and online asynchronous problem-based learning for students undertaking statistics training as part of a Public Health Masters degree.

    PubMed

    de Jong, N; Verstegen, D M L; Tan, F E S; O'Connor, S J

    2013-05-01

    This case-study compared traditional, face-to-face classroom-based teaching with asynchronous online learning and teaching methods in two sets of students undertaking a problem-based learning module in the multilevel and exploratory factor analysis of longitudinal data as part of a Masters degree in Public Health at Maastricht University. Students were allocated to one of the two study variants on the basis of their enrolment status as full-time or part-time students. Full-time students (n = 11) followed the classroom-based variant and part-time students (n = 12) followed the online asynchronous variant which included video recorded lectures and a series of asynchronous online group or individual SPSS activities with synchronous tutor feedback. A validated student motivation questionnaire was administered to both groups of students at the start of the study and a second questionnaire was administered at the end of the module. This elicited data about student satisfaction with the module content, teaching and learning methods, and tutor feedback. The module coordinator and problem-based learning tutor were also interviewed about their experience of delivering the experimental online variant and asked to evaluate its success in relation to student attainment of the module's learning outcomes. Student examination results were also compared between the two groups. Asynchronous online teaching and learning methods proved to be an acceptable alternative to classroom-based teaching for both students and staff. Educational outcomes were similar for both groups, but importantly, there was no evidence that the asynchronous online delivery of module content disadvantaged part-time students in comparison to their full-time counterparts.

  16. Learning Orthographic Structure With Sequential Generative Neural Networks.

    PubMed

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain. Copyright © 2015 Cognitive Science Society, Inc.

  17. Innovative Methods for Providing Instruction to Distance Students Using Technology.

    ERIC Educational Resources Information Center

    Pival, Paul R.; Tunon, Johanna

    2001-01-01

    Examines three innovative methods tried at Nova Southeastern University for providing quality bibliographic instruction to distance students: one synchronous, one asynchronous, and one that combined features from both synchronous and asynchronous methods of delivering instruction. Topics include compressed video, collaborative groupware, streaming…

  18. Miscellany of Students' Satisfaction in an Asynchronous Learning Environment

    ERIC Educational Resources Information Center

    Larbi-Siaw, Otu; Owusu-Agyeman, Yaw

    2017-01-01

    This study investigates the determinants of students' satisfaction in an asynchronous learning environment using seven key considerations: the e-learning environment, student-content interaction, student and student interaction, student-teacher interaction, group cohesion and timely participation, knowledge of Internet usage, and satisfaction. The…

  19. Developing asynchronous online interprofessional education.

    PubMed

    Sanborn, Heidi

    2016-09-01

    For many health programmes, developing interprofessional education (IPE) has been a challenge. Evidence on the best method for design and implementation of IPE has been slow to emerge, with little research on how to best incorporate IPE in the asynchronous online learning environment. This leaves online programmes with no clear guidance when embarking upon an initiative to integrate IPE into the curriculum. One tool that can be effective at guiding the incorporation of IPE across all learning platforms is the Interprofessional Education Collaborative (IPEC) competencies. A project was designed to integrate the nationally defined IPEC competencies throughout an asynchronous, online baccalaureate nursing completion programme. A programme-wide review led to targeted revision of course and unit-level objectives, learning experiences, and assessments based on the IPEC framework. As a result of this effort, the programme curriculum now provides interprofessional learning activities across all courses. This report provides a method for using the IPEC competencies to incorporate IPE within various asynchronous learning assessments, assuring students learn about, with, and from other professions.

  20. AP-IO: asynchronous pipeline I/O for hiding periodic output cost in CFD simulation.

    PubMed

    Xiaoguang, Ren; Xinhai, Xu

    2014-01-01

    Computational fluid dynamics (CFD) simulation often needs to periodically output intermediate results to files in the form of snapshots for visualization or restart, which seriously impacts the performance. In this paper, we present asynchronous pipeline I/O (AP-IO) optimization scheme for the periodically snapshot output on the basis of asynchronous I/O and CFD application characteristics. In AP-IO, dedicated background I/O processes or threads are in charge of handling the file write in pipeline mode, therefore the write overhead can be hidden with more calculation than classic asynchronous I/O. We design the framework of AP-IO and implement it in OpenFOAM, providing CFD users with a user-friendly interface. Experimental results on the Tianhe-2 supercomputer demonstrate that AP-IO can achieve a good optimization effect for the periodical snapshot output in CFD application, and the effect is especially better for massively parallel CFD simulations, which can reduce the total execution time up to about 40%.

  1. Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca2+ Sensor Protein.

    PubMed

    Zhou, Keming; Cherra, Salvatore J; Goncharov, Alexandr; Jin, Yishi

    2017-05-09

    Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca 2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. High-Throughput Bit-Serial LDPC Decoder LSI Based on Multiple-Valued Asynchronous Interleaving

    NASA Astrophysics Data System (ADS)

    Onizawa, Naoya; Hanyu, Takahiro; Gaudet, Vincent C.

    This paper presents a high-throughput bit-serial low-density parity-check (LDPC) decoder that uses an asynchronous interleaver. Since consecutive log-likelihood message values on the interleaver are similar, node computations are continuously performed by using the most recently arrived messages without significantly affecting bit-error rate (BER) performance. In the asynchronous interleaver, each message's arrival rate is based on the delay due to the wire length, so that the decoding throughput is not restricted by the worst-case latency, which results in a higher average rate of computation. Moreover, the use of a multiple-valued data representation makes it possible to multiplex control signals and data from mutual nodes, thus minimizing the number of handshaking steps in the asynchronous interleaver and eliminating the clock signal entirely. As a result, the decoding throughput becomes 1.3 times faster than that of a bit-serial synchronous decoder under a 90nm CMOS technology, at a comparable BER.

  3. AP-IO: Asynchronous Pipeline I/O for Hiding Periodic Output Cost in CFD Simulation

    PubMed Central

    Xiaoguang, Ren; Xinhai, Xu

    2014-01-01

    Computational fluid dynamics (CFD) simulation often needs to periodically output intermediate results to files in the form of snapshots for visualization or restart, which seriously impacts the performance. In this paper, we present asynchronous pipeline I/O (AP-IO) optimization scheme for the periodically snapshot output on the basis of asynchronous I/O and CFD application characteristics. In AP-IO, dedicated background I/O processes or threads are in charge of handling the file write in pipeline mode, therefore the write overhead can be hidden with more calculation than classic asynchronous I/O. We design the framework of AP-IO and implement it in OpenFOAM, providing CFD users with a user-friendly interface. Experimental results on the Tianhe-2 supercomputer demonstrate that AP-IO can achieve a good optimization effect for the periodical snapshot output in CFD application, and the effect is especially better for massively parallel CFD simulations, which can reduce the total execution time up to about 40%. PMID:24955390

  4. Asynchronous and synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser with a mode-locker.

    PubMed

    Hu, Guoqing; Pan, Yingling; Zhao, Xin; Yin, Siyao; Zhang, Meng; Zheng, Zheng

    2017-12-01

    The evolution from asynchronous to synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser is experimentally investigated by tailoring the intracavity dispersion. Through tuning the intracavity-loss-dependent gain profile and the birefringence-induced filter effect, asynchronous dual-wavelength soliton pulses can be generated until the intracavity anomalous dispersion is reduced to ∼8  fs/nm. The transition from asynchronous to synchronous pulse generation is then observed at an elevated pump power in the presence of residual anomalous dispersion, and it is shown that pulses are temporally synchronized at the mode-locker in the cavity. Spectral sidelobes are observed and could be attributed to the four-wave-mixing effect between dual-wavelength pulses at the carbon nanotube mode-locker. These results could provide further insight into the design and realization of such dual-wavelength ultrafast lasers for different applications such as dual-comb metrology as well as better understanding of the inter-pulse interactions in such dual-comb lasers.

  5. High-throughput state-machine replication using software transactional memory.

    PubMed

    Zhao, Wenbing; Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin

    2016-11-01

    State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload.

  6. High-throughput state-machine replication using software transactional memory

    PubMed Central

    Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin

    2017-01-01

    State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload. PMID:29075049

  7. Rigorously modeling self-stabilizing fault-tolerant circuits: An ultra-robust clocking scheme for systems-on-chip.

    PubMed

    Dolev, Danny; Függer, Matthias; Posch, Markus; Schmid, Ulrich; Steininger, Andreas; Lenzen, Christoph

    2014-06-01

    We present the first implementation of a distributed clock generation scheme for Systems-on-Chip that recovers from an unbounded number of arbitrary transient faults despite a large number of arbitrary permanent faults. We devise self-stabilizing hardware building blocks and a hybrid synchronous/asynchronous state machine enabling metastability-free transitions of the algorithm's states. We provide a comprehensive modeling approach that permits to prove, given correctness of the constructed low-level building blocks, the high-level properties of the synchronization algorithm (which have been established in a more abstract model). We believe this approach to be of interest in its own right, since this is the first technique permitting to mathematically verify, at manageable complexity, high-level properties of a fault-prone system in terms of its very basic components. We evaluate a prototype implementation, which has been designed in VHDL, using the Petrify tool in conjunction with some extensions, and synthesized for an Altera Cyclone FPGA.

  8. Rigorously modeling self-stabilizing fault-tolerant circuits: An ultra-robust clocking scheme for systems-on-chip☆

    PubMed Central

    Dolev, Danny; Függer, Matthias; Posch, Markus; Schmid, Ulrich; Steininger, Andreas; Lenzen, Christoph

    2014-01-01

    We present the first implementation of a distributed clock generation scheme for Systems-on-Chip that recovers from an unbounded number of arbitrary transient faults despite a large number of arbitrary permanent faults. We devise self-stabilizing hardware building blocks and a hybrid synchronous/asynchronous state machine enabling metastability-free transitions of the algorithm's states. We provide a comprehensive modeling approach that permits to prove, given correctness of the constructed low-level building blocks, the high-level properties of the synchronization algorithm (which have been established in a more abstract model). We believe this approach to be of interest in its own right, since this is the first technique permitting to mathematically verify, at manageable complexity, high-level properties of a fault-prone system in terms of its very basic components. We evaluate a prototype implementation, which has been designed in VHDL, using the Petrify tool in conjunction with some extensions, and synthesized for an Altera Cyclone FPGA. PMID:26516290

  9. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment

    NASA Astrophysics Data System (ADS)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam

    2017-09-01

    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  10. Asynchronous updates can promote the evolution of cooperation on multiplex networks

    NASA Astrophysics Data System (ADS)

    Allen, James M.; Hoyle, Rebecca B.

    2017-04-01

    We study the importance to the frequency of cooperation of the choice of updating strategies in a game played asynchronously or synchronously across layers in a multiplex network. Updating asynchronously in the public goods game leads to higher frequencies of cooperation compared to synchronous updates. How large this effect is depends on the sensitivity of the game dynamics to changes in the number of cooperators surrounding a player, with the largest effect observed when players payoffs are small. The discovery of this effect enhances understanding of cooperation on multiplex networks, and demonstrates a new way to maintain cooperation in these systems.

  11. Asynchronous versus Synchronous Learning in Pharmacy Education

    ERIC Educational Resources Information Center

    Motycka, Carol A.; St. Onge, Erin L.; Williams, Jennifer

    2013-01-01

    Objective: To better understand the technology being used today in pharmacy education through a review of the current methodologies being employed at various institutions. Also, to discuss the benefits and difficulties of asynchronous and synchronous methodologies, which are being utilized at both traditional and distance education campuses.…

  12. Knowledge Building in Asynchronous Discussion Groups: Going Beyond Quantitative Analysis

    ERIC Educational Resources Information Center

    Schrire, Sarah

    2006-01-01

    This contribution examines the methodological challenges involved in defining the collaborative knowledge-building processes occurring in asynchronous discussion and proposes an approach that could advance understanding of these processes. The written protocols that are available to the analyst provide an exact record of the instructional…

  13. Creating and Nurturing Distributed Asynchronous Learning Environments.

    ERIC Educational Resources Information Center

    Kochtanek, Thomas R.; Hein, Karen K.

    2000-01-01

    Describes the evolution of a university course from a face-to-face experience to a Web-based asynchronous learning environment. Topics include cognition and learning; distance learning and distributed learning; student learning communities and the traditional classroom; the future as it relates to education and technology; collaborative student…

  14. Learning about the Literacy Development of English Language Learners in Asynchronous Online Discussions

    ERIC Educational Resources Information Center

    De Oliveira, Luciana C.; Olesova, Larisa

    2013-01-01

    This study examined asynchronous online discussions in the online course "English Language Development" to identify themes related to participants' learning about the language and literacy development of English Language Learners when they facilitated online discussions to determine whether the participants developed sufficient…

  15. Creating Asynchronous Online Learning Communities

    ERIC Educational Resources Information Center

    Kerr, Crystal

    2009-01-01

    This research project examined how to develop and sustain online, asynchronous learning communities in continuous intake, distance education environments for learners in grades 7 through 10. The study is an action research project that is based upon in-depth, qualitative data. Interviews were conducted with distance education teachers,…

  16. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    PubMed

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.

  17. Classification of epileptic EEG signals based on simple random sampling and sequential feature selection.

    PubMed

    Ghayab, Hadi Ratham Al; Li, Yan; Abdulla, Shahab; Diykh, Mohammed; Wan, Xiangkui

    2016-06-01

    Electroencephalogram (EEG) signals are used broadly in the medical fields. The main applications of EEG signals are the diagnosis and treatment of diseases such as epilepsy, Alzheimer, sleep problems and so on. This paper presents a new method which extracts and selects features from multi-channel EEG signals. This research focuses on three main points. Firstly, simple random sampling (SRS) technique is used to extract features from the time domain of EEG signals. Secondly, the sequential feature selection (SFS) algorithm is applied to select the key features and to reduce the dimensionality of the data. Finally, the selected features are forwarded to a least square support vector machine (LS_SVM) classifier to classify the EEG signals. The LS_SVM classifier classified the features which are extracted and selected from the SRS and the SFS. The experimental results show that the method achieves 99.90, 99.80 and 100 % for classification accuracy, sensitivity and specificity, respectively.

  18. Vision-Based People Detection System for Heavy Machine Applications

    PubMed Central

    Fremont, Vincent; Bui, Manh Tuan; Boukerroui, Djamal; Letort, Pierrick

    2016-01-01

    This paper presents a vision-based people detection system for improving safety in heavy machines. We propose a perception system composed of a monocular fisheye camera and a LiDAR. Fisheye cameras have the advantage of a wide field-of-view, but the strong distortions that they create must be handled at the detection stage. Since people detection in fisheye images has not been well studied, we focus on investigating and quantifying the impact that strong radial distortions have on the appearance of people, and we propose approaches for handling this specificity, adapted from state-of-the-art people detection approaches. These adaptive approaches nevertheless have the drawback of high computational cost and complexity. Consequently, we also present a framework for harnessing the LiDAR modality in order to enhance the detection algorithm for different camera positions. A sequential LiDAR-based fusion architecture is used, which addresses directly the problem of reducing false detections and computational cost in an exclusively vision-based system. A heavy machine dataset was built, and different experiments were carried out to evaluate the performance of the system. The results are promising, in terms of both processing speed and performance. PMID:26805838

  19. Vision-Based People Detection System for Heavy Machine Applications.

    PubMed

    Fremont, Vincent; Bui, Manh Tuan; Boukerroui, Djamal; Letort, Pierrick

    2016-01-20

    This paper presents a vision-based people detection system for improving safety in heavy machines. We propose a perception system composed of a monocular fisheye camera and a LiDAR. Fisheye cameras have the advantage of a wide field-of-view, but the strong distortions that they create must be handled at the detection stage. Since people detection in fisheye images has not been well studied, we focus on investigating and quantifying the impact that strong radial distortions have on the appearance of people, and we propose approaches for handling this specificity, adapted from state-of-the-art people detection approaches. These adaptive approaches nevertheless have the drawback of high computational cost and complexity. Consequently, we also present a framework for harnessing the LiDAR modality in order to enhance the detection algorithm for different camera positions. A sequential LiDAR-based fusion architecture is used, which addresses directly the problem of reducing false detections and computational cost in an exclusively vision-based system. A heavy machine dataset was built, and different experiments were carried out to evaluate the performance of the system. The results are promising, in terms of both processing speed and performance.

  20. Mamdani-Fuzzy Modeling Approach for Quality Prediction of Non-Linear Laser Lathing Process

    NASA Astrophysics Data System (ADS)

    Sivaraos; Khalim, A. Z.; Salleh, M. S.; Sivakumar, D.; Kadirgama, K.

    2018-03-01

    Lathing is a process to fashioning stock materials into desired cylindrical shapes which usually performed by traditional lathe machine. But, the recent rapid advancements in engineering materials and precision demand gives a great challenge to the traditional method. The main drawback of conventional lathe is its mechanical contact which brings to the undesirable tool wear, heat affected zone, finishing, and dimensional accuracy especially taper quality in machining of stock with high length to diameter ratio. Therefore, a novel approach has been devised to investigate in transforming a 2D flatbed CO2 laser cutting machine into 3D laser lathing capability as an alternative solution. Three significant design parameters were selected for this experiment, namely cutting speed, spinning speed, and depth of cut. Total of 24 experiments were performed with eight (8) sequential runs where they were then replicated three (3) times. The experimental results were then used to establish Mamdani - Fuzzy predictive model where it yields the accuracy of more than 95%. Thus, the proposed Mamdani - Fuzzy modelling approach is found very much suitable and practical for quality prediction of non-linear laser lathing process for cylindrical stocks of 10mm diameter.

  1. An FMS Dynamic Production Scheduling Algorithm Considering Cutting Tool Failure and Cutting Tool Life

    NASA Astrophysics Data System (ADS)

    Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.

    2016-02-01

    This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.

  2. The Necessity of Real-Time: Fact and Fiction in Digital Reference Systems.

    ERIC Educational Resources Information Center

    Lankes, R. David; Shostack, Pauline

    2002-01-01

    Discussion of digital reference services and the use of real-time versus asynchronous services such as email focuses on data from the AskERIC digital reference service to demonstrate that asynchronous services are not only useful but may have greater utility than real-time systems. (Author/LRW)

  3. Positioning (Mis)Aligned: The (Un)Making of Intercultural Asynchronous Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Wu, Zhiwei

    2018-01-01

    Framed from positioning theory and dynamic systems theory, the paper reports on a naturalistic study involving four Chinese participants and their American peers in an intercultural asynchronous computer-mediated communication (ACMC) activity. Based on the moment-by-moment analysis and triangulation of forum posts, reflective essays, and…

  4. Automated Feedback as a Convergence Tool

    ERIC Educational Resources Information Center

    Chenoweth, Tim; Corral, Karen; Scott, Kit

    2016-01-01

    This study evaluates two content delivery options for teaching a programming language to determine whether an asynchronous format can achieve the same learning efficacy as a traditional lecture (face-to-face) format. We use media synchronicity theory as a guide to choose media capabilities to incorporate into an asynchronous tutorial used…

  5. Designing a Web-Based Asynchronous Innovation/Entrepreneurism Course

    ERIC Educational Resources Information Center

    Ghandforoush, Parviz

    2017-01-01

    Teaching an online fully asynchronous information technology course that requires students to ideate, build an e-commerce website, and develop an effective business plan involves a well-developed and highly engaging course design. This paper describes the design, development, and implementation of such a course and presents information on…

  6. Asynchronous Assessment in a Large Lecture Marketing Course

    ERIC Educational Resources Information Center

    Downey, W. Scott; Schetzsle, Stacey

    2012-01-01

    Asynchronous assessment, which includes quizzes or exams online or outside class, offers marketing educators an opportunity to make more efficient use of class time and to enhance students' learning experiences by giving them more flexibility and choice in their assessment environment. In this paper, we examine the performance difference between…

  7. Principles for Effective Asynchronous Online Instruction in Religious Studies

    ERIC Educational Resources Information Center

    McGuire, Beverley

    2017-01-01

    Asynchronous online instruction has become increasingly popular in the field of religious studies. However, despite voluminous research on online learning in general and numerous articles on online theological instruction, there has been little discussion of how to effectively design and deliver online undergraduate courses in religious studies.…

  8. Investigating Asynchronous Online Communication: A Connected Stance Revealed

    ERIC Educational Resources Information Center

    Wegmann, Susan J.; McCauley, Joyce K.

    2014-01-01

    This research project explores the effects of altering the structure of discussion board formats to increase students' engagement and participation. This paper will present the findings of a two-university, two-class research project in which asynchronous discussion board entries were analyzed for substance. By using oral discourse analysis…

  9. Theoretically Based Pedagogical Strategies Leading to Deep Learning in Asynchronous Online Gerontology Courses

    ERIC Educational Resources Information Center

    Majeski, Robin; Stover, Merrily

    2007-01-01

    Online learning has enjoyed increasing popularity in gerontology. This paper presents instructional strategies grounded in Fink's (2003) theory of significant learning designed for the completely asynchronous online gerontology classroom. It links these components with the development of mastery learning goals and provides specific guidelines for…

  10. Developing a Successful Asynchronous Online Extension Program for Forest Landowners

    ERIC Educational Resources Information Center

    Zobrist, Kevin W.

    2014-01-01

    Asynchronous online Extension classes can reach a wide audience, is convenient for the learner, and minimizes ongoing demands on instructor time. However, producing such classes takes significant effort up front. Advance planning and good communication with contributors are essential to success. Considerations include delivery platforms, content…

  11. Cultural Influences on Chinese Students' Asynchronous Online Learning in a Canadian University

    ERIC Educational Resources Information Center

    Zhao, Naxin; McDougall, Douglas

    2008-01-01

    This study explored six Chinese graduate students' asynchronous online learning in a large urban Canadian university. Individual interviews in Mandarin elicited their perceptions of online learning, their participation in it, and the cultural factors that influenced their experiences. In general, the participants had a positive attitude towards…

  12. Language Use in Asynchronous Computer-Mediated Communication in Taiwan

    ERIC Educational Resources Information Center

    Huang, Daphne Li-jung

    2009-01-01

    This paper describes how Chinese-English bilinguals in Taiwan use their languages in asynchronous computer-mediated communication, specifically, via Bulletin Board System (BBS) and email. The main data includes two types: emails collected from a social network and postings collected from two BBS websites. By examining patterns of language choice…

  13. Students' Use of Asynchronous Discussions for Academic Discourse Socialization

    ERIC Educational Resources Information Center

    Beckett, Gulbahar H.; Amaro-Jimenez, Carla; Beckett, Kelvin S.

    2010-01-01

    Our universities are becoming increasingly diverse at the same time as online asynchronous discussions (OADs) are emerging as the most important forum for computer mediated communication (CMC) in distance education. But there is shortage of studies that explore how graduate students from different ethnic, linguistic and cultural backgrounds use…

  14. Effects of Belongingness and Synchronicity on Face-to-Face and Computer-Mediated Online Cooperative Pedagogy

    ERIC Educational Resources Information Center

    Saltarelli, Andrew John

    2012-01-01

    Previous research suggests asynchronous online computer-mediated communication (CMC) has deleterious effects on certain cooperative learning pedagogies (e.g., constructive controversy), but the processes underlying this effect and how it may be ameliorated remain unclear. This study tests whether asynchronous CMC thwarts belongingness needs…

  15. Synchronous versus Asynchronous CMC and Transfer to Japanese Oral Performance

    ERIC Educational Resources Information Center

    Hirotani, Maki

    2009-01-01

    This study investigated the effects of synchronous and asynchronous CMC (computer-mediated communication)on the development of linguistic features of learners' speech in Japanese. Using learners from fourth-semester Japanese classes, the following research questions were examined: (a) Does CMC have positive effects on the development of oral…

  16. A Group Intelligence-Based Asynchronous Argumentation Learning-Assistance Platform

    ERIC Educational Resources Information Center

    Huang, Chenn-Jung; Chang, Shun-Chih; Chen, Heng-Ming; Tseng, Jhe-Hao; Chien, Sheng-Yuan

    2016-01-01

    Structured argumentation support environments have been built and used in scientific discourse in the literature. However, to the best our knowledge, there is no research work in the literature examining whether student's knowledge has grown during learning activities with asynchronous argumentation. In this work, an intelligent computer-supported…

  17. Participation, Interaction and Social Presence: An Exploratory Study of Collaboration in Online Peer Review Groups

    ERIC Educational Resources Information Center

    Zhao, Huahui; Sullivan, Kirk P. H.; Mellenius, Ingmarie

    2014-01-01

    A key reason for using asynchronous computer conferencing in instruction is its potential for supporting collaborative learning. However, few studies have examined collaboration in computer conferencing. This study examined collaboration in six peer review groups within an asynchronous computer conferencing. Eighteen tertiary students participated…

  18. Asynchronous Group Review of EFL Writing: Interactions and Text Revisions

    ERIC Educational Resources Information Center

    Saeed, Murad Abdu; Ghazali, Kamila

    2017-01-01

    The current paper reports an empirical study of asynchronous online group review of argumentative essays among nine English as foreign language (EFL) Arab university learners joining English in their first, second, and third years at the institution. In investigating online interactions, commenting patterns, and how the students facilitate text…

  19. The Role of Beliefs and Motivation in Asynchronous Online Learning in College-Level Classes

    ERIC Educational Resources Information Center

    Xie, Kui; Huang, Kun

    2014-01-01

    Epistemic and learning beliefs were found to affect college students' cognitive engagement and study strategies, as well as motivation in classroom settings. However, the relationships between epistemic and learning beliefs, motivation, learning perception, and students' actual learning participation in asynchronous online settings have been…

  20. A Coding Scheme to Analyse the Online Asynchronous Discussion Forums of University Students

    ERIC Educational Resources Information Center

    Biasutti, Michele

    2017-01-01

    The current study describes the development of a content analysis coding scheme to examine transcripts of online asynchronous discussion groups in higher education. The theoretical framework comprises the theories regarding knowledge construction in computer-supported collaborative learning (CSCL) based on a sociocultural perspective. The coding…

  1. Relationship of Metacognitive Monitoring with Interaction in an Asynchronous Online Discussion Forum

    ERIC Educational Resources Information Center

    Topcu, Abdullah

    2010-01-01

    Monitoring one's own performance accurately is essential for information-processing and self-regulation, which are indispensable in an online learning environment. In this article, the effect of metacognitive monitoring (MM) on interaction in an asynchronous online discussion forum was investigated. Transcripts of this forum, which was integrated…

  2. Using Computer-Mediated Communication to Establish Social and Supportive Environments in Teacher Education

    ERIC Educational Resources Information Center

    Arnold, Nike; Ducate, Lara; Lomicka, Lara; Lord, Gillian

    2005-01-01

    This article examines social presence in virtual asynchronous learning communities among foreign language teachers. We present the findings of two studies investigating cross-institutional asynchronous forums created to engage participants in online dialogues regarding their foreign language teacher preparation experiences in and out of the…

  3. The Effect of Synchronous and Asynchronous Participation on Students' Performance in Online Accounting Courses

    ERIC Educational Resources Information Center

    Duncan, Keith; Kenworthy, Amy; McNamara, Ray

    2012-01-01

    This article examines the relationship between MBA students' performance and participation in two online environments: a synchronous forum (chat room) and an asynchronous forum (discussion board) at an Australian university. The "quality" and "quantity" of students' participation is used to predict their final examination and…

  4. Adding the Human Touch to Asynchronous Online Learning

    ERIC Educational Resources Information Center

    Glenn, Cynthia Wheatley

    2018-01-01

    For learners to actively accept responsibility in a virtual classroom platform, it is necessary to provide special motivation extending across the traditional classroom setting into asynchronous online learning. This article explores specific ways to do this that bridge the gap between ground and online students' learning experiences, and how…

  5. Increasing Student Engagement Using Asynchronous Learning

    ERIC Educational Resources Information Center

    Northey, Gavin; Bucic, Tania; Chylinski, Mathew; Govind, Rahul

    2015-01-01

    Student engagement is an ongoing concern for educators because of its positive association with deep learning and educational outcomes. This article tests the use of a social networking site (Facebook) as a tool to facilitate asynchronous learning opportunities that complement face-to-face interactions and thereby enable a stronger learning…

  6. Machine Learning-based Texture Analysis of Contrast-enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System Lymphoma.

    PubMed

    Kunimatsu, Akira; Kunimatsu, Natsuko; Yasaka, Koichiro; Akai, Hiroyuki; Kamiya, Kouhei; Watadani, Takeyuki; Mori, Harushi; Abe, Osamu

    2018-05-16

    Although advanced MRI techniques are increasingly available, imaging differentiation between glioblastoma and primary central nervous system lymphoma (PCNSL) is sometimes confusing. We aimed to evaluate the performance of image classification by support vector machine, a method of traditional machine learning, using texture features computed from contrast-enhanced T 1 -weighted images. This retrospective study on preoperative brain tumor MRI included 76 consecutives, initially treated patients with glioblastoma (n = 55) or PCNSL (n = 21) from one institution, consisting of independent training group (n = 60: 44 glioblastomas and 16 PCNSLs) and test group (n = 16: 11 glioblastomas and 5 PCNSLs) sequentially separated by time periods. A total set of 67 texture features was computed on routine contrast-enhanced T 1 -weighted images of the training group, and the top four most discriminating features were selected as input variables to train support vector machine classifiers. These features were then evaluated on the test group with subsequent image classification. The area under the receiver operating characteristic curves on the training data was calculated at 0.99 (95% confidence interval [CI]: 0.96-1.00) for the classifier with a Gaussian kernel and 0.87 (95% CI: 0.77-0.95) for the classifier with a linear kernel. On the test data, both of the classifiers showed prediction accuracy of 75% (12/16) of the test images. Although further improvement is needed, our preliminary results suggest that machine learning-based image classification may provide complementary diagnostic information on routine brain MRI.

  7. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study.

    PubMed

    Olivera, André Rodrigues; Roesler, Valter; Iochpe, Cirano; Schmidt, Maria Inês; Vigo, Álvaro; Barreto, Sandhi Maria; Duncan, Bruce Bartholow

    2017-01-01

    Type 2 diabetes is a chronic disease associated with a wide range of serious health complications that have a major impact on overall health. The aims here were to develop and validate predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study of Adult Health (ELSA-Brasil) and to compare the performance of different machine-learning algorithms in this task. Comparison of machine-learning algorithms to develop predictive models using data from ELSA-Brasil. After selecting a subset of 27 candidate variables from the literature, models were built and validated in four sequential steps: (i) parameter tuning with tenfold cross-validation, repeated three times; (ii) automatic variable selection using forward selection, a wrapper strategy with four different machine-learning algorithms and tenfold cross-validation (repeated three times), to evaluate each subset of variables; (iii) error estimation of model parameters with tenfold cross-validation, repeated ten times; and (iv) generalization testing on an independent dataset. The models were created with the following machine-learning algorithms: logistic regression, artificial neural network, naïve Bayes, K-nearest neighbor and random forest. The best models were created using artificial neural networks and logistic regression. -These achieved mean areas under the curve of, respectively, 75.24% and 74.98% in the error estimation step and 74.17% and 74.41% in the generalization testing step. Most of the predictive models produced similar results, and demonstrated the feasibility of identifying individuals with highest probability of having undiagnosed diabetes, through easily-obtained clinical data.

  8. A computer-aided diagnosis system to detect pathologies in temporal subtraction images of chest radiographs

    NASA Astrophysics Data System (ADS)

    Looper, Jared; Harrison, Melanie; Armato, Samuel G.

    2016-03-01

    Radiologists often compare sequential radiographs to identify areas of pathologic change; however, this process is prone to error, as human anatomy can obscure the regions of change, causing the radiologists to overlook pathology. Temporal subtraction (TS) images can provide enhanced visualization of regions of change in sequential radiographs and allow radiologists to better detect areas of change in radiographs. Not all areas of change shown in TS images, however, are actual pathology. The purpose of this study was to create a computer-aided diagnostic (CAD) system that identifies which regions of change are caused by pathology and which are caused by misregistration of the radiographs used to create the TS image. The dataset used in this study contained 120 images with 74 pathologic regions on 54 images outlined by an experienced radiologist. High and low ("light" and "dark") gray-level candidate regions were extracted from the images using gray-level thresholding. Then, sampling techniques were used to address the class imbalance problem between "true" and "false" candidate regions. Next, the datasets of light candidate regions, dark candidate regions, and the combined set of light and dark candidate regions were used as training and testing data for classifiers by using five-fold cross validation. Of the classifiers tested (support vector machines, discriminant analyses, logistic regression, and k-nearest neighbors), the support vector machine on the combined candidates using synthetic minority oversampling technique (SMOTE) performed best with an area under the receiver operating characteristic curve value of 0.85, a sensitivity of 85%, and a specificity of 84%.

  9. Sequential compression devices in postoperative urologic patients: an observational trial and survey study on the influence of patient and hospital factors on compliance.

    PubMed

    Ritsema, David F; Watson, Jennifer M; Stiteler, Amanda P; Nguyen, Mike M

    2013-04-11

    Sequential compression devices (SCDs) are commonly used for thromboprophylaxis in postoperative patients but compliance is often poor. We investigated causes for noncompliance, examining both hospital and patient related factors. 100 patients undergoing inpatient urologic surgery were enrolled. All patient had SCD sleeves placed preoperatively. Postoperative observations determined SCD compliance and reasons for non-compliance. Patient demographics, length of stay, inpatient unit type, and surgery type were recorded. At discharge, a patient survey gauged knowledge and attitudes regarding SCDs and bother with SCDs. Statistical analysis was performed to correlate SCD compliance with patient demographics; patient knowledge and attitudes regarding SCDs; and patient self-reported bother with SCDs. Observed overall compliance was 78.6%. The most commonly observed reasons for non-compliance were SCD machines not being initially available on the ward (71% of non-compliant observations on post-operative day 1) and SCD use not being restarted promptly after return to bed (50% of non-compliant observations for entire hospital stay). Mean self-reported bother scores related to SCDs were low, ranging from 1-3 out of 10 for all 12 categories of bother assessed. Patient demographics, knowledge, attitudes and bother with SCD devices were not significantly associated with non-compliance. Patient self-reported bother with SCD devices was low. Hospital factors, including SCD machine availability and timely restarting of devices by nursing staff when a patient returns to bed, played a greater role in SCD non-compliance than patient factors. Identifying and addressing hospital related causes for poor SCD compliance may improve postoperative urologic patient safety.

  10. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Schrenk, G.; Bartels, A.; Cerna, R.; Kotaidis, V.; Plech, A.; Köhler, K.; Schmitz, J.; Wagner, J.

    2007-12-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 107 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles.

  11. Emotional first aid for a suicide crisis: comparison between Telephonic hotline and internet.

    PubMed

    Gilat, Itzhak; Shahar, Golan

    2007-01-01

    The telephone and the internet have become popular sources of psychological help in various types of distress, including a suicide crisis. To gain more insight into the unique features of these media, we compared characteristics of calls to three technologically mediated sources of help that are part of the volunteer-based Israeli Association for Emotional First Aid (ERAN): Telephonic hotline (n = 4426), personal chat (n = 373) and an asynchronous online support group (n = 954). Threats of suicide were much more frequent among participants in the asynchronous support group than the telephone and personal chat. These findings encourage further research into suicide-related interpersonal exchanges in asynchronous online support groups.

  12. Asynchronous emergence by loggerhead turtle (Caretta caretta) hatchlings

    NASA Astrophysics Data System (ADS)

    Houghton, J. D. R.; Hays, G. C.

    2001-03-01

    For many decades it has been accepted that marine turtle hatchlings from the same nest generally emerge from the sand together. However, for loggerhead turtles (Caretta caretta) nesting on the Greek Island of Kefalonia, a more asynchronous pattern of emergence has been documented. By placing temperature loggers at the top and bottom of nests laid on Kefalonia during 1998, we examined whether this asynchronous emergence was related to the thermal conditions within nests. Pronounced thermal variation existed not only between, but also within, individual nests. These within-nest temperature differences were related to the patterns of hatchling emergence, with hatchlings from nests displaying large thermal ranges emerging over a longer time-scale than those characterised by more uniform temperatures.

  13. Asynchronous, macrotasked relaxation strategies for the solution of viscous, hypersonic flows

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1991-01-01

    A point-implicit, asynchronous macrotasked relaxation of the steady, thin-layer, Navier-Stokes equations is presented. The method employs multidirectional, single-level storage Gauss-Seidel relaxation sweeps, which effectively communicate perturbations across the entire domain in 2n sweeps, where n is the dimension of the domain. In order to enhance convergence the application of relaxation factors to specific components of the Jacobian is examined using a stability analysis of the advection and diffusion equations. Attention is also given to the complications associated with asynchronous multitasking. Solutions are generated for hypersonic flows over blunt bodies in two and three dimensions with chemical reactions, utilizing single-tasked and multitasked relaxation strategies.

  14. Event-driven contrastive divergence for spiking neuromorphic systems.

    PubMed

    Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2013-01-01

    Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  15. Event-driven contrastive divergence for spiking neuromorphic systems

    PubMed Central

    Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2014-01-01

    Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality. PMID:24574952

  16. Student Outcomes Associated with Use of Asynchronous Online Discussion Forums in Gross Anatomy Teaching

    ERIC Educational Resources Information Center

    Green, Rodney A.; Hughes, Diane L.

    2013-01-01

    Asynchronous online discussion forums are increasingly common in blended learning environments but the relationship to student learning outcomes has not been reported for anatomy teaching. Forums were monitored in two multicampus anatomy courses; an introductory first year course and a second year physiotherapy-specific course. The forums are…

  17. At a Distance: A Comparative Study of Distance Delivery Modalities for PhD Nursing Students

    ERIC Educational Resources Information Center

    Black, Andrew G.

    2010-01-01

    This study sought to ascertain and compare the attitudes and perceptions of PhD nursing students attending their coursework through synchronous and asynchronous means at two different universities. Many studies have been performed comparing both synchronous videoconferencing and asynchronous online education with the traditional classroom, but no…

  18. Students' Desired and Experienced Levels of Connectivity to an Asynchronous, Online, Distance Degree Program

    ERIC Educational Resources Information Center

    Schroeder, Shawnda; Baker, Mary; Terras, Katherine; Mahar, Patti; Chiasson, Kari

    2016-01-01

    This study examined graduate students' desired and experienced levels of connectivity in an online, asynchronous distance degree program. Connectivity was conceptualized as the students' feelings of community and involvement, not their level of access to the Internet. Graduate students enrolled in a distance degree program were surveyed on both…

  19. Three Interaction Patterns on Asynchronous Online Discussion Behaviours: A Methodological Comparison

    ERIC Educational Resources Information Center

    Jo, I.; Park, Y.; Lee, H.

    2017-01-01

    An asynchronous online discussion (AOD) is one format of instructional methods that facilitate student-centered learning. In the wealth of AOD research, this study evaluated how students' behavior on AOD influences their academic outcomes. This case study compared the differential analytic methods including web log mining, social network analysis…

  20. Microbial infection affects egg viability and incubation behavior in a tropical passerine.

    Treesearch

    Mark I. Cook; Steven R. Beissinger; Gary A. Toranzos; Roberto A. Arendt Rodriguez

    2004-01-01

    Many avian species initiate incubation before clutch completion, which causes eggs to hatch asynchronously. This influences brood competitive dynamics and often results in nestling mortality. The prevailing hypotheses contend that parents incubate early because asynchronous hatching provides fitness benefits to parents or surviving offspring. An alternative idea is...

  1. FIFO Buffer for Asynchronous Data Streams

    NASA Technical Reports Server (NTRS)

    Bascle, K. P.

    1985-01-01

    Variable-rate, asynchronous data signals from up to four measuring instruments or other sources combined in first-in/first-out (FIFO) buffer for transmission on single channel. Constructed in complementary metal-oxide-semiconductor (CMOS) logic, buffer consumes low power (only 125 mW at 5V) and conforms to aerospace standards of reliability and maintainability.

  2. Critical Thinking in Asynchronous Online Discussion: An Investigation of Student Facilitation Techniques

    ERIC Educational Resources Information Center

    Lim, Sze Chung Raymond; Cheung, Wing Sum; Hew, Khe Foon

    2011-01-01

    Background: In the last decade, asynchronous online discussion forums have become a primary focus of many educational researchers. Some advocates believed that the process of typing out messages in itself can promote in-depth critical thinking skills. Nevertheless, empirical research has not provided much support for this claim in natural…

  3. Interaction and Cognition in Asynchronous Computer Conferencing

    ERIC Educational Resources Information Center

    Schrire, Sarah

    2004-01-01

    This paper is based on a multiple-case study of the learning process in three asynchronous computer conferences. The conferences were part of the distance learning component in doctoral degree courses in computing technology in education offered at an American university. The conferences were analyzed from a number of perspectives, the emphasis in…

  4. Socially Shared Metacognitive Regulation in Asynchronous CSCL in Science: Functions, Evolution and Participation

    ERIC Educational Resources Information Center

    Iiskala, Tuike; Volet, Simone; Lehtinen, Erno; Vauras, Marja

    2015-01-01

    The significance of socially shared metacognitive regulation (SSMR) in collaborative learning is gaining momentum. To date, however, there is still a paucity of research of how SSMR is manifested in asynchronous computer-supported collaborative learning (CSCL), and hardly any systematic investigation of SSMR's functions and evolution across…

  5. The Effects of Self-Generated Synchronous and Asynchronous Visual Speech Feedback on Overt Stuttering Frequency

    ERIC Educational Resources Information Center

    Snyder, Gregory J.; Hough, Monica Strauss; Blanchet, Paul; Ivy, Lennette J.; Waddell, Dwight

    2009-01-01

    Purpose: Relatively recent research documents that visual choral speech, which represents an externally generated form of synchronous visual speech feedback, significantly enhanced fluency in those who stutter. As a consequence, it was hypothesized that self-generated synchronous and asynchronous visual speech feedback would likewise enhance…

  6. Cooperative Learning in Graduate Student Projects: Comparing Synchronous versus Asynchronous Collaboration

    ERIC Educational Resources Information Center

    Strang, Kenneth

    2013-01-01

    Cooperative learning was applied in a graduate project management course to compare the effectiveness of asynchronous versus synchronous online team meetings. An experiment was constructed to allocate students to project teams while ensuring there was a balance of requisite skills, namely systems analysis and design along with HTML/Javascript…

  7. Asynchronous Education: A Blueprint for the Future of Adult Learning.

    ERIC Educational Resources Information Center

    Krueger, Lyle L.; Porter, Cyndi Wilson; Burke, Daniel

    While the distance learning curriculum at Lakeland College (Wisconsin) began 20 years ago, the idea for Lakeland Online was conceived about two and one-half years ago. A variety of delivery modes were considered before discovering Convene software. Since the communication process enabled by the Convene software is asynchronous and requires only a…

  8. Synchronous and Asynchronous Communication in Distance Learning: A Review of the Literature

    ERIC Educational Resources Information Center

    Watts, Lynette

    2016-01-01

    Distance learning is commonplace in higher education, with increasing numbers of students enjoying the flexibility e-learning provides. Keeping students connected with peers and instructors has been a challenge with e-learning, but as technology has advanced, the methods by which educators keep students engaged, synchronously and asynchronously,…

  9. Evaluating the Quality of Interaction in Asynchronous Discussion Forums in Fully Online Courses

    ERIC Educational Resources Information Center

    Nandi, Dip; Hamilton, Margaret; Harland, James

    2012-01-01

    Fully online courses are becoming progressively more popular because of their "anytime anywhere" learning flexibility. One of the ways students interact with each other and with the instructors within fully online learning environments is via asynchronous discussion forums. However, student engagement in online discussion forums does not…

  10. Real-Time Implementation of an Asynchronous Vision-Based Target Tracking System for an Unmanned Aerial Vehicle

    DTIC Science & Technology

    2007-06-01

    Chin Khoon Quek. “Vision Based Control and Target Range Estimation for Small Unmanned Aerial Vehicle.” Master’s Thesis, Naval Postgraduate School...December 2005. [6] Kwee Chye Yap. “Incorporating Target Mensuration System for Target Motion Estimation Along a Road Using Asynchronous Filter

  11. Reflections of Students in Their Use of Asynchronous Online Seminars

    ERIC Educational Resources Information Center

    Groves, Mark; O'Donoghue, John

    2009-01-01

    This paper reports on research that has been carried out into the use, process, and effectiveness of an asynchronous online seminar within an undergraduate sports studies degree programme. Contemporary sources are used to justify the use of technology supported learning (TSL) in higher education and to inform a reflective and critical account of…

  12. Using Asynchronous Electronic Surveys to Help In-Class Revision: A Case Study

    ERIC Educational Resources Information Center

    Tong, Vincent C. H.

    2012-01-01

    Synchronous e-voting systems (commonly known as "clickers") have become increasingly popular as they can be used to enhance interactivity in lectures. Asynchronous electronic surveys (AESs), unlike these voting system, usually serve as a method of gathering feedback before or after teaching sessions. This paper describes and evaluates a project…

  13. Argumentation in a Multi Party Asynchronous Computer Mediated Conference: A Generic Analysis

    ERIC Educational Resources Information Center

    Coffin, Caroline; Painter, Clare; Hewings, Ann

    2005-01-01

    This paper draws on systemic functional linguistic genre analysis to illuminate the way in which post graduate applied linguistics students structure their argumentation within a multi party asynchronous computer mediated conference. Two conference discussions within the same postgraduate course are compared in order to reveal the way in which…

  14. The Socratic Dialogue in Asynchronous Online Discussions: Is Constructivism Redundant?

    ERIC Educational Resources Information Center

    Kingsley, Paul

    2011-01-01

    Purpose: This paper aims to examine Socratic dialogue in asynchronous online discussions in relation to constructivism. The links between theory and practice in teaching are to be discussed whilst tracing the origins of Socratic dialogue and recent trends and use of seminar in research based institutions. Design/methodology/approach: Many online…

  15. Asynchronous Online Peer Assistance: Telephone Messages of Encouragement in Post Licensure Nursing Programs

    ERIC Educational Resources Information Center

    Melrose, Sherri; Swettenham, Steve

    2012-01-01

    Peer assistance activities can strengthen online learning environments. And yet, like other professional adult learners, working post licensure nurses attending university part time to upgrade their credentials may have limited interest in student-to-student interaction. Some intentionally choose asynchronous self-paced courses so they can work on…

  16. Thematic Analysis of the "Games" Students Play in Asynchronous Learning Environments

    ERIC Educational Resources Information Center

    MacMillan, Thalia; Forte, Michele; Grant, Cynthia

    2014-01-01

    The dynamics of the student-student relationship within the asynchronous online classroom, as evidenced by conversations in an online discussion board, is a balancing act potentially more complex than those occurring in real-time. In order for learning to truly be considered effective, a collaborative, safe environment needs to exist among…

  17. Scaffolding Collaborative Argumentation in Asynchronous Discussions with Message Constraints and Message Labels

    ERIC Educational Resources Information Center

    Jeong, Allan; Joung, Sunyoung

    2007-01-01

    This study examined the effects of message constraints and labels on collaborative argumentation in asynchronous online discussions. Thirty-eight undergraduate students in an introductory educational technology course were assigned to one of three groups. In one group, students posted specific types of messages using a prescribed set of message…

  18. Flipping the Online Classroom with Web 2.0: The Asynchronous Workshop

    ERIC Educational Resources Information Center

    Cummings, Lance

    2016-01-01

    This article examines how Web 2.0 technologies can be used to "flip" the online classroom by creating asynchronous workshops in social environments where immediacy and social presence can be maximized. Using experience teaching several communication and writing classes in Google Apps (Google+, Google Hangouts, Google Drive, etc.), I…

  19. Peer Moderation of Asynchronous Online Discussions: An Exploratory Study of Peer E-Moderating Behaviour

    ERIC Educational Resources Information Center

    Ghadirian, Hajar; Ayub, Ahmad Fauzi Mohd

    2017-01-01

    This study explored patterns of e-moderating behaviour students performed when they were assigned as peer moderators of asynchronous online discussions in a reciprocal manner. Eighty-four students from an undergraduate blended course were observed during a 7-week-long online discussions. Using quantitative content analysis peer moderators'…

  20. Asynchronous CMC, Collaboration and the Development of Critical Thinking in a Graduate Seminar in Applied Linguistics

    ERIC Educational Resources Information Center

    Abrams, Zsuzsanna I.

    2005-01-01

    A primary objective of graduate education, and often promoted by peer collaboration tasks, is the development of critical thinking skills. The present study compares how graduate students enrolled in a qualitative research design course in applied linguistics utilized asynchronous computer-mediated communication (ACMC) and face-to-face…

  1. Asynchronous Computer-Mediated Corrective Feedback and the Correct Use of Prepositions: Is It Really Effective?

    ERIC Educational Resources Information Center

    Hosseini, Seyyed Behrooz

    2012-01-01

    An area that has recently attracted increasing attention is providing feedback on learners' writing accuracy through the Internet. However, research in this area has largely focused on synchronous communication, i.e., chatting, with fewer studies assessing asynchronous technologies, i.e., e-mailing. Therefore, this study investigates the…

  2. The Role of Technology-Based Scaffolding in Problem-Based Online Asynchronous Discussion

    ERIC Educational Resources Information Center

    Ak, Serife

    2016-01-01

    This study examined the effects of technology-based scaffolds that were composed through the use of the seven-stage, problem-based learning strategy on knowledge construction in a problem-based online asynchronous discussion. In a quasi-experimental setting, 60 students in an undergraduate Instructional Technology and Material Design course were…

  3. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, H.J.

    1984-05-16

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  4. Factors Affecting Pre-Service Teachers' Participation in Asynchronous Discussion: The Case of Iran

    ERIC Educational Resources Information Center

    Ebrahimi, Alice; Faghih, Esmail; Marandi, Seyyedeh Susan

    2016-01-01

    This study reports on a qualitative small-scale exploratory study which examined the factors influencing 32 Iranian pre-service language teachers' participation in online asynchronous text-based discussion forums. By adopting a multiple case study design and analysing data gathered through semi-structured interviews and participants' online…

  5. A Dynamic Analysis of the Interplay between Asynchronous and Synchronous Communication in Online Learning: The Impact of Motivation

    ERIC Educational Resources Information Center

    Giesbers, B.; Rienties, B.; Tempelaar, D.; Gijselaers, W.

    2014-01-01

    With the increased affordances of synchronous communication tools, more opportunities for online learning to resemble face-to-face settings have recently become available. However, synchronous communication does not afford as much time for reflection as asynchronous communication. Therefore, a combination of synchronous and asynchronous…

  6. An Investigation of Assessment and Feedback Practices in Fully Asynchronous Online Undergraduate Mathematics Courses

    ERIC Educational Resources Information Center

    Trenholm, Sven; Alcock, Lara; Robinson, Carol

    2015-01-01

    Research suggests it is difficult to learn mathematics in the fully asynchronous online (FAO) instructional modality, yet little is known about associated teaching and assessment practices. In this study, we investigate FAO mathematics assessment and feedback practices in particular consideration of both claims and findings that these practices…

  7. An Integrated Approach to Preempt Cheating on Asynchronous, Objective, Online Assessments in Graduate Business Classes

    ERIC Educational Resources Information Center

    Sullivan, Daniel P.

    2016-01-01

    Cheating, left untended, erodes the validity of evaluation and, ultimately, corrupts the legitimacy of a course. We profile an approach to manage, with an eye toward preempting, cheating on asynchronous, objective, online quizzes. This approach taps various technological and social solutions to academic dishonesty, integrating them into a…

  8. An Examination of Computer Engineering Students' Perceptions about Asynchronous Discussion Forums

    ERIC Educational Resources Information Center

    Ozyurt, Ozcan; Ozyurt, Hacer

    2013-01-01

    This study was conducted in order to reveal the usage profiles and perceptions of Asynchronous Discussion Forums (ADFs) of 126 computer engineering students from the Computer Engineering Department in a university in Turkey. By using a mixed methods research design both quantitative and qualitative data were collected and analyzed. Research…

  9. Students' Learning in Asynchronous Discussion Forums: A Meta-Analysis

    ERIC Educational Resources Information Center

    Martono, Fkipuntan; Salam, Urai

    2017-01-01

    Asynchronous discussion forums are among the most preferred tools chosen to foster learning opportunities and knowledge construction. To reveal the cognitive engagement evidenced in the transcripts of the discussion forums, this study presents 51 papers. 17 papers reported research on students' attitude toward the use of ICT for learning, 16…

  10. Student Moderators in Asynchronous Online Discussion: A Question of Questions

    ERIC Educational Resources Information Center

    Zingaro, Daniel

    2012-01-01

    Much current research exalts the benefits of having students facilitate weekly discussions in asynchronous online courses. This study seeks to add to what is known about student moderation through an analysis of the types of questions students use to spur each discussion. Prior experimental work has demonstrated that the types of questions posed…

  11. Content Analysis Coding Schemes for Online Asynchronous Discussion

    ERIC Educational Resources Information Center

    Weltzer-Ward, Lisa

    2011-01-01

    Purpose: Researchers commonly utilize coding-based analysis of classroom asynchronous discussion contributions as part of studies of online learning and instruction. However, this analysis is inconsistent from study to study with over 50 coding schemes and procedures applied in the last eight years. The aim of this article is to provide a basis…

  12. Does the Medium Dictate the Message? Cultivating E-Communication in an Asynchronous Environment.

    ERIC Educational Resources Information Center

    Kiernan, Mary; Thomas, Pete; Woodroffe, Mark

    Virtual learning environments (VLEs) are often perceived by education establishments as an opportunity to widen access without traditional overheads. An integral part of most VLEs is asynchronous computer conferencing and on-line moderators must help students migrate quickly to the new virtual environment to minimize learning disruption. This…

  13. An Investigation of Student Practices in Asynchronous Computer Conferencing Courses

    ERIC Educational Resources Information Center

    Peters, Vanessa L.; Hewitt, Jim

    2010-01-01

    This study investigated the online practices of students enrolled in graduate-level distance education courses. Using interviews and a questionnaire as data sources, the study sought to: (a) identify common practices that students adopt in asynchronous discussions, and (b) gain an understanding of why students adopt them. An analysis of the data…

  14. Architecture and inherent robustness of a bacterial cell-cycle control system.

    PubMed

    Shen, Xiling; Collier, Justine; Dill, David; Shapiro, Lucy; Horowitz, Mark; McAdams, Harley H

    2008-08-12

    A closed-loop control system drives progression of the coupled stalked and swarmer cell cycles of the bacterium Caulobacter crescentus in a near-mechanical step-like fashion. The cell-cycle control has a cyclical genetic circuit composed of four regulatory proteins with tight coupling to processive chromosome replication and cell division subsystems. We report a hybrid simulation of the coupled cell-cycle control system, including asymmetric cell division and responses to external starvation signals, that replicates mRNA and protein concentration patterns and is consistent with observed mutant phenotypes. An asynchronous sequential digital circuit model equivalent to the validated simulation model was created. Formal model-checking analysis of the digital circuit showed that the cell-cycle control is robust to intrinsic stochastic variations in reaction rates and nutrient supply, and that it reliably stops and restarts to accommodate nutrient starvation. Model checking also showed that mechanisms involving methylation-state changes in regulatory promoter regions during DNA replication increase the robustness of the cell-cycle control. The hybrid cell-cycle simulation implementation is inherently extensible and provides a promising approach for development of whole-cell behavioral models that can replicate the observed functionality of the cell and its responses to changing environmental conditions.

  15. Parallel design of JPEG-LS encoder on graphics processing units

    NASA Astrophysics Data System (ADS)

    Duan, Hao; Fang, Yong; Huang, Bormin

    2012-01-01

    With recent technical advances in graphic processing units (GPUs), GPUs have outperformed CPUs in terms of compute capability and memory bandwidth. Many successful GPU applications to high performance computing have been reported. JPEG-LS is an ISO/IEC standard for lossless image compression which utilizes adaptive context modeling and run-length coding to improve compression ratio. However, adaptive context modeling causes data dependency among adjacent pixels and the run-length coding has to be performed in a sequential way. Hence, using JPEG-LS to compress large-volume hyperspectral image data is quite time-consuming. We implement an efficient parallel JPEG-LS encoder for lossless hyperspectral compression on a NVIDIA GPU using the computer unified device architecture (CUDA) programming technology. We use the block parallel strategy, as well as such CUDA techniques as coalesced global memory access, parallel prefix sum, and asynchronous data transfer. We also show the relation between GPU speedup and AVIRIS block size, as well as the relation between compression ratio and AVIRIS block size. When AVIRIS images are divided into blocks, each with 64×64 pixels, we gain the best GPU performance with 26.3x speedup over its original CPU code.

  16. Asynchronous Replication and Autosome-Pair Non-Equivalence in Human Embryonic Stem Cells

    PubMed Central

    Dutta, Devkanya; Ensminger, Alexander W.; Zucker, Jacob P.; Chess, Andrew

    2009-01-01

    A number of mammalian genes exhibit the unusual properties of random monoallelic expression and random asynchronous replication. Such exceptional genes include genes subject to X inactivation and autosomal genes including odorant receptors, immunoglobulins, interleukins, pheromone receptors, and p120 catenin. In differentiated cells, random asynchronous replication of interspersed autosomal genes is coordinated at the whole chromosome level, indicative of chromosome-pair non-equivalence. Here we have investigated the replication pattern of the random asynchronously replicating genes in undifferentiated human embryonic stem cells, using fluorescence in situ hybridization based assay. We show that allele-specific replication of X-linked genes and random monoallelic autosomal genes occur in human embryonic stem cells. The direction of replication is coordinated at the whole chromosome level and can cross the centromere, indicating the existence of autosome-pair non-equivalence in human embryonic stem cells. These results suggest that epigenetic mechanism(s) that randomly distinguish between two parental alleles are emerging in the cells of the inner cell mass, the source of human embryonic stem cells. PMID:19325893

  17. Air Temperature Distribution Measurement Using Asynchronous-Type Sound Probe

    NASA Astrophysics Data System (ADS)

    Katano, Yosuke; Wakatsuki, Naoto; Mizutani, Koichi

    2009-07-01

    In conventional temperature measurement using a sound probe, the operation beginnings of two acoustic sensors must be completely synchronized to measure time of flight (TOF), tf, because the precision of synchronization determines TOF measurement accuracy. A wireless local area network (LAN) is convenient for constructing a sensing grid; however, it causes a fluctuation in the delay of millisecond order. Therefore, it cannot provide sufficient precision for synchronizing acoustic sensors. In previous studies, synchronization was achieved by a trigger line using a coaxial cable; however, the cable reduces the flexibility of a wireless sensing grid especially in larger-scale measurement. In this study, an asynchronous-type sound probe is devised to compensate for the effect of the delay of millisecond order caused by the network. The validity of the probe was examined, and the air temperature distribution was measured using this means. A matrix method is employed to obtain the distribution. Similar results were observed using both asynchronous-type sound probes and thermocouples. This shows the validity of the use of a sensing grid with an asynchronous-type sound probe for temperature distribution measurement even if the trigger line is omitted.

  18. Research on navigation of satellite constellation based on an asynchronous observation model using X-ray pulsar

    NASA Astrophysics Data System (ADS)

    Guo, Pengbin; Sun, Jian; Hu, Shuling; Xue, Ju

    2018-02-01

    Pulsar navigation is a promising navigation method for high-altitude orbit space tasks or deep space exploration. At present, an important reason for restricting the development of pulsar navigation is that navigation accuracy is not high due to the slow update of the measurements. In order to improve the accuracy of pulsar navigation, an asynchronous observation model which can improve the update rate of the measurements is proposed on the basis of satellite constellation which has a broad space for development because of its visibility and reliability. The simulation results show that the asynchronous observation model improves the positioning accuracy by 31.48% and velocity accuracy by 24.75% than that of the synchronous observation model. With the new Doppler effects compensation method in the asynchronous observation model proposed in this paper, the positioning accuracy is improved by 32.27%, and the velocity accuracy is improved by 34.07% than that of the traditional method. The simulation results show that without considering the clock error will result in a filtering divergence.

  19. Asynchronous hatching and food limitation: A test of Lack's hypothesis

    USGS Publications Warehouse

    Skagen, Susan Knight

    1988-01-01

    Lack's (1954, 1968) hypothesis that asynchronous hatching of altricial birds is an adaptive response to unpredictable food shortages during the breeding season was examined in the highly granivorous Zebra Finch (Poephila guttata). I compared growth and survival of nestlings in asynchronous and artificially created synchronous broods reared under food-limited and food-abundant conditions in an aviary. I also examined the role of parental experience on survival and growth of nestlings.There was no differential mortality of Zebra Finch nestlings due to either asynchrony or food abundance. Young in abundant food treatments grew more rapidly, however, than those in food-restricted treatments. Heaviest Zebra Finch nestlings in a brood grew more quickly than their lightest siblings when food was limited, supporting Lack's hypothesis. Further, differential survival of light and heavy siblings occurred when food was abundant, suggesting that asynchronous hatching can be maladaptive under some ecological conditions. Nestlings reared by inexperienced parents suffered greater mortality and slower growth when food was abundant than nestlings raised by experienced parents. Prefledging mass was correlated with size at adulthood

  20. Neighbor Discovery Algorithm in Wireless Local Area Networks Using Multi-beam Directional Antennas

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Peng, Wei; Liu, Song

    2017-10-01

    Neighbor discovery is an important step for Wireless Local Area Networks (WLAN) and the use of multi-beam directional antennas can greatly improve the network performance. However, most neighbor discovery algorithms in WLAN, based on multi-beam directional antennas, can only work effectively in synchronous system but not in asynchro-nous system. And collisions at AP remain a bottleneck for neighbor discovery. In this paper, we propose two asynchrono-us neighbor discovery algorithms: asynchronous hierarchical scanning (AHS) and asynchronous directional scanning (ADS) algorithm. Both of them are based on three-way handshaking mechanism. AHS and ADS reduce collisions at AP to have a good performance in a hierarchical way and directional way respectively. In the end, the performance of the AHS and ADS are tested on OMNeT++. Moreover, it is analyzed that different application scenarios and the factors how to affect the performance of these algorithms. The simulation results show that AHS is suitable for the densely populated scenes around AP while ADS is suitable for that most of the neighborhood nodes are far from AP.

  1. A formal model of asynchronous communication and its use in mechanically verifying a biphase mark protocol

    NASA Technical Reports Server (NTRS)

    Moore, J. Strother

    1992-01-01

    In this paper we present a formal model of asynchronous communication as a function in the Boyer-Moore logic. The function transforms the signal stream generated by one processor into the signal stream consumed by an independently clocked processor. This transformation 'blurs' edges and 'dilates' time due to differences in the phases and rates of the two clocks and the communications delay. The model can be used quantitatively to derive concrete performance bounds on asynchronous communications at ISO protocol level 1 (physical level). We develop part of the reusable formal theory that permits the convenient application of the model. We use the theory to show that a biphase mark protocol can be used to send messages of arbitrary length between two asynchronous processors. We study two versions of the protocol, a conventional one which uses cells of size 32 cycles and an unconventional one which uses cells of size 18. We conjecture that the protocol can be proved to work under our model for smaller cell sizes and more divergent clock rates but the proofs would be harder.

  2. Quasi-perfect FIFO: Synchronous or asynchronous with application in controller design for the UNICON laser memory. [digital memory and buffer storage

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1974-01-01

    The first-in-first-out memory buffer (FIFO), is an elastic digital memory whose main application is in data buffering between devices operating at different rates. Data written into the top is moved autonomously down toward the bottom of the FIFO to the lowest unoccupied location, and data read from the bottom of the FIFO will cause data from the top to move autonomously down toward the bottom. The FIFO is available in MOS LSI asynchronous form with data rate in the 1 MHz region. The FIFO described yields a simple high-speed iterative implementation, either synchronous of asynchronous. Because of this simple iterative structure, the FIFO is expandable in both number of words and bits per word, and it is attractive from the viewpoint of integrated-circuit production. For the synchronous FIFO, a model was built and successfully used in the controller for the UNICON laser memory. For the asynchronous FIFO, a model was built and also successfully used in a high-performance magnetic tape controller.

  3. Exploring Online Asynchronous Counseling With Tobacco Treatment Specialists in the QUIT-PRIMO and National Dental PBRN HI-QUIT Studies: Who Uses It and What Do They Say?

    PubMed

    Williams, Jessica H; DeLaughter, Kathryn; Volkman, Julie E; Sadasivam, Rajani S; Ray, Midge N; Gilbert, Gregg H; Houston, Thomas K

    2018-06-01

    To describe the content of messages sent by smokers through asynchronous counseling within a Web-based smoking cessation intervention. Qualitative. National community-based setting of patients who had been engaged by the medical or dental practices at which they attended or via Google advertisements. Adults older than 19 years who were current smokers and interested in quitting. Participants throughout the United States referred to a Web-based cessation intervention by their medical or dental provider or by clicking on a Google advertisement. We conducted a qualitative review of 742 asynchronous counseling messages sent by 270 Web site users. Messages were reviewed, analyzed, and organized into qualitative themes by the investigative team. The asynchronous counseling feature of the intervention was used most frequently by smokers who were white (87%), female (67%), aged 45 to 54 (32%), and who had at least some college-level education (70%). Qualitative analysis yielded 7 basic themes-Talk about the Process of Quitting, Barriers to Quitting, Reasons to Quit, Quit History, Support and Strategies for Quitting, Quitting with Medication, and Quit Progress. The most common theme was Support and Strategies for Quitting with 255 references among all messages. We found rich communication across the spectrum of the quit process, from persons preparing to quit to those who had successfully quit. Asynchronous smoking cessation counseling provides a promising means of social support for smokers during the quit process.

  4. Hatching behavior of eastern long-necked turtles (Chelodina longicollis): The influence of asynchronous environments on embryonic heart rate and phenotype.

    PubMed

    McGlashan, Jessica K; Loudon, Fiona K; Thompson, Michael B; Spencer, Ricky-John

    2015-10-01

    Variable temperatures within a nest cause asynchronous development within clutches of freshwater turtle embryos, yet synchronous hatching occurs and is thought to be an important survival strategy for hatchlings. Metabolic compensation and circadian rhythms in heart rates of embryonic turtles indicate the potential of communication between embryos in a nest. Heart rates were used to identify metabolic circadian rhythms in clutches of an Australian freshwater turtle (Chelodina longicollis) and determine whether embryos metabolically compensate and hatch synchronously when incubated in asynchronous environments. The effects of a group environment during incubation on egg development and incubation period were also investigated during the final 3 weeks of development. Chelodina longicollis hatch synchronously and metabolically compensate so that less advanced embryos catch up to more advanced clutch-mates. Heart rates of embryos remained stable from week 4-7 in asynchronous (M=89 bpm) and synchronous (M=92 bpm) groups and declined in the final 2 weeks of incubation (M=72 and 77 bpm). Circadian rhythms were present throughout development and diel heart rates of embryos in asynchronous groups showed less deviation from the mean (M=-0.5 bpm) than synchronous groups (M=-4 bpm). Eggs incubated in groups had a significantly shorter incubation period than eggs incubated individually. Phenotypic traits including size, performance, and growth of all hatchlings were not affected. Egg position within a turtle nest is important for coordinating development throughout incubation and facilitating synchronous hatching. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Telemedicine for children with developmental disabilities: a more effective clinical process than office-based care.

    PubMed

    Langkamp, Diane L; McManus, Mark D; Blakemore, Susan D

    2015-02-01

    The literature on the use of telemedicine for children with developmental disabilities (DD) is limited and mostly describes telemedicine being used to link patients with distant subspecialty multidisciplinary care. Parents generally have reported satisfaction with such care and have perceived it to be equally effective as in-person care. Here we report on the use of school-based asynchronous telemedicine to connect children with DD with primary care providers. We developed Tele-Health-Kids, a school-based program using asynchronous telemedicine to connect children with DD with their primary care physician for the care of minor illnesses. We surveyed parents at enrollment and after the child's first telemedicine visit to assess satisfaction. We describe 4 cases that illustrate benefits, particularly for children with DD and challenging behaviors, suggesting that asynchronous telemedicine may actually be superior to traditional in-office visits in some circumstances. Most parents expressed a high level of satisfaction with the program. Benefits identified include decreased stress to the child and the parents as well as increasing the likelihood of a successful medical examination due to greater cooperation by the child. Visits using asynchronous or "store and forward" telemedicine technology may be superior in some situations by allowing the visit to be performed at a pace that can be adjusted to the needs of the child with DD. More research in the use of asynchronous telemedicine for children and youth with DD, particularly for children with DD and challenging behaviors, is needed.

  6. Area/latency optimized early output asynchronous full adders and relative-timed ripple carry adders.

    PubMed

    Balasubramanian, P; Yamashita, S

    2016-01-01

    This article presents two area/latency optimized gate level asynchronous full adder designs which correspond to early output logic. The proposed full adders are constructed using the delay-insensitive dual-rail code and adhere to the four-phase return-to-zero handshaking. For an asynchronous ripple carry adder (RCA) constructed using the proposed early output full adders, the relative-timing assumption becomes necessary and the inherent advantages of the relative-timed RCA are: (1) computation with valid inputs, i.e., forward latency is data-dependent, and (2) computation with spacer inputs involves a bare minimum constant reverse latency of just one full adder delay, thus resulting in the optimal cycle time. With respect to different 32-bit RCA implementations, and in comparison with the optimized strong-indication, weak-indication, and early output full adder designs, one of the proposed early output full adders achieves respective reductions in latency by 67.8, 12.3 and 6.1 %, while the other proposed early output full adder achieves corresponding reductions in area by 32.6, 24.6 and 6.9 %, with practically no power penalty. Further, the proposed early output full adders based asynchronous RCAs enable minimum reductions in cycle time by 83.4, 15, and 8.8 % when considering carry-propagation over the entire RCA width of 32-bits, and maximum reductions in cycle time by 97.5, 27.4, and 22.4 % for the consideration of a typical carry chain length of 4 full adder stages, when compared to the least of the cycle time estimates of various strong-indication, weak-indication, and early output asynchronous RCAs of similar size. All the asynchronous full adders and RCAs were realized using standard cells in a semi-custom design fashion based on a 32/28 nm CMOS process technology.

  7. Refining an Asynchronous Telerehabilitation Platform for Speech-Language Pathology: Engaging End-Users in the Process

    PubMed Central

    Hill, Annie J.; Breslin, Hugh M.

    2016-01-01

    Asynchronous telerehabilitation in which computer-based interventions are remotely monitored and adapted offline is an emerging service delivery model in the rehabilitation of communication disorders. The asynchronous nature of this model may hold a benefit over its synchronous counterpart by eliminating scheduling issues and thus improving efficiency in a healthcare landscape of constrained resource allocation. The design of asynchronous telerehabilitation platforms should therefore ensure efficiency and flexibility. The authors have been engaged in a program of research to develop and evaluate an asynchronous telerehabilitation platform for use in speech-language pathology. eSALT is a novel asynchronous telerehabilitation platform in which clinicians design and individualize therapy tasks for transfer to a client's mobile device. An inbuilt telerehabilitation module allows for remote monitoring and updating of tasks. This paper introduces eSALT and reports outcomes from an usability study that considered the needs of two end-user groups, people with aphasia and clinicians, in the on-going refinement of eSALT. In the study participants with aphasia were paired with clinicians who used eSALT to design and customize therapy tasks. After training on the mobile device the participants engaged in therapy at home for a period of 3 weeks, while clinicians remotely monitored and updated tasks. Following the home trial, participants, and clinicians engaged in semi-structured interviews and completed surveys on the usability of eSALT and their satisfaction with the platform. Content analysis of data involving five participants and three clinicians revealed a number of usability themes including ease of use, user support, satisfaction, limitations, and potential improvements. These findings were translated into a number of refinements of the eSALT platform including the development of a client interface for use on the Apple iPad®, greater variety in feedback options to both the participant and clinician, automatic transfer of results to the clinician, and expansion of the task template list. This research highlights the importance of including end-users in the process of technology refinement, in order to ensure effective and efficient use of the technology. Future directions for research are discussed including clinical trials in which the effectiveness of and adherence to intervention protocols using asynchronous telerehabilitation are examined. PMID:28066211

  8. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb

    PubMed Central

    Burton, Shawn D.

    2015-01-01

    Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE STATEMENT Inhibitory granule cells are involved critically in shaping odor-evoked principal neuron activity in the mammalian olfactory bulb, yet little is known about how sensory input activates granule cells. Here, we show that sensory input to the olfactory bulb evokes a barrage of asynchronous synaptic excitation and highly reliable, short-latency synaptic inhibition onto granule cells via a disynaptic feedforward inhibitory circuit involving deep short-axon cells. Feedforward inhibition attenuates local depolarization within granule cell dendritic branches, interacts with asynchronous excitation to suppress granule cell spike-timing precision, and scales in strength with excitation across different levels of sensory input to normalize granule cell firing rates. PMID:26490853

  9. Design and construction of a double inversion recombination switch for heritable sequential genetic memory.

    PubMed

    Ham, Timothy S; Lee, Sung K; Keasling, Jay D; Arkin, Adam P

    2008-07-30

    Inversion recombination elements present unique opportunities for computing and information encoding in biological systems. They provide distinct binary states that are encoded into the DNA sequence itself, allowing us to overcome limitations posed by other biological memory or logic gate systems. Further, it is in theory possible to create complex sequential logics by careful positioning of recombinase recognition sites in the sequence. In this work, we describe the design and synthesis of an inversion switch using the fim and hin inversion recombination systems to create a heritable sequential memory switch. We have integrated the two inversion systems in an overlapping manner, creating a switch that can have multiple states. The switch is capable of transitioning from state to state in a manner analogous to a finite state machine, while encoding the state information into DNA. This switch does not require protein expression to maintain its state, and "remembers" its state even upon cell death. We were able to demonstrate transition into three out of the five possible states showing the feasibility of such a switch. We demonstrate that a heritable memory system that encodes its state into DNA is possible, and that inversion recombination system could be a starting point for more complex memory circuits. Although the circuit did not fully behave as expected, we showed that a multi-state, temporal memory is achievable.

  10. Design and Construction of a Double Inversion Recombination Switch for Heritable Sequential Genetic Memory

    PubMed Central

    Ham, Timothy S.; Lee, Sung K.; Keasling, Jay D.; Arkin, Adam P.

    2008-01-01

    Background Inversion recombination elements present unique opportunities for computing and information encoding in biological systems. They provide distinct binary states that are encoded into the DNA sequence itself, allowing us to overcome limitations posed by other biological memory or logic gate systems. Further, it is in theory possible to create complex sequential logics by careful positioning of recombinase recognition sites in the sequence. Methodology/Principal Findings In this work, we describe the design and synthesis of an inversion switch using the fim and hin inversion recombination systems to create a heritable sequential memory switch. We have integrated the two inversion systems in an overlapping manner, creating a switch that can have multiple states. The switch is capable of transitioning from state to state in a manner analogous to a finite state machine, while encoding the state information into DNA. This switch does not require protein expression to maintain its state, and “remembers” its state even upon cell death. We were able to demonstrate transition into three out of the five possible states showing the feasibility of such a switch. Conclusions/Significance We demonstrate that a heritable memory system that encodes its state into DNA is possible, and that inversion recombination system could be a starting point for more complex memory circuits. Although the circuit did not fully behave as expected, we showed that a multi-state, temporal memory is achievable. PMID:18665232

  11. Participation in Asynchronous Online Discussion Forums Does Improve Student Learning of Gross Anatomy

    ERIC Educational Resources Information Center

    Green, Rodney A.; Farchione, Davide; Hughes, Diane L.; Chan, Siew-Pang

    2014-01-01

    Asynchronous online discussion forums are common in blended learning models and are popular with students. A previous report has suggested that participation in these forums may assist student learning in a gross anatomy subject but it was unclear as to whether more academically able students post more often or whether participation led to…

  12. Online-BSEE (Online Bachelor of Science in Electrical Engineering): An Asynchronous Online Electrical Engineering Degree Program with Laboratory

    ERIC Educational Resources Information Center

    Tang, Wendy; Westgate, Charles; Liu, Pao-Lo; Gouzman, Michael

    2014-01-01

    The Online Bachelor of Science in Electrical Engineering is a collaborative effort among three University Centers at SUNY (State University of New York), namely Stony Brook, Binghamton, and Buffalo. The program delivers the complete electrical engineering curriculum at the bachelor level to students online and asynchronously. Students, however,…

  13. Use of Podcasting as an Innovative Asynchronous E-Learning Tool for Students

    ERIC Educational Resources Information Center

    Jalali, Alireza; Leddy, John; Gauthier, Martin; Sun, Rong; Hincke, Maxwell; Carnegie, Jacqueline

    2011-01-01

    Podcasting is an innovative, asynchronous communication tool. A pilot study was conducted to assess the utility of podcasting as an educational tool for undergraduate medical students. A paper-and-pencil questionnaire was developed and distributed to the 40 first-year students enrolled in the francophone stream of the medical curriculum at the…

  14. A Comparison of Asynchronous Online Text-Based Lectures and Synchronous Interactive Web Conferencing Lectures

    ERIC Educational Resources Information Center

    Skylar, Ashley Ann

    2009-01-01

    Online learning environments are more prevalent in teacher education than ever before. In 2009, many instructors are attempting to emulate traditional instructional methods in the online learning environment as much as possible. Online courses are separated into two categories, (1) asynchronous; and (2) synchronous, depending on the nature of the…

  15. Educational Outcomes of Synchronous and Asynchronous High School Students: A Quantitative Causal-Comparative Study of Online Algebra 1

    ERIC Educational Resources Information Center

    Berry, Sharon

    2017-01-01

    This study used a quantitative, causal-comparative design. It compared educational outcome data from online Algebra 1 courses to determine if a significant difference existed between synchronous and asynchronous students for end-of-course grades, state assessments scores, and student perceptions of their course. The study found that synchronous…

  16. The Effectiveness of Synchronous and Asynchronous Written Corrective Feedback on Grammatical Accuracy in a Computer-Mediated Environment

    ERIC Educational Resources Information Center

    Shintani, Natsuko; Aubrey, Scott

    2016-01-01

    This study extends research on written corrective feedback (CF) by investigating how timing of CF affects grammar acquisition. Specifically, it examined the relative effects of synchronous and asynchronous CF on the accurate use of the hypothetical conditional structure. Participants were 68 intermediate-level students of English at a university…

  17. Microanalytic Case studies of Individual Participation Patterns in an Asynchronous Online Discussion in an Undergraduate Blended Course

    ERIC Educational Resources Information Center

    Wise, Alyssa Friend; Perera, Nishan; Hsiao, Ying-Ting; Speer, Jennifer; Marbouti, Farshid

    2012-01-01

    This study presents three case studies of students' participation patterns in an online discussion to address the gap in our current understanding of how "individuals" experience asynchronous learning environments. Cases were constructed via microanalysis of log-file data, post contents, and the evolving discussion structure. The first student was…

  18. Collaborative Learning Processes in an Asynchronous Environment: An Analysis through Discourse and Social Networks

    ERIC Educational Resources Information Center

    Tirado, Ramon; Aguaded, Ignacio; Hernando, Angel

    2011-01-01

    This article analyses an experience in collaborative learning in an asynchronous writing environment through discussion forums on a WebCt platform of the University of Huelva's virtual campus, and was part of an innovative teaching project in 2007-08. The main objectives are to describe the processes of collaborative knowledge construction and the…

  19. Asynchronous Online Access as an Accommodation on Students with Learning Disabilities and/or Attention-Deficit Hyperactivity Disorders in Postsecondary STEM Courses

    ERIC Educational Resources Information Center

    Graves, Laura; Asunda, Paul A.; Plant, Stacey J.; Goad, Chester

    2011-01-01

    The purpose of this study was to investigate whether asynchronous online access of course recordings was beneficial to students with learning disabilities (LD) and/or Attention Deficit/Hyperactivity Disorder (ADHD) enrolled in science, technology, engineering, and mathematics (STEM) courses. Data were collected through semi-structured interviews…

  20. Digging beneath the Surface: Analyzing the Complexity of Instructors' Participation in Asynchronous Discussion

    ERIC Educational Resources Information Center

    Clarke, Lane Whitney; Bartholomew, Audrey

    2014-01-01

    The purpose of this study was to investigate instructor participation in asynchronous discussions through an in-depth content analysis of instructors' postings and comments through the Community of Inquiry (COI) framework (Garrison et. al, 2001). We developed an analytical tool based on this framework in order to better understand what instructors…

  1. Writer L1/L2 Status and Asynchronous Online Writing Center Feedback: Consultant Response Patterns

    ERIC Educational Resources Information Center

    Weirick, Joshua; Davis, Tracy; Lawson, Daniel

    2017-01-01

    This case study examines the differences in comments offered by asynchronous online writing center consultants to L1 and L2 speakers and examines the potential disconnects in consultant perceptions of their practice. The researchers collected and coded sample papers and interviewed participants to contextualize data from the quantitative portion…

  2. Reconceptualising Moderation in Asynchronous Online Discussions Using Grounded Theory

    ERIC Educational Resources Information Center

    Vlachopoulos, Panos; Cowan, John

    2010-01-01

    This article reports a grounded theory study of the moderation of asynchronous online discussions, to explore the processes by which tutors in higher education decide when and how to moderate. It aims to construct a theory of e-moderation based on some key factors which appear to influence e-moderation. It discusses previous research on the…

  3. Exploring Singapore Primary School Students' Perceptions of Chinese Asynchronous Online Discussions

    ERIC Educational Resources Information Center

    Chin, Wong Wan; Sum, Cheung Wing; Foon, Hew Khe

    2008-01-01

    Background: Asynchronous online discussion (AOD) has found widespread use in tertiary education and adult learning environment; however, there has been little research on its use in elementary school, especially in the context of the teaching of the Chinese Language. This study explores the use of AOD in a Chinese Language class in a primary…

  4. Synchronous and Asynchronous Text-Based CMC in Educational Contexts: A Review of Recent Research

    ERIC Educational Resources Information Center

    Johnson, Genevieve, Marie

    2006-01-01

    This paper presents a review of recent research that examines the relative instructional utility of text-based synchronous and asynchronous computer-mediated communication (CMC). As a mechanism for limiting the number of studies reviewed as well as controlling for emergent technologies, only research published since 2000 was reviewed. The goal was…

  5. Asynchronous Knowledge Sharing and Conversation Interaction Impact on Grade in an Online Business Course

    ERIC Educational Resources Information Center

    Strang, Kenneth David

    2011-01-01

    Student knowledge sharing and conversation theory interactions were coded from asynchronous discussion forums to measure the effect of learning-oriented utterances on academic performance. The sample was 3 terms of an online business course (in an accredited MBA program) at a U.S.-based university. Correlation, stepwise regression, and multiple…

  6. A Study of Synchronous versus Asynchronous Collaboration in an Online Business Writing Class

    ERIC Educational Resources Information Center

    Mabrito, Mark

    2006-01-01

    A case study examined the collaborative experiences of students in an online business writing classroom. The purpose was to examine the same groups of students working on collaborative writing assignments in both a synchronous (real-time) and an asynchronous (non-real-time) discussion forum. This study focused on examining the amount, pattern, and…

  7. Distributed Training for the Reserve Component: Remote Delivery Using Asynchronous Computer Conferencing.

    ERIC Educational Resources Information Center

    Hahn, H. A.; And Others

    The purposes of this research were to evaluate the cost effectiveness of using Asynchronous Computer Conferencing (ACC) and to develop guidelines for effectively conducting high quality military training using ACC. The evaluation used a portion of the Engineer Officer Advanced Course (EOAC) as a test bed. Course materials which taught the same…

  8. Interaction and Critical Inquiry in Asynchronous Computer-Mediated Conferencing: A Research Agenda

    ERIC Educational Resources Information Center

    Hopkins, Joseph; Gibson, Will; Ros i. Sole, Cristina; Savvides, Nicola; Starkey, Hugh

    2008-01-01

    This paper reviews research on learner and tutor interaction in asynchronous computer-mediated (ACM) conferences used in distance learning. The authors note claims made for the potential of ACM conferences to promote higher-order critical inquiry and the social construction of knowledge, and argue that there is a general lack of evidence regarding…

  9. Analysis of an Asynchronous Online Discussion as a Supportive Model for Peer Collaboration and Reflection in Teacher Education

    ERIC Educational Resources Information Center

    Plešec Gasparic, Romina; Pecar, Mojca

    2016-01-01

    Professional development of future teachers is based on connecting theory and practice with the aim of supporting and developing critical, independent, responsible decision-making and active teaching. With this aim we designed a blended learning environment with an asynchronous online discussion, enabling collaboration and reflection even when…

  10. Comparing Face-To-Face and Asynchronous Online Communication as Mechanisms for Critical Reflective Dialogue

    ERIC Educational Resources Information Center

    Salter, Susan; Douglas, Tracy; Kember, David

    2017-01-01

    Two mechanisms for engaging in critical reflective dialogue are discussed and compared: face-to-face meetings and asynchronous online discussion. The context is an umbrella action research project, with over 20 participants, which aimed to improve practices in online teaching and contribute to the development of graduate attributes. The article…

  11. Using Asynchronous Video to Achieve Instructor Immediacy and Closeness in Online Classes: Experiences from Three Cases

    ERIC Educational Resources Information Center

    Griffiths, Michael; Graham, Charles

    2010-01-01

    This research sought to understand the experiences of students and instructors with asynchronous video (video-mail) using webcams in three online sections of teacher education classes at Brigham Young University. We examined the experiences of students through scores and comments posted in student ratings surveys, and the experiences of…

  12. Toward Personal and Emotional Connectivity in Mobile Higher Education through Asynchronous Formative Audio Feedback

    ERIC Educational Resources Information Center

    Rasi, Päivi; Vuojärvi, Hanna

    2018-01-01

    This study aims to develop asynchronous formative audio feedback practices for mobile learning in higher education settings. The development was conducted in keeping with the principles of design-based research. The research activities focused on an inter-university online course, within which the use of instructor audio feedback was tested,…

  13. Asynchronous online foresight panels: the case of wildfire management

    Treesearch

    David N. Bengston; Robert L. Olson

    2015-01-01

    Text-based asynchronous online conferencing involves structured online discussion and deliberation among multiple participants from multiple sites in which there is a delay in interaction between contributors. This method has been widely used for a variety of purposes in higher education and other settings, but has not been commonly used in futures research. This paper...

  14. Effects of Synchronous and Asynchronous Computer-Mediated Communication (CMC) Oral Conversations on English Language Learners' Discourse Functions

    ERIC Educational Resources Information Center

    AbuSeileek, Ali Farhan; Qatawneh, Khaleel

    2013-01-01

    This study aimed to explore the effects of synchronous and asynchronous computer mediated communication (CMC) oral discussions on question types and strategies used by English as a Foreign Language (EFL) learners. The participants were randomly assigned to two treatment conditions/groups; the first group used synchronous CMC, while the second…

  15. Introducing Group-Based Asynchronous Learning to Business Education. Reflections on Effective Course Design and Delivery

    ERIC Educational Resources Information Center

    Walker, Richard; Arnold, Ivo

    2004-01-01

    This paper explores the contribution of virtual tools to student learning within full-time management programmes. More specifically, the paper focuses on asynchronous communication tools, considering the scope they offer for group-based collaborative learning outside the classroom. We report on the effectiveness of this approach for an economics…

  16. Student Perceptions of Asynchronous Multimodal Instructor Feedback: A Multiple Case Study

    ERIC Educational Resources Information Center

    Lenards, Nishele Dyan

    2017-01-01

    Student dissatisfaction has been a problem in higher education with regard to the provision of assessment-related feedback. Due to the distant nature of online learning, instructors are faced with many challenges in delivering quality feedback because the communication is asynchronous and lacks social cues that are present in a F2F environment.…

  17. Students' Perceptions of Online Discussions, Participation and E-Moderation Behaviours in Peer-Moderated Asynchronous Online Discussions

    ERIC Educational Resources Information Center

    Ghadirian, Hajar; Fauzi Mohd Ayub, Ahmad; Salehi, Keyvan

    2018-01-01

    The aim of this study was to investigate the relationships between students' perceptions of online discussions, participation and e-moderation behaviours in peer-moderated asynchronous online discussions. Using survey data, the learning system's activity log and discussion transcripts, the authors analysed how 84 learners' perceptions of online…

  18. Three-Dimensional Temperature Field Simulation for the Rotor of an Asynchronous Motor

    ERIC Educational Resources Information Center

    Wang, Yanwu; Fan, Chunli; Yang, Li; Sun, Fengrui

    2010-01-01

    A three-dimensional heat transfer model is built according to the rotor structure of an asynchronous motor, and three-dimensional temperature fields of the rotor under different working conditions, such as the unloaded, rated loaded and that with broken rotor bars, are studied based on the finite element numerical method and experiments. The…

  19. Bully Proofing Your Twice-Exceptional Child

    ERIC Educational Resources Information Center

    Mohammed, Amra

    2018-01-01

    Twice-exceptional (2E) students are those who demonstrate a gift or talent in one or more areas and have a disability in another area. One identifying characteristic of 2E children is asynchronous development, or the display of unusual talent or maturity in one or more areas alongside a struggle to develop in other areas. Asynchronous development…

  20. The Effect of Asynchronous/Synchronous Approaches on English Vocabulary Achievement: A Study of Iranian EFL Learners

    ERIC Educational Resources Information Center

    Khodaparast, Fatemeh; Ghafournia, Narjes

    2015-01-01

    The contribution of computer-assisted instructional programs to language learning process has been the focus of researchers for about two decades. However, the effect of synchronous and asynchronous computer-assisted approaches of language teaching on improving L2 vocabulary has been scarcely investigated. This study explored whether synchronous,…

Top