Science.gov

Sample records for atenuada del virus

  1. Serologic evidence of Jamestown Canyon and Keystone virus infection in vertebrates of the DelMarVa Peninsula.

    PubMed

    Watts, D M; LeDuc, J W; Bailey, C L; Dalrymple, J M; Gargan, T P

    1982-11-01

    Serological data accumulated during the past decade indicated that a variety of feral and domestic animals of the Delaware-Maryland-Virginia (DelMarVa) Peninsula were infected with Jamestown Canyon (JC) and/or Keystone (KEY) viruses (Bunyaviridae, California serogroup). Neutralizing (N) antibody to JC virus was most prevalent in white-tailed deer, sika deer, cottontail rabbits and horses. KEY virus N antibody was detected most frequently in gray squirrels and domestic goats. N antibody indicative of past infection by one or both viruses also was found in raccoons, horses and humans. JC and/or KEY virus N antibodies were not demonstrable in sera of several other species of small mammals and reptiles. Investigations were extended to evaluate the role of domestic goats as an amplifying host of JC and KEY viruses and to assess their potential as sentinels of virus transmission. Goats maintained in the Pocomoke Cypress Swamp during the summer season of 1978, acquired N antibodies to JC and KEY viruses. Following experimental inoculation with either JC or KEY virus, all goats developed N antibody despite the absence of a demonstrable viremia in most animals. Goats proved to be effective as sentinels for monitoring the transmission of JC and KEY viruses; however, the exceptionally low titers or absence of viremia following inoculation with these viruses would seem to preclude a potential virus-amplifying role for this species. Although findings implicated primarily gray squirrels and white-tailed deer as possible amplifying hosts of KEY and JC virus, respectively, further investigations will be required to clarify their role, particularly since both viruses may be maintained entirely by transovarial transmission.

  2. Molecular Survey of Hepatitis C Virus in the Touristic City of Mar Del Plata, Argentina

    PubMed Central

    Culasso, Andrés C. A.; Elizalde, Mercedes; Campos, Rodolfo H.; Barbini, Luciana

    2012-01-01

    The global epidemiology of Hepatitis C Virus (HCV) may be roughly described by two groups of genotypes: the worldwide distributed ones (subtypes 1a, 1b, 2a and 3a, among others) and the endemic ones (subtypes 4a, 5a, 6a, among others). Epidemiological and population dynamic studies of the worldwide distributed genotypes have shown that subtypes 1a and 3a are common among intravenous drug users (IDUs) and that they are also in expansion in some countries. The molecular survey of HCV provides some clues about the epidemiological status of the infections in a local scale and the phylogenetic and demographic reconstruction analyses complement this study by inferring whether the infections of certain subtypes are in a steady state or expanding. Here, a molecular survey of the HCV variants that circulate in the touristic city of Mar del Plata (Buenos Aires, Argentina) was performed in samples obtained from 42 patients. The subtypes detected were 1a (32 patients), 3a (8 patients) and 1b (2 patients). The demographic history of subtype 1a inferred using the sequence data showed an exponential growth in the 1990′s. The period of viral expansion was delayed compared with that observed for the same genotype in other countries where the transmission was associated with IDUs. Also, the phylogeographic analysis of HCV-1a showed a statistically significant association between the location of the samples and the phylogeny, which may be the result of the local transmission of HCV in the city. The molecular analysis helped in the description of the complex epidemiological context of a touristic city, and pointed out that some sanitary measures should be taken in order to reduce the transmission of HCV (and maybe of HIV) among IDUs. PMID:23028605

  3. Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lytic bacteriophages, viruses which infect and lyse bacterial cells, can provide a natural method to reduce bacterial pathogens on produce commodities. The use of multi-phage cocktails is most likely to be effective against bacterial pathogens on produce commodities, and minimize the development of...

  4. Chino del tomate virus:Relationships to Other Begomoviruses and Identification of A-Component Variants that Affect Symptom Expression.

    PubMed

    Brown, J K; Ostrow, K M; Idris, A M; Stenger, D C

    2000-05-01

    Phylogenetic and distance analyses place Chino del tomate virus (CdTV) in the New World clade of begomoviruses and indicate that CdTV and Tomato leaf crumple virus (TLCrV) are closely related strains of the same virus. One cloned CdTV A component (pCdTV-H6), when inoculated to tomato with the B component (pCdTV-B52), produced mild symptoms and low DNA titers. Another cloned CdTV A component (pCdTV-H8), when coinoculated to tomato with the B component, produced moderate leaf curling and veinal chlorosis similar to that of TLCrV. Coinoculation of both CdTV A components and the B component to tomato produced wild-type chino del tomate (CdT) disease symptoms consisting of severe leaf curling, veinal and interveinal chlorosis, and stunting. The two CdTV A components were nearly identical, except at nucleotide positions 1,722 and 2,324. The polymorphism at nucleotide 1,722 resulted in a change at Rep amino acid 261. The second polymorphism at nucleotide 2,324 resulted in changes at Rep amino acid 60 and AC4 amino acid 10. Two chimeric A components constructed by reciprocal exchange of a fragment bearing the polymorphic site at nucleotide 1,722 were evaluated for symptom phenotype. One chimeric A component (pCdTV-H86) produced wild-type CdT symptoms when coinoculated to tomato with the B component. The reciprocal chimeric A component (pCdTV-H68), when coin-oculated to tomato with the B component, also produced severe leaf curling, veinal chlorosis, and stunting. However, pCdTV-H68 induced less obvious interveinal chlorosis than wild-type or pCdTV-H86. Examination of A component genotypes recovered from tomato coinoculated with pCdTV-H6 and pCdTV-H8 indicated that recombination occurred to produce a genotype identical to pCdTV-H86. These results indicate that subtle genotypic variation has significant effects on symptom expression and may explain phenotypic differences observed among isolates and cloned DNAs of CdTV and TLCrV.

  5. Molecular epidemiology and genetic diversity of hepatitis B virus in Mar del Plata city, Argentina.

    PubMed

    Barbini, Luciana; Elizalde, Mercedes; Torres, Carolina; Campos, Rodolfo

    2013-10-01

    The aim of this work was to describe the current molecular epidemiology and genetic diversity of HBV in Mar del Plata, an important Argentinean touristic city. The phylogenetic analysis of 29 HBV DNA positive serum samples showed that F1b was the predominant subgenotype (sgt, 62.1%), followed by sgt A2 (13.8%) and sgt F4, gt D and gt G (6.9% each). Among anti-HBc IgM positive samples, 75.0% were sgt F1b, followed by sgt F4 (12.5%), sgt A2 (6.25%) and sgt D (6.25%). Three recombinant full length genomes were found: two G/F1b (some of the first gt G detected in Argentina) and one F4/D2. The circulation of clinical important mutations in the city was described. Mutations at the HBsAg were detected in 34.5% of the analyzed samples, associated with laboratory diagnosis and antiviral treatment failures, immune escape and hepatocellular carcinoma. Most of the samples presented wild type BCP/PC sequences. Coalescence analysis for the most prevalent sgt F1b estimated that the diversification mainly occured during mid '90s and the tMRCA was estimated in 1987. Finally, the high presence of the autochthonous sgt F1b, associated with the anti-HBc IgM positive infection and its present-day diversification process, shows the strong impact of internal human migratory movements into the current population of Mar del Plata.

  6. DNA Vaccination of the American Crow (Corvus brachyrhynchos) Provides Partial Protection Against Lethal Challenge with West Nile Virus

    DTIC Science & Technology

    2007-01-01

    protección parcial contra el desafı́o letal con el virus del Oeste del Nilo. La cepa del virus del Oeste del Nilo aislada en Nueva York en el año 1999 es...murieron. La administración parenteral de la vacuna de ADN del virus del Oeste del Nilo estuvo asociada con una reducción de la mortalidad pero no

  7. Heartland Virus

    MedlinePlus

    ... Vector-Borne Diseases (DVBD) NCEZID Share Compartir Heartland virus On this Page What is Heartland virus? How ... Do I Need to Know? What is Heartland virus? Heartland virus belongs to a family of viruses ...

  8. Discovery of a Novel Mutation (X8Del) Resulting in an 8-bp Deletion in the Hepatitis B Virus X Gene Associated with Occult Infection in Korean Vaccinated Individuals

    PubMed Central

    Kim, Hong; Gong, Jeong-Ryeol; Lee, Seoung-Ae; Kim, Bum-Joon

    2015-01-01

    Universal infantile hepatitis B virus (HBV) vaccination may lead to an increase in vaccine escape variants, which may pose a threat to the long-term success of massive vaccination. To determine the prevalence of occult infections in Korean vaccinated individuals, 87 vaccinated subjects were screened for the presence of HBV DNA using both the nested PCR protocol and the VERSANT HBV DNA 3.0 assay. The mutation patterns of variants were analyzed in full-length HBV genome sequences. Their HBsAg secretion and replication capacities were investigated using both in vitro transient transfection and in vivo hydrodynamic injection. The presence of HBV DNA was confirmed in 6 subjects (6.9%). All six variants had a common mutation type (X8Del) composed of an 8-bp deletion in the C-terminal region of the HBV X gene (HBxAg). Our in vitro and in vivo analyses using the full-length HBV genome indicated that the X8Del HBxAg variant reduced the secretion of HBsAg and HBV virions compared to the wild type. In conclusion, our data suggest that a novel mutation (X8Del) may contribute to occult HBV infection in Korean vaccinated individuals via a reduced secretion of HBsAg and virions, possibly by compromising HBxAg’s transacting capacity. PMID:26437447

  9. ECHO virus

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to ...

  10. Foodborne viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Testing for human pathogenic viruses in foods represents a formidable task requiring the extraction, concentration, and assay of a host of viruses from a wide range of food matrices. The enteric viruses, particularly genogroup I and II (GI and GII) noroviruses and hepatitis A virus, are the princip...

  11. Inventing Viruses.

    PubMed

    Summers, William C

    2014-11-01

    In the nineteenth century, "virus" commonly meant an agent (usually unknown) that caused disease in inoculation experiments. By the 1890s, however, some disease-causing agents were found to pass through filters that retained the common bacteria. Such an agent was called "filterable virus," the best known being the virus that caused tobacco mosaic disease. By the 1920s there were many examples of filterable viruses, but no clear understanding of their nature. However, by the 1930s, the term "filterable virus" was being abandoned in favor of simply "virus," meaning an agent other than bacteria. Visualization of viruses by the electron microscope in the late 1930s finally settled their particulate nature. This article describes the ever-changing concept of "virus" and how virologists talked about viruses. These changes reflected their invention and reinvention of the concept of a virus as it was revised in light of new knowledge, new scientific values and interests, and new hegemonic technologies.

  12. Zika Virus

    MedlinePlus

    Zika is a virus that is spread mostly by mosquitoes. A pregnant mother can pass it to ... through blood transfusions. There have been outbreaks of Zika virus in the United States, Africa, Southeast Asia, ...

  13. Chikungunya virus

    MedlinePlus

    Chikungunya virus infection; Chikungunya ... Where Chikungunya is found Before 2013, the virus was found in Africa, Asia, Europe, and the Indian and Pacific oceans. In late 2013, outbreaks occurred for the first time in the ...

  14. Chikungunya Virus

    MedlinePlus

    ... is key! Prevent Infection. Use mosquito repellent. Chikungunya Virus Distribution Chikungunya in the U.S. What's New Surveillance ... Clinical Challenge For Travelers CDC Travelers' Health Chikungunya Virus Home Prevention Transmission Symptoms & Treatment Geographic Distribution Chikungunya ...

  15. Hepadna viruses

    SciTech Connect

    Robinson, W.; Koike, K.; Will, H.

    1987-01-01

    This book examines the molecular biology, disease pathogenesis, epidemiology, and clinical features of hepadna and other viruses with hepatic tropism and outlines future directions and approaches for their management. The volume's six sections provide a review of the various features, mechanisms, and functions of these viruses, ranging from hepadna virus replication and regulation of gene expression to the structure and function of hepadna-virus gene products.

  16. Comparative Evaluation of Vaccine Efficacy of Recombinant Marek's Disease Virus Vaccine Lacking Meq Oncogene in Commercial Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek's disease virus oncogene meq has been identified as the gene involved in tumorigenesis in chickens. We have recently developed a Meq-null virus, rMd5delMeq, in which the oncogene Meq was deleted. Vaccine efficacy experiments conducted in ADOL 15I5 x 71 chickens vaccinated with rMd5delMeq virus...

  17. [Norwalk virus and Noro virus].

    PubMed

    Furuta, Itaru; Yamazumi, Toshiaki; Kitahashi, Toshiaki; Yagi, Kazurou; Takemura, Tukasa

    2003-01-01

    Norwalk virus and Noro virus are members of the Caliciviridae. These viruses are morphological similarity in each other and shows small round structure. These viruses also are well known as main pathogens of acute infectious gastroenteritis. Clinical features include an incubation period of 24 of 48 hours and illness period of 18 to 72 hours with vomiting and diarrhea in most patients and high secondary attack rates. Oral transmitted infection occurs contaminated water and foods. In our country, outbreak of Noro virus-related gastroenteritis are reported sometimes in hospital and nursing home from winter to early spring seasons. This article are described to the morphlogy, physical characteristics, epidemiology, and clinical manifestation relating to Norwalk virus and Noro virus.

  18. Mycoplasma viruses.

    PubMed

    Maniloff, J

    1988-01-01

    Unlike bacterial viruses that infect cells bounded by a cell wall, mycoplasma viruses have evolved to enter and propagate in mycoplasma cells bounded only by a single lipid-protein cell membrane. In addition, mycoplasmas have the smallest amount of genetic information of any known cells, so their complexity is constrained by a limited genetic coding capacity. As a consequence of these host cell differences, mycoplasma viruses have been found to have a variety of structures and replication strategies which are different from those of the bacterial viruses. This article is a critical review of mycoplasma viruses infecting the genera Acholeplasma, Spiroplasma, and Mycoplasma; included are data on classification, morphology and structure, biological and physical properties, chemical composition, and productive and lysogenic replication cycles.

  19. Identification of duck plague virus by polymerase chain reaction

    USGS Publications Warehouse

    Hansen, W.R.; Brown, Sean E.; Nashold, S.W.; Knudson, D.L.

    1999-01-01

    A polymerase chain reaction (PCR) assay was developed for detecting duck plague virus. A 765-bp EcoRI fragment cloned from the genome of the duck plague vaccine (DP-VAC) virus was sequenced for PCR primer development. The fragment sequence was found by GenBank alignment searches to be similar to the 3a?? ends of an undefined open reading frame and the gene for DNA polymerase protein in other herpesviruses. Three of four primer sets were found to be specific for the DP-VAC virus and 100% (7/7) of field isolates but did not amplify DNA from inclusion body disease of cranes virus. The specificity of one primer set was tested with genome templates from other avian herpesviruses, including those from a golden eagle, bald eagle, great horned owl, snowy owl, peregrine falcon, prairie falcon, pigeon, psittacine, and chicken (infectious laryngotracheitis), but amplicons were not produced. Hence, this PCR test is highly specific for duck plague virus DNA. Two primer sets were able to detect 1 fg of DNA from the duck plague vaccine strain, equivalent to five genome copies. In addition, the ratio of tissue culture infectious doses to genome copies of duck plague vaccine virus from infected duck embryo cells was determined to be 1:100, making the PCR assay 20 times more sensitive than tissue culture for detecting duck plague virus. The speed, sensitivity, and specificity of this PCR provide a greatly improved diagnostic and research tool for studying the epizootiology of duck plague. /// Se desarroll?? una prueba de reacci??n en cadena por la polimerasa para detectar el virus de la peste del pato. Un fragmento EcoRI de 765 pares de bases clonado del genoma del virus vacunal de la peste del pato fue secuenciado para la obtenci??n de los iniciadores de la prueba de la reacci??n en cadena por la polimerasa. En investigaciones de alineaci??n en el banco de genes ('GenBank') se encontr?? que la secuencia del fragmento era similar a los extremos 3a?? de un marco de lectura abierto

  20. Computer viruses

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    The worm, Trojan horse, bacterium, and virus are destructive programs that attack information stored in a computer's memory. Virus programs, which propagate by incorporating copies of themselves into other programs, are a growing menace in the late-1980s world of unprotected, networked workstations and personal computers. Limited immunity is offered by memory protection hardware, digitally authenticated object programs,and antibody programs that kill specific viruses. Additional immunity can be gained from the practice of digital hygiene, primarily the refusal to use software from untrusted sources. Full immunity requires attention in a social dimension, the accountability of programmers.

  1. Zika Virus

    MedlinePlus

    ... Search The CDC Cancel Submit Search The CDC Zika Virus Note: Javascript is disabled or is not ... ol Português Recommend on Facebook Tweet Share Compartir Zika Cases in Texas Zika Cases in Florida Birth ...

  2. Lassa virus.

    PubMed

    Günther, Stephan; Lenz, Oliver

    2004-01-01

    Lassa virus is a RNA virus belonging to the family of Arenaviridae. It was discovered as the causative agent of a hemorrhagic fever--Lassa fever--about 30 years ago. Lassa fever is endemic in West Africa and is estimated to affect some 100,000 people annually. Great progress in the understanding of the life cycle of arenaviruses, including Lassa virus, has been made in recent years. New insights have been gained in the pathogenesis and molecular epidemiology of Lassa fever, and state-of the-art technologies for diagnosing this life-threatening disease have been developed. The intention of this review is to summarize in particular the recent literature on Lassa virus and Lassa fever. Several aspects ranging from basic research up to clinical practice and laboratory diagnosis are discussed and linked together.

  3. Epidemiology and neurological complications of infection by the Zika virus: a new emerging neurotropic virus.

    PubMed

    Carod-Artal, Francisco J

    2016-04-01

    Introduccion. El actual brote epidemico por virus Zika se inicio en 2015 y en la actualidad afecta a 31 paises y territorios en America. Se revisan los aspectos epidemiologicos y clinicos asociados con la infeccion por virus Zika. Desarrollo. Desde 2007, 55 paises de America, Asia, Africa y Oceania han detectado transmision local del virus. La actual epidemia ha afectado a casi 1,5 millones de personas en Brasil. El 80% de los casos son asintomaticos. La enfermedad por virus Zika cursa con fiebre, exantema maculopapular, artralgias y conjuntivitis no purulenta. Los sintomas suelen ser autolimitados y duran una semana. Se ha descrito un aumento de la incidencia de los casos de microcefalia, lesiones retinianas y sindrome de Guillain-Barre asociados con el virus Zika. El sindrome de Guillain-Barre asociado al Zika en la Polinesia es una variante axonal motora pura. El ARN del virus Zika se ha identificado en muestras de tejido cerebral, placenta y liquido amniotico de niños con microcefalia y en perdidas fetales de mujeres infectadas por Zika durante el embarazo. Se recomienda realizar la prueba de reaccion en cadena de la polimerasa mediante transcriptasa inversa para detectar ARN virico y pruebas serologicas (IgM ELISA y anticuerpos neutralizantes) para confirmar una infeccion por Zika. El diagnostico diferencial incluye la infeccion por virus dengue y chikungunya. Conclusiones. Existe un conocimiento limitado sobre los mecanismos patogenicos implicados y las consecuencias a largo plazo de la infeccion por virus Zika en adultos y recien nacidos.

  4. Powassan (POW) Virus Basics

    MedlinePlus

    ... Professionals Related Topics For International Travelers Powassan (POW) Virus Basics Download this fact sheet formatted for print: ... POW) Virus Fact Sheet (PDF) What is Powassan virus? Powassan (POW) virus is a flavivirus that is ...

  5. Virophages or satellite viruses?

    PubMed

    Krupovic, Mart; Cvirkaite-Krupovic, Virginija

    2011-11-01

    It has been argued that the smaller viruses associated with giant DNA viruses are a new biological entity. However, Mart Krupovic and Virginija Cvirkaite-Krupovic argue here that these smaller viruses should be classified with the satellite viruses.

  6. Ebola Virus and Marburg Virus

    MedlinePlus

    ... chimps and fruit bats in Africa. Transmission from animals to humans Experts suspect that both viruses are transmitted to humans through an infected animal's bodily fluids. Examples include: Blood. Butchering or eating ...

  7. Computer Viruses. Technology Update.

    ERIC Educational Resources Information Center

    Ponder, Tim, Comp.; Ropog, Marty, Comp.; Keating, Joseph, Comp.

    This document provides general information on computer viruses, how to help protect a computer network from them, measures to take if a computer becomes infected. Highlights include the origins of computer viruses; virus contraction; a description of some common virus types (File Virus, Boot Sector/Partition Table Viruses, Trojan Horses, and…

  8. Foodborne viruses.

    PubMed

    Koopmans, Marion; von Bonsdorff, Carl Henrik; Vinjé, Jan; de Medici, Dario; Monroe, Steve

    2002-06-01

    Foodborne and waterborne viral infections are increasingly recognized as causes of illness in humans. This increase is partly explained by changes in food processing and consumption patterns that lead to the worldwide availability of high-risk food. As a result, vast outbreaks may occur due to contamination of food by a single foodhandler or at a single source. Although there are numerous fecal-orally transmitted viruses, most reports of foodborne transmission describe infections with Norwalk-like caliciviruses (NLV) and hepatitis A virus (HAV), suggesting that these viruses are associated with the greatest risk of foodborne transmission. NLV and HAV can be transmitted from person to person, or indirectly via food, water, or fomites contaminated with virus-containing feces or vomit. People can be infected without showing symptoms. The high frequency of secondary cases of NLV illness and - to a lesser extent - of hepatitis A following a foodborne outbreak results in amplification of the problem. The burden of illness is highest in the elderly, and therefore is likely to increase due to the aging population. For HAV, the burden of illness may increase following hygienic control measures, due to a decreasing population of naturally immune individuals and a concurrent increase in the population at risk. Recent advances in the research of NLV and HAV have led to the development of molecular methods which can be used for molecular tracing of virus strains. These methods can be and have been used for the detection of common source outbreaks. While traditionally certain foods have been implicated in virus outbreaks, it is clear that almost any food item can be involved, provided it has been handled by an infected person. There are no established methods for detection of viruses in foods other than shellfish. Little information is available on disinfection and preventive measures specifically for these viruses. Studies addressing this issue are hampered by the lack of

  9. Zika Virus.

    PubMed

    FitzSimmons, Jack; Shah, Shailen

    2016-06-29

    To the Editor: Petersen et al. (April 21 issue)(1) provide a detailed review of Zika virus. We have some concern regarding diagnostic criteria for microcephaly in fetuses and newborns exposed to the virus. According to the Centers for Disease Control and Prevention (CDC) recommendation that microcephaly should be defined as an occipitofrontal circumference below the third percentile, nearly 3% of newborns would be categorized as having microcephaly. In Brazil, where there are 3 million live births per year, the application of this definition would result in nearly 90,000 infants being labeled as having microcephaly - a far greater number than . . .

  10. [Influenza virus].

    PubMed

    Juozapaitis, Mindaugas; Antoniukas, Linas

    2007-01-01

    Every year, especially during the cold season, many people catch an acute respiratory disease, namely flu. It is easy to catch this disease; therefore, it spreads very rapidly and often becomes an epidemic or a global pandemic. Airway inflammation and other body ailments, which form in a very short period, torment the patient several weeks. After that, the symptoms of the disease usually disappear as quickly as they emerged. The great epidemics of flu have rather unique characteristics; therefore, it is possible to identify descriptions of such epidemics in historic sources. Already in the 4th century bc, Hippocrates himself wrote about one of them. It is known now that flu epidemics emerge rather frequently, but there are no regular intervals between those events. The epidemics can differ in their consequences, but usually they cause an increased mortality of elderly people. The great flu epidemics of the last century took millions of human lives. In 1918-19, during "The Spanish" pandemic of flu, there were around 40-50 millions of deaths all over the world; "Pandemic of Asia" in 1957 took up to one million lives, etc. Influenza virus can cause various disorders of the respiratory system: from mild inflammations of upper airways to acute pneumonia that finally results in the patient's death. Scientist Richard E. Shope, who investigated swine flu in 1920, had a suspicion that the cause of this disease might be a virus. Already in 1933, scientists from the National Institute for Medical Research in London - Wilson Smith, Sir Christopher Andrewes, and Sir Patrick Laidlaw - for the first time isolated the virus, which caused human flu. Then scientific community started the exhaustive research of influenza virus, and the great interest in this virus and its unique features is still active even today.

  11. The Geometry of Viruses.

    ERIC Educational Resources Information Center

    Case, Christine L.

    1991-01-01

    Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)

  12. Plant Virus Metagenomics: Advances in Virus Discovery.

    PubMed

    Roossinck, Marilyn J; Martin, Darren P; Roumagnac, Philippe

    2015-06-01

    In recent years plant viruses have been detected from many environments, including domestic and wild plants and interfaces between these systems-aquatic sources, feces of various animals, and insects. A variety of methods have been employed to study plant virus biodiversity, including enrichment for virus-like particles or virus-specific RNA or DNA, or the extraction of total nucleic acids, followed by next-generation deep sequencing and bioinformatic analyses. All of the methods have some shortcomings, but taken together these studies reveal our surprising lack of knowledge about plant viruses and point to the need for more comprehensive studies. In addition, many new viruses have been discovered, with most virus infections in wild plants appearing asymptomatic, suggesting that virus disease may be a byproduct of domestication. For plant pathologists these studies are providing useful tools to detect viruses, and perhaps to predict future problems that could threaten cultivated plants.

  13. Measles virus.

    PubMed

    Naim, Hussein Y

    2015-01-01

    Measles was an inevitable infection during the human development with substantial degree of morbidity and mortality. The severity of measles virus (MV) infection was largely contained by the development of a live attenuated vaccine that was introduced into the vaccination programs. However, all efforts to eradicate the disease failed and continued to annually result in significant deaths. The development of molecular biology techniques allowed the rescue of MV from cDNA that enabled important insights into a variety of aspects of the biology of the virus and its pathogenesis. Subsequently these technologies facilitated the development of novel vaccine candidates that induce immunity against measles and other pathogens. Based on the promising prospective, the use of MV as a recombinant vaccine and a therapeutic vector is addressed.

  14. Zika Virus.

    PubMed

    Musso, Didier; Gubler, Duane J

    2016-07-01

    Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) in the genus Flavivirus and the family Flaviviridae. ZIKV was first isolated from a nonhuman primate in 1947 and from mosquitoes in 1948 in Africa, and ZIKV infections in humans were sporadic for half a century before emerging in the Pacific and the Americas. ZIKV is usually transmitted by the bite of infected mosquitoes. The clinical presentation of Zika fever is nonspecific and can be misdiagnosed as other infectious diseases, especially those due to arboviruses such as dengue and chikungunya. ZIKV infection was associated with only mild illness prior to the large French Polynesian outbreak in 2013 and 2014, when severe neurological complications were reported, and the emergence in Brazil of a dramatic increase in severe congenital malformations (microcephaly) suspected to be associated with ZIKV. Laboratory diagnosis of Zika fever relies on virus isolation or detection of ZIKV-specific RNA. Serological diagnosis is complicated by cross-reactivity among members of the Flavivirus genus. The adaptation of ZIKV to an urban cycle involving humans and domestic mosquito vectors in tropical areas where dengue is endemic suggests that the incidence of ZIKV infections may be underestimated. There is a high potential for ZIKV emergence in urban centers in the tropics that are infested with competent mosquito vectors such as Aedes aegypti and Aedes albopictus.

  15. Computer Viruses: An Overview.

    ERIC Educational Resources Information Center

    Marmion, Dan

    1990-01-01

    Discusses the early history and current proliferation of computer viruses that occur on Macintosh and DOS personal computers, mentions virus detection programs, and offers suggestions for how libraries can protect themselves and their users from damage by computer viruses. (LRW)

  16. SAMPLING VIRUSES FROM SOIL

    EPA Science Inventory

    This chapter describes in detail methods for detecting viruses of bacteria and humans in soil. Methods also are presented for the assay of these viruses. Reference sources are provided for information on viruses of plants.

  17. Hanta virus (image)

    MedlinePlus

    Hanta virus is a distant cousin of Ebola virus, but is found worldwide. The virus is spread by human contact with rodent waste. Dangerous respiratory illness develops. Effective treatment is not yet ...

  18. Ebola Virus Disease

    MedlinePlus

    ... Fact files Questions & answers Features Multimedia Contacts Ebola virus disease Fact sheet Updated January 2016 Key facts ... survivors of Ebola virus disease Symptoms of Ebola virus disease The incubation period, that is, the time ...

  19. Virus Movement Maintains Local Virus Population Diversity

    SciTech Connect

    J. Snyder; B. Wiedenheft; M. Lavin; F. Roberto; J. Spuhler; A. Ortmann; T. Douglas; M. Young

    2007-11-01

    Viruses are the largest reservoir of genetic material on the planet, yet little is known about the population dynamics of any virus within its natural environment. Over a 2-year period, we monitored the diversity of two archaeal viruses found in hot springs within Yellowstone National Park (YNP). Both temporal phylogeny and neutral biodiversity models reveal that virus diversity in these local environments is not being maintained by mutation but rather by high rates of immigration from a globally distributed metacommunity. These results indicate that geographically isolated hot springs are readily able to exchange viruses. The importance of virus movement is supported by the detection of virus particles in air samples collected over YNP hot springs and by their detection in metacommunity sequencing projects conducted in the Sargasso Sea. Rapid rates of virus movement are not expected to be unique to these archaeal viruses but rather a common feature among virus metacommunities. The finding that virus immigration rather than mutation can dominate community structure has significant implications for understanding virus circulation and the role that viruses play in ecology and evolution by providing a reservoir of mobile genetic material.

  20. Viruses and Virus Diseases of Rubus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rubus species are propagated vegetatively and are subject to infection by viruses during development, propagation and fruit production stages. Reports of initial detection and symptoms of more than 30 viruses, virus-like diseases and phytoplasmas affecting Rubus spp. have been reviewed more than 20 ...

  1. Crystallization of viruses and virus proteins

    NASA Astrophysics Data System (ADS)

    Sehnke, Paul C.; Harrington, Melissa; Hosur, M. V.; Li, Yunge; Usha, R.; Craig Tucker, R.; Bomu, Wu; Stauffacher, Cynthia V.; Johnson, John E.

    1988-07-01

    Methods for crystallizing six isometric plant and insect viruses are presented. Procedures developed for modifying, purifying and crystallizing coat protein subunits isolated from a virus forming asymmetric, spheroidal particles, stabilized almost exclusively by protein-RNA interactions, are also discussed. The tertiary and quaternary structures of small RNA viruses are compared.

  2. Live attenuated herpes simplex virus 2 glycoprotein E deletion mutant as a vaccine candidate defective in neuronal spread.

    PubMed

    Awasthi, Sita; Zumbrun, Elizabeth E; Si, Huaxin; Wang, Fushan; Shaw, Carolyn E; Cai, Michael; Lubinski, John M; Barrett, Shana M; Balliet, John W; Flynn, Jessica A; Casimiro, Danilo R; Bryan, Janine T; Friedman, Harvey M

    2012-04-01

    A herpes simplex virus 2 (HSV-2) glycoprotein E deletion mutant (gE2-del virus) was evaluated as a replication-competent, attenuated live virus vaccine candidate. The gE2-del virus is defective in epithelial cell-to-axon spread and in anterograde transport from the neuron cell body to the axon terminus. In BALB/c and SCID mice, the gE2-del virus caused no death or disease after vaginal, intravascular, or intramuscular inoculation and was 5 orders of magnitude less virulent than wild-type virus when inoculated directly into the brain. No infectious gE2-del virus was recovered from dorsal root ganglia (DRG) after multiple routes of inoculation; however, gE2-del DNA was detected by PCR in lumbosacral DRG at a low copy number in some mice. Importantly, no recurrent vaginal shedding of gE2-del DNA was detected in immunized guinea pigs. Intramuscular immunization outperformed subcutaneous immunization in all parameters evaluated, although individual differences were not significant, and two intramuscular immunizations were more protective than one. Immunized animals had reduced vaginal disease, vaginal titers, DRG infection, recurrent genital lesions, and recurrent vaginal shedding of HSV-2 DNA; however, protection was incomplete. A combined modality immunization using live virus and HSV-2 glycoprotein C and D subunit antigens in guinea pigs did not totally eliminate recurrent lesions or recurrent vaginal shedding of HSV-2 DNA. The gE2-del virus used as an immunotherapeutic vaccine in previously HSV-2-infected guinea pigs greatly reduced the frequency of recurrent genital lesions. Therefore, the gE2-del virus is safe, other than when injected at high titer into the brain, and is efficacious as a prophylactic and immunotherapeutic vaccine.

  3. [Clinical features of Zika virus].

    PubMed

    Cabrera-Gaytán, David Alejandro; Galván-Hernández, Stephanie Anaid

    2016-01-01

    Introducción: el virus Zika se ha introducido al país y amenaza en propagarse, por lo que el personal de salud se enfrentará a la necesidad de identificar la enfermedad dada una definición operacional de caso; en esta revisión se describen las manifestaciones clínicas de casos probables de Zika de los últimos cinco años. Métodos: se realizó una búsqueda en Google Académico y PubMed con la palabra “Zika”. Se conformó una base de datos, se obtuvieron frecuencias simples y se calcularon los límites para proporciones con un alfa del 0.05 por medio de prueba de Wilson. Resultados: se conjuntaron 109 casos probables de fiebre por Zika, las manifestaciones clínicas fueron heterogéneas, con predominio de afectación a nivel musculoesquelético, dermatológico y sistémico. Conclusiones: es necesario continuar la documentación de las manifestaciones clínicas del virus Zika, que se logrará mediante el fortalecimiento de la vigilancia epidemiológica.

  4. The Tobacco Mosaic Virus.

    ERIC Educational Resources Information Center

    Sulzinski, Michael A.

    1992-01-01

    Explains how the tobacco mosaic virus can be used to study virology. Presents facts about the virus, procedures to handle the virus in the laboratory, and four laboratory exercises involving the viruses' survival under inactivating conditions, dilution end point, filterability, and microscopy. (MDH)

  5. Understanding Ebola Virus Transmission

    PubMed Central

    Judson, Seth; Prescott, Joseph; Munster, Vincent

    2015-01-01

    An unprecedented number of Ebola virus infections among healthcare workers and patients have raised questions about our understanding of Ebola virus transmission. Here, we explore different routes of Ebola virus transmission between people, summarizing the known epidemiological and experimental data. From this data, we expose important gaps in Ebola virus research pertinent to outbreak situations. We further propose experiments and methods of data collection that will enable scientists to fill these voids in our knowledge about the transmission of Ebola virus. PMID:25654239

  6. Understanding ebola virus transmission.

    PubMed

    Judson, Seth; Prescott, Joseph; Munster, Vincent

    2015-02-03

    An unprecedented number of Ebola virus infections among healthcare workers and patients have raised questions about our understanding of Ebola virus transmission. Here, we explore different routes of Ebola virus transmission between people, summarizing the known epidemiological and experimental data. From this data, we expose important gaps in Ebola virus research pertinent to outbreak situations. We further propose experiments and methods of data collection that will enable scientists to fill these voids in our knowledge about the transmission of Ebola virus.

  7. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  8. NSm protein of Rift Valley fever virus suppresses virus-induced apoptosis.

    PubMed

    Won, Sungyong; Ikegami, Tetsuro; Peters, C J; Makino, Shinji

    2007-12-01

    Rift Valley fever virus (RVFV) is a member of the genus Phlebovirus within the family Bunyaviridae. It can cause severe epidemics among ruminants and fever, myalgia, a hemorrhagic syndrome, and/or encephalitis in humans. The RVFV M segment encodes the NSm and 78-kDa proteins and two major envelope proteins, Gn and Gc. The biological functions of the NSm and 78-kDa proteins are unknown; both proteins are dispensable for viral replication in cell cultures. To determine the biological functions of the NSm and 78-kDa proteins, we generated the mutant virus arMP-12-del21/384, carrying a large deletion in the pre-Gn region of the M segment. Neither NSm nor the 78-kDa protein was synthesized in arMP-12-del21/384-infected cells. Although arMP-12-del21/384 and its parental virus, arMP-12, showed similar growth kinetics and viral RNA and protein accumulation in infected cells, arMP-12-del21/384-infected cells induced extensive cell death and produced larger plaques than did arMP-12-infected cells. arMP-12-del21/384 replication triggered apoptosis, including the cleavage of caspase-3, the cleavage of its downstream substrate, poly(ADP-ribose) polymerase, and activation of the initiator caspases, caspase-8 and -9, earlier in infection than arMP-12. NSm expression in arMP-12-del21/384-infected cells suppressed the severity of caspase-3 activation. Further, NSm protein expression inhibited the staurosporine-induced activation of caspase-8 and -9, demonstrating that other viral proteins were dispensable for NSm's function in inhibiting apoptosis. RVFV NSm protein is the first identified Phlebovirus protein that has an antiapoptotic function.

  9. Viruses Infecting Reptiles

    PubMed Central

    Marschang, Rachel E.

    2011-01-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions. PMID:22163336

  10. Viruses infecting reptiles.

    PubMed

    Marschang, Rachel E

    2011-11-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch's postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  11. Viruses in the sea

    NASA Astrophysics Data System (ADS)

    Suttle, Curtis A.

    2005-09-01

    Viruses exist wherever life is found. They are a major cause of mortality, a driver of global geochemical cycles and a reservoir of the greatest genetic diversity on Earth. In the oceans, viruses probably infect all living things, from bacteria to whales. They affect the form of available nutrients and the termination of algal blooms. Viruses can move between marine and terrestrial reservoirs, raising the spectre of emerging pathogens. Our understanding of the effect of viruses on global systems and processes continues to unfold, overthrowing the idea that viruses and virus-mediated processes are sidebars to global processes.

  12. Raspberry (Rubus spp.)-Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are several important virus diseases of raspberry and black raspberry in the Pacific Northwest. Pollen-borne viruses include Raspberry bushy dwarf virus and Strawberry necrotic shock virus (aka Tobacco streak virus –Rubus isolate or Black raspberry latent virus). Strawberry necrotic shock viru...

  13. Live Virus Smallpox Vaccine

    MedlinePlus

    ... Submit What's this? Submit Button The Live Virus Smallpox Vaccine Language: English Español (Spanish) Recommend on Facebook ... the vaccinia virus. Who should NOT get the smallpox vaccine? People most likely to have side effects ...

  14. Ebola (Ebola Virus Disease)

    MedlinePlus

    ... to Introduce a Vaccine against Ebola Ebola Virus Ecology and Transmission About Ebola Signs and Symptoms Symptoms ... Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus Ecology Graphic Language: English Español Français File ...

  15. Zika Virus Fact Sheet

    MedlinePlus

    ... sheets Fact files Questions & answers Features Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key ... and last for 2-7 days. Complications of Zika virus disease Based on a systematic review of ...

  16. Viruses and human cancer

    SciTech Connect

    Gallo, R.C.; Haseltine, W.; Klein, G.; Zur Hausen, H.

    1987-01-01

    This book contains papers on the following topics: Immunology and Epidemiology, Biology and Pathogenesis, Models of Pathogenesis and Treatment, Simian and Bovine Retroviruses, Human Papilloma Viruses, EBV and Herpesvirus, and Hepatitis B Virus.

  17. Human Parainfluenza Viruses

    MedlinePlus

    ... HPIVs Are Not the Same as Influenza (Flu) Viruses People usually get HPIV infections more often in ... hands, and touching objects or surfaces with the viruses on them then touching your mouth, nose, or ...

  18. Respiratory Syncytial Virus Infections

    MedlinePlus

    Respiratory syncytial virus (RSV) causes mild, cold-like symptoms in adults and older healthy children. It can cause serious problems in ... tests can tell if your child has the virus. There is no specific treatment. You should give ...

  19. Hepatitis virus panel

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003558.htm Hepatitis virus panel To use the sharing features on this page, please enable JavaScript. The hepatitis virus panel is a series of blood tests used ...

  20. West Nile Virus

    MedlinePlus

    ... West Nile virus has been found in animals, birds, and humans in all continental states in the ... picked up the virus after feeding on infected birds. Pets and other animals can also become infected ...

  1. Tumorigenic DNA viruses

    SciTech Connect

    Klein, G.

    1989-01-01

    The eighth volume of Advances in Viral Oncology focuses on the three major DNA virus groups with a postulated or proven tumorigenic potential: papillomaviruses, animal hepatitis viruses, and the Epstein-Bar virus. In the opening chapters, the contributors analyze the evidence that papillomaviruses and animal hepatitis viruses are involved in tumorigenesis and describe the mechanisms that trigger virus-host cell interactions. A detailed section on the Epstein-Barr virus (EBV) - comprising more than half the book - examines the transcription and mRNA processing patterns of the virus genome; the mechanisms by which EBV infects lymphoid and epithelial cells; the immunological aspects of the virus; the actions of EBV in hosts with Acquired Immune Deficiency Syndrome; and the involvement of EBV in the etiology of Burkitt's lymphoma.

  2. Viruses and cancer

    SciTech Connect

    Rigby, P.W.J.; Wilkie, N.M.

    1985-01-01

    This book contains 14 selections. Some of the titles are: Immortalising gene(s) encoded by Epstein-Barr Virus; Adenovirus genes involved in transformation. What determines the oncogenic phenotype.; Oncogenesis by mouse mammary tumour virus; and Transforming ras genes.

  3. Quasispecies of dengue virus.

    PubMed

    Kurosu, Takeshi

    2011-12-01

    Pathogenic viruses have RNA genomes that cause acute and chronic infections. These viruses replicate with high mutation rates and exhibit significant genetic diversity, so-called viral quasispecies. Viral quasispecies play an important role in chronic infectious diseases, but little is known about their involvement in acute infectious diseases such as dengue virus (DENV) infection. DENV, the most important human arbovirus, is a causative agent of dengue fever (DF) and dengue hemorrhagic fever (DHF). Accumulating observations suggest that DENV exists as an extremely diverse virus population, but its biological significance is unclear. In other virus diseases, quasispecies affect the therapeutic strategies using drugs and vaccines. Here, I describe the quasispecies of DENV and discuss the possible role of quasispecies in the pathogenesis of and therapeutic strategy against DENV infection in comparison with other viruses such as Hepatitis C virus, human immunodeficiency virus type 1, and poliovirus.

  4. Viruses and Breast Cancer

    PubMed Central

    Lawson, James S.; Heng, Benjamin

    2010-01-01

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix. PMID:24281093

  5. Virus Assembly and Maturation

    NASA Astrophysics Data System (ADS)

    Johnson, John E.

    2004-03-01

    We use two techniques to look at three-dimensional virus structure: electron cryomicroscopy (cryoEM) and X-ray crystallography. Figure 1 is a gallery of virus particles whose structures Timothy Baker, one of my former colleagues at Purdue University, used cryoEM to determine. It illustrates the variety of sizes of icosahedral virus particles. The largest virus particle on this slide is the Herpes simplex virus, around 1200Å in diameter; the smallest we examined was around 250Å in diameter. Viruses bear their genomic information either as positive-sense DNA and RNA, double-strand DNA, double-strand RNA, or negative-strand RNA. Viruses utilize the various structure and function "tactics" seen throughout cell biology to replicate at high levels. Many of the biological principles that we consider general were in fact discovered in the context of viruses ...

  6. Respiratory Syncytial Virus

    MedlinePlus

    ... Your 1- to 2-Year-Old Respiratory Syncytial Virus KidsHealth > For Parents > Respiratory Syncytial Virus A A A What's in this article? About ... RSV When to Call the Doctor en español Virus respiratorio sincitial About RSV Respiratory syncytial (sin-SISH- ...

  7. Computer Virus Protection

    ERIC Educational Resources Information Center

    Rajala, Judith B.

    2004-01-01

    A computer virus is a program--a piece of executable code--that has the unique ability to replicate. Like biological viruses, computer viruses can spread quickly and are often difficult to eradicate. They can attach themselves to just about any type of file, and are spread by replicating and being sent from one individual to another. Simply having…

  8. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is caused by type A influenza virus, a member of the Orthomyxoviridae family. AI viruses are serologically categorized into 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9) subtypes. All subtypes have been identified in birds. Infections by AI viruses have been reported in ...

  9. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  10. Nairobi sheep disease virus/Ganjam virus.

    PubMed

    M D, Baron; B, Holzer

    2015-08-01

    Nairobi sheep disease virus (NSDV) is a tick-borne virus which causes a severe disease in sheep and goats, and has been responsible for several outbreaks of disease in East Africa. The virus is also found in the Indian subcontinent, where it is known as Ganjam virus. The virus only spreads through the feeding of competent infected ticks, and is therefore limited in its geographic distribution by the distribution of those ticks, Rhipicephalus appendiculata in Africa and Haemaphysalis intermedia in India. Animals bred in endemic areas do not normally develop disease, and the impact is therefore primarily on animals being moved for trade or breeding purposes. The disease caused by NSDV has similarities to several other ruminant diseases, and laboratory diagnosis is necessary for confirmation. There are published methods for diagnosis based on polymerase chain reaction, for virus growth in cell culture and for other simple diagnostic tests, though none has been commercialised. There is no established vaccine against NSDV, although cell-culture attenuated strains have been developed which show promise and could be put into field trials if it were deemed necessary. The virus is closely related to Crimean-Congo haemorrhagic fever virus, and studies on NSDV may therefore be useful in understanding this important human pathogen.

  11. Avian influenza virus and Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) severely impact poultry egg production. Decreased egg yield and hatchability, as well as misshapen eggs, are often observed during infection with AIV and NDV, even with low-virulence strains or in vaccinated flocks. Data suggest that in...

  12. The taxonomy of viruses should include viruses.

    PubMed

    Calisher, Charles H

    2016-05-01

    Having lost sight of its goal, the International Committee on Taxonomy of Viruses has redoubled its efforts. That goal is to arrive at a consensus regarding virus classification, i.e., proper placement of viruses in a hierarchical taxonomic scheme; not an easy task given the wide variety of recognized viruses. Rather than suggesting a continuation of the bureaucratic machinations of the past, this opinion piece is a call for insertion of common sense in sorting out the avalanche of information already, and soon-to-be, accrued data. In this way information about viruses ideally would be taxonomically correct as well as useful to working virologists and journal editors, rather than being lost, minimized, or ignored.

  13. Blueberry (Vaccinium corymbosum)-Virus Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At least six viruses have been found in highbush blueberry plantings in the Pacific Northwest: Blueberry mosaic virus, Blueberry red ringspot virus, Blueberry scorch virus, Blueberry shock virus, Tobacco ringspot virus, and Tomato ringspot virus. Six other virus and virus-like diseases of highbush b...

  14. Viruses of asparagus.

    PubMed

    Tomassoli, Laura; Tiberini, Antonio; Vetten, Heinrich-Josef

    2012-01-01

    The current knowledge on viruses infecting asparagus (Asparagus officinalis) is reviewed. Over half a century, nine virus species belonging to the genera Ilarvirus, Cucumovirus, Nepovirus, Tobamovirus, Potexvirus, and Potyvirus have been found in this crop. The potyvirus Asparagus virus 1 (AV1) and the ilarvirus Asparagus virus 2 (AV2) are widespread and negatively affect the economic life of asparagus crops reducing yield and increasing the susceptibility to biotic and abiotic stress. The main properties and epidemiology of AV1 and AV2 as well as diagnostic techniques for their detection and identification are described. Minor viruses and control are briefly outlined.

  15. Viruses and marine pollution.

    PubMed

    Danovaro, R; Armeni, M; Corinaldesi, C; Mei, M L

    2003-03-01

    This short review summarises the present knowledge on pollutant impacts on marine viruses, virus-host systems and their potential ecological implications. Excess nutrients from sewage and river effluents are a primary cause of marine eutrophication and mucilage formation, often related to the development of large viral assemblages. At the same time, hydrocarbons, polychlorinated biphenyl and pesticides alter ecosystem functioning and can determinate changes in the virus-host interactions, thus increasing the potential of viral infection. All these pollutants might have synergistic effects on the virus-host system and are able to induce prophage, thus increasing the impact of viruses on marine ecosystems.

  16. Equine influenza virus.

    PubMed

    Landolt, Gabriele A

    2014-12-01

    For decades the horse has been viewed as an isolated or "dead-end" host for influenza A viruses, with equine influenza virus being considered as relatively stable genetically. Although equine influenza viruses are genetically more stable than those of human lineage, they are by no means in evolutionary stasis. Moreover, recent transmission of equine-lineage influenza viruses to dogs also challenges the horse's status as a dead-end host. This article reviews recent developments in the epidemiology and evolution of equine influenza virus. In addition, the clinical presentation of equine influenza infection, diagnostic techniques, and vaccine recommendations are briefly summarized.

  17. Serodiagnosis for Tumor Viruses

    PubMed Central

    Morrison, Brian J.; Labo, Nazzarena; Miley, Wendell J.; Whitby, Denise

    2015-01-01

    The known human tumor viruses include the DNA viruses Epstein-Barr virus, Kaposi sarcoma herpesvirus, Merkel cell polyomavirus, human papillomavirus, and hepatitis B virus. RNA tumor viruses include Human T-cell lymphotrophic virus type-1 and hepatitis C virus. The serological identification of antigens/antibodies in plasma serum is a rapidly progressing field with utility for both scientists and clinicians. Serology is useful for conducting seroepidemiology studies and to inform on the pathogenesis and host immune response to a particular viral agent. Clinically, serology is useful for diagnosing current or past infection and for aiding in clinical management decisions. Serology is useful for screening blood donations for infectious agents and for monitoring the outcome of vaccination against these viruses. Serodiagnosis of human tumor viruses has improved in recent years with increased specificity and sensitivity of the assays, as well as reductions in cost and the ability to assess multiple antibody/antigens in single assays. Serodiagnosis of tumor viruses plays an important role in our understanding of the prevalence and transmission of these viruses and ultimately in the ability to develop treatments/preventions for these globally important diseases. PMID:25843726

  18. Virus transmission via food.

    PubMed

    Cliver, D O

    1997-01-01

    Viruses are transmitted to humans via foods as a result of direct or indirect contamination of the foods with human faeces. Viruses transmitted by a faecal-oral route are not strongly dependent on foods as vehicles of transmission, but viruses are important among agents of foodborne disease. Vehicles are most often molluscs from contaminated waters, but many other foods are contaminated directly by infected persons. The viruses most often foodborne are the hepatitis A virus and the Norwalk-like gastroenteritis viruses. Detection methods for these viruses in foods are very difficult and costly; the methods are not routine. Indicators that would rapidly and reliably suggest the presence of viral contamination of foods are still being sought. Contamination can be prevented by keeping faeces out of food or by treating vehicles such as water in order to inactivate virus that might be carried to food in this way. Virus cannot multiply in food, but can usually be inactivated by adequate heating. Other methods of inactivating viruses within a food are relatively unreliable, but viruses in water and on exposed surfaces can be inactivated with ultraviolet light or with strong oxidizing agents.

  19. Avian influenza virus.

    PubMed

    Lee, Chang-Won; Saif, Yehia M

    2009-07-01

    Avian influenza viruses do not typically replicate efficiently in humans, indicating direct transmission of avian influenza virus to humans is unlikely. However, since 1997, several cases of human infections with different subtypes (H5N1, H7N7, and H9N2) of avian influenza viruses have been identified and raised the pandemic potential of avian influenza virus in humans. Although circumstantial evidence of human to human transmission exists, the novel avian-origin influenza viruses isolated from humans lack the ability to transmit efficiently from person-to-person. However, the on-going human infection with avian-origin H5N1 viruses increases the likelihood of the generation of human-adapted avian influenza virus with pandemic potential. Thus, a better understanding of the biological and genetic basis of host restriction of influenza viruses is a critical factor in determining whether the introduction of a novel influenza virus into the human population will result in a pandemic. In this article, we review current knowledge of type A influenza virus in which all avian influenza viruses are categorized.

  20. Virus, Oncolytic virus and Human Prostate Cancer.

    PubMed

    Liu, Guang Bin; Zhao, Liang; Zhang, Lifang; Zhao, Kong-Nan

    2016-12-15

    Prostate cancer (PCa), a disease, is characterized by abnormal cell growth in the prostate - a gland in the male reproductive system. PCa is one of the leading causes of cancer death among men of all races. Although older age and a family history of the disease have been recognized as the risk factors of PCa, the cause of this cancer remains unclear. Mounting evidence suggests that infections with various viruses are causally linked to PCa pathogenesis. Published studies have provided strong evidence that at least two viruses (RXMV and HPV) contribute to prostate tumourigenicity and impact on the survival of patients with malignant PCa. Traditional therapies including chemotherapy and radiotherapy are unable to distinguish cancer cells from normal cells, which are a significant drawback and leads to toxicities for PCa patients undergoing treatment. So far, few other options are available for treating patients with advanced PCa. Virotherapy is being developed to be a novel therapy for cancers, which uses oncotropic and oncolytic viruses with their abilities to find and destroy malignant cells in the body. For PCa treatment, oncolytic virotherapy appears to be much more attractive, which uses live viruses to selectively kill cancer cells. Oncolytic viruses can be genetically engineered to induce cancer cell lysis through virus replication and expression of cytotoxic proteins. As oncolytic viruses are a relatively new class of anti-cancer immunotherapy agents, several important barriers still exist on the road to the use of oncolytic viruses for PCa therapy. In this review, we first discuss the controversy of the contribution of virus infection to PCa, and subsequently summarize the development of oncolytic virotherapy for PCa in the past several years.

  1. [The great virus comeback].

    PubMed

    Forterre, Patrick

    2013-01-01

    Viruses have been considered for a long time as by-products of biological evolution. This view is changing now as a result of several recent discoveries. Viral ecologists have shown that viral particles are the most abundant biological entities on our planet, whereas metagenomic analyses have revealed an unexpected abundance and diversity of viral genes in the biosphere. Comparative genomics have highlighted the uniqueness of viral sequences, in contradiction with the traditional view of viruses as pickpockets of cellular genes. On the contrary, cellular genomes, especially eukaryotic ones, turned out to be full of genes derived from viruses or related elements (plasmids, transposons, retroelements and so on). The discovery of unusual viruses infecting archaea has shown that the viral world is much more diverse than previously thought, ruining the traditional dichotomy between bacteriophages and viruses. Finally, the discovery of giant viruses has blurred the traditional image of viruses as small entities. Furthermore, essential clues on virus history have been obtained in the last ten years. In particular, structural analyses of capsid proteins have uncovered deeply rooted homologies between viruses infecting different cellular domains, suggesting that viruses originated before the last universal common ancestor (LUCA). These studies have shown that several lineages of viruses originated independently, i.e., viruses are polyphyletic. From the time of LUCA, viruses have coevolved with their hosts, and viral lineages can be viewed as lianas wrapping around the trunk, branches and leaves of the tree of life. Although viruses are very diverse, with genomes encoding from one to more than one thousand proteins, they can all be simply defined as organisms producing virions. Virions themselves can be defined as infectious particles made of at least one protein associated with the viral nucleic acid, endowed with the capability to protect the viral genome and ensure its

  2. Attenuation of equine influenza viruses through truncations of the NS1 protein.

    PubMed

    Quinlivan, Michelle; Zamarin, Dmitriy; García-Sastre, Adolfo; Cullinane, Ann; Chambers, Thomas; Palese, Peter

    2005-07-01

    Equine influenza is a common disease of the horse, causing significant morbidity worldwide. Here we describe the establishment of a plasmid-based reverse genetics system for equine influenza virus. Utilizing this system, we generated three mutant viruses encoding carboxy-terminally truncated NS1 proteins. We have previously shown that a recombinant human influenza virus lacking the NS1 gene (delNS1) could only replicate in interferon (IFN)-incompetent systems, suggesting that the NS1 protein is responsible for IFN antagonist activity. Contrary to previous findings with human influenza virus, we found that in the case of equine influenza virus, the length of the NS1 protein did not correlate with the level of attenuation of that virus. With equine influenza virus, the mutant virus with the shortest NS1 protein turned out to be the least attenuated. We speculate that the basis for attenuation of the equine NS1 mutant viruses generated is related to their level of NS1 protein expression. Our findings show that the recombinant mutant viruses are impaired in their ability to inhibit IFN production in vitro and they do not replicate as efficiently as the parental recombinant strain in embryonated hen eggs, in MDCK cells, or in vivo in a mouse model. Therefore, these attenuated mutant NS1 viruses may have potential as candidates for a live equine influenza vaccine.

  3. Other Viruses and Viruslike Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diseases reported under 'Virus and Virus-like Agents' in the first volume of this compendium, with the exception of Cherry rasp leaf virus and Rubus chinese seed-borne virus, should be considered oddities since there are no known type isolates available for these reported viruses. Without a po...

  4. Postmortem stability of Ebola virus.

    PubMed

    Prescott, Joseph; Bushmaker, Trenton; Fischer, Robert; Miazgowicz, Kerri; Judson, Seth; Munster, Vincent J

    2015-05-01

    The ongoing Ebola virus outbreak in West Africa has highlighted questions regarding stability of the virus and detection of RNA from corpses. We used Ebola virus-infected macaques to model humans who died of Ebola virus disease. Viable virus was isolated <7 days posteuthanasia; viral RNA was detectable for 10 weeks.

  5. RNA Viruses Infecting Pest Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA viruses are viruses whose genetic material is ribonucleic acid (RNA). RNA viruses may be double or single-stranded based on the type of RNA they contain. Single-stranded RNA viruses can be further grouped into negative sense or positive-sense viruses according to the polarity of their RNA. Fur...

  6. Constructing computer virus phylogenies

    SciTech Connect

    Goldberg, L.A.; Goldberg, P.W.; Phillips, C.A.; Sorkin, G.B.

    1996-03-01

    There has been much recent algorithmic work on the problem of reconstructing the evolutionary history of biological species. Computer virus specialists are interested in finding the evolutionary history of computer viruses--a virus is often written using code fragments from one or more other viruses, which are its immediate ancestors. A phylogeny for a collection of computer viruses is a directed acyclic graph whose nodes are the viruses and whose edges map ancestors to descendants and satisfy the property that each code fragment is ``invented`` only once. To provide a simple explanation for the data, we consider the problem of constructing such a phylogeny with a minimal number of edges. In general, this optimization problem cannot be solved in quasi-polynomial time unless NQP=QP; we present positive and negative results for associated approximated problems. When tree solutions exist, they can be constructed and randomly sampled in polynomial time.

  7. Filamentous Influenza Viruses

    PubMed Central

    Badham, Matthew D.; Rossman, Jeremy S.

    2016-01-01

    Influenza A virus is a pathogen of global medical importance causing significant health and socio-economic costs every year. Influenza virus is an unusual pathogen in that it is pleomorphic, capable of forming virions ranging in shape from spherical to filamentous. Despite decades of research on the influenza virus, much remains unknown about the formation of filamentous influenza viruses and their role in the viral replication cycle. Here, we discuss what is known about influenza virus assembly and budding, focusing on the viral and host factors that are involved in the determination of viral morphology. Whilst the biological function of the filamentous morphology remains unknown, recent results suggest a role in facilitating viral spread in vivo. We discuss these results and speculate on the consequences of viral morphology during influenza virus infection of the human respiratory tract. PMID:28042529

  8. Viruses in Antarctic lakes

    NASA Technical Reports Server (NTRS)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Suttle, C. A.; Wharton RA, J. r. (Principal Investigator)

    1998-01-01

    Water samples collected from four perennially ice-covered Antarctic lakes during the austral summer of 1996-1997 contained high densities of extracellular viruses. Many of these viruses were found to be morphologically similar to double-stranded DNA viruses that are known to infect algae and protozoa. These constitute the first observations of viruses in perennially ice-covered polar lakes. The abundance of planktonic viruses and data suggesting substantial production potential (relative to bacteria] secondary and photosynthetic primary production) indicate that viral lysis may be a major factor in the regulation of microbial populations in these extreme environments. Furthermore, we suggest that Antarctic lakes may be a reservoir of previously undescribed viruses that possess novel biological and biochemical characteristics.

  9. Viruses of lower vertebrates.

    PubMed

    Essbauer, S; Ahne, W

    2001-08-01

    Viruses of lower vertebrates recently became a field of interest to the public due to increasing epizootics and economic losses of poikilothermic animals. These were reported worldwide from both wildlife and collections of aquatic poikilothermic animals. Several RNA and DNA viruses infecting fish, amphibians and reptiles have been studied intensively during the last 20 years. Many of these viruses induce diseases resulting in important economic losses of lower vertebrates, especially in fish aquaculture. In addition, some of the DNA viruses seem to be emerging pathogens involved in the worldwide decline in wildlife. Irido-, herpes- and polyomavirus infections may be involved in the reduction in the numbers of endangered amphibian and reptile species. In this context the knowledge of several important RNA viruses such as orthomyxo-, paramyxo-, rhabdo-, retro-, corona-, calici-, toga-, picorna-, noda-, reo- and birnaviruses, and DNA viruses such as parvo-, irido-, herpes-, adeno-, polyoma- and poxviruses, is described in this review.

  10. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J. (Inventor)

    1978-01-01

    The performance of a waste water reclamation system is monitored by introducing a non-pathogenic marker virus, bacteriophage F2, into the waste-water prior to treatment and, thereafter, testing the reclaimed water for the presence of the marker virus. A test sample is first concentrated by absorbing any marker virus onto a cellulose acetate filter in the presence of a trivalent cation at low pH and then flushing the filter with a limited quantity of a glycine buffer solution to desorb any marker virus present on the filter. Photo-optical detection of indirect passive immune agglutination by polystyrene beads indicates the performance of the water reclamation system in removing the marker virus. A closed system provides for concentrating any marker virus, initiating and monitoring the passive immune agglutination reaction, and then flushing the system to prepare for another sample.

  11. Viruses within animal genomes.

    PubMed

    De Brognier, A; Willems, L

    2016-04-01

    Viruses and their hosts can co-evolve to reach a fragile equilibrium that allows the survival of both. An excess of pathogenicity in the absence of a reservoir would be detrimental to virus survival. A significant proportion of all animal genomes has been shaped by the insertion of viruses that subsequently became 'fossilised'. Most endogenous viruses have lost the capacity to replicate via an infectious cycle and now replicate passively. The insertion of endogenous viruses has contributed to the evolution of animal genomes, for example in the reproductive biology of mammals. However, spontaneous viral integration still occasionally occurs in a number of virus-host systems. This constitutes a potential risk to host survival but also provides an opportunity for diversification and evolution.

  12. DNA Virus Replication Compartments

    PubMed Central

    Schmid, Melanie; Speiseder, Thomas; Dobner, Thomas

    2014-01-01

    Viruses employ a variety of strategies to usurp and control cellular activities through the orchestrated recruitment of macromolecules to specific cytoplasmic or nuclear compartments. Formation of such specialized virus-induced cellular microenvironments, which have been termed viroplasms, virus factories, or virus replication centers, complexes, or compartments, depends on molecular interactions between viral and cellular factors that participate in viral genome expression and replication and are in some cases associated with sites of virion assembly. These virus-induced compartments function not only to recruit and concentrate factors required for essential steps of the viral replication cycle but also to control the cellular mechanisms of antiviral defense. In this review, we summarize characteristic features of viral replication compartments from different virus families and discuss similarities in the viral and cellular activities that are associated with their assembly and the functions they facilitate for viral replication. PMID:24257611

  13. Mechanical properties of viruses.

    PubMed

    de Pablo, Pedro J; Mateu, Mauricio G

    2013-01-01

    Structural biology techniques have greatly contributed to unveil the relationships between structure, properties and functions of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical properties and functions of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of "soft" biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of physical properties of viruses. Growing evidence indicate that viruses are subjected to internal and external forces, and that they may have adapted to withstand and even use those forces. This chapter describes what is known on the mechanical properties of virus particles, their structural determinants, and possible biological implications, of which several examples are provided.

  14. The human oncogenic viruses

    SciTech Connect

    Luderer, A.A.; Weetall, H.H

    1986-01-01

    This book contains eight selections. The titles are: Cytogenetics of the Leukemias and Lymphomas; Cytogenetics of Solid Tumors: Renal Cell Carcinoma, Malignant Melanoma, Retinoblastoma, and Wilms' Tumor; Elucidation of a Normal Function for a Human Proto-Oncogene; Detection of HSV-2 Genes and Gene Products in Cervical Neoplasia; Papillomaviruses in Anogennital Neoplasms; Human Epstein-Barr Virus and Cancer; Hepatitis B Virus and Hepatocellular Carcinoma; and Kaposi's Sarcoma: Acquired Immunodeficiency Syndrome (AIDS) and Associated Viruses.

  15. Zika virus infection.

    PubMed

    Pougnet, Laurence; Thill, Chloé; Pougnet, Richard; Auvinet, Henri; Giacardi, Christophe; Drouillard, Isabelle

    2016-12-01

    A 21-year old woman from New-Caledonia had 40 ̊C fever with vomiting, arthralgia, myalgia, and measles-like rash. Etiological analyses showed primary infection with Zika virus. Because of severe clinical presentation, she was hospitalized in the intensive care unit of the Brest military Hospital. Zika virus is mainly transmitted by Aedes mosquitoes. If they settle in Metropolitan France, Zika virus might also spread there.

  16. Thermal Inactivation of Viruses

    DTIC Science & Technology

    1977-10-01

    Hammon. 1966. Studies on Japanese B encephalitis virus vaccines from tissue culture. VI. Development of a hamster kidney tissue culture inactivated... tissue culture passage, storage, temperature and drying on viability of SE polyoma virus. Exper. Biol. and Hed. Proc. of the Soc. for Exper. Biol...studies of heated tissue suspensions containing foot- and-mouth disease virus. Amer. J. Vet. Res. 20:510-521. Dupre’, M. V., and M. Frobisher. 1966

  17. Broadband Respiratory Virus Surveillance

    DTIC Science & Technology

    2011-10-01

    HSV – Herpes Simplex Virus LOD – Limit of Detection PCR – Polymerase Chain Reaction PIV – Parainfluenza viruses 37 PRMS – Pacific Regional Medical...the RVS assay was determined by testing 109 pre-characterized samples collected at TAMC. This included 20 adenovirus, 20 RSV, 20 PIV, 19 Herpes ... Simplex Virus (HSV) and 19 Enterovirus 7 positive as well as 11 HSV negative specimens as determined by the TAMC Department of Pathology’s current gold

  18. Rabies virus receptors.

    PubMed

    Lafon, Monique

    2005-02-01

    There is convincing in vitro evidence that the muscular form of the nicotinic acetylcholine receptor (nAChR), the neuronal cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR) bind rabies virus and/or facilitate rabies virus entry into cells. Other components of the cell membrane, such as gangliosides, may also participate in the entry of rabies virus. However, little is known of the role of these molecules in vivo. This review proposes a speculative model that accounts for the role of these different molecules in entry and trafficking of rabies virus into the nervous system.

  19. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J.

    1975-01-01

    A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.

  20. Viruses infecting marine molluscs.

    PubMed

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-02-09

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.

  1. FAQ: General Questions about West Nile Virus

    MedlinePlus

    ... Public Service Videos General Questions About West Nile Virus Recommend on Facebook Tweet Share Compartir On This ... West Nile virus cases? What is West Nile virus? West Nile virus is an arthropod-borne virus ( ...

  2. Acerca del moho

    EPA Pesticide Factsheets

    El moho forma parte del medio ambiente natural. Afuera del hogar, el moho juega un papel en la naturaleza al desintegrar materias organicas tales como las hojas que se han caido o los arboles muertos. El moho puede crecer adentro del hogar cuando las espor

  3. Papaya ringspot virus (Potyviridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Papaya ringspot virus, a member of the family Potyviridae, is single stranded RNA plant virus with a monocistronic genome of about 10,326 nucleotides that is expressed via a large polyprotein subsequently cleaved into functional proteins. It causes severe damage on cucurbit crops such as squash and...

  4. Virus separation using membranes.

    PubMed

    Grein, Tanja A; Michalsky, Ronald; Czermak, Peter

    2014-01-01

    Industrial manufacturing of cell culture-derived viruses or virus-like particles for gene therapy or vaccine production are complex multistep processes. In addition to the bioreactor, such processes require a multitude of downstream unit operations for product separation, concentration, or purification. Similarly, before a biopharmaceutical product can enter the market, removal or inactivation of potential viral contamination has to be demonstrated. Given the complexity of biological solutions and the high standards on composition and purity of biopharmaceuticals, downstream processing is the bottleneck in many biotechnological production trains. Membrane-based filtration can be an economically attractive and efficient technology for virus separation. Viral clearance, for instance, of up to seven orders of magnitude has been reported for state of the art polymeric membranes under best conditions.This chapter summarizes the fundamentals of virus ultrafiltration, diafiltration, or purification with adsorptive membranes. In lieu of an impractical universally applicable protocol for virus filtration, application of these principles is demonstrated with two examples. The chapter provides detailed methods for production, concentration, purification, and removal of a rod-shaped baculovirus (Autographa californica M nucleopolyhedrovirus, about 40 × 300 nm in size, a potential vector for gene therapy, and an industrially important protein expression system) or a spherical parvovirus (minute virus of mice, 22-26 nm in size, a model virus for virus clearance validation studies).

  5. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  6. Equine Arteritis Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    03. Nidovirales : 03.004. Arteriviridae : 03.004.0. {03.004.0. unknown} : 03.004.0.01. Arterivirus : 03.004.0.01.001. Equine arteritis virus will be published online. The article details the phenotypic and genotypic makeup of equine arteritis virus (EAV), and summarizes its biological properties....

  7. Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  8. Papaya Ringspot Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term papaya ringspot virus (PRSV) was coined by Jensen in 1949, to describe a papaya disease in Hawaii. Later work showed that diseases such as papaya mosaic and watermelon mosaic virus-1 were caused by PRSV. The primary host range of PRSV is papaya and cucurbits, with Chenopium amaranticolor ...

  9. Usutu Virus, Italy, 1996

    PubMed Central

    Bakonyi, Tamás; Rossi, Giacomo; Mani, Paolo; Nowotny, Norbert

    2013-01-01

    Retrospective analysis of archived tissue samples from bird deaths in the Tuscany region of Italy in 1996 identified Usutu virus. Partial sequencing confirmed identity with the 2001 Vienna strain and provided evidence for a much earlier introduction of this virus into Europe than previously assumed. PMID:23347844

  10. West Nile Virus

    MedlinePlus

    ... spread by mosquitoes. Mosquitoes become infected by biting birds that carry the virus. People can get West Nile virus when an infected mosquito bites them. This happens most often in the warm-weather months of spring, summer and early fall. You ...

  11. Viruses in reptiles.

    PubMed

    Ariel, Ellen

    2011-09-21

    The etiology of reptilian viral diseases can be attributed to a wide range of viruses occurring across different genera and families. Thirty to forty years ago, studies of viruses in reptiles focused mainly on the zoonotic potential of arboviruses in reptiles and much effort went into surveys and challenge trials of a range of reptiles with eastern and western equine encephalitis as well as Japanese encephalitis viruses. In the past decade, outbreaks of infection with West Nile virus in human populations and in farmed alligators in the USA has seen the research emphasis placed on the issue of reptiles, particularly crocodiles and alligators, being susceptible to, and reservoirs for, this serious zoonotic disease. Although there are many recognised reptilian viruses, the evidence for those being primary pathogens is relatively limited. Transmission studies establishing pathogenicity and cofactors are likewise scarce, possibly due to the relatively low commercial importance of reptiles, difficulties with the availability of animals and permits for statistically sound experiments, difficulties with housing of reptiles in an experimental setting or the inability to propagate some viruses in cell culture to sufficient titres for transmission studies. Viruses as causes of direct loss of threatened species, such as the chelonid fibropapilloma associated herpesvirus and ranaviruses in farmed and wild tortoises and turtles, have re-focused attention back to the characterisation of the viruses as well as diagnosis and pathogenesis in the host itself.

  12. Positive reinforcement for viruses.

    PubMed

    Vigant, Frederic; Jung, Michael; Lee, Benhur

    2010-10-29

    Virus-cell membrane fusion requires a critical transition from positive to negative membrane curvature. St. Vincent et al. (2010), in PNAS, designed a class of antivirals that targets this transition. These rigid amphipathic fusion inhibitors are active against an array of enveloped viruses.

  13. Electron tomography of viruses.

    PubMed

    Subramaniam, Sriram; Bartesaghi, Alberto; Liu, Jun; Bennett, Adam E; Sougrat, Rachid

    2007-10-01

    Understanding the molecular architectures of enveloped and complex viruses is a challenging frontier in structural biology. In these viruses, the structural and compositional variation from one viral particle to another generally precludes the use of either crystallization or image averaging procedures that have been successfully implemented in the past for highly symmetric viruses. While advances in cryo electron tomography of unstained specimens provide new opportunities for identification and molecular averaging of individual subcomponents such as the surface glycoprotein spikes on purified viruses, electron tomography of stained and plunge-frozen cells is being used to visualize the cellular context of viral entry and replication. Here, we review recent developments in both areas as they relate to our understanding of the biology of heterogeneous and pleiomorphic viruses.

  14. Mayaro virus proteins.

    PubMed

    Mezencio, J M; Rebello, M A

    1993-01-01

    Mayaro virus was grown in BHK-21 cells and purified by centrifugation in a potassium-tartrate gradient (5-50%). The electron microscopy analyses of the purified virus showed an homogeneous population of enveloped particles with 69 +/- 2.3 nm in diameter. Three structural virus proteins were identified and designated p1, p2 and p3. Their average molecular weight were p1, 54 KDa; p2, 50 KDa and p3, 34 KDa. In Mayaro virus infected Aedes albopictus cells and in BHK-21 infected cells we detected six viral proteins, in which three of them are the structural virus proteins and the other three were products from processing of precursors of viral proteins, whose molecular weights are 62 KDa, 64 KDa and 110 KDa. The 34 KDa protein was the first viral protein synthesized at 5 hours post-infection in both cell lines studied.

  15. Virus excretion in smallpox

    PubMed Central

    Sarkar, J. K.; Mitra, A. C.; Mukherjee, M. K.; De, S. K.

    1973-01-01

    Throat swabs of 34 of 328 family contacts of 52 smallpox cases, examined 4-8 days after the onset of the disease in the family, were positive for variola virus. The log titre of virus per swab ranged from 2 to 3.95. A higher proportion of unvaccinated than of vaccinated contacts excreted the virus. Only 4 of the virus-positive contacts developed clinical smallpox; this occurred 5-7 days after their swabs were examined. Excretion of virus in the throats of these contacts, a few of whom were in the incubation period of the disease, suggests the possibility that they could have spread the infection. This possibility, if kept in mind, may help in tracing the source of infection or in determining the incubation period in a few instances when difficulty is experienced. PMID:4359679

  16. Hepatitis B Virus Biology

    PubMed Central

    Seeger, Christoph; Mason, William S.

    2000-01-01

    Hepadnaviruses (hepatitis B viruses) cause transient and chronic infections of the liver. Transient infections run a course of several months, and chronic infections are often lifelong. Chronic infections can lead to liver failure with cirrhosis and hepatocellular carcinoma. The replication strategy of these viruses has been described in great detail, but virus-host interactions leading to acute and chronic disease are still poorly understood. Studies on how the virus evades the immune response to cause prolonged transient infections with high-titer viremia and lifelong infections with an ongoing inflammation of the liver are still at an early stage, and the role of the virus in liver cancer is still elusive. The state of knowledge in this very active field is therefore reviewed with an emphasis on past accomplishments as well as goals for the future. PMID:10704474

  17. Virus discovery and recent insights into virus diversity in arthropods.

    PubMed

    Junglen, Sandra; Drosten, Christian

    2013-08-01

    Recent studies on virus discovery have focused mainly on mammalian and avian viruses. Arbovirology with its long tradition of ecologically oriented investigation is now catching up, with important novel insights into the diversity of arthropod-associated viruses. Recent discoveries include taxonomically outlying viruses within the families Flaviviridae, Togaviridae, and Bunyaviridae, and even novel virus families within the order Nidovirales. However, the current focusing of studies on blood-feeding arthropods has restricted the range of arthropod hosts analyzed for viruses so far. Future investigations should include species from other arthropod taxa than Ixodita, Culicidae and Phlebotominae in order to shed light on the true diversity of arthropod viruses.

  18. Computer Viruses: Pathology and Detection.

    ERIC Educational Resources Information Center

    Maxwell, John R.; Lamon, William E.

    1992-01-01

    Explains how computer viruses were originally created, how a computer can become infected by a virus, how viruses operate, symptoms that indicate a computer is infected, how to detect and remove viruses, and how to prevent a reinfection. A sidebar lists eight antivirus resources. (four references) (LRW)

  19. A Virus in Turbo Pascal.

    ERIC Educational Resources Information Center

    Teleky, Heidi Ann; And Others

    1993-01-01

    Addresses why the authors feel it is not inappropriate to teach about viruses in the how-to, hands-on fashion. Identifies the special features of Turbo Pascal that have to be used for the creation of an effective virus. Defines virus, derives its structure, and from this structure is derived the implemented virus. (PR)

  20. ICTV Virus Taxonomy Profile: Dicistroviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dicistroviridae is a family of small non-enveloped viruses with RNA genomes of approximately 8-10 kilobases in length. All members infect arthropod hosts with some having devastating economic consequences, such as Acute bee paralysis virus, Kashmir bee virus, and Israeli acute paralysis virus towar...

  1. Realms of the Viruses Online

    ERIC Educational Resources Information Center

    Liu, Dennis

    2007-01-01

    Viruses have evolved strategies for infecting all taxa, but most viruses are highly specific about their cellular host. In humans, viruses cause diverse diseases, from chronic but benign warts, to acute and deadly hemorrhagic fever. Viruses have entertaining names like Zucchini Yellow Mosaic, Semliki Forest, Coxsackie, and the original terminator,…

  2. Virus-PEDOT Biocomposite Films

    PubMed Central

    Donavan, Keith C.; Arter, Jessica A.

    2012-01-01

    Virus-poly(3,4-ethylenedioxythiophene) (virus-PEDOT) biocomposite films are prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous electrolytes containing 12 mM LiClO4 and the bacteriophage M13. The concentration of virus in these solutions, [virus]soln, is varied from 3 nM to 15 nM. A quartz crystal microbalance is used to directly measure the total mass of the biocomposite film during its electrodeposition. In combination with a measurement of the electrodeposition charge, the mass of the virus incorporated into the film is calculated. These data show that concentration of the M13 within the electropolymerized film, [virus]film, increases linearly with [virus]soln. The incorporation of virus particles into the PEDOT film from solution is efficient, resulting in a concentration ratio: [virus]film:[virus]soln ≈450. Virus incorporation into the PEDOT causes roughening of the film topography that is observed using scanning electron microscopy and atomic force microscopy (AFM). The electrical conductivity of the virus-PEDOT film, measured perpendicular to the plane of the film using conductive tip AFM, decreases linearly with virus loading, from 270 μS/cm for pure PE-DOT films to 50 μS/cm for films containing 100 μM virus. The presence on the virus surface of displayed affinity peptides did not significantly influence the efficiency of incorporation into virus-PEDOT biocomposite films. PMID:22856875

  3. Characterization of influenza virus variants with different sizes of the non-structural (NS) genes and their potential as live influenza vaccine in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influenza virus isolate A/turkey/Oregon/71-delNS1 (H7N3) has a 10 nucleotide deletion in the coding region of the NS1 gene and as a result produces a truncated NS1 protein. From a stock of this virus, we found that several variants with different sizes of the NS genes exist. The number of varian...

  4. Viruses isolated from Panamanian sloths.

    PubMed

    Seymour, C; Peralta, P H; Montgomery, G G

    1983-11-01

    Seven virus strains were isolated in Vero cells from whole blood samples from 80 wild-caught sloths, Bradypus variegatus and Choloepus hoffmanni, from Central Panamá. Four strains of at least two different serotypes are related to Changuinola virus; two of these were associated with prolonged or recrudescent viremias. One strain is an antigenic subtype of Punta Toro virus, and another, described here as Bradypus-4 virus, is a new, antigenically ungrouped virus. A second new virus from sloths, Utive virus, forms an antigenic complex within the Simbu serogroup with Utinga and Pintupo viruses. Tests on sequential plasma samples from radio-marked free-ranging sloths and from recently captured animals maintained in captivity showed that both species develop neutralizing antibodies following naturally acquired virus infections. Antibodies against the Changuinola and Simbu serogroup viruses are widespread in both sloth species and are especially prevalent in Choloepus, but are virtually absent in all other wild vertebrate species tested.

  5. Ocular tropism of respiratory viruses.

    PubMed

    Belser, Jessica A; Rota, Paul A; Tumpey, Terrence M

    2013-03-01

    Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism.

  6. Giant viruses infecting algae.

    PubMed

    Van Etten, J L; Meints, R H

    1999-01-01

    Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.

  7. Influenza virus isolation.

    PubMed

    Krauss, Scott; Walker, David; Webster, Robert G

    2012-01-01

    The isolation of influenza viruses is important for the diagnosis of respiratory diseases in lower animals and humans, for the detection of the infecting agent in surveillance programs, and is an essential element in the development and production of vaccine. Since influenza is caused by a zoonotic virus it is necessary to do surveillance in the reservoir species (aquatic waterfowls), intermediate hosts (quails, pigs), and in affected mammals including humans. Two of the hemagglutinin (HA) subtypes of influenza A viruses (H5 and H7) can evolve into highly pathogenic (HP) strains for gallinaceous poultry; some HP H5 and H7 strains cause lethal infection of humans. In waterfowls, low pathogenic avian influenza (LPAI) isolates are obtained primarily from the cloaca (or feces); in domestic poultry, the virus is more often recovered from the respiratory tract than from cloacal samples; in mammals, the virus is most often isolated from the respiratory tract, and in cases of high pathogenic avian influenza (HPAI) from the blood and internal organs of infected birds. Virus isolation procedures are performed by inoculation of clinical specimens into embryonated eggs (primarily chicken eggs) or onto a variety of primary or continuous tissue culture systems. Successful isolation of influenza virus depends on the quality of the sample and matching the appropriate culture method to the sample type.

  8. Fighting cancer with viruses

    NASA Astrophysics Data System (ADS)

    Ferreira, S. C.; Martins, M. L.; Vilela, M. J.

    2005-01-01

    One of the most promising strategies to treat cancer is attacking it with viruses. Viruses can kill tumor cells specifically or act as carriers that deliver normal genes into cancer cells. A model for virotherapy of cancer is investigated and its predictions are in agreement with results obtained from experimental tumors. Furthermore, the model reveals an oscillatory (periodic or aperiodic) response of tumor cells and virus populations which may make clinical prognosis difficult. These results suggest the need for new in vivo and in vitro experiments aiming to detect this oscillatory response.

  9. [Ebola virus disease].

    PubMed

    Nazimek, Katarzyna; Bociaga-Jasik, Monika; Bryniarski, Krzysztof; Gałas, Aleksander; Garlicki, Aleksander; Gawda, Anna; Gawlik, Grzegorz; Gil, Krzysztof; Kosz-Vnenchak, Magdalena; Mrozek-Budzyn, Dorota; Olszanecki, Rafał; Piatek, Anna; Zawilińska, Barbara; Marcinkiewicz, Janusz

    2014-01-01

    Ebola is one of the most virulent zoonotic RNA viruses causing in humans haemorrhagic fever with fatality ratio reaching 90%. During the outbreak of 2014 the number of deaths exceeded 8.000. The "imported" cases reported in Western Europe and USA highlighted the extreme risk of Ebola virus spreading outside the African countries. Thus, haemorrhagic fever outbreak is an international epidemiological problem, also due to the lack of approved prevention and therapeutic strategies. The editorial review article briefly summarizes current knowledge on Ebola virus disease epidemiology, etiology, pathogenesis, clinical presentation, diagnosis as well as possible prevention and treatment.

  10. Viruses in reptiles

    PubMed Central

    2011-01-01

    The etiology of reptilian viral diseases can be attributed to a wide range of viruses occurring across different genera and families. Thirty to forty years ago, studies of viruses in reptiles focused mainly on the zoonotic potential of arboviruses in reptiles and much effort went into surveys and challenge trials of a range of reptiles with eastern and western equine encephalitis as well as Japanese encephalitis viruses. In the past decade, outbreaks of infection with West Nile virus in human populations and in farmed alligators in the USA has seen the research emphasis placed on the issue of reptiles, particularly crocodiles and alligators, being susceptible to, and reservoirs for, this serious zoonotic disease. Although there are many recognised reptilian viruses, the evidence for those being primary pathogens is relatively limited. Transmission studies establishing pathogenicity and cofactors are likewise scarce, possibly due to the relatively low commercial importance of reptiles, difficulties with the availability of animals and permits for statistically sound experiments, difficulties with housing of reptiles in an experimental setting or the inability to propagate some viruses in cell culture to sufficient titres for transmission studies. Viruses as causes of direct loss of threatened species, such as the chelonid fibropapilloma associated herpesvirus and ranaviruses in farmed and wild tortoises and turtles, have re-focused attention back to the characterisation of the viruses as well as diagnosis and pathogenesis in the host itself. 1. Introduction 2. Methods for working with reptilian viruses 3. Reptilian viruses described by virus families 3.1. Herpesviridae 3.2. Iridoviridae 3.2.1 Ranavirus 3.2.2 Erythrocytic virus 3.2.3 Iridovirus 3.3. Poxviridae 3.4. Adenoviridae 3.5. Papillomaviridae 3.6. Parvoviridae 3.7. Reoviridae 3.8. Retroviridae and inclusion body disease of Boid snakes 3.9. Arboviruses 3.9.1. Flaviviridae 3.9.2. Togaviridae 3.10. Caliciviridae

  11. Zika virus in Asia.

    PubMed

    Duong, Veasna; Dussart, Philippe; Buchy, Philippe

    2017-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne virus that was first isolated from a sentinel rhesus monkey in the Zika Forest in Uganda in 1947. In Asia, the virus was isolated in Malaysia from Aedes aegypti mosquitoes in 1966, and the first human infections were reported in 1977 in Central Java, Indonesia. In this review, all reported cases of ZIKV infection in Asia as of September 1, 2016 are summarized and some of the hypotheses that could currently explain the apparently low incidence of Zika cases in Asia are explored.

  12. Zika virus: An overview

    PubMed Central

    Rawal, Gautam; Yadav, Sankalp; Kumar, Raj

    2016-01-01

    The Zika virus has been in the news for quite some time due to the ongoing recent outbreak in the Southern America, which started in December 2015. It has been declared a public health emergency by the World Health Organization in February 2016 owing to its association with the congenital deformities, particularly microcephaly in infants borne to the infected mothers. The rapid spread of the virus throughout the United States of America and subsequently to Asia has raised serious international concerns. Its spread to countries neighboring India is a serious threat to the Indian population. This review article gives an overview about the virus, its diagnosis, clinical features, and the management. PMID:28217576

  13. Development of high-yield influenza B virus vaccine viruses.

    PubMed

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  14. Herpes simplex virus type 2 glycoprotein E is required for efficient virus spread from epithelial cells to neurons and for targeting viral proteins from the neuron cell body into axons.

    PubMed

    Wang, Fushan; Zumbrun, Elizabeth E; Huang, Jialing; Si, Huaxin; Makaroun, Lena; Friedman, Harvey M

    2010-09-30

    The HSV-2 lifecycle involves virus spread in a circuit from the inoculation site to dorsal root ganglia and return. We evaluated the role of gE-2 in the virus lifecycle by deleting amino acids 124-495 (gE2-del virus). In the mouse retina infection model, gE2-del virus does not spread to nuclei in the brain, indicating a defect in anterograde (pre-synaptic to post-synaptic neurons) and retrograde (post-synaptic to pre-synaptic neurons) spread. Infection of neuronal cells in vitro demonstrates that gE-2 is required for targeting viral proteins from neuron cell bodies into axons, and for efficient virus spread from epithelial cells to axons. The mouse flank model confirms that gE2-del virus is defective in spread from epithelial cells to neurons. Therefore, we defined two steps in the virus lifecycle that involve gE-2, including efficient spread from epithelial cells to axons and targeting viral components from neuron cell bodies into axons.

  15. What's West Nile Virus?

    MedlinePlus

    ... is caused by a bite from an infected mosquito that's already carrying the virus, but it's important ... the risk of being bitten by an infected mosquito is greatest from July to early September. But ...

  16. Virus Chapter: Iflaviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The iflaviruses comprise viruses isolated from arthropod species of agricultural importance. All members of iflaviruses have a genome arrangement similar to the picornaviruses, ootyviruses, and secoviruses. However, phylogenetic analysis using the RNA-dependent RNA polymerase region showed that th...

  17. Hepatitis B virus (image)

    MedlinePlus

    Hepatitis B is also known as serum hepatitis and is spread through blood and sexual contact. It is ... population. This photograph is an electronmicroscopic image of hepatitis B virus particles. (Image courtesy of the Centers for ...

  18. VIRUS instrument enclosures

    NASA Astrophysics Data System (ADS)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  19. Avoiding Computer Viruses.

    ERIC Educational Resources Information Center

    Rowe, Joyce; And Others

    1989-01-01

    The threat of computer sabotage is a real concern to business teachers and others responsible for academic computer facilities. Teachers can minimize the possibility. Eight suggestions for avoiding computer viruses are given. (JOW)

  20. The dengue viruses.

    PubMed Central

    Henchal, E A; Putnak, J R

    1990-01-01

    Dengue, a major public health problem throughout subtropical and tropical regions, is an acute infectious disease characterized by biphasic fever, headache, pain in various parts of the body, prostration, rash, lymphadenopathy, and leukopenia. In more severe or complicated dengue, patients present with a severe febrile illness characterized by abnormalities of hemostasis and increased vascular permeability, which in some instances results in a hypovolemic shock. Four distinct serotypes of the dengue virus (dengue-1, dengue-2, dengue-3, and dengue-4) exist, with numerous virus strains found worldwide. Molecular cloning methods have led to a greater understanding of the structure of the RNA genome and definition of virus-specific structural and nonstructural proteins. Progress towards producing safe, effective dengue virus vaccines, a goal for over 45 years, has been made. Images PMID:2224837

  1. Respiratory syncytial virus (RSV)

    MedlinePlus

    ... RSV often spreads quickly in crowded households and day care centers. The virus can live for a half ... The following increase the risk for RSV: Attending day care Being near tobacco smoke Having school-aged brothers ...

  2. West Nile Virus

    MedlinePlus

    ... you'll be infected with West Nile virus, mosquito bites can still be an itchy nuisance. The CDC advises people to protect themselves from mosquito bites by using mosquito repellent, especially at times ...

  3. Respiratory Syncytial Virus

    MedlinePlus

    ... respiratory syncytial virus (RSV) using indirect immunofluorescence technique. Biology & Genetics For more than 50 years, NIAID’s commitment ... Nucleotide Polymorphism Phylogenetics & Ontology Proteomics & Protein Analysis Systems Biology Data Portals Software Applications BCBB Mobyle Interface Designer ( ...

  4. West Nile Virus

    MedlinePlus

    ... would enable it to obtain its blood meal. Biology, Genetics, & Clinical Research NIAID conducts and funds basic and clinical research on WNV biology and viral structure, ways the virus causes human ...

  5. Simian hemorrhagic fever virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Simian hemorrhagic fever virus (SHFV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biological pro...

  6. How rigid are viruses

    NASA Astrophysics Data System (ADS)

    Hartschuh, R. D.; Wargacki, S. P.; Xiong, H.; Neiswinger, J.; Kisliuk, A.; Sihn, S.; Ward, V.; Vaia, R. A.; Sokolov, A. P.

    2008-08-01

    Viruses have traditionally been studied as pathogens, but in recent years they have been adapted for applications ranging from drug delivery and gene therapy to nanotechnology, photonics, and electronics. Although the structures of many viruses are known, most of their biophysical properties remain largely unexplored. Using Brillouin light scattering, we analyzed the mechanical rigidity, intervirion coupling, and vibrational eigenmodes of Wiseana iridovirus (WIV). We identified phonon modes propagating through the viral assemblies as well as the localized vibrational eigenmode of individual viruses. The measurements indicate a Young’s modulus of ˜7GPa for single virus particles and their assemblies, surprisingly high for “soft” materials. Mechanical modeling confirms that the DNA core dominates the WIV rigidity. The results also indicate a peculiar mechanical coupling during self-assembly of WIV particles.

  7. Sexually transmitted viruses.

    PubMed Central

    Rapp, F.

    1989-01-01

    Human viruses known to be spread by sexual contact include herpes simplex viruses (HSV), papillomaviruses (HPV), human immunodeficiency virus (HIV), hepatitis B virus, and cytomegalovirus. Infections with the first three (HSV, HPV, and HIV) have reached epidemic proportions and pose global health concerns. Most of what we know about these human pathogens has been learned only recently, owing to the advent of DNA technologies and advances in culture techniques. In fact, our awareness of one virally transmitted venereal disease, acquired immunodeficiency syndrome, dates to the early 1980s. This paper touches on various aspects of the biology, pathogenesis, clinical manifestations, and, where applicable, oncogenicity of these agents, as well as current treatments and vaccine initiatives. PMID:2549736

  8. [Zika, a neurotropic virus?].

    PubMed

    Del Carpio-Orantes, Luis

    2016-01-01

    In this paper, the neurotropism potential Zika virus is discussed, by comparison with viruses both RNA and DNA are neurotropic known, also it is said that compared with the new viruses that have affected the Americas, as the chikungunya, Zika has shown great affinity by brain tissue, manifested by a high incidence of acute neurological conditions, such as Guillain-Barré syndrome, among others, as well as the reported incidence of microcephaly that is abnormally high compared with the previous incidence, which, in a stillborn subject necropsied significant alterations demonstrated in brain tissue, identifying viral material and live virus in the fetoplacental complex, and demonstrating the impact both white matter and gray matter as well as basal ganglia, corpus callosum, ventricles and spinal cord, which could explain the microcephaly that concerns him. Although not a direct cause-effect relationship is demonstrated, however current evidence supports that relationship, hoping to be supported scientifically.

  9. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.

  10. Tick-borne viruses*

    PubMed Central

    Work, Telford H.

    1963-01-01

    More than 150 arthropod-borne viruses are now recognized, and over 50 of these are known to produce human infections and disease. Among these viruses are those of the tick-borne Russian spring-summer complex, which is etiologically involved in a wide variety of human diseases of varying severity. The eight antigenically different members of this complex so far known are Russian spring-summer encephalitis, louping-ill, Central European encephalitis, Omsk haemorrhagic fever, Kyasanur Forest disease, Langat, Negishi and Powassan viruses. In his review of the problems posed by these viruses and of research on them, the author points out that, while this complex is distributed around the globe in the temperate zone of the northern hemisphere, the only serious tick-borne virus disease known in the tropics is Kyasanur Forest disease. It is probable, however, that there are other, unrecognized tick-borne viruses in the tropical areas of Asia, Africa and America of importance to human health, and that these will be brought to light as virological studies of diseases of now obscure etiology are pursued. PMID:14043753

  11. Control of cucurbit viruses.

    PubMed

    Lecoq, Hervé; Katis, Nikolaos

    2014-01-01

    More than 70 well-characterized virus species transmitted by a diversity of vectors may infect cucurbit crops worldwide. Twenty of those cause severe epidemics in major production areas, occasionally leading to complete crop failures. Cucurbit viruses' control is based on three major axes: (i) planting healthy seeds or seedlings in a clean environment, (ii) interfering with vectors activity, and (iii) using resistant cultivars. Seed disinfection and seed or seedling quality controls guarantee growers on the sanitary status of their planting material. Removal of virus or vector sources in the crop environment can significantly delay the onset of viral epidemics. Insecticide or oil application may reduce virus spread in some situations. Diverse cultural practices interfere with or prevent vector reaching the crop. Resistance can be obtained by grafting for soil-borne viruses, by cross-protection, or generally by conventional breeding or genetic engineering. The diversity of the actions that may be taken to limit virus spread in cucurbit crops and their limits will be discussed. The ultimate goal is to provide farmers with technical packages that combine these methods within an integrated disease management program and are adapted to different countries and cropping systems.

  12. [West Nile virus infection].

    PubMed

    Pérez Ruiz, Mercedes; Gámez, Sara Sanbonmatsu; Clavero, Miguel Angel Jiménez

    2011-12-01

    West Nile virus (WNV) is an arbovirus usually transmitted by mosquitoes. The main reservoirs are birds, although the virus may infect several vertebrate species, such as horses and humans. Up to 80% of human infections are asymptomatic. The most frequent clinical presentation is febrile illness, and neuroinvasive disease can occur in less than 1% of cases. Spain is considered a high-risk area for the emergence of WNV due to its climate and the passage of migratory birds from Africa (where the virus is endemic). These birds nest surrounding wetlands where populations of possible vectors for the virus are abundant. Diagnosis of human neurological infections can be made by detection of IgM in serum and/or cerebrospinal fluid samples, demonstration of a four-fold increase in IgG antibodies between acute-phase and convalescent-phase serum samples, or by detection of viral genome by reverse transcription-polymerase chain reaction (especially useful in transplant recipients). Since WNV is a biosafety level 3 agent, techniques that involve cell culture are restricted to laboratories with this level of biosafety, such as reference laboratories. The National Program for the Surveillance of WNV Encephalitis allows the detection of virus circulation among birds and vectors in areas especially favorable for the virus, such as wetlands, and provides information for evaluation of the risk of disease in horses and humans.

  13. Virus templated metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  14. Transmission of Influenza A Viruses

    PubMed Central

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  15. Transmission of influenza A viruses.

    PubMed

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-05-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages.

  16. Smaller Fleas: Viruses of Microorganisms

    PubMed Central

    Hyman, Paul; Abedon, Stephen T.

    2012-01-01

    Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category—bacterial, archaeal, fungal, and protist—with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms. PMID:24278736

  17. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... this? Submit Button Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Español Recommend ... with Avian Influenza A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses ...

  18. Mechanical inoculation of plant viruses.

    PubMed

    Hull, Roger

    2009-05-01

    This technique is for the mechanical inoculation of viruses to plants. It is used to diagnose a virus by its reactions in a variety of plant species, to test the infectivity of virus samples using local lesion hosts, and to propagate viruses. The virus preparation is rubbed onto the surface of the leaf in such a way as to break the surface cells without causing too much mechanical damage. The preparation of the virus sample, its application to the leaf, and the care of the plants before and after inoculation are described.

  19. [Zika virus infection during pregnancy].

    PubMed

    Picone, O; Vauloup-Fellous, C; D'Ortenzio, E; Huissoud, C; Carles, G; Benachi, A; Faye, A; Luton, D; Paty, M-C; Ayoubi, J-M; Yazdanpanah, Y; Mandelbrot, L; Matheron, S

    2016-05-01

    A Zika virus epidemic is currently ongoing in the Americas. This virus is linked to congenital infections with potential severe neurodevelopmental dysfunction. However, incidence of fetal infection and whether this virus is responsible of other fetal complications are still unknown. National and international public health authorities recommend caution and several prevention measures. Declaration of Zika virus infection is now mandatory in France. Given the available knowledge on Zika virus, we suggest here a review of the current recommendations for management of pregnancy in case of suspicious or infection by Zika virus in a pregnant woman.

  20. Serological Survey of Arthropod-Borne Viruses,

    DTIC Science & Technology

    CULICIDAE, *COLOMBIA, SERODIAGNOSIS, ARBOVIRUSES, ARBOVIRUSES, IMMUNITY, ANTIGENS, ANTIBODIES, VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS , ARTHROPODA, EPIDEMIOLOGY, ENTOMOLOGY, POPULATION, SAINT LOUIS ENCEPHALITIS VIRUS .

  1. Virus trafficking – learning from single-virus tracking

    PubMed Central

    Brandenburg, Boerries; Zhuang, Xiaowei

    2009-01-01

    What could be a better way to study virus trafficking than ‘miniaturizing oneself’ and ‘taking a ride with the virus particle’ on its journey into the cell? Single-virus tracking in living cells potentially provides us with the means to visualize the virus journey. This approach allows us to follow the fate of individual virus particles and monitor dynamic interactions between viruses and cellular structures, revealing previously unobservable infection steps. The entry, trafficking and egress mechanisms of various animal viruses have been elucidated using this method. The combination of single-virus trafficking with systems approaches and state-of-the-art imaging technologies should prove exciting in the future. PMID:17304249

  2. Viruses, definitions and reality.

    PubMed

    Herrero-Uribe, Libia

    2011-09-01

    Viruses are known to be abundant, ubiquitous, and to play a very important role in the health and evolution of life organisms. However, most biologists have considered them as entities separate from the realm of life and acting merely as mechanical artifacts that can exchange genes between different organisms. This article reviews some definitions of life organisms to determine if viruses adjust to them, and additionally, considers new discoveries to challenge the present definition of viruses. Definitions of life organisms have been revised in order to validate how viruses fit into them. Viral factories are discussed since these mini-organelles are a good example of the complexity of viral infection, not as a mechanical usurpation of cell structures, but as a driving force leading to the reorganization and modification of cell structures by viral and cell enzymes. New discoveries such as the Mimivirus, its virophage and viruses that produce filamentous tails when outside of their host cell, have stimulated the scientific community to analyze the current definition of viruses. One way to be free for innovation is to learn from life, without rigid mental structures or tied to the past, in order to understand in an integrated view the new discoveries that will be unfolded in future research. Life processes must be looked from the complexity and trans-disciplinarity perspective that includes and accepts the temporality of the active processes of life organisms, their interdependency and interrelation among them and their environment. New insights must be found to redefine life organisms, especially viruses, which still are defined using the same concepts and knowledge of the fifties.

  3. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  4. [Viruses in drinking water].

    PubMed

    Botzenhart, K

    2007-03-01

    Viruses in drinking water can cause infectious diseases. In the past, hepatitis A and E were the most frequently observed drinking- water-borne viral infections, but in recent years several small- and large-scale norovirus epidemics have been described, even in Europe. All virus species spread via drinking water are of fecal origin. They are regularly identified in waste water even after conventional multi-stage water treatment. The approved disinfection methods can cope with these viruses if they are not integrated in larger particles. For this reason particle separation is particularly important in water treatment. Virological tests are not reliable enough to ensure that drinking water is sufficiently virus-free. The examination of 100 mL of water for E. coli and coliform bacteria is not adequate proof either. If potentially contaminated raw water is used, consumer safety must be ensured by calculating the performance of water treatment plants on a case-by-case basis. Such a calculation takes into account the virus load of the raw water, the efficiency of the physical and chemical particle elimination steps and the effect of disinfection. Those factors which determine the effectiveness of disinfection, namely concentration and exposure time or UV radiation strength, must be adjusted according to the risk of viral infection, and calculated settings must be adhered to, even if favorable E. coli levels may make them seem excessive.

  5. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  6. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  7. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  8. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  9. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  10. Chlorella viruses isolated in China

    SciTech Connect

    Zhang, Y.; Burbank, D.E.; Van Etten, J.L. )

    1988-09-01

    Plaque-forming viruses of the unicellular, eukaryotic, exsymbiotic, Chlorella-like green algae strain NC64A, which are common in the United States, were also present in fresh water collected in the People's Republic of China. Seven of the Chinese viruses were examined in detail and compared with the Chlorella viruses previously isolated in the United States. Like the American viruses, the Chinese viruses were large polyhedra and sensitive to chloroform. They contained numerous structural proteins and large double-stranded DNA genomes of at least 300 kilobase pairs. Each of the DNAs from the Chinese viruses contained 5-methyldeoxycytosine, which varied from 12.6 to 46.7% of the deoxycytosine, and N{sup 6}-methyldeoxyadenosine, which varied from 2.2 to 28.3% of the deoxyadenosine. Four of the Chinese virus DNAs hybridized extensively with {sup 32}P-labeled DNA from the American virus PBCV-1, and three hybridized poorly.

  11. Special Issue: Honey Bee Viruses.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2015-10-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field.

  12. Ebola (Ebola Virus Disease): Treatment

    MedlinePlus

    ... CDC Cancel Submit Search The CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is not ... visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014-2016 West ...

  13. Production of virus resistant plants

    DOEpatents

    Dougherty, W.G.; Lindbo, J.A.

    1996-12-10

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

  14. Epstein-Barr virus test

    MedlinePlus

    ... medlineplus.gov/ency/article/003513.htm Epstein-Barr virus antibody test To use the sharing features on this page, please enable JavaScript. Epstein-Barr virus antibody test is a blood test to detect ...

  15. Ebola (Ebola Virus Disease): Diagnosis

    MedlinePlus

    ... CDC Cancel Submit Search The CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is not ... visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014-2016 West ...

  16. Special Issue: Honey Bee Viruses

    PubMed Central

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  17. Testing for Human Immunodeficiency Virus

    MedlinePlus

    ... incisions made in the mother’s abdomen and uterus. Human Immunodeficiency Virus (HIV): A virus that attacks certain cells of the body’s immune system and causes acquired immunodeficiency syndrome (AIDS). Immune System: ...

  18. Emerging issues in virus taxonomy.

    PubMed

    van Regenmortel, Marc H V; Mahy, Brian W J

    2004-01-01

    Viruses occupy a unique position in biology. Although they possess some of the properties of living systems such as having a genome, they are actually nonliving infectious entities and should not be considered microorganisms. A clear distinction should be drawn between the terms virus, virion, and virus species. Species is the most fundamental taxonomic category used in all biological classification. In 1991, the International Committee on Taxonomy of Viruses (ICTV) decided that the category of virus species should be used in virus classification together with the categories of genus and family. More than 50 ICTV study groups were given the task of demarcating the 1,550 viral species that were recognized in the 7th ICTV report, which was published in 2000. We briefly describe the changes in virus classification that were introduced in that report. We also discuss recent proposals to introduce a nonlatinized binomial nomenclature for virus species.

  19. Detection of airborne polyoma virus.

    PubMed Central

    McGarrity, G. J.; Dion, A. S.

    1978-01-01

    Polyoma virus was recovered from the air of an animal laboratory housing mice infected with the virus. Air samples were obtained by means of a high volume air sampler and further concentrated by high speed centrifugation. Total concentration of the air samples was 7.5 x 10(7). Assay for polyoma virus was by mouse antibody production tests. Airborne polyoma virus was detected in four of six samples. PMID:211163

  20. How the Double Spherules of Infectious Bronchitis Virus Impact Our Understanding of RNA Virus Replicative Organelles

    PubMed Central

    Neuman, Benjamin W.

    2013-01-01

    ABSTRACT Powered by advances in electron tomography, recent studies have extended our understanding of how viruses construct “replication factories” inside infected cells. Their function, however, remains an area of speculation with important implications for human health. It is clear from these studies that whatever their purpose, organelle structure is dynamic (M. Ulasli, M. H. Verheije, C. A. de Haan, and F. Reggiori, Cell. Microbiol. 12:844-861, 2010) and intricate (K. Knoops, M. Kikkert, S. H. Worm, J. C. Zevenhoven-Dobbe, Y. van der Meer, et al., PLOS Biol. 6:e226, 2008). But by concentrating on medically important viruses, these studies have failed to take advantage of the genetic variation inherent in a family of viruses that is as diverse as the archaea, bacteria, and eukaryotes combined (C. Lauber, J. J. Goeman, M. del Carmen Parquet, P. T. Nga, E. J. Snijder, et al., PLOS Pathog. 9:e1003500, 2013). In this climate, Maier et al. (H. J. Maier, P. C. Hawes, E. M. Cottam, J. Mantell, P. Verkade, et al., mBio 4:e00801-13, 2013) explored the replicative structures formed by an avian coronavirus that appears to have diverged at an early point in coronavirus evolution and shed light on controversial aspects of viral biology. PMID:24345746

  1. Virus resistance in orchids.

    PubMed

    Koh, Kah Wee; Lu, Hsiang-Chia; Chan, Ming-Tsair

    2014-11-01

    Orchid plants, Phalaenopsis and Dendrobium in particular, are commercially valuable ornamental plants sold worldwide. Unfortunately, orchid plants are highly susceptible to viral infection by Cymbidium mosaic virus (CymMV) and Odotoglossum ringspot virus (ORSV), posing a major threat and serious economic loss to the orchid industry worldwide. A major challenge is to generate an effective method to overcome plant viral infection. With the development of optimized orchid transformation biotechnological techniques and the establishment of concepts of pathogen-derived resistance (PDR), the generation of plants resistant to viral infection has been achieved. The PDR concept involves introducing genes that is(are) derived from the virus into the host plant to induce RNA- or protein-mediated resistance. We here review the fundamental mechanism of the PDR concept, and illustrate its application in protecting against viral infection of orchid plants.

  2. Viruses in water

    PubMed Central

    Melnick, Joseph L.; Gerba, Charles P.; Wallis, Craig

    1978-01-01

    Attention is drawn in this paper to the increasing problem of viral contamination of water and shellfish, particularly since growing demands for available water resources by a rising world population and expanding industry will make the recycling of wastewater almost inevitable in the future. The problem of eliminating viruses pathogenic for man from water is considered in the light of present water treatment procedures, which are often inadequate for that purpose. Man may be exposed to waterborne viruses through the consumption of contaminated water, shellfish, or crops, as a result of recreational activities involving water, or from aerosols following the spraying of crops with liquid wastes. Physical and chemical methods of eliminating viruses from water are discussed. PMID:310357

  3. Herpes zoster virus vaccine.

    PubMed

    Woolery, William Alan

    2008-10-01

    Varicella zoster virus (VZV) is the etiologic agent of varicella and herpes zoster (HZ) in humans. Herpes zoster is the result of reactivation of VZV within certain sensory ganglia. The burden of illness from HZ and post-herpetic neuralgia (PHN) is high. Herpes-zoster vaccine contains live attenuated varicella-zoster virus in an amount approximately 14 times greater than that found in the varicella virus vaccine. Herpes zoster vaccine is approved for the prevention of shingles in appropriate persons aged 60 and older. The vaccine is administered in a single subcutaneous dose. Reported side effects are mild and generally limited to localized injection site findings. Herpes-zoster vaccine reportedly decreases the occurrence of herpes zoster by approximately 50 percent and prevents the development of PHN by two thirds. The vaccine appears to be minimally effective in those individuals over the age of 80 and is not recommended in this age group.

  4. Usutu virus, Belgium, 2016.

    PubMed

    Garigliany, M; Linden, A; Gilliau, G; Levy, E; Sarlet, M; Franssen, M; Benzarti, E; Derouaux, A; Francis, F; Desmecht, D

    2017-03-01

    During late summer 2016, in a northwest European region extending over Belgium, the Netherlands and the eastern border of the German state of North Rhine Westphalia, an outbreak of wild bird deaths occurred similar to those reported on the continent since 1996. Dead birds were necropsied and examined by complementary methods. Pathologic and immunohistological investigations strongly suggested an infection by Usutu virus. Subsequently, genomic segments of the said virus were detected, the virus was isolated and its complete genome was sequenced. The strain, designated Usutu-LIEGE, is a close phylogenetic relative of those isolated in Germany which form a distinct group within the USUV phylogeny, the so-called Europe_3 lineage. Should this outbreak recapitulate the characteristics of those in southwest Germany in 2011 and in/around Vienna (Austria) in 2001, it is expected that specific avian populations in the affected area will face a significant reduction in size for a few years.

  5. Computer Bytes, Viruses and Vaccines.

    ERIC Educational Resources Information Center

    Palmore, Teddy B.

    1989-01-01

    Presents a history of computer viruses, explains various types of viruses and how they affect software or computer operating systems, and describes examples of specific viruses. Available vaccines are explained, and precautions for protecting programs and disks are given. (nine references) (LRW)

  6. An introduction to computer viruses

    SciTech Connect

    Brown, D.R.

    1992-03-01

    This report on computer viruses is based upon a thesis written for the Master of Science degree in Computer Science from the University of Tennessee in December 1989 by David R. Brown. This thesis is entitled An Analysis of Computer Virus Construction, Proliferation, and Control and is available through the University of Tennessee Library. This paper contains an overview of the computer virus arena that can help the reader to evaluate the threat that computer viruses pose. The extent of this threat can only be determined by evaluating many different factors. These factors include the relative ease with which a computer virus can be written, the motivation involved in writing a computer virus, the damage and overhead incurred by infected systems, and the legal implications of computer viruses, among others. Based upon the research, the development of a computer virus seems to require more persistence than technical expertise. This is a frightening proclamation to the computing community. The education of computer professionals to the dangers that viruses pose to the welfare of the computing industry as a whole is stressed as a means of inhibiting the current proliferation of computer virus programs. Recommendations are made to assist computer users in preventing infection by computer viruses. These recommendations support solid general computer security practices as a means of combating computer viruses.

  7. Detection of Lassa virus, Mali.

    PubMed

    Safronetz, David; Lopez, Job E; Sogoba, Nafomon; Traore', Sékou F; Raffel, Sandra J; Fischer, Elizabeth R; Ebihara, Hideki; Branco, Luis; Garry, Robert F; Schwan, Tom G; Feldmann, Heinz

    2010-07-01

    To determine whether Lassa virus was circulating in southern Mali, we tested samples from small mammals from 3 villages, including Soromba, where in 2009 a British citizen probably contracted a lethal Lassa virus infection. We report the isolation and genetic characterization of Lassa virus from an area previously unknown for Lassa fever.

  8. Protecting Your Computer from Viruses

    ERIC Educational Resources Information Center

    Descy, Don E.

    2006-01-01

    A computer virus is defined as a software program capable of reproducing itself and usually capable of causing great harm to files or other programs on the same computer. The existence of computer viruses--or the necessity of avoiding viruses--is part of using a computer. With the advent of the Internet, the door was opened wide for these…

  9. Ipomoviruses: Squash vein yellowing virus, Cucumber vein yellowing virus, Cassava brown streak virus, and Ugandan cassava brown streak virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ipomoviruses including Squash vein yellowing virus, Cucumber vein yellowing virus and Cassava brown streak virus are currently causing significant economic impact on crop production in several regions of the world. Only recently have results of detailed characterization of their whitefly transmissi...

  10. Avian influenza virus RNA extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  11. Hendra virus and Nipah virus animal vaccines.

    PubMed

    Broder, Christopher C; Weir, Dawn L; Reid, Peter A

    2016-06-24

    Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-1999 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.

  12. Ecology of prokaryotic viruses.

    PubMed

    Weinbauer, Markus G

    2004-05-01

    The finding that total viral abundance is higher than total prokaryotic abundance and that a significant fraction of the prokaryotic community is infected with phages in aquatic systems has stimulated research on the ecology of prokaryotic viruses and their role in ecosystems. This review treats the ecology of prokaryotic viruses ('phages') in marine, freshwater and soil systems from a 'virus point of view'. The abundance of viruses varies strongly in different environments and is related to bacterial abundance or activity suggesting that the majority of the viruses found in the environment are typically phages. Data on phage diversity are sparse but indicate that phages are extremely diverse in natural systems. Lytic phages are predators of prokaryotes, whereas lysogenic and chronic infections represent a parasitic interaction. Some forms of lysogeny might be described best as mutualism. The little existing ecological data on phage populations indicate a large variety of environmental niches and survival strategies. The host cell is the main resource for phages and the resource quality, i.e., the metabolic state of the host cell, is a critical factor in all steps of the phage life cycle. Virus-induced mortality of prokaryotes varies strongly on a temporal and spatial scale and shows that phages can be important predators of bacterioplankton. This mortality and the release of cell lysis products into the environment can strongly influence microbial food web processes and biogeochemical cycles. Phages can also affect host diversity, e.g., by 'killing the winner' and keeping in check competitively dominant species or populations. Moreover, they mediate gene transfer between prokaryotes, but this remains largely unknown in the environment. Genomics or proteomics are providing us now with powerful tools in phage ecology, but final testing will have to be performed in the environment.

  13. Research on computer virus database management system

    NASA Astrophysics Data System (ADS)

    Qi, Guoquan

    2011-12-01

    The growing proliferation of computer viruses becomes the lethal threat and research focus of the security of network information. While new virus is emerging, the number of viruses is growing, virus classification increasing complex. Virus naming because of agencies' capture time differences can not be unified. Although each agency has its own virus database, the communication between each other lacks, or virus information is incomplete, or a small number of sample information. This paper introduces the current construction status of the virus database at home and abroad, analyzes how to standardize and complete description of virus characteristics, and then gives the information integrity, storage security and manageable computer virus database design scheme.

  14. Zika virus: Indian perspectives.

    PubMed

    Mourya, Devendra T; Shil, Pratip; Sapkal, Gajanan N; Yadav, Pragya D

    2016-05-01

    The emergence of Zika virus (ZiV), a mosquito borne Flavivirus like dengue (DEN) and chikungunya (CHIK), in Brazil in 2014 and its spread to various countries have led to a global health emergency. Aedes aegypti is the major vector for ZiV. Fast dissemination of this virus in different geographical areas posses a major threat especially to regions where the population lacks herd immunity against the ZiV and there is abundance of Aedes mosquitoes. In this review, we focus on current global scenario, epidemiology, biology, diagnostic challenges and remedial measures for ZiVconsidering the Indian perspective.

  15. Zika virus: Indian perspectives

    PubMed Central

    Mourya, Devendra T.; Shil, Pratip; Sapkal, Gajanan N.; Yadav, Pragya D.

    2016-01-01

    The emergence of Zika virus (ZiV), a mosquito borne Flavivirus like dengue (DEN) and chikungunya (CHIK), in Brazil in 2014 and its spread to various countries have led to a global health emergency. Aedes aegypti is the major vector for ZiV. Fast dissemination of this virus in different geographical areas posses a major threat especially to regions where the population lacks herd immunity against the ZiV and there is abundance of Aedes mosquitoes. In this review, we focus on current global scenario, epidemiology, biology, diagnostic challenges and remedial measures for ZiVconsidering the Indian perspective. PMID:27487998

  16. Viruses and viral proteins.

    PubMed

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R N

    2014-11-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.

  17. Virus diseases of fish

    USGS Publications Warehouse

    Watson, Stanley W.

    1954-01-01

    The degenerative or non-neoplastic diseases of possible virus origin give the fish-culturist the most concern because of the severe mortalities resulting from infection. Epizootics of this nature have been reported in carp (Cyprinus carpio) and rainbow trout (Salmo gairdneri) in Europe, in acara (Geophagus brasiliensis) in South America, in kokanee, (Oncorhynchus nerka kennerlyi) and in sockeye salmon (Oncorhynchus nerka nerka) in the State of Washington. It has been demonstrated that each epizootic was caused by an infectious filterable agent, probably a virus.

  18. Zika virus outside Africa.

    PubMed

    Hayes, Edward B

    2009-09-01

    Zika virus (ZIKV) is a flavivirus related to yellow fever, dengue, West Nile, and Japanese encephalitis viruses. In 2007 ZIKV caused an outbreak of relatively mild disease characterized by rash, arthralgia, and conjunctivitis on Yap Island in the southwestern Pacific Ocean. This was the first time that ZIKV was detected outside of Africa and Asia. The history, transmission dynamics, virology, and clinical manifestations of ZIKV disease are discussed, along with the possibility for diagnostic confusion between ZIKV illness and dengue.The emergence of ZIKV outside of its previously known geographic range should prompt awareness of the potential for ZIKV to spread to other Pacific islands and the Americas.

  19. [ZIKA--VIRUS INFECTION].

    PubMed

    Velev, V

    2016-01-01

    This review summarizes the knowledge of the scientific community for Zika-virus infection. It became popular because of severe congenital damage causes of CNS in newborns whose mothers are infected during pregnancy, as well as the risk of pandemic distribution. Discusses the peculiarities of the biology and ecology of vectors--blood-sucking mosquitoes Aedes; stages in the spread of infection and practical problems which caused during pregnancy. Attention is paid to the recommendations that allow leading national and international medical organizations to deal with the threat Zika-virus infection.

  20. Viruses and viral proteins

    PubMed Central

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R. N.

    2014-01-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes. PMID:25485129

  1. Junín Virus Pathogenesis and Virus Replication

    PubMed Central

    Grant, Ashley; Seregin, Alexey; Huang, Cheng; Kolokoltsova, Olga; Brasier, Allan; Peters, Clarence; Paessler, Slobodan

    2012-01-01

    Junín virus, the etiological agent of Argentine hemorrhagic fever, causes significant morbidity and mortality. The virus is spread through the aerosolization of host rodent excreta and endemic to the humid pampas of Argentina. Recently, significant progress has been achieved with the development of new technologies (e.g. reverse genetics) that have expanded knowledge about the pathogenesis and viral replication of Junín virus. We will review the pathogenesis of Junín virus in various animal models and the role of innate and adaptive immunity during infection. We will highlight current research regarding the role of molecular biology of Junín virus in elucidating virus attenuation. We will also summarize current knowledge on Junín virus pathogenesis focusing on the recent development of vaccines and potential therapeutics. PMID:23202466

  2. Espectroscopia del Cometa Halley

    NASA Astrophysics Data System (ADS)

    Naranjo, O.; Fuenmayor, F.; Ferrin, L.; Bulka, P.; Mendoza, C.

    1987-05-01

    Se reportan observaciones espectroscópicas del cometa Halley. Los espectros fueron tomados usando el espectrógrafo del telescopio reflector de 1 metro del Observatorio Nacional de Venezuela. Se utilizó óptica azul, con una red de difracción de 600 lineas/min, obteniéndose una dispersión de 74.2 A/mm y una resolución de 2.5 A, en el rango espectral de 3500 a 6500 A. Seis placas fueron tomadas con emulsión IIa-O y dos con IIa-D. Los tiempos de exposición fueron entre 10 y 150 minutos. El cometa se encontraba entre 0.70 y 1.04 UA del Sol, y entre 1.28 y 0.73 UA de la Tierra. Las emisiones más prominentes en el espectro, son las del CN, C2, y C3. Otras emisiones detectadas corresponden a CH, NH2 y Na. Los espectros muestran un fuerte continuo, indicando un contenido significativo de polvo. Se detectó mayor intensidad del contínuo, en la dirección anti solar, lo cual es evidencia de la cola de polvo.

  3. The games plant viruses play.

    PubMed

    Elena, Santiago F; Bernet, Guillermo P; Carrasco, José L

    2014-10-01

    Mixed virus infections in plants are common in nature. The outcome of such virus-virus interactions ranges from cooperation and coexistence (synergism) to mutual exclusion (antagonism). A priori, the outcome of mixed infections is hard to predict. To date, the analyses of plant virus mixed infections were limited to reports of emerging symptoms and/or to qualitative, at best quantitative, descriptions of the accumulation of both viruses. Here, we show that evolutionary game theory provides an adequate theoretical framework to analyze mixed viral infections and to predict the long-term evolution of the mixed populations.

  4. ICTV Virus Taxonomy Profile: Flaviviridae.

    PubMed

    Simmonds, Peter; Becher, Paul; Bukh, Jens; Gould, Ernest A; Meyers, Gregor; Monath, Tom; Muerhoff, Scott; Pletnev, Alexander; Rico-Hesse, Rebecca; Smith, Donald B; Stapleton, Jack T; Ictv Report Consortium

    2017-01-01

    The Flaviviridae is a family of small enveloped viruses with RNA genomes of 9000-13 000 bases. Most infect mammals and birds. Many flaviviruses are host-specific and pathogenic, such as hepatitis C virus in the genus Hepacivirus. The majority of known members in the genus Flavivirus are arthropod borne, and many are important human and veterinary pathogens (e.g. yellow fever virus, dengue virus). This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) report on the taxonomy of the Flaviviridae, which is available at www.ictv.global/report/flaviviridae.

  5. Influenza viruses: transmission between species.

    PubMed

    Webster, R G; Hinshaw, V S; Bean, W J; Sriram, G

    1980-02-25

    The only direct evidence for transmission of influenza viruses between species comes from studies on swine influenza viruses. Antigenically and genetically identical Hsw1N1 influenza viruses were isolated from pigs and man on the same farm in Wisconsin, U.S.A. The isolation of H3N2 influenza viruses from a wide range of lower animals and birds suggests that influenza viruses of man can spread to the lower orders. Under some conditions the H3N2 viruses can persist for a number of years in some species. The isolation, from aquatic birds, of a large number of influenza A viruses that possess surface proteins antigenically similar to the viruses isolated from man, pigs and horses provides indirect evidence for inter-species transmission. There is now a considerable body of evidence which suggests that influenza viruses of lower animals and birds may play a role in the origin of some of the pandemic strains of influenza A viruses. There is no direct evidence that the influenza viruses in aquatic birds are transmitted to man, but they may serve as a genetic pool from which some genes may be introduced into humans by recombination. Preliminary evidence suggests that the molecular basis of host range and virulence may be related to the RNA segments coding for one of the polymerase proteins (P3) and for the nucleoprotein (NP).

  6. Avian influenza virus RNA extraction.

    PubMed

    Spackman, Erica; Lee, Scott A

    2014-01-01

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from experimentally infected birds. Samples can generally be divided into two types; enriched (e.g. virus stocks) and clinical. Clinical type samples, which may be tissues or swab material, are the most difficult to process due to the complex sample composition and possibly low virus titers. In this chapter two well established procedures for the isolation of AI virus RNA from common clinical specimen types and enriched virus stocks for further molecular applications will be presented.

  7. Bat flight and zoonotic viruses

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.

  8. Satellite RNAs and Satellite Viruses.

    PubMed

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  9. Bat Flight and Zoonotic Viruses

    PubMed Central

    Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts. PMID:24750692

  10. Animal Models of Zika Virus.

    PubMed

    P Bradley And Claude M Nagamine, Michael

    2017-03-07

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian-Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model-based Zika virus research that has been performed to date.

  11. Virus Chapter: Dicistrovidae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dicistroviridae family comprises viruses infecting both beneficial arthropods such as honey bees and shrimp and insect pests of medical and agricultural importance. During the last five years, advances in sequencing and phylogenetic analysis have led to the discovery and identification of sever...

  12. Human viruses and cancer.

    PubMed

    Morales-Sánchez, Abigail; Fuentes-Pananá, Ezequiel M

    2014-10-23

    The first human tumor virus was discovered in the middle of the last century by Anthony Epstein, Bert Achong and Yvonne Barr in African pediatric patients with Burkitt's lymphoma. To date, seven viruses -EBV, KSHV, high-risk HPV, MCPV, HBV, HCV and HTLV1- have been consistently linked to different types of human cancer, and infections are estimated to account for up to 20% of all cancer cases worldwide. Viral oncogenic mechanisms generally include: generation of genomic instability, increase in the rate of cell proliferation, resistance to apoptosis, alterations in DNA repair mechanisms and cell polarity changes, which often coexist with evasion mechanisms of the antiviral immune response. Viral agents also indirectly contribute to the development of cancer mainly through immunosuppression or chronic inflammation, but also through chronic antigenic stimulation. There is also evidence that viruses can modulate the malignant properties of an established tumor. In the present work, causation criteria for viruses and cancer will be described, as well as the viral agents that comply with these criteria in human tumors, their epidemiological and biological characteristics, the molecular mechanisms by which they induce cellular transformation and their associated cancers.

  13. From Shakespeare to Viruses

    ScienceCinema

    Kim, Sung-Hou

    2016-07-12

    Berkeley Lab scientists have created a unique new tool for analyzing and comparing long sets of data, be it the genomes of mammals or viruses, or the works of Shakespeare. The results of the Shakespeare analysis surprised scholars with their accuracy.

  14. Apple mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple mosaic virus (ApMV), a member of the ilarvirus group, naturally infects Betula, Aesculus, Humulus, and several crop genera in the family Rosaceae (Malus, Prunus, Rosa and Rubus). ApMV was first reported in Rubus in several blackberry and raspberry cultivars in the United States and subsequentl...

  15. From Shakespeare to Viruses

    ScienceCinema

    Sung-Hou Kim

    2016-07-12

    Berkeley Lab scientists have created a unique new tool for analyzing and comparing long sets of data, be it the genomes of mammals or viruses, or the works of Shakespeare. The results of the Shakespeare analysis surprised scholars with their accuracy

  16. Blueberry shock virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberry shock disease first observed in Washington state in 1987 and initially confused with blueberry scorch caused by Blueberry scorch virus (BlScV). However, shock affected plants produced a second flush of leaves after flowering and the plants appeared normal by late summer except for the lac...

  17. Turnip Yellow Mosaic Virus

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The bumpy exterior of the turnip yellow mosaic virus (TYMV) protein coat, or capsid, was defined in detail by Dr. Alexander McPherson of the University of California, Irvin using proteins crystallized in space for analysis on Earth. TYMV is an icosahedral virus constructed from 180 copies of the same protein arranged into 12 clusters of five proteins (pentamers), and 20 clusters of six proteins (hexamers). The final TYMV structure led to the unexpected hypothesis that the virus releases its RNA by essentially chemical-mechanical means. Most viruses have fairly flat coats, but in TYNV, the fold in each protein, called the jellyroll, is clustered at the points where the protein pentamers and hexamers join. The jellyrolls are almost standing on end, producing a bumpy surface with knobs at all of the pentamers and hexamers. At the inside surface of the pentamers is a void that is not present at the hexamers. The coating had been seen in early stuties of TYMV, but McPherson's atomic structure shows much more detail. The inside surface is strikingly, and unexpectedly, different than the outside. While the pentamers contain a central void on the inside, the hexameric units contain peptides linked to each other, forming a ring or, more accurately, rings to fill the void. Credit: Dr. Alexander McPherson, University of California, Irvine

  18. Cold Facts about Viruses.

    ERIC Educational Resources Information Center

    Pea, Celeste; Sterling, Donna R.

    2002-01-01

    Provides ways for students to demonstrate their understanding of scientific concepts and skills. Describes a mini-unit around the cold in which students can relate humans to viruses. Includes activities and a modified simulation that provides questions to guide students. Discusses ways that allows students to apply prior knowledge, take ownership…

  19. From Shakespeare to Viruses

    SciTech Connect

    Sung-Hou Kim

    2009-02-09

    Berkeley Lab scientists have created a unique new tool for analyzing and comparing long sets of data, be it the genomes of mammals or viruses, or the works of Shakespeare. The results of the Shakespeare analysis surprised scholars with their accuracy

  20. From Shakespeare to Viruses

    SciTech Connect

    Kim, Sung-Hou

    2009-01-01

    Berkeley Lab scientists have created a unique new tool for analyzing and comparing long sets of data, be it the genomes of mammals or viruses, or the works of Shakespeare. The results of the Shakespeare analysis surprised scholars with their accuracy.

  1. Varicella zoster virus infection

    PubMed Central

    Gershon, Anne A.; Breuer, Judith; Cohen, Jeffrey I.; Cohrs, Randall J.; Gershon, Michael D.; Gilden, Don; Grose, Charles; Hambleton, Sophie; Kennedy, Peter G. E.; Oxman, Michael N.; Seward, Jane F.; Yamanishi, Koichi

    2017-01-01

    Infection with varicella zoster virus (VZV) causes varicella (chickenpox), which can be severe in immunocompromised individuals, infants and adults. Primary infection is followed by latency in ganglionic neurons. During this period, no virus particles are produced and no obvious neuronal damage occurs. Reactivation of the virus leads to virus replication, which causes zoster (shingles) in tissues innervated by the involved neurons, inflammation and cell death — a process that can lead to persistent radicular pain (postherpetic neuralgia). The pathogenesis of postherpetic neuralgia is unknown and it is difficult to treat. Furthermore, other zoster complications can develop, including myelitis, cranial nerve palsies, meningitis, stroke (vasculopathy), retinitis, and gastroenterological infections such as ulcers, pancreatitis and hepatitis. VZV is the only human herpesvirus for which highly effective vaccines are available. After varicella or vaccination, both wild-type and vaccine-type VZV establish latency, and long-term immunity to varicella develops. However, immunity does not protect against reactivation. Thus, two vaccines are used: one to prevent varicella and one to prevent zoster. In this Primer we discuss the pathogenesis, diagnosis, treatment, and prevention of VZV infections, with an emphasis on the molecular events that regulate these diseases. For an illustrated summary of this Primer, visit: http://go.nature.com/14×VI1 PMID:27188665

  2. Viruses of Haloarchaea

    PubMed Central

    Luk, Alison W. S.; Williams, Timothy J.; Erdmann, Susanne; Papke, R. Thane; Cavicchioli, Ricardo

    2014-01-01

    In hypersaline environments, haloarchaea (halophilic members of the Archaea) are the dominant organisms, and the viruses that infect them, haloarchaeoviruses are at least ten times more abundant. Since their discovery in 1974, described haloarchaeoviruses include head-tailed, pleomorphic, spherical and spindle-shaped morphologies, representing Myoviridae, Siphoviridae, Podoviridae, Pleolipoviridae, Sphaerolipoviridae and Fuselloviridae families. This review overviews current knowledge of haloarchaeoviruses, providing information about classification, morphotypes, macromolecules, life cycles, genetic manipulation and gene regulation, and host-virus responses. In so doing, the review incorporates knowledge from laboratory studies of isolated viruses, field-based studies of environmental samples, and both genomic and metagenomic analyses of haloarchaeoviruses. What emerges is that some haloarchaeoviruses possess unique morphological and life cycle properties, while others share features with other viruses (e.g., bacteriophages). Their interactions with hosts influence community structure and evolution of populations that exist in hypersaline environments as diverse as seawater evaporation ponds, to hot desert or Antarctic lakes. The discoveries of their wide-ranging and important roles in the ecology and evolution of hypersaline communities serves as a strong motivator for future investigations of both laboratory-model and environmental systems. PMID:25402735

  3. Human Viruses and Cancer

    PubMed Central

    Morales-Sánchez, Abigail; Fuentes-Pananá, Ezequiel M.

    2014-01-01

    The first human tumor virus was discovered in the middle of the last century by Anthony Epstein, Bert Achong and Yvonne Barr in African pediatric patients with Burkitt’s lymphoma. To date, seven viruses -EBV, KSHV, high-risk HPV, MCPV, HBV, HCV and HTLV1- have been consistently linked to different types of human cancer, and infections are estimated to account for up to 20% of all cancer cases worldwide. Viral oncogenic mechanisms generally include: generation of genomic instability, increase in the rate of cell proliferation, resistance to apoptosis, alterations in DNA repair mechanisms and cell polarity changes, which often coexist with evasion mechanisms of the antiviral immune response. Viral agents also indirectly contribute to the development of cancer mainly through immunosuppression or chronic inflammation, but also through chronic antigenic stimulation. There is also evidence that viruses can modulate the malignant properties of an established tumor. In the present work, causation criteria for viruses and cancer will be described, as well as the viral agents that comply with these criteria in human tumors, their epidemiological and biological characteristics, the molecular mechanisms by which they induce cellular transformation and their associated cancers. PMID:25341666

  4. Giant viruses: conflicts in revisiting the virus concept.

    PubMed

    Forterre, Patrick

    2010-01-01

    The current paradigm on the nature of viruses is based on early work of the 'phage group' (the pro-phage concept) and molecular biologists working on tumour viruses (the proto-oncogene concept). It posits that viruses evolved from either prokaryotic or eukaryotic cellular genes that became infectious via their association with capsid genes. In this view, after their emergence viruses continued to evolve by stealing cellular genes (the escape model). This paradigm has been challenged recently by scientists who propose that viruses pre-dated modern cells. In particular, the discovery of Mimivirus has stimulated a lot of discussions on the nature of viruses. There are two major schools of thought, those who defend the escape model, suggesting that giant viruses are giant pickpockets (chimera), and those who emphasize their uniqueness and ancient origin. Comparative genomics of Mimivirus and related viruses (nucleo-cytoplasmic large DNA viruses) have produced a lot of data that have been interpreted according to the prejudices of the authors and thus failed until now to generate a consensus. I briefly review here the history of these debates and how they lead to new proposals, such as the definition of viruses as capsid-encoding organisms or else the recognition of their fundamentally cellular nature, the virocell concept.

  5. Dengue virus antibodies enhance Zika virus infection

    PubMed Central

    Paul, Lauren M; Carlin, Eric R; Jenkins, Meagan M; Tan, Amanda L; Barcellona, Carolyn M; Nicholson, Cindo O; Michael, Scott F; Isern, Sharon

    2016-01-01

    For decades, human infections with Zika virus (ZIKV), a mosquito-transmitted flavivirus, were sporadic, associated with mild disease, and went underreported since symptoms were similar to other acute febrile diseases. Recent reports of severe disease associated with ZIKV have greatly heightened awareness. It is anticipated that ZIKV will continue to spread in the Americas and globally where competent Aedes mosquito vectors are found. Dengue virus (DENV), the most common mosquito-transmitted human flavivirus, is both well-established and the source of outbreaks in areas of recent ZIKV introduction. DENV and ZIKV are closely related, resulting in substantial antigenic overlap. Through antibody-dependent enhancement (ADE), anti-DENV antibodies can enhance the infectivity of DENV for certain classes of immune cells, causing increased viral production that correlates with severe disease outcomes. Similarly, ZIKV has been shown to undergo ADE in response to antibodies generated by other flaviviruses. We tested the neutralizing and enhancing potential of well-characterized broadly neutralizing human anti-DENV monoclonal antibodies (HMAbs) and human DENV immune sera against ZIKV using neutralization and ADE assays. We show that anti-DENV HMAbs, cross-react, do not neutralize, and greatly enhance ZIKV infection in vitro. DENV immune sera had varying degrees of neutralization against ZIKV and similarly enhanced ZIKV infection. Our results suggest that pre-existing DENV immunity may enhance ZIKV infection in vivo and may lead to increased disease severity. Understanding the interplay between ZIKV and DENV will be critical in informing public health responses and will be particularly valuable for ZIKV and DENV vaccine design and implementation strategies. PMID:28090318

  6. Dengue virus antibodies enhance Zika virus infection.

    PubMed

    Paul, Lauren M; Carlin, Eric R; Jenkins, Meagan M; Tan, Amanda L; Barcellona, Carolyn M; Nicholson, Cindo O; Michael, Scott F; Isern, Sharon

    2016-12-01

    For decades, human infections with Zika virus (ZIKV), a mosquito-transmitted flavivirus, were sporadic, associated with mild disease, and went underreported since symptoms were similar to other acute febrile diseases. Recent reports of severe disease associated with ZIKV have greatly heightened awareness. It is anticipated that ZIKV will continue to spread in the Americas and globally where competent Aedes mosquito vectors are found. Dengue virus (DENV), the most common mosquito-transmitted human flavivirus, is both well-established and the source of outbreaks in areas of recent ZIKV introduction. DENV and ZIKV are closely related, resulting in substantial antigenic overlap. Through antibody-dependent enhancement (ADE), anti-DENV antibodies can enhance the infectivity of DENV for certain classes of immune cells, causing increased viral production that correlates with severe disease outcomes. Similarly, ZIKV has been shown to undergo ADE in response to antibodies generated by other flaviviruses. We tested the neutralizing and enhancing potential of well-characterized broadly neutralizing human anti-DENV monoclonal antibodies (HMAbs) and human DENV immune sera against ZIKV using neutralization and ADE assays. We show that anti-DENV HMAbs, cross-react, do not neutralize, and greatly enhance ZIKV infection in vitro. DENV immune sera had varying degrees of neutralization against ZIKV and similarly enhanced ZIKV infection. Our results suggest that pre-existing DENV immunity may enhance ZIKV infection in vivo and may lead to increased disease severity. Understanding the interplay between ZIKV and DENV will be critical in informing public health responses and will be particularly valuable for ZIKV and DENV vaccine design and implementation strategies.

  7. Virus movement within grafted watermelon plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon production in Florida is impacted by several viruses including whitefly-transmitted Squash vein yellowing virus (SqVYV), Cucurbit yellow stunting disorder virus and Cucurbit leaf crumple virus, and aphid-transmitted Papaya ringspot virus type W (PRSV-W). While germplasm resistant to some...

  8. Gastroenteritis viruses: an overview.

    PubMed

    Glass, R I; Bresee, J; Jiang, B; Gentsch, J; Ando, T; Fankhauser, R; Noel, J; Parashar, U; Rosen, B; Monroe, S S

    2001-01-01

    Acute gastroenteritis is among the most common illnesses of humankind, and its associated morbidity and mortality are greatest among those at the extremes of age, children and the elderly. In developing countries, gastroenteritis is a common cause of death in children < 5 years that can be linked to a wide variety of pathogens. In developed countries, while deaths from diarrhoea are less common, much illness leads to hospitalization or doctor visits. Much of the gastroenteritis in children is caused by viruses belonging to four distinct families--rotaviruses, caliciviruses, astroviruses and adenoviruses. Other viruses, such as the toroviruses, picobirnaviruses, picornavirus (the Aichi virus), and enterovirus 22, may play a role as well. Viral gastroenteritis occurs with two epidemiologic patterns, diarrhoea that is endemic in children and outbreaks that affect people of all ages. Viral diarrhoea in children is caused by group A rotaviruses, enteric adenoviruses, astroviruses and the caliciviruses; the illness affects all children worldwide in the first few years of life regardless of their level of hygiene, quality of water, food or sanitation, or type of behaviour. For all but perhaps the caliciviruses, these infections provide immunity from severe disease upon reinfection. Epidemic viral diarrhoea is caused primarily by the Norwalk-like virus genus of the caliciviruses. These viruses affect people of all ages, are often transmitted by faecally contaminated food or water, and are therefore subject to control by public health measures. The tremendous antigenic diversity of caliciviruses and short-lived immunity to infection permit repeated episodes throughout life. In the past decade, the molecular characterization of many of these gastroenteritis viruses has led to advances both in our understanding of the pathogens themselves and in development of a new generation of diagnostics. Application of these more sensitive methods to detect and characterize individual

  9. Detection of sweet potato viruses in Yunnan and genetic diversity analysis of the common viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two hundred seventy-nine samples with virus-like symptoms collected from 16 regions in Yunnan Province were tested by RT-PCR/PCR using virus-specific primers for 8 sweet potato viruses. Six viruses, Sweet potato chlorotic fleck virus (SPCFV), Sweet Potato feathery mottle virus (SPFMV), Sweet potato ...

  10. Mechanisms of Virus Assembly

    PubMed Central

    Perlmutter, Jason D.; Hagan, Michael F.

    2015-01-01

    Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid, and in some cases surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assembles within their host cells and in vitro. We describe the thermodynamics and kinetics for assembly of protein subunits into icosahedral capsid shells, and how these are modified in cases where the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques that have been used to characterize capsid assembly, and we highlight aspects of virus assembly which are likely to receive significant attention in the near future. PMID:25532951

  11. [Ebola virus disease: Update].

    PubMed

    de la Calle-Prieto, Fernando; Arsuaga-Vicente, Marta; Mora-Rillo, Marta; Arnalich-Fernandez, Francisco; Arribas, Jose Ramon

    2016-01-01

    The first known Ebola outbreak occurred in 1976. Since then, 24 limited outbreaks had been reported in Central Africa, but never affecting more than 425 persons. The current outbreak in Western Africa is the largest in history with 28,220 reported cases and 11,291 deaths. The magnitude of the epidemic has caused worldwide alarm. For the first time, evacuated patients were treated outside Africa, and secondary cases have occurred in Spain and the United States. Since the start of the current epidemic, our knowledge about the epidemiology, clinical picture, laboratory findings, and virology of Ebola virus disease has considerably expanded. For the first time, experimental treatment has been tried, and there have been spectacular advances in vaccine development. A review is presented of these advances in the knowledge of Ebola virus disease.

  12. Hetdex: Virus Instrument

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, G. J.; DePoy, D. L.; Tuttle, S.; Marshall, J. L.; Vattiat, B. L.; Prochaska, T.; Chonis, T. S.; Allen, R.; HETDEX Collaboration

    2012-01-01

    The Visible Integral-field-unit Replicable Unit Spectrograph (VIRUS) instrument is made up of 150+ individually compact and identical spectrographs, each fed by a fiber integral-field unit. The instrument provides integral field spectroscopy at wavelengths between 350nm and 550nm of over 33,600 spatial elements per observation, each 1.8 sq. arcsec on the sky, at R 700. The instrument will be fed by a new wide-field corrector (WFC) of the Hobby-Eberly Telescope (HET) with increased science field of view as large as 22arcmin diameter and telescope aperture of 10m. This will enable the HETDEX, a large area blind survey of Lyman-alpha emitting galaxies at redshift z < 3.5. The status of VIRUS instrument construction is summarized.

  13. Phage Displayed Peptides to Avian H5N1 Virus Distinguished the Virus from Other Viruses

    PubMed Central

    Qin, Chengfeng; Ren, Xiaofeng

    2011-01-01

    The purpose of the current study was to identify potential ligands and develop a novel diagnostic test to highly pathogenic avian influenza A virus (HPAI), subtype H5N1 viruses using phage display technology. The H5N1 viruses were used as an immobilized target in a biopanning process using a 12-mer phage display random peptide library. After five rounds of panning, three phages expressing peptides HAWDPIPARDPF, AAWHLIVALAPN or ATSHLHVRLPSK had a specific binding activity to H5N1 viruses were isolated. Putative binding motifs to H5N1 viruses were identified by DNA sequencing. In terms of the minimum quantity of viruses, the phage-based ELISA was better than antiserum-based ELISA and a manual, semi-quantitative endpoint RT-PCR for detecting H5N1 viruses. More importantly, the selected phages bearing the specific peptides to H5N1 viruses were capable of differentiating this virus from other avian viruses in enzyme-linked immunosorbent assays. PMID:21887228

  14. Proteorhodopsin genes in giant viruses.

    PubMed

    Yutin, Natalya; Koonin, Eugene V

    2012-10-04

    Viruses with large genomes encode numerous proteins that do not directly participate in virus biogenesis but rather modify key functional systems of infected cells. We report that a distinct group of giant viruses infecting unicellular eukaryotes that includes Organic Lake Phycodnaviruses and Phaeocystis globosa virus encode predicted proteorhodopsins that have not been previously detected in viruses. Search of metagenomic sequence data shows that putative viral proteorhodopsins are extremely abundant in marine environments. Phylogenetic analysis suggests that giant viruses acquired proteorhodopsins via horizontal gene transfer from proteorhodopsin-encoding protists although the actual donor(s) could not be presently identified. The pattern of conservation of the predicted functionally important amino acid residues suggests that viral proteorhodopsin homologs function as sensory rhodopsins. We hypothesize that viral rhodopsins modulate light-dependent signaling, in particular phototaxis, in infected protists.

  15. Hepatitis C Virus.

    PubMed

    Kim, Arthur

    2016-09-06

    This issue provides a clinical overview of hepatitis C virus, focusing on transmission, prevention, screening, diagnosis, evaluation, and treatment. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  16. VIRUS instrument collimator assembly

    NASA Astrophysics Data System (ADS)

    Marshall, Jennifer L.; DePoy, Darren L.; Prochaska, Travis; Allen, Richard D.; Williams, Patrick; Rheault, Jean-Philippe; Li, Ting; Nagasawa, Daniel Q.; Akers, Christopher; Baker, David; Boster, Emily; Campbell, Caitlin; Cook, Erika; Elder, Alison; Gary, Alex; Glover, Joseph; James, Michael; Martin, Emily; Meador, Will; Mondrik, Nicholas; Rodriguez-Patino, Marisela; Villanueva, Steven; Hill, Gary J.; Tuttle, Sarah; Vattiat, Brian; Lee, Hanshin; Chonis, Taylor S.; Dalton, Gavin B.; Tacon, Mike

    2014-07-01

    The Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument is a baseline array 150 identical fiber fed optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The collimator subassemblies of the instrument have been assembled in a production line and are now complete. Here we review the design choices and assembly practices used to produce a suite of identical low-cost spectrographs in a timely fashion using primarily unskilled labor.

  17. Ebola Virus Disease

    PubMed Central

    Kourtis, Athena P.; Appelgren, Kristie; Chevalier, Michelle S.; McElroy, Anita

    2015-01-01

    Ebola virus is one of the most deadly pathogens known to infect humans. The current Ebola outbreak in West Africa is unprecedented in magnitude and duration and, as of November 30, 2014, shows no signs of abating. For the first time, cases of Ebola virus disease have been diagnosed in the US, originating from patients who traveled during the incubation period. The outbreak has generated worldwide concern. It is clear that U.S. physicians need to be aware of this disease, know when to consider Ebola and how to care for the patient as well as protect themselves. Children comprise a small percentage of all cases globally, likely because of their lower risk of exposure given social and cultural practices. Limited evidence is available on pediatric disease course and prognosis. In this article, we present an overview of the pathogen, its epidemiology and transmission, clinical and laboratory manifestations, treatment and infection control procedures, with an emphasis on what is known about Ebola virus disease in the pediatric population. PMID:25831417

  18. Selecting Viruses for the Seasonal Influenza Vaccine

    MedlinePlus

    ... Past Newsletters Selecting Viruses for the Seasonal Influenza Vaccine Language: English Español Recommend on Facebook Tweet ... influence which viruses are selected for use in vaccine production? The influenza viruses in the seasonal flu ...

  19. Variant (Swine Origin) Influenza Viruses in Humans

    MedlinePlus

    ... What's this? Submit Button Past Newsletters Variant Influenza Viruses: Background and CDC Risk Assessment and Reporting Language: ... Background CDC Assessment Reporting Background On Variant Influenza Viruses Swine flu viruses do not normally infect humans. ...

  20. Introducing Virological Concepts Using an Insect Virus.

    ERIC Educational Resources Information Center

    Sheppard, Roger F.

    1980-01-01

    A technique is presented which utilizes wax moth larvae in a laboratory investigation of an insect virus. Describes how an insect virus can be used to introduce undergraduate biology students to laboratory work on viruses and several virological concepts. (SA)

  1. Molecular characterization and experimental host range of an isolate of Wissadula golden mosaic St. Thomas virus.

    PubMed

    Collins, A M; Mujaddad-ur-Rehman, Malik; Brown, J K; Reddy, C; Wang, A; Fondong, V; Roye, M E

    2009-12-01

    Partial genome segments of a begomovirus were previously amplified from Wissadula amplissima exhibiting yellow-mosaic and leaf-curl symptoms in the parish of St. Thomas, Jamaica and this isolate assigned to a tentative begomovirus species, Wissadula golden mosaic St. Thomas virus. To clone the complete genome of this isolate of Wissadula golden mosaic St. Thomas virus, abutting primers were designed to PCR amplify its full-length DNA-A and DNA-B components. Sequence analysis of the complete begomovirus genome obtained, confirmed that it belongs to a distinct begomovirus species and this isolate was named Wissadula golden mosaic St. Thomas virus-[Jamaica:Albion:2005] (WGMSTV-[JM:Alb:05]). The genome of WGMSTV-[JM:Alb:05] is organized similar to that of other bipartite Western Hemisphere begomoviruses. Phylogenetic analyses placed the genome components of WGMSTV-[JM:Alb:05] in the Abutilon mosaic virus clade and showed that the DNA-A component is most closely related to four begomovirus species from Cuba, Tobacco leaf curl Cuba virus, Tobacco leaf rugose virus, Tobacco mottle leaf curl virus, and Tomato yellow distortion leaf virus. The putative Rep-binding-site motif in the common region of WGMSTV-[JM:Alb:05] was observed to be identical to that of Chino del tomate virus-Tomato [Mexico:Sinaloa:1983], Sida yellow mosaic Yucatan virus-[Mexico:Yucatan:2005], and Tomato leaf curl Sinaloa virus-[Nicaragua:Santa Lucia], suggesting that WGMSTV-[JM:Alb:05] is capable of forming viable pseudo-recombinants with these begomoviruses, but not with other members of the Abutilon mosaic virus clade. Biolistic inoculation of test plant species with partial dimers of the WGMSTV-[JM:Alb:05] DNA-A and DNA-B components showed that the virus was infectious to Nicotiana benthamiana and W. amplissima and the cultivated species Phaseolus vulgaris (kidney bean) and Lycopersicon esculentum (tomato). Infected W. amplissima plants developed symptoms similar to symptoms observed under field

  2. DDX3 Interacts with Influenza A Virus NS1 and NP Proteins and Exerts Antiviral Function through Regulation of Stress Granule Formation

    PubMed Central

    Thulasi Raman, Sathya N.; Liu, Guanqun; Pyo, Hyun Mi; Cui, Ya Cheng; Xu, Fang; Ayalew, Lisanework E.; Tikoo, Suresh K.

    2016-01-01

    ABSTRACT DDX3 belongs to the DEAD box RNA helicase family and is a multifunctional protein affecting the life cycle of a variety of viruses. However, its role in influenza virus infection is unknown. In this study, we explored the potential role of DDX3 in influenza virus life cycle and discovered that DDX3 is an antiviral protein. Since many host proteins affect virus life cycle by interacting with certain components of the viral machinery, we first verified whether DDX3 has any viral interaction partners. Immunoprecipitation studies revealed NS1 and NP as direct interaction partners of DDX3. Stress granules (SGs) are known to be antiviral and do form in influenza virus-infected cells expressing defective NS1 protein. Additionally, a recent study showed that DDX3 is an important SG-nucleating factor. We thus explored whether DDX3 plays a role in influenza virus infection through regulation of SGs. Our results showed that SGs were formed in infected cells upon infection with a mutant influenza virus lacking functional NS1 (del NS1) protein, and DDX3 colocalized with NP in SGs. We further determined that the DDX3 helicase domain did not interact with NS1 and NP; however, it was essential for DDX3 localization in virus-induced SGs. Knockdown of DDX3 resulted in impaired SG formation and led to increased virus titers. Taken together, our results identified DDX3 as an antiviral protein with a role in virus-induced SG formation. IMPORTANCE DDX3 is a multifunctional RNA helicase and has been reported to be involved in regulating various virus life cycles. However, its function during influenza A virus infection remains unknown. In this study, we demonstrated that DDX3 is capable of interacting with influenza virus NS1 and NP proteins; DDX3 and NP colocalize in the del NS1 virus-induced SGs. Furthermore, knockdown of DDX3 impaired SG formation and led to a decreased virus titer. Thus, we provided evidence that DDX3 is an antiviral protein during influenza virus infection

  3. Phlebotomus Fever Viruses in Panama.

    DTIC Science & Technology

    1981-08-01

    species have been Lutzomyia gomezi, Lu. panamensis, Lu sanguinaria, Lu. trapidoi and Lu. ylephilator. Less numerous has been Lu. olmeca . Blood fed...gomezi, 1 Lu. ylephila- lator and 1 Lu. olmeca ). These flies had fed on a viremic hamster shown to be circulating 2.6 x 103pfu/ml of PT virus. Virus was...originally fed on a hamster viremic with CHG virus. Punta Toro virus was recovered from a Lu. olmeca which origi- nally fed on a hamster viremic with PT

  4. Are Viruses Important in Carcinogenesis?

    PubMed Central

    Rapp, Fred; Buss, Ellen R.

    1974-01-01

    The role of viruses in the etiology of animal cancers is fairly certain. Information derived under both natural and experimental conditions supports the concept that either DNA- or RNA-containing viruses can fulfill this function. The DNA-containing herpesviruses, especially the Epstein-Barr virus, are currently the primary objects of intense investigation concerning their role in human cancer. This article will focus on the properties of counterpart herpesviruses in lower animals as well as the human virus candidates with an assessment of the observations concerning their oncogenic potential. ImagesFig 1 PMID:4374889

  5. RECOVIR Software for Identifying Viruses

    NASA Technical Reports Server (NTRS)

    Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui

    2013-01-01

    Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.

  6. Air sampling of smallpox virus

    PubMed Central

    Thomas, G.

    1974-01-01

    Airborne smallpox virus has been recovered in an isolation hospital using an adhesive surface sampling technique in the presence of very low aerosol concentrations. Previous work in this field is reviewed. Successful recovery of airborne virus depends on sampling large volumes of air with a suitable sampler and thorough investigation of the whole sample taken for the presence of viable virus. More information on the characteristics and behaviour of airborne smallpox virus is needed in particular with regard to the future design and siting of smallpox isolation units. PMID:4371586

  7. Nuclear entry of DNA viruses

    PubMed Central

    Fay, Nikta; Panté, Nelly

    2015-01-01

    DNA viruses undertake their replication within the cell nucleus, and therefore they must first deliver their genome into the nucleus of their host cells. Thus, trafficking across the nuclear envelope is at the basis of DNA virus infections. Nuclear transport of molecules with diameters up to 39 nm is a tightly regulated process that occurs through the nuclear pore complex (NPC). Due to the enormous diversity of virus size and structure, each virus has developed its own strategy for entering the nucleus of their host cells, with no two strategies alike. For example, baculoviruses target their DNA-containing capsid to the NPC and subsequently enter the nucleus intact, while the hepatitis B virus capsid crosses the NPC but disassembles at the nuclear side of the NPC. For other viruses such as herpes simplex virus and adenovirus, although both dock at the NPC, they have each developed a distinct mechanism for the subsequent delivery of their genome into the nucleus. Remarkably, other DNA viruses, such as parvoviruses and human papillomaviruses, access the nucleus through an NPC-independent mechanism. This review discusses our current understanding of the mechanisms used by DNA viruses to deliver their genome into the nucleus, and further presents the experimental evidence for such mechanisms. PMID:26029198

  8. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus.

    PubMed

    Roush, David J; Myrold, Adam; Burnham, Michael S; And, Joseph V; Hughes, Joseph V

    2015-01-01

    Virus filtration (VF) is a key step in an overall viral clearance process since it has been demonstrated to effectively clear a wide range of mammalian viruses with a log reduction value (LRV) > 4. The potential to achieve higher LRV from virus retentive filters has historically been examined using bacteriophage surrogates, which commonly demonstrated a potential of > 9 LRV when using high titer spikes (e.g. 10(10) PFU/mL). However, as the filter loading increases, one typically experiences significant decreases in performance and LRV. The 9 LRV value is markedly higher than the current expected range of 4-5 LRV when utilizing mammalian retroviruses on virus removal filters (Miesegaes et al., Dev Biol (Basel) 2010;133:3-101). Recent values have been reported in the literature (Stuckey et al., Biotech Progr 2014;30:79-85) of LRV in excess of 6 for PPV and XMuLV although this result appears to be atypical. LRV for VF with therapeutic proteins could be limited by several factors including process limits (flux decay, load matrix), virus spike level and the analytical methods used for virus detection (i.e. the Limits of Quantitation), as well as the virus spike quality. Research was conducted using the Xenotropic-Murine Leukemia Virus (XMuLV) for its direct relevance to the most commonly cited document, the International Conference of Harmonization (ICH) Q5A (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, 1999) for viral safety evaluations. A unique aspect of this work is the independent evaluation of the impact of retrovirus quality and virus spike level on VF performance and LRV. The VF studies used XMuLV preparations purified by either ultracentrifugation (Ultra 1) or by chromatographic processes that yielded a more highly purified virus stock (Ultra 2). Two monoclonal antibodies (Mabs) with markedly different filtration characteristics and with similar levels of

  9. Genome of Crocodilepox Virus

    PubMed Central

    Afonso, C. L.; Tulman, E. R.; Delhon, G.; Lu, Z.; Viljoen, G. J.; Wallace, D. B.; Kutish, G. F.; Rock, D. L.

    2006-01-01

    Here, we present the genome sequence, with analysis, of a poxvirus infecting Nile crocodiles (Crocodylus niloticus) (crocodilepox virus; CRV). The genome is 190,054 bp (62% G+C) and predicted to contain 173 genes encoding proteins of 53 to 1,941 amino acids. The central genomic region contains genes conserved and generally colinear with those of other chordopoxviruses (ChPVs). CRV is distinct, as the terminal 33-kbp (left) and 13-kbp (right) genomic regions are largely CRV specific, containing 48 unique genes which lack similarity to other poxvirus genes. Notably, CRV also contains 14 unique genes which disrupt ChPV gene colinearity within the central genomic region, including 7 genes encoding GyrB-like ATPase domains similar to those in cellular type IIA DNA topoisomerases, suggestive of novel ATP-dependent functions. The presence of 10 CRV proteins with similarity to components of cellular multisubunit E3 ubiquitin-protein ligase complexes, including 9 proteins containing F-box motifs and F-box-associated regions and a homologue of cellular anaphase-promoting complex subunit 11 (Apc11), suggests that modification of host ubiquitination pathways may be significant for CRV-host cell interaction. CRV encodes a novel complement of proteins potentially involved in DNA replication, including a NAD+-dependent DNA ligase and a protein with similarity to both vaccinia virus F16L and prokaryotic serine site-specific resolvase-invertases. CRV lacks genes encoding proteins for nucleotide metabolism. CRV shares notable genomic similarities with molluscum contagiosum virus, including genes found only in these two viruses. Phylogenetic analysis indicates that CRV is quite distinct from other ChPVs, representing a new genus within the subfamily Chordopoxvirinae, and it lacks recognizable homologues of most ChPV genes involved in virulence and host range, including those involving interferon response, intracellular signaling, and host immune response modulation. These data reveal

  10. Vesicular Stomatitis Virus glycoprotein G carrying a tandem dimer of Foot and Mouth Disease Virus antigenic site A can be used as DNA and peptide vaccine for cattle.

    PubMed

    Capozzo, Alejandra V; Wilda, Maximiliano; Bucafusco, Danilo; de los Ángeles Lavoria, María; Franco-Mahecha, Olga L; Mansilla, Florencia C; Pérez-Filgueira, Daniel M; Grigera, Pablo R

    2011-11-01

    Effective Foot and Mouth Disease Virus (FMDV) peptide vaccines for cattle have two major constraints: resemblance of one or more of the multiple conformations of the major VP1 antigenic sites to induce neutralizing antibodies, and stimulation of T cells despite the variable bovine-MHC polymorphism. To overcome these limitations, a chimeric antigen was developed, using Vesicular Stomatitis Virus glycoprotein (VSV-G) as carrier protein of an in tandem-dimer of FMDV antigenic site A (ASA), the major epitope on the VP1 capsid protein (aa 139-149, FMDV-C3 serotype). The G-ASA construct was expressed in the Baculovirus system to produce a recombinant protein (DEL BAC) (cloned in pCDNA 3.1 plasmid) (Invitrogen Corporation, Carlsbad, CA) and was also prepared as a DNA vaccine (pC DEL). Calves vaccinated with both immunogens elicited antibodies that recognized the ASA in whole virion and were able to neutralize FMDV infectivity in vitro. After two vaccine doses, DEL BAC induced serum neutralizing titers compatible with an "expected percentage of protection" above 90%. Plasmid pC DEL stimulated FMDV specific humoral responses earlier than DEL BAC, though IgG1 to IgG2 ratios were lower than those induced by both DEL BAC and inactivated FMDV-C3 after the second dose. DEL BAC induced FMDV-specific secretion of IFN-γ in peripheral blood mononuclear cells of outbred cattle immunized with commercial FMDV vaccine, suggesting its capacity to recall anamnestic responses mediated by functional T cell epitopes. The results show that exposing FMDV-VP1 major neutralizing antigenic site in the context of N-terminal sequences of the VSV G protein can overcome the immunological limitations of FMDV-VP1 peptides as effective protein and DNA vaccines for cattle.

  11. Estudio del CH interestelar

    NASA Astrophysics Data System (ADS)

    Olano, C.; Lemarchand, G.; Sanz, A. J.; Bava, J. A.

    El objetivo principal de este proyecto consiste en el estudio de la distribución y abundancia del CH en nubes interestelares a través de la observación de las líneas hiperfinas del CH en 3,3 GHz. El CH es una molécula de amplia distribución en el espacio interestelar y una de las pocas especies que han sido observadas tanto con técnicas de radio como ópticas. Desde el punto de vista tecnológico se ha desarrollado un cabezal de receptor que permitirá la realización de observaciones polarimétricas en la frecuencia de 3,3 GHz, con una temperatura del sistema de 60 K y un ancho de banda de 140 MHz, y que será instalado en el foco primario de la antena parabólica del IAR. El cabezal del receptor es capaz de detectar señales polarizadas, separando las componentes de polarización circular derecha e izquierda. Para tal fin el cabezal consta de dos ramas receptoras que amplificarán la señal y la trasladarán a una frecuencia más baja (frecuencia intermedia), permitiendo de esa forma un mejor transporte de la señal a la sala de control para su posterior procesamiento. El receptor además de tener características polarimétricas, podrá ser usado en el continuo y en la línea, utilizando las ventajas observacionales y de procesamiento de señal que actualmente posee el IAR.

  12. Structure of Flexible Filamentous Plant Viruses

    SciTech Connect

    Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah C.; Shi, Jian; Stewart, Phoebe L.; Bullitt, Esther; Gore, David; Irving, Thomas C.; Havens, Wendy M.; Ghabrial, Said A.; Wall, Joseph S.; Stubbs, Gerald

    2008-10-23

    Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.

  13. Structure of flexible filamentous plant viruses.

    PubMed

    Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah C; Shi, Jian; Stewart, Phoebe L; Bullitt, Esther; Gore, David; Irving, Thomas C; Havens, Wendy M; Ghabrial, Said A; Wall, Joseph S; Stubbs, Gerald

    2008-10-01

    Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.

  14. Computer virus information update CIAC-2301

    SciTech Connect

    Orvis, W.J.

    1994-01-15

    While CIAC periodically issues bulletins about specific computer viruses, these bulletins do not cover all the computer viruses that affect desktop computers. The purpose of this document is to identify most of the known viruses for the MS-DOS and Macintosh platforms and give an overview of the effects of each virus. The authors also include information on some windows, Atari, and Amiga viruses. This document is revised periodically as new virus information becomes available. This document replaces all earlier versions of the CIAC Computer virus Information Update. The date on the front cover indicates date on which the information in this document was extracted from CIAC`s Virus database.

  15. Parainfluenza Virus 5 Expressing the G Protein of Rabies Virus Protects Mice after Rabies Virus Infection

    PubMed Central

    Huang, Ying; Chen, Zhenhai; Huang, Junhua

    2014-01-01

    Rabies remains a major public health threat around the world. Once symptoms appear, there is no effective treatment to prevent death. In this work, we tested a recombinant parainfluenza virus 5 (PIV5) strain expressing the glycoprotein (G) of rabies (PIV5-G) as a therapy for rabies virus infection: we have found that PIV5-G protected mice as late as 6 days after rabies virus infection. PIV5-G is a promising vaccine for prevention and treatment of rabies virus infection. PMID:25552723

  16. Uukuniemi Virus as a Tick-Borne Virus Model

    PubMed Central

    Mazelier, Magalie; Rouxel, Ronan Nicolas; Zumstein, Michael; Mancini, Roberta; Bell-Sakyi, Lesley

    2016-01-01

    ABSTRACT In the last decade, novel tick-borne pathogenic phleboviruses in the family Bunyaviridae, all closely related to Uukuniemi virus (UUKV), have emerged on different continents. To reproduce the tick-mammal switch in vitro, we first established a reverse genetics system to rescue UUKV with a genome close to that of the authentic virus isolated from the Ixodes ricinus tick reservoir. The IRE/CTVM19 and IRE/CTVM20 cell lines, both derived from I. ricinus, were susceptible to the virus rescued from plasmid DNAs and supported production of the virus over many weeks, indicating that infection was persistent. The glycoprotein GC was mainly highly mannosylated on tick cell-derived viral progeny. The second envelope viral protein, GN, carried mostly N-glycans not recognized by the classical glycosidases peptide-N-glycosidase F (PNGase F) and endoglycosidase H (Endo H). Treatment with β-mercaptoethanol did not impact the apparent molecular weight of GN. On viruses originating from mammalian BHK-21 cells, GN glycosylations were exclusively sensitive to PNGase F, and the electrophoretic mobility of the protein was substantially slower after the reduction of disulfide bonds. Furthermore, the amount of viral nucleoprotein per focus forming unit differed markedly whether viruses were produced in tick or BHK-21 cells, suggesting a higher infectivity for tick cell-derived viruses. Together, our results indicate that UUKV particles derived from vector tick cells have glycosylation and structural specificities that may influence the initial infection in mammalian hosts. This study also highlights the importance of working with viruses originating from arthropod vector cells in investigations of the cell biology of arbovirus transmission and entry into mammalian hosts. IMPORTANCE Tick-borne phleboviruses represent a growing threat to humans globally. Although ticks are important vectors of infectious emerging diseases, previous studies have mainly involved virus stocks

  17. Virus genomes and virus-host interactions in aquaculture animals.

    PubMed

    Zhang, QiYa; Gui, Jian-Fang

    2015-02-01

    Over the last 30 years, aquaculture has become the fastest growing form of agriculture production in the world, but its development has been hampered by a diverse range of pathogenic viruses. During the last decade, a large number of viruses from aquatic animals have been identified, and more than 100 viral genomes have been sequenced and genetically characterized. These advances are leading to better understanding about antiviral mechanisms and the types of interaction occurring between aquatic viruses and their hosts. Here, based on our research experience of more than 20 years, we review the wealth of genetic and genomic information from studies on a diverse range of aquatic viruses, including iridoviruses, herpesviruses, reoviruses, and rhabdoviruses, and outline some major advances in our understanding of virus-host interactions in animals used in aquaculture.

  18. Cowpea mosaic virus: the plant virus-based biotechnology workhorse.

    PubMed

    Sainsbury, Frank; Cañizares, M Carmen; Lomonossoff, George P

    2010-01-01

    In the 50 years since it was first described, Cowpea mosaic virus (CPMV) has become one of the most intensely studied plant viruses. Research in the past 15 to 20 years has shifted from studying the underlying genetics and structure of the virus to focusing on ways in which it can be exploited in biotechnology. This work led first to the use of virus particles to present peptides, then to the creation of a variety of replicating virus vectors and finally to the development of a highly efficient protein expression system that does not require viral replication. The circle has been completed by the use of the latter system to create empty particles for peptide presentation and other novel uses. The history of CPMV in biotechnology can be likened to an Ouroborus, an ancient symbol depicting a snake or dragon swallowing its own tail, thus forming a circle.

  19. ICTV Virus Taxonomy Profile: Iflaviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iflaviridae is a family of small non-enveloped viruses with RNA genomes of approximately 9-11 kilobases in length. All members infect arthropod hosts with the majority infecting insects. Beneficial and pest insects serve as hosts and infections can be symptomless (Nilaparvata lugens honeydew virus 1...

  20. Emerging tomato viruses in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato spotted wilt virus (TSWV) causes crop losses worldwide. This tospovirus is well-known for disease epidemics in vegetable, ornamental and peanut crops in the southeastern U.S. Two other tospoviruses have recently emerged in south Florida. Groundnut ringspot virus (GRSV) was first detected in ...

  1. Virioplankton: Viruses in Aquatic Ecosystems†

    PubMed Central

    Wommack, K. Eric; Colwell, Rita R.

    2000-01-01

    The discovery that viruses may be the most abundant organisms in natural waters, surpassing the number of bacteria by an order of magnitude, has inspired a resurgence of interest in viruses in the aquatic environment. Surprisingly little was known of the interaction of viruses and their hosts in nature. In the decade since the reports of extraordinarily large virus populations were published, enumeration of viruses in aquatic environments has demonstrated that the virioplankton are dynamic components of the plankton, changing dramatically in number with geographical location and season. The evidence to date suggests that virioplankton communities are composed principally of bacteriophages and, to a lesser extent, eukaryotic algal viruses. The influence of viral infection and lysis on bacterial and phytoplankton host communities was measurable after new methods were developed and prior knowledge of bacteriophage biology was incorporated into concepts of parasite and host community interactions. The new methods have yielded data showing that viral infection can have a significant impact on bacteria and unicellular algae populations and supporting the hypothesis that viruses play a significant role in microbial food webs. Besides predation limiting bacteria and phytoplankton populations, the specific nature of virus-host interaction raises the intriguing possibility that viral infection influences the structure and diversity of aquatic microbial communities. Novel applications of molecular genetic techniques have provided good evidence that viral infection can significantly influence the composition and diversity of aquatic microbial communities. PMID:10704475

  2. Groundnut Ringspot Virus in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tospoviruses in vegetable crops are difficult to manage due to a shortage of basic information about the viruses and their vectors. This is especially true for the recently detected Groundnut ringspot virus (GRSV). This publication presents all current knowledge of GRSV in Florida....

  3. Soy isoflavones and virus infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isoflavones and their related flavonoid compounds exert antiviral properties in vitro and in vivo against a wide range of viruses. Genistein is, by far, the most studied soy isoflavone in this regard, and it has been shown to inhibit the infectivity of enveloped or nonenveloped viruses, as well as s...

  4. Swine Influenza Virus: Emerging Understandings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: In March-April 2009, a novel pandemic H1N1 emerged in the human population in North America [1]. The gene constellation of the emerging virus was demonstrated to be a combination of genes from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before...

  5. Serological behaviour of influenza viruses

    PubMed Central

    Fiset, P.; Depoux, R.

    1954-01-01

    By antibody absorption it was found that strains of influenza virus exhibiting P-Q differences were related according to certain patterns. In the course of this investigation it was also revealed that some viruses possessed masked antigens capable of stimulating antibody production but incapable of combining efficiently with antibody. PMID:14364182

  6. Group 2 Vaccinia Virus, Brazil

    PubMed Central

    Assis, Felipe Lopes; Borges, Iara Apolinario; Ferreira, Paulo César Peregrino; Bonjardim, Cláudio Antônio; Trindade, Giliane de Souza; Lobato, Zélia Inês Portela; Guedes, Maria Isabel Maldonado; Mesquita, Vaz; Kroon, Erna Geessien

    2012-01-01

    In 2011, vaccinia virus caused an outbreak of bovine vaccinia, affecting dairy cattle and dairy workers in Brazil. Genetic and phenotypic analyses identified this isolate as distinct from others recently identified, thereby reinforcing the hypothesis that different vaccinia virus strains co-circulate in Brazil. PMID:23171598

  7. Defining life: the virus viewpoint.

    PubMed

    Forterre, Patrick

    2010-04-01

    Are viruses alive? Until very recently, answering this question was often negative and viruses were not considered in discussions on the origin and definition of life. This situation is rapidly changing, following several discoveries that have modified our vision of viruses. It has been recognized that viruses have played (and still play) a major innovative role in the evolution of cellular organisms. New definitions of viruses have been proposed and their position in the universal tree of life is actively discussed. Viruses are no more confused with their virions, but can be viewed as complex living entities that transform the infected cell into a novel organism-the virus-producing virions. I suggest here to define life (an historical process) as the mode of existence of ribosome encoding organisms (cells) and capsid encoding organisms (viruses) and their ancestors. I propose to define an organism as an ensemble of integrated organs (molecular or cellular) producing individuals evolving through natural selection. The origin of life on our planet would correspond to the establishment of the first organism corresponding to this definition.

  8. Canine distemper virus.

    PubMed

    Martella, Vito; Elia, Gabrielle; Buonavoglia, Canio

    2008-07-01

    Vaccine-based prophylaxis has greatly helped to keep distemper disease under control. Notwithstanding, the incidence of canine distemper virus (CDV)-related disease in canine populations throughout the world seems to have increased in the past decades, and several episodes of CDV disease in vaccinated animals have been reported, with nation-wide proportions in some cases. Increasing surveillance should be pivotal to identify new CDV variants and to understand the dynamics of CDV epidemiology. In addition, it is important to evaluate whether the efficacy of the vaccine against these new strains may somehow be affected.

  9. Herpesvirus: an underestimated virus.

    PubMed

    Rechenchoski, Daniele Zendrini; Faccin-Galhardi, Ligia Carla; Linhares, Rosa Elisa Carvalho; Nozawa, Carlos

    2017-03-01

    Herpes simplex virus (HSV) infections are common and widespread; nevertheless, their outcome can be of unpredictable prognosis in neonates and in immunosuppressed patients. Anti-HSV therapy is effective, but the emergence of drug-resistant strains or the drug toxicity that hamper the treatment is of great concern. Vaccine has not yet shown relevant benefit; therefore, palliative prophylactic measures have been adopted to prevent diseases. This short review proposes to present concisely the history of HSV, its taxonomy, physical structure, and replication and to explore the pathogenesis of the infection, clinical manifestations, laboratory diagnosis, treatment, prophylaxis and epidemiology of the diseases.

  10. Other Community Respiratory Viruses.

    PubMed

    Wunderink, Richard G

    2017-03-01

    Polymerase chain reaction-based diagnosis has become the standard for viral pneumonia and other respiratory tract infections. Expansion of respiratory viral panels (RVPs) outside of influenza and, possibly, respiratory syncytial virus has led to the ability to diagnose viral infections for which no approved specific antiviral treatment exists. Careful clinical evaluation of the patient with a positive RVP is, therefore, critical given the limited repertoire of treatments. Generic treatments with intravenous immunoglobulin, ribavirin, and interferons may benefit select severe viral pneumonia patients, whereas cidofovir has activity for severe adenoviral pneumonia.

  11. Marine Viruses: Truth or Dare

    NASA Astrophysics Data System (ADS)

    Breitbart, Mya

    2012-01-01

    Over the past two decades, marine virology has progressed from a curiosity to an intensely studied topic of critical importance to oceanography. At concentrations of approximately 10 million viruses per milliliter of surface seawater, viruses are the most abundant biological entities in the oceans. The majority of these viruses are phages (viruses that infect bacteria). Through lysing their bacterial hosts, marine phages control bacterial abundance, affect community composition, and impact global biogeochemical cycles. In addition, phages influence their hosts through selection for resistance, horizontal gene transfer, and manipulation of bacterial metabolism. Recent work has also demonstrated that marine phages are extremely diverse and can carry a variety of auxiliary metabolic genes encoding critical ecological functions. This review is structured as a scientific "truth or dare," revealing several well-established "truths" about marine viruses and presenting a few "dares" for the research community to undertake in future studies.

  12. Biosensing with Virus Electrode Hybrids

    PubMed Central

    Mohan, Kritika; Penner, Reginald M.; Weiss, Gregory A.

    2015-01-01

    Virus electrodes address two major challenges associated with biosensing. First, the surface of the viruses can be readily tailored for specific, high affinity binding to targeted biomarkers. Second, the viruses are entrapped in a conducting polymer for electrical resistance-based, quantitative measurement of biomarker concentration. To further enhance device sensitivity, two different ligands can be attached to the virus surface, and increase the apparent affinity for the biomarker. In the example presented here, the two ligands bind to the analyte in a bidentate binding mode with chelate-based avidity effect, and result in an 100 pM experimentally observed limit of detection for the cancer biomarker prostate-specific membrane antigen. The approach does not require enzymatic amplification, and allows reagent-free, real-time measurements. This article presents general protocols for the development of such biosensors with modified viruses for the enhanced detection of arbitrary target proteins. PMID:26344233

  13. Zika Virus Induced Cellular Remodeling.

    PubMed

    Rossignol, Evan D; Peters, Kristen N; Connor, John H; Bullitt, Esther

    2017-03-20

    Zika virus (ZIKV) has been associated with morbidities such as Guillain-Barré, infant microcephaly, and ocular disease. The spread of this positive-sense, single-stranded RNA virus and its growing public health threat underscore gaps in our understanding of basic ZIKV virology. To advance knowledge of the virus replication cycle within mammalian cells, we use serial section three-dimensional electron tomography to demonstrate the widespread remodeling of intracellular membranes upon infection with ZIKV. We report extensive structural rearrangements of the endoplasmic reticulum and reveal stages of the ZIKV viral replication cycle. Structures associated with RNA genome replication and virus assembly are observed integrated within the endoplasmic reticulum, and we show viruses in transit through the Golgi apparatus for viral maturation, and subsequent cellular egress. This study characterizes in detail the three-dimensional ultrastructural organization of the ZIKV replication cycle stages. Our results show close adherence of the ZIKV replication cycle to the existing flavivirus replication paradigm.

  14. Epidemic of cell phone virus

    NASA Astrophysics Data System (ADS)

    Wang, Pu; González, Marta; Barabási, Albert-László.

    2008-03-01

    Standard operating systems and Bluetooth technology will be a trend for future cell phone features. These will enable cell phone viruses to spread either through SMS or by sending Bluetooth requests when cell phones are physically close enough. The difference in spreading methods gives these two types of viruses' different epidemiological characteristics. SMS viruses' spread is mainly based on people's social connections, whereas the spreading of Bluetooth viruses is affected by people's mobility patterns and population distribution. Using cell phone data recording calls, SMS and locations of more than 6 million users, we study the spread of SMS and Bluetooth viruses and characterize how the social network and the mobility of mobile phone users affect such spreading processes.

  15. Giant viruses come of age.

    PubMed

    Fischer, Matthias G

    2016-06-01

    Viruses with genomes up to a few megabases in length are a common occurrence in nature, even though they have escaped our notice until recently. These giant viruses infect mainly single-celled eukaryotes and isolation efforts concentrating on amoebal hosts alone have spawned hundreds of viral isolates, featuring viruses with previously unseen virion morphologies and the largest known viral genomes and particles. One of the challenges that lie ahead is to analyze and categorize the available data and to establish an approved classification system that reflects the evolutionary relationships and biological properties of these viruses. Extensive sampling of Acanthamoeba-infecting mimiviruses and initial characterization of their virophage parasites have provided a first blueprint of the genetic diversity and composition of a giant virus clade that will facilitate the taxonomic grouping of these fascinating microorganisms.

  16. New aspects of influenza viruses.

    PubMed Central

    Shaw, M W; Arden, N H; Maassab, H F

    1992-01-01

    Influenza virus infections continue to cause substantial morbidity and mortality with a worldwide social and economic impact. The past five years have seen dramatic advances in our understanding of viral replication, evolution, and antigenic variation. Genetic analyses have clarified relationships between human and animal influenza virus strains, demonstrating the potential for the appearance of new pandemic reassortants as hemagglutinin and neuraminidase genes are exchanged in an intermediate host. Clinical trials of candidate live attenuated influenza virus vaccines have shown the cold-adapted reassortants to be a promising alternative to the currently available inactivated virus preparations. Modern molecular techniques have allowed serious consideration of new approaches to the development of antiviral agents and vaccines as the functions of the viral genes and proteins are further elucidated. The development of techniques whereby the genes of influenza viruses can be specifically altered to investigate those functions will undoubtedly accelerate the pace at which our knowledge expands. PMID:1310439

  17. Viruses of commercialized insect pollinators.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2016-08-03

    Managed insect pollinators are indispensable in modern agriculture. They are used worldwide not only in the open field but also in greenhouses to enhance fruit set, seed production, and crop yield. Managed honey bee (Apis mellifera, Apis cerana) colonies provide the majority of commercial pollination although other members of the superfamily Apoidea are also exploited and commercialized as managed pollinators. In the recent past, it became more and more evident that viral diseases play a key role in devastating honey bee colony losses and it was also recognized that many viruses originally thought to be honey bee specific can also be detected in other pollinating insects. However, while research on viruses infecting honey bees started more than 50years ago and the knowledge on these viruses is growing ever since, little is known on virus diseases of other pollinating bee species. Recent virus surveys suggested that many of the viruses thought to be honey bee specific are actually circulating in the pollinator community and that pollinator management and commercialization of pollinators provide ample opportunity for viral diseases to spread. However, the direction of disease transmission is not always clear and the impact of these viral diseases on the different hosts remains elusive in many cases. With our review we want to provide an up-to-date overview on the viruses detected in different commercialized pollinators in order to encourage research in the field of pollinator virology that goes beyond molecular detection of viruses. A deeper understanding of this field of virology is urgently needed to be able to evaluate the impact of viruses on pollinator health and the role of different pollinators in spreading viral diseases and to be able to decide on appropriate measures to prevent virus-driven pollinator decline.

  18. Virus manipulation of cell cycle.

    PubMed

    Nascimento, R; Costa, H; Parkhouse, R M E

    2012-07-01

    Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.

  19. Nevado del Huila, Columbia

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Nevado del Huila Volcano in Colombia is actually a volcanic chain running north to south, capped by a glacier. With peaks ranging in height from 2,600 to 5,780 meters (8,530 to 18,960 feet), Nevado del Huila is a stratovolcano composed of alternating layers of hardened lava, solidified ash, and volcanic rocks. Its first recorded eruption occurred in the mid-sixteenth century. The long-dormant volcano erupted again in mid-April 2007. A few months before the eruption, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of Nevado del Huila, on February 23, 2007. In this image, the bright white area just east of the central summit is ice. Immediately west of the summit are bare rocks, appearing as blue-gray. West of those rocks, white reappears, but this patch of white results from clouds hovering in the nearby valley. In the east, the colors turn to brown (indicating bare rock) and bright green (indicating vegetation). ASTER photographed Nevado del Huila near the end of a long phase of quietude. On April 17, 2007, local authorities recorded seismic activity associated with rock fracturing on the volcano's central summit, according to the ReliefWeb Website. Activity intensified the following day with an eruption and mudflows, forcing thousands of nearby residents to evacuate. As the Associated Press reported, the eruption caused avalanches and floods that wiped away both houses and bridges. It marked the volcano's first recorded eruption since the Spanish colonized the area five centuries earlier. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  20. Hepatitis E Virus and Related Viruses in Animals.

    PubMed

    Thiry, D; Mauroy, A; Pavio, N; Purdy, M A; Rose, N; Thiry, E; de Oliveira-Filho, E F

    2017-02-01

    Hepatitis E is an acute human liver disease in healthy individuals which may eventually become chronic. It is caused by the hepatitis E virus (HEV) and can have a zoonotic origin. Nearly 57,000 people die yearly from hepatitis E-related conditions. The disease is endemic in both developing and developed countries with distinct epidemiologic profiles. In developing countries, the disease is associated with inadequate water treatment, while in developed countries, transmission is associated with animal contact and the ingestion of raw or uncooked meat, especially liver. All human HEV are grouped into at least four genotypes, while HEV or HEV-related viruses have been identified in an increasing number of domestic and wild animal species. Despite a high genetic diversity, only one single HEV serotype has been described to date for HEV genotypes 1-4. The discovery of new HEV or HEV-related viruses leads to a continuing increase in the number of genotypes. In addition, the genome organization of all these viruses is variable with overlapping open reading frames (ORF) and differences in the location of ORF3. In spite of the role of some domestic and wild animals as reservoir, the origin of HEV and HEV-related viruses in humans and animals is still unclear. This review discusses aspects of the detection, molecular virology, zoonotic transmission and origin of HEV and HEV-related viruses in the context of 'One Health' and establishes a link between the previous and the new taxonomy of this growing virus family.

  1. Dengue virus vaccine development.

    PubMed

    Yauch, Lauren E; Shresta, Sujan

    2014-01-01

    Dengue virus (DENV) is a significant cause of morbidity and mortality in tropical and subtropical regions, causing hundreds of millions of infections each year. Infections range from asymptomatic to a self-limited febrile illness, dengue fever (DF), to the life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). The expanding of the habitat of DENV-transmitting mosquitoes has resulted in dramatic increases in the number of cases over the past 50 years, and recent outbreaks have occurred in the United States. Developing a dengue vaccine is a global health priority. DENV vaccine development is challenging due to the existence of four serotypes of the virus (DENV1-4), which a vaccine must protect against. Additionally, the adaptive immune response to DENV may be both protective and pathogenic upon subsequent infection, and the precise features of protective versus pathogenic immune responses to DENV are unknown, complicating vaccine development. Numerous vaccine candidates, including live attenuated, inactivated, recombinant subunit, DNA, and viral vectored vaccines, are in various stages of clinical development, from preclinical to phase 3. This review will discuss the adaptive immune response to DENV, dengue vaccine challenges, animal models used to test dengue vaccine candidates, and historical and current dengue vaccine approaches.

  2. Antivirals against animal viruses.

    PubMed

    Villa, T G; Feijoo-Siota, L; Rama, J L R; Ageitos, J M

    2016-09-30

    Antivirals are compounds used since the 1960s that can interfere with viral development. Some of these antivirals can be isolated from a variety of sources, such as animals, plants, bacteria or fungi, while others must be obtained by chemical synthesis, either designed or random. Antivirals display a variety of mechanisms of action, and while some of them enhance the animal immune system, others block a specific enzyme or a particular step in the viral replication cycle. As viruses are mandatory intracellular parasites that use the host's cellular machinery to survive and multiply, it is essential that antivirals do not harm the host. In addition, viruses are continually developing new antiviral resistant strains, due to their high mutation rate, which makes it mandatory to continually search for, or develop, new antiviral compounds. This review describes natural and synthetic antivirals in chronological order, with an emphasis on natural compounds, even when their mechanisms of action are not completely understood, that could serve as the basis for future development of novel and/or complementary antiviral treatments.

  3. Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Mackett, Michael; Moss, Bernard

    1983-04-01

    Potential live vaccines against hepatitis B virus have been produced. The coding sequence for hepatitis B virus surface antigen (HBsAg) has been inserted into the vaccinia virus genome under control of vaccinia virus early promoters. Cells infected with these vaccinia virus recombinants synthesize and excrete HBsAg and vaccinated rabbits rapidly produce antibodies to HBsAg.

  4. A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. While investigating virus-invertebrate host interactions we found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), were unable to infect certain Lepido...

  5. Viruses in the Oceanic Basement.

    PubMed

    Nigro, Olivia D; Jungbluth, Sean P; Lin, Huei-Ting; Hsieh, Chih-Chiang; Miranda, Jaclyn A; Schvarcz, Christopher R; Rappé, Michael S; Steward, Grieg F

    2017-03-07

    Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement), but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C) were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B) drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 10(5) to 2 × 10(5) ml(-1) (n = 8), higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27). Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%). Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR)-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737), 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome.IMPORTANCE The hydrothermally active ocean basement is voluminous and likely provided conditions critical to the origins of life, but the microbiology of this vast habitat is not

  6. Safe Computing: An Overview of Viruses.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2001-01-01

    A computer virus is a program that replicates itself, in conjunction with an additional program that can harm a computer system. Common viruses include boot-sector, macro, companion, overwriting, and multipartite. Viruses can be fast, slow, stealthy, and polymorphic. Anti-virus products are described. (MLH)

  7. Genome Sequences of Beet curly top Iran virus, Oat dwarf virus, Turnip curly top virus, and Wheat dwarf virus Identified in Leafhoppers

    PubMed Central

    Kamali, Mehdi; Pouramini, Najmeh; Masumi, Hossain; Farkas, Kata; Kraberger, Simona

    2017-01-01

    ABSTRACT Implementation of a vector-enabled metagenomics approach resulted in the identification of various geminiviruses. We identified the genome sequences of Beet curly top Iran virus, Turnip curly top viruses, Oat dwarf viruses, the first from Iran, and Wheat dwarf virus from leafhoppers feeding on beet, parsley, pumpkin, and turnip plants. PMID:28232449

  8. [Overview on duck virus hepatitis A].

    PubMed

    Ren, Liqian; Li, Jing; Bi, Yuhai; Chen, Can; Zhang, Dabing; Liu, Wenjun

    2012-07-01

    This article describes the nomenclature, history and genetic evolution of duck hepatitis A virus, and updates the epidemiology, clinical symptom and surveillances of duck virus hepatitis A. It also summarizes the present status and progress of duck virus hepatitis A and illustrated the necessity and urgency of its research, which provides rationale for the control of duck hepatitis A virus disease in China.

  9. The Epstein-Barr virus: Recent advances

    SciTech Connect

    Epstein, M.A.; Achong, B.G.

    1986-01-01

    This book contains 11 chapters. Some of the titles are: Failure in Immunological Control of the Virus Infection: Post-Transplant Lymphomas; Cellular Immunological Responses to the Virus Infection; Characterization of the Virus-Determined Antigens; and the Virus Genome and its Expression in Latent Infection.

  10. Genome Sequences of Beet curly top Iran virus, Oat dwarf virus, Turnip curly top virus, and Wheat dwarf virus Identified in Leafhoppers.

    PubMed

    Kamali, Mehdi; Heydarnejad, Jahangir; Pouramini, Najmeh; Masumi, Hossain; Farkas, Kata; Kraberger, Simona; Varsani, Arvind

    2017-02-23

    Implementation of a vector-enabled metagenomics approach resulted in the identification of various geminiviruses. We identified the genome sequences of Beet curly top Iran virus, Turnip curly top viruses, Oat dwarf viruses, the first from Iran, and Wheat dwarf virus from leafhoppers feeding on beet, parsley, pumpkin, and turnip plants.

  11. Nosocomial viral infections: III. Guidelines for prevention and control of exanthematous viruses, gastroenteritis viruses, picornaviruses, and uncommonly seen viruses.

    PubMed

    Valenti, W M; Hruska, J F; Menegus, M A; Freeburn, M J

    1981-01-01

    This communication is the third in a four-part series on nosocomial viral infections from the Strong Memorial Hospital. This third article discusses guidelines for prevention and control of exanthematous viruses, gastroenteritis, viruses, adenoviruses and the picornaviruses other than rhinoviruses. Several uncommonly seen viruses, such as the virus of Creutzfeldt-Jakob disease and Marburg, Ebola, and Lassa fever viruses, also are reviewed briefly.

  12. Transmitting plant viruses using whiteflies.

    PubMed

    Polston, Jane E; Capobianco, H

    2013-11-08

    Whiteflies, Hemiptera: Aleyrodidae, Bemisia tabaci, a complex of morphologically indistinquishable species(5), are vectors of many plant viruses. Several genera of these whitefly-transmitted plant viruses (Begomovirus, Carlavirus, Crinivirus, Ipomovirus, Torradovirus) include several hundred species of emerging and economically significant pathogens of important food and fiber crops (reviewed by(9,10,16)). These viruses do not replicate in their vector but nevertheless are moved readily from plant to plant by the adult whitefly by various means (reviewed by(2,6,7,9,10,11,17)). For most of these viruses whitefly feeding is required for acquisition and inoculation, while for others only probing is required. Many of these viruses are unable or cannot be easily transmitted by other means. Therefore maintenance of virus cultures, biological and molecular characterization (identification of host range and symptoms)(3,13), ecology(2,12), require that the viruses be transmitted to experimental hosts using the whitefly vector. In addition the development of new approaches to management, such as evaluation of new chemicals(14) or compounds(15), new cultural approaches(1,4,19), or the selection and development of resistant cultivars(7,8,18), requires the use of whiteflies for virus transmission. The use of whitefly transmission of plant viruses for the selection and development of resistant cultivars in breeding programs is particularly challenging(7). Effective selection and screening for resistance employs large numbers of plants and there is a need for 100% of the plants to be inoculated in order to find the few genotypes which possess resistance genes. These studies use very large numbers of viruliferous whiteflies, often several times per year. Whitefly maintenance described here can generate hundreds or thousands of adult whiteflies on plants each week, year round, without the contamination of other plant viruses. Plants free of both whiteflies and virus must be

  13. Viruses and interactomes in translation.

    PubMed

    Meyniel-Schicklin, Laurène; de Chassey, Benoît; André, Patrice; Lotteau, Vincent

    2012-07-01

    A decade of high-throughput screenings for intraviral and virus-host protein-protein interactions led to the accumulation of data and to the development of theories on laws governing interactome organization for many viruses. We present here a computational analysis of intraviral protein networks (EBV, FLUAV, HCV, HSV-1, KSHV, SARS-CoV, VACV, and VZV) and virus-host protein networks (DENV, EBV, FLUAV, HCV, and VACV) from up-to-date interaction data, using various mathematical approaches. If intraviral networks seem to behave similarly, they are clearly different from the human interactome. Viral proteins target highly central human proteins, which are precisely the Achilles' heel of the human interactome. The intrinsic structural disorder is a distinctive feature of viral hubs in virus-host interactomes. Overlaps between virus-host data sets identify a core of human proteins involved in the cellular response to viral infection and in the viral capacity to hijack the cell machinery for viral replication. Host proteins that are strongly targeted by a virus seem to be particularly attractive for other viruses. Such protein-protein interaction networks and their analysis represent a powerful resource from a therapeutic perspective.

  14. Viruses in the Oceanic Basement

    PubMed Central

    Jungbluth, Sean P.; Lin, Huei-Ting; Hsieh, Chih-Chiang; Miranda, Jaclyn A.; Schvarcz, Christopher R.; Rappé, Michael S.

    2017-01-01

    ABSTRACT Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement), but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C) were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B) drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 105 to 2 × 105 ml−1 (n = 8), higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27). Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%). Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR)-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737), 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome. PMID:28270584

  15. Virulence Markers of Dengue Viruses

    DTIC Science & Technology

    1990-02-20

    Soawy Ca saoouj Virulence Markers of Dengue Viruses (U) 12. PCIRSONAL AUTHORS) James L. Hardy, Ph.D. and Srisakul C. Kliks, Ph.D. 13a. TYPE Of REPORT...17. COSATI COOLS I& S UBiJECT TERMS0,G ’-mPJ!’ iwin.. - fl OV nu0a mef) FIELD I GROUP SUS-GROUIP Dengue viruses, dengue hemorrhagic fever, virulence...serotypes of dengue virus vary from mild forms i.e. pyrexia of unknown origin (PUO) and dengue fever (DF) to severe forms i.e. dengue hemorrhagic fever and

  16. Virulence Markers of Dengue Viruses

    DTIC Science & Technology

    1988-06-10

    AD VIRULENCE MARKERS OF DENGUE VIRUSES 00 ANNUAL REPORT 0 James L. Hardy and Srisakul C. Kliks June 10, 1988 Supported by U.S. ARMY MEDICAL RESEARCH...Virulence Markers of Dengue Viruses (U) 12. PERSONAL AUTHOR(S) James L. Hardy ind Sriqakul.C. Klik,,q 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF...TERMS (Continue on reverse it necessary and identify by block number) FIELD GROUP SUB-GROUP Dengue viruses, dengue hemorrhagic fever, virulence, U3

  17. Marburg Virus Reverse Genetics Systems

    PubMed Central

    Schmidt, Kristina Maria; Mühlberger, Elke

    2016-01-01

    The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems. PMID:27338448

  18. Marburg Virus Reverse Genetics Systems.

    PubMed

    Schmidt, Kristina Maria; Mühlberger, Elke

    2016-06-22

    The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.

  19. "The evil virus cell": Students‘ knowledge and beliefs about viruses

    PubMed Central

    Enzinger, Sonja M.; Fink, Andreas

    2017-01-01

    Education about virus biology at school is of pivotal interest to raise public awareness concerning means of disease transmission and, thus, methods to prevent infection, and to reduce unnecessary antibiotic treatment due to patient pressure on physicians in case of viral diseases such as influenza. This study aimed at making visible the knowledge of Austrian high school and university students with respect to virus biology, virus structure and health-education issues. The data presented here stem from comprehensive questionnaire analyses, including the task to draw a virus, from a cross-sectional study with 133 grade 7 and 199 grade 10 high school students, and 133 first-year biology and 181 first-year non-biology university students. Analyses were performed both quantitatively and qualitatively. ANOVA revealed a highly significant group effect for total knowledge relating to virus biology and health issues (F(3, 642) = 44.17, p < 0.01, η2p = 0.17). Specific post-hoc tests by means of the Tukey test showed significant differences between all groups (p < .01) with the exception of 1st year non-biology students and grade 10 high school students. Students enrolled in university-level biology outperformed all other groups, even though they had not yet encountered this topic at their courses; part of this phenomenon might be due to their affinity for learning about biological topics. However, even many first-year biology students had a high number of severe misconceptions, e.g., defining a virus as a pro- or eukaryotic cell, or falsely naming malaria as a viral disease. Since there was no significant difference in virus-related knowledge between high schools, virus biology seems to have been taught similarly among the tested schools. However, the majority of participants stated that the virus-related knowledge they had acquired at school was not sufficient. Based on the results presented here we urgently suggest improving and intensifying teaching this topic at school

  20. Antiviral drugs for viruses other than human immunodeficiency virus.

    PubMed

    Razonable, Raymund R

    2011-10-01

    Most viral diseases, with the exception of those caused by human immunodeficiency virus, are self-limited illnesses that do not require specific antiviral therapy. The currently available antiviral drugs target 3 main groups of viruses: herpes, hepatitis, and influenza viruses. With the exception of the antisense molecule fomivirsen, all antiherpes drugs inhibit viral replication by serving as competitive substrates for viral DNA polymerase. Drugs for the treatment of influenza inhibit the ion channel M(2) protein or the enzyme neuraminidase. Combination therapy with Interferon-α and ribavirin remains the backbone treatment for chronic hepatitis C; the addition of serine protease inhibitors improves the treatment outcome of patients infected with hepatitis C virus genotype 1. Chronic hepatitis B can be treated with interferon or a combination of nucleos(t)ide analogues. Notably, almost all the nucleos(t) ide analogues for the treatment of chronic hepatitis B possess anti-human immunodeficiency virus properties, and they inhibit replication of hepatitis B virus by serving as competitive substrates for its DNA polymerase. Some antiviral drugs possess multiple potential clinical applications, such as ribavirin for the treatment of chronic hepatitis C and respiratory syncytial virus and cidofovir for the treatment of cytomegalovirus and other DNA viruses. Drug resistance is an emerging threat to the clinical utility of antiviral drugs. The major mechanisms for drug resistance are mutations in the viral DNA polymerase gene or in genes that encode for the viral kinases required for the activation of certain drugs such as acyclovir and ganciclovir. Widespread antiviral resistance has limited the clinical utility of M(2) inhibitors for the prevention and treatment of influenza infections. This article provides an overview of clinically available antiviral drugs for the primary care physician, with a special focus on pharmacology, clinical uses, and adverse effects.

  1. Antiviral Drugs for Viruses Other Than Human Immunodeficiency Virus

    PubMed Central

    Razonable, Raymund R.

    2011-01-01

    Most viral diseases, with the exception of those caused by human immunodeficiency virus, are self-limited illnesses that do not require specific antiviral therapy. The currently available antiviral drugs target 3 main groups of viruses: herpes, hepatitis, and influenza viruses. With the exception of the antisense molecule fomivirsen, all antiherpes drugs inhibit viral replication by serving as competitive substrates for viral DNA polymerase. Drugs for the treatment of influenza inhibit the ion channel M2 protein or the enzyme neuraminidase. Combination therapy with Interferon-α and ribavirin remains the backbone treatment for chronic hepatitis C; the addition of serine protease inhibitors improves the treatment outcome of patients infected with hepatitis C virus genotype 1. Chronic hepatitis B can be treated with interferon or a combination of nucleos(t)ide analogues. Notably, almost all the nucleos(t) ide analogues for the treatment of chronic hepatitis B possess anti–human immunodeficiency virus properties, and they inhibit replication of hepatitis B virus by serving as competitive substrates for its DNA polymerase. Some antiviral drugs possess multiple potential clinical applications, such as ribavirin for the treatment of chronic hepatitis C and respiratory syncytial virus and cidofovir for the treatment of cytomegalovirus and other DNA viruses. Drug resistance is an emerging threat to the clinical utility of antiviral drugs. The major mechanisms for drug resistance are mutations in the viral DNA polymerase gene or in genes that encode for the viral kinases required for the activation of certain drugs such as acyclovir and ganciclovir. Widespread antiviral resistance has limited the clinical utility of M2 inhibitors for the prevention and treatment of influenza infections. This article provides an overview of clinically available antiviral drugs for the primary care physician, with a special focus on pharmacology, clinical uses, and adverse effects. PMID

  2. Feline immunodeficiency virus latency

    PubMed Central

    2013-01-01

    Despite highly effective anti-retroviral therapy, HIV is thought to persist in patients within long-lived cellular reservoirs in the form of a transcriptionally inactive (latent) integrated provirus. Lentiviral latency has therefore come to the forefront of the discussion on the possibility of a cure for HIV infection in humans. Animal models of lentiviral latency provide an essential tool to study mechanisms of latency and therapeutic manipulation. Of the three animal models that have been described, the feline immunodeficiency virus (FIV)-infected cat is the most recent and least characterized. However, several aspects of this model make it attractive for latency research, and it may be complementary to other model systems. This article reviews what is known about FIV latency and chronic FIV infection and how it compares with that of other lentiviruses. It thereby offers a framework for the usefulness of this model in future research aimed at lentiviral eradication. PMID:23829177

  3. Zika Virus and Eye.

    PubMed

    Agrawal, Rupesh; Oo, Hnin Hnin; Balne, Praveen Kumar; Ng, Lisa; Tong, Louis; Leo, Yee Sin

    2017-03-20

    Zika virus (ZIKV), a mosquito-borne flavivirus, is the latest global health concern. Transmission is mainly via Aedes mosquitoes and the infection can be diagnosed on molecular or serologic testings. It typically causes a mild self-remitting illness of low-grade fever, maculopapular rash, and myalgia, but when severe, it is associated with neurological deficits and congenital structural defects. Ocular manifestations are usually mild like nonpurulent conjunctivitis in adults, though it may be linked to uveitis, maculopathy, and hypertensive iridocyclitis. Ocular signs seem to be more significant in congenital ZIKV-macular pigment mottling, neuroretinal atrophy with macular involvement, iris coloboma, and changes in retinal vasculature are noted in infants with infected mothers. Risk factors include ZIKV infection in first trimester and smaller cephalic diameter at birth. Hence, ophthalmic examination in newborns is now recommended. Currently, prevention and active surveillance are integral as there is no known vaccine, and treatment is only symptomatic.

  4. Junin virus structural proteins.

    PubMed Central

    De Martínez Segovia, Z M; De Mitri, M I

    1977-01-01

    Polyacrylamide gel electrophoresis of purified Junin virus revealed six distinct structural polypeptides, two major and four minor ones. Four of these polypeptides appeared to be covalently linked with carbohydrate. The molecular weights of the six proteins, estimated by coelectrophoresis with marker proteins, ranged from 25,000 to 91,000. One of the two major components (number 3) was identified as a nucleoprotein and had a molecular weight of 64,000. It was the most prominent protein and was nonglycosylated. The other major protein (number 5), with a molecular weight of 38,000, was a glucoprotein and a component of the viral envelope. The location on the virion of three additional glycopeptides with molecular weights of 91,000, 72,000, and 52,000, together with a protein with a molecular weight of 25,000, was not well defined. PMID:189088

  5. Hepatitis G virus: is it a hepatitis virus?

    PubMed Central

    Cheung, R C; Keeffe, E B; Greenberg, H B

    1997-01-01

    Hepatitis G virus (HGV) and GB virus C (GBV-C) are two newly discovered viral agents, different isolates of a positive-sense RNA virus that represents a new genus of Flaviviridae. The purpose of this review is to analyze new data that have recently been published on the epidemiology and associations between HGV and liver diseases such as posttransfusion hepatitis, acute and chronic non-A-E hepatitis, fulminant hepatitis, cryptogenic cirrhosis, and hepatocellular carcinoma. The role of HGV in coinfection with other hepatitis viruses, the response to antiviral therapy, and the impact of HGV on liver transplantation are also discussed. HGV is a transmissible blood-borne viral agent that frequently occurs as a coinfection with other hepatitis viruses due to common modes of transmission. The prevalence of HGV ranges from 0.9 to 10% among blood donors throughout the world and is found in 1.7% of volunteer blood donors in the United States. The majority of patients infected with HGV by blood transfusion do not develop chronic hepatitis, but hepatitis G viremia frequently persists without biochemical evidence of hepatitis. Serum HGV RNA has been found in 0 to 50% of patients with fulminant hepatitis of unknown etiology and 14 to 36% of patients with cryptogenic cirrhosis. The association between HGV and chronic non-A-E hepatitis remains unclear. Although HGV appears to be a hepatotrophic virus, its role in independently causing acute and chronic liver diseases remains uncertain. PMID:9265860

  6. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Vargas, Maria Jose; Ballesteros, Gabriela; Tellez, Yolanda; Soda, K. James; Sahoo, Malaya K.; Nuñez, Andrea; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A.

    2016-01-01

    Background. Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) cocirculate in Nicaragua. In this study, we sought to compare the quantified viremia and clinical presentation of patients infected with 1 or more of these viruses. Methods. Acute-phase serum samples from 346 patients with a suspected arboviral illness were tested using a multiplex real-time reverse-transcription polymerase chain reaction for ZIKV, CHIKV, and DENV. Viremia was quantitated for each detected virus, and clinical information from request forms submitted with each sample was recorded. Results. A total of 263 patients tested positive for 1 or more viruses: 192 patients tested positive for a single virus (monoinfections) and 71 patients tested positive for 2 or all 3 viruses (coinfections). Quantifiable viremia was lower in ZIKV infections compared with CHIKV or DENV (mean 4.70 vs 6.42 and 5.84 log10 copies/mL serum, respectively; P < .001 for both comparisons), and for each virus, mean viremia was significantly lower in coinfections than in monoinfections. Compared with patients with CHIKV or DENV, ZIKV patients were more likely to have a rash (P < .001) and less likely to be febrile (P < .05) or require hospitalization (P < .001). Among all patients, hospitalized cases had higher viremia than those who did not require hospitalization (7.1 vs 4.1 log10 copies/mL serum, respectively; P < .001). Conclusions. ZIKV, CHIKV, and DENV result in similar clinical presentations, and coinfections may be relatively common. Our findings illustrate the need for accurate, multiplex diagnostics for patient care and epidemiologic surveillance. PMID:27578819

  7. [An update on Lassa virus].

    PubMed

    Leparc-Goffart, I; Emonet, S F

    2011-12-01

    Lassa virus, the etiologic agent of Lassa hemorrhagic fever, infects 100,000 to 300,000 people every year in West Africa with an overall mortality rate ranging from 1 to 2%. It was discovered in 1969 and remains a significant public health risk in endemic areas. Because airborne transmission is possible and mortality can be high under certain conditions, Lassa virus has been classified as a category A bioterrorism agent. Early diagnosis is difficult due to insidious non-specific onset and to the great genetic divergence of the virus that makes RT-PCR assays unreliable. The lack of proper diagnostic tools promotes nosocomial infection and diminishes the efficacy of treatment. Recently, numerous advances have been made in the development of both diagnostic and vaccination techniques. The purpose of this review is to present an update on that research as well as the current epidemiology of Lassa virus.

  8. Viruses of eukaryotice green algae

    SciTech Connect

    Van Etten, J.L.

    1989-01-01

    The primary objective of our research was to develop the Chlorella-PBCV-1 virus system so that it can be used as a model system for studying gene expression in a photosynthetic eukaryote. We have made considerable progress and have learned much about PBCV-1 and its replication cycle. In addition, several significant discoveries were made in the last 3 to 4 years. These discoveries include: (i) the finding that morphologically similar, plaque forming, dsDNA containing viruses are common in nature and can be isolated readily from fresh water, (ii) the finding that all of these Chlorella viruses contain methylated bases which range in concentration from 0.1% to 47.5% m{sup 5}dC and 0 to 37% m{sup 6}dA and (iii) the discovery that infection with at least some of these viruses induces the appearance of DNA modification/restriction systems. 26 refs.

  9. About Human Parainfluenza Viruses (HPIVs)

    MedlinePlus

    ... Overview Laboratory Diagnosis HPIV Seasons Resources & References About Human Parainfluenza Viruses (HPIVs) Recommend on Facebook Tweet Share ... 6348 Email CDC-INFO U.S. Department of Health & Human Services HHS/Open USA.gov Top

  10. Lactate dehydrogenase-elevating virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  11. Collective Infectious Units in Viruses.

    PubMed

    Sanjuán, Rafael

    2017-03-03

    Increasing evidence indicates that viruses do not simply propagate as independent virions among cells, organs, and hosts. Instead, viral spread is often mediated by structures that simultaneously transport groups of viral genomes, such as polyploid virions, aggregates of virions, virion-containing proteinaceous structures, secreted lipid vesicles, and virus-induced cell-cell contacts. These structures increase the multiplicity of infection, independently of viral population density and transmission bottlenecks. Collective infectious units may contribute to the maintenance of viral genetic diversity, and could have implications for the evolution of social-like virus-virus interactions. These may include various forms of cooperation such as immunity evasion, genetic complementation, division of labor, and relaxation of fitness trade-offs, but also noncooperative interactions such as negative dominance and interference, potentially leading to conflict.

  12. ICTV Virus Taxonomy Profile: Ourmiavirus.

    PubMed

    Turina, Massimo; Hillman, Brad I; Izadpanah, Keramat; Rastgou, Mina; Rosa, Cristina; Ictv Report Consortium

    2017-02-01

    Members of the plant virus genus Ourmiavirus are characterized by having non-enveloped bacilliform virions with a series of discrete lengths from 30 to 62 nm composed of a single coat protein (CP). The genome consists of three positive-sense single-stranded RNAs, each encoding a single protein. The RNA-dependent RNA polymerase (RdRp) has closest similarity to that of viruses from the family Narnaviridae; the movement protein (MP) is similar to the MPs of tombusviruses; the CP shows limited similarity to the CPs of several plant and animal viruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the genus Ourmiavirus, which is available at www.ictv.global/report/ourmiavirus.

  13. Peste des Petits Ruminants Virus.

    PubMed

    Baron, M D; Diallo, A; Lancelot, R; Libeau, G

    2016-01-01

    Peste des petits ruminants virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively through the developing world. Because of its disproportionately large impact on the livelihoods of low-income livestock keepers, and the availability of effective vaccines and good diagnostics, the virus is being targeted for global control and eventual eradication. In this review we examine the origin of the virus and its current distribution, and the factors that have led international organizations to conclude that it is eradicable. We also review recent progress in the molecular and cellular biology of the virus and consider areas where further research is required to support the efforts being made by national, regional, and international bodies to tackle this growing threat.

  14. Ebola (Ebola Virus Disease): Transmission

    MedlinePlus

    ... Healthcare Professionals Addressing Ebola Virus Infection Concerns in K-12 Schools Public Health Resources U.S. Healthcare Workers and ... Field Training: Healthcare Workers Going to Africa Continuing Education Toolkit Managing Patient Flow During Triage, Isolation, and ...

  15. Ebola (Ebola Virus Disease): Prevention

    MedlinePlus

    ... Healthcare Professionals Addressing Ebola Virus Infection Concerns in K-12 Schools Public Health Resources U.S. Healthcare Workers and ... Field Training: Healthcare Workers Going to Africa Continuing Education Toolkit Managing Patient Flow During Triage, Isolation, and ...

  16. VIRUS-SPECIFIC POLYSOMES IN CELLS INFECTED WITH THE VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS,

    DTIC Science & Technology

    VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS, *RIBOSOMES, *TISSUE CULTURE CELLS, RIBOSOMES, GROWTH(PHYSIOLOGY), INFECTIOUS DISEASES, ARBOVIRUSES, VIRUSES, NUCLEIC ACIDS, BIOSYNTHESIS, USSR, MOLECULAR STRUCTURE.

  17. Taxonomy and nomenclature of viruses.

    PubMed

    Murant, A F

    1985-07-01

    In his article The species concept in plant virology Milne1 describes the CMI/AAB Descriptions of Plant Viruses2 as providing the 'creeping barrage' (for the 'anti-species' views of many plant virologists and others) in the seemingly unending trench warfare over virus taxonomy and nomenclature. As an editor since 1970 (with BD Harrison) of this continuing series, I am moved to fire a few additional shots in support of Milne's thesis.

  18. Data integrity: beware of viruses.

    PubMed

    Bergren, Martha Dewey

    2004-08-01

    School nurses and health office employees are the creators and caretakers of legal documentation. School nurses have an ethical and legal obligation to protect the integrity of electronic student health records. Although there are many threats to data integrity, from inadequate hardware to electrical surges, one of the most pervasive threats to data is computer viruses. There are many precautions that can be taken to protect electronic student health data from viruses in the school health office.

  19. Open questions about giant viruses.

    PubMed

    Claverie, Jean-Michel; Abergel, Chantal

    2013-01-01

    The recent discovery of giant viruses exhibiting double-stranded DNA genomes larger than a million base pairs, encoding more than a thousand proteins and packed in near micron-sized icosahedral particles, opened a new and unexpected chapter in virology. As of today, these giant viruses and their closest relatives of lesser dimensions infect unicellular eukaryotes found in aquatic environments, but belonging to a wide diversity of early branching phyla. This broad phylogenetic distribution of hosts is consistent with the hypothesis that giant viruses originated prior to the radiation of the eukaryotic domain and/or might have been involved in the partition of nuclear versus cytoplasmic functions in ancestral cells. The distinctive features of the known giant viruses, in particular the recurrent presence of components of the translation apparatus in their proteome, raise a number of fundamental questions about their origin, their mode of evolution, and the relationship they may entertain with other dsDNA viruses, the genome size of which exhibits the widest distribution among all biological entities, from less than 5 kb to more than 1.25 Mb (a ratio of 1:250). At a more conceptual level, the convergence between the discovery of increasingly reduced parasitic cellular organisms and that of giant viruses exhibiting a widening array of cellular-like functions may ultimately abolish the historical discontinuity between the viral and the cellular world.

  20. VIRUS early installation and commissioning

    NASA Astrophysics Data System (ADS)

    Tuttle, Sarah E.; Hill, Gary J.; Vattiat, Brian L.; Lee, Hanshin; Drory, Niv; Kelz, Andreas; Ramsey, Jason; Peterson, Trent; Noyola, Eva; DePoy, Darren L.; Marshall, Jennifer L.; Chonis, Taylor S.; Dalton, Gavin; Fabricius, Maximilian; Farrow, Daniel; Good, John M.; Haynes, Dionne M.; Indahl, Briana; Jahn, Thomas; Kriel, Hermanus; Nicklas, Harald; Montesano, Francesco; Prochaska, Travis; Allen, Richard D.; Landriau, Martin; MacQueen, Phillip J.; Roth, Martin M.; Savage, Richard; Snigula, Jan M.

    2016-08-01

    VIRUS is a massively replicated spectrograph built for HETDEX, the Hobby Eberly Telescope Dark Energy Experiment. It consists of 156 channels within 78 units fed by 34944 fibers over the 22 arcminute field of the upgraded HET. VIRUS covers a relatively narrow bandpass (350-550nm) at low resolution (R 700) to target the emission of Lyman-alpha emitters (LAEs) for HETDEX. VIRUS is a first demonstration of industrial style assembly line replication in optical astronomy. Installation and testing of VIRUS units began in November of 2015. This winter we celebrated the first on sky instrument activity of the upgraded HET, using a VIRUS unit and LRS2-R (the upgraded facility Low Resolution Spectrograph for the HET). Here we describe progress in VIRUS installation and commissioning through June 2016. We include early sky data obtained to characterize spectrograph performance and on sky performance of the newly upgraded HET. As part of the instrumentation for first science light at the HET, the IFU fed spectrographs were used to test a full range of telescope system functionality including the field calibration unit (FCU).We also use placement of strategic IFUs to map the new HET field to the fiber placement, and demonstrate actuation of the dithering mechanism key to HETDEX observations.

  1. Another Really, Really Big Virus

    PubMed Central

    Van Etten, James L.

    2011-01-01

    Viruses with genomes larger than 300 kb and up to 1.2 Mb, which encode hundreds of proteins, are being discovered and characterized with increasing frequency. Most, but not all, of these large viruses (often referred to as giruses) infect protists that live in aqueous environments. Bioinformatic analyses of metagenomes of aqueous samples indicate that large DNA viruses are quite common in nature and await discovery. One issue that is perhaps not appreciated by the virology community is that large viruses, even those classified in the same family, can differ significantly in morphology, lifestyle, and gene complement. This brief commentary, which will mention some of these unique properties, was stimulated by the characterization of the newest member of this club, virus CroV (Fischer, M.G.; Allen, M.J.; Wilson, W.H.; Suttle, C.A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl. Acad. Sci. USA 2010, 107, 19508–19513 [1]). CroV has a 730 kb genome (with ∼544 protein-encoding genes) and infects the marine microzooplankton Cafeteria roenbergensis producing a lytic infection. PMID:21994725

  2. Assembly of simple icosahedral viruses.

    PubMed

    Almendral, José M

    2013-01-01

    Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by hydrophobic contacts and non-covalent interactions in assembly intermediates, which serve as blocks to build a symmetric capsid. In some cases, non-symmetric interactions among intermediates are involved in assembly, highlighting the remarkable capacity of capsid proteins to fold into demanding conformations compatible with a closed protein shell. In this chapter, the morphogenesis of structurally simple icosahedral viruses, including representative members of the parvoviruses, picornaviruses or polyomaviruses as paradigms, is described in some detail. Icosahedral virus assembly may occur in different subcellular compartments and involve a panoplia of cellular and viral factors, chaperones, and protein modifications that, in general, are still poorly characterized. Mechanisms of viral genome encapsidation may imply direct interactions between the genome and the assembly intermediates, or active packaging into a preformed empty capsid. High stability of intermediates and proteolytic cleavages during viral maturation usually contribute to the overall irreversible character of the assembly process. These and other simple icosahedral viruses were pioneer models to understand basic principles of virus assembly, continue to be leading subjects of morphogenetic analyses, and have inspired ongoing studies on the assembly of larger viruses and cellular and synthetic macromolecular complexes.

  3. Major tomato viruses in the Mediterranean basin.

    PubMed

    Hanssen, Inge M; Lapidot, Moshe

    2012-01-01

    Tomato (Solanum lycopersicum L.) originated in South America and was brought to Europe by the Spaniards in the sixteenth century following their colonization of Mexico. From Europe, tomato was introduced to North America in the eighteenth century. Tomato plants show a wide climatic tolerance and are grown in both tropical and temperate regions around the world. The climatic conditions in the Mediterranean basin favor tomato cultivation, where it is traditionally produced as an open-field plant. However, viral diseases are responsible for heavy yield losses and are one of the reasons that tomato production has shifted to greenhouses. The major tomato viruses endemic to the Mediterranean basin are described in this chapter. These viruses include Tomato yellow leaf curl virus, Tomato torrado virus, Tomato spotted wilt virus, Tomato infectious chlorosis virus, Tomato chlorosis virus, Pepino mosaic virus, and a few minor viruses as well.

  4. Foodborne viruses: an emerging problem.

    PubMed

    Koopmans, Marion; Duizer, Erwin

    2004-01-01

    Several groups of viruses may infect persons after ingestion and then are shed via stool. Of these, the norovirus (NoV) and hepatitis A virus (HAV) are currently recognised as the most important human foodborne pathogens with regard to the number of outbreaks and people affected in the Western world. NoV and HAV are highly infectious and may lead to widespread outbreaks. The clinical manifestation of NoV infection, however, is relatively mild. Asymptomatic infections are common and may contribute to the spread of the infection. Introduction of NoV in a community or population (a seeding event) may be followed by additional spread because of the highly infectious nature of NoV, resulting in a great number of secondary infections (50% of contacts). Hepatitis A is an increasing problem because of the decrease in immunity of populations in countries with high standards of hygiene. Molecular-based methods can detect viruses in shellfish but are not yet available for other foods. The applicability of the methods currently available for monitoring foods for viral contamination is unknown. No consistent correlation has been found between the presence of indicator microorganisms (i.e. bacteriophages, E. coli) and viruses. NoV and HAV are highly infectious and exhibit variable levels of resistance to heat and disinfection agents. However, they are both inactivated at 100 degrees C. No validated model virus or model system is available for studies of inactivation of NoV, although investigations could make use of structurally similar viruses (i.e. canine and feline caliciviruses). In the absence of a model virus or model system, food safety guidelines need to be based on studies that have been performed with the most resistant enteric RNA viruses (i.e. HAV, for which a model system does exist) and also with bacteriophages (for water). Most documented foodborne viral outbreaks can be traced to food that has been manually handled by an infected foodhandler, rather than to

  5. PC viruses: How do they do that

    SciTech Connect

    Pichnarczyk, K.

    1992-07-01

    The topic of PC Viruses has been an issue for a number of years now. They've been reported in every major newspaper, tabloids, television and radio. People from all fields get viruses: government, private sector businesses, home computers, schools, computer software suppliers. A definition is proposed to introduce the virus phenomenon. Virus authors come from a variety of communities. Motives and ideologies of authors are discussed, and examples of viruses are offered. Also mentioned is the growing number of viruses developed, isolated, and never distributed to the public at large, but kept within the antivirus research community. Virus examples are offered as well. Viruses are distributed not only through bulletin boards and shareware, but also from areas previously assumed to be safe, including the threat of receiving a virus through a standard in-house function, such as an in-house hardware maintenance shop. Three categories of viruses are presented: File Infecter viruses, Boot Sector Infecters, and the new category of Directory Entry Infecter virus. Also discussed are crossover viruses, that is, viruses which utilize a variety of techniques to ensure survival. An explanation of what is occurring within every stage of various viruses is given. Replication strategies common to all three types is noted, mainly the two different replication strategies of memory resident infecters and active selection infecters. A detailed definition, description and application of a stealth virus is presented. Detection strategies are discussed as each topic in this section is completed; a high level schemata of the operation of various virus detection programs ispresented. Since most eradication today is done using virus detection/eradication software, this paper attempts to reveal the techniques used by these packages.Included in the paper is the topic of manual eradication.

  6. PC viruses: How do they do that?

    SciTech Connect

    Pichnarczyk, K.

    1992-07-01

    The topic of PC Viruses has been an issue for a number of years now. They`ve been reported in every major newspaper, tabloids, television and radio. People from all fields get viruses: government, private sector businesses, home computers, schools, computer software suppliers. A definition is proposed to introduce the virus phenomenon. Virus authors come from a variety of communities. Motives and ideologies of authors are discussed, and examples of viruses are offered. Also mentioned is the growing number of viruses developed, isolated, and never distributed to the public at large, but kept within the antivirus research community. Virus examples are offered as well. Viruses are distributed not only through bulletin boards and shareware, but also from areas previously assumed to be safe, including the threat of receiving a virus through a standard in-house function, such as an in-house hardware maintenance shop. Three categories of viruses are presented: File Infecter viruses, Boot Sector Infecters, and the new category of Directory Entry Infecter virus. Also discussed are crossover viruses, that is, viruses which utilize a variety of techniques to ensure survival. An explanation of what is occurring within every stage of various viruses is given. Replication strategies common to all three types is noted, mainly the two different replication strategies of memory resident infecters and active selection infecters. A detailed definition, description and application of a stealth virus is presented. Detection strategies are discussed as each topic in this section is completed; a high level schemata of the operation of various virus detection programs ispresented. Since most eradication today is done using virus detection/eradication software, this paper attempts to reveal the techniques used by these packages.Included in the paper is the topic of manual eradication.

  7. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    PubMed

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses.

  8. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential.

    PubMed

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C; Smith, Derek J; Kawaoka, Yoshihiro

    2014-06-11

    Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited pathogenicity in mice and ferrets higher than that in an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential.

  9. Comparative interactomics for virus-human protein-protein interactions: DNA viruses versus RNA viruses.

    PubMed

    Durmuş, Saliha; Ülgen, Kutlu Ö

    2017-01-01

    Viruses are obligatory intracellular pathogens and completely depend on their hosts for survival and reproduction. The strategies adopted by viruses to exploit host cell processes and to evade host immune systems during infections may differ largely with the type of the viral genetic material. An improved understanding of these viral infection mechanisms is only possible through a better understanding of the pathogen-host interactions (PHIs) that enable viruses to enter into the host cells and manipulate the cellular mechanisms to their own advantage. Experimentally-verified protein-protein interaction (PPI) data of pathogen-host systems only became available at large scale within the last decade. In this study, we comparatively analyzed the current PHI networks belonging to DNA and RNA viruses and their human host, to get insights into the infection strategies used by these viral groups. We investigated the functional properties of human proteins in the PHI networks, to observe and compare the attack strategies of DNA and RNA viruses. We observed that DNA viruses are able to attack both human cellular and metabolic processes simultaneously during infections. On the other hand, RNA viruses preferentially interact with human proteins functioning in specific cellular processes as well as in intracellular transport and localization within the cell. Observing virus-targeted human proteins, we propose heterogeneous nuclear ribonucleoproteins and transporter proteins as potential antiviral therapeutic targets. The observed common and specific infection mechanisms in terms of viral strategies to attack human proteins may provide crucial information for further design of broad and specific next-generation antiviral therapeutics.

  10. Quantitative nanoscale electrostatics of viruses

    NASA Astrophysics Data System (ADS)

    Hernando-Pérez, M.; Cartagena-Rivera, A. X.; Lošdorfer Božič, A.; Carrillo, P. J. P.; San Martín, C.; Mateu, M. G.; Raman, A.; Podgornik, R.; de Pablo, P. J.

    2015-10-01

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of

  11. Unusual Influenza A Viruses in Bats

    PubMed Central

    Mehle, Andrew

    2014-01-01

    Influenza A viruses infect a remarkably diverse number of hosts. Two completely new influenza A virus subtypes were recently discovered in bats, dramatically expanding the host range of the virus. These bat viruses are extremely divergent from all other known strains and likely have unique replication cycles. Phylogenetic analysis indicates long-term, isolated evolution in bats. This is supported by a high seroprevalence in sampled bat populations. As bats represent ~20% of all classified mammals, these findings suggests the presence of a massive cryptic reservoir of poorly characterized influenza A viruses. Here, we review the exciting progress made on understanding these newly discovered viruses, and discuss their zoonotic potential. PMID:25256392

  12. Unusual influenza A viruses in bats.

    PubMed

    Mehle, Andrew

    2014-09-17

    Influenza A viruses infect a remarkably diverse number of hosts. Two completely new influenza A virus subtypes were recently discovered in bats, dramatically expanding the host range of the virus. These bat viruses are extremely divergent from all other known strains and likely have unique replication cycles. Phylogenetic analysis indicates long-term, isolated evolution in bats. This is supported by a high seroprevalence in sampled bat populations. As bats represent ~20% of all classified mammals, these findings suggests the presence of a massive cryptic reservoir of poorly characterized influenza A viruses. Here, we review the exciting progress made on understanding these newly discovered viruses, and discuss their zoonotic potential.

  13. [Characteristics of the ecology of the eastern equine encephalomyelitis virus in the Republic of Cuba].

    PubMed

    Berezin, V V

    1977-01-01

    Virologic and serological surveys of wild vertebrates carried out in various provinces of Cuba demonstrated definitely that birds were the main hosts of eastern equine encephalomyelitis (EEE) virus in this territory. Fifteen strains of this virus were isolated from 8 species of birds belonging to 5 orders. Isolation of EEE virus from the blood of the endemic genus of iguanas indicates a certain role of cold-blooded animals in the ecology of this agent. Active EEE virus foci have been found in 4 provinces of the Republic of Cuba: Pinar del Rio, Havana, Matanzas and Las Villas. Isolation of a number of EEE virus strains from sick horses during an epizootic in the latter province confirmed the importance role of this agent in the infectious pathology of domestic animals in Cuba. The experimental results suggest that in Cuba there occur at least two types of foci of this infection: forest and water-littoral (fresh-water swamps and lakes, and sea coast with mangrove forests).

  14. Ebola, the killer virus.

    PubMed

    Ghazanfar, Haider; Orooj, Fizza; Abdullah, Muhammad Ahmed; Ghazanfar, Ali

    2015-01-01

    Ebola virus disease (EVD) has mostly affected economically deprived countries as limited resources adversely affect a country's infrastructure and administration. Probing into the factors that led to the widespread outbreak, setting forth plans to counter EVD cases in developing countries, and devising definitive measures to limit the spread of the disease are essential steps that must be immediately taken. In this review we summarize the pathogenesis of EVD and the factors that led to its spread. We also highlight interventions employed by certain countries that have successfully limited the epidemic, and add a few preventive measures after studying the current data. According to the available data, barriers to prevent and control the disease in affected countries include irresolute and disorganized health systems, substandard sanitary conditions, poor personal hygiene practices, and false beliefs and stigma related to EVD. The public health sector along with the respective chief authorities in developing countries must devise strategies, keeping the available resources in mind, to deal with the outbreak before it occurs. As a first step, communities should be educated on EVD's symptoms, history, mode of transmission, and methods of protection, including the importance of personal hygiene practices, via seminars, newspapers, and other social media. A popular opinion leader (POL) giving this information would further help to remove the misconception about the nature of the disease and indirectly improve the quality of life of affected patients and their families.

  15. HETEROLOGOUS IMMUNITY BETWEEN VIRUSES

    PubMed Central

    Welsh, Raymond M.; Che, Jenny; Brehm, Michael A.; Selin, Liisa K.

    2010-01-01

    Summary Immune memory responses to previously encountered pathogens can sometimes alter the immune response to and the course of infection of an unrelated pathogen by a process known as heterologous immunity. This response can lead to enhanced or diminished protective immunity and altered immunopathology. Here we discuss the nature of T-cell cross-reactivity and describe matrices of epitopes from different viruses eliciting cross-reactive CD8+ T-cell responses. We examine the parameters of heterologous immunity mediated by these cross-reactive T cells during viral infections in mice and humans. We show that heterologous immunity can disrupt T-cell memory pools, alter the complexity of the T-cell repertoire, change patterns of T-cell immunodominance, lead to the selection of viral epitope-escape variants, alter the pathogenesis of viral infections, and, by virtue of the private specificity of T-cell repertoires within individuals, contribute to dramatic variations in viral disease. We propose that heterologous immunity is an important factor in resistance to and variations of human viral infections and that issues of heterologous immunity should be considered in the design of vaccines. PMID:20536568

  16. Development and Utilization of InDel Markers to Identify Peanut (Arachis hypogaea) Disease Resistance

    PubMed Central

    Liu, Lifeng; Dang, Phat M.; Chen, Charles Y.

    2015-01-01

    Peanut diseases, such as leaf spot and spotted wilt caused by Tomato Spotted Wilt Virus, can significantly reduce yield and quality. Application of marker assisted plant breeding requires the development and validation of different types of DNA molecular markers. Nearly 10,000 SSR-based molecular markers have been identified by various research groups around the world, but less than 14.5% showed polymorphism in peanut and only 6.4% have been mapped. Low levels of polymorphism limit the application of marker assisted selection (MAS) in peanut breeding programs. Insertion/deletion (InDel) markers have been reported to be more polymorphic than SSRs in some crops. The goals of this study were to identify novel InDel markers and to evaluate the potential use in peanut breeding. Forty-eight InDel markers were developed from conserved sequences of functional genes and tested in a diverse panel of 118 accessions covering six botanical types of cultivated peanut, of which 104 were from the U.S. mini-core. Results showed that 16 InDel markers were polymorphic with polymorphic information content (PIC) among InDels ranged from 0.017 to 0.660. With respect to botanical types, PICs varied from 0.176 for fastigiata var., 0.181 for hypogaea var., 0.306 for vulgaris var., 0.534 for aequatoriana var., 0.556 for peruviana var., to 0.660 for hirsuta var., implying that aequatoriana var., peruviana var., and hirsuta var. have higher genetic diversity than the other types and provide a basis for gene functional studies. Single marker analysis was conducted to associate specific marker to disease resistant traits. Five InDels from functional genes were identified to be significantly correlated to tomato spotted wilt virus (TSWV) infection and leaf spot, and these novel markers will be utilized to identify disease resistant genotype in breeding populations. PMID:26617627

  17. Stochastic analysis of virus transport in aquifers

    USGS Publications Warehouse

    Campbell, Rehmann L.L.; Welty, C.; Harvey, R.W.

    1999-01-01

    A large-scale model of virus transport in aquifers is derived using spectral perturbation analysis. The effects of spatial variability in aquifer hydraulic conductivity and virus transport (attachment, detachment, and inactivation) parameters on large-scale virus transport are evaluated. A stochastic mean model of virus transport is developed by linking a simple system of local-scale free-virus transport and attached-virus conservation equations from the current literature with a random-field representation of aquifer and virus transport properties. The resultant mean equations for free and attached viruses are found to differ considerably from the local-scale equations on which they are based and include effects such as a free-virus effective velocity that is a function of aquifer heterogeneity as well as virus transport parameters. Stochastic mean free-virus breakthrough curves are compared with local model output in order to observe the effects of spatial variability on mean one-dimensional virus transport in three-dimensionally heterogeneous porous media. Significant findings from this theoretical analysis include the following: (1) Stochastic model breakthrough occurs earlier than local model breakthrough, and this effect is most pronounced for the least conductive aquifers studied. (2) A high degree of aquifer heterogeneity can lead to virus breakthrough actually preceding that of a conservative tracer. (3) As the mean hydraulic conductivity is increased, the mean model shows less sensitivity to the variance of the natural-logarithm hydraulic conductivity and mean virus diameter. (4) Incorporation of a heterogeneous colloid filtration term results in higher predicted concentrations than a simple first-order adsorption term for a given mean attachment rate. (5) Incorporation of aquifer heterogeneity leads to a greater range of virus diameters for which significant breakthrough occurs. (6) The mean model is more sensitive to the inactivation rate of viruses

  18. Plasmodesmata: channels for viruses on the move.

    PubMed

    Heinlein, Manfred

    2015-01-01

    The symplastic communication network established by plasmodesmata (PD) and connected phloem provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent important keys to the cellular mechanisms underlying the intercellular trafficking of viruses and other macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of specialized transport structures within the channel. Some viruses move between cells in the form of assembled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory pathway to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskeleton to spread infection. This chapter provides an introduction into viruses and their role in studying the diverse cellular mechanisms involved in intercellular PD-mediated macromolecular trafficking.

  19. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  20. Andes Virus M Genome Segment is Not Sufficient to Confer the Virulence Associated With Andres Virus in Syrian Hamsters

    DTIC Science & Technology

    2004-01-01

    isolation of viruses from cell cultures infected with both parental viruses yielded only one type of stable reassortant virus : large (L) and small (S... virus was obtained from co-infections of AND various viruses . The restriction patterns are shown for the parental genotypes (ANResults and discussion...Therefore, the recovery of M segment reassortant viruses , but not S or L segment reassortant viruses , suggestsVand SNV, an SAS virus . RT-PCR followed by

  1. Autophagic machinery activated by dengue virus enhances virus replication

    SciTech Connect

    Lee, Y.-R.; Lei, H.-Y.; Liu, M.-T.; Wang, J.-R.; Chen, S.-H.; Jiang-Shieh, Y.-F.; Lin, Y.-S.; Yeh, T.-M.; Liu, C.-C.; Liu, H.-S.

    2008-05-10

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication.

  2. [Bats and Viruses: complex relationships].

    PubMed

    Rodhain, F

    2015-10-01

    With more than 1 200 species, bats and flying foxes (Order Chiroptera) constitute the most important and diverse order of Mammals after Rodents. Many species of bats are insectivorous while others are frugivorous and few of them are hematophagous. Some of these animals fly during the night, others are crepuscular or diurnal. Some fly long distances during seasonal migrations. Many species are colonial cave-dwelling, living in a rather small home range while others are relatively solitary. However, in spite of the importance of bats for terrestrial biotic communities and ecosystem ecology, the diversity in their biology and lifestyles remain poorly known and underappreciated. More than sixty viruses have been detected or isolated in bats; these animals are therefore involved in the natural cycles of many of them. This is the case, for instance, of rabies virus and other Lyssavirus (Family Rhabdoviridae), Nipah and Hendra viruses (Paramyxoviridae), Ebola and Marburg viruses (Filoviridae), SARS-CoV and MERS-CoV (Coronaviridae). For these zoonotic viruses, a number of bat species are considered as important reservoir hosts, efficient disseminators or even directly responsible of the transmission. Some of these bat-borne viruses cause highly pathogenic diseases while others are of potential significance for humans and domestic or wild animals; so, bats are an important risk in human and animal public health. Moreover, some groups of viruses developed through different phylogenetic mechanisms of coevolution between viruses and bats. The fact that most of these viral infections are asymptomatic in bats has been observed since a long time but the mechanisms of the viral persistence are not clearly understood. The various bioecology of the different bat populations allows exchange of virus between migrating and non-migrating conspecific species. For a better understanding of the role of bats in the circulation of these viral zoonoses, epidemiologists must pay attention to

  3. Circulative, “Nonpropagative” Virus Transmission: An orchestra of virus, insect and plant derived instruments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The many species of plant viruses within the Luteoviridae, Geminiviridae and Nanoviridae are all transmitted by phloem feeding insects in a circulative, nonpropagative manner. The precise route of virus movement through the vector can differ across and within virus families, but these viruses all sh...

  4. Coping with Computer Viruses: General Discussion and Review of Symantec Anti-Virus for the Macintosh.

    ERIC Educational Resources Information Center

    Primich, Tracy

    1992-01-01

    Discusses computer viruses that attack the Macintosh and describes Symantec AntiVirus for Macintosh (SAM), a commercial program designed to detect and eliminate viruses; sample screen displays are included. SAM is recommended for use in library settings as well as two public domain virus protection programs. (four references) (MES)

  5. Strains of Citrus tristeza virus do not exclude superinfection by other strains of the virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Superinfection exclusion or homologous interference, a phenomenon in which a primary viral infection prevents a secondary infection with the same or closely-related virus, has been observed commonly for viruses in various systems, including viruses of bacteria, plants, and animals. With plant viruse...

  6. Feline leukemia virus immunity induced by whole inactivated virus vaccination.

    PubMed

    Torres, Andrea N; O'Halloran, Kevin P; Larson, Laurie J; Schultz, Ronald D; Hoover, Edward A

    2010-03-15

    A fraction of cats exposed to feline leukemia virus (FeLV) effectively contain virus and resist persistent antigenemia/viremia. Using real-time PCR (qPCR) to quantitate circulating viral DNA levels, previously we detected persistent FeLV DNA in blood cells of non-antigenemic cats considered to have resisted FeLV challenge. In addition, previously we used RNA qPCR to quantitate circulating viral RNA levels and determined that the vast majority of viral DNA is transcriptionally active, even in the absence of antigenemia. A single comparison of all USDA-licensed commercially available FeLV vaccines using these modern sensitive methods has not been reported. To determine whether FeLV vaccination would prevent nucleic acid persistence, we assayed circulating viral DNA, RNA, antigen, infectious virus, and virus neutralizing (VN) antibody in vaccinated and unvaccinated cats challenged with infectious FeLV. We identified challenged vaccinates with undetectable antigenemia and viremia concomitant with persistent FeLV DNA and/or RNA. Moreover, these studies demonstrated that two whole inactivated virus (WIV) adjuvanted FeLV vaccines (Fort Dodge Animal Health's Fel-O-Vax Lv-K) and Schering-Plough Animal Health's FEVAXYN FeLV) provided effective protection against FeLV challenge. In nearly every recipient of these vaccines, neither viral DNA, RNA, antigen, nor infectious virus could be detected in blood after FeLV challenge. Interestingly, this effective viral containment occurred despite a weak to undetectable VN antibody response. The above findings reinforce the precept of FeLV infection as a unique model of effective retroviral immunity elicited by WIV vaccination, and as such holds valuable insights into retroviral immunoprevention and therapy.

  7. Designing herpes viruses as oncolytics

    PubMed Central

    Peters, Cole; Rabkin, Samuel D

    2015-01-01

    Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because HSV is a natural human pathogen that can cause serious disease, it is incumbent that it can be genetically-engineered or significantly attenuated for safety. Here, we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are nonessential for growth in tissue culture cells but are important for growth in postmitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be “armed” with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate antitumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity. PMID:26462293

  8. Control of viruses infecting grapevine.

    PubMed

    Maliogka, Varvara I; Martelli, Giovanni P; Fuchs, Marc; Katis, Nikolaos I

    2015-01-01

    Grapevine is a high value vegetatively propagated fruit crop that suffers from numerous viruses, including some that seriously affect the profitability of vineyards. Nowadays, 64 viruses belonging to different genera and families have been reported in grapevines and new virus species will likely be described in the future. Three viral diseases namely leafroll, rugose wood, and infectious degeneration are of major economic importance worldwide. The viruses associated with these diseases are transmitted by mealybugs, scale and soft scale insects, or dagger nematodes. Here, we review control measures of the major grapevine viral diseases. More specifically, emphasis is laid on (i) approaches for the production of clean stocks and propagative material through effective sanitation, robust diagnosis, as well as local and regional certification efforts, (ii) the management of vectors of viruses using cultural, biological, and chemical methods, and (iii) the production of resistant grapevines mainly through the application of genetic engineering. The benefits and limitations of the different control measures are discussed with regard to accomplishments and future research directions.

  9. A Multicomponent Animal Virus Isolated from Mosquitoes.

    PubMed

    Ladner, Jason T; Wiley, Michael R; Beitzel, Brett; Auguste, Albert J; Dupuis, Alan P; Lindquist, Michael E; Sibley, Samuel D; Kota, Krishna P; Fetterer, David; Eastwood, Gillian; Kimmel, David; Prieto, Karla; Guzman, Hilda; Aliota, Matthew T; Reyes, Daniel; Brueggemann, Ernst E; St John, Lena; Hyeroba, David; Lauck, Michael; Friedrich, Thomas C; O'Connor, David H; Gestole, Marie C; Cazares, Lisa H; Popov, Vsevolod L; Castro-Llanos, Fanny; Kochel, Tadeusz J; Kenny, Tara; White, Bailey; Ward, Michael D; Loaiza, Jose R; Goldberg, Tony L; Weaver, Scott C; Kramer, Laura D; Tesh, Robert B; Palacios, Gustavo

    2016-09-14

    RNA viruses exhibit a variety of genome organization strategies, including multicomponent genomes in which each segment is packaged separately. Although multicomponent genomes are common among viruses infecting plants and fungi, their prevalence among those infecting animals remains unclear. We characterize a multicomponent RNA virus isolated from mosquitoes, designated Guaico Culex virus (GCXV). GCXV belongs to a diverse clade of segmented viruses (Jingmenvirus) related to the prototypically unsegmented Flaviviridae. The GCXV genome comprises five segments, each of which appears to be separately packaged. The smallest segment is not required for replication, and its presence is variable in natural infections. We also describe a variant of Jingmen tick virus, another Jingmenvirus, sequenced from a Ugandan red colobus monkey, thus expanding the host range of this segmented and likely multicomponent virus group. Collectively, this study provides evidence for the existence of multicomponent animal viruses and their potential relevance for animal and human health.

  10. A Literature Review of Zika Virus.

    PubMed

    Plourde, Anna R; Bloch, Evan M

    2016-07-01

    Zika virus is a mosquitoborne flavivirus that is the focus of an ongoing pandemic and public health emergency. Previously limited to sporadic cases in Africa and Asia, the emergence of Zika virus in Brazil in 2015 heralded rapid spread throughout the Americas. Although most Zika virus infections are characterized by subclinical or mild influenza-like illness, severe manifestations have been described, including Guillain-Barre syndrome in adults and microcephaly in babies born to infected mothers. Neither an effective treatment nor a vaccine is available for Zika virus; therefore, the public health response primarily focuses on preventing infection, particularly in pregnant women. Despite growing knowledge about this virus, questions remain regarding the virus's vectors and reservoirs, pathogenesis, genetic diversity, and potential synergistic effects of co-infection with other circulating viruses. These questions highlight the need for research to optimize surveillance, patient management, and public health intervention in the current Zika virus epidemic.

  11. West Nile Virus: Symptoms and Treatment

    MedlinePlus

    ... Form Controls Search The CDC submit West Nile virus Note: Javascript is disabled or is not supported ... visit this page: About CDC.gov . West Nile Virus Home Frequently Asked Questions General Questions Preguntas frecuentes ...

  12. Scientists Create Mosquitoes Resistant to Dengue Virus

    MedlinePlus

    ... fullstory_163019.html Scientists Create Mosquitoes Resistant to Dengue Virus Hope is to eventually make the bugs ... say they have created mosquitoes resistant to the dengue virus, which might eventually help control the spread ...

  13. Newly discovered insect RNA viruses in China.

    PubMed

    Qiu, Yang; Wang, ZhaoWei; Liu, YongXiang; Qi, Nan; Si, Jie; Xiang, Xue; Xia, XiaoLing; Hu, YuanYang; Zhou, Xi

    2013-08-01

    Insects are a group of arthropods and the largest group of animals on Earth, with over one million species described to date. Like other life forms, insects suffer from viruses that cause disease and death. Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture. In contrast, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. All of these factors have led to an explosion in the amount of research into insect viruses in recent years, generating impressive quantities of information on the molecular and cellular biology of these viruses. Due to the wide variety of insect viruses, a better understanding of these viruses will expand our overall knowledge of their virology. Here, we review studies of several newly discovered RNA insect viruses in China.

  14. Virus Discovery Using Tick Cell Lines

    PubMed Central

    Bell-Sakyi, Lesley; Attoui, Houssam

    2016-01-01

    While ticks have been known to harbor and transmit pathogenic arboviruses for over 80 years, the application of high-throughput sequencing technologies has revealed that ticks also appear to harbor a diverse range of endogenous tick-only viruses belonging to many different families. Almost nothing is known about these viruses; indeed, it is unclear in most cases whether the identified viral sequences are derived from actual replication-competent viruses or from endogenous virus elements incorporated into the ticks’ genomes. Tick cell lines play an important role in virus discovery and isolation through the identification of novel viruses chronically infecting such cell lines and by acting as host cells to aid in determining whether or not an entire replication-competent, infective virus is present in a sample. Here, we review recent progress in tick-borne virus discovery and comment on the actual and potential applications for tick cell lines in this emerging research area. PMID:27679414

  15. About Epstein-Barr Virus (EBV)

    MedlinePlus

    ... Providers Laboratory Testing References & Resources About Epstein-Barr Virus (EBV) Recommend on Facebook Tweet Share Compartir On ... Page Symptoms Transmission Diagnosis Prevention & Treatment Epstein-Barr virus (EBV), also known as human herpesvirus 4, is ...

  16. Swine Influenza/Variant Influenza Viruses

    MedlinePlus

    ... Past Newsletters Information on Swine Influenza/Variant Influenza Virus Language: English Español Recommend on Facebook Tweet ... disease of pigs caused by type A influenza viruses that regularly cause outbreaks of influenza in pigs. ...

  17. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature.

  18. Mechanical transmission of Potato leafroll virus.

    PubMed

    Mayo, M; Ryabov, E; Fraser, G; Taliansky, M

    2000-11-01

    Like typical luteoviruses, Potato leafroll virus (PLRV) cannot be transmitted mechanically by rubbing plants with solutions containing virus particles. However, PLRV was found to be mechanically transmissible from extracts of plants that had been inoculated by viruliferous aphids and then post-inoculated with Pea enation mosaic virus-2 (PEMV-2). Unlike the asymptomatic infections induced by either virus alone, double infections in Nicotiana benthamiana induced necrotic symptoms with some line patterning and vein yellowing. Infective PLRV was recovered from a purified virus preparation by inoculating plants mechanically with purified virus particles mixed with PEMV-2. Similarly, Beet mild yellowing virus was readily transmitted mechanically from mixtures containing PEMV-2. PLRV was also transmissible from mixtures made with extracts of plants infected with Groundnut rosette virus, although less efficiently than from mixtures containing PEMV-2. This novel means of transmitting PLRV, and perhaps other poleroviruses, should prove very useful in a number of fields of luteovirus research.

  19. FAQ: West Nile Virus and Dead Birds

    MedlinePlus

    ... Education Public Service Videos West Nile Virus & Dead Birds Recommend on Facebook Tweet Share Compartir On This ... dead bird sightings to local authorities. How do birds get infected with West Nile virus? West Nile ...

  20. Nucleocytoplasmic shuttling of influenza A virus proteins.

    PubMed

    Li, Jing; Yu, Meng; Zheng, Weinan; Liu, Wenjun

    2015-05-22

    Influenza viruses transcribe and replicate their genomes in the nuclei of infected host cells. The viral ribonucleoprotein (vRNP) complex of influenza virus is the essential genetic unit of the virus. The viral proteins play important roles in multiple processes, including virus structural maintenance, mediating nucleocytoplasmic shuttling of the vRNP complex, virus particle assembly, and budding. Nucleocytoplasmic shuttling of viral proteins occurs throughout the entire virus life cycle. This review mainly focuses on matrix protein (M1), nucleoprotein (NP), nonstructural protein (NS1), and nuclear export protein (NEP), summarizing the mechanisms of their nucleocytoplasmic shuttling and the regulation of virus replication through their phosphorylation to further understand the regulation of nucleocytoplasmic shuttling in host adaptation of the viruses.

  1. The Origins of the AIDS Virus.

    ERIC Educational Resources Information Center

    Essex, Max; Kanki, Phyllis J.

    1988-01-01

    States that the virus is not unique since it has been discovered in other primates as well as in man. Relates studies of viruses that indicate some have evolved disease-free coexistence with their animal hosts. (RT)

  2. Molecular genetics of DNA viruses: recombinant virus technology.

    PubMed

    Neuhierl, Bernhard; Delecluse, Henri-Jacques

    2005-01-01

    Recombinant viral genomes cloned onto BAC vectors can be subjected to extensive molecular genetic analysis in the context of E. coli. Thus, the recombinant virus technology exploits the power of prokaryotic genetics to introduce all kinds of mutations into the recombinant genome. All available techniques are based on homologous recombination between a targeting vector carrying the mutated version of the gene of interest and the recombinant virus. After modification, the mutant viral genome is stably introduced into eukaryotic cells permissive for viral lytic replication. In these cells, mutant viral genomes can be packaged into infectious particles to evaluate the effect of these mutations in the context of the complete genome.

  3. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1985-07-01

    small percentage of engorging mosquitoes became infected. To determine if Fc receptors might be a determinate of virus infection of midgut cells, blood...somehow alter glycoprotein conformation rendering the virus less capable of interacting with midgut cell receptors , 2) virus in cells might be protected...virus preparations are known to be much less efficient than a viresic host in mediating midgut infection. The artificial meal must be several logs

  4. Characteristics of Filoviridae: Marburg and Ebola Viruses

    NASA Astrophysics Data System (ADS)

    Beer, Brigitte; Kurth, Reinhard; Bukreyev, Alexander

    Filoviruses are enveloped, nonsegmented negative-stranded RNA viruses. The two species, Marburg and Ebola virus, are serologically, biochemically, and genetically distinct. Marburg virus was first isolated during an outbreak in Europe in 1967, and Ebola virus emerged in 1976 as the causative agent of two simultaneous outbreaks in southern Sudan and northern Zaire. Although the main route of infection is known to be person-to-person transmission by intimate contact, the natural reservoir for filoviruses still remains a mystery.

  5. Rapid Genotyping of Swine Influenza Viruses

    PubMed Central

    Mak, Polly W.Y.; Wong, Chloe K.S.; Li, Olive T.W.; Chan, Kwok Hung; Cheung, Chung Lam; Ma, Edward S.; Webby, Richard J.; Guan, Yi; Peiris, Joseph S. Malik

    2011-01-01

    The emergence of pandemic (H1N1) 2009 virus highlighted the need for enhanced surveillance of swine influenza viruses. We used real-time reverse–transcription PCR–based genotyping and found that this rapid and simple genotyping method may identify reassortants derived from viruses of Eurasian avian-like, triple reassortant-like, and pandemic (H1N1) 2009 virus lineages. PMID:21470462

  6. Diffraction studies of papaya mosaic virus.

    PubMed

    Tollin, P; Bancroft, J B; Richardson, J F; Payne, N C; Beveridge, T J

    1979-10-15

    X-ray and optical diffraction studies of the flexuous papaya mosaic virus are described. The virus is constructed so that there are 35 coat protein subunits in 4 turns of the helix. The virus contains about 1410 protein subunits and 6800 nucleotides and has a molecular weight of about 33 x 10(6). The structure of tubes assembled in vitro from coat protein both in the presence and absence of nucleic acid resembles that of the native virus.

  7. Viruses as nanomedicine for cancer

    PubMed Central

    Badrinath, Narayanasamy; Heo, Jeong; Yoo, So Young

    2016-01-01

    Oncolytic virotherapy, a type of nanomedicine in which oncolytic viruses (OVs) are used to selectively infect and lyse cancer cells, is an emerging field in cancer therapy. Some OVs exhibit a specific tropism for cancer cells, whereas others require genetic modification to enhance their binding with and entry into cancer cells. OVs both kill tumor cells and induce the host’s immune response against tumor cells. Armed with antitumor cellular molecules, antibodies, and/or in combination with anticancer drugs, OVs can accelerate the lysis of cancer cells. Among the OVs, vaccinia virus has been the focus of preclinical and clinical research because of its many favorable properties. In this review, the basic mechanisms of action of OVs are presented, including their entry, survival, tumor lysis, and immune activation, and the latest research in vaccinia virus-based virotherapy and its status as an anticancer nanomedicine in prospective clinical trials are discussed. PMID:27703350

  8. Viruses, Vaccines and the Public.

    PubMed

    Diamond, Judy; McQuillan, Julia; Spiegel, Amy N; Hill, Patricia Wonch; Smith, Rebecca; West, John; Wood, Charles

    Current research in virology is changing public conceptions about vaccines and infectious disease. The University of Nebraska State Museum collaborated with research virologists, science writers, artists and learning researchers to create public outreach materials about viruses and infectious disease. The project, funded by the National Institute of Health's SEPA program, developed comics, a book with Carl Zimmer, and other materials and programs. The project launched three kinds of learning research: 1) a survey of Nebraska adults on their opinions about vaccines and infectious disease; 2) a study comparing the mental models of viruses, vaccines and infection from virologists, teachers, and students; and 3) a controlled study 873 high school students randomly assigned to read either a comic or a text-based essay with the same virus information.

  9. Viruses as nanomedicine for cancer.

    PubMed

    Badrinath, Narayanasamy; Heo, Jeong; Yoo, So Young

    Oncolytic virotherapy, a type of nanomedicine in which oncolytic viruses (OVs) are used to selectively infect and lyse cancer cells, is an emerging field in cancer therapy. Some OVs exhibit a specific tropism for cancer cells, whereas others require genetic modification to enhance their binding with and entry into cancer cells. OVs both kill tumor cells and induce the host's immune response against tumor cells. Armed with antitumor cellular molecules, antibodies, and/or in combination with anticancer drugs, OVs can accelerate the lysis of cancer cells. Among the OVs, vaccinia virus has been the focus of preclinical and clinical research because of its many favorable properties. In this review, the basic mechanisms of action of OVs are presented, including their entry, survival, tumor lysis, and immune activation, and the latest research in vaccinia virus-based virotherapy and its status as an anticancer nanomedicine in prospective clinical trials are discussed.

  10. Viruses, Vaccines and the Public

    PubMed Central

    Diamond, Judy; McQuillan, Julia; Spiegel, Amy N.; Hill, Patricia Wonch; Smith, Rebecca; West, John; Wood, Charles

    2016-01-01

    Current research in virology is changing public conceptions about vaccines and infectious disease. The University of Nebraska State Museum collaborated with research virologists, science writers, artists and learning researchers to create public outreach materials about viruses and infectious disease. The project, funded by the National Institute of Health’s SEPA program, developed comics, a book with Carl Zimmer, and other materials and programs. The project launched three kinds of learning research: 1) a survey of Nebraska adults on their opinions about vaccines and infectious disease; 2) a study comparing the mental models of viruses, vaccines and infection from virologists, teachers, and students; and 3) a controlled study 873 high school students randomly assigned to read either a comic or a text-based essay with the same virus information. PMID:27524953

  11. [Capping strategies in RNA viruses].

    PubMed

    Bouvet, Mickaël; Ferron, François; Imbert, Isabelle; Gluais, Laure; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; Decroly, Etienne

    2012-04-01

    Most viruses use the mRNA-cap dependent cellular translation machinery to translate their mRNAs into proteins. The addition of a cap structure at the 5' end of mRNA is therefore an essential step for the replication of many virus families. Additionally, the cap protects the viral RNA from degradation by cellular nucleases and prevents viral RNA recognition by innate immunity mechanisms. Viral RNAs acquire their cap structure either by using cellular capping enzymes, by stealing the cap of cellular mRNA in a process named "cap snatching", or using virus-encoded capping enzymes. Many viral enzymes involved in this process have recently been structurally and functionally characterized. These studies have revealed original cap synthesis mechanisms and pave the way towards the development of specific inhibitors bearing antiviral drug potential.

  12. Hepatitis Virus Infections in Poultry.

    PubMed

    Yugo, Danielle M; Hauck, Ruediger; Shivaprasad, H L; Meng, Xiang-Jin

    2016-09-01

    Viral hepatitis in poultry is a complex disease syndrome caused by several viruses belonging to different families including avian hepatitis E virus (HEV), duck hepatitis B virus (DHBV), duck hepatitis A virus (DHAV-1, -2, -3), duck hepatitis virus Types 2 and 3, fowl adenoviruses (FAdV), and turkey hepatitis virus (THV). While these hepatitis viruses share the same target organ, the liver, they each possess unique clinical and biological features. In this article, we aim to review the common and unique features of major poultry hepatitis viruses in an effort to identify the knowledge gaps and aid the prevention and control of poultry viral hepatitis. Avian HEV is an Orthohepevirus B in the family Hepeviridae that naturally infects chickens and consists of three distinct genotypes worldwide. Avian HEV is associated with hepatitis-splenomegaly syndrome or big liver and spleen disease in chickens, although the majority of the infected birds are subclinical. Avihepadnaviruses in the family of Hepadnaviridae have been isolated from ducks, snow geese, white storks, grey herons, cranes, and parrots. DHBV evolved with the host as a noncytopathic form without clinical signs and rarely progressed to chronicity. The outcome for DHBV infection varies by the host's ability to elicit an immune response and is dose and age dependent in ducks, thus mimicking the pathogenesis of human hepatitis B virus (HBV) infections and providing an excellent animal model for human HBV. DHAV is a picornavirus that causes a highly contagious virus infection in ducks with up to 100% flock mortality in ducklings under 6 wk of age, while older birds remain unaffected. The high morbidity and mortality has an economic impact on intensive duck production farming. Duck hepatitis virus Types 2 and 3 are astroviruses in the family of Astroviridae with similarity phylogenetically to turkey astroviruses, implicating the potential for cross-species infections between strains. Duck astrovirus (DAstV) causes

  13. ICTV Virus Taxonomy Profile: Ascoviridae.

    PubMed

    Asgari, Sassan; Bideshi, Dennis K; Bigot, Yves; Federici, Brian A; Cheng, Xiao-Wen; Ictv Report Consortium

    2017-01-01

    The family Ascoviridae includes viruses with circular dsDNA genomes of 100-200 kbp characterized by oblong enveloped virions of 200-400 nm in length. Ascoviruses mainly infect lepidopteran larvae and are mechanically transmitted by parasitoid wasps in which they may also replicate. Most known members belong to the genus Ascovirus, except one virus, that of the genus Toursvirus, which replicates in both its lepidopteran and parasitoid vector hosts. Ascoviruses cause high mortality among economically important insect pests, thereby controlling insect populations. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ascoviridae, which is available at www.ictv.global/report/ascoviridae.

  14. Rabies virus binding at neuromuscular junctions.

    PubMed

    Burrage, T G; Tignor, G H; Smith, A L

    1985-04-01

    Morphological, immunocytochemical, biochemical, and immunological techniques have been used to describe rabies virus binding to a sub-cellular unit and molecular complex at the neuromuscular junction (NMJ). Early after infection in vivo, virus antigen and virus particles were found by immunofluorescence, electron microscopy and immunoelectron microscopy in regions of high density acetylcholine receptors (AChR) at NMJs. One monoclonal antibody (alpha-Mab) to the alpha subunit of the AChR blocked attachment of radio-labeled rabies virus to cultured muscle cells bearing high density patches of AChR. A sub-cellular structure, resembling an array of AChR monomers, bound both rabies virus antigens and alpha-Mab. By immunoblotting with electrophoretically transferred motor endplate proteins, rabies virus proteins and alpha-Mab bound to two proteins of 43 000 and 110 000 daltons. A rabies virus glycoprotein antibody detected virus antigen bound to the 110 000 dalton protein. An auto-immune (anti-idiotypic) response followed immunization of mice with rabies virus glycoprotein antigen; the antibody was directed to the 110 000 dalton protein. This auto-antibody altered the kinetics of neutralization by rabies virus antibody and induced the formation of rabies virus antibody after inoculation of mice. These results define, at the neuromuscular junction, a rabies virus receptor which may be part of the acetylcholine receptor complex.

  15. Blackberry (Rubus spp.)-Virus Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many viruses have been found in blackberries in the Pacific Northwest. Blackberry calico virus (a carlavirus) is universally present in older commercial 'Thornless Loganberry' fields. Similar calico diseases occur in field-run 'Marion', 'Chehalem', 'Olallie', and 'Waldo' blackberries. Other virus di...

  16. Computer Viruses and Safe Educational Practices.

    ERIC Educational Resources Information Center

    Azarmsa, Reza

    1991-01-01

    This discussion of computer viruses explains how these viruses may be transmitted, describes their effects on data and/or computer application programs, and identifies three groups that propagate them. Ten major viruses are listed and described, and measures to deal with them are discussed. Nineteen antiviral programs are also listed and…

  17. Emerging intracellular receptors for hemorrhagic fever viruses.

    PubMed

    Jae, Lucas T; Brummelkamp, Thijn R

    2015-07-01

    Ebola virus and Lassa virus belong to different virus families that can cause viral hemorrhagic fever, a life-threatening disease in humans with limited treatment options. To infect a target cell, Ebola and Lassa viruses engage receptors at the cell surface and are subsequently shuttled into the endosomal compartment. Upon arrival in late endosomes/lysosomes, the viruses trigger membrane fusion to release their genome into the cytoplasm. Although contact sites at the cell surface were recognized for Ebola virus and Lassa virus, it was postulated that Ebola virus requires a critical receptor inside the cell. Recent screens for host factors identified such internal receptors for both viruses: Niemann-Pick disease type C1 protein (NPC1) for Ebola virus and lysosome-associated membrane protein 1 (LAMP1) for Lassa virus. A cellular trigger is needed to permit binding of the viral envelope protein to these intracellular receptors. This 'receptor switch' represents a previously unnoticed step in virus entry with implications for host-pathogen interactions and viral tropism.

  18. Ecological dynamics of emerging bat virus spillover.

    PubMed

    Plowright, Raina K; Eby, Peggy; Hudson, Peter J; Smith, Ina L; Westcott, David; Bryden, Wayne L; Middleton, Deborah; Reid, Peter A; McFarlane, Rosemary A; Martin, Gerardo; Tabor, Gary M; Skerratt, Lee F; Anderson, Dale L; Crameri, Gary; Quammen, David; Jordan, David; Freeman, Paul; Wang, Lin-Fa; Epstein, Jonathan H; Marsh, Glenn A; Kung, Nina Y; McCallum, Hamish

    2015-01-07

    Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.

  19. Ebola Virus Persistence in Semen Ex Vivo.

    PubMed

    Fischer, Robert J; Judson, Seth; Miazgowicz, Kerri; Bushmaker, Trent; Munster, Vincent J

    2016-02-01

    On March 20, 2015, a case of Ebola virus disease was identified in Liberia that most likely was transmitted through sexual contact. We assessed the efficiency of detecting Ebola virus in semen samples by molecular diagnostics and the stability of Ebola virus in ex vivo semen under simulated tropical conditions.

  20. Citrus tristeza virus-host interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus tristeza virus (CTV) is a phloem-limited virus whose natural host range is restricted to citrus and related species. Although the virus has killed millions of trees, almost destroying whole industries, and continually limits production in many citrus growing areas, most isolates are mild or s...

  1. Virus Infections of Honeybees Apis Mellifera

    PubMed Central

    Tantillo, Giuseppina; Bottaro, Marilisa; Di Pinto, Angela; Martella, Vito; Di Pinto, Pietro

    2015-01-01

    The health and vigour of honeybee colonies are threatened by numerous parasites (such as Varroa destructor and Nosema spp.) and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and well-being of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV) and Kakugo virus (KV); Sacbrood virus (SBV); Black Queen cell virus (BQCV); Acute bee paralysis virus (ABPV); Kashmir bee virus (KBV); Israeli Acute Paralysis Virus (IAPV); Chronic bee paralysis virus (CBPV). The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research. PMID:27800411

  2. Ecological dynamics of emerging bat virus spillover

    PubMed Central

    Plowright, Raina K.; Eby, Peggy; Hudson, Peter J.; Smith, Ina L.; Westcott, David; Bryden, Wayne L.; Middleton, Deborah; Reid, Peter A.; McFarlane, Rosemary A.; Martin, Gerardo; Tabor, Gary M.; Skerratt, Lee F.; Anderson, Dale L.; Crameri, Gary; Quammen, David; Jordan, David; Freeman, Paul; Wang, Lin-Fa; Epstein, Jonathan H.; Marsh, Glenn A.; Kung, Nina Y.; McCallum, Hamish

    2015-01-01

    Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility. PMID:25392474

  3. Ebola Virus Persistence in Semen Ex Vivo

    PubMed Central

    Fischer, Robert J.; Judson, Seth; Miazgowicz, Kerri; Bushmaker, Trent

    2016-01-01

    On March 20, 2015, a case of Ebola virus disease was identified in Liberia that most likely was transmitted through sexual contact. We assessed the efficiency of detecting Ebola virus in semen samples by molecular diagnostics and the stability of Ebola virus in ex vivo semen under simulated tropical conditions. PMID:26811984

  4. Virus detection and quantification using electrical parameters

    NASA Astrophysics Data System (ADS)

    Ahmad, Mahmoud Al; Mustafa, Farah; Ali, Lizna M.; Rizvi, Tahir A.

    2014-10-01

    Here we identify and quantitate two similar viruses, human and feline immunodeficiency viruses (HIV and FIV), suspended in a liquid medium without labeling, using a semiconductor technique. The virus count was estimated by calculating the impurities inside a defined volume by observing the change in electrical parameters. Empirically, the virus count was similar to the absolute value of the ratio of the change of the virus suspension dopant concentration relative to the mock dopant over the change in virus suspension Debye volume relative to mock Debye volume. The virus type was identified by constructing a concentration-mobility relationship which is unique for each kind of virus, allowing for a fast (within minutes) and label-free virus quantification and identification. For validation, the HIV and FIV virus preparations were further quantified by a biochemical technique and the results obtained by both approaches corroborated well. We further demonstrate that the electrical technique could be applied to accurately measure and characterize silica nanoparticles that resemble the virus particles in size. Based on these results, we anticipate our present approach to be a starting point towards establishing the foundation for label-free electrical-based identification and quantification of an unlimited number of viruses and other nano-sized particles.

  5. Virus detection and quantification using electrical parameters

    PubMed Central

    Ahmad, Mahmoud Al; Mustafa, Farah; Ali, Lizna M.; Rizvi, Tahir A.

    2014-01-01

    Here we identify and quantitate two similar viruses, human and feline immunodeficiency viruses (HIV and FIV), suspended in a liquid medium without labeling, using a semiconductor technique. The virus count was estimated by calculating the impurities inside a defined volume by observing the change in electrical parameters. Empirically, the virus count was similar to the absolute value of the ratio of the change of the virus suspension dopant concentration relative to the mock dopant over the change in virus suspension Debye volume relative to mock Debye volume. The virus type was identified by constructing a concentration-mobility relationship which is unique for each kind of virus, allowing for a fast (within minutes) and label-free virus quantification and identification. For validation, the HIV and FIV virus preparations were further quantified by a biochemical technique and the results obtained by both approaches corroborated well. We further demonstrate that the electrical technique could be applied to accurately measure and characterize silica nanoparticles that resemble the virus particles in size. Based on these results, we anticipate our present approach to be a starting point towards establishing the foundation for label-free electrical-based identification and quantification of an unlimited number of viruses and other nano-sized particles. PMID:25355078

  6. Persistent RNA virus infections: do PAMPS drive chronic disease?

    PubMed

    McCarthy, Mary K; Morrison, Thomas E

    2017-02-16

    Chronic disease associated with persistent RNA virus infections represents a key public health concern. While human immunodeficiency virus-1 and hepatitis C virus are perhaps the most well-known examples of persistent RNA viruses that cause chronic disease, evidence suggests that many other RNA viruses, including re-emerging viruses such as chikungunya virus, Ebola virus and Zika virus, establish persistent infections. The mechanisms by which RNA viruses drive chronic disease are poorly understood. Here, we discuss how the persistence of viral RNA may drive chronic disease manifestations via the activation of RNA sensing pathways.

  7. Case Study: del Amo Bioventing

    EPA Science Inventory

    The attached presentation discusses the fundamentals of bioventing in the vadose zone. The basics of bioventing are presented. The experience to date with the del Amo Superfund Site is presented as a case study.

  8. Oncogenic viruses and hepatocellular carcinoma.

    PubMed

    Ben Ari, Ziv; Weitzman, Ella; Safran, Michal

    2015-05-01

    About 80% of hepatocellular carcinoma (HCC) is caused by hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infections especially in the setting of established cirrhosis or advanced fibrosis, making HCC prevention a major goal of antiviral therapy. HCC tumors are highly complex and heterogeneous resulting from the aberrant function of multiple molecular pathways. The roles of HCV or HBV in promoting HCC development are still either directly or indirectly are still speculative, but the evidence for both effects is compelling. In patients with chronic hepatitis viral infection, cirrhosis is not a prerequisite for tumorigenesis.

  9. Forty years of marburg virus.

    PubMed

    Slenczka, Werner; Klenk, Hans Dieter

    2007-11-15

    Forty years ago, in early August 1967, the first filovirus ever detected, Marburg virus, made its appearance in Europe, causing severe and often fatal hemorrhagic fever in laboratory workers in Marburg and Frankfurt and, about 4 weeks later, in Belgrade. The etiological agent was isolated and identified by the combined efforts of virologists in Marburg and Hamburg within the very short time of 3 months. Marburg was not the only town where the virus was isolated and identified for the first time, but most cases of infection occurred in Marburg.

  10. [Viruses of whales and dolphins].

    PubMed

    Birkun, A A

    1996-01-01

    DNA- and RNA-genome viruses of whales and dolphins belong to families Poxviridae, Herpesviridae, Adenoviridae, Orthomyxoviridae, Paramyxoviridae, Togaviridae, Picornaviridae. Virological, serological and pathomorphological signs of infection have been registered in Odontoceti (bottle-nosed dolphin, Atlantic white-sided dolphin, striped dolphin, harbona porpoise, white-beaked dolphin, common dolphin, sperm whale, pilot whale, white whale) and Musticeti (sei whale, fin whale, gray whale, and bowheaded whale). A brief characteristic of diseases is presented. No relations of some viruses with pathologic states of Cetacea were found.

  11. Dominant resistance against plant viruses

    PubMed Central

    de Ronde, Dryas; Butterbach, Patrick; Kormelink, Richard

    2014-01-01

    To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified against plant viruses and the corresponding avirulence (Avr) genes identified so far. The most common models to explain the mode of action of dominant R genes will be presented. Finally, in brief the hypersensitive response (HR) and extreme resistance (ER), and the functional and structural similarity of R genes to sensors of innate immunity in mammalian cell systems will be described. PMID:25018765

  12. Household Transmission of Influenza Virus.

    PubMed

    Tsang, Tim K; Lau, Lincoln L H; Cauchemez, Simon; Cowling, Benjamin J

    2016-02-01

    Human influenza viruses cause regular epidemics and occasional pandemics with a substantial public health burden. Household transmission studies have provided valuable information on the dynamics of influenza transmission. We reviewed published studies and found that once one household member is infected with influenza, the risk of infection in a household contact can be up to 38%, and the delay between onset in index and secondary cases is around 3 days. Younger age was associated with higher susceptibility. In the future, household transmission studies will provide information on transmission dynamics, including the correlation of virus shedding and symptoms with transmission, and the correlation of new measures of immunity with protection against infection.

  13. Neonatal herpes simplex virus infections.

    PubMed

    Pinninti, Swetha G; Kimberlin, David W

    2013-04-01

    Neonatal herpes simplex virus infections are uncommon, but because of the morbidity and mortality associated with the infection they are often considered in the differential diagnosis of ill neonates. The use of polymerase chain reaction for diagnosis of central nervous system infections and the development of safe and effective antiviral therapy has revolutionized the diagnosis and management of these infants. Initiation of long-term antiviral suppressive therapy in these infants has led to significant improvement in morbidity. This article summarizes the epidemiology of neonatal herpes simplex virus infections and discusses clinical presentation, diagnosis, management, and follow up of infants with neonatal herpes disease.

  14. [Pulmonary complications in children with human immunodeficiency virus infection].

    PubMed

    Brockmann V, Pablo; Viviani S, Támara; Peña D, Anamaría

    2007-08-01

    Pulmonary complications in children infected by human immunodeficiency virus (HIV) are common and may be the first manifestation of acquired immunodeficiency syndrome (AIDS). The aim of our study was to review pulmonary diseases and complications in pediatric patients with HIV infection in a large tertiary hospital in Santiago, Chile. We performed a retrospective, descriptive analysis of 17 patients with HIV infection controlled at the Hospital Dr. Sótero del Rio. Respiratory complications/diseases were: overall pneumonia (n: 14), recurrent pneumonia (n: 10), citomegalovirus associated pneumonia (n: 4), Pneumocystis jiroveci associated pneumonia (n: 1) pulmonary tuberculosis (n: 1), lymphoid interstitial pneumonia (n: 3) and chronic pulmonary disease (n: 7). Microorganisms isolated were mostly atypical and frequently associated with severe and chronic pulmonary damage. A high degree of suspicion is required to detect atypical microorganisms promptly, in order to rapidly implement pathogen targeted therapy that could potentially decrease the possibility of sequelae.

  15. Aspects of canine distemper virus and measles virus encephalomyelitis.

    PubMed

    Summers, B A; Appel, M J

    1994-12-01

    Canine distemper (CD) is a frequently fatal, systemic morbillivirus infection in the dog and other carnivores: encephalomyelitis is the common cause of death. Susceptibility to canine distemper virus (CDV) is now recognized in a wide range of non-domestic animals, most recently in captive lions, tigers and leopards. Furthermore, closely related viruses have produced CD-like diseases in marine mammals. CDV induces an inclusion-body encephalomyelitis in the dog and demyelination is often a conspicuous feature. Myelin injury is associated with the presence of virus but the mechanism of demyelination remains incompletely understood. Oligodendrocyte infection may be defective, as has been shown in vitro. CDV and measles virus (MV) produce similar systemic disorders in their respective hosts but differ markedly in the frequency of central nervous system (CNS) involvement, and in the pathogenesis of the more common neurological sequelae. Both CDV and MV have been considered as multiple sclerosis agents, and the association of CDV with other human disease has been suggested.

  16. Development of high-yield influenza A virus vaccine viruses

    PubMed Central

    Ping, Jihui; Lopes, Tiago J.S.; Nidom, Chairul A.; Ghedin, Elodie; Macken, Catherine A.; Fitch, Adam; Imai, Masaki; Maher, Eileen A.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Vaccination is one of the most cost-effective ways to prevent infection. Influenza vaccines propagated in cultured cells are approved for use in humans, but their yields are often suboptimal. Here, we screened A/Puerto Rico/8/34 (PR8) virus mutant libraries to develop vaccine backbones (defined here as the six viral RNA segments not encoding haemagglutinin and neuraminidase) that support high yield in cell culture. We also tested mutations in the coding and regulatory regions of the virus, and chimeric haemagglutinin and neuraminidase genes. A combination of high-yield mutations from these screens led to a PR8 backbone that improved the titres of H1N1, H3N2, H5N1 and H7N9 vaccine viruses in African green monkey kidney and Madin–Darby canine kidney cells. This PR8 backbone also improves titres in embryonated chicken eggs, a common propagation system for influenza viruses. This PR8 vaccine backbone thus represents an advance in seasonal and pandemic influenza vaccine development. PMID:26334134

  17. Viruses and host evolution: virus-mediated self identity.

    PubMed

    Villarreal, Luis

    2012-01-01

    Virus evolution has become a topic that involves population based selection. Both quasispecies based populations and reticulated mosaic exchange of populations of genetic elements are now well established. This has led us to the understanding that a cooperative consortia can be a crucial aspect of virus driven evolution. Thus viruses exist in groups that can cooperate. However, consortial based evolution (group selection) has long been dismissed by evolutionary biologist. Recently, biocommunication theory has concluded that the evolution and editing of any code or language requires a consortial based process in order to adhere to pragmatic (context) requirements for meaning (in conflict with survival of the fittest concepts). This has led to the idea that viruses are the natural editors of biological codes or language. In this chapter, I present the view that the persistence of virus information in their host provides a natural process of host code editing that is inherently consortial. Since persistence requires mechanisms to attain stability and preclude competition, it also provided mechanisms that promote group identity. Accordingly, I review the viral origins of addiction modules and how these affect both persistence and group identity. The concepts emerging from addiction module based group identity are then generalized and applied to social identity systems as well. I then examine the prokaryotes and the involvement of viral elements in the emergence of their group identity systems (biofilms). Here, integrating dsDNA agents prevailed. In the eukaryotes, however, a large shift in virus-host evolution occurred in which the role of dsDNA agents was diminished but the role of retroviruses and retroposons was greatly enhanced. These agents provided greatly expanded and network based regulatory complexity that was controlled by sensory inputs. From this perspective, the role of virus in the origin of the adaptive immune system is then outlined. I then consider

  18. Phomopsis longicolla RNA virus 1 - Novel virus at the edge of myco- and plant viruses.

    PubMed

    Hrabáková, Lenka; Koloniuk, Igor; Petrzik, Karel

    2017-03-10

    The complete nucleotide sequence of a new RNA mycovirus in the KY isolate of Phomopsis longicolla Hobbs 1985 and its protoplasts subcultures p5, p9, and ME711 was discovered. The virus, provisionally named Phomopsis longicolla RNA virus 1 (PlRV1), was localized in mitochondria and was determined to have a genome 2822 nucleotides long. A single open reading frame could be translated in silico by both standard and mitochondrial genetic codes into a product featuring conservative domains for an RNA-dependent RNA polymerase (RdRp). The RdRp of PlRV1 has no counterpart among mycoviruses, but it is about 30% identical with the RdRp of plant ourmiaviruses. Recently, new mycoviruses related to plant ourmiaviruses and forming one clade with PlRV1 have been discovered. This separate clade could represent the crucial link between plant and fungal viruses.

  19. Peptide inhibitors of dengue virus and West Nile virus infectivity

    PubMed Central

    Hrobowski, Yancey M; Garry, Robert F; Michael, Scott F

    2005-01-01

    Viral fusion proteins mediate cell entry by undergoing a series of conformational changes that result in virion-target cell membrane fusion. Class I viral fusion proteins, such as those encoded by influenza virus and human immunodeficiency virus (HIV), contain two prominent alpha helices. Peptides that mimic portions of these alpha helices inhibit structural rearrangements of the fusion proteins and prevent viral infection. The envelope glycoprotein (E) of flaviviruses, such as West Nile virus (WNV) and dengue virus (DENV), are class II viral fusion proteins comprised predominantly of beta sheets. We used a physio-chemical algorithm, the Wimley-White interfacial hydrophobicity scale (WWIHS) [1] in combination with known structural data to identify potential peptide inhibitors of WNV and DENV infectivity that target the viral E protein. Viral inhibition assays confirm that several of these peptides specifically interfere with target virus entry with 50% inhibitory concentration (IC50) in the 10 μM range. Inhibitory peptides similar in sequence to domains with a significant WWIHS scores, including domain II (IIb), and the stem domain, were detected. DN59, a peptide corresponding to the stem domain of DENV, inhibited infection by DENV (>99% inhibition of plaque formation at a concentrations of <25 μM) and cross-inhibition of WNV fusion/infectivity (>99% inhibition at <25 μM) was also demonstrated with DN59. However, a potent WNV inhibitory peptide, WN83, which corresponds to WNV E domain IIb, did not inhibit infectivity by DENV. Additional results suggest that these inhibitory peptides are noncytotoxic and act in a sequence specific manner. The inhibitory peptides identified here can serve as lead compounds for the development of peptide drugs for flavivirus infection. PMID:15927084

  20. Primate immunodeficiency virus classification and nomenclature: Review.

    PubMed

    Foley, Brian T; Leitner, Thomas; Paraskevis, Dimitrios; Peeters, Martine

    2016-12-01

    The International Committee for the Taxonomy and Nomenclature of Viruses does not rule on virus classifications below the species level. The definition of species for viruses cannot be clearly defined for all types of viruses. The complex and interesting epidemiology of Human Immunodeficiency Viruses demands a detailed and informative nomenclature system, while at the same time it presents challenges such that many of the rules need to be flexibly applied or modified over time. This review outlines the nomenclature system for primate lentiviruses and provides an update on new findings since the last review was written in 2000.

  1. Viruses - from pathogens to vaccine carriers.

    PubMed

    Small, Juliana C; Ertl, Hildegund C J

    2011-10-01

    Vaccination is mankind's greatest public health success story. By now vaccines to many of the viruses that once caused fatal childhood diseases are routinely used throughout the world. Traditional methods of vaccine development through inactivation or attenuation of viruses have failed for some of the most deadly human pathogens, necessitating new approaches. Genetic modification of viruses not only allows for their attenuation but also for incorporation of sequences from other viruses, turning one pathogen into a vaccine carrier for another. Recombinant viruses have pros and cons as vaccine carriers, as discussed below using vectors based on adenovirus, herpesvirus, flavivirus, and rhabdovirus as examples.

  2. Primate immunodeficiency virus classification and nomenclature: Review

    SciTech Connect

    Foley, Brian T.; Leitner, Thomas; Paraskevis, Dimitrios; Peeters, Martine

    2016-10-24

    The International Committee for the Taxonomy and Nomenclature of Viruses does not rule on virus classifications below the species level. The definition of species for viruses cannot be clearly defined for all types of viruses. The complex and interesting epidemiology of Human Immunodeficiency Viruses demands a detailed and informative nomenclature system, while at the same time it presents challenges such that many of the rules need to be flexibly applied or modified over time. As a result, this review outlines the nomenclature system for primate lentiviruses and provides an update on new findings since the last review was written in 2000.

  3. Primate immunodeficiency virus classification and nomenclature: Review

    DOE PAGES

    Foley, Brian T.; Leitner, Thomas; Paraskevis, Dimitrios; ...

    2016-10-24

    The International Committee for the Taxonomy and Nomenclature of Viruses does not rule on virus classifications below the species level. The definition of species for viruses cannot be clearly defined for all types of viruses. The complex and interesting epidemiology of Human Immunodeficiency Viruses demands a detailed and informative nomenclature system, while at the same time it presents challenges such that many of the rules need to be flexibly applied or modified over time. As a result, this review outlines the nomenclature system for primate lentiviruses and provides an update on new findings since the last review was written inmore » 2000.« less

  4. Herpes simplex virus following stab phlebectomy.

    PubMed

    Hicks, Caitlin W; Lum, Ying Wei; Heller, Jennifer A

    2017-03-01

    Herpes simplex virus infection following surgery is an unusual postoperative phenomenon. Many mechanisms have been suggested, with the most likely explanation related to latent virus reactivation due to a proinflammatory response in the setting of local trauma. Here, we present a case of herpes simplex virus reactivation in an immunocompetent female following a conventional right lower extremity stab phlebectomy. Salient clinical and physical examination findings are described, and management strategies for herpes simplex virus reactivation are outlined. This is the first known case report of herpes simplex virus reactivation following lower extremity phlebectomy.

  5. Epidemiology and Epizootiological Investigations of Hemorrhagic Fever Viruses in Kenya

    DTIC Science & Technology

    1988-07-01

    vertebrates and/or invertebrates as reservoirs of Haemorrhagic fever viruses particularly Marburg virus . The final results of this particular investigation...Research work done in Kenya has shown that three haemorrhagic fever viruses occur in the country. These are Rift Valley Fever Virus (RVF), Crimean...members for serology and or virus isolation. 2. Virus Isolation Attempts in VRC Haemorrhagic fever viruses are hazardous to culture and handle in

  6. Persistence of virus lipid signatures upon silicification

    NASA Astrophysics Data System (ADS)

    Kyle, J.; Jahnke, L. L.; Stedman, K. M.

    2011-12-01

    To date there is no known evidence of viruses within the rock record. Their small size and absence of a metabolism has led to the hypothesis that they lack unique biological signatures, and the potential to become preserved. Biosignature research relevant to early Earth has focused on prokaryotic communities; however, the most abundant member of modern ecosystems, viruses, have been ignored. In order to establish a baseline for research on virus biosignatures, we have initiated laboratory research on known lipid-containing viruses. PRD1 is a lipid-containing virus that infects and replicates in Salmonella typhimurium LT2. PRD1 is a 65 nm spherical virus with an internal lipid membrane, which is a few nanometers thick. When the PRD1 virus stock was mixed with a 400 ppm SiO2 (final concentration) solution and incubated for six months. Fourier Transform Infrared Spectroscopy and lipid analysis using gas chromatography revealed that the virus lipids were still detectable despite complete removal of dissolved silica. Free fatty acids were also detected. Titers of infectious PRD1 viruses after six months in the presence of silica decreased 40 times more than without silica. Though virus biosignature research is in its incipient stages, the data suggest that virus lipid signatures are preserved under laboratory conditions and may offer the potential for contribution to the organic geochemical record.

  7. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    PubMed

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.

  8. Innate Immunity and BK Virus: Prospective Strategies.

    PubMed

    Kariminik, Ashraf; Yaghobi, Ramin; Dabiri, Shahriar

    2016-03-01

    Recent information demonstrated that BK virus reactivation is a dominant complication after kidney transplantation, which occurs because of immunosuppression. BK virus reactivation is the main reason of transplanted kidney losing. Immune response against BK virus is the major inhibitor of the virus reactivation. Therefore, improving our knowledge regarding the main parameters that fight against BK viruses can shed light on to direct new treatment strategies to suppress BK infection. Innate immunity consists of numerous cell systems and also soluble molecules, which not only suppress virus replication, but also activate adaptive immunity to eradicate the infection. Additionally, it appears that immune responses against reactivated BK virus are the main reasons for induction of BK virus-associated nephropathy (BKAN). Thus, improving our knowledge regarding the parameters and detailed mechanisms of innate immunity and also the status of innate immunity of the patients with BK virus reactivation and its complications can introduce new prospective strategies to either prevent or as therapy of the complication. Therefore, this review was aimed to collate the most recent data regarding the roles played by innate immunity against BK virus and also the status of innate immunity in the patients with reactivation BK virus and BKAN.

  9. Virus-induced aggregates in infected cells.

    PubMed

    Moshe, Adi; Gorovits, Rena

    2012-10-17

    During infection, many viruses induce cellular remodeling, resulting in the formation of insoluble aggregates/inclusions, usually containing viral structural proteins. Identification of aggregates has become a useful diagnostic tool for certain viral infections. There is wide variety of viral aggregates, which differ by their location, size, content and putative function. The role of aggregation in the context of a specific virus is often poorly understood, especially in the case of plant viruses. The aggregates are utilized by viruses to house a large complex of proteins of both viral and host origin to promote virus replication, translation, intra- and intercellular transportation. Aggregated structures may protect viral functional complexes from the cellular degradation machinery. Alternatively, the activation of host defense mechanisms may involve sequestration of virus components in aggregates, followed by their neutralization as toxic for the host cell. The diversity of virus-induced aggregates in mammalian and plant cells is the subject of this review.

  10. Neutrophil uptake of vaccinia virus in vitro

    SciTech Connect

    West, B.C.; Eschete, M.L.; Cox, M.E.; King, J.W.

    1987-10-01

    We studied human neutrophils for uptake of vaccinia virus. Uptake was determined radiometrically and by electron microscopy. Vaccinia virus was labeled with /sup 14/C or /sup 3/H, incubated with neutrophils, and quantified in neutrophil pellets in a new radiometric phagocytosis assay. Better results were obtained from assays of (/sup 3/H)thymidine-labeled virus; uptake increased through 1 hr and then plateaued. Phagocytosis of 3H-labeled Staphylococcus aureus was normal. Uptake of virus was serum dependent. Hexose monophosphate shunt activity was measured by two methods. No /sup 14/CO/sub 2/ from (/sup 14/C)1-glucose accompanied uptake of vaccinia virus, in contrast to the respiratory burst accompanying bacterial phagocytosis. Electron microscopy showed intact to slightly digested intraphagolysosomal vaccinia virus. Pock reduction assay showed a decrease in viral content due to neutrophils until 6 hr of incubation, when a modest but significant increase was observed. Thus, neutrophil uptake of vaccinia virus is distinguished from bacterial phagocytosis.

  11. Viruses and prions of Saccharomyces cerevisiae.

    PubMed

    Wickner, Reed B; Fujimura, Tsutomu; Esteban, Rosa

    2013-01-01

    Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast.

  12. Vulnerability of unconfined aquifers to virus contamination.

    PubMed

    Schijven, J F; Hassanizadeh, S Majid; de Roda Husman, Ana Maria

    2010-02-01

    An empirical formula was developed for determining the vulnerability of unconfined sandy aquifers to virus contamination, expressed as a dimensionless setback distance r(s)(*). The formula can be used to calculate the setback distance required for the protection of drinking water production wells against virus contamination. This empirical formula takes into account the intrinsic properties of the virus and the unconfined sandy aquifer. Virus removal is described by a rate coefficient that accounts for virus inactivation and attachment to sand grains. The formula also includes pumping rate, saturated thickness of the aquifer, depth of the screen of the pumping well, and anisotropy of the aquifer. This means that it accounts also for dilution effects as well as horizontal and vertical virus transport. Because the empirical model includes virus source concentration it can be used as an integral part of a quantitative viral risk assessment.

  13. A Literature Review of Zika Virus

    PubMed Central

    Bloch, Evan M.

    2016-01-01

    Zika virus is a mosquitoborne flavivirus that is the focus of an ongoing pandemic and public health emergency. Previously limited to sporadic cases in Africa and Asia, the emergence of Zika virus in Brazil in 2015 heralded rapid spread throughout the Americas. Although most Zika virus infections are characterized by subclinical or mild influenza-like illness, severe manifestations have been described, including Guillain-Barre syndrome in adults and microcephaly in babies born to infected mothers. Neither an effective treatment nor a vaccine is available for Zika virus; therefore, the public health response primarily focuses on preventing infection, particularly in pregnant women. Despite growing knowledge about this virus, questions remain regarding the virus’s vectors and reservoirs, pathogenesis, genetic diversity, and potential synergistic effects of co-infection with other circulating viruses. These questions highlight the need for research to optimize surveillance, patient management, and public health intervention in the current Zika virus epidemic. PMID:27070380

  14. Recombination in Hepatitis C Virus

    PubMed Central

    González-Candelas, Fernando; López-Labrador, F. Xavier; Bracho, María Alma

    2011-01-01

    Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus. PMID:22069526

  15. Cucumber mosaic virus in Rubus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumber mosaic virus (CMV) has been reported on red raspberry in Chile, Scotland and the Soviet Union and in Chile on blackberry. Its occurrence in Rubus is rare and seems to cause little damage. Except for one early, unconfirmed report, CMV has not been reported on Rubus in North America. This vir...

  16. Satellite Tobacco Mosaic Virus (STMV)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The structure of the Satellite Tobacco Mosaic Virus (STMV)--one of the smallest viruses known--has been successfully deduced using STMV crystals grown aboard the Space Shuttle in 1992 and 1994. The STMV crystals were up to 30 times the volume of any seen in the laboratory. At the same time they gave the best resolution data ever obtained on any virus crystal. STMV is a small icosahedral plant virus, consisting of a protein shell made up of 60 identical protein subunits of molecular weight 17,500. Particularly noteworthy is the fact that, in contrast to the crystal grown on Earth, the crystals grown under microgravity conditions were viusally perfect, with no striations or clumping of crystals. Furthermore, the X-ray diffraction data obtained from the space-grown crystals was of a much higher quality than the best data available at that time from ground-based crystals. This computer model shows the external coating or capsid. STMV is used because it is a simple protein to work with; studies are unrelated to tobacco. Credit: Dr. Alex McPherson, Univeristy of California at Irvin.

  17. Xenotransplantation and Hepatitis E virus.

    PubMed

    Denner, Joachim

    2015-01-01

    Xenotransplantation using pig cells, tissues and organs may be associated with the transmission of porcine microorganisms to the human recipient. Some of these microorganisms may induce a zoonosis, that is an infectious disease induced by microorganisms transmitted from another species. With exception of the porcine endogenous retroviruses (PERVs), which are integrated in the genome of all pigs, the transmission of all other microorganisms can be prevented by specified or designated pathogen-free (spf or dpf, respectively) production of the animals. However, it is becoming clear in the last years that the hepatitis E virus (HEV) is one of the viruses which are difficult to eliminate. It is important to note that there are differences between HEV of genotypes (gt) 1 and gt2 on one hand and HEV of gt3 and gt4 on the other. HEV gt1 and gt2 are human viruses, and they induce hepatitis and in the worst case fatal infections in pregnant women. In contrast, HEV gt3 and gt4 are viruses of pigs, and they may infect humans, induce commonly only mild diseases, if any, and are harmless for pregnant women. The goal of this review was to evaluate the risk posed by HEV gt3 and gt4 for xenotransplantation and to indicate ways of their elimination from pigs in order to prevent transmission to the human recipient.

  18. Turnip Yellow Mosaic Virus Structure

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The bumpy exterior of the turnip yellow mosaic virus (TYMV) protein coat, or capsid, was defined in detail by Dr. Alexander McPherson of the University of California, Irvin using protein crystallized in space for analysis on Earth. TYMV is an icosahedral virus constructed from 180 copies of the same protein arranged into 12 clusters of five proteins (pentamers), and 20 clusters of six proteins (hexamers). The final TYMV structure led to the enexpected hypothesis that the virus release its RNA by essentially chemical-mechanical means. Most viruses have farly flat coats, but in TYMV, the fold in each protein, called the jellyroll, is clustered at the points where the protein pentamers and hexamers join. The jellyrolls are almost standing on end, producing a bumpy surface with knobs at all of the pentamers and hexamers. At the inside surface of the pentamers is a void that is not present at the hexamers. The coating had been seen in early studies of TYMV, but McPhereson's atomic structure shows much more detail. The inside surface is strikingly, and unexpectedly, different than the outside. While the pentamers contain a central viod on the inside, the hexameric units contain peptides liked to each other, forming a ring or, more accurately, rings to fill the voild. Credit: Dr. Alexander McPherson, University of California, Irvine.

  19. Mayaro fever virus, Brazilian Amazon.

    PubMed

    Azevedo, Raimunda S S; Silva, Eliana V P; Carvalho, Valéria L; Rodrigues, Sueli G; Nunes-Neto, Joaquim P; Monteiro, Hamilton; Peixoto, Victor S; Chiang, Jannifer O; Nunes, Márcio R T; Vasconcelos, Pedro F C

    2009-11-01

    In February 2008, a Mayaro fever virus (MAYV) outbreak occurred in a settlement in Santa Barbara municipality, northern Brazil. Patients had rash, fever, and severe arthralgia lasting up to 7 days. Immunoglobulin M against MAYV was detected by ELISA in 36 persons; 3 MAYV isolates sequenced were characterized as genotype D.

  20. Ngari Virus Is a Bunyamwera Virus Reassortant That Can Be Associated with Large Outbreaks of Hemorrhagic Fever in Africa

    PubMed Central

    Gerrard, Sonja R.; Li, Li; Barrett, Alan D.; Nichol, Stuart T.

    2004-01-01

    Two isolates of a virus of the genus Orthobunyavirus (family Bunyaviridae) were obtained from hemorrhagic fever cases during a large disease outbreak in East Africa in 1997 and 1998. Sequence analysis of regions of the three genomic RNA segments of the virus (provisionally referred to as Garissa virus) suggested that it was a genetic reassortant virus with S and L segments derived from Bunyamwera virus but an M segment from an unidentified virus of the genus Orthobunyavirus. While high genetic diversity (52%) was revealed by analysis of virus M segment nucleotide sequences obtained from 21 members of the genus Orthobunyavirus, the Garissa and Ngari virus M segments were almost identical. Surprisingly, the Ngari virus L and S segments showed high sequence identity with those of Bunyamwera virus, showing that Garissa virus is an isolate of Ngari virus, which in turn is a Bunyamwera virus reassortant. Ngari virus should be considered when investigating hemorrhagic fever outbreaks throughout sub-Saharan Africa. PMID:15280501

  1. Psoralen inactivation of influenza and herpes simplex viruses and of virus-infected cells.

    PubMed Central

    Redfield, D C; Richman, D D; Oxman, M N; Kronenberg, L H

    1981-01-01

    Psoralen compounds covalently bind to nucleic acids when irradiated with long-wavelength ultraviolet light. This treatment can destroy the infectivity of deoxyribonucleic acid and ribonucleic acid viruses. Two psoralen compounds, 4'-hydroxymethyltrioxsalen and 4'-aminomethyltrioxsalen, were used with long-wavelength ultraviolet light to inactivate cell-free herpes simplex and influenza viruses and to render virus-infected cells noninfectious. This method of inactivation was compared with germicidal (short-wavelength) ultraviolet light irradiation. The antigenicity of the treated, virus-infected, antigen-bearing cells was examined by immunofluorescence and radioimmunoassay and by measuring the capacity of the herpes simplex virus-infected cells to stimulate virus-specific lymphocyte proliferation. The infectivity of the virus-infected cells could be totally eliminated without altering their viral antigenicity. The use of psoralen plus long-wavelength ultraviolet light is well suited to the preparation of noninfectious virus antigens and virus antigen-bearing cells for immunological assays. PMID:6265375

  2. Tanay virus, a new species of virus isolated from mosquitoes in the Philippines.

    PubMed

    Nabeshima, Takeshi; Inoue, Shingo; Okamoto, Kenta; Posadas-Herrera, Guillermo; Yu, Fuxun; Uchida, Leo; Ichinose, Akitoyo; Sakaguchi, Miako; Sunahara, Toshihiko; Buerano, Corazon C; Tadena, Florencio P; Orbita, Ildefonso B; Natividad, Filipinas F; Morita, Kouichi

    2014-06-01

    In 2005, we isolated a new species of virus from mosquitoes in the Philippines. The virion was elliptical in shape and had a short single projection. The virus was named Tanay virus (TANAV) after the locality in which it was found. TANAV genomic RNA was a 9562 nt+poly-A positive strand, and polycistronic. The longest ORF contained putative RNA-dependent RNA polymerase (RdRP); however, conserved short motifs in the RdRP were permuted. TANAV was phylogenetically close to Negevirus, a recently proposed taxon of viruses isolated from haemophagic insects, and to some plant viruses, such as citrus leprosis virus C, hibiscus green spot virus and blueberry necrotic ring blotch virus. In this paper, we describe TANAV and the permuted structure of its RdRP, and discuss its phylogeny together with those of plant viruses and negevirus.

  3. A recombinant influenza virus vaccine expressing the F protein of respiratory syncytial virus

    PubMed Central

    Fonseca, Wendy; Ozawa, Makoto; Hatta, Masato; Orozco, Esther; Martínez, Máximo B; Kawaoka, Yoshihiro

    2014-01-01

    Infections with influenza and respiratory syncytial virus (RSV) rank high among the most common human respiratory diseases worldwide. Previously, we developed a replication-incompetent influenza virus by replacing the coding sequence of the PB2 gene, which encodes one of the viral RNA polymerase subunits, with that of a reporter gene. Here, we generated a PB2-knockout recombinant influenza virus expressing the F protein of RSV (PB2-RSVF virus) and tested its potential as a bivalent vaccine. In mice intranasally immunized with the PB2-RSVF virus, we detected high levels of antibodies against influenza virus, but not RSV. PB2-RSVF virus-immunized mice were protected from a lethal challenge with influenza virus but experienced severe body weight loss when challenged with RSV, indicating that PB2-RSVF vaccination enhanced RSV-associated disease. These results highlight one of the difficulties of developing an effective bivalent vaccine against influenza virus and RSV infections. PMID:24292020

  4. Psoralen inactivation of influenza and herpes simplex viruses and of virus-infected cells

    SciTech Connect

    Redfield, D.C.; Richman, D.D.; Oxman, M.N.; Kronenberg, L.H.

    1981-06-01

    Psoralen compounds covalently bind to nucleic acids when irradiated with long-wavelength ultraviolet light. This treatment can destroy the infectivity of deoxyribonucleic acid and ribonucleic acid viruses. Two psoralen compounds, 4'-hydroxymethyltrioxsalen and 4'-aminomethyltrioxsalen, were used with long-wavelength ultraviolet light to inactivate cell-free herpes simplex and influenza viruses and to render virus-infected cells noninfectious. This method of inactivation was compared with germicidal (short-wavelength) ultraviolet light irradiation. The antigenicity of the treated, virus-infected, antigen-bearing cells was examined by immunofluorescence and radioimmunoassay and by measuring the capacity of the herpes simplex virus-infected cells to stimulate virus-specific lymphocyte proliferation. The infectivity of the virus-infected cells could be totally eliminated without altering their viral antigenicity. The use of psoralen plus long-wavelength ultraviolet light is well suited to the preparation of noninfectious virus antigens and virus antigen-bearing cells for immunological assays.

  5. Nitric oxide and virus infection

    PubMed Central

    Akaike, T; Maeda, H

    2000-01-01

    Nitric oxide (NO) has complex and diverse functions in physiological and pathophysiological phenomena. The mechanisms of many events induced by NO are now well defined, so that a fundamental understanding of NO biology is almost established. Accumulated evidence suggests that NO and oxygen radicals such as superoxide are key molecules in the pathogenesis of various infectious diseases. NO biosynthesis, particularly through expression of an inducible NO synthase (iNOS), occurs in a variety of microbial infections. Although antimicrobial activity of NO is appreciated for bacteria and protozoa, NO has opposing effects in virus infections such as influenza virus pneumonia and certain other neurotropic virus infections. iNOS produces an excessive amount of NO for long periods, which allows generation of a highly reactive nitrogen oxide species, peroxynitrite, via a radical coupling reaction of NO with superoxide. Thus, peroxynitrite causes oxidative tissue injury through potent oxidation and nitration reactions of various biomolecules. NO also appears to affect a host's immune response, with immunopathological consequences. For example, overproduction of NO in virus infections in mice is reported to suppress type 1 helper T-cell-dependent immune responses, leading to type 2 helper T-cell-biased immunological host responses. Thus, NO may be a host response modulator rather than a simple antiviral agent. The unique biological properties of NO are further illustrated by our recent data suggesting that viral mutation and evolution may be accelerated by NO-induced oxidative stress. Here, we discuss these multiple roles of NO in pathogenesis of virus infections as related to both non-specific inflammatory responses and immunological host reactions modulated by NO during infections in vivo. PMID:11106932

  6. Chikungunya virus infection: an overview.

    PubMed

    Caglioti, Claudia; Lalle, Eleonora; Castilletti, Concetta; Carletti, Fabrizio; Capobianchi, Maria Rosaria; Bordi, Licia

    2013-07-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus belonging to the Togaviridae family, first isolated in Tanzania in 1952. The main vectors are mosquitoes from the Aedes species. Recently, the establishment of an envelope mutation increased infectivity for A. albopictus. CHIKV has recently re-emerged causing millions of infections in countries around the Indian Ocean characterized by climate conditions favourable to high vector density. Importation of human cases to European regions with high density of suitable arthropod vectors (such as A. albopictus) may trigger autochthonous outbreaks. The clinical signs of CHIKV infection include non-specific flu-like symptoms, and a characteristic rash accompanied by joint pain that may last for a long time after the resolution of the infection. The death rate is not particularly high, but excess mortality has been observed in concomitance with large CHIKV outbreaks. Deregulation of innate defense mechanisms, such as cytokine inflammatory response, may participate in the main clinical signs of CHIKV infection, and the establishment of persistent (chronic) disease. There is no specific therapy, and prevention is the main countermeasure. Prevention is based on insect control and in avoiding mosquito bites in endemic countries. Diagnosis is based on the detection of virus by molecular methods or by virus culture on the first days of infection, and by detection of an immune response in later stages. CHIKV infection must be suspected in patients with compatible clinical symptoms returning from epidemic/endemic areas. Differential diagnosis should take into account the cross-reactivity with other viruses from the same antigenic complex (i.e. O'nyong-nyong virus).

  7. Full genome characterization of the culicoides-borne marsupial orbiviruses: Wallal virus, Mudjinbarry virus and Warrego viruses.

    PubMed

    Belaganahalli, Manjunatha N; Maan, Sushila; Maan, Narender S; Pritchard, Ian; Kirkland, Peter D; Brownlie, Joe; Attoui, Houssam; Mertens, Peter P C

    2014-01-01

    Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively.

  8. Competitive virus assay method for titration of noncytopathogenic bovine viral diarrhea viruses (END⁺ and END⁻ viruses).

    PubMed

    Muhsen, Mahmod; Ohi, Kota; Aoki, Hiroshi; Ikeda, Hidetoshi; Fukusho, Akio

    2013-03-01

    A new, reliable and secure virus assay method, named the competitive virus assay (CVA) method, has been established for the titration of bovine viral diarrhea viruses (BVDVs) that either show the exaltation of Newcastle disease virus (END) phenomenon or heterologous interference phenomenon (but not the END phenomenon). This method is based on the principle of (1) homologous interference between BVDVs, by using BVDV RK13/E(-) or BVDV RK13/E(+) strains as competitor virus, and (2) END phenomenon and heterologous interference, by using attenuated Newcastle disease virus (NDV) TCND strain as challenge virus. In titration of BVDV END(+) and BVDV END(-) viruses, no significant difference in estimated virus titer was observed between CVA and conventional methods. CVA method demonstrated comparable levels of sensitivity and accuracy as conventional END and interference methods, which require the use of a velogenic Miyadera strain of NDV and vesicular stomatitis virus (VSV), both of which are agents of high-risk diseases. As such, the CVA method is a safer alternative, with increased bio-safety and bio-containment, through avoidance of virulent strains that are commonly employed with conventional methods.

  9. Clarification and guidance on the proper usage of virus and virus species names

    PubMed Central

    Jahrling, Peter B.

    2010-01-01

    A pivotal step in the development of a consistent nomenclature for virus classification was the introduction of the virus species concept by the International Committee on Taxonomy of Viruses (ICTV) in 1991. Yet, almost two decades later, many virologists still are unable to differentiate between virus species and actual viruses. Here we attempt to explain the origin of this confusion, clarify the difference between taxa and physical entities, and suggest simple measures that could be implemented by ICTV Study Groups to make virus taxonomy and nomenclature more accessible to laboratory virologists. PMID:20204430

  10. Clinical and biological differences between recurrent herpes simplex virus and varicella-zoster virus infections

    SciTech Connect

    Straus, S.E. )

    1989-12-01

    The major features that distinguish recurrent herpes simplex virus infections from zoster are illustrated in this article by two case histories. The clinical and epidemiologic features that characterize recurrent herpes simplex virus and varicella-zoster virus infections are reviewed. It is noted that herpesvirus infections are more common and severe in patients with cellular immune deficiency. Each virus evokes both humoral and cellular immune response in the course of primary infection. DNA hybridization studies with RNA probes labelled with sulfur-35 indicate that herpes simplex viruses persist within neurons, and that varicella-zoster virus is found in the satellite cells that encircle the neurons.

  11. Plants, viruses and the environment: Ecology and mutualism.

    PubMed

    Roossinck, Marilyn J

    2015-05-01

    Since the discovery of Tobacco mosaic virus nearly 120 years ago, most studies on viruses have focused on their roles as pathogens. Virus ecology takes a different look at viruses, from the standpoint of how they affect their hosts׳ interactions with the environment. Using the framework of symbiotic relationships helps put the true nature of viruses into perspective. Plants clearly have a long history of relationships with viruses that have shaped their evolution. In wild plants viruses are common but usually asymptomatic. In experimental studies plant viruses are sometimes mutualists rather than pathogens. Virus ecology is closely tied to the ecology of their vectors, and the behavior of insects, critical for transmission of many plant viruses, is impacted by virus-plant interactions. Virulence is probable not beneficial for most host-virus interactions, hence commensal and mutualistic relationships are almost certainly common, in spite of the paucity of literature on beneficial viruses.

  12. El libro del Relogio del Palacio de las Horas

    NASA Astrophysics Data System (ADS)

    Morales, J. D.

    2009-08-01

    This paper resume the investigation entitled ``El libro del Relogio del Palacio de las Horas''. That consist in an edition of the original text of the book of the Clock of the Palace of the Hours from the Books of the knowledge of Astronomy of Alfonso X (Manuscript 156, Complutense University). And a description of the astronomical functionality of the Clock of the Palace of the Hours. It includes a geometric description of the positional astronomy on which the operation of the Palace is based.

  13. Blueberry latent virus: An Amalgam of the Totiviridae and Partitiviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new, symptomless virus was identified in blueberry. The dsRNA genome of the virus, provisionally named Blueberry latent virus (BBLV), codes for two putative proteins and lacks a movement protein, a property only shared with cryptic viruses. More than 35 isolates of the virus from different cultiv...

  14. 9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production....

  15. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production....

  16. 9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production....

  17. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production....

  18. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production....

  19. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production....

  20. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production....

  1. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production....

  2. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production....

  3. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production....

  4. 9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production....

  5. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production....

  6. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production....

  7. 9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production....

  8. 9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production....

  9. 21 CFR 866.3400 - Parainfluenza virus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Parainfluenza virus serological reagents. 866.3400... virus serological reagents. (a) Identification. Parainfluenza virus serological reagents are devices... virus in serum. The identification aids in the diagnosis of parainfluenza virus infections and...

  10. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Herpes simplex virus serological assays. 866.3305... simplex virus serological assays. (a) Identification. Herpes simplex virus serological assays are devices... herpes simplex virus in serum. Additionally, some of the assays consist of herpes simplex virus...

  11. Genetic mechanisms of Maize dwarf mosaic virus resistance in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize resistance to viruses has been well-characterized at the genetic level, and loci responsible for resistance to potyviruses including Maize dwarf mosaic virus (MDMV), Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Johnsongrass mosaic virus (JGMV), have been mapped in several ge...

  12. West Nile virus: North American experience

    USGS Publications Warehouse

    Hofmeister, Erik K.

    2011-01-01

    West Nile virus, a mosquito-vectored flavivirus of the Japanese encephalitis serogroup, was first detected in North America following an epizootic in the New York City area in 1999. In the intervening 11 years since the arrival of the virus in North America, it has crossed the contiguous USA, entered the Canadian provinces bordering the USA, and has been reported in the Caribbean islands, Mexico, Central America and, more recently, South America. West Nile virus has been reported in over 300 species of birds in the USA and has caused the deaths of thousands of birds, local population declines of some avian species, the clinical illness and deaths of thousands of domestic horses, and the clinical disease in over 30 000 Americans and the deaths of over 1000. Prior to the emergence of West Nile virus in North America, St. Louis encephalitis virus and Dengue virus were the only other known mosquito-transmitted flaviviruses in North America capable of causing human disease. This review will discuss the North American experience with mosquito-borne flavivirus prior to the arrival of West Nile virus, the entry and spread of West Nile virus in North America, effects on wild bird populations, genetic changes in the virus, and the current state of West Nile virus transmission.

  13. Virus-induced congenital malformations in cattle.

    PubMed

    Agerholm, Jørgen S; Hewicker-Trautwein, Marion; Peperkamp, Klaas; Windsor, Peter A

    2015-09-24

    Diagnosing the cause of bovine congenital malformations (BCMs) is challenging for bovine veterinary practitioners and laboratory diagnosticians as many known as well as a large number of not-yet reported syndromes exist. Foetal infection with certain viruses, including bovine virus diarrhea virus (BVDV), Schmallenberg virus (SBV), blue tongue virus (BTV), Akabane virus (AKAV), or Aino virus (AV), is associated with a range of congenital malformations. It is tempting for veterinary practitioners to diagnose such infections based only on the morphology of the defective offspring. However, diagnosing a virus as a cause of BCMs usually requires laboratory examination and even in such cases, interpretation of findings may be challenging due to lack of experience regarding genetic defects causing similar lesions, even in cases where virus or congenital antibodies are present. Intrauterine infection of the foetus during the susceptible periods of development, i.e. around gestation days 60-180, by BVDV, SBV, BTV, AKAV and AV may cause malformations in the central nervous system, especially in the brain. Brain lesions typically consist of hydranencephaly, porencephaly, hydrocephalus and cerebellar hypoplasia, which in case of SBV, AKAV and AV infections may be associated by malformation of the axial and appendicular skeleton, e.g. arthrogryposis multiplex congenita. Doming of the calvarium is present in some, but not all, cases. None of these lesions are pathognomonic so diagnosing a viral cause based on gross lesions is uncertain. Several genetic defects share morphology with virus induced congenital malformations, so expert advice should be sought when BCMs are encountered.

  14. Pharmacological Inhibition of Feline Immunodeficiency Virus (FIV)

    PubMed Central

    Mohammadi, Hakimeh; Bienzle, Dorothee

    2012-01-01

    Feline immunodeficiency virus (FIV) is a member of the retroviridae family of viruses and causes an acquired immunodeficiency syndrome (AIDS) in domestic and non-domestic cats worldwide. Genome organization of FIV and clinical characteristics of the disease caused by the virus are similar to those of human immunodeficiency virus (HIV). Both viruses infect T lymphocytes, monocytes and macrophages, and their replication cycle in infected cells is analogous. Due to marked similarity in genomic organization, virus structure, virus replication and disease pathogenesis of FIV and HIV, infection of cats with FIV is a useful tool to study and develop novel drugs and vaccines for HIV. Anti-retroviral drugs studied extensively in HIV infection have targeted different steps of the virus replication cycle: (1) inhibition of virus entry into susceptible cells at the level of attachment to host cell surface receptors and co-receptors; (2) inhibition of fusion of the virus membrane with the cell membrane; (3) blockade of reverse transcription of viral genomic RNA; (4) interruption of nuclear translocation and viral DNA integration into host genomes; (5) prevention of viral transcript processing and nuclear export; and (6) inhibition of virion assembly and maturation. Despite much success of anti-retroviral therapy slowing disease progression in people, similar therapy has not been thoroughly investigated in cats. In this article we review current pharmacological approaches and novel targets for anti-lentiviral therapy, and critically assess potentially suitable applications against FIV infection in cats. PMID:22754645

  15. [Epidemiological characteristics of Zika virus disease].

    PubMed

    Li, Jiandong; Li, Dexin

    2016-03-01

    Zika virus disease is an emerging mosquito-borne acute infectious disease caused by Zika virus, so far there have been no available vaccine or specific treatment. Currently, the outbreaks of Zika virus disease mainly occurs in the Americas, but the regional distribution of the disease is in rapid expansion, 34 countries and territories have reported autochthonous transmission of the virus. The illness is usually mild with very rarely death, but increased reports of birth defects and neurologic disorders in the areas affected by Zika virus has caused extensive concern worldwide. In China, the competent vectors for Zika virus are widely distributed, imported viraemic cases may become a source of local transmission of the virus. However, Zika virus disease is preventable, the spread of virus could be stopped when the effective prevention measures are taken. This paper summarizes the retrieval results from Medline database and the information from the reports of the governments of countries affected or health organizations about the epidemiological characteristics of Zika virus disease.

  16. Chloroplast in Plant-Virus Interaction

    PubMed Central

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  17. Recombination in Eukaryotic Single Stranded DNA Viruses

    PubMed Central

    Martin, Darren P.; Biagini, Philippe; Lefeuvre, Pierre; Golden, Michael; Roumagnac, Philippe; Varsani, Arvind

    2011-01-01

    Although single stranded (ss) DNA viruses that infect humans and their domesticated animals do not generally cause major diseases, the arthropod borne ssDNA viruses of plants do, and as a result seriously constrain food production in most temperate regions of the world. Besides the well known plant and animal-infecting ssDNA viruses, it has recently become apparent through metagenomic surveys of ssDNA molecules that there also exist large numbers of other diverse ssDNA viruses within almost all terrestrial and aquatic environments. The host ranges of these viruses probably span the tree of life and they are likely to be important components of global ecosystems. Various lines of evidence suggest that a pivotal evolutionary process during the generation of this global ssDNA virus diversity has probably been genetic recombination. High rates of homologous recombination, non-homologous recombination and genome component reassortment are known to occur within and between various different ssDNA virus species and we look here at the various roles that these different types of recombination may play, both in the day-to-day biology, and in the longer term evolution, of these viruses. We specifically focus on the ecological, biochemical and selective factors underlying patterns of genetic exchange detectable amongst the ssDNA viruses and discuss how these should all be considered when assessing the adaptive value of recombination during ssDNA virus evolution. PMID:21994803

  18. Reassortment patterns in Swine influenza viruses.

    PubMed

    Khiabanian, Hossein; Trifonov, Vladimir; Rabadan, Raul

    2009-10-07

    Three human influenza pandemics occurred in the twentieth century, in 1918, 1957, and 1968. Influenza pandemic strains are the results of emerging viruses from non-human reservoirs to which humans have little or no immunity. At least two of these pandemic strains, in 1957 and in 1968, were the results of reassortments between human and avian viruses. Also, many cases of swine influenza viruses have reportedly infected humans, in particular, the recent H1N1 influenza virus of swine origin, isolated in Mexico and the United States. Pigs are documented to allow productive replication of human, avian, and swine influenza viruses. Thus it has been conjectured that pigs are the "mixing vessel" that create the avian-human reassortant strains, causing the human pandemics. Hence, studying the process and patterns of viral reassortment, especially in pigs, is a key to better understanding of human influenza pandemics. In the last few years, databases containing sequences of influenza A viruses, including swine viruses, collected since 1918 from diverse geographical locations, have been developed and made publicly available. In this paper, we study an ensemble of swine influenza viruses to analyze the reassortment phenomena through several statistical techniques. The reassortment patterns in swine viruses prove to be similar to the previous results found in human viruses, both in vitro and in vivo, that the surface glycoprotein coding segments reassort most often. Moreover, we find that one of the polymerase segments (PB1), reassorted in the strains responsible for the last two human pandemics, also reassorts frequently.

  19. Avian influenza viruses and human health.

    PubMed

    Alexander, D J

    2006-01-01

    Influenza A viruses cause natural infections of humans, some other mammals and birds. Few of the 16 haemagglutinin and nine neuraminidase subtype combinations have been isolated from mammals, but all subtypes have been isolated from birds. In the 20th century, there were four pandemics of influenza as a result of the emergence of antigenically different strains in humans: 1918 (H1N1), 1957 (H2N2), 1968 (H3N2) and 1977 (H1N1). Influenza A viruses contain eight distinct RNA genes and reassortment of these can occur in mixed infections with different viruses. The 1957 and 1968 pandemic viruses differed from the preceding viruses in humans by the substitution of genes that came from avian viruses, suggesting they arose by genetic reassortment of viruses of human and avian origin. Up to 1995, there had been only three reports of avian influenza viruses infecting humans, in 1959, 1977 and 1981 (all H7N7), but, since 1996, there have been regular reports of natural infections of humans with avian influenza viruses: in England in 1996 (H7N7), Hong Kong 1997 (H5N1), 1999 (H9N2), and 2003 (H5N1), in The Netherlands 2003 (H7N7), Canada 2004 (H7N3), Vietnam 2004 (H5N1) and Thailand 2004 (H5N1). The H5N1 virus is alarming because 51 (64 %) of the 80 people confirmed as infected since 1997 have died.

  20. Recombination in eukaryotic single stranded DNA viruses.

    PubMed

    Martin, Darren P; Biagini, Philippe; Lefeuvre, Pierre; Golden, Michael; Roumagnac, Philippe; Varsani, Arvind

    2011-09-01

    Although single stranded (ss) DNA viruses that infect humans and their domesticated animals do not generally cause major diseases, the arthropod borne ssDNA viruses of plants do, and as a result seriously constrain food production in most temperate regions of the world. Besides the well known plant and animal-infecting ssDNA viruses, it has recently become apparent through metagenomic surveys of ssDNA molecules that there also exist large numbers of other diverse ssDNA viruses within almost all terrestrial and aquatic environments. The host ranges of these viruses probably span the tree of life and they are likely to be important components of global ecosystems. Various lines of evidence suggest that a pivotal evolutionary process during the generation of this global ssDNA virus diversity has probably been genetic recombination. High rates of homologous recombination, non-homologous recombination and genome component reassortment are known to occur within and between various different ssDNA virus species and we look here at the various roles that these different types of recombination may play, both in the day-to-day biology, and in the longer term evolution, of these viruses. We specifically focus on the ecological, biochemical and selective factors underlying patterns of genetic exchange detectable amongst the ssDNA viruses and discuss how these should all be considered when assessing the adaptive value of recombination during ssDNA virus evolution.

  1. Initial characterization of Vaccinia Virus B4 suggests a role in virus spread

    SciTech Connect

    Burles, Kristin; Irwin, Chad R.; Burton, Robyn-Lee; Schriewer, Jill; Evans, David H.; Buller, R. Mark; Barry, Michele

    2014-05-15

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a natural mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus. - Highlights: • B4R-null viruses show reduced plaque size, and decreased ability to spread. • B4R-null viruses formed mature and extracellular virions; and rearranged actin. • Virus devoid of EVM154, the B4R homolog, was attenuated during infection. • Initial characterization suggests that B4 may play a role in virus spread. • Unidentified mediators of actin tail formation may exist in vaccinia virus.

  2. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments.

    PubMed Central

    Fujinami, R S; Oldstone, M B; Wroblewska, Z; Frankel, M E; Koprowski, H

    1983-01-01

    Using monoclonal antibodies, we demonstrate that the phosphoprotein of measles virus and a protein of herpes simplex virus type 1 crossreact with an intermediate filament protein of human cells. This intermediate filament protein, probably vimentin, has a molecular weight of 52,000, whereas the molecular weights of the measles viral phosphoprotein and the herpes virus protein are 70,000 and 146,000, respectively. Crossreactivity was shown by immunofluorescent staining of infected and uninfected cells and by immunoblotting. The monoclonal antibody against measles virus phosphoprotein did not react with herpes simplex virus protein and vice versa, indicating that these monoclonal antibodies recognize different antigenic determinants on the intermediate filament molecule. The significance of these results in explaining the appearance of autoantibodies during virus infections in humans is discussed. Images PMID:6300911

  3. Phylogeny of dengue virus type 3 circulating in Colombia between 2001 and 2007.

    PubMed

    Villabona-Arenas, Christian Julián; Miranda-Esquivel, Daniel Rafael; Jimenez, Raquel Elvira Ocazionez

    2009-10-01

    Dengue virus type 3 (DENV-3) re-appeared in Colombia in 2001 after 23 years of apparent absence, in the state of Santander in the North-eastern region near to Venezuelan border. In 2002, the virus was isolated in the state of Valle del Cauca in the South-east region near to Ecuadorian/Peruvian border, and in the state of Antioquia in the North-east region near to Panama border. To gain insight into the molecular epidemiology of DENV-3 in Colombia, we sequenced the complete E gene of 21 isolates sampled in the period 2001-2007. Phylogenetic analyses revealed that Colombian strains seem to have been introduced from Venezuela, Ecuador and Peru, but not from Brazil, Argentina, Paraguay or Central America countries. This study also confirms previous report showing that Colombian isolates is closely related to DENV-3 genotype III.

  4. Human immunodeficiency virus, herpes virus infections, and pulmonary vascular disease

    PubMed Central

    Flores, Sonia C.; Almodovar, Sharilyn

    2013-01-01

    The following state-of-the-art seminar was delivered as part of the Aspen Lung Conference on Pulmonary Hypertension and Vascular Diseases held in Aspen, Colorado in June 2012. This paper will summarize the lecture and present results from a nonhuman primate model of infection with Simian (Human) Immunodeficiency Virus - nef chimeric virions as well as the idea that polymorphisms in the HIV-1 nef gene may be driving the immune response that results in exuberant inflammation and aberrant endothelial cell (EC) function. We will present data gathered from primary HIV nef isolates where we tested the biological consequences of these polymorphisms and how their presence in human populations may predict patients at risk for developing this disease. In this article, we also discuss how a dysregulated immune system, in conjunction with a viral infection, could contribute to pulmonary arterial hypertension (PAH). Both autoimmune diseases and some viruses are associated with defects in the immune system, primarily in the function of regulatory T cells. These T-cell defects may be a common pathway in the formation of plexiform lesions. Regardless of the route by which viruses may lead to PAH, it is important to recognize their role in this rare disease. PMID:23662195

  5. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow...

  6. Evolution and ecology of influenza A viruses.

    PubMed Central

    Webster, R G; Bean, W J; Gorman, O T; Chambers, T M; Kawaoka, Y

    1992-01-01

    In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii

  7. Evolution and ecology of influenza A viruses.

    PubMed

    Webster, R G; Bean, W J; Gorman, O T; Chambers, T M; Kawaoka, Y

    1992-03-01

    In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii

  8. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses

    PubMed Central

    Holm, Christian K.; Rahbek, Stine H.; Gad, Hans Henrik; Bak, Rasmus O.; Jakobsen, Martin R.; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K.; Sun, Chenglong; Thomsen, Martin K.; Laustsen, Anders; Nielsen, Camilla G.; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L.; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A.; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R.

    2016-01-01

    Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV. PMID:26893169

  9. Identification of novel viruses using VirusHunter--an automated data analysis pipeline.

    PubMed

    Zhao, Guoyan; Krishnamurthy, Siddharth; Cai, Zhengqiu; Popov, Vsevolod L; Travassos da Rosa, Amelia P; Guzman, Hilda; Cao, Song; Virgin, Herbert W; Tesh, Robert B; Wang, David

    2013-01-01

    Quick and accurate identification of microbial pathogens is essential for both diagnosis and response to emerging infectious diseases. The advent of next-generation sequencing technology offers an unprecedented platform for rapid sequencing-based identification of novel viruses. We have developed a customized bioinformatics data analysis pipeline, VirusHunter, for the analysis of Roche/454 and other long read Next generation sequencing platform data. To illustrate the utility of VirusHunter, we performed Roche/454 GS FLX titanium sequencing on two unclassified virus isolates from the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA). VirusHunter identified sequences derived from a novel bunyavirus and a novel reovirus in the two samples respectively. Further sequence analysis demonstrated that the viruses were novel members of the Phlebovirus and Orbivirus genera. Both Phlebovirus and Orbivirus genera include many economic important viruses or serious human pathogens.

  10. Processing Strategies to Inactivate Enteric Viruses in Shellfish: Limitations of Surrogate Viruses and Molecular Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Noroviruses, hepatitis A and E viruses, sapovirus, astrovirus, rotavirus, Aichi virus, enteric adenoviruses, poliovirus, and other enteroviruses enter shellfish through contaminated seawater or by contamination during handling and processing, resulting in outbreaks ranging from isolated to epidemic....

  11. Pseudotyping of vesicular stomatitis virus with the envelope glycoproteins of highly pathogenic avian influenza viruses.

    PubMed

    Zimmer, Gert; Locher, Samira; Berger Rentsch, Marianne; Halbherr, Stefan J

    2014-08-01

    Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment.

  12. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.

    PubMed

    Holm, Christian K; Rahbek, Stine H; Gad, Hans Henrik; Bak, Rasmus O; Jakobsen, Martin R; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K; Sun, Chenglong; Thomsen, Martin K; Laustsen, Anders; Nielsen, Camilla G; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R

    2016-02-19

    Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.

  13. Can variola-like viruses be derived from monkeypox virus? An investigation based on DNA mapping*

    PubMed Central

    Esposito, Joseph J.; Nakano, James H.; Obijeski, John F.

    1985-01-01

    The results are presented of a special study to determine whether variola-like “whitepox” viruses could arise as white pock variants of monkeypox virus after one or a few mutations. DNA mapping by cross-hybridization of restriction endonuclease DNA fragments was carried out on 18 orthopoxviruses relevant to this study, including variola and monkeypox viruses and white (non-haemorrhagic) pock producers recovered from chorioallantoic membranes infected with red (haemorrhagic) pock-producing monkeypox viruses. The distinctiveness of the DNA maps of true variola and monkeypox viruses indicated that spontaneous production of “whitepox” from monkeypox virus was genetically impossible. These and other observations led to the conclusion that the “whitepox” viruses recovered from monkeypox virus stocks had an exogenous origin. PMID:3002651

  14. 78 FR 29755 - Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... HUMAN SERVICES Food and Drug Administration Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus Cure Research: Public Meeting AGENCY: Food and Drug... Administration (FDA) is announcing a public meeting and an opportunity for public comment on...

  15. Generation of influenza A viruses as live but replication-incompetent virus vaccines.

    PubMed

    Si, Longlong; Xu, Huan; Zhou, Xueying; Zhang, Ziwei; Tian, Zhenyu; Wang, Yan; Wu, Yiming; Zhang, Bo; Niu, Zhenlan; Zhang, Chuanling; Fu, Ge; Xiao, Sulong; Xia, Qing; Zhang, Lihe; Zhou, Demin

    2016-12-02

    The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.

  16. Determinación del perfil instrumental del EBASIM

    NASA Astrophysics Data System (ADS)

    Nieva, M. F.; Rodriguez, M. V.; Pintado, O. I.

    Se calcula el perfil instrumental para el telescopio de 2,15m del CASLEO con EBASIM. Para ello se usaron flats de cielo y el espectro solar FTS de Kurucz. El método, que se puede utilizar para otras configuraciones instrumentales, es convolucionar ambos espectros para obtener los coeficientes de corrección.

  17. Detection of sweet potato virus C, sweet potato virus 2 and sweet potato feathery mottle virus in Portugal.

    PubMed

    Varanda, Carla M R; Santos, Susana J; Oliveira, Mônica D M; Clara, Maria Ivone E; Félix, Maria Rosário F

    2015-06-01

    Field sweet potato plants showing virus-like symptoms, as stunting, leaf distortion, mosaic and chlorosis, were collected in southwest Portugal and tested for the presence of four potyviruses, sweet potato virus C (SPVC), sweet potato virus 2 (SPV2), sweet potato feathery mottle virus (SPFMV), sweet potato virus G (SPVG), and the crinivirus sweet potato chlorotic stunt virus (SPCSV). DsRNA fractions were extracted from symptomatic leaves and used as templates in single and multiplex RT-PCR assays using previously described specific primers for each analyzed virus. The amplified reaction products for SPVC, SPV2 and SPFMV were of expected size, and direct sequencing of PCR products revealed that they correspond to the coat protein gene (CP) and showed 98%, 99% and 99% identity, respectively, to those viruses. Comparison of the CP genomic and amino acid sequences of the Portuguese viral isolates recovered here with those of ten other sequences of isolates obtained in different countries retrieved from the GenBank showed very few differences. The application of the RT-PCR assays revealed for the first time the presence of SPVC and SPFMV in the sweet potato crop in Portugal, the absence of SPVG and SPCSV in tested plants, as well as the occurrence of triple virus infections under field conditions.

  18. Zika virus: oral healthcare implications.

    PubMed

    Leão, J C; Gueiros, L A; Lodi, G; Robinson, N A; Scully, C

    2017-01-01

    Zika virus (ZIKV) infection has been recognised since 1947, but just recently it became a worldwide major public health problem. The most common features of ZIKV infection are fever, cutaneous rash, arthralgia and conjunctivitis but most affected patients with the clinical disease present with only mild symptoms. However, severe neurological complications have been described: there is an occasional association with Guillain-Barre syndrome, and emerging data indicate an association between vertical transmission of ZIKV infection and microcephaly, but no specific orofacial manifestations have yet been reported. ZIKV is present in body fluids and has also been demonstrated in the saliva, but there is as yet no reliable evidence to support ZIKV transmission via this pathway. Transmission in oral health care should be effectively prevented using standard infection control measures. There are currently no specific treatments for Zika virus disease and no vaccines available, so prevention of ZIKV is based on vector control.

  19. Zika virus challenges for neuropsychiatry

    PubMed Central

    Simões e Silva, Ana Cristina; Moreira, Janaina Matos; Romanelli, Roberta Maia Castro; Teixeira, Antonio Lucio

    2016-01-01

    Before 2007, Zika virus (ZIKV) was generally considered as an arbovirus of low clinical relevance, causing a mild self-limiting febrile illness in tropical Africa and Southeast Asia. Currently, a large, ongoing outbreak of ZIKV that started in Brazil in 2015 is spreading across the Americas. Virus infection during pregnancy has been potentially linked to congenital malformations, including microcephaly. In addition to congenital malformations, a temporal association between ZIKV infection and an increase in cases of Guillain–Barré syndrome is currently being observed in several countries. The mechanisms underlying these neurological complications are still unknown. Emerging evidence, mainly from in vitro studies, suggests that ZIKV may have direct effects on neuronal cells. The aim of this study was to critically review the literature available regarding the neurobiology of ZIKV and its potential neuropsychiatric manifestations. PMID:27478378

  20. Virus engineering: functionalization and stabilization.

    PubMed

    Mateu, Mauricio G

    2011-01-01

    Chemically and/or genetically engineered viruses, viral capsids and viral-like particles carry the promise of important and diverse applications in biomedicine, biotechnology and nanotechnology. Potential uses include new vaccines, vectors for gene therapy and targeted drug delivery, contrast agents for molecular imaging and building blocks for the construction of nanostructured materials and electronic nanodevices. For many of the contemplated applications, the improvement of the physical stability of viral particles may be critical to adequately meet the demanding physicochemical conditions they may encounter during production, storage and/or medical or industrial use. The first part of this review attempts to provide an updated general overview of the fast-moving, interdisciplinary virus engineering field; the second part focuses specifically on the modification of the physical stability of viral particles by protein engineering, an emerging subject that has not been reviewed before.

  1. West Nile Virus in California

    PubMed Central

    Lothrop, Hugh; Chiles, Robert; Madon, Minoo; Cossen, Cynthia; Woods, Leslie; Husted, Stan; Kramer, Vicki; Edman, John

    2004-01-01

    West Nile virus (WNV) was first isolated in California during July 2003 from a pool of Culex tarsalis collected near El Centro, Imperial County. WNV transmission then increased and spread in Imperial and Coachella Valleys, where it was tracked by isolation from pools of Cx. tarsalis, seroconversions in sentinel chickens, and seroprevalence in free-ranging birds. WNV then dispersed to the city of Riverside, Riverside County, and to the Whittier Dam area of Los Angeles County, where it was detected in dead birds and pools of Cx. pipiens quinquefasciatus. By October, WNV was detected in dead birds collected from riparian corridors in Los Angeles, west to Long Beach, and through inland valleys south from Riverside to San Diego County. WNV was reported concurrently from Arizona in mid-August and from Baja, Mexico, in mid-November. Possible mechanisms for virus introduction, amplification, and dispersal are discussed. PMID:15496236

  2. ICTV Virus Taxonomy Profile: Geminiviridae.

    PubMed

    Zerbini, F Murilo; Briddon, Rob W; Idris, Ali; Martin, Darren P; Moriones, Enrique; Navas-Castillo, Jesús; Rivera-Bustamante, Rafael; Roumagnac, Philippe; Varsani, Arvind; Ictv Report Consortium

    2017-02-01

    The geminiviruses are a family of small, non-enveloped viruses with single-stranded, circular DNA genomes of 2500-5200 bases. Geminiviruses are transmitted by various types of insect (whiteflies, leafhoppers, treehoppers and aphids). Members of the genus Begomovirus are transmitted by whiteflies, those in the genera Becurtovirus, Curtovirus, Grablovirus, Mastrevirus and Turncurtovirus are transmitted by specific leafhoppers, the single member of the genus Topocuvirus is transmitted by a treehopper and one member of the genus Capulavirus is transmitted by an aphid. Geminiviruses are plant pathogens causing economically important diseases in most tropical and subtropical regions of the world. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Geminiviridae which is available at www.ictv.global/report/geminiviridae.

  3. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.

    PubMed

    Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C

    2017-04-15

    Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone.IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and

  4. Satellite RNAs and Satellite Viruses of Plants

    PubMed Central

    Hu, Chung-Chi; Hsu, Yau-Heiu; Lin, Na-Sheng

    2009-01-01

    The view that satellite RNAs (satRNAs) and satellite viruses are purely molecular parasites of their cognate helper viruses has changed. The molecular mechanisms underlying the synergistic and/or antagonistic interactions among satRNAs/satellite viruses, helper viruses, and host plants are beginning to be comprehended. This review aims to summarize the recent achievements in basic and practical research, with special emphasis on the involvement of RNA silencing mechanisms in the pathogenicity, population dynamics, and, possibly, the origin(s) of these subviral agents. With further research following current trends, the comprehensive understanding of satRNAs and satellite viruses could lead to new insights into the trilateral interactions among host plants, viruses, and satellites. PMID:21994595

  5. Genetic regulation of human immunodeficiency virus.

    PubMed Central

    Steffy, K; Wong-Staal, F

    1991-01-01

    Human immunodeficiency virus (HIV) has a complex life cycle in which both cellular and virus-encoded factors participate to determine the level of virus production. Two of the viral genes, tat and rev, are essential for virus replication and encode novel trans-activators that interact specifically with their cognate RNA target elements. Elucidation of their mechanisms of action is likely to expand our knowledge of gene regulation at transcriptional and posttranscriptional levels in the eukaryotic cell. Several viral genes (vif, vpu, and vpr) facilitate virus infection and/or release and may play a role in target cell tropism and infection in vivo. The functions of yet other viral genes (nef, vpt) remain unclear. Recent data also suggest that the tat gene product may have a role in HIV pathogenesis that goes beyond trans-activating virus expression. It can potentially impact on uninfected cells as a diffusible molecule and alter the growth of different cell types. PMID:1886517

  6. Virus Infections in the Nervous System

    PubMed Central

    Koyuncu, Orkide O.; Hogue, Ian B.; Enquist, Lynn W.

    2013-01-01

    Virus infections usually begin in peripheral tissues and can invade the mammalian nervous system (NS), spreading into the peripheral (PNS) and more rarely the central nervous systems (CNS). The CNS is protected from most virus infections by effective immune responses and multi-layer barriers. However, some viruses enter the NS with high efficiency via the bloodstream or by directly infecting nerves that innervate peripheral tissues, resulting in debilitating direct and immune-mediated pathology. Most viruses in the NS are opportunistic or accidental pathogens, but a few, most notably the alpha herpesviruses and rabies virus, have evolved to enter the NS efficiently and exploit neuronal cell biology. Remarkably, the alpha herpesviruses can establish quiescent infections in the PNS, with rare but often fatal CNS pathology. Here we review how viruses gain access to and spread in the well-protected CNS, with particular emphasis on alpha herpesviruses, which establish and maintain persistent NS infections. PMID:23601101

  7. Dengue Virus Evolution and Virulence Models

    PubMed Central

    Rico-Hesse, Rebeca

    2008-01-01

    Dengue virus transmission has increased dramatically in the past 2 decades, making this virus one of the most important mosquito-borne human pathogens. The emergence of dengue hemorrhagic fever in most tropical countries has made its control a public health priority, but no vaccines or treatments exist. Little is understood about dengue virus pathogenesis, because no other animals develop symptoms of disease, and research, therefore, has been limited to studies involving patients. Although epidemiologic and evolutionary studies have pointed to host and viral factors in determining disease outcome, only recently developed models could prove the importance of viral genotypes in causing severe epidemics. The influence of host immune status and mosquito vectorial capacity are also being tested in mathematical models to determine virus population dynamics. Therefore, new technologies are allowing us to better understand how specific virus variants cause more disease than others, and these virus variants should be targeted for detection, control, and treatment. PMID:17479944

  8. Water quality indicators: bacteria, coliphages, enteric viruses.

    PubMed

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  9. Impacts of West Nile Virus on wildlife

    USGS Publications Warehouse

    Saito, E.K.; Wild, M.A.

    2004-01-01

    The recent epidemic of West Nile virus in the United States proved to be unexpectedly active and was the largest epidemic of the virus ever recorded. Much remains to be discovered about the ecology and epidemiology of West Nile virus in the United States, including which species are important in maintaining the virus in nature, why some species are more susceptible to lethal infection, and what environmental factors are important in predicting future epidemics. These factors will likely vary regionally, depending on local ecological characteristics. Until scientists better understand the virus and factors influencing its activity, predicting its effects for future seasons is impossible. However, experts are certain about one thing: West Nile virus is here to stay.

  10. Control of virus diseases of citrus.

    PubMed

    Lee, Richard F

    2015-01-01

    Citrus is thought to have originated in Southeast Asia and horticulturally desirable clonal selections have been clonally cultivated for hundreds of years. While some citrus species have nucellar embryony, most cultivation of citrus has been by clonal propagation to ensure that propagated plants have the same traits as the parent selection. Clonal propagation also avoids juvenility, and the propagated plants produce fruit sooner. Because of the clonal propagation of citrus, citrus has accumulated a large number of viruses; many of these viruses are asymptomatic until a susceptible rootstock and/or scion is encountered. The viruses reported to occur in citrus will be summarized in this review. Methods of therapy to clean selected clones from viruses will be reviewed; the use of quarantine, clean stock, and certification programs for control of citrus viruses and other strategies to control insect spread citrus viruses, such as mild strain cross-protection and the use of pest management areas will be discussed.

  11. [Immune evasion by herpes simplex viruses].

    PubMed

    Retamal-Díaz, Angello R; Suazo, Paula A; Garrido, Ignacio; Kalergis, Alexis M; González, Pablo A

    2015-02-01

    Herpes simplex viruses and humans have co-existed for tens of thousands of years. This long relationship has translated into the evolution and selection of viral determinants to evade the host immune response and reciprocally the evolution and selection of host immune components for limiting virus infection and damage. Currently there are no vaccines available to avoid infection with these viruses or therapies to cure them. Herpes simplex viruses are neurotropic and reside latently in neurons at the trigeminal and dorsal root ganglia, occasionally reactivating. Most viral recurrences are subclinical and thus, unnoticed. Here, we discuss the initial steps of infection by herpes simplex viruses and the molecular mechanisms they have developed to evade innate and adaptive immunity. A better understanding of the molecular mechanisms evolved by these viruses to evade host immunity should help us envision novel vaccine strategies and therapies that limit infection and dissemination.

  12. Determination of Time Dependent Virus Inactivation Rates

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Vogler, E. T.

    2003-12-01

    A methodology is developed for estimating temporally variable virus inactivation rate coefficients from experimental virus inactivation data. The methodology consists of a technique for slope estimation of normalized virus inactivation data in conjunction with a resampling parameter estimation procedure. The slope estimation technique is based on a relatively flexible geostatistical method known as universal kriging. Drift coefficients are obtained by nonlinear fitting of bootstrap samples and the corresponding confidence intervals are obtained by bootstrap percentiles. The proposed methodology yields more accurate time dependent virus inactivation rate coefficients than those estimated by fitting virus inactivation data to a first-order inactivation model. The methodology is successfully applied to a set of poliovirus batch inactivation data. Furthermore, the importance of accurate inactivation rate coefficient determination on virus transport in water saturated porous media is demonstrated with model simulations.

  13. Satellite RNAs and Satellite Viruses of Plants.

    PubMed

    Hu, Chung-Chi; Hsu, Yau-Heiu; Lin, Na-Sheng

    2009-12-01

    The view that satellite RNAs (satRNAs) and satellite viruses are purely molecular parasites of their cognate helper viruses has changed. The molecular mechanisms underlying the synergistic and/or antagonistic interactions among satRNAs/satellite viruses, helper viruses, and host plants are beginning to be comprehended. This review aims to summarize the recent achievements in basic and practical research, with special emphasis on the involvement of RNA silencing mechanisms in the pathogenicity, population dynamics, and, possibly, the origin(s) of these subviral agents. With further research following current trends, the comprehensive understanding of satRNAs and satellite viruses could lead to new insights into the trilateral interactions among host plants, viruses, and satellites.

  14. Mutualistic viruses and the heteronomy of life.

    PubMed

    Pradeu, Thomas

    2016-10-01

    Though viruses have generally been characterized by their pathogenic and more generally harmful effects, many examples of mutualistic viruses exist. Here I explain how the idea of mutualistic viruses has been defended in recent virology, and I explore four important conceptual and practical consequences of this idea. I ask to what extent this research modifies the way scientists might search for new viruses, our notion of how the host immune system interacts with microbes, the development of new therapeutic approaches, and, finally, the role played by the criterion of autonomy in our understanding of living things. Overall, I suggest that the recognition of mutualistic viruses plays a major role in a wider ongoing revision of our conception of viruses.

  15. Study of virus by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Moor, K.; Kitamura, H.; Hashimoto, K.; Sawa, M.; Andriana, B. B.; Ohtani, K.; Yagura, T.; Sato, H.

    2013-02-01

    Problem of viruses is very actual for nowadays. Some viruses, which are responsible for human of all tumors, are about 15 %. Main purposes this study, early detection virus in live cell without labeling and in the real time by Raman spectroscopy. Micro Raman spectroscopy (mRs) is a technique that uses a Raman spectrometer to measure the spectra of microscopic samples. According to the Raman spectroscopy, it becomes possible to study the metabolites of a live cultured cell without labeling. We used mRs to detect the virus via HEK 293 cell line-infected adenovirus. We obtained raman specters of lives cells with viruses in 24 hours and 7 days after the infection. As the result, there is some biochemical changing after the treatment of cell with virus. One of biochemical alteration is at 1081 cm-1. For the clarification result, we use confocal fluorescent microscopy and transmission electron microscopy (TEM).

  16. Virus infections in Brazilian honey bees.

    PubMed

    Teixeira, Erica Weinstein; Chen, Yanping; Message, Dejair; Pettis, Jeff; Evans, Jay D

    2008-09-01

    This work describes the first molecular-genetic evidence for viruses in Brazilian honey bee samples. Three different bee viruses, Acute bee paralysis virus (ABPV), Black queen cell virus (BQCV), and Deformed wing virus (DWV) were identified during a screening of RNAs from 1920 individual adult bees collected in a region of southeastern Brazil that has recently shown unusual bee declines. ABPV was detected in 27.1% of colony samples, while BQCV and DWV were found in 37% and 20.3%, respectively. These levels are substantially lower than the frequencies found for these viruses in surveys from other parts of the world. We also developed and validated a multiplex RT-PCR assay for the simultaneous detection of ABPV, BQCV, and DWV in Brazil.

  17. Variola virus immune evasion proteins.

    PubMed

    Dunlop, Lance R; Oehlberg, Katherine A; Reid, Jeremy J; Avci, Dilek; Rosengard, Ariella M

    2003-09-01

    Variola virus, the causative agent of smallpox, encodes approximately 200 proteins. Over 80 of these proteins are located in the terminal regions of the genome, where proteins associated with host immune evasion are encoded. To date, only two variola proteins have been characterized. Both are located in the terminal regions and demonstrate immunoregulatory functions. One protein, the smallpox inhibitor of complement enzymes (SPICE), is homologous to a vaccinia virus virulence factor, the vaccinia virus complement-control protein (VCP), which has been found experimentally to be expressed early in the course of vaccinia infection. Both SPICE and VCP are similar in structure and function to the family of mammalian complement regulatory proteins, which function to prevent inadvertent injury to adjacent cells and tissues during complement activation. The second variola protein is the variola virus high-affinity secreted chemokine-binding protein type II (CKBP-II, CBP-II, vCCI), which binds CC-chemokine receptors. The vaccinia homologue of CKBP-II is secreted both early and late in infection. CKBP-II proteins are highly conserved among orthopoxviruses, sharing approximately 85% homology, but are absent in eukaryotes. This characteristic sets it apart from other known virulence factors in orthopoxviruses, which share sequence homology with known mammalian immune regulatory gene products. Future studies of additional variola proteins may help illuminate factors associated with its virulence, pathogenesis and strict human tropism. In addition, these studies may also assist in the development of targeted therapies for the treatment of both smallpox and human immune-related diseases.

  18. Treatment of ebola virus disease.

    PubMed

    Kilgore, Paul E; Grabenstein, John D; Salim, Abdulbaset M; Rybak, Michael

    2015-01-01

    In March 2014, the largest Ebola outbreak in history exploded across West Africa. As of November 14, 2014, the World Health Organization has reported a total of 21,296 Ebola virus disease (EVD) cases, including 13,427 laboratory-confirmed EVD cases reported from the three most affected countries (Guinea, Liberia, and Sierra Leone). As the outbreak of EVD has spread, clinical disease severity and national EVD case-fatality rates have remained high (21.2-60.8%). Prior to 2013, several EVD outbreaks were controlled by using routine public health interventions; however, the widespread nature of the current EVD outbreak as well as cultural practices in the affected countries have challenged even the most active case identification efforts. In addition, although treatment centers provide supportive care, no effective therapeutic agents are available for EVD-endemic countries. The ongoing EVD outbreak has stimulated investigation of several different therapeutic strategies that target specific viral structures and mechanisms of Ebola viruses. Six to eight putative pharmacotherapies or immunologically based treatments have demonstrated promising results in animal studies. In addition, agents composed of small interfering RNAs targeting specific proteins of Ebola viruses, traditional hyperimmune globulin isolated from Ebola animal models, monoclonal antibodies, and morpholino oligomers (small molecules used to block viral gene expression). A number of EVD therapeutic agents are now entering accelerated human trials in EVD-endemic countries. The goal of therapeutic agent development includes postexposure prevention and EVD cure. As knowledge of Ebola virus virology and pathogenesis grows, it is likely that new therapeutic tools will be developed. Deployment of novel Ebola therapies will require unprecedented cooperation as well as investment to ensure that therapeutic tools become available to populations at greatest risk for EVD and its complications. In this article, we

  19. Probiotics in respiratory virus infections.

    PubMed

    Lehtoranta, L; Pitkäranta, A; Korpela, R

    2014-08-01

    Viral respiratory infections are the most common diseases in humans. A large range of etiologic agents challenge the development of efficient therapies. Research suggests that probiotics are able to decrease the risk or duration of respiratory infection symptoms. However, the antiviral mechanisms of probiotics are unclear. The purpose of this paper is to review the current knowledge on the effects of probiotics on respiratory virus infections and to provide insights on the possible antiviral mechanisms of probiotics. A PubMed and Scopus database search was performed up to January 2014 using appropriate search terms on probiotic and respiratory virus infections in cell models, in animal models, and in humans, and reviewed for their relevance. Altogether, thirty-three clinical trials were reviewed. The studies varied highly in study design, outcome measures, probiotics, dose, and matrices used. Twenty-eight trials reported that probiotics had beneficial effects in the outcome of respiratory tract infections (RTIs) and five showed no clear benefit. Only eight studies reported investigating viral etiology from the respiratory tract, and one of these reported a significant decrease in viral load. Based on experimental studies, probiotics may exert antiviral effects directly in probiotic-virus interaction or via stimulation of the immune system. Although probiotics seem to be beneficial in respiratory illnesses, the role of probiotics on specific viruses has not been investigated sufficiently. Due to the lack of confirmatory studies and varied data available, more randomized, double-blind, and placebo-controlled trials in different age populations investigating probiotic dose response, comparing probiotic strains/genera, and elucidating the antiviral effect mechanisms are necessary.

  20. Resistant Pathogens, Fungi, and Viruses

    PubMed Central

    Guidry, Christopher A.; Mansfield, Sara A.; Sawyer, Robert G.; Cook, Charles H.

    2014-01-01

    The first reports of antibiotic pathogens occurred a few short years after the introduction of these powerful new agents, heralding a new kind of war between medicine and pathogens. Although originally described in Staphylococcus aureus, resistance among bacteria has now become a grim race to determine which classes of bacteria will become more resistant, pitting the Gram positive staphylococci, enterococci, and streptococci against the increasingly resistant Gram negative pathogens, e. g., carbapenemase-resistant enterobacteriaceae. In addition, the availability of antibacterial agents has allowed the development of whole new kinds of diseases caused by non-bacterial pathogens, related largely to fungi that are inherently resistant to antibacterials. All of these organisms are becoming more prevalent and, ultimately, more clinically relevant for surgeons. It is ironic that despite their ubiquity in our communities, there is seldom a second thought given to viral infections in patients with surgical illness. The extent of most surgeon’s interest in viral infections ends with hepatitis and HIV, no doubt related to transmissibility as well as the implications that these viruses might have in a patient’s hepatic or immune functions. There are chapters and even textbooks written about these viruses so these will not be considered here. Instead, we will present the growing body of knowledge of the herpes family viruses and their occurrence and consequences in patients with concomitant surgical disease or critical illness. We have also chosen to focus this chapter on previously immune competent patients, as the impact of herpes family viruses in immunosuppressed patients such as transplant or AIDS patients has received thorough treatment elsewhere. PMID:25440119