Science.gov

Sample records for atherosclerotic plaque volume

  1. Lipid volume fraction in atherosclerotic plaque phantoms classified under saline conditions by multispectral angioscopy at near-infrared wavelengths around 1200 nm.

    PubMed

    Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-05-01

    To identify high-risk atherosclerotic lesions, we require detailed information on the stability of atherosclerotic plaques. In this study, we quantitatively classified the lipid volume fractions in atherosclerotic plaque phantoms by a novel angioscope combined with near-infrared multispectral imaging. The multispectral angioscope was operated at peak absorption wavelengths of lipid in vulnerable plaques (1150, 1200, and 1300 nm) and at lower absorption wavelengths of water. The potential of the multispectral angioscope was demonstrated in atherosclerotic plaque phantoms containing 10-60 vol.% lipid and immersed in saline solution. The acquired multispectral data were processed by a spectral angle mapper algorithm, which enhanced the simulated plaque areas. Consequently, we classified the lipid volume fractions into five categories (0-5, 5-15, 15-30, 30-50, and 50-60 vol.%). Multispectral angioscopy at wavelengths around 1200 nm is a powerful tool for quantitatively evaluating the stability of atherosclerotic plaques based on the lipid volume fractions.

  2. [Is regression of atherosclerotic plaque possible?

    PubMed

    Páramo, José A; Civeira, Fernando

    As it is well-known, a thrombus evolving into a disrupted/eroded atherosclerotic plaque causes most acute coronary syndromes. Plaque stabilization via reduction of the lipid core and/or thickening of the fibrous cap is one of the possible mechanisms accounted for the clinical benefits displayed by different anti-atherosclerotic strategies. The concept of plaque stabilization was developed to explain how lipid-lowering agents could decrease adverse coronary events without substantial modifications of the atherosclerotic lesion ('angiographic paradox'). A number of imaging modalities (vascular ultrasound and virtual histology, MRI, optical coherence tomography, positron tomography, etc.) are used for non-invasive assessment of atherosclerosis; most of them can identify plaque volume and composition beyond lumen stenosis. An 'aggressive' lipid-lowering strategy is able to reduce the plaque burden and the incidence of cardiovascular events; this may be attributable, at least in part, to plaque-stabilizing effects.

  3. Progress in atherosclerotic plaque imaging

    PubMed Central

    Soloperto, Giulia; Casciaro, Sergio

    2012-01-01

    Cardiovascular diseases are the primary cause of mortality in the industrialized world, and arterial obstruction, triggered by rupture-prone atherosclerotic plaques, lead to myocardial infarction and cerebral stroke. Vulnerable plaques do not necessarily occur with flow-limiting stenosis, thus conventional luminographic assessment of the pathology fails to identify unstable lesions. In this review we discuss the currently available imaging modalities used to investigate morphological features and biological characteristics of the atherosclerotic plaque. The different imaging modalities such as ultrasound, magnetic resonance imaging, computed tomography, nuclear imaging and their intravascular applications are illustrated, highlighting their specific diagnostic potential. Clinically available and upcoming methodologies are also reviewed along with the related challenges in their clinical translation, concerning the specific invasiveness, accuracy and cost-effectiveness of these methods. PMID:22937215

  4. Accurate quantification of atherosclerotic plaque volume by 3D vascular ultrasound using the volumetric linear array method.

    PubMed

    López-Melgar, Beatriz; Fernández-Friera, Leticia; Sánchez-González, Javier; Vilchez, Jean Paul; Cecconi, Alberto; Mateo, Jesús; Peñalvo, José L; Oliva, Belén; García-Ruiz, Jose M; Kauffman, Steve; Jiménez-Borreguero, Luis Jesús; Ruiz-Cabello, Jesús; Fernández-Ortiz, Antonio; Ibáñez, Borja; Fuster, Valentín

    2016-05-01

    Direct quantification of atherosclerotic plaque volume by three-dimensional vascular ultrasound (3DVUS) is more reproducible than 2DUS-based three-dimensional (2D/3D) techniques that generate pseudo-3D volumes from summed 2D plaque areas; however, its accuracy has not been reported. We aimed to determine 3DVUS accuracy for plaque volume measurement with special emphasis on small plaques (a hallmark of early atherosclerosis). The in vitro study consisted of nine phantoms of different volumes (small and medium-large) embedded at variable distances from the surface (superficial vs. >5 cm-depth) and comparison of 3DVUS data generated using a novel volumetric-linear array method with the real phantom volumes. The in vivo study was undertaken in a rabbit model of atherosclerosis in which 3DVUS and 2D/3D volume measurements were correlated against gold-standard histological measurements. In the in vitro setting, there was a strong correlation between 3DVUS measures and real phantom volume both for small (3.0-64.5 mm(3) size) and medium-large (91.1-965.5 mm(3) size) phantoms embedded superficially, with intraclass correlation coefficients (ICC) of 0.99 and 0.98, respectively; conversely, when phantoms were placed at >5 cm, the correlation was only moderate (ICC = 0.67). In the in vivo setting there was strong correlation between 3DVUS-measured plaque volumes and the histological gold-standard (ICC = 0.99 [4.02-92.5 mm(3) size]). Conversely, the correlation between 2D/3D values and the histological gold standard (sum of plaque areas) was weaker (ICC = 0.87 [49-520 mm(2) size]), with large dispersion of the differences between measurements in Bland-Altman plots (mean error, 79.2 mm(2)). 3DVUS using the volumetric-linear array method accurately measures plaque volumes, including those of small plaques. Measurements are more accurate for superficial arterial territories than for deep territories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    NASA Astrophysics Data System (ADS)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  6. The vulnerable and unstable atherosclerotic plaque.

    PubMed

    Fishbein, Michael C

    2010-01-01

    The lesion responsible for the overwhelming majority of acute coronary events is plaque disruption or erosion with superimposed thrombosis. The term "vulnerable plaque" has been used to describe those atherosclerotic plaques that are particularly susceptible to disruption. Vulnerable plaques are generally characterized as those having a thin inflamed fibrous cap over a very large lipid core. However, only a small percentage of such plaques rupture, and plaques with different characteristics may also rupture and thrombose. Most autopsy, intravascular ultrasound, and recent computed tomography angiographic studies of coronary arteries reveal large plaques at sites of rupture. While angiographic data are said to show less severe narrowing at sites of plaque rupture, actual review of data indicates that, even angiographically, more than 50% of plaques have greater than 75% cross-sectional area stenosis at sites of plaque rupture. If plaque rupture is more common at the shoulder region of a plaque, one could envision that this would be at a peripheral site of the plaque where the plaque may not be as large or occlusive. New knowledge about vulnerable plaques is emerging through the evolution of novel techniques used to study plaques in vivo. These methods combine sophisticated imaging techniques, often in conjunction with molecular biomarkers, that provide new insights into plaque biology. Since atherosclerotic coronary artery disease is such a widespread and fatal disease, it is important that we continue to strive for a greater understanding of the nature of the vulnerable plaque. Only then can rational interventions for this disorder be developed and implemented.

  7. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation.

    PubMed

    Tang, Jun; Lobatto, Mark E; Hassing, Laurien; van der Staay, Susanne; van Rijs, Sarian M; Calcagno, Claudia; Braza, Mounia S; Baxter, Samantha; Fay, Francois; Sanchez-Gaytan, Brenda L; Duivenvoorden, Raphaël; Sager, Hendrik; Astudillo, Yaritzy M; Leong, Wei; Ramachandran, Sarayu; Storm, Gert; Pérez-Medina, Carlos; Reiner, Thomas; Cormode, David P; Strijkers, Gustav J; Stroes, Erik S G; Swirski, Filip K; Nahrendorf, Matthias; Fisher, Edward A; Fayad, Zahi A; Mulder, Willem J M

    2015-04-01

    Inflammation drives atherosclerotic plaque progression and rupture, and is a compelling therapeutic target. Consequently, attenuating inflammation by reducing local macrophage accumulation is an appealing approach. This can potentially be accomplished by either blocking blood monocyte recruitment to the plaque or increasing macrophage apoptosis and emigration. Because macrophage proliferation was recently shown to dominate macrophage accumulation in advanced plaques, locally inhibiting macrophage proliferation may reduce plaque inflammation and produce long-term therapeutic benefits. To test this hypothesis, we used nanoparticle-based delivery of simvastatin to inhibit plaque macrophage proliferation in apolipoprotein E deficient mice (Apoe(-/-) ) with advanced atherosclerotic plaques. This resulted in rapid reduction of plaque inflammation and favorable phenotype remodeling. We then combined this short-term nanoparticle intervention with an eight-week oral statin treatment, and this regimen rapidly reduced and continuously suppressed plaque inflammation. Our results demonstrate that pharmacologically inhibiting local macrophage proliferation can effectively treat inflammation in atherosclerosis.

  8. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation

    PubMed Central

    Tang, Jun; Lobatto, Mark E.; Hassing, Laurien; van der Staay, Susanne; van Rijs, Sarian M.; Calcagno, Claudia; Braza, Mounia S.; Baxter, Samantha; Fay, Francois; Sanchez-Gaytan, Brenda L.; Duivenvoorden, Raphaël; Sager, Hendrik B.; Astudillo, Yaritzy M.; Leong, Wei; Ramachandran, Sarayu; Storm, Gert; Pérez-Medina, Carlos; Reiner, Thomas; Cormode, David P.; Strijkers, Gustav J.; Stroes, Erik S. G.; Swirski, Filip K.; Nahrendorf, Matthias; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2015-01-01

    Inflammation drives atherosclerotic plaque progression and rupture, and is a compelling therapeutic target. Consequently, attenuating inflammation by reducing local macrophage accumulation is an appealing approach. This can potentially be accomplished by either blocking blood monocyte recruitment to the plaque or increasing macrophage apoptosis and emigration. Because macrophage proliferation was recently shown to dominate macrophage accumulation in advanced plaques, locally inhibiting macrophage proliferation may reduce plaque inflammation and produce long-term therapeutic benefits. To test this hypothesis, we used nanoparticle-based delivery of simvastatin to inhibit plaque macrophage proliferation in apolipoprotein E–deficient mice (Apoe−/−) with advanced atherosclerotic plaques. This resulted in the rapid reduction of plaque inflammation and favorable phenotype remodeling. We then combined this short-term nanoparticle intervention with an 8-week oral statin treatment, and this regimen rapidly reduced and continuously suppressed plaque inflammation. Our results demonstrate that pharmacologically inhibiting local macrophage proliferation can effectively treat inflammation in atherosclerosis. PMID:26295063

  9. Inelasticity of human carotid atherosclerotic plaque.

    PubMed

    Maher, Eoghan; Creane, Arthur; Sultan, Sherif; Hynes, Niamh; Lally, Caitríona; Kelly, Daniel J

    2011-09-01

    Little mechanical test data exists regarding the inelastic behavior of atherosclerotic plaques. As a result finite element (FE) models of stenting procedures commonly use hyperelastic material models to describe the soft tissue response thus limiting the accuracy of the model to the expansion stage of stent implantation and leave them unable to predict the lumen gain. In this study, cyclic mechanical tests were performed to characterize the inelastic behavior of fresh human carotid atherosclerotic plaque tissue due to radial compressive loading. Plaques were classified clinically as either mixed (M), calcified (Ca), or echolucent (E). An approximately linear increase in the plastic deformation was observed with increases in the peak applied strain for all plaque types. While calcified plaques generally appeared stiffest, it was observed that the clinical classification of plaques had no significant effect on the magnitude of permanent deformation on unloading. The test data was characterized using a constitutive model that accounts for both permanent deformation and stress softening to describe the compressive plaque behavior on unloading. Material constants are reported for individual plaques as well as mean values for each plaque classification. This data can be considered as a first step in characterizing the inelastic behavior of atherosclerotic plaques and could be used in combination with future mechanical data to improve the predictive capabilities of FE models of angioplasty and stenting procedures particularly in relation to lumen gain.

  10. Fluorescence lifetime imaging microscopy for the characterization of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Phipps, Jennifer; Sun, Yinghua; Saroufeem, Ramez; Hatami, Nisa; Marcu, Laura

    2009-02-01

    Atherosclerotic plaque composition has been associated with plaque instability and rupture. This study investigates the use of fluorescence lifetime imaging microscopy (FLIM) for mapping plaque composition and assessing features of vulnerability. Measurements were conducted in atherosclerotic human aortic samples using an endoscopic FLIM system (spatial resolution of 35 µm temporal resolution 200 ps) developed in our lab which allows mapping in one measurement the composition within a volume of 4 mm diameter x 250 µm depth. Each pixel in the image represents a corresponding fluorescence lifetime value; images are formed through a flexible 0.6 mm side-viewing imaging bundle which allows for further intravascular applications. Based on previously recorded spectra of human atherosclerotic plaque, fluorescence emission was collected through two filters: f1: 377/50 and f2: 460/60 (center wavelength/bandwidth), which together provides the greatest discrimination between intrinsic fluorophores related to plaque vulnerability. We have imaged nine aortas and lifetime images were retrieved using a Laguerre expansion deconvolution technique and correlated with histopathology. Early results demonstrate discrimination using fluorescence lifetime between early, lipid-rich, and collagen-rich lesions which are consistent with previously reported time-resolved atherosclerotic plaque measurements.

  11. Atherosclerotic plaque regression: fact or fiction?

    PubMed

    Shanmugam, Nesan; Román-Rego, Ana; Ong, Peter; Kaski, Juan Carlos

    2010-08-01

    Coronary artery disease is the major cause of death in the western world. The formation and rapid progression of atheromatous plaques can lead to serious cardiovascular events in patients with atherosclerosis. The better understanding, in recent years, of the mechanisms leading to atheromatous plaque growth and disruption and the availability of powerful HMG CoA-reductase inhibitors (statins) has permitted the consideration of plaque regression as a realistic therapeutic goal. This article reviews the existing evidence underpinning current therapeutic strategies aimed at achieving atherosclerotic plaque regression. In this review we also discuss imaging modalities for the assessment of plaque regression, predictors of regression and whether plaque regression is associated with a survival benefit.

  12. Lipidome of Atherosclerotic Plaques from Hypercholesterolemic Rabbits

    PubMed Central

    Bojic, Lazar A.; McLaren, David G.; Shah, Vinit; Previs, Stephen F.; Johns, Douglas G.; Castro-Perez, Jose M.

    2014-01-01

    The cellular, macromolecular and neutral lipid composition of the atherosclerotic plaque has been extensively characterized. However, a comprehensive lipidomic analysis of the major lipid classes within atherosclerotic lesions has not been reported. The objective of this study was to produce a detailed framework of the lipids that comprise the atherosclerotic lesion of a widely used pre-clinical model of plaque progression. Male New Zealand White rabbits were administered regular chow supplemented with 0.5% cholesterol (HC) for 12 weeks to induce hypercholesterolemia and atherosclerosis. Our lipidomic analyses of plaques isolated from rabbits fed the HC diet, using ultra-performance liquid chromatography (UPLC) and high-resolution mass spectrometry, detected most of the major lipid classes including: Cholesteryl esters, triacylglycerols, phosphatidylcholines, sphingomyelins, diacylglycerols, fatty acids, phosphatidylserines, lysophosphatidylcholines, ceramides, phosphatidylglycerols, phosphatidylinositols and phosphatidylethanolamines. Given that cholesteryl esters, triacylglycerols and phosphatidylcholines comprise greater than 75% of total plasma lipids, we directed particular attention towards the qualitative and quantitative assessment of the fatty acid composition of these lipids. We additionally found that sphingomyelins were relatively abundant lipid class within lesions, and compared the abundance of sphingomyelins to their precursor phosphatidylcholines. The studies presented here are the first approach to a comprehensive characterization of the atherosclerotic plaque lipidome. PMID:25517033

  13. Lipidome of atherosclerotic plaques from hypercholesterolemic rabbits.

    PubMed

    Bojic, Lazar A; McLaren, David G; Shah, Vinit; Previs, Stephen F; Johns, Douglas G; Castro-Perez, Jose M

    2014-12-15

    The cellular, macromolecular and neutral lipid composition of the atherosclerotic plaque has been extensively characterized. However, a comprehensive lipidomic analysis of the major lipid classes within atherosclerotic lesions has not been reported. The objective of this study was to produce a detailed framework of the lipids that comprise the atherosclerotic lesion of a widely used pre-clinical model of plaque progression. Male New Zealand White rabbits were administered regular chow supplemented with 0.5% cholesterol (HC) for 12 weeks to induce hypercholesterolemia and atherosclerosis. Our lipidomic analyses of plaques isolated from rabbits fed the HC diet, using ultra-performance liquid chromatography (UPLC) and high-resolution mass spectrometry, detected most of the major lipid classes including: Cholesteryl esters, triacylglycerols, phosphatidylcholines, sphingomyelins, diacylglycerols, fatty acids, phosphatidylserines, lysophosphatidylcholines, ceramides, phosphatidylglycerols, phosphatidylinositols and phosphatidylethanolamines. Given that cholesteryl esters, triacylglycerols and phosphatidylcholines comprise greater than 75% of total plasma lipids, we directed particular attention towards the qualitative and quantitative assessment of the fatty acid composition of these lipids. We additionally found that sphingomyelins were relatively abundant lipid class within lesions, and compared the abundance of sphingomyelins to their precursor phosphatidylcholines. The studies presented here are the first approach to a comprehensive characterization of the atherosclerotic plaque lipidome.

  14. Hyperspectral characterization of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Randeberg, Lise L.; Larsen, Eivind L. P.; Aksnes, Astrid; Haugen, Olav A.; Svaasand, Lars O.

    2009-07-01

    Imaging modalities like hyperspectral imaging create large amounts of data. Time efficient, automated analytic techniques are therefore required to enjoy the power of such methods. In this study it was investigated if hyperspectral imaging followed by automated noise filtering and statistical image analysis is a suitable method for characterization of the macroscopic structure of atherosclerotic lesions. Ten human aorta samples (6×8 cm) were collected during autopsy. Hyperspectral white light and fluorescence images and 5 - 6 biopsies were collected from each sample. The biopsies were stained (HES, Sudan red), and grouped according to histology. All images were noise filtered and normalized. Fluorescence spectra were collected from all biopsied regions, and used to compute average spectra for each histological group. Supervised classification was performed using Spectral angle mapping (SAM) with the average spectra as endmembers. K-means- and ISO-data clustering was used for unsupervised classification. The results show that noise filtering and normalization is essential for reliable classification. Supervised classification was in general found to perform better than unsupervised classification. However, the SAM results strongly depend on the variation in the spectra used to compute the average endmember spectra. The analysis show that fatty deposits, calcifications, connective tissue and hemoglobin can be identified. The lesions were found to have a complex structure where vulnerable regions could be found next to stabile regions within the same lesion. In conclusion hyperspectral imaging, automated filtering and -analysis was found to be a suitable tool to classify advanced atherosclerotic lesions.

  15. Nuclear Molecular Imaging for Vulnerable Atherosclerotic Plaques

    PubMed Central

    Lee, Soo Jin

    2015-01-01

    Atherosclerosis is an inflammatory disease as well as a lipid disorder. Atherosclerotic plaque formed in vessel walls may cause ischemia, and the rupture of vulnerable plaque may result in fatal events, like myocardial infarction or stroke. Because morphological imaging has limitations in diagnosing vulnerable plaque, molecular imaging has been developed, in particular, the use of nuclear imaging probes. Molecular imaging targets various aspects of vulnerable plaque, such as inflammatory cell accumulation, endothelial activation, proteolysis, neoangiogenesis, hypoxia, apoptosis, and calcification. Many preclinical and clinical studies have been conducted with various imaging probes and some of them have exhibited promising results. Despite some limitations in imaging technology, molecular imaging is expected to be used both in the research and clinical fields as imaging instruments become more advanced. PMID:26357491

  16. Macrophage heterogeneity in atherosclerotic plaques.

    PubMed

    Johnson, Jason L; Newby, Andrew C

    2009-10-01

    The varied behaviour of macrophages and foam cells during atherosclerosis and its clinical sequelae prompt the question whether all these activities can be the property of a single cell population. Subsets of monocytes with distinct patterns of surface markers and behaviours during inflammation have recently been characterized and shown to have complementary roles during progression of atherosclerosis. A variety of macrophage phenotypes derived from these monocyte subsets in response to mediators of innate and acquired immunity have also been found in plaques. Based on functional properties and genomic signatures, they may have different impacts on facets of plaque development, including fibrous cap and lipid core formation. Monocyte and macrophage phenotypic diversity is important in atherogenesis. More work is needed to define consistent marker sets for the different foam cell phenotypes in experimental animals and humans. Cell tracking studies are needed to establish their relationship with monocyte subtypes. In addition, genetic and pharmacological manipulation of phenotypes will be useful to define their functions and exploit the resulting therapeutic potential.

  17. Subsurface ablation of atherosclerotic plaque using ultrafast laser pulses

    PubMed Central

    Lanvin, Thomas; Conkey, Donald B.; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-01-01

    We perform subsurface ablation of atherosclerotic plaque using ultrafast pulses. Excised mouse aortas containing atherosclerotic plaque were ablated with ultrafast near-infrared (NIR) laser pulses. Optical coherence tomography (OCT) was used to observe the ablation result, while the physical damage was inspected in histological sections. We characterize the effects of incident pulse energy on surface damage, ablation hole size, and filament propagation. We find that it is possible to ablate plaque just below the surface without causing surface damage, which motivates further investigation of ultrafast ablation for subsurface atherosclerotic plaque removal. PMID:26203381

  18. Subsurface ablation of atherosclerotic plaque using ultrafast laser pulses.

    PubMed

    Lanvin, Thomas; Conkey, Donald B; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    We perform subsurface ablation of atherosclerotic plaque using ultrafast pulses. Excised mouse aortas containing atherosclerotic plaque were ablated with ultrafast near-infrared (NIR) laser pulses. Optical coherence tomography (OCT) was used to observe the ablation result, while the physical damage was inspected in histological sections. We characterize the effects of incident pulse energy on surface damage, ablation hole size, and filament propagation. We find that it is possible to ablate plaque just below the surface without causing surface damage, which motivates further investigation of ultrafast ablation for subsurface atherosclerotic plaque removal.

  19. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Tearney, Guillermo J.; Bouma, Brett E.

    2002-04-01

    Improved methods are needed to identify the vulnerable coronary plaques responsible for acute myocardial infraction or sudden cardiac death. We describe a method for characterizing the structure and biomechanical properties of atherosclerotic plaques based on speckle pattern fluctuations. Near-field speckle images were acquired from five human aortic specimens ex vivo. The speckle decorrelation time constant varied significantly for vulnerable aortic plaques (τ = 40 ms) versus stable plaques (τ = 400 ms) and normal aorta (τ = 500 ms). These initial results indicate that different atherosclerotic plaque types may be distinguished by analysis of temporal and spatial speckle pattern fluctuations.

  20. Cap buckling as a potential mechanism of atherosclerotic plaque vulnerability.

    PubMed

    Abdelali, Maria; Reiter, Steven; Mongrain, Rosaire; Bertrand, Michel; L'Allier, Philippe L; Kritikou, Ekaterini A; Tardif, Jean-Claude

    2014-04-01

    Plaque rupture in atherosclerosis is the primary cause of potentially deadly coronary events, yet about 40% of ruptures occur away from the plaque cap shoulders and cannot be fully explained with the current biomechanical theories. Here, cap buckling is considered as a potential destabilizing factor which increases the propensity of the atherosclerotic plaque to rupture and which may also explain plaque failure away from the cap shoulders. To investigate this phenomenon, quasistatic 2D finite element simulations are performed, considering the salient geometrical and nonlinear material properties of diverse atherosclerotic plaques over the range of physiological loads. The numerical results indicate that buckling may displace the location of the peak von Mises stresses in the deflected caps. Plaque buckling, together with its deleterious effects is further observed experimentally in plaque caps using a physical model of deformable mock coronary arteries with fibroatheroma. Moreover, an analytical approach combining quasistatic equilibrium equations with the Navier-Bresse formulas is used to demonstrate the buckling potential of a simplified arched slender cap under intraluminal pressure and supported by foundations. This analysis shows that plaque caps - calcified, fibrotic or cellular - may buckle in specific undulated shapes once submitted to critical loads. Finally, a preliminary analysis of intravascular ultrasonography recordings of patients with atherosclerotic coronary arteries corroborates the numerical, experimental and theoretical findings and shows that various plaque caps buckle in vivo. By displacing the sites of high stresses in the plaque cap, buckling may explain the atherosclerotic plaque cap rupture at various locations, including cap shoulders.

  1. Application of infrared fiber optic imaging in atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Guo, Bujin; Casscells, S. W.; Bearman, Gregory H.; McNatt, Janice; Naghevi, Morteza; Malik, Basit A.; Gul, Khawar; Willerson, James T.

    1999-07-01

    Rupture of atherosclerotic plaques - the main cause of heart attach and stokes - is not predictable. Hence even treadmill stress tests fail to detect many persons at risk. Fatal plaques are found at autopsies to be associated with active inflammatory cells. Classically, inflammation is detected by its swelling, red color, pain and heat. We have found that heat accurately locates the dangerous plaques that are significantly warmer then atherosclerotic plaques without the same inflammation. In order to develop a non-surgical method of locating these plaques, an IR fiber optic imaging system has been developed in our laboratory to evalute the causes and effect of heat in atherosclerotic plaques. The fiber optical imagin bundle consists of 900 individual As2S3 chalcogenide glass fibers which transmit IR radiation from 0.7 micrometers 7 micrometers with little energy loss. By combining that with a highly sensitive Indium Antimonide IR focal plane array detector, we are able to obtain thermal graphic images in situ. The temperature heterogeneity of atherosclerotic plaques developed in the arteral of the experimental animal models is under study with the new device. The preliminary experimental results from the animal model are encouraging. The potential of using this new technology in diagnostic evaluation of the vulnerable atherosclerotic plaques is considerable.

  2. Artery buckling affects the mechanical stress in atherosclerotic plaques

    PubMed Central

    2015-01-01

    Background Tortuous arteries are often seen in patients with hypertension and atherosclerosis. While the mechanical stress in atherosclerotic plaque under lumen pressure has been studied extensively, the mechanical stability of atherosclerotic arteries and subsequent effect on the plaque stress remain unknown. To this end, we investigated the buckling and post-buckling behavior of model stenotic coronary arteries with symmetric and asymmetric plaque. Methods Buckling analysis for a model coronary artery with symmetric and asymmetric plaque was conducted using finite element analysis based on the dimensions and nonlinear anisotropic materials properties reported in the literature. Results Artery with asymmetric plaque had lower critical buckling pressure compared to the artery with symmetric plaque and control artery. Buckling increased the peak stress in the plaque and led to the development of a high stress concentration in artery with asymmetric plaque. Stiffer calcified tissue and severe stenosis increased the critical buckling pressure of the artery with asymmetric plaque. Conclusions Arteries with atherosclerotic plaques are prone to mechanical buckling which leads to a high stress concentration in the plaques that can possibly make the plaques prone to rupture. PMID:25603490

  3. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis

    PubMed Central

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-01-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  4. CD44 targeting magnetic glyconanoparticles for atherosclerotic plaque imaging.

    PubMed

    El-Dakdouki, Mohammad H; El-Boubbou, Kheireddine; Kamat, Medha; Huang, Ruiping; Abela, George S; Kiupel, Matti; Zhu, David C; Huang, Xuefei

    2014-06-01

    The cell surface adhesion molecule CD44 plays important roles in the initiation and development of atherosclerotic plaques. We aim to develop nanoparticles that can selectively target CD44 for the non-invasive detection of atherosclerotic plaques by magnetic resonance imaging. Magnetic glyconanoparticles with hyaluronan immobilized on the surface have been prepared. The binding of these nanoparticles with CD44 was evaluated in vitro by enzyme linked immunosorbent assay, flow cytometry and confocal microscopy. In vivo magnetic resonance imaging of plaques was performed on an atherosclerotic rabbit model. The magnetic glyconanoparticles can selectively bind CD44. In T2* weighted magnetic resonance images acquired in vivo, significant contrast changes in aorta walls were observed with a very low dose of the magnetic nanoparticles, allowing the detection of atherosclerotic plaques. Furthermore, imaging could be performed without significant delay after probe administration. The selectivity of hyaluronan nanoparticles in plaque imaging was established by several control experiments. Magnetic nanoparticles bearing surface hyaluronan enabled the imaging of atherosclerotic plaques in vivo by magnetic resonance imaging. The low dose of nanoparticles required, the possibility to image without much delay and the high biocompatibility are the advantages of these nanoparticles as contrast agents for plaque imaging.

  5. CD44 Targeting Magnetic Glyconanoparticles for Atherosclerotic Plaque Imaging

    PubMed Central

    El-Dakdouki, Mohammad H.; El-Boubbou, Kheireddine; Kamat, Medha; Huang, Ruiping; Abela, George S.; Kiupel, Matti; Zhu, David C.; Huang, Xuefei

    2013-01-01

    Purpose The cell surface adhesion molecule CD44 plays important roles in the initiation and development of atherosclerotic plaques. We aim to develop nanoparticles that can selectively target CD44 for the non-invasive detection of atherosclerotic plaques by magnetic resonance imaging. Methods Magnetic glyco-nanoparticles with hyaluronan immobilized on the surface have been prepared. The binding of these nanoparticles with CD44 in vitro was evaluated by enzyme linked immunosorbent assay, flow cytometry and confocal microscopy. In vivo magnetic resonance imaging of plaques was performed on an atherosclerotic rabbit model. Results The magnetic glyconanoparticles can selectively bind CD44. In T2* weighted magnetic resonance images acquired in vivo, significant contrast changes in aorta walls were observed with a very low dose of the magnetic nanoparticles, allowing the detection of atherosclerotic plaques. Furthermore, imaging could be performed without significant delay after probe administration. The selectivity of hyaluronan nanoparticles in plaque imaging was established by several control experiments. Conclusions Magnetic nanoparticles bearing surface hyaluronan enabled the imaging of atherosclerotic plaques in vivo by magnetic resonance imaging. The low dose of nanoparticles required, the possibility to image without much delay and the high biocompatibility are the advantages of these nanoparticles as contrast agents for plaque imaging. PMID:23568520

  6. Imaging Modalities to Identity Inflammation in an Atherosclerotic Plaque

    PubMed Central

    Goel, Sunny; Miller, Avraham; Agarwal, Chirag; Zakin, Elina; Acholonu, Michael; Gidwani, Umesh; Sharma, Abhishek; Kulbak, Guy; Shani, Jacob; Chen, On

    2015-01-01

    Atherosclerosis is a chronic, progressive, multifocal arterial wall disease caused by local and systemic inflammation responsible for major cardiovascular complications such as myocardial infarction and stroke. With the recent understanding that vulnerable plaque erosion and rupture, with subsequent thrombosis, rather than luminal stenosis, is the underlying cause of acute ischemic events, there has been a shift of focus to understand the mechanisms that make an atherosclerotic plaque unstable or vulnerable to rupture. The presence of inflammation in the atherosclerotic plaque has been considered as one of the initial events which convert a stable plaque into an unstable and vulnerable plaque. This paper systemically reviews the noninvasive and invasive imaging modalities that are currently available to detect this inflammatory process, at least in the intermediate stages, and discusses the ongoing studies that will help us to better understand and identify it at the molecular level. PMID:26798515

  7. Automatic classification of atherosclerotic plaques imaged with intravascular OCT

    PubMed Central

    Rico-Jimenez, Jose J.; Campos-Delgado, Daniel U.; Villiger, Martin; Otsuka, Kenichiro; Bouma, Brett E.; Jo, Javier A.

    2016-01-01

    Intravascular optical coherence tomography (IV-OCT) allows evaluation of atherosclerotic plaques; however, plaque characterization is performed by visual assessment and requires a trained expert for interpretation of the large data sets. Here, we present a novel computational method for automated IV-OCT plaque characterization. This method is based on the modeling of each A-line of an IV-OCT data set as a linear combination of a number of depth profiles. After estimating these depth profiles by means of an alternating least square optimization strategy, they are automatically classified to predefined tissue types based on their morphological characteristics. The performance of our proposed method was evaluated with IV-OCT scans of cadaveric human coronary arteries and corresponding tissue histopathology. Our results suggest that this methodology allows automated identification of fibrotic and lipid-containing plaques. Moreover, this novel computational method has the potential to enable high throughput atherosclerotic plaque characterization. PMID:27867716

  8. Complement factor C5a induces atherosclerotic plaque disruptions

    PubMed Central

    Wezel, Anouk; de Vries, Margreet R; Lagraauw, H Maxime; Foks, Amanda C; Kuiper, Johan; Quax, Paul HA; Bot, Ilze

    2014-01-01

    Complement factor C5a and its receptor C5aR are expressed in vulnerable atherosclerotic plaques; however, a causal relation between C5a and plaque rupture has not been established yet. Accelerated atherosclerosis was induced by placing vein grafts in male apoE−/− mice. After 24 days, when advanced plaques had developed, C5a or PBS was applied locally at the lesion site in a pluronic gel. Three days later mice were killed to examine the acute effect of C5a on late stage atherosclerosis. A significant increase in C5aR in the plaque was detectable in mice treated with C5a. Lesion size and plaque morphology did not differ between treatment groups, but interestingly, local treatment with C5a resulted in a striking increase in the amount of plaque disruptions with concomitant intraplaque haemorrhage. To identify the potential underlying mechanisms, smooth muscle cells and endothelial cells were treated in vitro with C5a. Both cell types revealed a marked increase in apoptosis after stimulation with C5a, which may contribute to lesion instability in vivo. Indeed, apoptosis within the plaque was seen to be significantly increased after C5a treatment. We here demonstrate a causal role for C5a in atherosclerotic plaque disruptions, probably by inducing apoptosis. Therefore, intervention in complement factor C5a signalling may be a promising target in the prevention of acute atherosclerotic complications. PMID:25124749

  9. Intravascular photoacoustic imaging of gold nanorod-labeled atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Yeager, Doug; Karpiouk, Andrei; Wang, Bo; Amirian, James; Sokolov, Konstantin; Smalling, Richard; Emelianov, Stanislav

    2012-02-01

    Combined intravascular photoacoustic (IVPA) and intravascular ultrasound (IVUS) imaging has been previously established as a viable means for imaging atherosclerotic plaques using both endogenous and exogenous contrast. In this study, IVUS/IVPA imaging of an atherosclerotic rabbit aorta following injection of gold nanorods (AuNR) with peak absorbance within the tissue optical window was performed. Ex-vivo imaging results revealed high photoacoustic signal from localized AuNR. Corresponding histological cross-sections and digital photographs of the artery lumen confirmed the presence of AuNR preferentially located at atherosclerotic regions and in agreement with IVPA signal. Furthermore, an integrated IVUS/IVPA imaging catheter was used to image the AuNR in the presence of luminal blood. The results suggest that AuNR allow for IVPA imaging of exogenously labeled atherosclerotic plaques with a comparatively low background signal and without the need for arterial flushing.

  10. Vulnerable atherosclerotic plaque detection by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-hui; Boydston-White, Susie; Weisberg, Arel; Wang, Wubao; Sordillo, Laura A.; Perotte, Adler; Tomaselli, Vincent P.; Sordillo, Peter P.; Pei, Zhe; Shi, Lingyan; Alfano, Robert R.

    2016-12-01

    A clear correlation has been observed between the resonance Raman (RR) spectra of plaques in the aortic tunica intimal wall of a human corpse and three states of plaque evolution: fibrolipid plaques, calcified and ossified plaques, and vulnerable atherosclerotic plaques (VPs). These three states of atherosclerotic plaque lesions demonstrated unique RR molecular fingerprints from key molecules, rendering their spectra unique with respect to one another. The vibrational modes of lipids, cholesterol, carotenoids, tryptophan and heme proteins, the amide I, II, III bands, and methyl/methylene groups from the intrinsic atherosclerotic VPs in tissues were studied. The salient outcome of the investigation was demonstrating the correlation between RR measurements of VPs and the thickness measurements of fibrous caps on VPs using standard histopathology methods, an important metric in evaluating the stability of a VP. The RR results show that VPs undergo a structural change when their caps thin to 66 μm, very close to the 65-μm empirical medical definition of a thin cap fibroatheroma plaque, the most unstable type of VP.

  11. Antiinflammatory actions of inorganic nitrate stabilize the atherosclerotic plaque

    PubMed Central

    Khambata, Rayomand S.; Ghosh, Suborno M.; Rathod, Krishnaraj S.; Thevathasan, Tharssana; Filomena, Federica; Xiao, Qingzhong; Ahluwalia, Amrita

    2017-01-01

    Reduced bioavailable nitric oxide (NO) plays a key role in the enhanced leukocyte recruitment reflective of systemic inflammation thought to precede and underlie atherosclerotic plaque formation and instability. Recent evidence demonstrates that inorganic nitrate (NO3−) through sequential chemical reduction in vivo provides a source of NO that exerts beneficial effects upon the cardiovascular system, including reductions in inflammatory responses. We tested whether the antiinflammatory effects of inorganic nitrate might prove useful in ameliorating atherosclerotic disease in Apolipoprotein (Apo)E knockout (KO) mice. We show that dietary nitrate treatment, although having no effect upon total plaque area, caused a reduction in macrophage accumulation and an elevation in smooth muscle accumulation within atherosclerotic plaques of ApoE KO mice, suggesting plaque stabilization. We also show that in nitrate-fed mice there is reduced systemic leukocyte rolling and adherence, circulating neutrophil numbers, neutrophil CD11b expression, and myeloperoxidase activity compared with wild-type littermates. Moreover, we show in both the ApoE KO mice and using an acute model of inflammation that this effect upon neutrophils results in consequent reductions in inflammatory monocyte expression that is associated with elevations of the antiinflammatory cytokine interleukin (IL)-10. In summary, we demonstrate that inorganic nitrate suppresses acute and chronic inflammation by targeting neutrophil recruitment and that this effect, at least in part, results in consequent reductions in the inflammatory status of atheromatous plaque, and suggest that this effect may have clinical utility in the prophylaxis of inflammatory atherosclerotic disease. PMID:28057862

  12. Effects of dietary flaxseed on atherosclerotic plaque regression.

    PubMed

    Francis, Andrew A; Deniset, Justin F; Austria, Jose A; LaValleé, Renee K; Maddaford, Graham G; Hedley, Thomas E; Dibrov, Elena; Pierce, Grant N

    2013-06-15

    Dietary flaxseed can retard the progression of atherosclerotic plaques. However, it remains unclear whether these antiatherogenic effects extend to plaque regression. In the present study, the therapeutic potential of dietary flaxseed on atherosclerotic plaque regression and vascular contractile function was evaluated using a novel rabbit model. Rabbits were randomly assigned to receive either a regular diet for 12 wk (group I) or a 1% cholesterol-supplemented diet for 4 wk followed by a regular diet for 8 wk (group II). The remaining experimental animals were treated as in group II but were fed for an additional 14 wk with either a regular diet (group III) or a 10% flaxseed-supplemented diet (group IV). Animals in group II showed clear evidence of plaque growth stabilization. Their vessels also exhibited significantly lower norepinephrine-induced contraction and an impaired relaxation response to acetylcholine compared with animals in group I. Dietary flaxseed supplementation resulted in a significant ≈40% reduction in plaque formation (P = 0.033). Animals in both groups II and III displayed improved contraction and endothelium-dependent vessel relaxation. Dietary flaxseed is a valuable strategy to accelerate the regression of atherosclerotic plaques; however, flaxseed intervention did not demonstrate a clear beneficial effect on the vessel contractile response and endothelium-dependent vasorelaxation.

  13. Quantitative evaluation of lipid concentration in atherosclerotic plaque phantom by near-infrared multispectral angioscope at wavelengths around 1200 nm

    NASA Astrophysics Data System (ADS)

    Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio

    2015-07-01

    Atherosclerosis is a primary cause of critical ischemic diseases like heart infarction or stroke. A method that can provide detailed information about the stability of atherosclerotic plaques is required. We focused on spectroscopic techniques that could evaluate the chemical composition of lipid in plaques. A novel angioscope using multispectral imaging at wavelengths around 1200 nm for quantitative evaluation of atherosclerotic plaques was developed. The angioscope consists of a halogen lamp, an indium gallium arsenide (InGaAs) camera, 3 optical band pass filters transmitting wavelengths of 1150, 1200, and 1300 nm, an image fiber having 0.7 mm outer diameter, and an irradiation fiber which consists of 7 multimode fibers. Atherosclerotic plaque phantoms with 100, 60, 20 vol.% of lipid were prepared and measured by the multispectral angioscope. The acquired datasets were processed by spectral angle mapper (SAM) method. As a result, simulated plaque areas in atherosclerotic plaque phantoms that could not be detected by an angioscopic visible image could be clearly enhanced. In addition, quantitative evaluation of atherosclerotic plaque phantoms based on the lipid volume fractions was performed up to 20 vol.%. These results show the potential of a multispectral angioscope at wavelengths around 1200 nm for quantitative evaluation of the stability of atherosclerotic plaques.

  14. Cryotherapy increases features of plaque stability in atherosclerotic rabbits.

    PubMed

    Verheye, Stefan; Roth, Lynn; De Meyer, Inge; Van Hove, Cor E; Nahon, Daniel; Santoianni, Domenic; Yianni, John; Martinet, Wim; Buchbinder, Maurice; De Meyer, Guido R Y

    2016-08-20

    In the last 10 years, cryotherapy has been investigated as a new technology to treat vascular disease. The efficiency of cryotherapy in stabilising atherosclerotic plaques has never been described. The purpose of the present study was to evaluate the effect of catheter-based cryotherapy on atherosclerotic plaque composition in a rabbit model of atherosclerosis. Twenty-four New Zealand white rabbits were fed a 0.3% cholesterol-supplemented diet for 24 weeks. At two predefined sites of the atherosclerotic thoracic aorta, catheter-based cryotherapy, applying either single-dose, double-dose cryotherapy or control inflation, was performed after randomisation. Rabbits were continued on a cholesterol-supplemented diet for one day (acute) or four weeks (chronic). One day after cryotherapy, apoptotic cell death of smooth muscle cells (SMCs) and endothelial cells (ECs) was observed, whereas macrophages were unaffected. Four weeks later, the amount of SMCs was restored, the EC layer was regenerated, and a subendothelial macrophage-free layer was formed, indicative of a more stable plaque. In addition, both the thickness and the type I collagen content of the fibrous cap were increased. The present study demonstrated that cryotherapy is feasible and appears to stabilise atherosclerotic plaques in a rabbit model.

  15. Macrophage-targeted photodynamic detection of vulnerable atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; Tawakol, Ahmed; Castano, Ana P.; Gad, Faten; Zahra, Touqir; Ahmadi, Atosa; Stern, Jeremy; Ortel, Bernhard; Chirico, Stephanie; Shirazi, Azadeh; Syed, Sakeena; Muller, James E.

    2003-06-01

    Rupture of a vulnerable atherosclerotic plaque (VP) leading to coronary thrombosis is the chief cause of sudden cardiac death. VPs are angiographically insignificant lesions, which are excessively inflamed and characterized by dense macrophage infiltration, large necrotic lipid cores, thin fibrous caps, and paucity of smooth muscle cells. We have recently shown that chlorin(e6) conjugated with maleylated albumin can target macrophages with high selectivity via the scavenger receptor. We report the potential of this macrophage-targeted fluorescent probe to localize in VPs in a rabbit model of atherosclerosis, and allow detection and/or diagnosis by fluorescence spectroscopy or imaging. Atherosclerotic lesions were induced in New Zealand White rabbit aortas by balloon injury followed by administration of a high-fat diet. 24-hours after IV injection of the conjugate into atherosclerotic or normal rabbits, the animals were sacrificed, and aortas were removed, dissected and examined for fluorescence localization in plaques by fiber-based spectrofluorimetry and confocal microscopy. Dye uptake within the aortas was also quantified by fluorescence extraction of samples from aorta segments. Biodistribution of the dye was studied in many organs of the rabbits. Surface spectrofluorimetry after conjugate injection was able to distinguish between plaque and adjacent aorta, between atherosclerotic and normal aorta, and balloon-injured and normal iliac arteries with high significance. Discrete areas of high fluorescence (up to 20 times control were detected in the balloon-injured segments, presumably corresponding to macrophage-rich plaques. Confocal microscopy showed red ce6 fluorescence localized in plaques that showed abundant foam cells and macrophages by histology. Extraction data on aortic tissue corroborated the selectivity of the conjugate for plaques. These data support the strategy of employing macrophage-targeted fluorescent dyes to detect VP by intravascular

  16. Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques.

    PubMed

    Walsh, M T; Cunnane, E M; Mulvihill, J J; Akyildiz, A C; Gijsen, F J H; Holzapfel, G A

    2014-03-03

    The pathological changes associated with the development of atherosclerotic plaques within arterial vessels result in significant alterations to the mechanical properties of the diseased arterial wall. There are several methods available to characterise the mechanical behaviour of atherosclerotic plaque tissue, and it is the aim of this paper to review the use of uniaxial mechanical testing. In the case of atherosclerotic plaques, there are nine studies that employ uniaxial testing to characterise mechanical behaviour. A primary concern regarding this limited cohort of published studies is the wide range of testing techniques that are employed. These differing techniques have resulted in a large variance in the reported data making comparison of the mechanical behaviour of plaques from different vasculatures, and even the same vasculature, difficult and sometimes impossible. In order to address this issue, this paper proposes a more standardised protocol for uniaxial testing of diseased arterial tissue that allows for better comparisons and firmer conclusions to be drawn between studies. To develop such a protocol, this paper reviews the acquisition and storage of the tissue, the testing approaches, the post-processing techniques and the stress-strain measures employed by each of the nine studies. Future trends are also outlined to establish the role that uniaxial testing can play in the future of arterial plaque mechanical characterisation.

  17. Simulation of human atherosclerotic femoral plaque tissue: the influence of plaque material model on numerical results

    PubMed Central

    2015-01-01

    Background Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue. Methods Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue. Results Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen. Conclusions Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large

  18. Research Progress on the Risk Factors and Outcomes of Human Carotid Atherosclerotic Plaques

    PubMed Central

    Xiong, Xiang-Dong; Xiong, Wei-Dong; Xiong, Shang-Shen; Chen, Gui-Hai

    2017-01-01

    Objective: Atherosclerosis is an inflammatory process that results in complex lesions or plaques that protrude into the arterial lumen. Carotid atherosclerotic plaque rupture, with distal atheromatous debris embolization, causes cerebrovascular events. This review aimed to explore research progress on the risk factors and outcomes of human carotid atherosclerotic plaques, and the molecular and cellular mechanisms of human carotid atherosclerotic plaque vulnerability for therapeutic intervention. Data Sources: We searched the PubMed database for recently published research articles up to June 2016, with the key words of “risk factors”, “outcomes”, “blood components”, “molecular mechanisms”, “cellular mechanisms”, and “human carotid atherosclerotic plaques”. Study Selection: The articles, regarding the latest developments related to the risk factors and outcomes, atherosclerotic plaque composition, blood components, and consequences of human carotid atherosclerotic plaques, and the molecular and cellular mechanisms of human carotid atherosclerotic plaque vulnerability for therapeutic intervention, were selected. Results: This review described the latest researches regarding the interactive effects of both traditional and novel risk factors for human carotid atherosclerotic plaques, novel insights into human carotid atherosclerotic plaque composition and blood components, and consequences of human carotid atherosclerotic plaque. Conclusion: Carotid plaque biology and serologic biomarkers of vulnerability can be used to predict the risk of cerebrovascular events. Furthermore, plaque composition, rather than lesion burden, seems to most predict rupture and subsequent thrombosis. PMID:28303857

  19. In vitro atherosclerotic plaque and calcium quantitation by intravascular ultrasound and electron-beam computed tomography.

    PubMed

    Gutfinger, D E; Leung, C Y; Hiro, T; Maheswaran, B; Nakamura, S; Detrano, R; Kang, X; Tang, W; Tobis, J M

    1996-05-01

    The purpose of this investigation was to compare the accuracy of intravascular ultrasound (IVUS) and electron-beam computed tomography (EBCT) in quantitating human atherosclerotic plaque and calcium. In experiment 1, 12 human atherosclerotic arterial segments were obtained at autopsy and imaged by using IVUS and EBCT. The plaque from each arterial segment was dissected and a volume measurement of the dissected plaque was obtained by water displacement. The plaque from each arterial segment was ashed at 700 degrees F, and the weight of the remaining ashes was used as an estimate of the calcium mass. In experiment II, 11 calcified arterial segments were obtained at autopsy and imaged by using IVUS at one site along the artery. A corresponding histologic cross section stained with Masson's trichrome was prepared. In experiment I, the mean plaque volume measured by water displacement was 165.3 +/- 118.4 microliters. The mean plaque volume calculated by IVUS was 166.1 +/- 114.4 microliters and correlated closely with that by water displacement (r = 0.98, p < 0.0001). The mean calcium mass measured by ashing was 19.4 +/- 15.8 mg. The mean calculated calcium mass by EBCT was 19.9 mg and correlated closely with that by ashing (r=0.98, p<0.001). The mean calculated calcium volume by IVUS was 18.6 +/- 11.2 microliters and correlated linearly with the calcium mass by ashing (r = 0.87, p < 0.0003). In experiment II, the mean cross-sectional area of the calcified matrix was 1.71 +/- 0.66 mm2 by histologic examination compared with 1.44 +/- 0.66 mm2 by IVUS. There was a good correlation between the calcified cross-sectional area by histologic examination and IVUS (r = 0.76, p < 0.007); however, IVUS may underestimate the amount of calcium present depending on the intralesional calcium morphologic characteristics. In conclusion, IVUS accurately quantitates atherosclerotic plaque volume as well as the cross-sectional area and volume of intralesional calcium, especially if the

  20. Directional spatial frequency analysis of lipid distribution in atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Korn, Clyde; Reese, Eric; Shi, Lingyan; Alfano, Robert; Russell, Stewart

    2016-04-01

    Atherosclerosis is characterized by the growth of fibrous plaques due to the retention of cholesterol and lipids within the artery wall, which can lead to vessel occlusion and cardiac events. One way to evaluate arterial disease is to quantify the amount of lipid present in these plaques, since a higher disease burden is characterized by a higher concentration of lipid. Although therapeutic stimulation of reverse cholesterol transport to reduce cholesterol deposits in plaque has not produced significant results, this may be due to current image analysis methods which use averaging techniques to calculate the total amount of lipid in the plaque without regard to spatial distribution, thereby discarding information that may have significance in marking response to therapy. Here we use Directional Fourier Spatial Frequency (DFSF) analysis to generate a characteristic spatial frequency spectrum for atherosclerotic plaques from C57 Black 6 mice both treated and untreated with a cholesterol scavenging nanoparticle. We then use the Cauchy product of these spectra to classify the images with a support vector machine (SVM). Our results indicate that treated plaque can be distinguished from untreated plaque using this method, where no difference is seen using the spatial averaging method. This work has the potential to increase the effectiveness of current in-vivo methods of plaque detection that also use averaging methods, such as laser speckle imaging and Raman spectroscopy.

  1. Haemodynamical stress in mouse aortic arch with atherosclerotic plaques: Preliminary study of plaque progression

    PubMed Central

    Assemat, P.; Siu, K.K.; Armitage, J.A.; Hokke, S.N.; Dart, A.; Chin-Dusting, J.; Hourigan, K.

    2014-01-01

    Atherosclerotic plaques develop at particular sites in the arterial tree, and this regional localisation depends largely on haemodynamic parameters (such as wall shear stress; WSS) as described in the literature. Plaque rupture can result in heart attack or stroke and hence understanding the development and vulnerability of atherosclerotic plaques is critically important. The purpose of this study is to characterise the haemodynamics of blood flow in the mouse aortic arch using numerical modelling. The geometries are digitalised from synchrotron imaging and realistic pulsatile blood flow is considered under rigid wall assumptions. Two cases are considered; arteries with and without plaque. Mice that are fed under fat diet present plaques in the aortic arch whose size is dependent on the number of weeks under the diet. The plaque distribution in the region is however relatively constant through the different samples. This result underlines the influence of the geometry and consequently of the wall shear stresses for plaque formation with plaques growing in region of relative low shear stresses. A discussion of the flow field in real geometry in the presence and absence of plaques is conducted. The presence of plaques was shown to alter the blood flow and hence WSS distribution, with regions of localised high WSS, mainly on the wall of the brachiocephalic artery where luminal narrowing is most pronounced. In addition, arch plaques are shown to induce recirculation in the blood flow, a phenomenon with potential influence on the progression of the plaques. The oscillatory shear index and the relative residence time have been calculated on the geometry with plaques to show the presence of this recirculation in the arch, an approach that may be useful for future studies on plaque progression. PMID:25349678

  2. Laser speckle imaging of atherosclerotic plaques through optical fiber bundles

    PubMed Central

    Nadkarni, Seemantini K.; Bouma, Brett E.; Yelin, Dvir; Gulati, Amneet; Tearney, Guillermo J.

    2009-01-01

    Laser speckle imaging (LSI), a new technique that measures an index of plaque viscoelasticity, has been investigated recently to characterize atherosclerotic plaques. These prior studies demonstrated the diagnostic potential of LSI for detecting high-risk plaques and were conducted ex vivo. To conduct intracoronary LSI in vivo, the laser speckle pattern must be transmitted from the coronary wall to the image detector in the presence of cardiac motion. Small-diameter, flexible optical fiber bundles, similar to those used in coronary angioscopy, may be incorporated into an intravascular catheter for this purpose. A key challenge is that laser speckle is influenced by inter-fiber leakage of light, which may be exacerbated during bundle motion. In this study, we tested the capability of optical fiber bundles to transmit laser speckle patterns obtained from atherosclerotic plaques and evaluated the influence of motion on the diagnostic accuracy of fiber bundle-based LSI. Time-varying helium-neon laser speckle images of aortic plaques were obtained while cyclically moving the flexible length of the bundle to mimic coronary motion. Our results show that leached fiber bundles may reliably transmit laser speckle images in the presence of cardiac motion, providing a viable option to conduct intracoronary LSI. PMID:19021396

  3. Radionuclide imaging - A molecular key to the atherosclerotic plaque

    PubMed Central

    Langer, Harald Franz; Haubner, Roland; Pichler, Bernd Juergen; Gawaz, Meinrad

    2008-01-01

    Despite primary and secondary prevention, serious cardiovascular events like unstable angina or myocardial infarction still account for one third of all deaths worldwide. Therefore, identifying individual patients with vulnerable plaques at high risk for plaque rupture is a central challenge in cardiovascular medicine. Several non-invasive techniques, such as MRI, multislice computed tomography and electron beam tomography are currently being tested for their ability to identify such patients by morphological criteria. In contrast, molecular imaging techniques use radiolabeled molecules to detect functional aspects in atherosclerotic plaques by visualizing its biological activity. Based upon the knowledge about the pathophysiology of atherosclerosis, various studies in vitro, in vivo and the first clinical trials have used different tracers for plaque imaging studies, including radioactive labelled lipoproteins, components of the coagulation system, cytokines, mediators of the metalloproteinase system, cell adhesion receptors and even whole cells. This review gives an update on the relevant non-invasive plaque imaging approaches using nuclear imaging techniques to detect atherosclerotic vascular lesions. PMID:18582628

  4. Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression.

    PubMed

    Wezel, Anouk; Lagraauw, H Maxime; van der Velden, Daniël; de Jager, Saskia C A; Quax, Paul H A; Kuiper, Johan; Bot, Ilze

    2015-08-01

    Activated mast cells have been identified in the intima and perivascular tissue of human atherosclerotic plaques. As mast cells have been described to release a number of chemokines that mediate leukocyte fluxes, we propose that activated mast cells may play a pivotal role in leukocyte recruitment during atherosclerotic plaque progression. Systemic IgE-mediated mast cell activation in apoE(-/-)μMT mice resulted in an increase in atherosclerotic lesion size as compared to control mice, and interestingly, the number of neutrophils was highly increased in these lesions. In addition, peritoneal mast cell activation led to a massive neutrophil influx into the peritoneal cavity in C57Bl6 mice, whereas neutrophil numbers in mast cell deficient Kit(W(-sh)/W(-sh)) mice were not affected. Within the newly recruited neutrophil population, increased levels of CXCR2(+) and CXCR4(+) neutrophils were observed after mast cell activation. Indeed, mast cells were seen to contain and release CXCL1 and CXCL12, the ligands for CXCR2 and CXCR4. Intriguingly, peritoneal mast cell activation in combination with anti-CXCR2 receptor antagonist resulted in decreased neutrophil recruitment, thus establishing a prominent role for the CXCL1/CXCR2 axis in mast cell-mediated neutrophil recruitment. Our data suggest that chemokines, and in particular CXCL1, released from activated mast cells induce neutrophil recruitment to the site of inflammation, thereby aggravating the ongoing inflammatory response and thus affecting plaque progression and destabilization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Imaging of the Fibrous Cap in Atherosclerotic Carotid Plaque

    SciTech Connect

    Saba, Luca; Potters, Fons; Lugt, Aad van der; Mallarini, Giorgio

    2010-08-15

    In the last two decades, a substantial number of articles have been published to provide diagnostic solutions for patients with carotid atherosclerotic disease. These articles have resulted in a shift of opinion regarding the identification of stroke risk in patients with carotid atherosclerotic disease. In the recent past, the degree of carotid artery stenosis was the sole determinant for performing carotid intervention (carotid endarterectomy or carotid stenting) in these patients. We now know that the degree of stenosis is only one marker for future cerebrovascular events. If one wants to determine the risk of these events more accurately, other parameters must be taken into account; among these parameters are plaque composition, presence and state of the fibrous cap (FC), intraplaque haemorrhage, plaque ulceration, and plaque location. In particular, the FC is an important structure for the stability of the plaque, and its rupture is highly associated with a recent history of transient ischaemic attack or stroke. The subject of this review is imaging of the FC.

  6. Electrochemical Impedance Spectroscopy to Characterize Inflammatory Atherosclerotic Plaques

    PubMed Central

    Yu, Fei; Dai, Xiaohu; Beebe, Tyler; Hsiai, Tzung

    2011-01-01

    Despite advances in diagnosis and therapy, atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in the Western world. Predicting metabolically active atherosclerotic lesions has remained an unmet clinical need. We hereby developed an electrochemical strategy to characterize the inflammatory states of high-risk atherosclerotic plaques. Using the concentric bipolar microelectrodes, we sought to demonstrate distinct Electrochemical Impedance Spectroscopic (EIS) measurements for unstable atherosclerotic plaques that harbored active lipids and inflammatory cells. Using equivalent circuits to simulate vessel impedance at the electrode-endoluminal tissue interface, we demonstrated specific electric elements to model working and counter electrode interfaces as well as the tissue impedance. Using explants of human coronary, carotid, and femoral arteries at various Stary stages of atherosclerotic lesions (n = 15), we performed endoluminal EIS measurements (n = 147) and validated with histology and immunohistochemistry. We computed the vascular tissue resistance using the equivalent circuit model and normalized the resistance to the lesion-free regions. Tissue resistance was significantly elevated in the oxLDL-rich thin-cap atheromas (1.57±0.40, n = 14, p < 0.001) and fatty streaks (1.36±0.28, n = 33, p < 0.001) as compared with lesion-free region (1.00±0.18, n = 82) or oxLDL-absent fibrous atheromas (0.86±0.30, n = 12). Tissue resistance was also elevated in the calcified core of fibrous atheroma (2.37±0.60, n = 6, p < 0.001). Despite presence of fibrous structures, tissue resistance between ox-LDL-absent fibroatheroma and the lesion-free regions was statistically insignificant (0.86±0.30, n = 12, p > 0.05). Hence, we demonstrate that the application of EIS strategy was sensitive to detect fibrous cap oxLDL-rich lesions and specific to distinguish oxLDL-absent fibroatheroma. PMID:21959227

  7. Inadequate dietary magnesium intake increases atherosclerotic plaque development in rabbits

    PubMed Central

    King, Jennifer L.; Miller, Rita J.; Blue, James P.; O'Brien, William D.; Erdman, John W.

    2012-01-01

    Epidemiological studies have shown dietary magnesium (Mg) intake and serum Mg levels to be inversely correlated with the development of atherosclerosis. We hypothesized that low levels of Mg would promote atherosclerotic plaque development in rabbits. New Zealand white rabbits (4 months old, n = 22) were fed an atherogenic diet containing 0.12% (−Mg), 0.27% (control), or 0.43% (+Mg) Mg for 8 weeks. Blood samples were obtained at baseline, 2, 4, 6, and 8 weeks and were assayed for total cholesterol, high-density lipoprotein (HDL), non-HDL, triglycerides (TG), C-reactive protein, serum Mg, and erythrocyte Mg. Aortas from −Mg had significantly more plaque, with an intima thickness 42% greater than control and 36% greater than +Mg. Serum cholesterol levels rose over time, and at 8 weeks, −Mg had the highest and +Mg the lowest total and non-HDL cholesterol and TG levels, although these results did not reach significance. Over time, serum Mg levels increased, and erythrocyte Mg levels decreased. C-reactive protein significantly increased in all groups at 4 and 6 weeks but returned to baseline levels by 8 weeks. This study supports the hypothesis that inadequate intake of Mg results in an increase in atherosclerotic plaque development in rabbits. PMID:19555816

  8. Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque

    PubMed Central

    Šćepanović, Obrad R.; Fitzmaurice, Maryann; Miller, Arnold; Kong, Chae-Ryon; Volynskaya, Zoya; Dasari, Ramachandra R.; Kramer, John R.; Feld, Michael S.

    2011-01-01

    Early detection and treatment of rupture-prone vulnerable atherosclerotic plaques is critical to reducing patient mortality associated with cardiovascular disease. The combination of reflectance, fluorescence, and Raman spectroscopy—termed multimodal spectroscopy (MMS)—provides detailed biochemical information about tissue and can detect vulnerable plaque features: thin fibrous cap (TFC), necrotic core (NC), superficial foam cells (SFC), and thrombus. Ex vivo MMS spectra are collected from 12 patients that underwent carotid endarterectomy or femoral bypass surgery. Data are collected by means of a unitary MMS optical fiber probe and a portable clinical instrument. Blinded histopathological analysis is used to assess the vulnerability of each spectrally evaluated artery lesion. Modeling of the ex vivo MMS spectra produce objective parameters that correlate with the presence of vulnerable plaque features: TFC with fluorescence parameters indicative of collagen presence; NC∕SFC with a combination of diffuse reflectance β-carotene∕ceroid absorption and the Raman spectral signature of lipids; and thrombus with its Raman signature. Using these parameters, suspected vulnerable plaques can be detected with a sensitivity of 96% and specificity of 72%. These encouraging results warrant the continued development of MMS as a catheter-based clinical diagnostic technique for early detection of vulnerable plaques. PMID:21280896

  9. Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Šćepanović, Obrad R.; Fitzmaurice, Maryann; Miller, Arnold; Kong, Chae-Ryon; Volynskaya, Zoya; Dasari, Ramachandra R.; Kramer, John R.; Feld, Michael S.

    2011-01-01

    Early detection and treatment of rupture-prone vulnerable atherosclerotic plaques is critical to reducing patient mortality associated with cardiovascular disease. The combination of reflectance, fluorescence, and Raman spectroscopy-termed multimodal spectroscopy (MMS)-provides detailed biochemical information about tissue and can detect vulnerable plaque features: thin fibrous cap (TFC), necrotic core (NC), superficial foam cells (SFC), and thrombus. Ex vivo MMS spectra are collected from 12 patients that underwent carotid endarterectomy or femoral bypass surgery. Data are collected by means of a unitary MMS optical fiber probe and a portable clinical instrument. Blinded histopathological analysis is used to assess the vulnerability of each spectrally evaluated artery lesion. Modeling of the ex vivo MMS spectra produce objective parameters that correlate with the presence of vulnerable plaque features: TFC with fluorescence parameters indicative of collagen presence; NC/SFC with a combination of diffuse reflectance β-carotene/ceroid absorption and the Raman spectral signature of lipids; and thrombus with its Raman signature. Using these parameters, suspected vulnerable plaques can be detected with a sensitivity of 96% and specificity of 72%. These encouraging results warrant the continued development of MMS as a catheter-based clinical diagnostic technique for early detection of vulnerable plaques.

  10. Review: Mechanical Characterization of Carotid Arteries and Atherosclerotic Plaques.

    PubMed

    de Korte, Chris L; Fekkes, Stein; Nederveen, Aart J; Manniesing, Rashindra; Hansen, Hendrik Rik H G

    2016-10-01

    Cardiovascular disease (CVD) is a leading cause of death and is in the majority of cases due to the formation of atherosclerotic plaques in arteries. Initially, thickening of the inner layer of the arterial wall occurs. Continuation of this process leads to plaque formation. The risk of a plaque to rupture and thus to induce an ischemic event is directly related to its composition. Consequently, characterization of the plaque composition and its proneness to rupture are of crucial importance for risk assessment and treatment strategies. The carotid is an excellent artery to be imaged with ultrasound because of its superficial position. In this review, ultrasound-based methods for characterizing the mechanical properties of the carotid wall and atherosclerotic plaque are discussed. Using conventional echography, the intima media thickness (IMT) can be quantified. There is a wealth of studies describing the relation between IMT and the risk for myocardial infarction and stroke. Also the carotid distensibility can be quantified with ultrasound, providing a surrogate marker for the cross-sectional mechanical properties. Although all these parameters are associated with CVD, they do not easily translate to individual patient risk. Another technique is pulse wave velocity (PWV) assessment, which measures the propagation of the pressure pulse over the arterial bed. PWV has proven to be a marker for global arterial stiffness. Recently, an ultrasound-based method to estimate the local PWV has been introduced, but the clinical effectiveness still needs to be established. Other techniques focus on characterization of plaques. With ultrasound elastography, the strain in the plaque due to the pulsatile pressure can be quantified. This technique was initially developed using intravascular catheters to image coronaries, but recently noninvasive methods were successfully developed. A high correlation between the measured strain and the risk for rupture was established. Acoustic

  11. The prevention and regression of atherosclerotic plaques: emerging treatments

    PubMed Central

    Kalanuria, Atul Ashok; Nyquist, Paul; Ling, Geoffrey

    2012-01-01

    Occlusive vascular diseases, such as sudden coronary syndromes, stroke, and peripheral arterial disease, are a huge burden on the health care systems of developed and developing countries. Tremendous advances have been made over the last few decades in the diagnosis and treatment of atherosclerotic diseases. Intravascular ultrasound has been able to provide detailed information of plaque anatomy and has been used in several studies to assess outcomes. The presence of atherosclerosis disrupts the normal protective mechanism provided by the endothelium and this mechanism has been implicated in the pathophysiology of coronary artery disease and stroke. Efforts are being put into the prevention of atherosclerosis, which has been shown to begin in childhood. This paper reviews the pathophysiology of atherosclerosis and discusses the current options available for the prevention and reversal of plaque formation. PMID:23049260

  12. Aldehyde dehydrogenase 2 inhibits inflammatory response and regulates atherosclerotic plaque

    PubMed Central

    Wei, Shu-jian; Zhang, Ming-xiang; Wang, Xu-ping; Yuan, Qiu-huan; Xue, Li; Wang, Jia-li; Cui, Zhao-qiang; Zhang, Yun; Xu, Feng; Chen, Yu-guo

    2016-01-01

    Previous studies demonstrated that aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism, which eliminates ALDH2 activity down to 1%-6%, is a susceptibility gene for coronary disease. Here we investigated the underlying mechanisms based on our prior clinical and experimental studies. Male apoE−/− mice were transfected with GFP, ALDH2-overexpression and ALDH2-RNAi lentivirus respectively (n=20 each) after constrictive collars were placed around the right common carotid arteries. Consequently, ALDH2 gene silencing led to an increased en face plaque area, more unstable plaque with heavier accumulation of lipids, more macrophages, less smooth muscle cells and collagen, which were associated with aggravated inflammation. However, ALDH2 overexpression displayed opposing effects. We also found that ALDH2 activity decreased in atherosclerotic plaques of human and aged apoE−/− mice. Moreover, in vitro experiments with human umbilical vein endothelial cells further illustrated that, inhibition of ALDH2 activity resulted in elevating inflammatory molecules, an increase of nuclear translocation of NF-κB, and enhanced phosphorylation of NF-κB p65, AP-1 c-Jun, Jun-N terminal kinase and p38 MAPK, while ALDH2 activation could trigger contrary effects. These findings suggested that ALDH2 can influence plaque development and vulnerability, and inflammation via MAPK, NF-κB and AP-1 signaling pathways. PMID:27191745

  13. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models

    PubMed Central

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  14. Dendritic Cells in Human Atherosclerosis: From Circulation to Atherosclerotic Plaques

    PubMed Central

    Van Vré, Emily A.; Van Brussel, Ilse; Bosmans, Johan M.; Vrints, Christiaan J.; Bult, Hidde

    2011-01-01

    Background. Atherosclerosis is a chronic inflammatory disease with atherosclerotic plaques containing inflammatory infiltrates predominantly consisting of monocytes/macrophages and activated T cells. More recent is the implication of dendritic cells (DCs) in the disease. Since DCs were demonstrated in human arteries in 1995, numerous studies in humans suggest a role for these professional antigen-presenting cells in atherosclerosis. Aim. This paper focuses on the observations made in blood and arteries of patients with atherosclerosis. In principal, flow cytometric analyses show that circulating myeloid (m) and plasmacytoid (p) DCs are diminished in coronary artery disease, while immunohistochemical studies describe increased intimal DC counts with evolving plaque stages. Moreover, mDCs and pDCs appear to behave differently in atherosclerosis. Yet, the origin of plaque DCs and their relationship with blood DCs are unknown. Therefore, several explanations for the observed changes are postulated. In addition, the technical challenges and discrepancies in the research field are discussed. Future. Future studies in humans, in combination with experimental animal studies will unravel mechanisms leading to altered blood and plaque DCs in atherosclerosis. As DCs are crucial for inducing but also dampening immune responses, understanding their life cycle, trafficking and function in atherosclerosis will determine potential use of DCs in antiatherogenic therapies. PMID:21976788

  15. Adipo/cytokines in atherosclerotic secretomes: increased visfatin levels in unstable carotid plaque.

    PubMed

    Auguet, Teresa; Aragonès, Gemma; Guiu-Jurado, Esther; Berlanga, Alba; Curriu, Marta; Martinez, Salomé; Alibalic, Ajla; Aguilar, Carmen; Camara, María-Luisa; Hernández, Esteban; Ruyra, Xavier; Martín-Paredero, Vicente; Richart, Cristóbal

    2016-07-08

    Novel pro-inflammatory and anti-inflammatory derivatives from adipose tissue, known as adipokines, act as metabolic factors. The aim of this study was to analyse the secreted expression of different adipo/cytokines in secretomes of unstable carotid atherosclerotic plaque versus non-atherosclerotic mammary artery. We evaluated the secretion levels of adiponectin, visfatin, lipocalin-2, resistin, IL-6 and TNFR2 by ELISA in human secretomes from cultured unstable carotid atherosclerotic plaque (n = 18) and non-atherosclerotic mammary artery (n = 13). We also measured visfatin serum levels in patients suffering from atherosclerosis and in a serum cohort of healthy subjects (n = 16). We found that visfatin levels were significantly increased in unstable carotid atherosclerotic plaque secretome than in non-atherosclerotic mammary artery secretome. No differences were found with regard the other adipo/cytokines studied. Regarding visfatin circulating levels, there were no differences between unstable carotid atherosclerotic plaque and non-atherosclerotic mammary artery group. However, these visfatin levels were increased in comparison to serum cohort of healthy subjects. Of all the adipo/cytokines analysed, only visfatin showed increased levels in secretomes of unstable carotid atherosclerotic plaque. Additional human studies are needed to clarify the possible role of visfatin as prognostic factor of unstable carotid atherosclerotic plaque.

  16. Fluorine MR Imaging of Inflammation in Atherosclerotic Plaque in Vivo.

    PubMed

    van Heeswijk, Ruud B; Pellegrin, Maxime; Flögel, Ulrich; Gonzales, Christine; Aubert, Jean-François; Mazzolai, Lucia; Schwitter, Juerg; Stuber, Matthias

    2015-05-01

    To preliminarily test the hypothesis that fluorine 19 ((19)F) magnetic resonance (MR) imaging enables the noninvasive in vivo identification of plaque inflammation in a mouse model of atherosclerosis, with histologic findings as the reference standard. The animal studies were approved by the local animal ethics committee. Perfluorocarbon (PFC) emulsions were injected intravenously in a mouse model of atherosclerosis (n = 13), after which (19)F and anatomic MR imaging were performed at the level of the thoracic aorta and its branches at 9.4 T. Four of these animals were imaged repeatedly (at 2-14 days) to determine the optimal detection time. Repeated-measures analysis of variance with a Tukey test was applied to determine if there was a significant change in (19)F signal-to-noise ratio (SNR) of the plaques and liver between the time points. Six animals were injected with a PFC emulsion that also contained a fluorophore. As a control against false-positive results, wild-type mice (n = 3) were injected with a PFC emulsion, and atherosclerotic mice were injected with a saline solution (n = 2). The animals were sacrificed after the last MR imaging examination, after which high-spatial-resolution ex vivo MR imaging and bright-field and immunofluorescent histologic examination were performed. (19)F MR signal was detected in vivo in plaques in the aortic arch and its branches. The SNR was found to significantly increase up to day 6 (P < .001), and the SNR of all mice at this time point was 13.4 ± 3.3. The presence of PFC and plaque in the excised vessels was then confirmed both through ex vivo (19)F MR imaging and histologic examination, while no signal was detected in the control animals. Immunofluorescent histologic findings confirmed the presence of PFC in plaque macrophages. (19)F MR imaging allows the noninvasive in vivo detection of inflammation in atherosclerotic plaques in a mouse model of atherosclerosis and opens up new avenues for both the early detection of

  17. Identification of Atherosclerotic Plaques in Carotid Artery by Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rocha, Rick; Villaverde, Antonio Balbin; Silveira, Landulfo; Costa, Maricília Silva; Alves, Leandro Procópio; Pasqualucci, Carlos Augusto; Brugnera, Aldo

    2008-04-01

    The aim of this work was to identify the presence of atherosclerotic plaques in carotid artery using the Fluorescence Spectroscopy. The most important pathogeny in the cardiovascular disorders is the atherosclerosis, which may affect even younger individuals. With approximately 1.2 million heart attacks and 750,000 strokes afflicting an aging American population each year, cardiovascular disease remains the number one cause of death. Carotid artery samples were obtained from the Autopsy Service at the University of São Paulo (São Paulo, SP, Brazil) taken from cadavers. After a histopathological analysis the 60 carotid artery samples were divided into two groups: normal (26) and atherosclerotic plaques (34). Samples were irradiated with the wavelength of 488 nm from an Argon laser. A 600 μm core optical fiber, coupled to the Argon laser, was used for excitation of the sample, whereas another 600 optical fiber, coupled to the spectrograph entrance slit, was used for collecting the fluorescence from the sample. Measurements were taken at different points on each sample and then averaged. Fluorescence spectra showed a single broad line centered at 549 nm. The fluorescence intensity for each sample was calculated by subtracting the intensity at the peak (550 nm) and at the bottom (510 nm) and then data were statistically analyzed, looking for differences between both groups of samples. ANOVA statistical test showed a significant difference (p<0,05) between both types of tissues, with regard to the fluorescence peak intensities. Our results indicate that this technique could be used to detect the presence of the atherosclerotic in carotid tissue.

  18. Smoking increases tissue factor expression in atherosclerotic plaques: implications for plaque thrombogenicity.

    PubMed

    Matetzky, S; Tani, S; Kangavari, S; Dimayuga, P; Yano, J; Xu, H; Chyu, K Y; Fishbein, M C; Shah, P K; Cercek, B

    2000-08-08

    Smoking increases the risk of atherothrombotic events. To determine whether smoking influences plaque thrombogenicity, we examined the effect of cigarette smoking and aspirin use on tissue factor (TF) expression in atherosclerotic plaques. A total of 23 apoE-/- mice were exposed to cigarette smoke with (n=9) or without (n=14) aspirin treatment. Eleven mice who were exposed to filtered room air served as controls. Aortic root plaques of mice exposed to smoke had higher immunoreactivity for TF (14+/-4% versus 6.4+/-3%; P=0.0005), vascular cell adhesion molecule-1 (15+/-4% versus 5+/-2%; P=0.002), and macrophages (16+/-5% versus 6+/-2%; P=0.002) compared with nonsmoking controls. Aspirin treatment attenuated smoking-induced changes in plaque composition. In human plaques obtained by carotid endarterectomy, TF immunoreactivity (8+/-5% versus 2+/-2%; P=0.0002) and activity (P=0. 03) were higher in the plaques from smokers (n=28) than those from nonsmokers (n=28). Aspirin use was associated with reduced TF expression in smokers (9+/-8% versus 3+/-4%; P=0.0017). Our results suggest increased plaque TF expression and thrombogenicity as a novel mechanism for the increased risk of atherothrombotic events in smokers. Treatment with aspirin may reduce TF expression.

  19. Characterization of atherosclerotic plaque-depositions by infrared, Raman and CARS microscopy

    NASA Astrophysics Data System (ADS)

    Matthäus, Christian; Bergner, Gero; Krafft, Christoph; Dietzek, Benjamin; Romeike, Bernd F. M.; Brehm, Bernhard R.; Popp, Jürgen

    2011-07-01

    Atherosclerotic plaques are mainly composed of proteoglycans, triglycerides, cholesterol, cholesterolester and crystalline calcium. From histopathological characterizations it is known that the composition of these atherosclerotic plaques can vary to a great extent, due to different risk factors as smoking, hyperlipedemia, or genetic background ect. The individual plaque components can be spectroscopically easily identified. Furthermore, spectroscopic imaging technologies offer the possibility to study the plaque compositions in a more quantitative manner than traditional staining techniques. Here, we compare the potential of IR, Raman and CARS microscopy to characterize the constitution of atherosclerotic plaques as well as the structure of the surrounding tissue. For data analysis and image reconstruction spectral decomposition algorithms such as vertex component analysis (VCA) were introduced. The results are in good agreement with the histopathology. Aim of the study is to correlate the compositional characteristics of atherosclerotic plaques with individual disease patterns.

  20. Optical detection of structural changes in human carotid atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Korol, R. M.; Canham, P. B.; Finlay, H. M.; Hammond, R. R.; Quantz, M.; Ferguson, G. G.; Liu, L. Y.; Lucas, A. R.

    2005-08-01

    Background: Arterial bifurcations are commonly the sites of developing atherosclerotic plaque that lead to arterial occlusions and plaque rupture (myocardial infarctions and strokes). Laser induced fluorescence (LIF) spectroscopy provides an effective nondestructive method supplying spectral information on extracellular matrix (ECM) protein composition, specifically collagen and elastin. Purpose: To investigate regional differences in the ECM proteins -- collagen I, III and elastin in unstable plaque by analyzing data from laser-induced fluorescence spectroscopy of human carotid endarterectomy specimens. Methods: Gels of ECM protein extracts (elastin, collagen types I & III) were measured as reference spectra and internal thoracic artery segments (extra tissue from bypass surgery) were used as tissue controls. Arterial segments and the endarterectomy specimens (n=21) were cut into 5mm cross-sectional rings. Ten fluorescence spectra per sampling area were then recorded at 5 sites per ring with argon laser excitation (357nm) with a penetration depth of 200 μm. Spectra were normalized to maximum intensity and analyzed using multiple regression analysis. Tissue rings were fixed in formalin (within 3 hours of surgery), sectioned and stained with H&E or Movat's Pentachrome for histological analysis. Spectroscopy data were correlated with immunohistology (staining for elastin, collagen types I, III and IV). Results: Quantitative fluorescence for the thoracic arteries revealed a dominant elastin component on the luminal side -- confirmed with immunohistology and known artery structure. Carotid endarterectomy specimens by comparison had a significant decrease in elastin signature and increased collagen type I and III. Arterial spectra were markedly different between the thoracic and carotid specimens. There was also a significant elevation (p<0.05) of collagen type I distal to the bifurcation compared to proximal tissue in the carotid specimens. Conclusion: Fluorescence

  1. Murine atherosclerotic plaque imaging with the USPIO Ferumoxtran-10.

    PubMed

    Klug, Gert; Kampf, Thomas; Ziener, Christan; Parczyk, Marco; Bauer, Elizabeth; Herold, Volker; Rommel, Eberhard; Jakob, Peter Michael; Bauer, Wolfgang Rudolf

    2009-01-01

    In this study we intended to image plaque inflammation in a murine model of atherosclerosis with MRI and Ferumoxtran-10 (Sinerem, Guerbet, France). 8 apoE-/- mice were injected 500 micromol Fe/kg or 1000 micromol Fe/kg Ferumoxtran-10. 2 apoE-/- mice were injected NaCl. After a post-contrast time of 24 to 336 hours the mice were scarificed and the aortas were imaged ex vivo. All measurements were performed on a 17.6 Tesla Bruker AVANCE 750WB MR scanner (Bruker, Germany). Spin-echo sequences and gradient-echo sequences with variable TE were performed and T2* maps were generated. Prussian-blue and hematoxilin-eosin histology were obtained afterwards and iron-uptake was quantified by counting iron positive areas. 2 apoE-/- mice were imaged in vivo before and 48 hours after 1000 micromol Fe/kg. Atheroma iron uptake was not elevated after 24 hours compared to controls. 48 hours after 1000 micromol Fe/kg but not 500 micromol Fe/kg histology revealed a 1.3- fold increase in plaque iron content compared to NaCl injected mice. Normalized T2*-times decreased from 0.86+/-0.02 in controls to 0.66+/-0.15 after a dose of 500 micromol Fe/ml and 0.59+/-0.14 in mice injected with 1000 micromol Fe/Kg (p=0.038). These results translated into a mean of 122% increase in CNR, as measured by in vivo MRI. We have demonstrated that Ferumoxtran-10 is taken up by atherosclerotic plaques in untreated apoE-/- mice and this alters plaque signal properties.

  2. Lymphatic vessels: an emerging actor in atherosclerotic plaque development.

    PubMed

    Kutkut, Issa; Meens, Merlijn J; McKee, Thomas A; Bochaton-Piallat, Marie-Luce; Kwak, Brenda R

    2015-01-01

    Atherosclerosis is a chronic inflammatory disease of large- to medium-sized arteries and is the main underlying cause of death worldwide. The lymphatic vasculature is critical for processes that are intimately linked to atherogenesis such as the immune response and cholesterol metabolism. However, whether lymphatic vessels truly contribute to the pathogenesis of atherosclerosis is less clear despite increasing research efforts in this field. PubMed and Ovid MEDLINE databases were searched. In addition, key review articles were screened for relevant original publications. Current knowledge about lymphatic vessels in the arterial wall came from studies that examined the presence and location of such vessels in human atherosclerotic plaque specimens, as well as in a variety of arteries in animal models for atherosclerosis (e.g. rabbits, dogs, rats and mice). Generally, three experimental approaches have been used to investigate the functional role of plaque-associated lymphatic vessels; experimental lymphostasis was used to investigate lymphatic drainage of the arterial wall, and more recently, studies with genetic interventions and/or surgical transplantation have been performed. Lymphatic vessels seem to be mostly present in the adventitial layer of the arterial walls of animals and humans. They are involved in reverse cholesterol transport from atherosclerotic lesions, and arteries with a dense lymphatic network seem naturally protected against atherosclerosis. Lymphangiogenesis is a process that is an important part of the inflammatory loop in atherosclerosis. However, how augmenting or impeding the distribution of lymphatic vessels impacts disease progression remains to be investigated in future studies. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  3. Numerical observer for atherosclerotic plaque classification in spectral computed tomography.

    PubMed

    Lorsakul, Auranuch; Fakhri, Georges El; Worstell, William; Ouyang, Jinsong; Rakvongthai, Yothin; Laine, Andrew F; Li, Quanzheng

    2016-07-01

    Spectral computed tomography (SCT) generates better image quality than conventional computed tomography (CT). It has overcome several limitations for imaging atherosclerotic plaque. However, the literature evaluating the performance of SCT based on objective image assessment is very limited for the task of discriminating plaques. We developed a numerical-observer method and used it to assess performance on discrimination vulnerable-plaque features and compared the performance among multienergy CT (MECT), dual-energy CT (DECT), and conventional CT methods. Our numerical observer was designed to incorporate all spectral information and comprised two-processing stages. First, each energy-window domain was preprocessed by a set of localized channelized Hotelling observers (CHO). In this step, the spectral image in each energy bin was decorrelated using localized prewhitening and matched filtering with a set of Laguerre-Gaussian channel functions. Second, the series of the intermediate scores computed from all the CHOs were integrated by a Hotelling observer with an additional prewhitening and matched filter. The overall signal-to-noise ratio (SNR) and the area under the receiver operating characteristic curve (AUC) were obtained, yielding an overall discrimination performance metric. The performance of our new observer was evaluated for the particular binary classification task of differentiating between alternative plaque characterizations in carotid arteries. A clinically realistic model of signal variability was also included in our simulation of the discrimination tasks. The inclusion of signal variation is a key to applying the proposed observer method to spectral CT data. Hence, the task-based approaches based on the signal-known-exactly/background-known-exactly (SKE/BKE) framework and the clinical-relevant signal-known-statistically/background-known-exactly (SKS/BKE) framework were applied for analytical computation of figures of merit (FOM). Simulated data of a

  4. Bifurcation analysis of a model for atherosclerotic plaque evolution

    NASA Astrophysics Data System (ADS)

    Bulelzai, M. A. K.; Dubbeldam, J. L. A.; Meijer, H. G. E.

    2014-06-01

    We analyze two ordinary differential equation (ODE) models for atherosclerosis. The ODE models describe long time evolution of plaques in arteries. We show how the dynamics of the first atherosclerosis model (model A) can be understood using codimension-two bifurcation analysis. The Low-Density Lipoprotein (LDL) intake parameter (d) is the first control parameter and the second control parameter is either taken to be the conversion rate of macrophages (b) or the wall shear stress (σ). Our analysis reveals that in both cases a Bogdanov-Takens (BT) point acts as an organizing center. The bifurcation diagrams are calculated partly analytically and to a large extent numerically using AUTO07 and MATCONT. The bifurcation curves show that the concentration of LDL in the plaque as well as the monocyte and the macrophage concentrations exhibit oscillations for a certain range of values of the control parameters. Moreover, we find that there are threshold values for both the cholesterol intake rate dcrit and the conversion rate of the macrophages bcrit, which depend on the values of other parameters, above which the plaque volume increases with time. It is found that larger conversion rates of macrophages lower the threshold value of cholesterol intake and vice versa. We further argue that the dynamics for model A can still be discerned in the second model (model B) in which the slow evolution of the radius of the artery is coupled self-consistently to changes in the plaque volume. The very slow evolution of the radius of the artery compared to the other processes makes it possible to use a slow manifold approximation to study the dynamics in this case. We find that in this case the model predicts that the concentrations of the plaque constituents may go through a period of oscillations before the radius of the artery will start to decrease. These oscillations hence act as a precursor for the reduction of the artery radius by plaque growth.

  5. Rationale, Design, and Methodological Aspects of the BUDAPEST-GLOBAL Study (Burden of Atherosclerotic Plaques Study in Twins-Genetic Loci and the Burden of Atherosclerotic Lesions).

    PubMed

    Maurovich-Horvat, Pál; Tárnoki, Dávid L; Tárnoki, Ádám D; Horváth, Tamás; Jermendy, Ádám L; Kolossváry, Márton; Szilveszter, Bálint; Voros, Viktor; Kovács, Attila; Molnár, Andrea Á; Littvay, Levente; Lamb, Hildo J; Voros, Szilard; Jermendy, György; Merkely, Béla

    2015-12-01

    The heritability of coronary atherosclerotic plaque burden, coronary geometry, and phenotypes associated with increased cardiometabolic risk are largely unknown. The primary aim of the Burden of Atherosclerotic Plaques Study in Twins-Genetic Loci and the Burden of Atherosclerotic Lesions (BUDAPEST-GLOBAL) study is to evaluate the influence of genetic and environmental factors on the burden of coronary artery disease. By design this is a prospective, single-center, classical twin study. In total, 202 twins (61 monozygotic pairs, 40 dizygotic same-sex pairs) were enrolled from the Hungarian Twin Registry database. All twins underwent non-contrast-enhanced computed tomography (CT) for the detection and quantification of coronary artery calcium and for the measurement of epicardial fat volumes. In addition, a single non-contrast-enhanced image slice was acquired at the level of L3-L4 to assess abdominal fat distribution. Coronary CT angiography was used for the detection and quantification of plaque, stenosis, and overall coronary artery disease burden. For the primary analysis, we will assess the presence and volume of atherosclerotic plaques. Furthermore, the 3-dimensional coronary geometry will be assessed based on the coronary CT angiography datasets. Additional phenotypic analyses will include per-patient epicardial and abdominal fat quantity measurements. Measurements obtained from monozygotic and dizygotic twin pairs will be compared to evaluate the genetic or environmental effects of the given phenotype. The BUDAPEST-GLOBAL study provides a unique framework to shed some light on the genetic and environmental influences of cardiometabolic disorders. © 2015 Wiley Periodicals, Inc.

  6. Paramagnetic Manganese in the Atherosclerotic Plaque of Carotid Arteries

    PubMed Central

    Chelyshev, Yury; Ignatyev, Igor; Zanochkin, Alexey; Mamin, Georgy; Sorokin, Boris; Sorokina, Alexandra; Lyapkalo, Natalya; Gizatullina, Nazima; Orlinskii, Sergei

    2016-01-01

    The search for adequate markers of atherosclerotic plaque (AP) instability in the context of assessment of the ischemic stroke risk in patients with atherosclerosis of the carotid arteries as well as for solid physical and chemical factors that are connected with the AP stability is extremely important. We investigate the inner lining of the carotid artery specimens from the male patients with atherosclerosis (27 patients, 42–64 years old) obtained during carotid endarterectomy by using different analytical tools including ultrasound angiography, X-ray analysis, immunological, histochemical analyses, and high-field (3.4 T) pulse electron paramagnetic resonance (EPR) at 94 GHz. No correlation between the stable and unstable APs in the sense of the calcification is revealed. In all of the investigated samples, the EPR spectra of manganese, namely, Mn2+ ions, are registered. Spectral and relaxation characteristics of Mn2+ ions are close to those obtained for the synthetic (nano) hydroxyapatite species but differ from each other for stable and unstable APs. This demonstrates that AP stability could be specified by the molecular organization of their hydroxyapatite components. The origin of the obtained differences and the possibility of using EPR of Mn2+ as an AP stability marker are discussed. PMID:28078287

  7. Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice.

    PubMed

    Ulrich, Victoria; Rotllan, Noemi; Araldi, Elisa; Luciano, Amelia; Skroblin, Philipp; Abonnenc, Mélanie; Perrotta, Paola; Yin, Xiaoke; Bauer, Ashley; Leslie, Kristen L; Zhang, Pei; Aryal, Binod; Montgomery, Rusty L; Thum, Thomas; Martin, Kathleen; Suarez, Yajaira; Mayr, Manuel; Fernandez-Hernando, Carlos; Sessa, William C

    2016-06-01

    Abnormal remodeling of atherosclerotic plaques can lead to rupture, acute myocardial infarction, and death. Enhancement of plaque extracellular matrix (ECM) may improve plaque morphology and stabilize lesions. Here, we demonstrate that chronic administration of LNA-miR-29 into an atherosclerotic mouse model improves indices of plaque morphology. This occurs due to upregulation of miR-29 target genes of the ECM (col1A and col3A) resulting in reduced lesion size, enhanced fibrous cap thickness, and reduced necrotic zones. Sustained LNA-miR-29 treatment did not affect circulating lipids, blood chemistry, or ECM of solid organs including liver, lung, kidney, spleen, or heart. Collectively, these data support the idea that antagonizing miR-29 may promote beneficial plaque remodeling as an independent approach to stabilize vulnerable atherosclerotic lesions.

  8. Prevalence and risk factors for atherosclerotic carotid stenosis and plaque

    PubMed Central

    Woo, Shin Young; Joh, Jin Hyun; Han, Sang-Ah; Park, Ho-Chul

    2017-01-01

    Abstract Atherosclerotic carotid stenosis (ACS) is a major cause of ischemic stroke. Screening for asymptomatic ACS is important to identify the patients who require longitudinal surveillance, medication, or endovascular surgery. The aim of this study was to assess the prevalence and risk factors for ACS and carotid plaque (CP) in Korea using a population-based screening study. We recruited participants during visits to several community welfare centers in Korea. The baseline characteristics of the study population were collected. All patients underwent duplex ultrasonography to examine their bilateral carotid arteries. ACS was defined as the presence of plaque with ≥50% vessel diameter reduction and peak systolic velocity (PSV) ≥125 cm/s or PSV ratio ≥2.0. CP was defined as the presence of plaque with <50% vessel diameter reduction. The Mann–Whitney test, χ2 test, Fisher exact test, and logistic regression were used in the statistical analysis. A total of 3030 participants were enrolled in this study (male 43.7% and female 56.3%). The prevalence of ACS and CP was 1.1% and 5.7%, respectively. Significant risk factors for CP included age ≥80 years (odds ratio [OR], 8.11; 95% confidence interval [CI], 3.45–18.93), male sex (OR, 2.16; 95% CI, 1.29–3.61), hypertension (OR, 1.72; 95% CI, 1.21–2.45), and hyperlipidemia (OR, 1.84; 95% CI, 1.30–2.62). The presence of ACS was significantly associated with age (OR, 1.07; 95% CI, 1.03–1.12), hypertension (OR, 3.16; 95% CI, 1.34–7.46), and being an ex-smoker (OR, 6.81; 95% CI, 1.66–27.93) or current smoker (OR, 6.97; 95% CI, 1.78–27.31) after adjusting for confounding factors. This population-based screening study revealed that ACS was uncommon and had a prevalence of 1.1% in the study population. Age, hypertension, and smoking were risk factors for ACS. Further investigations into the prevalence and risk factors of ACS are required, as are studies on the cost-effectiveness of a national screening

  9. Caspase-3 Deletion Promotes Necrosis in Atherosclerotic Plaques of ApoE Knockout Mice.

    PubMed

    Grootaert, Mandy O J; Schrijvers, Dorien M; Hermans, Marthe; Van Hoof, Viviane O; De Meyer, Guido R Y; Martinet, Wim

    2016-01-01

    Apoptosis of macrophages and vascular smooth muscle cells (VSMCs) in advanced atherosclerotic plaques contributes to plaque progression and instability. Caspase-3, a key executioner protease in the apoptotic pathway, has been identified in human and mouse atherosclerotic plaques but its role in atherogenesis is not fully explored. We therefore investigated the impact of caspase-3 deletion on atherosclerosis by crossbreeding caspase-3 knockout (Casp3(-/-)) mice with apolipoprotein E knockout (ApoE(-/-)) mice. Bone marrow-derived macrophages and VSMCs isolated from Casp3(-/-)ApoE(-/-) mice were resistant to apoptosis but showed increased susceptibility to necrosis. However, caspase-3 deficiency did not sensitize cells to undergo RIP1-dependent necroptosis. To study the effect on atherosclerotic plaque development, Casp3(+/+)ApoE(-/-) and Casp3(-/-)ApoE(-/-) mice were fed a western-type diet for 16 weeks. Though total plasma cholesterol, triglycerides, and LDL cholesterol levels were not altered, both the plaque size and percentage necrosis were significantly increased in the aortic root of Casp3(-/-)ApoE(-/-) mice as compared to Casp3(+/+)ApoE(-/-) mice. Macrophage content was significantly decreased in plaques of Casp3(-/-)ApoE(-/-) mice as compared to controls, while collagen content and VSMC content were not changed. To conclude, deletion of caspase-3 promotes plaque growth and plaque necrosis in ApoE(-/-) mice, indicating that this antiapoptotic strategy is unfavorable to improve atherosclerotic plaque stability.

  10. Matrix metalloproteinase-9 modulation by resident arterial cells is responsible for injury-induced accelerated atherosclerotic plaque development in apolipoprotein E-deficient mice.

    PubMed

    Choi, Eric T; Collins, Emily T; Marine, Leopoldo A; Uberti, Maria G; Uchida, Hisashi; Leidenfrost, Jeremy E; Khan, M Faisal; Boc, Kenneth P; Abendschein, Dana R; Parks, William C

    2005-05-01

    Although matrix metalloproteinase-9 (MMP-9) has been implicated in atherosclerotic plaque instability, the exact role it plays in the plaque development and progression remains largely unknown. We generated apolipoprotein E (apoE)-deficient (apoE-/-) MMP-9-deficient (MMP-9-/-) mice to determine the mechanisms and the main cell source of MMP-9 responsible for the plaque composition during accelerated atherosclerotic plaque formation. Three weeks after temporary carotid artery ligation revealed that while on a Western-type diet, apoE-/- MMP-9-/- mice had a significant reduction in intimal plaque length and volume compared with apoE-/- MMP-9+/+ mice. The reduction in plaque volume correlated with a significantly lower number of intraplaque cells of resident cells and bone marrow-derived cells. To determine the cellular origin of MMP-9 in plaque development, bone marrow transplantation after total-body irradiation was performed with apoE-/- MMP-9+/+ and apoE-/- MMP-9-/- mice, which showed that only MMP-9 derived from resident arterial cells is required for plaque development. MMP-9 is derived from resident arterial cells and is required for early atherosclerotic plaque development and cellular accumulation in apoE-/- mice.

  11. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation[S

    PubMed Central

    Bot, Martine; de Jager, Saskia C. A.; MacAleese, Luke; Lagraauw, H. Maxime; van Berkel, Theo J. C.; Quax, Paul H. A.; Kuiper, Johan; Heeren, Ron M. A.; Biessen, Erik A. L.; Bot, Ilze

    2013-01-01

    Lysophosphatidic acid (LPA), a bioactive lysophospholipid, accumulates in the atherosclerotic plaque. It has the capacity to activate mast cells, which potentially exacerbates plaque progression. In this study, we thus aimed to investigate whether LPA contributes to plaque destabilization by modulating mast cell function. We here show by an imaging mass spectrometry approach that several LPA species are present in atherosclerotic plaques. Subsequently, we demonstrate that LPA is a potent mast cell activator which, unlike other triggers, favors release of tryptase. Local perivascular administration of LPA to an atherosclerotic carotid artery segment increases the activation status of perivascular mast cells and promotes intraplaque hemorrhage and macrophage recruitment without impacting plaque cell apoptosis. The mast cell stabilizer cromolyn could prevent intraplaque hemorrhage elicited by LPA-mediated mast cell activation. Finally, the involvement of mast cells in these events was further emphasized by the lack of effect of perivascular LPA administration in mast cell deficient animals. We demonstrate that increased accumulation of LPA in plaques induces perivascular mast cell activation and in this way contributes to plaque destabilization in vivo. This study points to local LPA availability as an important factor in atherosclerotic plaque stability. PMID:23396975

  12. Diminazene enhances stability of atherosclerotic plaques in ApoE-deficient mice

    PubMed Central

    Fraga-Silva, Rodrigo A.; Montecucco, Fabrizio; Costa-Fraga, Fabiana P.; Nencioni, Alessio; Caffa, Irene; Bragina, Maiia E.; Mach, François; Raizada, Mohan K.; Santos, Robson A.S.; da Silva, Rafaela F.; Stergiopulos, Nikolaos

    2017-01-01

    Angiotensin (Ang) II contributes to the development of atherosclerosis, while Ang-(1–7) has atheroprotective actions. Accordingly, angiotensin-converting enzyme 2 (ACE2), which breaks-down Ang II and forms Ang-(1–7), has been suggested as a target against atherosclerosis. Here we investigated the actions of diminazene, a recently developed ACE2 activator compound, in a model of vulnerable atherosclerotic plaque. Atherosclerotic plaque formation was induced in the carotid artery of ApoE-deficient mice by a shear stress (SS) modiffer device. The animals were treated with diminazene (15 mg/kg/day) or vehicle. ACE2 was strongly expressed in the aortic root and low SS-induced carotid plaques, but poorly expressed in the oscillatory SS-induced carotid plaques. Diminazene treatment did not change the lesion size, but ameliorated the composition of aortic root and low SS-induced carotid plaques by increasing collagen content and decreasing both MMP-9 expression and macrophage infiltration. Interestingly, these beneficial effects were not observed in the oscillatory SS-induced plaque. Additionally, diminazene treatment decreased intraplaque ICAM-1 and VCAM-1 expression, circulating cytokine and chemokine levels and serum triglycerides. In summary, ACE2 was distinctively expressed in atherosclerotic plaques, which depends on the local pattern of shear stress. Moreover, diminazene treatment enhances the stability of atherosclerotic plaques. PMID:26304699

  13. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation.

    PubMed

    Bot, Martine; de Jager, Saskia C A; MacAleese, Luke; Lagraauw, H Maxime; van Berkel, Theo J C; Quax, Paul H A; Kuiper, Johan; Heeren, Ron M A; Biessen, Erik A L; Bot, Ilze

    2013-05-01

    Lysophosphatidic acid (LPA), a bioactive lysophospholipid, accumulates in the atherosclerotic plaque. It has the capacity to activate mast cells, which potentially exacerbates plaque progression. In this study, we thus aimed to investigate whether LPA contributes to plaque destabilization by modulating mast cell function. We here show by an imaging mass spectrometry approach that several LPA species are present in atherosclerotic plaques. Subsequently, we demonstrate that LPA is a potent mast cell activator which, unlike other triggers, favors release of tryptase. Local perivascular administration of LPA to an atherosclerotic carotid artery segment increases the activation status of perivascular mast cells and promotes intraplaque hemorrhage and macrophage recruitment without impacting plaque cell apoptosis. The mast cell stabilizer cromolyn could prevent intraplaque hemorrhage elicited by LPA-mediated mast cell activation. Finally, the involvement of mast cells in these events was further emphasized by the lack of effect of perivascular LPA administration in mast cell deficient animals. We demonstrate that increased accumulation of LPA in plaques induces perivascular mast cell activation and in this way contributes to plaque destabilization in vivo. This study points to local LPA availability as an important factor in atherosclerotic plaque stability.

  14. Mapping elasticity moduli of atherosclerotic plaque in situ via atomic force microscopy.

    PubMed

    Tracqui, Philippe; Broisat, Alexis; Toczek, Jackub; Mesnier, Nicolas; Ohayon, Jacques; Riou, Laurent

    2011-04-01

    Several studies have suggested that evolving mechanical stresses and strains drive atherosclerotic plaque development and vulnerability. Especially, stress distribution in the plaque fibrous capsule is an important determinant for the risk of vulnerable plaque rupture. Knowledge of the stiffness of atherosclerotic plaque components is therefore of critical importance. In this work, force mapping experiments using atomic force microscopy (AFM) were conducted in apolipoprotein E-deficient (ApoE(-/-)) mouse, which represents the most widely used experimental model for studying mechanisms underlying the development of atherosclerotic lesions. To obtain the elastic material properties of fibrous caps and lipidic cores of atherosclerotic plaques, serial cross-sections of aortic arch lesions were probed at different sites. Atherosclerotic plaque sub-structures were subdivided into cellular fibrotic, hypocellular fibrotic and lipidic rich areas according to histological staining. Hertz's contact mechanics were used to determine elasticity (Young's) moduli that were related to the underlying histological plaque structure. Cellular fibrotic regions exhibit a mean Young modulus of 10.4±5.7kPa. Hypocellular fibrous caps were almost six-times stiffer, with average modulus value of 59.4±47.4kPa, locally rising up to ∼250kPa. Lipid rich areas exhibit a rather large range of Young's moduli, with average value of 5.5±3.5kPa. Such precise quantification of plaque stiffness heterogeneity will allow investigators to have prospectively a better monitoring of atherosclerotic disease evolution, including arterial wall remodeling and plaque rupture, in response to mechanical constraints imposed by vascular shear stress and blood pressure.

  15. Human serum albumin Cys34 oxidative modifications following infiltration in the carotid atherosclerotic plaque.

    PubMed

    Lepedda, Antonio Junior; Zinellu, Angelo; Nieddu, Gabriele; De Muro, Pierina; Carru, Ciriaco; Spirito, Rita; Guarino, Anna; Piredda, Franco; Formato, Marilena

    2014-01-01

    To evaluate if the prooxidant environment present in atherosclerotic plaque may oxidatively modify filtered albumin. Fluorescein-5-maleimide labelled plasma samples and plaque extracts from 27 patients who had undergone carotid endarterectomy were analysed through nonreducing SDS-PAGE for albumin-Cys(34) oxidation. Furthermore, degree and pattern of S-thiolation in both circulating and plaque-filtered albumin were assayed. Albumin filtered in the atherosclerotic plaque showed higher levels of Cys(34) oxidative modifications than the corresponding circulating form as well as different patterns of S-thiolation. Data indicate that the circulating albumin, once filtered in plaque, undergoes Cys(34) oxidative modifications and demonstrate for the first time that albumin is a homocysteine and cysteinylglycine vehicle inside the plaque environment.

  16. Human Serum Albumin Cys34 Oxidative Modifications following Infiltration in the Carotid Atherosclerotic Plaque

    PubMed Central

    Zinellu, Angelo; De Muro, Pierina; Carru, Ciriaco; Spirito, Rita; Guarino, Anna

    2014-01-01

    Objectives. To evaluate if the prooxidant environment present in atherosclerotic plaque may oxidatively modify filtered albumin. Methods. Fluorescein-5-maleimide labelled plasma samples and plaque extracts from 27 patients who had undergone carotid endarterectomy were analysed through nonreducing SDS-PAGE for albumin-Cys34 oxidation. Furthermore, degree and pattern of S-thiolation in both circulating and plaque-filtered albumin were assayed. Results. Albumin filtered in the atherosclerotic plaque showed higher levels of Cys34 oxidative modifications than the corresponding circulating form as well as different patterns of S-thiolation. Conclusions. Data indicate that the circulating albumin, once filtered in plaque, undergoes Cys34 oxidative modifications and demonstrate for the first time that albumin is a homocysteine and cysteinylglycine vehicle inside the plaque environment. PMID:24738021

  17. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics

    PubMed Central

    Wu, Min; Jansen, Krista; van der Steen, Antonius F. W.; van Soest, Gijs

    2015-01-01

    The lipid content in plaques is an important marker for identifying atherosclerotic lesions and disease states. Intravascular photoacoustic (IVPA) imaging can be used to visualize lipids in the artery. In this study, we further investigated lipid detection in the 1.7-µm spectral range. By exploiting the relative difference between the IVPA signal strengths at 1718 and 1734 nm, we could successfully detect and differentiate between the plaque lipids and peri-adventitial fat in human coronary arteries ex vivo. Our study demonstrates that IVPA imaging can positively identify atherosclerotic plaques using only two wavelengths, which could enable rapid data acquisition in vivo. PMID:26417500

  18. Vulnerable atherosclerotic carotid plaque evaluation by ultrasound, computed tomography angiography, and magnetic resonance imaging: an overview.

    PubMed

    Naim, Cyrille; Douziech, Maxime; Therasse, Eric; Robillard, Pierre; Giroux, Marie-France; Arsenault, Frederic; Cloutier, Guy; Soulez, Gilles

    2014-08-01

    Ischemic syndromes associated with carotid atherosclerotic disease are often related to plaque rupture. The benefit of endarterectomy for high-grade carotid stenosis in symptomatic patients has been established. However, in asymptomatic patients, the benefit of endarterectomy remains equivocal. Current research seeks to risk stratify asymptomatic patients by characterizing vulnerable, rupture-prone atherosclerotic plaques. Plaque composition, biology, and biomechanics are studied by noninvasive imaging techniques such as magnetic resonance imaging, computed tomography, ultrasound, and ultrasound elastography. These techniques are at a developmental stage and have yet to be used in clinical practice. This review will describe noninvasive techniques in ultrasound, magnetic resonance imaging, and computed tomography imaging modalities used to characterize atherosclerotic plaque, and will discuss their potential clinical applications, benefits, and drawbacks. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  19. Genesis and growth of extracellular vesicle-derived microcalcification in atherosclerotic plaques

    PubMed Central

    Hutcheson, Joshua D.; Goettsch, Claudia; Bertazzo, Sergio; Maldonado, Natalia; Ruiz, Jessica L.; Goh, Wilson; Yabusaki, Katsumi; Faits, Tyler; Bouten, Carlijn; Franck, Gregory; Quillard, Thibaut; Libby, Peter; Aikawa, Masanori; Weinbaum, Sheldon; Aikawa, Elena

    2015-01-01

    Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification zones. We also show that calcification morphology and the plaque’s collagen content – two determinants of atherosclerotic plaque stability - are interlinked. PMID:26752654

  20. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Hutcheson, Joshua D.; Goettsch, Claudia; Bertazzo, Sergio; Maldonado, Natalia; Ruiz, Jessica L.; Goh, Wilson; Yabusaki, Katsumi; Faits, Tyler; Bouten, Carlijn; Franck, Gregory; Quillard, Thibaut; Libby, Peter; Aikawa, Masanori; Weinbaum, Sheldon; Aikawa, Elena

    2016-03-01

    Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque’s collagen content--two determinants of atherosclerotic plaque stability--are interlinked.

  1. Bacterial Communities Associated with Atherosclerotic Plaques from Russian Individuals with Atherosclerosis

    PubMed Central

    Ziganshina, Elvira E.; Sharifullina, Dilyara M.; Lozhkin, Andrey P.; Khayrullin, Rustem N.; Ignatyev, Igor M.; Ziganshin, Ayrat M.

    2016-01-01

    Atherosclerosis is considered a chronic disease of the arterial wall and is the major cause of severe disease and death among individuals all over the world. Some recent studies have established the presence of bacteria in atherosclerotic plaque samples and suggested their possible contribution to the development of cardiovascular disease. The main objective of this preliminary pilot study was to better understand the bacterial diversity and abundance in human atherosclerotic plaques derived from common carotid arteries of individuals with atherosclerosis (Russian nationwide group) and contribute towards the further identification of a main group of atherosclerotic plaque bacteria by 454 pyrosequencing their 16S ribosomal RNA (16S rRNA) genes. The applied approach enabled the detection of bacterial DNA in all atherosclerotic plaques. We found that distinct members of the order Burkholderiales were present at high levels in all atherosclerotic plaques obtained from patients with atherosclerosis with the genus Curvibacter being predominant in all plaque samples. Moreover, unclassified Burkholderiales as well as members of the genera Propionibacterium and Ralstonia were typically the most significant taxa for all atherosclerotic plaques. Other genera such as Burkholderia, Corynebacterium and Sediminibacterium as well as unclassified Comamonadaceae, Oxalobacteraceae, Rhodospirillaceae, Bradyrhizobiaceae and Burkholderiaceae were always found but at low relative abundances of the total 16S rRNA gene population derived from all samples. Also, we found that some bacteria found in plaque samples correlated with some clinical parameters, including total cholesterol, alanine aminotransferase and fibrinogen levels. Finally, our study indicates that some bacterial agents at least partially may be involved in affecting the development of cardiovascular disease through different mechanisms. PMID:27736997

  2. Bacterial Communities Associated with Atherosclerotic Plaques from Russian Individuals with Atherosclerosis.

    PubMed

    Ziganshina, Elvira E; Sharifullina, Dilyara M; Lozhkin, Andrey P; Khayrullin, Rustem N; Ignatyev, Igor M; Ziganshin, Ayrat M

    2016-01-01

    Atherosclerosis is considered a chronic disease of the arterial wall and is the major cause of severe disease and death among individuals all over the world. Some recent studies have established the presence of bacteria in atherosclerotic plaque samples and suggested their possible contribution to the development of cardiovascular disease. The main objective of this preliminary pilot study was to better understand the bacterial diversity and abundance in human atherosclerotic plaques derived from common carotid arteries of individuals with atherosclerosis (Russian nationwide group) and contribute towards the further identification of a main group of atherosclerotic plaque bacteria by 454 pyrosequencing their 16S ribosomal RNA (16S rRNA) genes. The applied approach enabled the detection of bacterial DNA in all atherosclerotic plaques. We found that distinct members of the order Burkholderiales were present at high levels in all atherosclerotic plaques obtained from patients with atherosclerosis with the genus Curvibacter being predominant in all plaque samples. Moreover, unclassified Burkholderiales as well as members of the genera Propionibacterium and Ralstonia were typically the most significant taxa for all atherosclerotic plaques. Other genera such as Burkholderia, Corynebacterium and Sediminibacterium as well as unclassified Comamonadaceae, Oxalobacteraceae, Rhodospirillaceae, Bradyrhizobiaceae and Burkholderiaceae were always found but at low relative abundances of the total 16S rRNA gene population derived from all samples. Also, we found that some bacteria found in plaque samples correlated with some clinical parameters, including total cholesterol, alanine aminotransferase and fibrinogen levels. Finally, our study indicates that some bacterial agents at least partially may be involved in affecting the development of cardiovascular disease through different mechanisms.

  3. Ex vivo differential phase contrast and magnetic resonance imaging for characterization of human carotid atherosclerotic plaques.

    PubMed

    Meletta, Romana; Borel, Nicole; Stolzmann, Paul; Astolfo, Alberto; Klohs, Jan; Stampanoni, Marco; Rudin, Markus; Schibli, Roger; Krämer, Stefanie D; Herde, Adrienne Müller

    2015-10-01

    Non-invasive detection of specific atherosclerotic plaque components related to vulnerability is of high clinical relevance to prevent cerebrovascular events. The feasibility of magnetic resonance imaging (MRI) for characterization of plaque components was already demonstrated. We aimed to evaluate the potential of ex vivo differential phase contrast X-ray tomography (DPC) to accurately characterize human carotid plaque components in comparison to high field multicontrast MRI and histopathology. Two human plaque segments, obtained from carotid endarterectomy, classified according to criteria of the American Heart Association as stable and unstable plaque, were examined by ex vivo DPC tomography and multicontrast MRI (T1-, T2-, and proton density-weighted imaging, magnetization transfer contrast, diffusion-weighted imaging). To identify specific plaque components, the plaques were subsequently sectioned and stained for fibrous and cellular components, smooth muscle cells, hemosiderin, and fibrin. Histological data were then matched with DPC and MR images to define signal criteria for atherosclerotic plaque components. Characteristic structures, such as the lipid and necrotic core covered by a fibrous cap, calcification and hemosiderin deposits were delineated by histology and found with excellent sensitivity, resolution and accuracy in both imaging modalities. DPC tomography was superior to MRI regarding resolution and soft tissue contrast. Ex vivo DPC tomography allowed accurate identification of structures and components of atherosclerotic plaques at different lesion stages, in good correlation with histopathological findings.

  4. A framework for the co-registration of hemodynamic forces and atherosclerotic plaque components

    PubMed Central

    Chiu, Bernard; Chen, Huijun; Chen, Yimin; Hatsukami, Thomas S.; Kerwin, William S.; Yuan, Chun

    2013-01-01

    Local hemodynamic forces, such as wall shear stress, are thought to trigger cellular and molecular mechanisms that determine atherosclerotic plaque vulnerability to rupture. Magnetic resonance imaging (MRI) has emerged as a powerful tool to characterize human carotid atherosclerotic plaque composition and morphology, and to identify plaque features shown to be key determinants of plaque vulnerability. Image-based computational fluid dynamics (CFD) has allowed researchers to obtain time-resolved wall shear stress (WSS) information of atherosclerotic carotid arteries. A deeper understanding of the mechanisms of initiation and progression of atherosclerosis can be obtained through the comparison of WSS and plaque composition and morphology. To date, however, advance in knowledge has been limited greatly due to the lack of a reliable infrastructure to perform such analysis. The aim of this study is to establish a framework that will allow for the co-registration and analysis of the three-dimensional (3D) distribution ofWSS and plaque components and morphology. The use of this framework will lead to future studies targeted to determining the role of WSS in atherosclerotic plaque progression and vulnerability. PMID:23945133

  5. Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques – Tampere Vascular Study

    PubMed Central

    Sulkava, Miska; Raitoharju, Emma; Levula, Mari; Seppälä, Ilkka; Lyytikäinen, Leo-Pekka; Mennander, Ari; Järvinen, Otso; Zeitlin, Rainer; Salenius, Juha-Pekka; Illig, Thomas; Klopp, Norman; Mononen, Nina; Laaksonen, Reijo; Kähönen, Mika; Oksala, Niku; Lehtimäki, Terho

    2017-01-01

    Cardiovascular diseases due to atherosclerosis are the leading cause of death globally. We aimed to investigate the potentially altered gene and pathway expression in advanced peripheral atherosclerotic plaques in comparison to healthy control arteries. Gene expression analysis was performed (Illumina HumanHT-12 version 3 Expression BeadChip) for 68 advanced atherosclerotic plaques (15 aortic, 29 carotid and 24 femoral plaques) and 28 controls (left internal thoracic artery (LITA)) from Tampere Vascular Study. Dysregulation of individual genes was compared to healthy controls and between plaques from different arterial beds and Ingenuity pathway analysis was conducted on genes with a fold change (FC) > ±1.5 and false discovery rate (FDR) < 0.05. 787 genes were significantly differentially expressed in atherosclerotic plaques. The most up-regulated genes were osteopontin and multiple MMPs, and the most down-regulated were cell death-inducing DFFA-like effector C and A (CIDEC, CIDEA) and apolipoprotein D (FC > 20). 156 pathways were differentially expressed in atherosclerotic plaques, mostly inflammation-related, especially related with leukocyte trafficking and signaling. In artery specific plaque analysis 50.4% of canonical pathways and 41.2% GO terms differentially expressed were in common for all three arterial beds. Our results confirm the inflammatory nature of advanced atherosclerosis and show novel pathway differences between different arterial beds. PMID:28128285

  6. Detection and quantification of coronary atherosclerotic plaque by 64-slice multidetector CT: a systematic head-to-head comparison with intravascular ultrasound.

    PubMed

    Papadopoulou, Stella-Lida; Neefjes, Lisan A; Schaap, Michiel; Li, Hui-Ling; Capuano, Ermanno; van der Giessen, Alina G; Schuurbiers, Johan C H; Gijsen, Frank J H; Dharampal, Anoeshka S; Nieman, Koen; van Geuns, Robert Jan; Mollet, Nico R; de Feyter, Pim J

    2011-11-01

    We evaluated the ability of 64-slice multidetector computed tomography (MDCT)-derived plaque parameters to detect and quantify coronary atherosclerosis, using intravascular ultrasound (IVUS) as the reference standard. In 32 patients, IVUS and 64-MDCT was performed. The MDCT and IVUS datasets of 44 coronary arteries were co-registered using a newly developed fusion technique and quantitative parameters were derived from both imaging modalities. The threshold of >0.5 mm of maximum wall thickness was used to establish plaque presence on MDCT and IVUS. We analyzed 1364 coregistered 1-mm coronary cross-sections and 255 segments of 5-mm length. Compared with IVUS, 64-MDCT enabled correct detection in 957 of 1109 cross-sections containing plaque (sensitivity 86%). In 180 of 255 cross-sections atherosclerosis was correctly excluded (specificity 71%). On the segmental level, MDCT detected 213 of 220 segments with any atherosclerotic plaque (sensitivity 96%), whereas the presence of any plaque was correctly ruled out in 28 of 32 segments (specificity 88%). Interobserver agreement for the detection of atherosclerotic cross-sections was moderate (Cohen's kappa coefficient K=0.51), but excellent for the atherosclerotic segments (K=1.0). Pearson's correlation coefficient for vessel plaque volumes measured by MDCT and IVUS was r=0.91 (p<0.001). Bland-Altman analysis showed a slight non-significant underestimation of any plaque volume by MDCT (p=0.5), with a trend to underestimate noncalcified and overestimate mixed/calcified plaque volumes (p=0.22 and p=0.87 respectively). MDCT is able to detect and quantify atherosclerotic plaque. Further improvement in CT resolution is necessary for more reliable assessment of very small and distal coronary plaques. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Is Cadmium Exposure Associated with the Burden, Vulnerability and Rupture of Human Atherosclerotic Plaques?

    PubMed Central

    Sallsten, Gerd; Lundh, Thomas; Barregard, Lars

    2015-01-01

    The general population is exposed to cadmium from food and smoking. Cadmium is a widely spread toxic pollutant that seems to be associated with cardiovascular diseases, although little is known if it contributes to the occurrence of atherosclerotic plaques and the process whereby plaques become vulnerable and are prone to rupture. We tested the hypotheses that cadmium exposure is associated not only with an increased subclinical burden of atherosclerotic plaques in different vascular territories and early signs of plaque vulnerability, but also with cadmium content and plaque-rupture in the clinical phase of the disease. Ultrasound technique was used to measure plaque prevalence and echogenicity in the carotid and femoral arteries in a population sample of women (n = 599) in whom blood cadmium was measured. In addition cadmium was measured in snap-frozen endarterectomies and whole blood obtained from patients who were referred to surgery because of symptomatic carotid plaques (n = 37). Sixteen endarterectomies were divided into three parts corresponding to different flow conditions and plaque vulnerability. In the population sample blood cadmium was associated with the number of vascular territories with plaques (p = 0.003 after adjustment for potential confounders). The cadmium concentrations in symptomatic plaques were 50-fold higher in plaque tissue than in blood. Cadmium levels in blood and plaque correlated, also after adjustment for smoking and other cardiovascular risk factors (p<0.001). Compared with the other parts of the plaque, the cadmium content was double as high in the part where plaque rupture usually occurs. In conclusion, the results show that cadmium exposure is associated with the burden of subclinical atherosclerosis in middle-aged women with different degrees of glucose tolerance, and that the content of cadmium in symptomatic plaques in patients is related to that in blood, but much higher, and preferentially located in the part of plaque

  8. Absence of the Vitamin D Receptor Inhibits Atherosclerotic Plaque Calcification in Female Hypercholesterolemic Mice.

    PubMed

    Shamsuzzaman, Sohel; Onal, Melda; St John, Hillary C; Jeffery, Justin J; Pike, John W

    2017-05-01

    Epidemiological and clinical data suggest adverse cardiovascular outcomes with respect to vitamin D deficiency. Here, we explored the effects of vitamin D in atherosclerotic plaque calcification in vivo by utilizing vitamin D receptor (Vdr)-deficient mice in an Apoe(-/-) background. Animals were fed a high-fat diet (HFD) for either 12 or 18 weeks and then examined for atherosclerotic plaque development. In order to prevent calcium deficiency, Vdr(-/-) and Apoe(-/-) ;Vdr(-/-) animals were fed a high-calcium rescue diet prior to initiation of the HFD feeding and supplemented with high-calcium water during HFD feeding. Although calcium supplementation improved bone mass in Vdr(-/-) and Apoe(-/-) ;Vdr(-/-) mice, neither strain was fully rescued. Systemic inflammatory responses observed in the absence of VDR were exaggerated in Apoe(-/-) mice. Whereas, hyperlipidemic profiles seen in Apoe(-/-) mice were ameliorated in the absence of VDR. Micro-computed tomography (µCT) analysis revealed that six out of eight Apoe(-/-) animals developed atherosclerotic plaque calcification following 12 weeks of HFD feeding and 100% of the mice developed plaque calcification after 18 weeks. In contrast, although atherosclerotic lesions were evident in Apoe(-/-) ;Vdr(-/-) mice at 12 and 18 weeks of HFD challenge, none of these animals developed plaque calcification at either time point. The active vitamin D hormone, 1,25(OH)2 D3 likely increased calcification in aortic smooth muscle cells perhaps by directly modulating expression of Alpl, Rankl, and Opg. Our data suggest that the absence of VDR inhibits atherosclerotic plaque calcification in hypercholesterolemic Apoe(-/-) mice, providing additional insight into the role of vitamin D in atherosclerotic plaque calcification. J. Cell. Biochem. 118: 1050-1064, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Molecular analysis of oral bacteria in dental biofilm and atherosclerotic plaques of patients with vascular disease.

    PubMed

    Fernandes, Clarissa Pessoa; Oliveira, Francisco Artur Forte; Silva, Paulo Goberlânio de Barros; Alves, Ana Paula Negreiros Nunes; Mota, Mário Rogério Lima; Montenegro, Raquel Carvalho; Burbano, Rommel Mario Rodriguez; Seabra, Aline Damasceno; Lobo Filho, José Glauco; Lima, Danilo Lopes Ferreira; Soares Filho, Antônio Wilon Evelin; Sousa, Fabrício Bitu

    2014-07-01

    Oral bacteria have been detected in atherosclerotic plaques at a variable frequency; however, the connection between oral health and vascular and oral bacterial profiles of patients with vascular disease is not clearly established. The aim of this study was to evaluate the presence of oral bacterial DNA in the mouth and atherosclerotic plaques, in addition to assessing the patients' caries and periodontal disease history. Thirty samples of supragingival and subgingival plaque, saliva and atherosclerotic plaques of 13 patients with carotid stenosis or aortic aneurysm were evaluated, through real-time polymerase chain reaction, for the presence of Streptococcus mutans (SM), Prevotella intermedia (PI), Porphyromonas gingivalis (PG) and Treponema denticola (TD). All patients were submitted to oral examination using the DMFT (decayed, missing and filled teeth) and PSR (Periodontal Screening and Recording) indexes. Histopathological analysis of the atherosclerotic plaques was performed. Most of the patients were edentulous (76.9%). SM, PI, PG and TD were detected in 100.0%, 92.0%, 15.3% and 30.7% of the oral samples, respectively. SM was the most prevalent targeted bacteria in atherosclerotic plaques, detected in 100% of the samples, followed by PI (7.1%). The vascular samples were negative for PG and TD. There was a statistically significant difference (p<0.05) between the presence of PG and TD in the oral cavity and vascular samples. SM was found at a high frequency in oral and vascular samples, even in edentulous patients, and its presence in atherosclerotic plaques suggests the possible involvement of this bacterium in the disease progression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Intravascular photoacoustic imaging of exogenously labeled atherosclerotic plaque through luminal blood

    NASA Astrophysics Data System (ADS)

    Yeager, Doug; Karpiouk, Andrei; Wang, Bo; Amirian, James; Sokolov, Konstantin; Smalling, Richard; Emelianov, Stanislav

    2012-10-01

    Combined intravascular ultrasound and intravascular photoacoustic (IVUS/IVPA) imaging has been previously established as a viable means for assessing atherosclerotic plaque morphological and compositional characteristics using both endogenous and exogenous contrast. In this study, IVUS/IVPA imaging of atherosclerotic rabbit aortas following systemic injection of gold nanorods (AUNRs) with peak absorbance within the tissue optical window is performed. Ex vivo imaging results reveal a high photoacoustic signal from localized AUNRs in regions with atherosclerotic plaques. Corresponding histological staining further confirms the preferential extravasation of AUNRs in atherosclerotic regions with compromised luminal endothelium and acute inflammation. The ability to detect AUNRs using combined IVUS and photoacoustic imaging in the presence of luminal saline and luminal blood is evaluated using both spectroscopic and single wavelength IVPA imaging techniques. Results demonstrate that AUNR detection within the arterial wall can be achieved using both methods, even in the case of imaging through luminal blood.

  11. Development of Human-Like Advanced Coronary Plaques in Low-Density Lipoprotein Receptor Knockout Pigs and Justification for Statin Treatment Before Formation of Atherosclerotic Plaques.

    PubMed

    Li, Yuxin; Fuchimoto, Daiichiro; Sudo, Mitsumasa; Haruta, Hironori; Lin, Qing-Fei; Takayama, Tadateru; Morita, Shotaro; Nochi, Tomonori; Suzuki, Shunichi; Sembon, Shoichiro; Nakai, Michiko; Kojima, Misaki; Iwamoto, Masaki; Hashimoto, Michiko; Yoda, Shunichi; Kunimoto, Satoshi; Hiro, Takafumi; Matsumoto, Taro; Mitsumata, Masako; Sugitani, Masahiko; Saito, Satoshi; Hirayama, Atsushi; Onishi, Akira

    2016-04-18

    Although clinical trials have proved that statin can be used prophylactically against cardiovascular events, the direct effects of statin on plaque development are not well understood. We generated low-density lipoprotein receptor knockout (LDLR(-/-)) pigs to study the effects of early statin administration on development of atherosclerotic plaques, especially advanced plaques. LDLR(-/-) pigs were generated by targeted deletion of exon 4 of the LDLR gene. Given a standard chow diet, LDLR(-/-) pigs showed atherosclerotic lesions starting at 6 months of age. When 3-month-old LDLR(-/-) pigs were fed a high-cholesterol, high-fat (HCHF) diet for 4 months (HCHF group), human-like advanced coronary plaques developed. We also fed 3-month-old LDLR(-/-) pigs an HCHF diet with pitavastatin for 4 months (Statin Prophylaxis Group). Although serum cholesterol concentrations did not differ significantly between the 2 groups, intravascular ultrasound revealed 52% reduced plaque volume in statin-treated pigs. Pathological examination revealed most lesions (87%) in the statin prophylaxis group were early-stage lesions, versus 45% in the HCHF diet group (P<0.01). Thin-cap fibroatheroma characterized 40% of the plaques in the HCHF diet group versus 8% in the statin prophylaxis group (P<0.01), intraplaque hemorrhage characterized 11% versus 1% (P<0.01), and calcification characterized 22% versus 1% (P<0.01). Results of our large animal experiment support statin prophylaxis before the occurrence of atherosclerosis. Early statin treatment appears to retard development of coronary artery atherosclerosis and ensure lesion stability. In addition, the LDLR(-/-) pigs we developed represent a large animal model of human-like advanced coronary plaque suitable for translational research. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. Circulating cytokines reflect the expression of pro-inflammatory cytokines in atherosclerotic plaques.

    PubMed

    Edsfeldt, Andreas; Grufman, Helena; Asciutto, Giuseppe; Nitulescu, Mihaela; Persson, Ana; Nilsson, Marie; Nilsson, Jan; Gonçalves, Isabel

    2015-08-01

    Inflammation is a key factor in the development of plaque rupture and acute cardiovascular events. Although imaging techniques can be used to identify vulnerable atherosclerotic plaques, we are lacking non-invasive methods, such as plasma markers of plaque inflammation that could help to identify presence of vulnerable plaques. The aim of the present study was to investigate whether increased plasma levels of pro-inflammatory cytokines reflects inflammatory activity within atherosclerotic plaques. Cytokines were measured using Luminex immunoassay in 200 homogenized plaque extracts and plasma, obtained from 197 subjects undergoing carotid surgery. Plasma levels of macrophage inflammatory protein-1β (MIP-1β), tumor necrosis factor- α (TNF-α) and fractalkine correlated significantly, not only with plaque levels of the same cytokines but also with the abundance of several pro-inflammatory and atherogenic cytokines assessed in plaque tissue. High plasma levels (upper tertile) of MIP-1β, TNF-α and fractalkine identified the presence of a plaque with high inflammation (above median of a score based on the plaque content of MIP-1β, TNF-α, interferon-γ (IFN-γ) and fractalkine) with a sensitivity between 65 and 67% and a specificity between 78 and 83%. Furthermore, this study shows that high plasma levels of MIP-1β, TNF-α and fractalkine predict future transient ischemic attacks. Our findings show that the plasma levels of MIP-1β, TNF-α and fractalkine reflect the levels of several pro-atherogenic cytokines in plaque tissue and might be possible plasma markers for a vulnerable atherosclerotic disease. We thereby propose that these cytokines can be used as surrogate markers for the identification of patients with high-risk plaques. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. A computational fluid-structure interaction model for plaque vulnerability assessment in atherosclerotic human coronary arteries

    NASA Astrophysics Data System (ADS)

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza; Haghpanahi, Mohammad

    2014-04-01

    Coronary artery disease is responsible for a third of global deaths worldwide. Computational simulations of blood flow can be used to understand the interactions of artery/plaque and blood in coronary artery disease and to better predict the rupture of atherosclerotic plaques. So far, the mechanical properties of animals' coronary artery have been mostly used for hemodynamic simulation of atherosclerotic arteries. The mechanical properties of animals' coronary arteries are often not accurate enough and can be only used for an approximate estimation and comparative assessment of the cognate parameters in human. In this study, a three-dimensional (3D) computational fluid-structure interactions model with three different plaque types is presented to perform a more accurate plaque vulnerability assessment for human atherosclerotic plaques. The coronary arteries of twenty-two male individuals were removed during autopsy and subjected to uniaxial tensile loading. The hyperelastic material coefficients of coronary arteries were calculated and implemented to the computational model. The fully coupled fluid and structure models were solved using the explicit dynamics finite element code LS-DYNA. The normal and shear stresses induced within the plaques were significantly affected by different plaque types. The highest von Mises (153 KPa) and shear (57 KPa) stresses were observed for hypocellular plaques, while the lowest von Mises (70 KPa) and shear (39 KPa) stresses were observed on the stiffer calcified plaques. The results suggest that the risk of plaque rupture due to blood flow is lower for cellular and hypocellular plaques, while higher for calcified plaques with low fracture stresses.

  14. Primary Stenting for Complex Atherosclerotic Plaques in Aortic and Iliac Stenoses

    SciTech Connect

    Onal, Baran; Ilgit, Erhan T.; Yuecel, Cem; Ozbek, Erdal; Vural, Murat; Akpek, Sergin

    1998-09-15

    Purpose: To evaluate the efficacy of primary stenting for complex atherosclerotic plaques in aortic and iliac stenoses that are not amenable to balloon angioplasty alone. Methods: Nineteen patients with complex atherosclerotic plaques were treated with a Palmaz stent (n= 19), Wallstent (n= 1), Strecker stent (n= 1), or Memotherm stent (n= 1). A total of 22 stenoses presenting with complex plaque morphology including ulcerated plaques, ulcerated plaques with focal aneurysms, plaques with heavy calcification, severely eccentric plaques, plaques with overhanging edge, and plaques with spontaneous dissection were stented. The lesions were in the aorta (n= 1), common iliac artery (n= 19), or external iliac artery (n= 2). Results: Immediate angiography after stent placement revealed restoration of patency of the stented segment. Focal aneurysms and ulcerated areas were occluded in the follow-up angiographies obtained 4-12 weeks after the procedure. In one case with poor distal runoff and multiple complex lesions of the iliac artery, subacute occlusion occurred. Clinical and angiographic follow-up (3-46 months) revealed patency of all other stented segments. Conclusion: Primary stenting is an effective and reliable approach for complex plaques in stenoses. Patency of the arterial segment with a smooth lumen can be created without the risk of acute complications such as distal embolization, dissection, or occlusion.

  15. Atherosclerotic Plaques in the Aortic Arch and Subclinical Cerebrovascular Disease.

    PubMed

    Tugcu, Aylin; Jin, Zhezhen; Homma, Shunichi; Elkind, Mitchell S V; Rundek, Tatjana; Yoshita, Mitsuhiro; DeCarli, Charles; Nakanishi, Koki; Shames, Sofia; Wright, Clinton B; Sacco, Ralph L; Di Tullio, Marco R

    2016-11-01

    Aortic arch plaque (AAP) is a risk factor for ischemic stroke, but its association with subclinical cerebrovascular disease is not established. We investigated the association between AAP and subclinical cerebrovascular disease in an elderly stroke-free community-based cohort. The CABL study (Cardiovascular Abnormalities and Brain Lesions) was designed to investigate cardiovascular predictors of silent cerebrovascular disease in the elderly. AAPs were assessed by suprasternal transthoracic echocardiography in 954 participants. Silent brain infarcts and white matter hyperintensity volume (WMHV) were assessed by brain magnetic resonance imaging. The association of AAP thickness with silent brain infarcts and WMHV was evaluated by logistic regression analysis. Mean age was 71.6±9.3 years; 63% were women. AAP was present in 658 (69%) subjects. Silent brain infarcts were detected in 138 participants (14.5%). In multivariate analysis adjusted for potential confounders, AAP thickness and large AAP (≥4 mm in thickness) were significantly associated with the upper quartile of WMHV (WMHV-Q4; odds ratio =1.17; 95% confidence interval, 1.04-1.32; P=0.009 and odds ratio =1.79; 95% confidence interval, 1.40-3.09; P=0.036, respectively), but not with silent brain infarcts (odds ratio =1.08; 95% confidence interval, 0.94-1.23; P=0.265 and odds ratio =1.46; 95% confidence interval, 0.77-2.77; P=0.251, respectively). Aortic arch atherosclerosis was associated with WMHV in a stroke-free community-based elderly cohort. This association was stronger in subjects with large plaques and independent of cardiovascular risk factors. Aortic arch assessment by transthoracic echocardiography may help identify subjects at higher risk of subclinical cerebrovascular disease, who may benefit from aggressive stroke risk factors treatment. © 2016 American Heart Association, Inc.

  16. Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques

    PubMed Central

    Silvola, Johanna M. U.; Virtanen, Helena; Siitonen, Riikka; Hellberg, Sanna; Liljenbäck, Heidi; Metsälä, Olli; Ståhle, Mia; Saanijoki, Tiina; Käkelä, Meeri; Hakovirta, Harri; Ylä-Herttuala, Seppo; Saukko, Pekka; Jauhiainen, Matti; Veres, Tibor Z.; Jalkanen, Sirpa; Knuuti, Juhani; Saraste, Antti; Roivainen, Anne

    2016-01-01

    Given the important role of inflammation and the potential association of the leukocyte trafficking-associated adhesion molecule vascular adhesion protein 1 (VAP-1) with atherosclerosis, this study examined whether functional VAP-1 is expressed in atherosclerotic lesions and, if so, whether it could be targeted by positron emission tomography (PET). First, immunohistochemistry revealed that VAP-1 localized to endothelial cells of intra-plaque neovessels in human carotid endarterectomy samples from patients with recent ischemic symptoms. In low-density lipoprotein receptor-deficient mice expressing only apolipoprotein B100 (LDLR−/−ApoB100/100), VAP-1 was expressed on endothelial cells lining inflamed atherosclerotic lesions; normal vessel walls in aortas of C57BL/6N control mice were VAP-1-negative. Second, we discovered that the focal uptake of VAP-1 targeting sialic acid-binding immunoglobulin-like lectin 9 based PET tracer [68Ga]DOTA-Siglec-9 in atherosclerotic plaques was associated with the density of activated macrophages (r = 0.58, P = 0.022). As a final point, we found that the inhibition of VAP-1 activity with small molecule LJP1586 decreased the density of macrophages in inflamed atherosclerotic plaques in mice. Our results suggest for the first time VAP-1 as a potential imaging target for inflamed atherosclerotic plaques, and corroborate VAP-1 inhibition as a therapeutic approach in the treatment of atherosclerosis. PMID:27731409

  17. Caspase-3 Deletion Promotes Necrosis in Atherosclerotic Plaques of ApoE Knockout Mice

    PubMed Central

    Schrijvers, Dorien M.; Hermans, Marthe; Van Hoof, Viviane O.; De Meyer, Guido R. Y.

    2016-01-01

    Apoptosis of macrophages and vascular smooth muscle cells (VSMCs) in advanced atherosclerotic plaques contributes to plaque progression and instability. Caspase-3, a key executioner protease in the apoptotic pathway, has been identified in human and mouse atherosclerotic plaques but its role in atherogenesis is not fully explored. We therefore investigated the impact of caspase-3 deletion on atherosclerosis by crossbreeding caspase-3 knockout (Casp3−/−) mice with apolipoprotein E knockout (ApoE−/−) mice. Bone marrow-derived macrophages and VSMCs isolated from Casp3−/−ApoE−/− mice were resistant to apoptosis but showed increased susceptibility to necrosis. However, caspase-3 deficiency did not sensitize cells to undergo RIP1-dependent necroptosis. To study the effect on atherosclerotic plaque development, Casp3+/+ApoE−/− and Casp3−/−ApoE−/− mice were fed a western-type diet for 16 weeks. Though total plasma cholesterol, triglycerides, and LDL cholesterol levels were not altered, both the plaque size and percentage necrosis were significantly increased in the aortic root of Casp3−/−ApoE−/− mice as compared to Casp3+/+ApoE−/− mice. Macrophage content was significantly decreased in plaques of Casp3−/−ApoE−/− mice as compared to controls, while collagen content and VSMC content were not changed. To conclude, deletion of caspase-3 promotes plaque growth and plaque necrosis in ApoE−/− mice, indicating that this antiapoptotic strategy is unfavorable to improve atherosclerotic plaque stability. PMID:27847551

  18. Characterization of atherosclerotic plaques by cross-polarization optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Dudenkova, Varvara V.; Feldchtein, Felix I.; Timofeeva, Lidia B.; Kiseleva, Elena B.; Kuznetsov, Sergei S.; Moiseev, Alexander A.; Gelikonov, Gregory V.; Vitkin, Alex I.; Gladkova, Natalia D.

    2016-02-01

    We combined cross-polarization optical coherence tomography (CP OCT) and non-linear microscopy based on second harmonic generation (SHG) and two-photon-excited fluorescence (2PEF) to assess collagen and elastin fibers in the development of the atherosclerotic plaque (AP). The study shows potential of CP OCT for the assessment of collagen and elastin fibers condition in atherosclerotic arteries. Specifically, the additional information afforded by CP OCT, related to birefringence and cross-scattering properties of arterial tissues, may improve the robustness and accuracy of assessment about the microstructure and composition of the plaque for different stages of atherosclerosis.

  19. Lectin Pathway of Complement Activation Is Associated with Vulnerability of Atherosclerotic Plaques

    PubMed Central

    Fumagalli, Stefano; Perego, Carlo; Zangari, Rosalia; De Blasio, Daiana; Oggioni, Marco; De Nigris, Francesca; Snider, Francesco; Garred, Peter; Ferrante, Angela M. R.; De Simoni, Maria-Grazia

    2017-01-01

    Inflammatory mechanisms may be involved in atherosclerotic plaque rupture. By using a novel histology-based method to quantify plaque instability here, we assess whether lectin pathway (LP) of complement activation, a major inflammation arm, could represent an index of plaque instability. Plaques from 42 consecutive patients undergoing carotid endarterectomy were stained with hematoxylin-eosin and the lipid core, cholesterol clefts, hemorrhagic content, thickness of tunica media, and intima, including or not infiltration of cellular debris and cholesterol, were determined. The presence of ficolin-1, -2, and -3 and mannose-binding lectin (MBL), LP initiators, was assessed in the plaques by immunofluorescence and in plasma by ELISA. LP activation was assessed in plasma by functional in vitro assays. Patients presenting low stenosis (≤75%) had higher hemorrhagic content than those with high stenosis (>75%), indicating increased erosion. Increased hemorrhagic content and tunica media thickness, as well as decreased lipid core and infiltrated content were associated with vulnerable plaques and therefore used to establish a plaque vulnerability score that allowed to classify patients according to plaque vulnerability. Ficolins and MBL were found both in plaques’ necrotic core and tunica media. Patients with vulnerable plaques showed decreased plasma levels and intraplaque deposition of ficolin-2. Symptomatic patients experiencing a transient ischemic attack had lower plasma levels of ficolin-1. We show that the LP initiators are present within the plaques and their circulating levels change in atherosclerotic patients. In particular, we show that decreased ficolin-2 levels are associated with rupture-prone vulnerable plaques, indicating its potential use as marker for cardiovascular risk assessment in atherosclerotic patients. PMID:28360913

  20. A fluorescence lifetime spectroscopy study of matrix metalloproteinases -2 and -9 in human atherosclerotic plaque

    PubMed Central

    Phipps, Jennifer E.; Hatami, Nisa; Galis, Zorina S.; Baker, J. Dennis; Fishbein, Michael C.; Marcu, Laura

    2011-01-01

    Matrix metalloproteinase (MMP) -2 and -9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP-2 and -9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP-2 and -9 content in the atherosclerotic plaque cap using a label-free imaging technique implemented with a fiberoptic TR-LIFS system. PMID:21770037

  1. Association of serum bilirubin with oxidant damage of human atherosclerotic plaques and the severity of atherosclerosis.

    PubMed

    Lapenna, Domenico; Ciofani, Giuliano; Pierdomenico, Sante Donato; Giamberardino, Maria Adele; Ucchino, Sante; Davì, Giovanni

    2017-09-25

    Bilirubin has protective effects against atherosclerotic cardiovascular diseases hypothetically due to its antioxidant-antilipoperoxidative properties. Thus, we investigated whether serum bilirubin is associated with oxidant damage, namely lipid peroxidation, of human atherosclerotic plaques and the severity of atherosclerosis. In this regard, we correlated the levels of serum total bilirubin (STB), direct (conjugated) bilirubin (SDB) and indirect (unconjugated) bilirubin (SIB) with those of fluorescent damage products of lipid peroxidation (FDPL) and lipid hydroperoxides (LOOH) of 32 endarterectomy-derived carotid atherosclerotic plaques. Moreover, we compared the levels of serum bilirubin and plaque lipoperoxides between two groups of patients of the study population with different severity of atherosclerosis as judged by the carotid stenosis degree, i.e., <90% (group A, n = 23) and ≥90% (group B, n = 9). Remarkably, the levels of STB were strongly inversely correlated with those of plaque FDPL (rS = -0.70, P < 0.0001) and LOOH (rS = -0.66, P < 0.0001), as were those of SIB (FDPL: rS = -0.68, P < 0.0001; LOOH: rS = -0.63, P < 0.0001). SDB had a weaker association with plaque FDPL (rS = -0.41, P < 0.05) and LOOH (rS = -0.35, P < 0.05). Moreover, the levels of STB, SDB and SIB were lower and those of plaque lipoperoxides higher in group B than in group A, pointing to the association of serum bilirubin and plaque oxidant burden with the severity of atherosclerosis. In conclusion, lowered serum bilirubin is associated with oxidant damage of human atherosclerotic plaques and the severity of atherosclerosis.

  2. The nature of iron deposits differs between symptomatic and asymptomatic carotid atherosclerotic plaques

    SciTech Connect

    Kopriva, David; Kisheev, Anastasye; Meena, Deiter; Pelle, Shaneen; Karnitsky, Max; Lavoie, Andrea; Buttigieg, Josef; Hagemeyer, Christoph E.

    2015-11-25

    Iron within atherosclerotic plaque has been implicated as a catalyst of oxidative stress that causes progression of plaque, and plaque rupture. Iron is believed to accumulate within plaque by incorporation of erythrocytes following plaque rupture and hemorrhage. There is only indirect evidence to support this hypothesis. Plaque specimens were obtained from ten symptomatic and fifteen asymptomatic patients undergoing carotid endarterectomy at a single institution. Plaques were sectioned for study using synchrotron radiation induced X-ray fluorescence the study the distribution of zinc, calcium and iron. Histologic staining was carried out with Prussian Blue, and immunohistochemical staining was done to localize macrophages with CD68. Data were compared against patient clinical variables. Ten symptomatic (15 ± 10 days between index symptoms and surgery) and fifteen asymptomatic carotid plaques were studied. Zinc and calcium co-localized in mineralized areas of symptomatic and asymptomatic plaque. Iron was identified away from zinc and calcium in both symptomatic and asymptomatic plaques. Within the symptomatic plaques, iron was found within the thrombus associated with plaque rupture and hemorrhage. It did not stain with Prussian Blue, but was found in association with CD68 positive macrophages. In symptomatic plaques, the abundance of iron showed an association with the source patient’s LDL cholesterol (R2 = 0.39, Significance F = 0.05). Iron in asymptomatic plaque was present as hemosiderin/ferritin that stained positive with Prussian Blue, and was observed in association with CD68 positive macrophages. Iron in acutely symptomatic plaques is found within thrombus, in the presence of macrophages. Moreover, the abundance of iron in symptomatic plaques is associated with the source patient’s LDL cholesterol. Within asymptomatic plaques, iron is found in association with macrophages, as hemosiderin/ferritin.

  3. The nature of iron deposits differs between symptomatic and asymptomatic carotid atherosclerotic plaques

    DOE PAGES

    Kopriva, David; Kisheev, Anastasye; Meena, Deiter; ...

    2015-11-25

    Iron within atherosclerotic plaque has been implicated as a catalyst of oxidative stress that causes progression of plaque, and plaque rupture. Iron is believed to accumulate within plaque by incorporation of erythrocytes following plaque rupture and hemorrhage. There is only indirect evidence to support this hypothesis. Plaque specimens were obtained from ten symptomatic and fifteen asymptomatic patients undergoing carotid endarterectomy at a single institution. Plaques were sectioned for study using synchrotron radiation induced X-ray fluorescence the study the distribution of zinc, calcium and iron. Histologic staining was carried out with Prussian Blue, and immunohistochemical staining was done to localize macrophagesmore » with CD68. Data were compared against patient clinical variables. Ten symptomatic (15 ± 10 days between index symptoms and surgery) and fifteen asymptomatic carotid plaques were studied. Zinc and calcium co-localized in mineralized areas of symptomatic and asymptomatic plaque. Iron was identified away from zinc and calcium in both symptomatic and asymptomatic plaques. Within the symptomatic plaques, iron was found within the thrombus associated with plaque rupture and hemorrhage. It did not stain with Prussian Blue, but was found in association with CD68 positive macrophages. In symptomatic plaques, the abundance of iron showed an association with the source patient’s LDL cholesterol (R2 = 0.39, Significance F = 0.05). Iron in asymptomatic plaque was present as hemosiderin/ferritin that stained positive with Prussian Blue, and was observed in association with CD68 positive macrophages. Iron in acutely symptomatic plaques is found within thrombus, in the presence of macrophages. Moreover, the abundance of iron in symptomatic plaques is associated with the source patient’s LDL cholesterol. Within asymptomatic plaques, iron is found in association with macrophages, as hemosiderin/ferritin.« less

  4. Relationship of MMP-14 and TIMP-3 Expression with Macrophage Activation and Human Atherosclerotic Plaque Vulnerability

    PubMed Central

    Johnson, Jason L.; Jenkins, Nicholas P.; Huang, Wei-Chun; Sala-Newby, Graciela B.; Scholtes, Vincent P. W.; Moll, Frans L.; Pasterkamp, Gerard; Newby, Andrew C.

    2014-01-01

    Matrix metalloproteinase-14 (MMP-14) promotes vulnerable plaque morphology in mice, whereas tissue inhibitor of metalloproteinases-3 (TIMP-3) overexpression is protective. MMP-14hi  TIMP-3lo rabbit foam cells are more invasive and more prone to apoptosis than MMP-14lo  TIMP-3hi cells. We investigated the implications of these findings for human atherosclerosis. In vitro generated macrophages and foam-cell macrophages, together with atherosclerotic plaques characterised as unstable or stable, were examined for expression of MMP-14, TIMP-3, and inflammatory markers. Proinflammatory stimuli increased MMP-14 and decreased TIMP-3 mRNA and protein expression in human macrophages. However, conversion to foam-cells with oxidized LDL increased MMP-14 and decreased TIMP-3 protein, independently of inflammatory mediators and partly through posttranscriptional mechanisms. Within atherosclerotic plaques, MMP-14 was prominent in foam-cells with either pro- or anti-inflammatory macrophage markers, whereas TIMP-3 was present in less foamy macrophages and colocalised with CD206. MMP-14 positive macrophages were more abundant whereas TIMP-3 positive macrophages were less abundant in plaques histologically designated as rupture prone. We conclude that foam-cells characterised by high MMP-14 and low TIMP-3 expression are prevalent in rupture-prone atherosclerotic plaques, independent of pro- or anti-inflammatory activation. Therefore reducing MMP-14 activity and increasing that of TIMP-3 could be valid therapeutic approaches to reduce plaque rupture and myocardial infarction. PMID:25301980

  5. Live Observation of Atherosclerotic Plaque Disruption in Apolipoprotein E-Deficient Mouse

    PubMed Central

    Daeichin, V.; Sluimer, J. C.; van der Heiden, K.; Skachkov, I.; Kooiman, K.; Janssen, A.; Janssen, B.; Bosch, J. G.; de Jong, N.; Daemen, M. J. A. P.; van der Steen, A. F. W.

    2015-01-01

    Aim: The actual occurrence of spontaneous plaque rupture in mice has been a matter of debate. We report on an in vivo observation of the actual event of possible plaque disruption in a living ApoE-/- mouse. Methods and Results: During live contrast-enhanced ultrasonography of a 50-week-old ApoE-/- male mouse, symptoms suggesting plaque disruption in the brachiocephalic artery were observed. Histological analysis confirmed the presence of advanced atherosclerotic lesions with dissections and intraplaque hemorrhage in the affected brachiocephalic trunk, pointing towards plaque rupture as the cause of the observed event. However, we did not detect a luminal thrombus or cap rupture, which is a key criterion for plaque rupture in human atherosclerosis. Conclusion: This study reports the real-time occurrence of a possible plaque rupture in a living ApoE-/- mouse. PMID:27689156

  6. Cyclic Bending Contributes to High Stress in a Human Coronary Atherosclerotic Plaque and Rupture Risk

    PubMed Central

    Yang, Chun; Tang, Dalin; Kobayashi, Shunichi; Zheng, Jie; Woodard, Pamela K.; Teng, Zhongzhao; Bach, Richard; Ku, David N.

    2009-01-01

    Many acute cardiovascular syndromes such as heart attack and stroke are caused by atherosclerotic plaque ruptures which often happen without warning. MRI-based models with fluid-structure interactions (FSI) have been introduced to perform flow and stress/strain analysis for atherosclerotic plaques and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. In this paper, cyclic bending was added to 3D FSI coronary plaque models for more accurate mechanical predictions. Curvature variation was prescribed using the data of a human left anterior descending (LAD) coronary artery. Five computational models were constructed based on ex vivo MRI human coronary plaque data to assess the effects of cyclic bending, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. In vitro experiments using a hydrogel stenosis model with cyclical bending were performed to observe effect of cyclical bending on flow conditions. Our results indicate that cyclical bending may cause more than 100% or even up to more than 1000% increase in maximum principal stress values at locations where the plaque is bent most. Stress increase is higher when bending is coupled with axial stretch, non-smooth plaque structure, or resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (21.6% decrease in maximum velocity, 10.8% decrease in flow rate, maximum flow shear stress changes were < 5%). Computational FSI models including cyclic bending, plaque components and structure, axial stretch, accurate in vivo measurements of pressure, curvature, and material properties should lead to significant improvement on stress-based plaque mechanical analysis and more accurate coronary plaque vulnerability assessment. PMID:19412353

  7. Multiscale investigation of USPIO nanoparticles in atherosclerotic plaques and their catabolism and storage in vivo.

    PubMed

    Maraloiu, Valentin-Adrian; Appaix, Florence; Broisat, Alexis; Le Guellec, Dominique; Teodorescu, Valentin Serban; Ghezzi, Catherine; van der Sanden, Boudewijn; Blanchin, Marie-Genevieve

    2016-01-01

    The storage and catabolism of Ultrasmall SuperParamagnetic Iron Oxide (USPIO) nanoparticles were analyzed through a multiscale approach combining Two Photon Laser Scanning Microscopy (TPLSM) and High-Resolution Transmission Electron Microscopy (HRTEM) at different times after intravenous injection in an atherosclerotic ApoE(-/-) mouse model. The atherosclerotic plaque features and the USPIO heterogeneous biodistribution were revealed down from organ's scale to subcellular level. The biotransformation of the nanoparticle iron oxide (maghemite) core into ferritin, the non-toxic form of iron storage, was demonstrated for the first time ex vivo in atherosclerotic plaques as well as in spleen, the iron storage organ. These results rely on an innovative spatial and structural investigation of USPIO's catabolism in cellular phagolysosomes. This study showed that these nanoparticles were stored as non-toxic iron compounds: maghemite oxide or ferritin, which is promising for MRI detection of atherosclerotic plaques in clinics using these USPIOs. From the Clinical Editor: Advance in nanotechnology has brought new contrast agents for clinical imaging. In this article, the authors investigated the use and biotransformation of Ultrasmall Super-paramagnetic Iron Oxide (USPIO) nanoparticles for analysis of atherosclerotic plagues in Two Photon Laser Scanning Microscopy (TPLSM) and High-Resolution Transmission Electron Microscopy (HRTEM). The biophysical data generated from this study could enable the possible use of these nanoparticles for the benefits of clinical patients.

  8. Factor XI regulates pathological thrombus formation on acutely ruptured atherosclerotic plaques.

    PubMed

    van Montfoort, Maurits L; Kuijpers, Marijke J E; Knaup, Véronique L; Bhanot, Sanjay; Monia, Brett P; Roelofs, Joris J T H; Heemskerk, Johan W M; Meijers, Joost C M

    2014-08-01

    Coagulation factor XI is proposed as therapeutic target for anticoagulation. However, it is still unclear whether the antithrombotic properties of factor XI inhibitors influence atherosclerotic disease and atherothrombosis. Our aim is to investigate whether factor XI antisense oligonucleotides could prevent thrombus formation on acutely ruptured atherosclerotic plaques. Atherosclerotic plaques in the carotid arteries of Apoe(-/-) mice were acutely ruptured using ultrasound. The subsequent thrombus formation was visualized and quantified by intravital microscopy and immunohistochemistry. Mice were pretreated with either factor XI antisense or nonsense oligonucleotides (50 mg/kg) to lower factor XI plasma levels. A tail bleeding assay was used to determine the safety. On plaque rupture, initial platelet adhesion and platelet plug formation were not impaired in animals treated with factor XI antisense oligonucleotides. However, the ensuing thrombus formation and fibrin deposition were significantly lower after 5 to 10 minutes (P<0.05) in factor XI antisense oligonucleotide-treated animals without inducing a bleeding tendency. Furthermore, thrombi from antisense-treated animals were less stable than thrombi from placebo-treated animals. Moreover, macrophage infiltration and collagen deposition were lower in the carotid arteries of factor XI antisense-treated animals. No neutrophils were present. Factor XI antisense oligonucleotides safely prevent thrombus formation on acutely ruptured atherosclerotic plaques in mice. Furthermore, perturbed carotid arteries from factor XI antisense-treated animals show a less severe inflammatory response. © 2014 American Heart Association, Inc.

  9. Inhibition of MicroRNA-494 Reduces Carotid Artery Atherosclerotic Lesion Development and Increases Plaque Stability.

    PubMed

    Wezel, Anouk; Welten, Sabine M J; Razawy, Wida; Lagraauw, H Maxime; de Vries, Margreet R; Goossens, Eveline A C; Boonstra, Martin C; Hamming, Jaap F; Kandimalla, Ekambar R; Kuiper, Johan; Quax, Paul H A; Nossent, A Yaël; Bot, Ilze

    2015-11-01

    Unstable atherosclerotic lesions in carotid arteries require surgical endarterectomy to reduce the risk of ischemic stroke. We aimed to identify microRNAs that exert a broad effect on atherosclerotic plaque formation and stability in the carotid artery. We made a selection of 164 genes involved in atherosclerosis. Using www.targetscan.org, we determined which microRNAs potentially regulate expression of these genes. We identified multiple microRNAs from the 14q32 microRNA cluster, which is highly involved in vascular remodeling. In human plaques, collected during carotid endarterectomy surgery, we found that 14q32 microRNA (miR-494) was abundantly expressed in unstable lesions. We induced atherosclerotic plaque formation in hypercholesterolemic ApoE mice by placing semiconstrictive collars around both carotid arteries. We injected "Gene Silencing Oligonucleotides" against miR-494 (GSO-494) or negative control (GSO-control). Using fluorescently labeled GSOs, we confirmed uptake of GSOs in affected areas of the carotids, but not elsewhere in the vasculature. After injection of GSO-494, we observed significant downregulation of miR-494 expression in the carotid arteries, although miR-494 target genes were upregulated. Further analyses revealed a 65% decrease in plaque size after GSO-494 treatment. Plaque stability was increased in GSO-494-treated mice, determined by an 80% decrease in necrotic core size and a 50% increase in plaque collagen content. Inhibition of miR-494 also resulted in decreased cholesterol levels and decreased very low-density lipoprotein (VLDL) fractions. Treatment with GSO-494 results in smaller atherosclerotic lesions with increased plaque stability. Inhibition of miR-494 may decrease the risk of surgical complications or even avert endarterectomy surgery in some cases.

  10. Detection and characterization of atherosclerotic plaques by Raman probe spectroscopy and optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Matthäus, Christian; Dochow, Sebastian; Egodage, Kokila D.; Schie, Iwan; Romeike, Bernd F.; Brehm, Bernhard R.; Popp, Jürgen

    2017-02-01

    Visualization and characterization of inner arterial plaque depositions is of vital diagnostic interest. Established intravascular imaging techniques provide valuable morphological information, but cannot deliver information about the chemical composition of individual plaques. Probe based Raman spectroscopy offers the possibility for a biochemical characterization of atherosclerotic plaque formations during an intravascular intervention. From post mortem studies it is well known that the severity of a plaque and its stability are strongly correlated with its biochemical composition. Especially the identification of vulnerable plaques remains one of the most important and challenging aspects in cardiology. Thus, specific information about the composition of a plaque would greatly improve the risk assessment and management. Furthermore, knowledge about the composition can offer new therapeutic and medication strategies. Plaque calcifications as well as major lipid components such as cholesterol, cholesterol esters and triglycerides can be spectroscopically easily differentiated. Intravascular optical coherence tomography (OCT) is currently a prominent catheter based imaging technique for the localization and visualization of atherosclerotic plaque depositions. The high resolution of OCT with 10 to 15 µm allows for very detailed characterization of morphological features such as different plaque formations, thin fibrous caps and accurate measurements of lesion lengths. In combination with OCT imaging the obtained spectral information can provide substantial information supporting on on-site diagnosis of various plaque types and therefor an improved risk assessment. The potential and feasibility of combining OCT with Raman spectroscopy is demonstrated on excised plaque samples, as well as under in vivo conditions. Acknowledgements: Financial support from the Carl Zeiss Foundation is greatly acknowledged.

  11. Myeloperoxidase-oxidized high density lipoprotein impairs atherosclerotic plaque stability by inhibiting smooth muscle cell migration.

    PubMed

    Zhou, Boda; Zu, Lingyun; Chen, Yong; Zheng, Xilong; Wang, Yuhui; Pan, Bing; Dong, Min; Zhou, Enchen; Zhao, Mingming; Zhang, Youyi; Zheng, Lemin; Gao, Wei

    2017-01-10

    High density lipoprotein (HDL) has been proved to be a protective factor for coronary heart disease. Notably, HDL in atherosclerotic plaques can be nitrated (NO2-oxHDL) and chlorinated (Cl-oxHDL) by myeloperoxidase (MPO), likely compromising its cardiovascular protective effects. Here we determined the effects of NO2-oxHDL and Cl-oxHDL on SMC migration using wound healing and transwell assays, proliferation using MTT and BrdU assays, and apoptosis using Annexin-V assay in vitro, as well as on atherosclerotic plaque stability in vivo using a coratid artery collar implantation mice model. Our results showed that native HDL promoted SMC proliferation and migration, whereas NO2-oxHDL and Cl-oxHDL inhibited SMC migration and reduced capacity of stimulating SMC proliferation as well as migration, respectively. OxHDL had no significant influence on SMC apoptosis. In addition, we found that ERK1/2-phosphorylation was significantly lower when SMCs were incubated with NO2-oxHDL and Cl-oxHDL. Furthermore, transwell experiments showed that differences between native HDL, NO2-oxHDL and Cl-oxHDL was abolished after PD98059 (MAPK kinase inhibitor) treatment. In aortic SMCs from scavenger receptor BI (SR-BI) deficient mice, differences between migration of native HDL, NO2-oxHDL and Cl-oxHDL treated SMCs vanished, indicating SR-BI's possible role in HDL-associated SMC migration. Importantly, NO2-oxHDL and Cl-oxHDL induced neointima formation and reduced SMC positive staining cells in atherosclerotic plaque, resulting in elevated vulnerable index of atherosclerotic plaque. These findings implicate MPO-catalyzed oxidization of HDL may contribute to atherosclerotic plaque instability by inhibiting SMC proliferation and migration through MAPK-ERK pathway which was dependent on SR-BI.

  12. Simulation of the interaction between blood flow and atherosclerotic plaque.

    PubMed

    Li, Zhi-Yong; Gillard, Jonathan H

    2007-01-01

    It has been well accepted that over 50% of cerebral ischemic events are the result of rupture of vulnerable carotid atheroma and subsequent thrombosis. Such strokes are potentially preventable by carotid interventions. Selection of patients for intervention is currently based on the severity of carotid luminal stenosis. It has been, however, widely accepted that luminal stenosis alone may not be an adequate predictor of risk. To evaluate the effects of degree of luminal stenosis and plaque morphology on plaque stability, we used a coupled nonlinear time-dependent model with flow-plaque interaction simulation to perform flow and stress/strain analysis for stenotic artery with a plaque. The Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations for the fluid. The Ogden strain energy function was used for both the fibrous cap and the lipid pool. The plaque Principal stresses and flow conditions were calculated for every case when varying the fibrous cap thickness from 0.1 to 2 mm and the degree of luminal stenosis from 10% to 90%. Severe stenosis led to high flow velocities and high shear stresses, but a low or even negative pressure at the throat of the stenosis. Higher degree of stenosis and thinner fibrous cap led to larger plaque stresses, and a 50% decrease of fibrous cap thickness resulted in a 200% increase of maximum stress. This model suggests that fibrous cap thickness is critically related to plaque vulnerability and that, even within presence of moderate stenosis, may play an important role in the future risk stratification of those patients when identified in vivo using high resolution MR imaging.

  13. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation

    NASA Astrophysics Data System (ADS)

    Duivenvoorden, Raphaël; Tang, Jun; Cormode, David P.; Mieszawska, Aneta J.; Izquierdo-Garcia, David; Ozcan, Canturk; Otten, Maarten J.; Zaidi, Neeha; Lobatto, Mark E.; van Rijs, Sarian M.; Priem, Bram; Kuan, Emma L.; Martel, Catherine; Hewing, Bernd; Sager, Hendrik; Nahrendorf, Matthias; Randolph, Gwendalyn J.; Stroes, Erik S. G.; Fuster, Valentin; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2014-01-01

    Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show that this effect is mediated through the inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and show that they accumulate in atherosclerotic lesions in which they directly affect plaque macrophages. Finally, we demonstrate that a 3-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression, while a 1-week high-dose regimen markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation.

  14. A Statin-Loaded Reconstituted High-Density Lipoprotein Nanoparticle Inhibits Atherosclerotic Plaque Inflammation

    PubMed Central

    Duivenvoorden, Raphaël; Tang, Jun; Cormode, David P.; Mieszawska, Aneta J.; Izquierdo-Garcia, David; Ozcan, Canturk; Otten, Maarten J.; Zaidi, Neeha; Lobatto, Mark E.; van Rijs, Sarian M.; Priem, Bram; Kuan, Emma L.; Martel, Catherine; Hewing, Bernd; Sager, Hendrik; Nahrendorf, Matthias; Randolph, Gwendalyn J.; Stroes, Erik S.G.; Fuster, Valentin; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J.M.

    2014-01-01

    Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show this effect is mediated through inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and show they accumulate in atherosclerotic lesions where they directly affect plaque macrophages. Finally we demonstrate that a three-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression, while a one-week high-dose regimen markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation. PMID:24445279

  15. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation.

    PubMed

    Duivenvoorden, Raphaël; Tang, Jun; Cormode, David P; Mieszawska, Aneta J; Izquierdo-Garcia, David; Ozcan, Canturk; Otten, Maarten J; Zaidi, Neeha; Lobatto, Mark E; van Rijs, Sarian M; Priem, Bram; Kuan, Emma L; Martel, Catherine; Hewing, Bernd; Sager, Hendrik; Nahrendorf, Matthias; Randolph, Gwendalyn J; Stroes, Erik S G; Fuster, Valentin; Fisher, Edward A; Fayad, Zahi A; Mulder, Willem J M

    2014-01-01

    Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show that this effect is mediated through the inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and show that they accumulate in atherosclerotic lesions in which they directly affect plaque macrophages. Finally, we demonstrate that a 3-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression, while a 1-week high-dose regimen markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation.

  16. Modeling of Mechanical Stress Exerted by Cholesterol Crystallization on Atherosclerotic Plaques

    PubMed Central

    Cui, Dongyao; Yu, Xiaojun; Chen, Si; Liu, Xinyu; Tang, Hongying; Wang, Xianghong; Liu, Linbo

    2016-01-01

    Plaque rupture is the critical cause of cardiovascular thrombosis, but the detailed mechanisms are not fully understood. Recent studies have found abundant cholesterol crystals in ruptured plaques, and it has been proposed that the rapid expansion of cholesterol crystals in a limited space during crystallization may contribute to plaque rupture. To evaluate the effect of cholesterol crystal growth on atherosclerotic plaques, we modeled the expansion of cholesterol crystals during the crystallization process in the necrotic core and estimated the stress on the thin cap with different arrangements of cholesterol crystals. We developed a two-dimensional finite element method model of atherosclerotic plaques containing expanding cholesterol crystals and investigated the effect of the magnitude and distribution of crystallization on the peak circumferential stress born by the cap. Using micro-optical coherence tomography (μOCT), we extracted the cross-sectional geometric information of cholesterol crystals in human atherosclerotic aorta tissue ex vivo and applied the information to the model. The results demonstrate that (1) the peak circumference stress is proportionally dependent on the cholesterol crystal growth; (2) cholesterol crystals at the cap shoulder impose the highest peak circumference stress; and (3) spatial distributions of cholesterol crystals have a significant impact on the peak circumference stress: evenly distributed cholesterol crystals exert less peak circumferential stress on the cap than concentrated crystals. PMID:27149381

  17. Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo

    PubMed Central

    Li, Jiawen; Ma, Teng; Mohar, Dilbahar; Steward, Earl; Yu, Mingyue; Piao, Zhonglie; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping

    2015-01-01

    Atherosclerotic coronary artery disease (CAD) is the number one cause of death worldwide. The majority of CAD-induced deaths are due to the rupture of vulnerable plaques. Accurate assessment of plaques is crucial to optimize treatment and prevent death in patients with CAD. Current diagnostic techniques are often limited by either spatial resolution or penetration depth. Several studies have proved that the combined use of optical and ultrasonic imaging techniques increase diagnostic accuracy of vulnerable plaques. Here, we introduce an ultrafast optical-ultrasonic dual-modality imaging system and flexible miniaturized catheter, which enables the translation of this technology into clinical practice. This system can perform simultaneous optical coherence tomography (OCT)-intravascular ultrasound (IVUS) imaging at 72 frames per second safely in vivo, i.e., visualizing a 72 mm-long artery in 4 seconds. Results obtained in atherosclerotic rabbits in vivo and human coronary artery segments show that this ultrafast technique can rapidly provide volumetric mapping of plaques and clearly identify vulnerable plaques. By providing ultrafast imaging of arteries with high resolution and deep penetration depth simultaneously, this hybrid IVUS-OCT technology opens new and safe opportunities to evaluate in real-time the risk posed by plaques, detect vulnerable plaques, and optimize treatment decisions. PMID:26678300

  18. Non-calcified coronary atherosclerotic plaque characterization by dual energy computed tomography.

    PubMed

    Yamak, Didem; Panse, Prasad; Pavlicek, William; Boltz, Thomas; Akay, Metin

    2014-05-01

    Coronary heart disease (CHD) is the most prevalent cause of death worldwide. Atherosclerosis which is the condition of plaque buildup on the inside of the coronary artery wall is the main cause of CHD. Rupture of unstable atherosclerotic coronary plaque is known to be the cause of acute coronary syndrome. Vulnerability of atherosclerotic plaque has been related to a large lipid core covered by a fibrous cap. Non-invasive assessment of plaque characterization is necessary due to prognostic importance of early stage identification. The purpose of this study is to use the additional attenuation data provided by dual energy computed tomography (DECT) for plaque characterization. We propose to train supervised learners on pixel values recorded from DECT monochromatic X-ray and material basis pairs images, for more precise classification of fibrous and lipid plaques. The interaction of the pixel values from different image types is taken into consideration, as single pixel value might not be informative enough to separate fibrous from lipid. Organic phantom plaques scanned in a fabricated beating heart phantom were used as ground truth to train the learners. Our results show that support vector machines, artificial neural networks and random forests provide accurate results both on phantom and patient data.

  19. Association between Human Plasma Chondroitin Sulfate Isomers and Carotid Atherosclerotic Plaques

    PubMed Central

    Zinellu, Elisabetta; Lepedda, Antonio Junior; Cigliano, Antonio; Pisanu, Salvatore; Zinellu, Angelo; Carru, Ciriaco; Bacciu, Pietro Paolo; Piredda, Franco; Guarino, Anna; Spirito, Rita; Formato, Marilena

    2012-01-01

    Several studies have evidenced variations in plasma glycosaminoglycans content in physiological and pathological conditions. In normal human plasma GAGs are present mainly as undersulfated chondroitin sulfate (CS). The aim of the present study was to evaluate possible correlations between plasma CS level/structure and the presence/typology of carotid atherosclerotic lesion. Plasma CS was purified from 46 control subjects and 47 patients undergoing carotid endarterectomy showing either a soft or a hard plaque. The concentration and structural characteristics of plasma CS were assessed by capillary electrophoresis of constituent unsaturated fluorophore-labeled disaccharides. Results showed that the concentration of total CS isomers was increased by 21.4% (P < 0.01) in plasma of patients, due to a significant increase of undersulfated CS. Consequently, in patients the plasma CS charge density was significantly reduced with respect to that of controls. After sorting for plaque typology, we found that patients with soft plaques and those with hard ones differently contribute to the observed changes. In plasma from patients with soft plaques, the increase in CS content was not associated with modifications of its sulfation pattern. On the contrary, the presence of hard plaques was associated with CS sulfation pattern modifications in presence of quite normal total CS isomers levels. These results suggest that the plasma CS content and structure could be related to the presence and the typology of atherosclerotic plaque and could provide a useful diagnostic tool, as well as information on the molecular mechanisms responsible for plaque instability. PMID:22216412

  20. Association between Human Plasma Chondroitin Sulfate Isomers and Carotid Atherosclerotic Plaques.

    PubMed

    Zinellu, Elisabetta; Lepedda, Antonio Junior; Cigliano, Antonio; Pisanu, Salvatore; Zinellu, Angelo; Carru, Ciriaco; Bacciu, Pietro Paolo; Piredda, Franco; Guarino, Anna; Spirito, Rita; Formato, Marilena

    2012-01-01

    Several studies have evidenced variations in plasma glycosaminoglycans content in physiological and pathological conditions. In normal human plasma GAGs are present mainly as undersulfated chondroitin sulfate (CS). The aim of the present study was to evaluate possible correlations between plasma CS level/structure and the presence/typology of carotid atherosclerotic lesion. Plasma CS was purified from 46 control subjects and 47 patients undergoing carotid endarterectomy showing either a soft or a hard plaque. The concentration and structural characteristics of plasma CS were assessed by capillary electrophoresis of constituent unsaturated fluorophore-labeled disaccharides. Results showed that the concentration of total CS isomers was increased by 21.4% (P < 0.01) in plasma of patients, due to a significant increase of undersulfated CS. Consequently, in patients the plasma CS charge density was significantly reduced with respect to that of controls. After sorting for plaque typology, we found that patients with soft plaques and those with hard ones differently contribute to the observed changes. In plasma from patients with soft plaques, the increase in CS content was not associated with modifications of its sulfation pattern. On the contrary, the presence of hard plaques was associated with CS sulfation pattern modifications in presence of quite normal total CS isomers levels. These results suggest that the plasma CS content and structure could be related to the presence and the typology of atherosclerotic plaque and could provide a useful diagnostic tool, as well as information on the molecular mechanisms responsible for plaque instability.

  1. Characterizing atherosclerotic plaque with computed tomography: a contrast-detail study

    NASA Astrophysics Data System (ADS)

    Kasraie, Nima; Clarke, Geoffrey D.

    2012-02-01

    Plaque characterization may benefit from the increasing distinctiveness of the attenuating properties of different soft plaque components at lower energies. Due to the relative slight increase in the CT number of the nonadipose soft plaque at lower tube voltage settings vs. adipose plaque, a higher contrast between atheromous adipose and non-adipose plaque may become visible with modern 64 slice systems. A contrast-detail (C-D) phantom with varying plaque composition as the contrast generating method, was imaged on a commercial 64 slice MDCT system using 80, 120, and 140 kVp settings. The same phantom was also imaged on a Cone Beam CT (CBCT) system with a lower tube voltage of 75 kVp. The results of experiments from four different observers on three different plaque types (lipid, fiber, calcific) indicate that CT attenuation within lipid cores and fibrous masses vary not only with the percentage of lipid or fiber present, but also with the size of the cores. Furthermore, the C-D curve analysis for all three plaque types reveals that while the noise constraints prevent visible differentiation of soft plaque at current conventional 64 slice MDCT settings, CBCT exhibits superior visible contrast detectability than its conventional counterpart, with the latter having appreciably better resolution limits and beneficial lower tube voltages. This low voltage CT technique has the potential to be useful in composition based diagnosis of carotid vulnerable atherosclerotic plaque.

  2. The role of near-infrared spectroscopy in the detection of vulnerable atherosclerotic plaques

    PubMed Central

    Hajek, Petr; Stechovsky, Cyril; Honek, Jakub; Spacek, Miloslav; Veselka, Josef

    2016-01-01

    Coronary artery disease is the leading cause of mortality worldwide. Most acute coronary syndromes are caused by a rupture of a vulnerable atherosclerotic plaque which can be characterized by a lipid-rich necrotic core with an overlying thin fibrous cap. Many vulnerable plaques can cause angiographically mild stenoses due to positive remodelling, which is why the extent of coronary artery disease may be seriously underestimated. In recent years, we have witnessed a paradigm shift in interventional cardiology. We no longer focus solely on the degree of stenosis; rather, we seek to determine the true extent of atherosclerotic disease. We seek to identify high-risk plaques for improvement in risk stratification of patients and prevention. Several imaging methods have been developed for this purpose. Intracoronary near-infrared spectroscopy is one of the most promising. Here, we discuss the possible applications of this diagnostic method and provide a comprehensive overview of the current knowledge. PMID:27904523

  3. SRXRF Study of Chemical Elements Content in the Atherosclerotic Plaque of Heart Vessels

    NASA Astrophysics Data System (ADS)

    Zhuravskaya, E. Ya.; Savchenko, T. I.; Chankina, O. V.; Polonskaya, Ya. V.; Chernyavskii, A. M.; Ragino, Yu. I.; Shcherbakova, L. V.

    The SRXRF method has made it possible, for the first time, to determine the multielement composition in the atherosclerotic substrates of heart vessels after surgical interventions. The main advantage of the method is the possibility to analyze small samples without their destruction. As the amount of material to test is insufficient, we have developed a special technique for sample preparation. The concentrations of K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Sr, Zr, and Pb were measured in stable and unstable plaques. In all the samples studied, Ca is dominating, particularly, in the unstable plaque. No reliable difference was established for other elements measured. A high degree of the association of Ca with Fe, Zn and Sr has been revealed in the atherosclerotic plaques. Measurements were performed using SR from the VEPP-3 storage ring.

  4. Chronic intermittent mental stress promotes atherosclerotic plaque vulnerability, myocardial infarction and sudden death in mice.

    PubMed

    Roth, Lynn; Rombouts, Miche; Schrijvers, Dorien M; Lemmens, Katrien; De Keulenaer, Gilles W; Martinet, Wim; De Meyer, Guido R Y

    2015-09-01

    Vulnerable atherosclerotic plaques are prone to plaque rupture leading to acute cardiovascular syndromes and death. Elucidating the risk of plaque rupture is important to define better therapeutic or preventive strategies. In the present study, we investigated the effect of chronic intermittent mental stress on atherosclerotic plaque stability and cardiovascular mortality in apolipoprotein E-deficient (ApoE(-/-)) mice with a heterozygous mutation in the fibrillin-1 gene (Fbn1(C1039G+/)(-)). This mouse model displays exacerbated atherosclerosis with spontaneous plaque ruptures, myocardial infarction and sudden death, when fed a Western-type diet (WD). Female ApoE(-/-)Fbn1(C1039G+/-) mice were fed a WD for up to 25 weeks. After 10 weeks WD, mice were divided in a control (n = 27) and mental stress (n = 29) group. The chronic intermittent mental stress protocol consisted of 3 triggers: water avoidance, damp bedding and restraint stress, in a randomly assigned order lasting 6 h every weekday for 15 weeks. Chronic intermittent mental stress resulted in a significant increase in the amount of macrophages in atherosclerotic plaques of the proximal ascending aorta, whereas type I collagen and fibrous cap thickness were decreased. The coronary arteries of mental stress-treated mice showed larger plaques, more stenosis, and an increased degree of perivascular fibrosis. Moreover, myocardial infarctions occurred more frequently in the mental stress group. As compared to the control group, the survival of stressed ApoE(-/-)Fbn1(C1039G+/-) mice decreased from 67% to 52% at 25 weeks WD, presumably due to myocardial infarctions. In conclusion, chronic intermittent mental stress promotes plaque instability, myocardial infarctions, and mortality of ApoE(-/-)Fbn1(C1039G+/-) mice.

  5. A Voxel-Map Quantitative Analysis Approach for Atherosclerotic Noncalcified Plaques of the Coronary Artery Tree

    PubMed Central

    Li, Ying; Chen, Wei; Chen, Yonglin; Chu, Chun; Fang, Bingji; Tan, Liwen

    2013-01-01

    Noncalcified plaques (NCPs) are associated with the presence of lipid-core plaques that are prone to rupture. Thus, it is important to detect and monitor the development of NCPs. Contrast-enhanced coronary Computed Tomography Angiography (CTA) is a potential imaging technique to identify atherosclerotic plaques in the whole coronary tree, but it fails to provide information about vessel walls. In order to overcome the limitations of coronary CTA and provide more meaningful quantitative information for percutaneous coronary intervention (PCI), we proposed a Voxel-Map based on mathematical morphology to quantitatively analyze the noncalcified plaques on a three-dimensional coronary artery wall model (3D-CAWM). This approach is a combination of Voxel-Map analysis techniques, plaque locating, and anatomical location related labeling, which show more detailed and comprehensive coronary tree wall visualization. PMID:24348749

  6. Physical training and metabolic supplementation reduce spontaneous atherosclerotic plaque rupture and prolong survival in hypercholesterolemic mice.

    PubMed

    Napoli, Claudio; Williams-Ignarro, Sharon; de Nigris, Filomena; Lerman, Lilach O; D'Armiento, Francesco P; Crimi, Ettore; Byrns, Russell E; Casamassimi, Amelia; Lanza, Alessandro; Gombos, Fernando; Sica, Vincenzo; Ignarro, Louis J

    2006-07-05

    Moderate physical exercise (PE) combined with metabolic treatment (MT) (antioxidants and l-arginine) are well known to reduce atherosclerotic lesion formation in hypercholesterolemic mice. However, the long-term beneficial effects on unstable atheroma remain poorly understood. We started early PE training in large groups of 6-week-old hypercholesterolemic mice (by graduated swimming) alone or in combination with nutritional supplementation (1.0% vitamin E added to the chow and 0.05% vitamin C and 6% l-arginine added to the drinking water). Inactive controls did not receive PE. The spontaneous development of atherosclerotic plaque rupture (associated with advanced atherosclerosis) and survival rates were evaluated. Moderate PE elicited an increase in plasma levels of nitric oxide. Early combined treatment with PE and MT in the hypercholesterolemic mice significantly reduced lesions (also detected noninvasively at 10 months) and spontaneous atherosclerotic plaque rupture and prolonged survival more effectively than each intervention alone. Thus, early concerted actions of MT and PE improve the natural history of atherosclerotic lesions and reduce the plaque instability in hypercholesterolemic mice.

  7. Mesenchymal Stem Cells Stabilize Atherosclerotic Vulnerable Plaque by Anti-Inflammatory Properties

    PubMed Central

    Wang, Shuang-shuang; Hu, Si-wang; Zhang, Qing-hua; Xia, Ai-xiang

    2015-01-01

    Background and objectives Formation and progression of atherosclerotic vulnerable plaque (VP) is the primary cause of many cardio-cerebrovascular diseases such as acute coronary syndrome and stroke. It has been reported that bone marrow mesenchymal stem cells (MSC) exhibit protective effects against many kinds of diseases including myocardial infarction. Here, we examined the effects of intravenous MSC infusion on a VP model and provide novel evidence of its influence as a therapy in this animal disease model. Subjects and methods Thirty healthy male New Zealand white rabbits were randomly divided into a MSC, VP or stable plaque (SP) group (n = 10/group) and received high fat diet and cold-induced common carotid artery intimal injury with liquid nitrogen to form atherosclerotic plaques. Serum hs-CRP, TNF-α, IL-6 and IL-10 levels were measured by ELISA at 1, 2, 3, 7, 14, 21 and 28 days after MSC transplantation. The animals were sacrificed at 4 weeks after MSC transplantation. Lesions in the right common carotid were observed using H&E and Masson staining, and the fibrous cap/lipid core ratio of atherosclerotic plaques were calculated. The expression of nuclear factor κB (NF-κB) and matrix metalloproteinase 1, 2, 9 (MMP-1,2,9) in the plaque were detected using immunohistochemistry, and apoptotic cells in the plaques were detected by TUNEL. In addition, the level of TNF-α stimulated gene/protein 6 (TSG-6) mRNA and protein were measured by quantitative Real-Time PCR and Western blotting, respectively. Results Two rabbits in the VP group died of lung infection and cerebral infarction respectively at 1 week after plaque injury by liquid nitrogen. Both H&E and Masson staining revealed that the plaques from the SP and MSC groups had more stable morphological structure and a larger fibrous cap/lipid core ratio than the VP group. Serum hs-CRP, TNF-α and IL-6 were significantly down-regulated, whereas IL-10 was significantly up-regulated in the MSC group compared with

  8. F-18 Fluoride Positron Emission Tomography-Computed Tomography for Detecting Atherosclerotic Plaques.

    PubMed

    Kang, Won Jun

    2015-01-01

    A large number of major cardiovascular events occur in patients due to minimal or some lumen narrowing of the coronary artery. Recent biological studies have shown that the biological composition or vulnerability of the plaque is more critical for plaque rupture compared to the degree of stenosis. To overcome the limitations of anatomical images, molecular imaging techniques have been suggested as promising imaging tools in various fields. F-18 fluorodeoxyglucose (FDG), which is widely used in the field of oncology, is an example of molecular probes used in atherosclerotic plaque evaluation. FDG is a marker of plaque macrophage glucose utilization and inflammation, which is a prominent characteristic of vulnerable plaque. Recently, F-18 fluoride has been used to visualize vulnerable plaque in clinical studies. F-18 fluoride accumulates in regions of active microcalcification, which is normally observed during the early stages of plaque formation. More studies are warranted on the accumulation of F-18 fluoride and plaque formation/vulnerability; however, due to high specific accumulation, low background activity, and easy accessibility, F-18 fluoride is emerging as a promising non-invasive imaging probe to detect vulnerable plaque.

  9. Ultrasound-Based Carotid Elastography for Detection of Vulnerable Atherosclerotic Plaques Validated by Magnetic Resonance Imaging.

    PubMed

    Huang, Chengwu; Pan, Xiaochang; He, Qiong; Huang, Manwei; Huang, Lingyun; Zhao, Xihai; Yuan, Chun; Bai, Jing; Luo, Jianwen

    2016-02-01

    Ultrasound-based carotid elastography has been developed to estimate the mechanical properties of atherosclerotic plaques. The objective of this study was to evaluate the in vivo capability of carotid elastography in vulnerable plaque detection using high-resolution magnetic resonance imaging as reference. Ultrasound radiofrequency data of 46 carotid plaques from 29 patients (74 ± 5 y old) were acquired and inter-frame axial strain was estimated with an optical flow method. The maximum value of absolute strain rate for each plaque was derived as an indicator for plaque classification. Magnetic resonance imaging of carotid arteries was performed on the same patients to classify the plaques into stable and vulnerable groups for carotid elastography validation. The maximum value of absolute strain rate was found to be significantly higher in vulnerable plaques (2.15 ± 0.79 s(-1), n = 27) than in stable plaques (1.21 ± 0.37 s(-1), n = 19) (p < 0.0001). Receiver operating characteristic curve analysis was performed, and the area under the curve was 0.848. Therefore, the in vivo capability of carotid elastography to detect vulnerable plaques, validated by magnetic resonance imaging, was proven, revealing the potential of carotid elastography as an important tool in atherosclerosis assessment and stroke prevention.

  10. Ultrasound Vascular Elastography as a Tool for Assessing Atherosclerotic Plaques – A Systematic Literature Review

    PubMed Central

    Mahmood, B.; Ewertsen, C.; Carlsen, J.; Nielsen, M. B.

    2016-01-01

    Atherosclerosis is a widespread disease that accounts for nearly 3-quarters of deaths due to cardiovascular disease. Ultrasound elastography might be able to reliably identify characteristics associated with vulnerable plaques. There is a need for the evaluation of elastography and its ability to distinguish between vulnerable and stable plaques. The aim of this paper is to provide an overview of the literature on vascular elastography. A systematic search of the available literature for studies using elastography for assessing atherosclerotic plaques was conducted using the MEDLINE, Embase, Cochrane Library and Web of Science databases. A standardized template was used to extract relevant data following the PRISMA 2009 checklist. 20 articles were included in this paper. The studies were heterogeneous. All studies reported that elastography was a feasible technique and provided additional information compared to B-mode ultrasound alone. Most studies reported higher strain values for vulnerable plaques. Ultrasound elastography has potential as a clinical tool in the assessment of atherosclerotic plaques. Elastography is able to distinguish between different plaque types, but there is considerable methodological variation between studies. There is a need for larger studies in a clinical setting to determine the full potential of elastography. PMID:27896334

  11. Safrole-2',3'-oxide induces atherosclerotic plaque vulnerability in apolipoprotein E-knockout mice.

    PubMed

    Su, Le; Zhang, Haiyan; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying

    2013-02-27

    Safrole-2',3'-oxide (SFO) is the major electrophilic metabolite of safrole (4-allyl-1, 2-methylenedioxybenzene), a natural plant constituent found in essential oils of numerous edible herbs and spices and in food containing these herbs, such as pesto sauce, cola beverages and bologna sausages. The effects of SFO in mammalian systems, especially the cardiovascular system, are little known. Disruption of vulnerable atherosclerotic plaques in atherosclerosis, a chronic inflammatory disease, is the main cause of cardiovascular events. In this study, we investigated SFO-induced atherosclerotic plaque vulnerability (possibility of rupture) in apolipoprotein E-knockout (apoE(-/-)) mice. Lipid area in vessel wall reached 59.8% in high dose SFO (SFO-HD) treated group, which is only 31.2% in control group. SFO treatment changed the lesion composition to an unstable phenotype, increased the number of apoptotic cells in plaque and the endothelium in plaques was damaged after SFO treatment. Furthermore, compared with control groups, the plaque endothelium level of p75(NTR) was 3-fold increased and the liver level of p75(NTR) was 17.4-fold increased by SFO-HD. Meanwhile, the serum level of KC (a functional homolog of IL-8 and the main proinflammatory alpha chemokine in mice) in apoE(-/-) mice was up to 357pg/ml in SFO-HD treated group. Thus, SFO contributes to the instability of atherosclerotic plaque in apoE(-/-) mice through activating p75(NTR) and IL-8 and cell apoptosis in plaque. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis.

    PubMed

    Dong, Mei; Yang, Xiaoyan; Lim, Sharon; Cao, Ziquan; Honek, Jennifer; Lu, Huixia; Zhang, Cheng; Seki, Takahiro; Hosaka, Kayoko; Wahlberg, Eric; Yang, Jianmin; Zhang, Lei; Länne, Toste; Sun, Baocun; Li, Xuri; Liu, Yizhi; Zhang, Yun; Cao, Yihai

    2013-07-02

    Molecular mechanisms underlying the cold-associated high cardiovascular risk remain unknown. Here, we show that the cold-triggered food-intake-independent lipolysis significantly increased plasma levels of small low-density lipoprotein (LDL) remnants, leading to accelerated development of atherosclerotic lesions in mice. In two genetic mouse knockout models (apolipoprotein E(-/-) [ApoE(-/-)] and LDL receptor(-/-) [Ldlr(-/-)] mice), persistent cold exposure stimulated atherosclerotic plaque growth by increasing lipid deposition. Furthermore, marked increase of inflammatory cells and plaque-associated microvessels were detected in the cold-acclimated ApoE(-/-) and Ldlr(-/-) mice, leading to plaque instability. Deletion of uncoupling protein 1 (UCP1), a key mitochondrial protein involved in thermogenesis in brown adipose tissue (BAT), in the ApoE(-/-) strain completely protected mice from the cold-induced atherosclerotic lesions. Cold acclimation markedly reduced plasma levels of adiponectin, and systemic delivery of adiponectin protected ApoE(-/-) mice from plaque development. These findings provide mechanistic insights on low-temperature-associated cardiovascular risks. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Laser-induced fluorescence: quantitative analysis of atherosclerotic plaque chemical content in human aorta

    NASA Astrophysics Data System (ADS)

    Dai, Erbin; Wishart, David; Khoury, Samir; Kay, Cyril M.; Jugdutt, Bodh I.; Tulip, John; Lucas, Alexandra

    1996-05-01

    We have been studying laser-induced fluorescence as a technique for identification of selected changes in the chemical composition of atherosclerotic plaque. Formulae for quantification of chemical changes have been developed based upon analysis of fluorescence emission spectra using multiple regression analysis and the principal of least squares. The intima of human aortic necropsy specimens was injected with chemical compounds present in atherosclerotic plaque. Spectra recorded after injection of selected chemical components found in plaque (collagen I, III, IV, elastin and cholesterol) at varying concentrations (0.01 - 1.0 mg) were compared with saline injection. A single fiber system was used for both fluorescence excitation (XeCl excimer laser, 308 nm, 1.5 - 2.0 mJ/ pulse, 5 Hz) and fluorescence emission detection. Average spectra for each chemical have been developed and the wavelengths of peak emission intensity identified. Curve fitting analysis as well as multiple regression analysis were used to develop formulae for assessment of chemical content. Distinctive identifying average curves were established for each chemical. Excellent correlations were identified for collagen I, III, and IV, elastin, and cholesterol (R2 equals 0.92 6- 0.997). Conclusions: (1) Fluorescence spectra of human aortas were significantly altered by collagen I, collagen III, elastin and cholesterol. (2) Fluorescence spectroscopic analysis may allow quantitative assessment of atherosclerotic plaque chemical content in situ.

  14. Positron emission tomography of the vulnerable atherosclerotic plaque in man – a contemporary review

    PubMed Central

    Pedersen, Sune F; Hag, Anne Mette F; Klausen, Thomas L; Ripa, Rasmus S; Bodholdt, Rasmus P; Kjær, Andreas

    2014-01-01

    Atherosclerosis is the primary underlying cause of cardiovascular disease (CVD). It is the leading cause of morbidity and mortality in the Western world today and is set to become the prevailing disease and major cause of death worldwide by 2020. In the 1950s surgical intervention was introduced to treat symptomatic patients with high-grade carotid artery stenosis due to atherosclerosis – a procedure known as carotid endarterectomy (CEA). By removing the atherosclerotic plaque from the affected carotid artery of these patients, CEA is beneficial by preventing subsequent ipsilateral ischemic stroke. However, it is known that patients with low to intermediate artery stenosis may still experience ischemic events, leading clinicians to consider plaque composition as an important feature of atherosclerosis. Today molecular imaging can be used for characterization, visualization and quantification of cellular and subcellular physiological processes as they take place in vivo; using this technology we can obtain valuable information on atherosclerostic plaque composition. Applying molecular imaging clinically to atherosclerotic disease therefore has the potential to identify atherosclerotic plaques vulnerable to rupture. This could prove to be an important tool for the selection of patients for CEA surgery in a health system increasingly focused on individualized treatment. This review focuses on current advances and future developments of in vivo atherosclerosis PET imaging in man. PMID:24289282

  15. Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques.

    PubMed Central

    O'Brien, K D; Gordon, D; Deeb, S; Ferguson, M; Chait, A

    1992-01-01

    Lipoprotein lipase (LPL), hydrolyzes the core triglycerides of lipoproteins, thereby playing a role in their maturation. LPL may be important in the metabolic pathways that lead to atherosclerosis, since it is secreted in vitro by both of the predominant cell types of the atherosclerotic plaque, i.e., macrophages and smooth muscle cells. Because of uncertainty concerning the primary cellular source of LPL in atherosclerotic lesions, in situ hybridization assays for LPL mRNA were performed on 12 coronary arteries obtained from six cardiac allograft recipients. Macrophages and smooth muscle cells were identified on adjacent sections with cell-specific antibodies and foam cells were identified morphologically. LPL protein was localized using a polyclonal antibody. LPL mRNA was produced by a proportion of plaque macrophages, particularly macrophage-derived foam cells, but was not detected in association with any intimal or medial smooth muscle cells. These findings were confirmed by combined immunocytochemistry and in situ hybridization on the same tissue sections. LPL protein was detected in association with macrophage-derived foam cells, endothelial cells, adventitial adipocytes, and medial smooth muscle cells, and, to a lesser extent, in intimal smooth muscle cells and media underlying well-developed plaque. These results indicate that macrophage-derived foam cells are the primary source of LPL in atherosclerotic plaques and are consistent with a role for LPL in the pathogenesis of atherosclerosis. Images PMID:1569193

  16. Science to Practice: Does FDG Differentiate Morphologically Unstable from Stable Atherosclerotic Plaque?

    PubMed

    Dilsizian, Vasken; Jadvar, Hossein

    2017-04-01

    It has been reported that fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) may detect the inflammatory state and macrophage burden of atherosclerotic plaques and potentially identify vulnerable plaques. However, published reports have been inconsistent in this area. Tavakoli et al ( 1 ) hypothesized that differential regulation of macrophage glucose metabolism by macrophage colony-stimulating factor (M-CSF; inflammation resolving) and granulocyte-M-CSF (GM-CSF; proinflammatory) may contribute to the inconsistency of FDG vessel wall inflammation. After the induction of inflammatory and metabolic profiles, both M-CSF and GM-CSF generated comparable levels of glucose uptake in cultured macrophages and murine atherosclerotic plaques. These findings suggest that although FDG uptake is an indicator of vascular macrophage burden (total number of macrophages), it may not necessarily differentiate morphologically unstable (inflammatory) from stable (noninflammatory) atherosclerotic plaque. Moreover, although atherosclerosis is characterized by macrophage-predominated inflammation, there is a wide range of other vascular diseases in which macrophages and inflammation play an important role in the absence of atherosclerosis. FDG uptake will be indistinguishable in atherosclerosis from large-artery inflammatory vascular disease, such as Takayasu arteritis, chemotherapy- or radiation-induced vascular inflammation, or foreign-body reaction, such as synthetic arterial graft. Because of the nonspecific nature of FDG uptake by any cell (upregulated under hypoxic conditions or other microenvironmental factors), this work calls for a more cautious approach to interpreting vascular FDG uptake as indicative of inflammatory atherosclerosis in the clinical setting.

  17. Oral rapamycin inhibits growth of atherosclerotic plaque in apoE knock-out mice

    SciTech Connect

    Waksman, Ron; Pakala, Rajbabu; Burnett, Mary S.; Gulick, Cindy P.; Leborgne, Laurent; Fournadjiev, Jana; Wolfram, Roswitha; Hellinga, David

    2003-03-01

    Introduction: Inflammatory and immunological responses of vascular cells are known to play significant roles in atherosclerotic plaque development. Rapamycin with antiinflammatory, immunosuppressive and antiproliferative properties has been shown to reduce neointima formation when coated on stents. This study is designed to test the potential of oral rapamycin to inhibit atherosclerotic plaque development. Methods: Eight-week-old apoE knock-out mice were fed with 0.25% cholesterol supplemented diet (control diet), control diet containing 50 {mu}g/kg rapamycin (low-dose rapamycin) or 100 {mu}g/kg rapamycin (high-dose rapamycin) for 4 or 8 weeks. Subsets of mice from each group (n=10) were weighed and euthanized. Whole blood rapamycin levels were determined using HPLC-MS/MS, and histological analyses of atherosclerotic lesions in the aortic root were performed. Results: Mice fed with high-dose rapamycin did not gain weight (18.5{+-}1.5 vs. 20.6{+-}0.9 g, P=.01). Blood levels of rapamycin 117{+-}7 pg/ml were detected in the blood of mice fed with high-dose rapamycin for 8 weeks. The plaque area in mice fed with high dose oral rapamycin is significantly less as compared to control (0.168{+-}0.008 vs. 0.326{+-}0.013 mm{sup 2}, P=.001 at 4 weeks; 0.234{+-}0.013 vs. 0.447{+-}0.011 mm{sup 2}, P=.001 at 8 weeks). Lumen area was inversely proportional to the plaque area. Conclusions: The results indicate that oral rapamycin is effective in attenuating the progression of atherosclerotic plaque in the mice.

  18. Mucosal Administration of Collagen V Ameliorates the Atherosclerotic Plaque Burden by Inducing Interleukin 35-dependent Tolerance.

    PubMed

    Park, Arick C; Huang, Guorui; Jankowska-Gan, Ewa; Massoudi, Dawiyat; Kernien, John F; Vignali, Dario A; Sullivan, Jeremy A; Wilkes, David S; Burlingham, William J; Greenspan, Daniel S

    2016-02-12

    We have shown previously that collagen V (col(V)) autoimmunity is a consistent feature of atherosclerosis in human coronary artery disease and in the Apoe(-/-) mouse model. We have also shown sensitization of Apoe(-/-) mice with col(V) to markedly increase the atherosclerotic burden, providing evidence of a causative role for col(V) autoimmunity in atherosclerotic pathogenesis. Here we sought to determine whether induction of immune tolerance to col(V) might ameliorate atherosclerosis, providing further evidence for a causal role for col(V) autoimmunity in atherogenesis and providing insights into the potential for immunomodulatory therapeutic interventions. Mucosal inoculation successfully induced immune tolerance to col(V) with an accompanying reduction in plaque burden in Ldlr(-/-) mice on a high-cholesterol diet. The results therefore demonstrate that inoculation with col(V) can successfully ameliorate the atherosclerotic burden, suggesting novel approaches for therapeutic interventions. Surprisingly, tolerance and reduced atherosclerotic burden were both dependent on the recently described IL-35 and not on IL-10, the immunosuppressive cytokine usually studied in the context of induced tolerance and amelioration of atherosclerotic symptoms. In addition to the above, using recombinant protein fragments, we were able to localize two epitopes of the α1(V) chain involved in col(V) autoimmunity in atherosclerotic Ldlr(-/-) mice, suggesting future courses of experimentation for the characterization of such epitopes.

  19. Paradoxic decreases in atherosclerotic plaque mass in insulin-treated diabetic patients.

    PubMed

    Kornowski, R; Mintz, G S; Lansky, A J; Hong, M K; Kent, K M; Pichard, A D; Satler, L F; Popma, J J; Bucher, T A; Leon, M B

    1998-06-01

    This study assessed the impact of diabetes mellitus on atherosclerotic lesion formation. Seventy insulin-treated diabetics, 150 non-insulin-treated diabetics, and 607 nondiabetics with chronic anginal syndromes and de novo native coronary stenoses were studied using (1) angiography, and (2) intravascular ultrasound (reference and lesion arterial, lumen, and plaque areas; area stenosis [reference-lesion/reference lumen area]; remodeling index [reference-lesion lumen area/lesion-reference plaque area]; and slope of the regression line relating lumen area to plaque burden [plaque/arterial area]). Despite being diabetic for longer and having similar lumen compromise, insulin-treated patients had (1) less reference plaque (8.3 +/- 3.4 vs 10.5 +/- 4.5 mm2, p = 0.0015), (2) less stenosis plaque (13.0 +/- 4.9 vs 16.9 mm2, p <0.0001), (3) smaller reference arterial areas (17.1 +/- 5.4 vs 19.7 +/- 6.2 mm2, p = 0.0063), and (4) smaller stenosis arterial areas (15.3 +/- 4.9 vs 19.5 +/- 6.5 mm2, p <0.0001) than non-insulin-treated diabetics. With use of multivariate linear regression analysis, insulin use was an independent (and negative) predictor of reference plaque and arterial areas (p = 0.0308 and p = 0.0179) and stenosis plaque and arterial areas (p = 0.0117 and p = 0.0066). This was also true when normalized for body surface area. The remodeling index showed that insulin treatment resulted in an exaggerated impact of plaque accumulation on lumen compromise. This was confirmed by the slope of the regression line relating lumen area to plaque burden. Patients with a longer duration of diabetes who were treated with insulin for > or = 1 year had (paradoxically) less reference segment and stenosis plaque accumulation. Possible explanations include impaired adaptive remodeling and/or arterial (and plaque) shrinkage.

  20. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    NASA Technical Reports Server (NTRS)

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  1. Mechanical modeling of cholesterol crystallization in atherosclerotic plaques base on Micro-OCT images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Luo, Yuemei; Liu, Xinyu; Chen, Si; Cui, Dongyao; Wang, Xianghong; Liu, Linbo

    2016-02-01

    Plaque rupture is the critical cause of cardiovascular thrombosis but this process is still under discussion. Recent studies show that, during crystallization, cholesterol crystals in atheromatous plaques accumulate rapidly in a limited space and may result in plaque rupture. However, the actual role of cholesterol crystals on plaque rupture remains unclear due to the lack of detailed morphological information of cholesterol crystals. In this study, we used a Micro-optical coherence tomography (µOCT) setup with 1-2 µm spatial resolution to extract the geometry of cholesterol crystals from human atherosclerotic artery ex vivo firstly. With measured dimensions of cholesterol crystals by this µOCT system (the average length and thickness of 269.1±80.16 µm and 3.0±0.33 µm), we developed a two-dimensional mechanical model in which rectangular shaped cholesterol crystals distribute at different locations spatially. We predicted the stress on the thin cap induced by the expansion of cholesterol crystals by use of finite-element method. Since a large portion of plaques (58%) rupture at points of peak circumferential stress (PCS), we used PCS as the primary indicator of plaque stability with blood pressure of 14.6 kPa on the lumen. The results demonstrate that loading of the concentrated crystals especially at the cap shoulder destabilize the plaque by proportionally increasing the PCS, while evenly distributed crystals loading along the cap might impose less PCS to the plaque than the concentrated case.

  2. Influence of shear stress magnitude and direction on atherosclerotic plaque composition

    PubMed Central

    Mehta, Vikram V.; Bovens, Sandra M.; Mohri, Zahra; Poulsen, Christian Bo; Gsell, Willy; Tremoleda, Jordi L.; Towhidi, Leila; de Silva, Ranil; Petretto, Enrico; Krams, Rob

    2016-01-01

    The precise flow characteristics that promote different atherosclerotic plaque types remain unclear. We previously developed a blood flow-modifying cuff for ApoE−/− mice that induces the development of advanced plaques with vulnerable and stable features upstream and downstream of the cuff, respectively. Herein, we sought to test the hypothesis that changes in flow magnitude promote formation of the upstream (vulnerable) plaque, whereas altered flow direction is important for development of the downstream (stable) plaque. We instrumented ApoE−/− mice (n = 7) with a cuff around the left carotid artery and imaged them with micro-CT (39.6 µm resolution) eight to nine weeks after cuff placement. Computational fluid dynamics was then performed to compute six metrics that describe different aspects of atherogenic flow in terms of wall shear stress magnitude and/or direction. In a subset of four imaged animals, we performed histology to confirm the presence of advanced plaques and measure plaque length in each segment. Relative to the control artery, the region upstream of the cuff exhibited changes in shear stress magnitude only (p < 0.05), whereas the region downstream of the cuff exhibited changes in shear stress magnitude and direction (p < 0.05). These data suggest that shear stress magnitude contributes to the formation of advanced plaques with a vulnerable phenotype, whereas variations in both magnitude and direction promote the formation of plaques with stable features. PMID:27853578

  3. Influence of shear stress magnitude and direction on atherosclerotic plaque composition.

    PubMed

    Pedrigi, Ryan M; Mehta, Vikram V; Bovens, Sandra M; Mohri, Zahra; Poulsen, Christian Bo; Gsell, Willy; Tremoleda, Jordi L; Towhidi, Leila; de Silva, Ranil; Petretto, Enrico; Krams, Rob

    2016-10-01

    The precise flow characteristics that promote different atherosclerotic plaque types remain unclear. We previously developed a blood flow-modifying cuff for ApoE(-/-) mice that induces the development of advanced plaques with vulnerable and stable features upstream and downstream of the cuff, respectively. Herein, we sought to test the hypothesis that changes in flow magnitude promote formation of the upstream (vulnerable) plaque, whereas altered flow direction is important for development of the downstream (stable) plaque. We instrumented ApoE(-/-) mice (n = 7) with a cuff around the left carotid artery and imaged them with micro-CT (39.6 µm resolution) eight to nine weeks after cuff placement. Computational fluid dynamics was then performed to compute six metrics that describe different aspects of atherogenic flow in terms of wall shear stress magnitude and/or direction. In a subset of four imaged animals, we performed histology to confirm the presence of advanced plaques and measure plaque length in each segment. Relative to the control artery, the region upstream of the cuff exhibited changes in shear stress magnitude only (p < 0.05), whereas the region downstream of the cuff exhibited changes in shear stress magnitude and direction (p < 0.05). These data suggest that shear stress magnitude contributes to the formation of advanced plaques with a vulnerable phenotype, whereas variations in both magnitude and direction promote the formation of plaques with stable features.

  4. Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tanaka, Atsushi; Tearney, Guillermo J.; Bouma, Brett E.

    2010-01-01

    Cellularity of the fibrous caps of coronary atheromas, manifested by the infiltration of macrophages (average size, 20 to 30 μm), is thought to weaken the structural integrity of the cap and predispose plaques to rupture. Therefore, an imaging technology capable of identifying macrophages within fibroatheroma caps in patients could provide valuable information for assessing plaque rupture risk. Recently, intravascular optical coherence tomography (OCT), a high-resolution coronary imaging modality, with an axial resolution of ~10 μm, has been introduced into the clinical setting. OCT images of the microstructure of the coronary artery wall enable accurate plaque-type characterization, supported by histopathological comparison data. Because of its high resolution, OCT may also be used to identify macrophages in vivo. In this paper we review recent developments in OCT for measuring macrophages in atherosclerotic plaques.

  5. Selective absorption of ultraviolet laser energy by human atherosclerotic plaque treated with tetracycline

    SciTech Connect

    Murphy-Chutorian, D.; Kosek, J.; Mok, W.; Quay, S.; Huestis, W.; Mehigan, J.; Profitt, D.; Ginsburg, R.

    1985-05-01

    Tetracycline is an antibiotic that absorbs ultraviolet light at 355 nm and preferentially binds to atherosclerotic plaque both in vitro and in vivo. Tetracycline-treated human cadaveric aorta was compared with untreated aorta using several techniques: absorptive spectrophotometry; and tissue uptake of radiolabeled tetracycline, which showed 4-fold greater uptake by atheroma than by normal vessel. In addition, intravenous tetracycline administered to patients undergoing vascular surgery demonstrated characteristic fluorescence in surgically excised diseased arteries. Because of tetracycline's unique properties, the authors exposed tetracycline-treated and untreated aorta to ultraviolet laser radiation at a wavelength of 355 nm. They found enhanced ablation of tetracycline-treated atheroma compared with untreated atheroma. The plaque ablation caused by ultraviolet laser radiation was twice as extensive in tetracycline-treated vs nontreated plaque. This study demonstrates the potential of tetracycline plaque enhancement for the selective destruction of atheroma by ultraviolet laser radiation.

  6. Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques

    PubMed Central

    Miljkovic-Licina, Marijana; Lee, Boris P.; Fischer, Nicolas; Fish, Richard J.; Kwak, Brenda; Fisher, Edward A.; Imhof, Beat A.

    2016-01-01

    Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies. PMID:27442505

  7. Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques.

    PubMed

    Bradfield, Paul F; Menon, Arjun; Miljkovic-Licina, Marijana; Lee, Boris P; Fischer, Nicolas; Fish, Richard J; Kwak, Brenda; Fisher, Edward A; Imhof, Beat A

    2016-01-01

    Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies.

  8. Predictors of new atherosclerotic carotid plaque development in patients with rheumatoid arthritis: a longitudinal study

    PubMed Central

    2012-01-01

    Introduction Rheumatoid arthritis (RA) is associated with increased cardiovascular morbidity and mortality attributed to both classical risk factors and chronic inflammation. We assessed longitudinally the factors associated with new carotid plaques in nondiabetic RA patients and apparently healthy individuals. Methods In our present prospective observational study, carotid plaques were identified by ultrasonography at baseline and follow-up end, separated by an average of 3.6 ± 0.2 years, in 64 patients (mean age 59.2 ± 12.0 and disease duration at baseline 7.8 ± 6.2 years, 83% women, clinical and laboratory evaluation every 3 to 6 months). In a substudy, 35 of the patients were matched 1:1 for traditional cardiovascular risk factors with 'healthy' controls and were studied in parallel. Results New atherosclerotic plaques formed in 30% of patients (first plaque in 9%) who were significantly older than the remaining patients. Tobacco use, blood pressure, body mass index, average cumulative low-density lipoprotein, high-sensitivity C-reactive protein, erythrocyte sedimentation rate level, RA stage, functional class, disease duration and treatment modalities during follow-up did not differ significantly between subgroups after application of the Bonferroni correction. RA was in clinical remission, on average, for approximately 70% of the follow-up time and was not different between subgroups. Multivariate analysis including all the above parameters revealed that age (P = 0.006), smoking (P = 0.009) and duration of low-dose corticosteroid use (P = 0.016) associated independently with new plaque formation. RA patients displayed similar numbers of newly formed carotid plaques to the tightly matched for traditional cardiovascular risk factors 'healthy' controls, although more patients than controls had carotid plaques at baseline. Conclusions Formation of new atherosclerotic plaques in this small cohort of patients with well-controlled RA depended mainly on

  9. 64Cu-DOTATATE PET/MRI for Detection of Activated Macrophages in Carotid Atherosclerotic Plaques

    PubMed Central

    Sandholt, Benjamin Vikjær; Keller, Sune Høgild; Hansen, Adam Espe; Clemmensen, Andreas Ettrup; Sillesen, Henrik; Højgaard, Liselotte; Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Objective— A feature of vulnerable atherosclerotic plaques of the carotid artery is high activity and abundance of lesion macrophages. There is consensus that this is of importance for plaque vulnerability, which may lead to clinical events, such as stroke and transient ischemic attack. We used positron emission tomography (PET) and the novel PET ligand [64Cu] [1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid]-d-Phe1,Tyr3-octreotate (64Cu-DOTATATE) to specifically target macrophages via the somatostatin receptor subtype-2 in vivo. Approach and Results— Ten patients underwent simultaneous PET/MRI to measure 64Cu-DOTATATE uptake in carotid artery plaques before carotid endarterectomy. 64Cu-DOTATATE uptake was significantly higher in symptomatic plaque versus the contralateral carotid artery (P<0.001). Subsequently, a total of 62 plaque segments were assessed for gene expression of selected markers of plaque vulnerability using real-time quantitative polymerase chain reaction. These results were compared with in vivo 64Cu-DOTATATE uptake calculated as the mean standardized uptake value. Univariate analysis of real-time quantitative polymerase chain reaction and PET showed that cluster of differentiation 163 (CD163) and CD68 gene expression correlated significantly but weakly with mean standardized uptake value in scans performed 85 minutes post injection (P<0.001 and P=0.015, respectively). Subsequent multivariate analysis showed that CD163 correlated independently with 64Cu-DOTATATE uptake (P=0.031) whereas CD68 did not contribute significantly to the final model. Conclusions— The novel PET tracer 64Cu-DOTATATE accumulates in atherosclerotic plaques of the carotid artery. CD163 gene expression correlated independently with 64Cu-DOTATATE uptake measured by real-time quantitative polymerase chain reaction in the final multivariate model, indicating that 64Cu-DOTATATE PET is detecting alternatively activated macrophages. This association could

  10. Integrated IVUS-OCT Imaging for Atherosclerotic Plaque Characterization.

    PubMed

    Li, Xiang; Li, Jiawen; Jing, Joe; Ma, Teng; Liang, Shanshan; Zhang, Jun; Mohar, Dilbahar; Raney, Aidan; Mahon, Sari; Brenner, Matthew; Patel, Pranav; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping

    2014-03-01

    For the diagnosis of atherosclerosis, biomedical imaging techniques such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT) have been developed. The combined use of IVUS and OCT is hypothesized to remarkably increase diagnostic accuracy of vulnerable plaques. We have developed an integrated IVUS-OCT imaging apparatus, which includes the integrated catheter, motor drive unit, and imaging system. The dual-function imaging catheter has the same diameter of current clinical standard. The imaging system is capable for simultaneous IVUS and OCT imaging in real time. Ex vivo and in vivo experiments on rabbits with atherosclerosis were conducted to demonstrate the feasibility and superiority of the integrated intravascular imaging modality.

  11. Integrated IVUS-OCT Imaging for Atherosclerotic Plaque Characterization

    PubMed Central

    Li, Xiang; Li, Jiawen; Jing, Joe; Ma, Teng; Liang, Shanshan; Zhang, Jun; Mohar, Dilbahar; Raney, Aidan; Mahon, Sari; Brenner, Matthew; Patel, Pranav; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2014-01-01

    For the diagnosis of atherosclerosis, biomedical imaging techniques such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT) have been developed. The combined use of IVUS and OCT is hypothesized to remarkably increase diagnostic accuracy of vulnerable plaques. We have developed an integrated IVUS-OCT imaging apparatus, which includes the integrated catheter, motor drive unit, and imaging system. The dual-function imaging catheter has the same diameter of current clinical standard. The imaging system is capable for simultaneous IVUS and OCT imaging in real time. Ex vivo and in vivo experiments on rabbits with atherosclerosis were conducted to demonstrate the feasibility and superiority of the integrated intravascular imaging modality. PMID:24771992

  12. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging.

    PubMed

    Lobatto, Mark E; Calcagno, Claudia; Millon, Antoine; Senders, Max L; Fay, Francois; Robson, Philip M; Ramachandran, Sarayu; Binderup, Tina; Paridaans, Maarten P M; Sensarn, Steven; Rogalla, Stephan; Gordon, Ronald E; Cardoso, Luis; Storm, Gert; Metselaar, Josbert M; Contag, Christopher H; Stroes, Erik S G; Fayad, Zahi A; Mulder, Willem J M

    2015-02-24

    Atherosclerosis is a major cause of global morbidity and mortality that could benefit from novel targeted therapeutics. Recent studies have shown efficient and local drug delivery with nanoparticles, although the nanoparticle targeting mechanism for atherosclerosis has not yet been fully elucidated. Here we used in vivo and ex vivo multimodal imaging to examine permeability of the vessel wall and atherosclerotic plaque accumulation of fluorescently labeled liposomal nanoparticles in a rabbit model. We found a strong correlation between permeability as established by in vivo dynamic contrast enhanced magnetic resonance imaging and nanoparticle plaque accumulation with subsequent nanoparticle distribution throughout the vessel wall. These key observations will enable the development of nanotherapeutic strategies for atherosclerosis.

  13. Changes in wall viscosity and filtering as determinant of carotid and femoral atherosclerotic plaque vulnerability: theoretical analysis.

    PubMed

    Bia, D; Brum, J; Pessana, F; Zócalo, Y; Balay, G; Negreira, C; Armentano, R L

    2010-01-01

    Atherosclerotic plaque complication is a major cause of vascular accidents. Although a variety of factors have been proposed as key factors in these process, the mechanism that contribute to this problem remain to be characterized. Previously we demonstrated that changes in arterial wall viscous and elastic properties and/or in the filtering function (FF) could be part of the arterial wall alterations basis. If these properties are altered in arteries with atherosclerotic plaques remains to be analyzed. Our aims were 1) to analyze the arterial wall visco-elasticity and FF of carotid and femoral segments with atherosclerotic plaques, 2) to compare them with the mechanical behavior of segments without plaques (from the same artery) and of healthy arteries studied non-invasively. To this end, in each arterial segment, pressure and diameter signals were obtained, in vitro (circulation mock) and in vivo (non-invasive recordings). In atherosclerotic arteries recordings were performed on plaques and near regions without plaques. In each segment, the elasticity, the viscosity, and the wall FF were quantified. Atherosclerotic vessels, and particularly plaque regions, showed a reduced viscosity and FF. At the light of our results, hypothetical links between plaque events and changes in visco-elasticity and FF were discussed.

  14. Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficents by OCT

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek J.; Perree, Jop; Faber, Dirk J.; Baraznji Sassoon, David M.; Aalders, Maurice C. G.; van Leeuwen, Ton G.

    2005-04-01

    Imaging of human autopsy samples was performed from the luminal side with a high (3.5 μm axial and 7 μm lateral) resolution OCT system (around 800 nm) or a regular (15-20 μm axial and 20 μm lateral resolution) OCT system (around 1300 nm). For each sample, dimensions were measured by histomorphometry and OCT and the optical attenuation was measured. Quantitative analysis showed a strong and significant correlation between OCT and histology cap thickness measurements for both OCT systems. For both systems, the measured attenuation coefficients of diffuse intimal thickening and lipid-rich regions differed significantly from media and calcifications. Both the high and regular resolution OCT systems can precisely image the atherosclerotic plaques. Quantitative analysis of the OCT signals allowed in situ determination of the intrinsic optical attenuation coefficient of atherosclerotic tissue components within regions of interest, which can further help to discriminate the plaque and arterial wall components.

  15. Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek J.; Perree, Jop; Faber, Dirk J.; Baraznji Bassoon, David M.; Aalders, Maurice C. G.; van Leeuwen, Ton G.

    2005-04-01

    Imaging of human autopsy samples was performed from the luminal side with a high (3.5 μm axial and 7 μm lateral) resolution OCT system (around 800 nm) or a regular (15-20 μm axial and 20 μm lateral resolution) OCT system (around 1300 nm). For each sample, dimensions were measured by histomorphometry and OCT and the optical attenuation was measured. Quantitative analysis showed a strong and significant correlation between OCT and histology cap thickness measurements for both OCT systems. For both systems, the measured attenuation coefficients of diffuse intimal thickening and lipid-rich regions differed significantly from media and calcifications. Both the high and regular resolution OCT systems can precisely image the atherosclerotic plaques. Quantitative analysis of the OCT signals allowed in situ determination of the intrinsic optical attenuation coefficient of atherosclerotic tissue components within regions of interest, which can further help to discriminate the plaque and arterial wall components.

  16. The relationship between HbA₁c and ultrasound plaque textures in atherosclerotic patients.

    PubMed

    Huang, Xiao-Wei; Zhang, Yan-Ling; Meng, Long; Qian, Ming; Zhou, Wei; Zheng, Rong-Qin; Zheng, Hai-Rong; Niu, Li-Li

    2016-07-19

    Diabetes mellitus (DM) is associated to the morphological and componential characteristics of atheromatous plaques. It has proven that plaque textures are related to plaque components and beneficial for atherosclerotic risk stratification. The aim of this study is to compare plaque textures in patients with and without DM, and examine the relationship between HbA1c levels and the ultrasound plaque textures in atherosclerotic patients. A total of 136 participants (among them 66 are diabetic and 70 are non-diabetic) suffering from carotid plaques were included. About 300 texture features were extracted from the ultrasound images of plaques using the algorithms of histogram, absolute gradient, run-length matrix, gray-level co-occurrence matrix, autoregressive model and wavelet transform, respectively. Thirty optimal features were selected by the Fisher coefficient and the mutual information measure. The most discriminating feature (MDF) was obtained from the linear discriminant analysis for the optimal features. Linear regression model was performed to investigate the relationship between HbA1c and MDF. The receiver operating characteristics (ROC) curve was further developed to validate the relation between the estimated HbA1c (models output) and diabetes status. A total of 12 texture features showed statistical difference between patients with and without DM. The MDF was significant higher in non-diabetic patients (0.326 ± 0.049) than diabetic patients (-0.346 ± 0.052) (p < 0.001). The optimal regression model (r = 0.348, p < 0.001) for HbA1c included a constant (p < 0.001) and the MDF (p < 0.001). The areas under ROC curve used to estimate HbA1c was 0.828. The results indicate that there is a quantitative relationship between the HbA1c levels and plaque textures in ultrasonic images of atherosclerotic patients, which may suggest that texture analysis of the ultrasonic image of plaque is a promising method for evaluating the cardiovascular risk caused by DM in

  17. miR-143 is involved in endothelial cell dysfunction through suppression of glycolysis and correlated with atherosclerotic plaques formation.

    PubMed

    Xu, R-H; Liu, B; Wu, J-D; Yan, Y-Y; Wang, J-N

    2016-10-01

    Atherosclerosis is recognized as a chronic inflammatory disease leading to hardening of the vessel wall and narrowing of arteries. Endothelial cells (ECs) exhibit highly active glycolysis, the dysfunction of which leads to accumulation of lipids in the arterial wall and formation of atherosclerotic plaque. qRT-PCR was performed to compare the deregulated miR-143 between atherosclerotic plaque and normal vessel tissues. The direct target of miR-143 was verified by Western blot and luciferase assay. The metabolic enzymes in atherosclerotic plaque and normal vessel tissues were measured. HUVECs were transfected with miR-143 precursor or control microRNAs, and glucose uptake, lactate production, intracellular ATP, and oxygen consumption were measured. In this study, we report a correlation between up-regulated miR-143, EC dysfunction, and atherosclerotic plaque formation. The glycolysis rate was significantly elevated in ECs, which show relatively low levels of miR-143. Importantly, miR-143 was upregulated in clinical atherosclerotic plaque samples compared with healthy arteries, suggesting that miR-143 might play important roles in the atherosclerotic plaque formation. Moreover, mRNA levels of key enzymes of glycolysis, such as HK2, LDHA, and PKM2 are significantly down-regulated in the atherosclerotic plaque samples. Overexpression of miR-143 in HUVECs suppresses glycolysis through direct targeting of HK2, leading to EC dysfunction. Restoration of HK2 expression rescues glycolysis in miR-143-overexpressing HUVECs. This study provides further insight into the metabolic mechanisms involved in atherosclerotic plaque formation due to microRNAs.

  18. Noninvasive detection of lipids in atherosclerotic plaque using ultrasound thermal strain imaging: in vivo animal study

    PubMed Central

    Mahmoud, Ahmed M.; Dutta, Debaditya; Lavery, Linda; Stephens, Douglas N.; Villanueva, Flordeliza S.; Kim, Kang

    2013-01-01

    Objectives This study examined the feasibility of in vivo detection of lipids in atherosclerotic plaque (AP) by ultrasound (US) thermal strain imaging (TSI). Background Intraplaque lipid content is thought to contribute to plaque stability. Lipid exhibits a distinctive physical characteristic of temperature-dependent US speed compared to water-bearing tissues. As tissue temperature changes, US radiofrequency (RF) echoes shift in time of flight which produces an apparent strain (temporal or thermal strain: TS). Methods US heating-imaging pulse sequences and transducers were designed and integrated into commercial US scanners for US-TSI of arterial segments. US-RF data were collected while gradually increasing tissue temperature. Phase-sensitive speckle tracking was applied to reconstruct TS maps co-registered to B-scans. Segments from injured atherosclerotic and uninjured non-atherosclerotic common femoral arteries (CFA) in cholesterol fed New Zealand rabbits, and segments from control normal diet fed rabbits (n=14 total) were scanned in vivo at different time points up to 12 weeks. Results Lipid-rich atherosclerotic lesions exhibited distinct positive TS (+0.19±0.08%) compared with that in non-atherosclerotic (−0.10±0.13%) and control (−0.09±0.09%) segments (p<0.001). US-TSI enabled serial monitoring of lipids during atherosclerosis development. The co-registered set of morphological and compositional information of US-TSI showed good agreement with histology. Conclusions US-TSI successfully detected and longitudinally monitored lipid progression in atherosclerotic CFA. US-TSI of relatively superficial arteries may be a modality that could be integrated into a commercial US system for noninvasive lipid detection in AP. PMID:23916926

  19. Annexin A5-Functionalized Bimodal Nanoparticles for MRI and Fluorescence Imaging of Atherosclerotic Plaques

    PubMed Central

    van Tilborg, Geralda A. F.; Vucic, Esad; Strijkers, Gustav J.; Cormode, David P.; Mani, Venkatesh; Skajaa, Torjus; Reutelingsperger, Chris P. M.; Fayad, Zahi A.; Mulder, Willem J. M.; Nicolay, Klaas

    2011-01-01

    Apoptosis and macrophage burden are believed to correlate with atherosclerotic plaque vulnerability and are therefore considered important diagnostic and therapeutic targets for atherosclerosis. These cell types are characterized by the exposure of phosphatidylserine (PS) at their surface. In the present study, we developed and applied a small micellar fluorescent annexin A5-functionalized nanoparticle for noninvasive magnetic resonance imaging (MRI) of PS exposing cells in atherosclerotic lesions. Annexin A5-mediated target-specificity was confirmed with ellipsometry and in vitro binding to apoptotic Jurkat cells. In vivo T1-weighted MRI of the abdominal aorta in atherosclerotic ApoE−/− mice revealed enhanced uptake of the annexin A5-micelles as compared to control-micelles, which was corroborated with ex vivo near-infrared fluorescence images of excised whole aortas. Confocal laser scanning microscopy (CLSM) demonstrated that the targeted agent was associated with macrophages and apoptotic cells, whereas the nonspecific control agent showed no clear uptake by such cells. In conclusion, the annexin A5-conjugated bimodal micelles displayed potential for noninvasive assessment of cell types that are considered to significantly contribute to plaque instability and therefore may be of great value in the assessment of atherosclerotic lesion phenotype. PMID:20804153

  20. VCAM-1-targeting gold nanoshell probe for photoacoustic imaging of atherosclerotic plaque in mice.

    PubMed

    Rouleau, Leonie; Berti, Romain; Ng, Vanessa W K; Matteau-Pelletier, Carl; Lam, Tina; Saboural, Pierre; Kakkar, Ashok K; Lesage, Frédéric; Rhéaume, Eric; Tardif, Jean-Claude

    2013-01-01

    The development of molecular probes and novel imaging modalities, allowing better resolution and specificity, is associated with an increased potential for molecular imaging of atherosclerotic plaques especially in basic and pre-clinical research applications. In that context, a photoacoustic molecular probe based on gold nanoshells targeting VCAM-1 in mice (immunonanoshells) was designed. The molecular probe was validated in vitro and in vivo, showing no noticeable acute toxic effects. We performed the conjugation of gold nanoshells displaying near-infrared absorption properties with VCAM-1 antibody molecules and PEG to increase their biocompatibility. The resulting immunonanoshells obtained under different conditions of conjugation were then assessed for specificity and sensitivity. Photoacoustic tomography was performed to determine the ability to distinguish gold nanoshells from blood both in phantoms and in vivo. Ex vivo optical projection tomography of hearts and aortas from atherosclerotic and control mice confirmed the selective accumulation of the immunonanoshells in atherosclerotic-prone regions in mice, thus validating the utility of the probe in vivo in small animals for pre-clinical research. These immunonanoshells represent an adequate mean to target atherosclerotic plaques in small animals, leading to new tools to follow the effect of therapies on the progression or regression of the disease.

  1. Nonlinear registration of serial coronary CT angiography (CCTA) for assessment of changes in atherosclerotic plaque

    SciTech Connect

    Woo, Jonghye; Dey, Damini; Cheng, Victor Y.; Hong, Byung-Woo; Ramesh, Amit; Sundaramoorthi, Ganesh; Nakazato, Ryo; Berman, Daniel S.; Germano, Guido; Kuo, C.-C. Jay; Slomka, Piotr J.

    2010-02-15

    Purpose: Coronary CT angiography (CCTA) is a high-resolution three-dimensional imaging technique for the evaluation of coronary arteries in suspected or confirmed coronary artery disease (CAD). Coregistration of serial CCTA scans would allow precise superimposition of images obtained at two different points in time, which could aid in recognition of subtle changes and precise monitoring of coronary plaque progression or regression. To this end, the authors aimed at developing a fully automatic nonlinear volume coregistration for longitudinal CCTA scan pairs. Methods: The algorithm combines global displacement and local deformation using nonlinear volume coregistration with a volume-preserving constraint. Histogram matching of intensities between two serial scans is performed prior to nonlinear coregistration with dense nonparametric local deformation in which sum of squared differences is used as a similarity measure. The approximate segmentation of coronary arteries obtained from commercially available software provides initial anatomical landmarks for the coregistration algorithm that help localize and emphasize the structure of interest. To avoid possible bias caused by incorrect segmentation, the authors convolve the Gaussian kernel with the segmented binary coronary tree mask and define an extended weighted region of interest. A multiresolution approach is employed to represent coarse-to-fine details of both volumes and the energy function is optimized using a gradient descent method. The authors applied the algorithm in ten paired CCTA datasets (20 scans in total) obtained within 10.7{+-}5.7 months from each other on a dual source CT scanner to monitor progression of CAD. Results: Serial CCTA coregistration was successful in 9/10 cases as visually confirmed. The global displacement and local deformation of target registration error obtained from four anatomical landmarks were 2.22{+-}1.15 and 1.56{+-}0.74 mm, respectively, and the inverse consistency error of

  2. Ex vivo detection of macrophages in atherosclerotic plaques using intravascular ultrasonic-photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Quang Bui, Nhat; Hlaing, Kyu Kyu; Lee, Yong Wook; Kang, Hyun Wook; Oh, Junghwan

    2017-01-01

    Macrophages are excellent imaging targets for detecting atherosclerotic plaques as they are involved in all the developmental stages of atherosclerosis. However, no imaging technique is currently capable of visualizing macrophages inside blood vessel walls. The current study develops an intravascular ultrasonic-photoacoustic (IVUP) imaging system combined with indocyanine green (ICG) as a contrast agent to provide morphological and compositional information about the targeted samples. Both tissue-mimicking vessel phantoms and atherosclerotic plaque-mimicking porcine arterial tissues are used to demonstrate the feasibility of mapping macrophages labeled with ICG by endoscopically applying the proposed hybrid technique. A delay pulse triggering technique is able to sequentially acquire photoacoustic (PA) and ultrasound (US) signals from a single scan without using any external devices. The acquired PA and US signals are used to reconstruct 2D cross-sectional and 3D volumetric images of the entire tissue with the ICG-loaded macrophages injected. Due to high imaging contrast and sensitivity, the IVUP imaging vividly reveals structural information and detects the spatial distribution of the ICG-labeled macrophages inside the samples. ICG-assisted IVUP imaging can be a feasible imaging modality for the endoscopic detection of atherosclerotic plaques.

  3. Detecting microcalcifications in atherosclerotic plaques by a simple trichromic staining method for epoxy embedded carotid endarterectomies

    PubMed Central

    Relucenti, M.; Heyn, R.; Petruzziello, L.; Pugliese, G.; Taurino, M.; Familiari, G.

    2010-01-01

    Atherosclerotic plaques have a high probability of undergoing rapid progression to stenosis, becoming responsible of acute coronary syndrome or stroke. Microcalcifications may act as enhancers of atherosclerotic plaque vulnerability. Considering that calcifications with a diameter smalller than 10 µm in paraffin embedded tissue are rather difficult to detect, our aim was to analyze microcalcifications on semithin sections from epoxy resin embedded samples of carotid endarterectomies using an original trichromic stain (methylene blue-azur B - basic fuchsine - alizarin red). We have compared samples stained either with our method, methylene blue-azur B alone or with Von Kossa staining, and methylene blue-azur B -basic fuchsine alone or with Von Kossa staining. Our method resulted to be simple and fast (ca. 2 min), it gives a sharp general contrast for all structures and allows to easy identify collagen and elastin. In addition, gray-green colour associated to intracellular lipid droplets evidences foam cells, which are particularly abundant in endarterectomies samples. Mast cells and their metachromatic granules are also well recognized. Calcifications over 0,5 µm are clearly recognizable. In conclusion, microcalcifications are clearly distinguished from the extracellular matrix in spite of their reduced dimensions. Methylene blue-azur B-basic fuchsine-alizarin red method is easy to use, reproducible, and is particularly suitable for the identification of microcalcifications in the morphological analysis of atherosclerotic plaques. PMID:20819772

  4. Detecting microcalcifications in atherosclerotic plaques by a simple trichromic staining method for epoxy embedded carotid endarterectomies.

    PubMed

    Relucenti, M; Heyn, R; Petruzziello, L; Pugliese, G; Taurino, M; Familiari, G

    2010-07-14

    Atherosclerotic plaques have a high probability of undergoing rapid progression to stenosis, becoming responsible of acute coronary syndrome or stroke. Microcalcifications may act as enhancers of atherosclerotic plaque vulnerability. Considering that calcifications with a diameter smaller than 10 mm in paraffin embedded tissue are rather difficult to detect, our aim was to analyze microcalcifications on semithin sections from epoxy resin embedded samples of carotid endarterectomies using an original trichromic stain (methylene blue--azur B--basic fuchsine--alizarin red). We have compared samples stained either with our method, methylene blue-azur B alone or with Von Kossa staining, and methylene blue-azur B -basic fuchsine alone or with Von Kossa staining. Our method resulted to be simple and fast (ca. 2 min), it gives a sharp general contrast for all structures and allows to easy identify collagen and elastin. In addition, gray-green colour associated to intracellular lipid droplets evidences foam cells, which are particularly abundant in endarterectomies samples. Mast cells and their metachromatic granules are also well recognized. Calcifications over 0,5 mm are clearly recognizable. In conclusion, microcalcifications are clearly distinguished from the extracellular matrix in spite of their reduced dimensions. Methylene blue--azur B--basic fuchsine--alizarin red method is easy to use, reproducible, and is particularly suitable for the identification of microcalcifications in the morphological analysis of atherosclerotic plaques.

  5. Previous Statin Use and High-Resolution Magnetic Resonance Imaging Characteristics of Intracranial Atherosclerotic Plaque: The Intensive Statin Treatment in Acute Ischemic Stroke Patients With Intracranial Atherosclerosis Study.

    PubMed

    Chung, Jong-Won; Hwang, Jaechun; Lee, Mi Ji; Cha, Jihoon; Bang, Oh Young

    2016-07-01

    Although statin use has been linked to the stabilization of systemic atherosclerosis, its effect on symptomatic intracranial atherosclerotic plaques has yet to be explored. We hypothesized that premorbid statin use is associated with plaque instability in intracranial arteries and may lead to differential patterns (size and distribution) of ischemic lesions in patients with acute intracranial atherosclerotic stroke. One hundred and thirty-six patients with acute infarcts caused by intracranial atherosclerotic stroke underwent high-resolution magnetic resonance imaging. Patients were categorized into 3 groups based on their premorbid statin use: nonuser, low-dose user, and high-dose user, according to the 2013 American College of Cardiology/American Heart Association guidelines on blood cholesterol. Symptomatic lesions in intracranial arteries were analyzed using high-resolution magnetic resonance imaging for vascular morphology (degree of stenosis, remodeling index, and wall index) and plaque activation (pattern and volume of enhancement). The cortical distribution and volume of ischemic brain lesions were measured using diffusion-weighted imaging. Among the enrolled patients, 38 (27.94%) were taking statins before the index stroke (22 low-dose statins and 16 high-dose statins). The degree of stenosis, remodeling index, and wall index did not differ between the 3 groups. However, the volume of plaque enhancement was significantly lower in statin users (nonuser, 33.26±40.72; low-dose user, 13.15±17.53; high-dose user, 3.13±5.26; P=0.002). Premorbid statin use was associated with a higher prevalence of nonembolic stroke and a decrease in large cortical infarcts (P=0.012). Premorbid statin usage is independently associated with reduced plaque enhancement and a decrease in large cortical lesions in patients with intracranial atherosclerotic stroke. © 2016 American Heart Association, Inc.

  6. Evaluating intensity normalization for multispectral classification of carotid atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Gao, Shan; van't Klooster, Ronald; van Wijk, Diederik F.; Nederveen, Aart J.; Lelieveldt, Boudewijn P. F.; van der Geest, Rob J.

    2015-03-01

    Intensity normalization is an important preprocessing step for automatic plaque analysis in MR images as most segmentation algorithms require the images to have a standardized intensity range. In this study, we derived several intensity normalization approaches with inspiration from expert manual analysis protocols, for classification of carotid vessel wall plaque from in vivo multispectral MRI. We investigated intensity normalization based on a circular region centered at lumen (nCircle); based on sternocleidomastoid muscle (nSCM); based on intensity scaling (nScaling); based on manually classified fibrous tissue (nManuFibrous) and based on automatic classified fibrous tissue (nAutoFibrous). The proposed normalization methods were evaluated using three metrics: (1) Dice similarity coefficient (DSC) between manual and automatic segmentation obtained by classifiers using different normalizations; (2) correlation between proposed normalizations and normalization used by expert; (3) Mahalanobis Distance between pairs of components. In the performed classification experiments, features of normalized image, smoothed, gradient magnitude and Laplacian images at multi-scales, distance to lumen, distance to outer wall, wall thickness were calculated for each vessel wall (VW) pixel. A supervised pattern recognition system, based on a linear discriminate classifier, was trained using the manual segmentation result to classify each VW pixel to be one of the four classes: fibrous tissue, lipid, calcification, and loose matrix according to the highest posterior probability. We evaluated our method on image data of 23 patients. Compared to the result of conventional square region based intensity normalizatio n, nScaling resulted in significant increase in DSC for lipid (p = 0.006) and nAutoFibrous resulted in significant increase in DSC for calcification (p = 0.004). In conclusion, it was demonstrated that the conventional region based normalization approach is not optimal and n

  7. Quantitative evaluation of atherosclerotic plaque phantom by near-infrared multispectral imaging with three wavelengths

    NASA Astrophysics Data System (ADS)

    Nagao, Ryo; Ishii, Katsunori; Awazu, Kunio

    2014-03-01

    Atherosclerosis is a primary cause of critical ischemic disease. The risk of critical event is involved the content of lipid in unstable plaque. Near-infrared (NIR) range is effective for diagnosis of atherosclerotic plaque because of the absorption peaks of lipid. NIR multispectral imaging (NIR-MSI) is suitable for the evaluation of plaque because it can provide spectroscopic information and spatial image quickly with a simple measurement system. The purpose of this study is to evaluate the lipid concentrations in plaque phantoms quantitatively with a NIR-MSI system. A NIR-MSI system was constructed with a supercontinuum light, a grating spectrometer and a MCT camera. Plaque phantoms with different concentrations of lipid were prepared by mixing bovine fat and a biological soft tissue model to mimic the different stages of unstable plaque. We evaluated the phantoms by the NIR-MSI system with three wavelengths in the band at 1200 nm. Multispectral images were processed by spectral angle mapper method. As a result, the lipid areas of phantoms were effectively highlighted by using three wavelengths. In addition, the concentrations of lipid areas were classified according to the similarity between measured spectra and a reference spectrum. These results suggested the possibility of image enhancement and quantitative evaluation of lipid in unstable plaque with a NIR-MSI.

  8. Application of IR and NIR fiber optic imaging in thermographic and spectroscopic diagnosis of atherosclerotic vulnerable plaques: preliminary experience

    NASA Astrophysics Data System (ADS)

    Naghavi, Morteza; Khan, Tania; Gu, Bujin; Soller, Babs R.; Melling, Peter; Asif, Mohammed; Gul, Khawar; Madjid, Mohammad; Casscells, S. W.; Willerson, James T.

    2000-12-01

    Despite major advances in cardiovascular science and technology during the past three decades, approximately half of all myocardial infarctions and sudden deaths occur unexpectedly. It is widely accepted that coronary atherosclerotic plaques and thrombotic complications resulting from their rupture or erosion are the underlying causes of this major health problem. The majority of these vulnerable plaques exhibit active inflammation, a large necrotic lipid core, a thin fibrous cap, and confer a stenosis of less than 70%. These lesions are not detectable by stress testing or coronary angiography. Our group is exploring the possibility of a functional classification based on physiological variables such as plaque temperature, pH, oxygen consumption, lactate production etc. We have shown that heat accurately locates the inflamed plaques. We also demonstrated human atherosclerotic plaques are heterogeneous with regard to pH and hot plaques and are more likely to be acidic. To develop a nonsurgical method for locating the inflamed plaques, we are developing both IR fiber optic imaging and NIR spectroscopic systems in our laboratory to detect hot and acidic plaque in atherosclerotic arterial walls. Our findings introduce the possibility of an isolated/combined IR and NIR fiber optic catheter that can bring new insight into functional assessment of atherosclerotic plaque and thereby detection of active and inflamed lesions responsible for heart attacks and strokes.

  9. Frequency Analysis of the Photoacoustic Signal Generated by Coronary Atherosclerotic Plaque.

    PubMed

    Daeichin, Verya; Wu, Min; De Jong, Nico; van der Steen, Antonius F W; van Soest, Gijs

    2016-08-01

    The identification of unstable atherosclerotic plaques in the coronary arteries is emerging as an important tool for guiding percutaneous coronary interventions and may enable preventive treatment of such plaques in the future. Assessment of plaque stability requires imaging of both structure and composition. Spectroscopic photoacoustic (sPA) imaging can visualize atherosclerotic plaque composition on the basis of the optical absorption contrast. It is an established fact that the frequency content of the photoacoustic (PA) signal is correlated with structural tissue properties. As PA signals can be weak, it is important to match the transducer bandwidth to the signal frequency content for in vivo imaging. In this ex vivo study on human coronary arteries, we combined sPA imaging and analysis of frequency content of the PA signals. Using a broadband transducer (-3-dB one-way bandwidth of 10-35 MHz) and a 1-mm needle hydrophone (calibrated for 1-20 MHz), we covered a large frequency range of 1-35 MHz for receiving the PA signals. Spectroscopic PA imaging was performed at wavelengths ranging from 1125 to 1275 nm with a step of 2 nm, allowing discrimination between plaque lipids and adventitial tissue. Under sPA imaging guidance, the frequency content of the PA signals from the plaque lipids was quantified. Our data indicate that more than 80% of the PA energy of the coronary plaque lipids lies in the frequency band below 8 MHz. This frequency information can guide the choice of the transducer element used for PA catheter fabrication.

  10. Role of chemokines in promoting instability of coronary atherosclerotic plaques and the underlying molecular mechanism.

    PubMed

    Zhong, Z X; Li, B; Li, C R; Zhang, Q F; Liu, Z D; Zhang, P F; Gu, X F; Luo, H; Li, M J; Luo, H S; Ye, G H; Wen, F L

    2015-02-01

    Our aim was to investigate the role of chemokines in promoting instability of coronary atherosclerotic plaques and the underlying molecular mechanism. Coronary angiography and intravascular ultrasound (IVUS) were performed in 60 stable angina pectoris (SAP) patients and 60 unstable angina pectoris (UAP) patients. The chemotactic activity of monocytes in the 2 groups of patients was examined in Transwell chambers. High-sensitivity C-reactive protein (hs-CRP), monocyte chemoattractant protein-1 (MCP-1), regulated on activation in normal T-cell expressed and secreted (RANTES), and fractalkine in serum were examined with ELISA kits, and expression of MCP-1, RANTES, and fractalkine mRNA was examined with real-time PCR. In the SAP group, 92 plaques were detected with IVUS. In the UAP group, 96 plaques were detected with IVUS. The plaques in the UAP group were mainly lipid 51.04% (49/96) and the plaques in the SAP group were mainly fibrous 52.17% (48/92). Compared with the SAP group, the plaque burden and vascular remodeling index in the UAP group were significantly greater than in the SAP group (P<0.01). Chemotactic activity and the number of mobile monocytes in the UAP group were significantly greater than in the SAP group (P<0.01). Concentrations of hs-CRP, MCP-1, RANTES, and fractalkine in the serum of the UAP group were significantly higher than in the serum of the SAP group (P<0.05 or P<0.01), and expression of MCP-1, RANTES, and fractalkine mRNA was significantly higher than in the SAP group (P<0.05). MCP-1, RANTES, and fractalkine probably promote instability of coronary atherosclerotic plaque.

  11. Effects of the PPARγ agonist pioglitazone on coronary atherosclerotic plaque composition and plaque progression in non-diabetic patients: a double-center, randomized controlled VH-IVUS pilot-trial.

    PubMed

    Christoph, Marian; Herold, Joerg; Berg-Holldack, Anna; Rauwolf, Thomas; Ziemssen, Tjalf; Schmeisser, Alexander; Weinert, Sönke; Ebner, Bernd; Said, Samir; Strasser, Ruth H; Braun-Dullaeus, Ruediger C

    2015-05-01

    Despite the advanced therapy with statins, antithrombotics and antihypertensive agents, the medical treatment of coronary artery disease is less than optimal. Therefore, additional therapeutic anti-atherosclerotic options are desirable. This VH-IVUS study (intravascular ultrasonography with virtual histology) was performed to assess the potential anti-atherogenic effect of the PPARγ agonist pioglitazone in non-diabetic patients. A total of 86 non-culprit atherosclerotic lesions in 54 patients with acute coronary syndrome were observed in a 9-month prospective, double-blind, and placebo-controlled IVUS study. Patients were randomized to receive either 30 mg pioglitazone (Pio) or placebo (Plac). As primary efficacy parameter, the change of relative plaque content of necrotic core was determined by serial VH-IVUS analyses. Main secondary endpoint was the change of total plaque volume. In contrast to placebo, in the pioglitazone-treated group, the relative plaque content of necrotic core decreased significantly (Pio -1.3 ± 6.9% vs. Plac +2.6 ± 6.5%, p < 0.01). In comparison to the placebo group, the plaques in pioglitazone-treated patients showed significantly greater reduction of the total plaque volume (Pio -16.1 ± 26.4 mm3 vs. Plac -1.8 ± 30.9 mm3, p = 0.02). Treatment with a PPARγ agonist in non-diabetic patients results in a coronary artery plaque stabilization on top of usual medical care.

  12. Symptomatic carotid atherosclerotic disease: correlations between plaque composition and ipsilateral stroke risk

    PubMed Central

    Rothwell, Peter M; Redgrave, Jessica N; Moll, Frans L; de Vries, Jean-Paul PM; de Kleijn, Dominique PV; den Ruijter, Hester M; de Borst, Gert Jan; Pasterkamp, Gerard

    2014-01-01

    BACKGROUND AND PURPOSE For symptomatic patients with carotid artery stenosis the risk-benefit for surgical intervention may vary among patient groups. Various modalities of plaque imaging have been promoted as potential tools for additional risk stratification, particularly in patients with moderate stenosis. However, it remains uncertain to what extent carotid plaque components predict risk of future ipsilateral ischaemic stroke. METHODS In two large atherosclerotic carotid plaque biobank studies, we related histological characteristics of 1640 carotid plaques with a validated risk model for the prediction of individual 1- and 5-year stroke risk. RESULTS No significant heterogeneity between the studies was found. Predicted 5-year stroke risk (top versus bottom quartile) was related to plaque thrombus (OR=1.42, 95%CI 1.11-1.89, p=0.02), fibrous content (0.65, 0.49-0.87, p=0.004), macrophage infiltration (1.41, 1.05-1.90, p=0.02), high micro-vessel density (1.49, 1.05-2.11, p=0.03), and overall plaque instability (1.40, 1.05-1.87,p=0.02). This association was not observed for cap thickness, calcification, intra-plaque haemorrhage, or lymphocyte infiltration. Plaques removed within 30-days of most recent symptomatic event were most strongly correlated with predicted stroke risk. CONCLUSIONS Features of ‘the vulnerable carotid plaque’ including plaque thrombus, low fibrous content, macrophage infiltration and microvessel density correlate with predicted stroke risk. This study provides a basis for plaque imaging studies focused on stroke risk stratification. PMID:25477221

  13. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques.

    PubMed

    Dhore, C R; Cleutjens, J P; Lutgens, E; Cleutjens, K B; Geusens, P P; Kitslaar, P J; Tordoir, J H; Spronk, H M; Vermeer, C; Daemen, M J

    2001-12-01

    In the present study, we examined the expression of regulators of bone formation and osteoclastogenesis in human atherosclerosis because accumulating evidence suggests that atherosclerotic calcification shares features with bone calcification. The most striking finding of this study was the constitutive immunoreactivity of matrix Gla protein, osteocalcin, and bone sialoprotein in nondiseased aortas and the absence of bone morphogenetic protein (BMP)-2, BMP-4, osteopontin, and osteonectin in nondiseased aortas and early atherosclerotic lesions. When atherosclerotic plaques demonstrated calcification or bone formation, BMP-2, BMP-4, osteopontin, and osteonectin were upregulated. Interestingly, this upregulation was associated with a sustained immunoreactivity of matrix Gla protein, osteocalcin, and bone sialoprotein. The 2 modulators of osteoclastogenesis (osteoprotegerin [OPG] and its ligand, OPGL) were present in the nondiseased vessel wall and in early atherosclerotic lesions. In advanced calcified lesions, OPG was present in bone structures, whereas OPGL was only present in the extracellular matrix surrounding calcium deposits. The observed expression patterns suggest a tight regulation of the expression of bone matrix regulatory proteins during human atherogenesis. The expression pattern of both OPG and OPGL during atherogenesis might suggest a regulatory role of these proteins not only in osteoclastogenesis but also in atherosclerotic calcification.

  14. Heterogeneity of human macrophages in culture and in atherosclerotic plaques.

    PubMed

    Waldo, Stephen W; Li, Yifu; Buono, Chiara; Zhao, Bin; Billings, Eric M; Chang, Janet; Kruth, Howard S

    2008-04-01

    Research suggests that monocytes differentiate into unique lineage-determined macrophage subpopulations in response to the local cytokine environment. The present study evaluated the atherogenic potential of two divergent lineage-determined human monocyte-derived macrophage subpopulations. Monocytes were differentiated for 7 days in the presence of alternative macrophage development cytokines: granulocyte-macrophage colony-stimulating factor to produce granulocyte-macrophage-CSF macrophages (GM-Mac), or macrophage colony-stimulating factor (M-CSF) to produce M-Mac. Gene chip analyses of three monocyte donors demonstrated differential expression of inflammatory and cholesterol homeostasis genes in the macrophage subpopulations. Quantitative PCR confirmed a fivefold elevation in the expression of genes that promote reverse cholesterol transport (PPAR-gamma, LXR-alpha, and ABCG1) and macrophage emigration from lesions (CCR7) in GM-Mac compared to that in M-Mac. Immunocytochemistry confirmed enhanced expression of the proinflammatory marker CD14 in M-Mac relative to GM-Mac. M-Mac spontaneously accumulated cholesterol when incubated with unmodified low-density lipoprotein whereas GM-Mac only accumulated similar levels of cholesterol after protein kinase C activation. Immunostained human coronary arteries showed that macrophages with similar antigen expression to that of M-Mac (CD68(+)/CD14(+)) were predominant within atherosclerotic lesions whereas macrophages with antigen expression similar to GM-Mac (CD68(+)/CD14(-)) were predominant in areas devoid of disease. The identification of macrophage subpopulations with different gene expression patterns and, thus, different potentials for promoting atherosclerosis has important experimental and clinical implications and could prove to be a valuable finding in developing therapeutic interventions in diseases dependent on macrophage function.

  15. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability.

    PubMed

    Evrard, Solene M; Lecce, Laura; Michelis, Katherine C; Nomura-Kitabayashi, Aya; Pandey, Gaurav; Purushothaman, K-Raman; d'Escamard, Valentina; Li, Jennifer R; Hadri, Lahouaria; Fujitani, Kenji; Moreno, Pedro R; Benard, Ludovic; Rimmele, Pauline; Cohain, Ariella; Mecham, Brigham; Randolph, Gwendalyn J; Nabel, Elizabeth G; Hajjar, Roger; Fuster, Valentin; Boehm, Manfred; Kovacic, Jason C

    2016-06-24

    Endothelial to mesenchymal transition (EndMT) plays a major role during development, and also contributes to several adult cardiovascular diseases. Importantly, mesenchymal cells including fibroblasts are prominent in atherosclerosis, with key functions including regulation of: inflammation, matrix and collagen production, and plaque structural integrity. However, little is known about the origins of atherosclerosis-associated fibroblasts. Here we show using endothelial-specific lineage-tracking that EndMT-derived fibroblast-like cells are common in atherosclerotic lesions, with EndMT-derived cells expressing a range of fibroblast-specific markers. In vitro modelling confirms that EndMT is driven by TGF-β signalling, oxidative stress and hypoxia; all hallmarks of atherosclerosis. 'Transitioning' cells are readily detected in human plaques co-expressing endothelial and fibroblast/mesenchymal proteins, indicative of EndMT. The extent of EndMT correlates with an unstable plaque phenotype, which appears driven by altered collagen-MMP production in EndMT-derived cells. We conclude that EndMT contributes to atherosclerotic patho-biology and is associated with complex plaques that may be related to clinical events.

  16. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability

    PubMed Central

    Evrard, Solene M.; Lecce, Laura; Michelis, Katherine C.; Nomura-Kitabayashi, Aya; Pandey, Gaurav; Purushothaman, K-Raman; d'Escamard, Valentina; Li, Jennifer R.; Hadri, Lahouaria; Fujitani, Kenji; Moreno, Pedro R.; Benard, Ludovic; Rimmele, Pauline; Cohain, Ariella; Mecham, Brigham; Randolph, Gwendalyn J.; Nabel, Elizabeth G.; Hajjar, Roger; Fuster, Valentin; Boehm, Manfred; Kovacic, Jason C.

    2016-01-01

    Endothelial to mesenchymal transition (EndMT) plays a major role during development, and also contributes to several adult cardiovascular diseases. Importantly, mesenchymal cells including fibroblasts are prominent in atherosclerosis, with key functions including regulation of: inflammation, matrix and collagen production, and plaque structural integrity. However, little is known about the origins of atherosclerosis-associated fibroblasts. Here we show using endothelial-specific lineage-tracking that EndMT-derived fibroblast-like cells are common in atherosclerotic lesions, with EndMT-derived cells expressing a range of fibroblast-specific markers. In vitro modelling confirms that EndMT is driven by TGF-β signalling, oxidative stress and hypoxia; all hallmarks of atherosclerosis. ‘Transitioning' cells are readily detected in human plaques co-expressing endothelial and fibroblast/mesenchymal proteins, indicative of EndMT. The extent of EndMT correlates with an unstable plaque phenotype, which appears driven by altered collagen-MMP production in EndMT-derived cells. We conclude that EndMT contributes to atherosclerotic patho-biology and is associated with complex plaques that may be related to clinical events. PMID:27340017

  17. Activation of activator protein 2 alpha by aspirin alleviates atherosclerotic plaque growth and instability in vivo

    PubMed Central

    Yang, Jing-Jing; Li, Peng; Wang, Fu; Liang, Wen-Jing; Ma, Hui; Chen, Yuan; Ma, Zhi-Min; Li, Quan-Zhong; Peng, Qi-Sheng; Zhang, Yun; Wang, Shuang-Xi

    2016-01-01

    Aims Aspirin has been used for the secondary prevention and treatment of cardiovascular disease for several decades. We investigated the roles of transcriptional factor activator protein 2α (AP-2α) in the beneficial effects of aspirin in the growth and vulnerability of atherosclerotic plaque. Methods and Results In mice deficient of apolipoprotein E (Apoe-/-), aspirin (20, 50 mg/kg/day) suppressed the progression of atherosclerosis in aortic roots and increased the plaque stability in carotid atherosclerotic plaques induced by collar-placement. In vivo lentivirus-mediated RNA interference of AP-2α reversed the inhibitory effects of aspirin on atherosclerosis in Apoe-/- mice. Mechanically, aspirin increased AP-2α phosphorylation and its activity, upregulated IkBα mRNA and protein levels, and reduced oxidative stress in cultured vascular smooth muscle cells. Furthermore, deficiency of AP-2α completely abolished aspirin-induced upregulation of IkBα levels and inhibition of oxidative stress in Apoe-/- mice. Clinically, conventional doses of aspirin increased AP-2α phosphorylation and IkBα protein expression in humans subjects. Conclusion Aspirin activates AP-2α to upregulate IkBα gene expression, resulting in attenuations of plaque development and instability in atherosclerosis. PMID:27391154

  18. IVUS-based histology of atherosclerotic plaques: improving longitudinal resolution

    NASA Astrophysics Data System (ADS)

    Taki, Arash; Pauly, Olivier; Setarehdan, S. Kamaledin; Unal, Gozde; Navab, Nassir

    2010-03-01

    Although Virtual Histology (VH) is the in-vivo gold standard for atherosclerosis plaque characterization in IVUS images, it suffers from a poor longitudinal resolution due to ECG-gating. In this paper, we propose an image-based approach to overcome this limitation. Since each tissue have different echogenic characteristics, they show in IVUS images different local frequency components. By using Redundant Wavelet Packet Transform (RWPT), IVUS images are decomposed in multiple sub-band images. To encode the textural statistics of each resulting image, run-length features are extracted from the neighborhood centered on each pixel. To provide the best discrimination power according to these features, relevant sub-bands are selected by using Local Discriminant Bases (LDB) algorithm in combination with Fisher's criterion. A structure of weighted multi-class SVM permits the classification of the extracted feature vectors into three tissue classes, namely fibro-fatty, necrotic core and dense calcified tissues. Results shows the superiority of our approach with an overall accuracy of 72% in comparison to methods based on Local Binary Pattern and Co-occurrence, which respectively give accuracy rates of 70% and 71%.

  19. Contour detection of atherosclerotic plaques in IVUS images using ellipse template matching and particle swarm optimization.

    PubMed

    Zhang, Qi; Wang, Yuanyuan; Ma, Jianying; Shi, Jun

    2011-01-01

    It is valuable for diagnosis of atherosclerosis to detect lumen and media-adventitia contours in intravascular ultrasound (IVUS) images of atherosclerotic plaques. In this paper, a method for contour detection of plaques is proposed utilizing the prior knowledge of elliptic geometry of plaques. Contours are initialized as ellipses by using ellipse template matching, where a matching function is maximized by particle swarm optimization. Then the contours are refined by boundary vector field snakes. The method was evaluated via 88 in vivo images from 21 patients. It outperformed a state-of-the-art method by 3.8 pixels and 4.8% in terms of the mean distance error and relative mean distance error, respectively.

  20. Detection of atherosclerotic plaques in ApoE-deficient mice using (99m)Tc-duramycin.

    PubMed

    Liu, Zhonglin; Larsen, Brandon T; Lerman, Lilach O; Gray, Brian D; Barber, Christy; Hedayat, Ahmad F; Zhao, Ming; Furenlid, Lars R; Pak, Koon Y; Woolfenden, James M

    2016-08-01

    Apoptosis of macrophages and smooth muscle cells is linked to atherosclerotic plaque destabilization. The apoptotic cascade leads to exposure of phosphatidylethanolamine (PE) on the outer leaflet of the cell membrane, thereby making apoptosis detectable using probes targeting PE. The objective of this study was to exploit capabilities of a PE-specific imaging probe, (99m)Tc-duramycin, in localizing atherosclerotic plaque and assessing plaque evolution in apolipoprotein-E knockout (ApoE(-/-)) mice. Atherosclerosis was induced in ApoE(-/-) mice by feeding an atherogenic diet. (99m)Tc-duramycin images were acquired using a small-animal SPECT imager. Six ApoE(-/-) mice at 20weeks of age (Group I) were imaged and then sacrificed for ex vivo analyses. Six additional ApoE(-/-) mice (Group II) were imaged at 20 and 40weeks of age before sacrifice. Six ApoE wild-type (ApoE(+/+)) mice (Group III) were imaged at 40weeks as controls. Five additional ApoE(-/-) mice (40weeks of age) (Group IV) were imaged with a (99m)Tc-labeled inactive peptide, (99m)Tc-LinDUR, to assess (99m)Tc-duramycin targeting specificity. Focal (99m)Tc-duramycin uptake in the ascending aorta and aortic arch was detected at 20 and 40weeks in the ApoE(-/-) mice but not in ApoE(+/+) mice. (99m)Tc-duramycin uptake in the aortic lesions increased 2.2-fold on quantitative imaging in the ApoE(-/-) mice between 20 and 40weeks. Autoradiographic and histological data indicated significantly increased (99m)Tc-duramycin uptake in the ascending aorta and aortic arch associated with advanced plaques. Quantitative autoradiography showed that the ratio of activity in the aortic arch to descending thoracic aorta, which had no plaques or radioactive uptake, was 2.1 times higher at 40weeks than at 20weeks (6.62±0.89 vs. 3.18±0.29, P<0.01). There was barely detectable focal uptake of (99m)Tc-duramycin in the aortic arch of ApoE(+/+) mice. No detectable (99m)Tc-LinDUR uptake was observed in the aortas of ApoE(-/-) mice. PE

  1. Xyloketal B Attenuates Atherosclerotic Plaque Formation and Endothelial Dysfunction in Apolipoprotein E Deficient Mice

    PubMed Central

    Zhao, Li-Yan; Li, Jie; Yuan, Feng; Li, Mei; Zhang, Quan; Huang, Yun-Ying; Pang, Ji-Yan; Zhang, Bin; Sun, Fang-Yun; Sun, Hong-Shuo; Li, Qian; Cao, Lu; Xie, Yu; Lin, Yong-Cheng; Liu, Jie; Tan, Hong-Mei; Wang, Guan-Lei

    2015-01-01

    Our previous studies demonstrated that xyloketal B, a novel marine compound with a unique chemical structure, has strong antioxidant actions and can protect against endothelial injury in different cell types cultured in vitro and model organisms in vivo. The oxidative endothelial dysfunction and decrease in nitric oxide (NO) bioavailability are critical for the development of atherosclerotic lesion. We thus examined whether xyloketal B had an influence on the atherosclerotic plaque area in apolipoprotein E-deficient (apoE−/−) mice fed a high-fat diet and investigated the underlying mechanisms. We found in our present study that the administration of xyloketal B dose-dependently decreased the atherosclerotic plaque area both in the aortic sinus and throughout the aorta in apoE−/− mice fed a high-fat diet. In addition, xyloketal B markedly reduced the levels of vascular oxidative stress, as well as improving the impaired endothelium integrity and NO-dependent aortic vasorelaxation in atherosclerotic mice. Moreover, xyloketal B significantly changed the phosphorylation levels of endothelial nitric oxide synthase (eNOS) and Akt without altering the expression of total eNOS and Akt in cultured human umbilical vein endothelial cells (HUVECs). Here, it increased eNOS phosphorylation at the positive regulatory site of Ser-1177, while inhibiting phosphorylation at the negative regulatory site of Thr-495. Taken together, these findings indicate that xyloketal B has dramatic anti-atherosclerotic effects in vivo, which is partly due to its antioxidant features and/or improvement of endothelial function. PMID:25874925

  2. Association Between Carotid Atherosclerotic Plaque Calcification and Intraplaque Hemorrhage: A Magnetic Resonance Imaging Study.

    PubMed

    Lin, Ruolan; Chen, Shuo; Liu, Gaifen; Xue, Yunjing; Zhao, Xihai

    2017-06-01

    Carotid intraplaque hemorrhage (IPH) is associated with cardiovascular events. Calcification, which frequently accompanies IPH, may play a role in IPH occurrence. In this study, we aimed to investigate the associations between calcification characteristics and IPH in carotid plaques. One hundred seventeen patients with cerebrovascular symptoms and carotid plaques detected by ultrasound were recruited and underwent multicontrast magnetic resonance imaging. Advanced carotid plaques with composition measured by magnetic resonance imaging were included in the analysis. Carotid calcifications were divided into the following categories: surface, mixed, and deep calcification. They were also classified into single and multiple calcifications according to quantity. Logistic regression models utilizing generalized estimating equations were performed to evaluate the relationship between calcification and IPH. Of 117 subjects, 85 with 142 plaques were included in the final analysis, whereas 32 were excluded because of lack of plaque compositions. Of the 142 plaques, 40 (28.2%) had IPH. Plaques with IPH showed greater prevalence of calcification than those without (87.5% versus 55.9%; P=0.005). After adjusting for age, low-density lipoprotein, maximum wall thickness, and maximum soft plaque thickness, multiple calcifications (odd ratio, 10.1; 95% confidence interval, 3.3-30.4), surface calcification (odd ratio, 29.4; 95% confidence interval, 4.1-210.8), and mixed calcifications (odd ratio, 27.9; 95% confidence interval, 7.3-107.1) were found to be strongly associated with the presence of IPH (all P<0.05). Surface calcification and multiple calcifications in carotid atherosclerotic plaques are independently associated with the presence of IPH, suggesting that both quantity and location of calcification may play important roles in the occurrence of IPH. These findings may provide novel insights for understanding mechanisms of IPH. © 2017 American Heart Association, Inc.

  3. Prevalence of atherosclerotic plaque in young and middle-aged asymptomatic individuals: the Bogalusa heart study.

    PubMed

    Kelley, Roger Everett; Dasmahapatra, Pronabesh; Wang, Jian; Chen, Wei; Srinivasan, Sathanur R; Fernandez, Camilo; Xu, Jihua; Martin-Schild, Sheryl; Berenson, Gerald S

    2011-12-01

    To determine the prevalence of carotid and femoral artery atherosclerotic plaque in a community-based population of asymptomatic African American and white men and women, with an age range of 29 to 51 years, and the potential relations with cardiovascular risk factors. Between 2007 and 2010, 914 subjects, 58% women and 69% white, who were part of the Bogalusa Heart Study, an ongoing study of a southern biracial community in Bogalusa, Louisiana, were followed up from childhood through adulthood and assessed for plaque formation using ultrasound. Of the total number of subjects, those with a history of cardiovascular/cerebrovascular events were excluded. Plaque prevalence ranged from 8% to 14%, with greater frequency in white men. Plaque formation was also associated with smoking, hypertension, diabetes mellitus, age, and white race, in descending order. In this population, studied sequentially since 1973, the presence of plaque correlated with widely recognized cardiovascular risk factors, although we did not detect significant contributions from either obesity or elevated lipids, including low-density lipoprotein cholesterol. It is possible that interventions, such as diet alteration and statin therapy, may have a positive impact on these potential contributors to plaque formation, and hypertension, diabetes mellitus and smoking remain of great importance.

  4. Alternation of histone and DNA methylation in human atherosclerotic carotid plaques.

    PubMed

    Greißel, A; Culmes, M; Napieralski, R; Wagner, E; Gebhard, H; Schmitt, M; Zimmermann, A; Eckstein, H-H; Zernecke, A; Pelisek, J

    2015-08-01

    Little is known about epigenetics and its possible role in atherosclerosis. We here analysed histone and DNA methylation and the expression of corresponding methyltransferases in early and advanced human atherosclerotic carotid lesions in comparison to healthy carotid arteries. Western Blotting was performed on carotid plaques from our biobank with early (n=60) or advanced (n=60) stages of atherosclerosis and healthy carotid arteries (n=12) to analyse di-methylation patterns of histone H3 at positions K4, K9 and K27. In atherosclerotic lesions, di-methylation of H3K4 was unaltered and that of H3K9 and H3K27 significantly decreased compared to control arteries. Immunohistochemistry revealed an increased appearance of di-methylated H3K4 in smooth muscle cells (SMCs), a decreased expression of di-methylated H3K9 in SMCs and inflammatory cells, and reduced di-methylated H3K27 in inflammatory cells in advanced versus early atherosclerosis. Expression of corresponding histone methyltransferases MLL2 and G9a was increased in advanced versus early atherosclerosis. Genomic DNA hypomethylation, as determined by PCR for methylated LINE1 and SAT-alpha, was observed in early and advanced plaques compared to control arteries and in cell-free serum of patients with high-grade carotid stenosis compared to healthy volunteers. In contrast, no differences in DNA methylation were observed in blood cells. Expression of DNA-methyltransferase DNMT1 was reduced in atherosclerotic plaques versus controls, DNMT3A was undetectable, and DNMT3B not altered. DNA-demethylase TET1 was increased in atherosclerosisc plaques. The extent of histone and DNA methylation and expression of some corresponding methyltransferases are significantly altered in atherosclerosis, suggesting a possible contribution of epigenetics in disease development.

  5. A novel biomarker of coronary atherosclerosis: serum DKK1 concentration correlates with coronary artery calcification and atherosclerotic plaques.

    PubMed

    Kim, Kwang-Il; Park, Kyoung Un; Chun, Eun Ju; Choi, Sang Il; Cho, Young-Seok; Youn, Tae-Jin; Cho, Goo-Yeong; Chae, In-Ho; Song, Junghan; Choi, Dong-Ju; Kim, Cheol-Ho

    2011-09-01

    DKK1 modulates Wnt signaling, which is involved in the atherosclerosis. However, no data exist regarding the usefulness of measuring serum DKK1 concentration in predicting coronary atherosclerosis. A total of 270 consecutive patients (62.8 ± 11.2 yr; 70% male) were included. A contrast-enhanced 64-slice coronary MDCT was performed to identify the presence of atherosclerotic plaques. Agatston calcium scores (CS) were calculated to quantify the coronary artery calcification (CAC). DKK1 concentrations were measured by enzyme-linked immunosorbent assay. For each subsequent DKK1 quartile, there was a significant increase in CAC (P = 0.004) and the number of segments with coronary atherosclerosis (P < 0.001). In addition, DKK1 concentration was significantly higher in patients with atherosclerotic plaques, regardless of plaque composition (P = 0.01). Multivariate analysis identified DKK1 as an independent risk factor for the presence of coronary atherosclerotic plaque. The adjusted odds ratio for coronary atherosclerotic plaque was 4.88 (95% CI, 1.67 to 14.25) for highest versus lowest quartile of the DKK1 levels. Furthermore, patients with DKK1 concentrations ≥ 68.6 pg/mL demonstrated coronary atherosclerotic plaques even when they had low CS. Serum DKK1 concentrations correlate with the coronary atherosclerosis and play an independent role in predicting the presence of coronary atherosclerosis.

  6. Fluorescence imaging of macrophages in atherosclerotic plaques using plasmonic gold nanorose

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Sapozhnikova, Veronika; Mancuso, J. Jacob; Willsey, Brian; Qiu, Jinze; Ma, Li L.; Li, Xiankai; Johnston, Keith P.; Feldman, Marc D.; Milner, Thomas E.

    2011-03-01

    Macrophages are one of the most important cell types involved in the progression of atherosclerosis which can lead to myocardial infarction. To detect macrophages in atherosclerotic plaques, plasmonic gold nanorose is introduced as a nontoxic contrast agent for fluorescence imaging. We report macrophage cell culture and ex vivo tissue studies to visualize macrophages targeted by nanorose using scanning confocal microscopy. Atherosclerotic lesions were created in the aorta of a New Zealand white rabbit model subjected to a high cholesterol diet and double balloon injury. The rabbit was injected with nanoroses coated with dextran. A HeNe laser at 633 nm was used as an excitation light source and a acousto-optical beam splitter was utilized to collect fluorescence emission in 650-760 nm spectral range. Results of scanning confocal microscopy of macrophage cell culture and ex vivo tissue showed that nanoroses produce a strong fluorescence signal. The presence of nanorose in ex vivo tissue was further confirmed by photothermal wave imaging. These results suggest that scanning confocal microscopy can identify the presence and location of nanorose-loaded macrophages in atherosclerotic plaques.

  7. Detection of Rupture-Prone Atherosclerotic Plaques by Time-Resolved Laser Induced Fluorescence Spectroscopy

    PubMed Central

    Marcu, Laura; Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Reil, Todd; Qiao, Jian-Hua; Baker, J. Dennis; Freischlag, Julie A.; Fishbein, Michael C.

    2009-01-01

    Objective Plaque with dense inflammatory cells, including macrophages, thin fibrous cap and superficial necrotic/lipid core is thought to be prone-to-rupture. We report a time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) technique for detection of such markers of plaque vulnerability in human plaques. Methods The autofluorescence of carotid plaques (65 endarterectomy patients) induced by a pulsed laser (337 nm, 0.7 ns) was measured from 831 distinct areas. The emission was resolved spectrally- (360–550 nm range) and temporally- (0.3 ns resolution) using a prototype fiber-optic TR-LIFS apparatus. Lesions were evaluated microscopically and quantified as to the % of different components (fibrous cap, necrotic core, inflammatory cells, foam cells, mature and degraded collagen, elastic fibers, calcification, and smooth muscle cell of the vessel wall). Results We determined that the spectral intensities and time-dependent parameters at discrete emission wavelengths 1) allow for discrimination (sensitivity >81%, specificity >94%) of various compositional and pathological features associated with plaque vulnerability including infiltration of macrophages into intima and necrotic/lipid core under a thin fibrous cap, and 2) show a linear correlation with plaque biochemical content: elastin (P<0.008), collagen (P<0.02), inflammatory cells (P<0.003), necrosis (P<0.004). Conclusion Our results demonstrate the feasibility of TR-LIFS as a method for the identification of markers of plaque vulnerability. Current findings enable future development of TR-LIFS based clinical devices for rapid investigation of atherosclerotic plaques and detection of those at high-risk. PMID:18926540

  8. Differentiation of Vascular Stem Cells Contributes to Ectopic Calcification of Atherosclerotic Plaque.

    PubMed

    Leszczynska, Aleksandra; O'Doherty, Aideen; Farrell, Eric; Pindjakova, Jana; O'Brien, Fergal J; O'Brien, Timothy; Barry, Frank; Murphy, Mary

    2016-04-01

    The cellular and molecular basis of vascular calcification (VC) in atherosclerosis is not fully understood. Here, we investigate role of resident/circulating progenitor cells in VC and contribution of inflammatory plaque environment to this process. Vessel-derived stem/progenitor cells (VSCs) and mesenchymal stem cells (MSCs) isolated from atherosclerotic ApoE(-/-) mice showed significantly more in vitro osteogenesis and chondrogenesis than cells generated from control C57BL/6 mice. To assess their ability to form bone in vivo, cells were primed chondrogenically or cultured in control medium on collagen glycosaminoglycan scaffolds in vitro prior to subcutaneous implantation in ApoE(-/-) and C57BL/6 mice using a crossover study design. Atherosclerotic ApoE(-/-) MSCs and VSCs formed bone when implanted in C57BL/6 mice. In ApoE(-/-) mice, these cells generated more mature bone than C57BL/6 cells. The atherosclerotic in vivo environment alone promoted bone formation by implanted C57BL/6 cells. Un-primed C57BL/6 VSCs were unable to form bone in either mouse strain. Treatment of ApoE(-/-) VSC chondrogenic cultures with interleukin (IL)-6 resulted in significantly increased glycosaminoglycan deposition and expression of characteristic chondrogenic genes at 21 days. In conclusion, resident vascular cells from atherosclerotic environment respond to the inflammatory milieu and undergo calcification. IL-6 may have a role in aberrant differentiation of VSCs contributing to vascular calcification in atherosclerosis.

  9. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis.

    PubMed

    Chai, Chen-Ket; Akyildiz, Ali C; Speelman, Lambert; Gijsen, Frank J H; Oomens, Cees W J; van Sambeek, Marc R H M; van der Lugt, Aad; Baaijens, Frank P T

    2013-06-21

    The fibrous cap of an atherosclerotic plaque may be prone to rupture if the occurring stresses exceed the strength of the cap. Rupture can cause acute thrombosis and subsequent ischaemic stroke or myocardial infarction. A reliable prediction of the rupture probability is essential for the appropriate treatment of atherosclerosis. Biomechanical models, which compute stresses and strain, are promising to provide a more reliable rupture risk prediction. However, these models require knowledge of the local biomechanical properties of atherosclerotic plaque tissue. For this purpose, we examined human carotid plaques using indentation experiments. The test set-up was mounted on an inverted confocal microscope to visualise the collagen fibre structure during the tests. By using an inverse finite element (FE) approach, and assuming isotropic neo-Hookean behaviour, the corresponding Young's moduli were found in the range from 6 to 891kPa (median 30kPa). The results correspond to the values obtained by other research groups who analysed the compressive Young's modulus of atherosclerotic plaques. Collagen rich locations showed to be stiffer than collagen poor locations. No significant differences were found between the Young's moduli of structured and unstructured collagen architectures as specified from confocal collagen data. Insignificant differences between the middle of the fibrous cap, the shoulder regions, and remaining plaque tissue locations indicate that axial, compressive mechanical properties of atherosclerotic plaques are independent of location within the plaque. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. 13C MAS NMR studies of crystalline cholesterol and lipid mixtures modeling atherosclerotic plaques.

    PubMed Central

    Guo, W; Hamilton, J A

    1996-01-01

    Cholesterol and cholesteryl esters are the predominant lipids of atherosclerotic plaques. To provide fundamental data for the quantitative study of plaque lipids in situ, crystalline cholesterol (CHOL) and CHOL/cholesteryl ester (CE) mixtures with other lipids were studied by solid-state nuclear magnetic resonance with magic-angle-sample spinning. Highly distinctive spectra for three different crystalline structures of CHOL were obtained. When CHOL crystals were mixed with isotropic CE oil, solubilized CHOL (approximately 13 mol % CHOL) was detected by characteristic resonances such as C5, C6, and C3; the excess crystalline CHOL (either anhydrous or monohydrate) remained in its original crystalline structure, without being affected by the coexisting CE. By use of 13C-enriched CHOL, the solubility of CHOL in the CE liquid-crystalline phase (approximately 8 mol %) was measured. When phosphatidylcholine was hydrated in presence of CHOL and CE, magic-angle-sampling nuclear magnetic resonance revealed liquid-crystalline CHOL/phosphatidylcholine multilayers with approximately an equal molar ratio of CHOL/phosphatidylcholine. Excess CHOL existed in the monohydrate crystalline form, and CE in separate oil or crystalline phases, depending on the temperature. The magic-angle-sampling nuclear magnetic resonance protocol for identifying different lipid phases was applied to intact (ex vivo) atherosclerotic plaques of cholesterol-fed rabbits. Liquid, liquid-crystalline, and solid phases of CE were characterized. Images FIGURE 2 PMID:8913623

  11. Antioxidants attenuate atherosclerotic plaque development in a balloon-denuded and -radiated hypercholesterolemic rabbit

    SciTech Connect

    Leborgne, Laurent; Fournadjiev, Jana; Pakala, Rajbabu; Dilcher, Christian; Cheneau, Edouard; Wolfram, Roswitha; Hellinga, David; Seaborn, Rufus; O'Tio, Fermin; Waksman, Ron

    2003-03-01

    Background: Oxidation of lipoproteins is considered to be a key contributor to atherogenesis. Antioxidants are potential antiatherogenic agents because they can inhibit lipoprotein oxidation. Radiation has been shown to increase oxidative stress leading to increased atherogenesis. This study is designed to test the potential of antioxidants to inhibit atherosclerotic plaque progression in balloon-denuded and -radiated rabbits. Methods and Results: Two groups of New Zealand white rabbits (n=36) were fed with 1% cholesterol diet (control diet) or with 1% cholesterol diet containing a mixture of various antioxidants for 1 week. Iliac arteries in all the animals were balloon denuded and continued to fed with 0.15% cholesterol diet or 0.15% cholesterol diet containing antioxidants (antioxidant diet). Four weeks after balloon denudation one iliac artery in 12 animals from each group was radiated and all the animals were continued to be fed with the same diet. Four weeks after radiation animals were sacrificed and morphometric analysis of iliac arteries (n=12) in nonradiated and radiated animals were performed. Plaque area (PA) in the rabbits that were fed with cholesterol diet is 0.2{+-}0.12 mm{sup 2}, and it is increased by 2.75-fold (P<.05) in the radiated arteries of animals fed with cholesterol diet. Plaque area in the animals fed with antioxidant diet is 50% less then the one in the animals fed with cholesterol diet. Similarly, plaque area in radiated arteries of the animals fed with antioxidant diet is 50% less then the animals fed with cholesterol diet. Conclusion: Antioxidants significantly attenuate atherosclerotic plaque progression in balloon-injured and -radiated hypercholesterolemic rabbits.

  12. Intermittent cold stress enhances features of atherosclerotic plaque instability in apolipoprotein E‑deficient mice.

    PubMed

    Zheng, Xi; Wang, Qiang; Zhang, Yan; Yang, Dachun; Li, De; Tang, Bing; Li, Xiuchuan; Yang, Yongjian; Ma, Shuangtao

    2014-10-01

    The cold weather is associated with an increased occurrence of acute coronary events. However, the mechanisms underlying cold‑induced myocardial infarctions have not yet been fully elucidated. In the present study, 20 male, eight week‑old, apolipoprotein E (ApoE)‑deficient mice were subjected to either control conditions or intermittent cold exposure for eight weeks. Mice in the cold group were placed in a cold room at 4˚C for 4 h per day, while the mice in the control group were kept in a room at 24˚C. Cold‑exposed mice did not significantly differ from control mice in body weight, fasting glucose concentration and plasma lipid levels, including triglyceride, total cholesterol, low‑density lipoprotein and high‑density lipoprotein. The hematoxylin and eosin‑stained sections of the aortic root demonstrated increased plaque size in the cold group compared with the control group (P<0.01). Furthermore, cold‑treated mice exhibited significantly decreased plaque collagen and vascular smooth muscle cell deposition and increased macrophage and lymphocyte content (P<0.05 or P<0.01), which are typical features of atherosclerotic plaque instability. Additionally, the protein expression of matrix metalloproteinase (MMP)‑2, MMP‑9 and MMP‑14 were significantly increased (P<0.05 or P<0.01), whereas tissue inhibitor of matrix metalloproteinase (TIMP)‑1 expression was decreased (P<0.05) following exposure to a cold environment. The present study demonstrated that chronic intermittent cold stress may increase atherosclerotic plaque size and promote plaque instability in ApoE‑deficient mice by altering the balance of MMPs and TIMPs. These findings may provide mechanistic insights into sudden cardiac death in cold environments.

  13. Atorvastatin attenuates atherosclerotic plaque destabilization by inhibiting endoplasmic reticulum stress in hyperhomocysteinemic mice.

    PubMed

    Jia, Fang; Wu, Chunfang; Chen, Zhenyue; Lu, Guoping; Sun, Jianhui

    2016-04-01

    Endoplasmic reticulum (ER) stress has been suggested to play a role in the progression of plaque vulnerability and the occurrence of acute complications of coronary atherosclerosis. Atorvastatin is known to exert pleiotropic effects on the cardiovascular system. The present study aimed to examine the stabilizing effects of atorvastatin on vulnerable plaques within hyperhomocysteinemic apolipoprotein E‑deficient (ApoE‑/‑) mice, and to investigate the potential mechanisms underlying ER stress in ApoE‑/‑ mice and macrophages. In the present study, ApoE‑/‑ mice were administrated methionine or atorvastatin, and were sacrificed after 2 months. Necrotic core size, collagen content and inflammatory cytokine infiltration were subsequently measured in the aortic lesions, in order to investigate plaque stability. Treatment with atorvastatin decreased the number and size of necrotic cores, increased collagen content, and downregulated tumor necrosis factor (TNF)‑α and matrix metalloproteinase (MMP)‑9 mRNA expression, as compared with the methionine group. Immunohistochemical analysis indicated that atorvastatin administration prevented ER stress activation in aortic lesions of hyperhomocysteinemic mice. Furthermore, macrophages were challenged with homocysteine (Hcy) in the presence or absence of atorvastatin and thapsigargin (an ER stress inducer). Atorvastatin suppressed Hcy‑induced ER stress, and downregulated TNF‑α and MMP‑9 mRNA expression in the macrophages. Conversely, thapsigargin attenuated the inhibitory effects of atorvastatin against Hcy‑induced TNF‑α and MMP‑9 expression. These results indicated that hyperhomocysteinemia may promote atherosclerotic plaque development and instability. In addition, atorvastatin was able to improve atherosclerotic plaque stability in hyperhomocysteinemic mice by inhibiting ER stress.

  14. Automatic classification of atherosclerotic plaques imaged with intravascular OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rico-Jimenez, Jose D.; Campos-Delgado, Daniel U.; Villiger, Martin; Bouma, Brett; Jo, Javier A.

    2016-03-01

    A novel computational method for plaque tissue characterization based on Intravascular Optical Coherence Tomography (IV-OCT) is presented. IV-OCT is becoming a powerful tool for the clinical evaluation of atherosclerotic plaques; however, it requires a trained expert for visual assessment and interpretation of the imaged plaques. Moreover, due to the inherit effect of speckle and the scattering attenuation of the optical scheme the direct interpretation of OCT images is limited. To overcome these difficulties, we propose to automatically identify the A-line profiles of the most significant plaque types (normal, fibrotic, or lipid-rich) and their respective abundance by using a probabilistic framework and blind alternated least squares to achieve the optimal decomposition. In this context, we present preliminary results of this novel probabilistic classification tool for intravascular OCT that relies on two steps. First, the B-scan is pre-processed to remove catheter artifacts, segment the lumen, select the region of interest (ROI), flatten the tissue surface, and reduce the speckle effect by a spatial entropy filter. Next, the resulting image is decomposed and its A-lines are classified by an automated strategy based on alternating-least-squares optimization. Our early results are encouraging and suggest that the proposed methodology can identify normal tissue, fibrotic and lipid-rich plaques from IV-OCT images.

  15. Automated classification of atherosclerotic plaque from magnetic resonance images using predictive models.

    PubMed

    Anderson, Russell W; Stomberg, Christopher; Hahm, Charles W; Mani, Venkatesh; Samber, Daniel D; Itskovich, Vitalii V; Valera-Guallar, Laura; Fallon, John T; Nedanov, Pavel B; Huizenga, Joel; Fayad, Zahi A

    2007-01-01

    The information contained within multicontrast magnetic resonance images (MRI) promises to improve tissue classification accuracy, once appropriately analyzed. Predictive models capture relationships empirically, from known outcomes thereby combining pattern classification with experience. In this study, we examine the applicability of predictive modeling for atherosclerotic plaque component classification of multicontrast ex vivo MR images using stained, histopathological sections as ground truth. Ten multicontrast images from seven human coronary artery specimens were obtained on a 9.4 T imaging system using multicontrast-weighted fast spin-echo (T1-, proton density-, and T2-weighted) imaging with 39-mum isotropic voxel size. Following initial data transformations, predictive modeling focused on automating the identification of specimen's plaque, lipid, and media. The outputs of these three models were used to calculate statistics such as total plaque burden and the ratio of hard plaque (fibrous tissue) to lipid. Both logistic regression and an artificial neural network model (Relevant Input Processor Network-RIPNet) were used for predictive modeling. When compared against segmentation resulting from cluster analysis, the RIPNet models performed between 25 and 30% better in absolute terms. This translates to a 50% higher true positive rate over given levels of false positives. This work indicates that it is feasible to build an automated system of plaque detection using MRI and data mining.

  16. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques.

    PubMed

    Vinegoni, Claudio; Botnaru, Ion; Aikawa, Elena; Calfon, Marcella A; Iwamoto, Yoshiko; Folco, Eduardo J; Ntziachristos, Vasilis; Weissleder, Ralph; Libby, Peter; Jaffer, Farouc A

    2011-05-25

    New high-resolution molecular and structural imaging strategies are needed to visualize high-risk plaques that are likely to cause acute myocardial infarction, because current diagnostic methods do not reliably identify at-risk subjects. Although molecular imaging agents are available for low-resolution detection of atherosclerosis in large arteries, a lack of imaging agents coupled to high-resolution modalities has limited molecular imaging of atherosclerosis in the smaller coronary arteries. Here, we have demonstrated that indocyanine green (ICG), a Food and Drug Administration-approved near-infrared fluorescence (NIRF)-emitting compound, targets atheromas within 20 min of injection and provides sufficient signal enhancement for in vivo detection of lipid-rich, inflamed, coronary-sized plaques in atherosclerotic rabbits. In vivo NIRF sensing was achieved with an intravascular wire in the aorta, a vessel of comparable caliber to human coronary arteries. Ex vivo fluorescence reflectance imaging showed high plaque target-to-background ratios in atheroma-bearing rabbits injected with ICG compared to atheroma-bearing rabbits injected with saline. In vitro studies using human macrophages established that ICG preferentially targets lipid-loaded macrophages. In an early clinical study of human atheroma specimens from four patients, we found that ICG colocalized with plaque macrophages and lipids. The atheroma-targeting capability of ICG has the potential to accelerate the clinical development of NIRF molecular imaging of high-risk plaques in humans.

  17. Intravascular photoacoustic imaging of atherosclerotic plaques: ex-vivo study using a rabbit model of atherosclerosis

    NASA Astrophysics Data System (ADS)

    Sethuraman, S.; Mallidi, S.; Aglyamov, S. R.; Amirian, J. H.; Litovsky, S.; Smalling, R. W.; Emelianov, S. Y.

    2007-02-01

    Diagnosis and treatment of atherosclerosis necessitates the detection and differentiation of rupture prone plaques. In principle, intravascular photoacoustic (IVPA) imaging has the ability to simultaneously visualize the structure and composition of atherosclerotic plaques by utilizing the difference in optical absorption. Extensive studies are required to validate the utility of IVPA imaging in detecting vulnerable plaques and address issues associated with the clinical implementation of the technique. In this work, we performed ex vivo imaging studies using a rabbit model of atherosclerosis. The intravascular photoacoustic (IVPA) and ultrasound (IVUS) images of the normal aorta and aorta with plaque were obtained and compared with histological slices of the tissue. The results indicate that IVPA imaging is capable of detecting plaques and showed potential in determining the composition. Furthermore, we initially addressed several aspects of clinical implementation of the IVPA imaging. Specifically, the configuration of combined IVPA and IVUS catheter was investigated and the effect of the optical absorption of the luminal blood on the IVPA image quality was evaluated. Overall, this study suggests that IVPA imaging can become a unique and important clinical tool.

  18. Material properties of components in human carotid atherosclerotic plaques: A uniaxial extension study

    PubMed Central

    Teng, Zhongzhao; Zhang, Yongxue; Huang, Yuan; Feng, Jiaxuan; Yuan, Jianmin; Lu, Qingsheng; Sutcliffe, Michael P.F.; Brown, Adam J.; Jing, Zaiping; Gillard, Jonathan H.

    2014-01-01

    Computational modelling to calculate the mechanical loading within atherosclerotic plaques has been shown to be complementary to defining anatomical plaque features in determining plaque vulnerability. However, its application has been partially impeded by the lack of comprehensive knowledge about the mechanical properties of various tissues within the plaque. Twenty-one human carotid plaques were collected from endarterectomy. The plaque was cut into rings, and different type of atherosclerotic tissues, including media, fibrous cap (FC), lipid and intraplaque haemorrhage/thrombus (IPH/T) was dissected for uniaxial extension testing. In total, 65 media strips from 17 samples, 59 FC strips from 14 samples, 38 lipid strips from 11 samples, and 21 IPH/T strips from 11 samples were tested successfully. A modified Mooney–Rivlin strain energy density function was used to characterize the stretch–stress relationship. The stiffnesses of media and FC are comparable, as are lipid and IPH/T. However, both media and FC are stiffer than either lipid or IPH/T. The median values of incremental Young’s modulus of media, FC, lipid and IPH/T at λ = 1 are 290.1, 244.5, 104.4, 52.9, respectively; they increase to 1019.5, 817.4, 220.7 and 176.9 at λ = 1.1; and 4302.7, 3335.0, 533.4 and 268.8 at λ = 1.15 (unit, kPa; λ, stretch ratio). The material constants of each tissue type are suggested to be: media, c1 = 0.138 kPa, D1 = 3.833 kPa and D2 = 18.803; FC, c1 = 0.186 kPa, D1 = 5.769 kPa and D2 = 18.219; lipid, c1 = 0.046 kPa, D1 = 4.885 kPa and D2 = 5.426; and IPH/T, c1 = 0.212 kPa, D1 = 4.260 kPa and D2 = 5.312. It is concluded that all soft atherosclerotic tissues are non-linear, and both media and FC are stiffer than either lipid or IPH/T. PMID:25200842

  19. Material properties of components in human carotid atherosclerotic plaques: a uniaxial extension study.

    PubMed

    Teng, Zhongzhao; Zhang, Yongxue; Huang, Yuan; Feng, Jiaxuan; Yuan, Jianmin; Lu, Qingsheng; Sutcliffe, Michael P F; Brown, Adam J; Jing, Zaiping; Gillard, Jonathan H

    2014-12-01

    Computational modelling to calculate the mechanical loading within atherosclerotic plaques has been shown to be complementary to defining anatomical plaque features in determining plaque vulnerability. However, its application has been partially impeded by the lack of comprehensive knowledge about the mechanical properties of various tissues within the plaque. Twenty-one human carotid plaques were collected from endarterectomy. The plaque was cut into rings, and different type of atherosclerotic tissues, including media, fibrous cap (FC), lipid and intraplaque haemorrhage/thrombus (IPH/T) was dissected for uniaxial extension testing. In total, 65 media strips from 17 samples, 59 FC strips from 14 samples, 38 lipid strips from 11 samples, and 21 IPH/T strips from 11 samples were tested successfully. A modified Mooney-Rivlin strain energy density function was used to characterize the stretch-stress relationship. The stiffnesses of media and FC are comparable, as are lipid and IPH/T. However, both media and FC are stiffer than either lipid or IPH/T. The median values of incremental Young's modulus of media, FC, lipid and IPH/T at λ=1 are 290.1, 244.5, 104.4, 52.9, respectively; they increase to 1019.5, 817.4, 220.7 and 176.9 at λ=1.1; and 4302.7, 3335.0, 533.4 and 268.8 at λ=1.15 (unit, kPa; λ, stretch ratio). The material constants of each tissue type are suggested to be: media, c1=0.138kPa, D1=3.833kPa and D2=18.803; FC, c1=0.186kPa, D1=5.769kPa and D2=18.219; lipid, c1=0.046kPa, D1=4.885kPa and D2=5.426; and IPH/T, c1=0.212kPa, D1=4.260kPa and D2=5.312. It is concluded that all soft atherosclerotic tissues are non-linear, and both media and FC are stiffer than either lipid or IPH/T. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Characterising human atherosclerotic carotid plaque tissue composition and morphology using combined spectroscopic and imaging modalities

    PubMed Central

    2015-01-01

    Calcification is a marked pathological component in carotid artery plaque. Studies have suggested that calcification may induce regions of high stress concentrations therefore increasing the potential for rupture. However, the mechanical behaviour of the plaque under the influence of calcification is not fully understood. A method of accurately characterising the calcification coupled with the associated mechanical plaque properties is needed to better understand the impact of calcification on the mechanical behaviour of the plaque during minimally invasive treatments. This study proposes a comparison of biochemical and structural characterisation methods of the calcification in carotid plaque specimens to identify plaque mechanical behaviour. Biochemical analysis, by Fourier Transform Infrared (FTIR) spectroscopy, was used to identify the key components, including calcification, in each plaque sample. However, FTIR has a finite penetration depth which may limit the accuracy of the calcification measurement. Therefore, this FTIR analysis was coupled with the identification of the calcification inclusions located internally in the plaque specimen using micro x-ray computed tomography (μX-CT) which measures the calcification volume fraction (CVF) to total tissue content. The tissue characterisation processes were then applied to the mechanical material plaque properties acquired from experimental circumferential loading of human carotid plaque specimen for comparison of the methods. FTIR characterised the degree of plaque progression by identifying the functional groups associated with lipid, collagen and calcification in each specimen. This identified a negative relationship between stiffness and 'lipid to collagen' and 'calcification to collagen' ratios. However, μX-CT results suggest that CVF measurements relate to overall mechanical stiffness, while peak circumferential strength values may be dependent on specific calcification geometries. This study

  1. Shear stress-induced atherosclerotic plaque composition in ApoE(-/-) mice is modulated by connexin37.

    PubMed

    Pfenniger, A; Meens, M J; Pedrigi, R M; Foglia, B; Sutter, E; Pelli, G; Rochemont, V; Petrova, T V; Krams, R; Kwak, B R

    2015-11-01

    Shear stress patterns influence atherogenesis and plaque stability; low laminar shear stress (LLSS) promotes unstable plaques whereas oscillatory shear stress (OSS) induces more stable plaques. Endothelial connexin37 (Cx37) expression is also regulated by shear stress, which may contribute to localization of atherosclerotic disease. Moreover, Cx37 reduces initiation of atherosclerosis by inhibiting monocyte adhesion. The present work investigates the effect of Cx37 on the phenotype of plaques induced by LLSS or OSS. Shear stress-modifying casts were placed around the common carotid artery of ApoE(-/-) or ApoE(-/-)Cx37(-/-) mice, and animals were placed on a high-cholesterol diet for 6 or 9 weeks. Atherosclerotic plaque size and composition were assessed by immunohistochemistry. Plaque size in response to OSS was increased in ApoE(-/-)Cx37(-/-) mice compared to ApoE(-/-) animals. Most plaques contained high lipid and macrophage content and a low amount of collagen. In ApoE(-/-) mice, macrophages were more prominent in LLSS than OSS plaques. This difference was reversed in ApoE(-/-)Cx37(-/-) animals, with a predominance of macrophages in OSS plaques. The increase in macrophage content in ApoE(-/-)Cx37(-/-) OSS plaques was mainly due to increased accumulation of M1 and Mox macrophage subtypes. Cx37 expression in macrophages did not affect their proliferation or their polarization in vitro. Cx37 deletion increased the size of atherosclerotic lesions in OSS regions and abrogated the development of a stable plaque phenotype under OSS in ApoE(-/-) mice. Hence, local hemodynamic factors may modify the risk for adverse atherosclerotic disease outcomes associated to a polymorphism in the human Cx37 gene. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. The presence of biofilm structures in atherosclerotic plaques of arteries from legs amputated as a complication of diabetic foot ulcers.

    PubMed

    Snow, D E; Everett, J; Mayer, G; Cox, S B; Miller, B; Rumbaugh, K; Wolcott, R A; Wolcott, R D

    2016-02-01

    Atherosclerosis, rather than microcirculatory impairment caused by endothelial cell dysfunction, is the main driver of circulatory compromise in patients with diabetic limbs. The presence of atherosclerotic plaque at the trifurcation is a significant contributor to amputation of diabetic legs. The presence of bacteria and other microorganisms in atherosclerotic plaque has long been known, however, the cause of chronic inflammation and the role of bacteria/viruses in atherosclerosis have not been studied in detail. The objective of this study was to clarify the cause of the chronic inflammation within atherosclerotic plaques, and determine if any bacteria and/or viruses are involved in the inflammatory pathway. This study uses fluorescence microscopy and fluorescence in-situ hybridisation (FISH) to identify components of biofilm in atherosclerotic arteries. These tools are also used to identify individual bacteria, and determine the architectural spatial location within the atherosclerotic plaque where the bacteria can be found. The results indicate that the presence of biofilms in grossly involved arteries may be an important factor in chronic inflammatory pathways of atherosclerotic progression, in the amputated limbs of patients with diabetic foot ulcers and vascular disease. While the presence of bacterial biofilm structures in atherosclerotic plaque does not prove that biofilm is the proximate cause of atherosclerosis, it could contribute to the persistent inflammation associated with it. Second, the synergistic relationship between the atherosclerotic infection and the diabetic foot ulcer may ultimately contribute to higher amputation rates in diabetics. RAW and RDW have equity interest in PathoGenius, a clinical laboratory using DNA to identify microbes.

  3. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    SciTech Connect

    Son, Dong Ju; Kim, Soo Yeon; Han, Seong Su; Kim, Chan Woo; Kumar, Sandeep; Park, Byeoung Soo; Lee, Sung Eun; Yun, Yeo Pyo; Jo, Hanjoong; Park, Young Hyun

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.

  4. 18-kDa translocator protein ligand (18)F-FEMPA: Biodistribution and uptake into atherosclerotic plaques in mice.

    PubMed

    Hellberg, Sanna; Silvola, Johanna M U; Kiugel, Max; Liljenbäck, Heidi; Savisto, Nina; Li, Xiang-Guo; Thiele, Andrea; Lehmann, Lutz; Heinrich, Tobias; Vollmer, Sonja; Hakovirta, Harri; Laine, V Jukka O; Ylä-Herttuala, Seppo; Knuuti, Juhani; Roivainen, Anne; Saraste, Antti

    2017-06-01

    Radioligands of 18-kDa translocator protein (TSPO) expressed on activated macrophages are a potential approach for imaging of inflammation in atherosclerosis. We evaluated a novel TSPO-targeted tracer (18)F-FEMPA for the detection of atherosclerotic plaque inflammation in mice. The distribution kinetics of (18)F-FEMPA was evaluated by in vivo PET/CT imaging. (18)F-FEMPA uptake was compared in atherosclerotic (LDLR(-/-)ApoB(100/100), n = 10) and healthy mice (C57BL/6 N, n = 7) ex vivo at twenty minutes post-injection. Biodistribution was analyzed from harvested tissue samples, and aortas were sectioned for autoradiography. Aortas of LDLR(-/-)ApoB(100/100) mice showed large, macrophage-rich atherosclerotic plaques. In vivo, (18)F-FEMPA showed rapid blood clearance but no difference in aortic uptake between atherosclerotic and healthy mice. In the mice studied ex vivo at 20 minutes post-injection, quantification of radioactivity in the whole aorta showed 1.3-fold higher (18)F-FEMPA accumulation in atherosclerotic than healthy mice (P = .028). Autoradiography showed higher tracer uptake in plaque areas with high macrophage content as compared with areas of no macrophages (count densities 190 ± 54 vs 40 ± 13 PSL/mm(2), P < .001), but the uptake in the plaques was not higher than in the normal vessel wall (230 ± 78 PSL/mm(2)). In vitro blocking showed specific accumulation in mouse and human atherosclerotic plaques. Immunohistochemistry confirmed co-localization of TSPO and macrophages. (18)F-FEMPA shows rapid blood clearance and uptake in the mouse aorta. Uptake in atherosclerotic plaques correlated with the amount of macrophages, but did not exceed that in the normal vessel wall.

  5. Identification of Oxidized Phosphatidylinositols Present in OxLDL and Human Atherosclerotic Plaque.

    PubMed

    Hasanally, Devin; Edel, Andrea; Chaudhary, Rakesh; Ravandi, Amir

    2017-01-01

    Oxidized low-density lipoprotein (OxLDL) plays an important role in initiation and progression of atherosclerosis. Proatherogenic effects of OxLDL have been attributed to bioactive phospholipids generated during LDL oxidation. It is unknown what effect oxidation has on the phosphatidylinositol (PtdIns) molecules in LDL, even though PtdIns is 6% of the total LDL phospholipid pool. We sought to identify and quantitate oxidized phosphatidylinositol (OxPtdIns) species in OxLDL and human atherosclerotic plaque. Bovine liver PtdIns was subjected to non-enzymatic and lipoxygenase-catalyzed oxidation. Reversed-phase liquid chromatography with negative ESI-MS identified and confirmed compounds by fragmentation pattern analysis from which an OxPtdIns library was generated. Twenty-three OxPtdIns molecules were identified in copper-oxidized human LDL at 0, 6, 12, 24, 30, and 48 h, and in human atherosclerotic plaque. In OxLDL, OxPtdIns species containing aldehydes and carboxylates comprised 17.3 ± 0.1 and 0.9 ± 0.2%, respectively, of total OxPtdIns in OxLDL at 48 h. Hydroperoxides and isoprostanes at 24 h (68.5 ± 0.2 and 22.8 ± 0.2%) were significantly greater than 12 h (P < 0.01) without additional changes thereafter. Hydroxides decreased with increased oxidation achieving a minimum at 24 h (5.2 ± 0.3%). Human atherosclerotic plaques contained OxPtdIns species including aldehydes, carboxylates, hydroxides, hydroperoxides and isoprostanes, comprising 18.6 ± 4.7, 1.5 ± 0.7, 16.5 ± 7.4, 33.3 ± 1.1 and 30.2 ± 3.3% of total OxPtdIns compounds. This is the first identification of OxPtdIns molecules in human OxLDL and atherosclerotic plaque. With these novel molecules identified we can now investigate their potential role in atherosclerosis.

  6. A feasibility study of carotid elastography for risk assessment of atherosclerotic plaques validated by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Pan, Xiaochang; Huang, Lingyun; Huang, Manwei; Zhao, Xihai; He, Le; Yuan, Chun; Bai, Jing; Luo, Jianwen

    2014-03-01

    Stroke is a leading cause of mortality worldwide. One of its main reasons is rupture of carotid atherosclerotic plaques. Conventional B-mode ultrasound images and Doppler/color flow measurements are mostly used to evaluate degree of stenosis, which underestimates plaque vulnerability. Alternatively, the correspondence between multi-contrast magnetic resonance imaging (MRI) features, plaque composition and histology has been well established. In this study, the feasibility of ultrasound carotid elastography in risk assessment of carotid atherosclerotic plaques is investigated. Preliminarily in-vivo results on a small number of human subjects are initially validated by multi-contrast, highresolution MRI, and it shows that maximum strain rate might be feasible to evaluate the plaque vulnerability.

  7. Atherosclerotic Plaque Targeting Mechanism of Long-Circulating Nanoparticles Established by Multimodal Imaging

    PubMed Central

    Lobatto, Mark E.; Calcagno, Claudia; Millon, Antoine; Senders, Max L.; Fay, Francois; Robson, Philip M.; Ramachandran, Sarayu; Binderup, Tina; Paridaans, Maarten P.M.; Sensarn, Steven; Rogalla, Stephan; Gordon, Ronald E.; Cardoso, Luis; Storm, Gert; Metselaar, Josbert M.; Contag, Christopher H.; Stroes, Erik S. G.; Fayad, Zahi A.; Mulder, Willem J.M.

    2015-01-01

    Atherosclerosis is a major cause of global morbidity and mortality that could benefit from novel targeted therapeutics. Recent studies have shown efficient and local drug delivery with nanoparticles, although the nanoparticle targeting mechanism for atherosclerosis has not yet been fully elucidated. Here we used in vivo and ex vivo multimodal imaging to examine permeability of the vessel wall and atherosclerotic plaque accumulation of fluorescently labeled liposomal nanoparticles in a rabbit model. We found a strong correlation between permeability as established by in vivo dynamic contrast enhanced magnetic resonance imaging and nanoparticle plaque accumulation with subsequent nanoparticle distribution throughout the vessel wall. These key observations will enable the development of nanotherapeutic strategies for atherosclerosis. PMID:25619964

  8. Angioscopic image-enhanced observation of atherosclerotic plaque phantom by near-infrared multispectral imaging at wavelengths around 1200 nm

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nagao, R.; Matsui, D.; Awazu, K.

    2015-02-01

    Spectroscopic techniques have been researched for intravascular diagnostic imaging of atherosclerotic plaque. Nearinfrared (NIR) light efficiently penetrates of biological tissues, and the NIR region contains the characteristic absorption range of lipid-rich plaques. The objective of this study is to observe atherosclerotic plaque using a NIR multispectral angioscopic imaging. Atherosclerotic plaque phantoms were prepared using a biological tissue model and bovine fat. For the study, we developed an NIR multispectral angioscopic imaging system with a halogen light, mercury-cadmiumtelluride camera, band-pass filters and an image fiber. Apparent spectral absorbance was obtained at three wavelengths, 1150, 1200 and 1300 nm. Multispectral images of the phantom were constructed using the spectral angle mapper algorithm. As a result, the lipid area, which was difficult to observe in a visible image, could be clearly observed in a multispectral image. Our results show that image-enhanced observation and quantification of atherosclerotic plaque by NIR multispectral imaging at wavelengths around 1200 nm is a promising angioscopic technique with the potential to identify lipid-rich plaques.

  9. Localized adhesion of monocytes to human atherosclerotic plaques demonstrated in vitro: implications for atherogenesis.

    PubMed Central

    Poston, R. N.; Johnson-Tidey, R. R.

    1996-01-01

    Blood-derived macrophages in the arterial intima are a characteristic feature of active atherosclerotic plaques. Adherent monocytes on the luminal surface and increased adhesion molecules on the endothelium have suggested that specific molecular mechanisms are involved in monocyte/macrophage traffic into the arterial wall. Adhesion of human monocytes and related cell lines was therefore studied in vitro to histological sections of human plaques. At 37 degrees C, these cells bound selectively to the plaques. Binding to the endothelium occurred and was also present extensively in the diseased intima. Inhibition studies showed that the endothelial and general intimal binding had largely similar molecular properties. Strong inhibition was produced by antibodies to the monocyte-specific adhesion molecule CD14, to beta2 integrins, and to ICAM-1. Likewise, a peptide containing the Arg-Gly-Asp sequence was strongly inhibitory, suggesting that binding of leukocyte integrins to arterial extracellular matrix was synergistic with cell-cell interactions. A P-selectin antibody was exceptional in giving selective inhibition of endothelial adhesion, which correlates with the specific endothelial localization of this adhesion molecule. These results show that monocytes adhere to atherosclerotic plaques through the focal activation of multiple arterial wall adhesion molecules, confirming the adhesion hypothesis. A positive feedback theory for the pathogenesis of atherosclerosis can be suggested, based on the ability of macrophages in the wall to activate the endothelium, induce adhesion molecules, and facilitate additional monocyte entry. The adhesion assay provides a means for the identification of adhesion inhibitors with therapeutic potential. Images Figure 2 PMID:8686764

  10. The influence of composition and location on the toughness of human atherosclerotic femoral plaque tissue.

    PubMed

    Cunnane, E M; Barrett, H E; Kavanagh, E G; Mongrain, R; Walsh, M T

    2016-02-01

    The toughness of femoral atherosclerotic tissue is of pivotal importance to understanding the mechanism of luminal expansion during cutting balloon angioplasty (CBA) in the peripheral vessels. Furthermore, the ability to relate this parameter to plaque composition, pathological inclusions and location within the femoral vessels would allow for the improvement of existing CBA technology and for the stratification of patient treatment based on the predicted fracture response of the plaque tissue to CBA. Such information may lead to a reduction in clinically observed complications, an improvement in trial results and an increased adoption of the CBA technique to reduce vessel trauma and further endovascular treatment uptake. This study characterises the toughness of atherosclerotic plaque extracted from the femoral arteries of ten patients using a lubricated guillotine cutting test to determine the critical energy release rate. This information is related to the location that the plaque section was removed from within the femoral vessels and the composition of the plaque tissue, determined using Fourier Transform InfraRed spectroscopy, to establish the influence of location and composition on the toughness of the plaque tissue. Scanning electron microscopy (SEM) is employed to examine the fracture surfaces of the sections to determine the contribution of tissue morphology to toughness. Toughness results exhibit large inter and intra patient and location variance with values ranging far above and below the toughness of healthy porcine arterial tissue (Range: 1330-3035 for location and 140-4560J/m(2) for patients). No significant difference in mean toughness is observed between patients or location. However, the composition parameter representing the calcified tissue content of the plaque correlates significantly with sample toughness (r=0.949, p<0.001). SEM reveals the presence of large calcified regions in the toughest sections that are absent from the least tough

  11. The NF-κB pathway: regulation of the instability of atherosclerotic plaques activated by Fg, Fb, and FDPs.

    PubMed

    Cao, Yongjun; Zhou, Xiaomei; Liu, Huihui; Zhang, Yanlin; Yu, Xiaoyan; Liu, Chunfeng

    2013-11-01

    Recently, the molecular mechanism responsible for the instability of atherosclerotic plaques has gradually become a hot topic among researchers and clinicians. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play an important role in the processes of formation and development of atherosclerosis. In this study, we established and employed the transwell co-culture system of rabbit aortic endothelial cells and smooth muscle cells to explore the relationship between fibrin (Fb), fibrinogen (Fg), and/or their degradation products (FDPs) in relation to the instability of atherosclerotic plaques; meanwhile, we observed the effects of Fg, Fb, and FDPs on the mRNA levels of MMPs and VEGF as well as on the activation of nuclear factor-kappa B (NF-κB). We concluded that Fb, Fg, and FDPs are involved in the progression of the instability of atherosclerotic plaques via increasing the expression of MMPs and VEGF. This effect might be mediated by the NF-кB pathway.

  12. Effectiveness of porphyrin-like compounds in photodynamic damage of atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Zalessky, Viacheslav N.; Bobrov, Vladimir; Michalkin, Igor; Trunov, Vitaliy

    1991-06-01

    Porphyrin-like compounds such as tetra-(4 sulfonatophenyl) porphine (TSPP), chlorin-e6 derivative (CED) and tetrasulfophthalocyanin (TSPC) are photosensitizing agents that absorbed light at 630 nm, 657 nm and 625 nm, respectively, and bind preferentially to atherosclerotic plaque. Porphyrin-treated human cadaveric aorta was compared with untreated aorta using several techniques: the absorptive spectrophotometry which has demonstrated the distinct absorptive peaks at 630 nm, 657 nm, 625 nm in porphyrin-treated plaque which were absent in untreated normal aorta; the fluorescence microscopy, which has shown that the treated atheroma acquired the characteristic fluorescence of porphyrin under ultraviolet light. Because of the porphyrin''s unique property, porphyrin-treated and untreated aorta was exposed to red laser radiation at a wavelength of 632.8 nm. It was found that enhanced photoalteration of porphyrin-treated compared with untreated atheroma. Histologic analysis of the depth of tissue penetration of equal amounts of laser radiation has demonstrated more pronounced photosensitizing effect in TSPC-treated plaque compared with CED-, TSPP-, and untreated plaques. This study demonstrates a potential of tetrasulfophthalocyanin for selective alteration of atheroma by He-Ne laser radiation.

  13. The Impact of Macrophage Insulin Resistance on Advanced Atherosclerotic Plaque Progression

    PubMed Central

    Tabas, Ira; Tall, Alan; Accili, Domenico

    2009-01-01

    Atherothrombotic vascular disease is the major cause of death and disability in obese and diabetic subjects with insulin resistance. Although increased systemic risk factors in the setting of insulin resistance contribute to this problem, it is likely exacerbated by direct effects of insulin resistance on the arterial wall cells that participate in atherosclerosis. A critical process in the progression of atherosclerotic lesions to those that cause clinical disease is necrotic breakdown of plaques. Plaque necrosis, which is particularly prominent in the lesions of diabetics, is caused by the combination of macrophage apoptosis and defective clearance, or efferocytosis, of the apoptotic macrophages. One cause of macrophage apoptosis in advanced plaques is activation of a pro-apoptotic branch of the endoplasmic reticulum stress pathway known as the Unfolded Protein Response (UPR). Macrophages have a functional insulin receptor signal transduction pathway, and down regulation of this pathway in the setting insulin resistance enhances UPR-induced apoptosis. Moreover, other aspects of the obesity/insulin-resistance syndrome may adversely affect efferocytosis. These processes may therefore provide an important mechanistic link among insulin resistance, plaque necrosis, and atherothrombotic vascular disease and suggest novel therapeutic approaches to this expanding health problem. PMID:20056946

  14. [Immunological Analysis of Human Atherosclerotic Plaques in ex vivo Culture System].

    PubMed

    Vorobyova, D A; Lebedev, A M; Vagida, M S; Ivanova, O I; Felker, E I; Gontarenko, V N; Shpektor, A V; Margolis, L B; Vasilieva, E Yu

    2016-12-01

    to analyze the dynamics of lymphocytic composition of human atherosclerotic plaques in ex vivo culture system. The study included 15 atherosclerotic plaques obtained from patients who underwent carotid endarterectomy. Plaques were cultured as ring-shaped explants on collagen rafts in culture medium of special composition in CO2 incubator according to the previously developed technique. On day 0, and also on the 4th and 19th days of culture we extracted cells from plaque explants and analyzed B- and T-lymphocytic content of the tissue, as well as the percentage of CD16+ natural killer (NK) cells, using multichromatic flow cytometry. For this purpose we digested the explants with an original enzymatic cocktail, which allows preservation of cell surface markers, and we stained extracted cells with fluorescence-labelled monoclonal antibodies against CD45, CD3, CD19, CD4, CD8, CD16. In addition, we estimated the amount of interleukin 2 (IL-2) and interferon-gamma (IFN-)-producing T-cells by means of flow cytometry. After 4 days of culture the amount of lymphocytes in plaques explants decreased, however live lymphocytes were still preserved (2619.3 [1680.4, 3478.2] cells/100mg tissue). Viable lymphocytes population included T cells (2123.4 [484.9; 3181.2] cells/100 mg tissue), B cells (5.6 [3.4, 27.9] cell/100 mg tissue) and CD16+ NK cells (10.6 [1.8, 23.7] cell/100mg tissue). On the 4th day of culture T cells were presented by CD4+CD8- (797 [475.5, 1000.7] cells/100mg tissue, 37.5 [32.1; 46.3]%) and CD4-CD8+ (686.2 [423.6; 1158.4] cells/100 mg tissue, 45.6 [38.1; 47.9]%) populations. The percentage of CD4+CD8- T cell population decreased compared to the 1st day of culture, and this decrease correlated with the increase in CD4-CD8- T cells content (p<0.05). Additionally, after 4 days of culture we found in tissue explants both CD8+ (17.5[13.3;19.9]%) and CD8- (9.9 [6.4; 14]%) IFN--producing T-cells, however, their percentage, as well as the percentage of IL-2-producing T

  15. Evidence for contribution of the y chromosome in atherosclerotic plaque occurrence in men.

    PubMed

    Voskarides, Konstantinos; Hadjipanagi, Despina; Papazachariou, Louiza; Griffin, Maura; Panayiotou, Andrie G

    2014-08-01

    Diseases such as atherosclerosis and coronary artery disease demonstrate disparate population prevalence or present with variable severity in men and women. While the usual explanation points to hormonal status, the role of the Y chromosome has been implicated, but not sufficiently studied. We genotyped six markers of the male-specific region of the Y chromosome, representing the major haplogroups (YAP, G, I, J, K, and R) in 373 male participants of the "Cyprus Study" with ultrasonic data on subclinical atherosclerosis. Of the five major haplogroups identified, two (J and K) accounted for roughly 67% of the Y-chromosome variance among these Greek Cypriot men. Carriers of haplogroup K had a 2.5-fold higher age-adjusted risk for having an atherosclerotic plaque present in any of the four bifurcations scanned, compared to men with other Y-chromosome lineages (OR=2.51; 95% CI=1.18 to 5.33; p=0.017). Carriers of the YAP haplogroup had about 50% less risk for having a plaque in the femoral bifurcation versus the rest (OR=0.46; 95% CI=0.27 to 0.77; p<0.001). We show a possible contribution of the Y chromosome in atherosclerotic phenotypes in men adding to the previous findings for coronary artery disease. Additional studies are warranted as evidence suggests that the Y chromosome could serve as a biomarker for the health status of men.

  16. Arterial fluorescent components involved in atherosclerotic plaque instability: differentiation by time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Grundfest, Warren S.; Maarek, Jean-Michel I.

    2001-05-01

    As part of our ongoing research on spectroscopic differentiation between unstable and stable atherosclerotic lesions, we report data on time-resolved fluorescence of components of arterial intima matrix (different types of cholesterols, lipoproteins, and collagens). Certain compositional features of atherosclerotic plaque have been associated with plaque instability and rupture. We have characterized and compared the time-resolved spectra of structural proteins (Types I and III collagens, and elastin), lipoproteins (LDL, VLDL), and cholesterols (free cholesterol, and cholesteryl oleate and linoleate) induced with nitrogen laser excitation pulses (337 nm, 3 ns) and detected (360-510 nm range, 5 nm interval) with an MCP-PMT connected to a fast digitizer (2 Gsamples/s). Spectral intensities and time-dependent parameters (lifetime (tau) f; decay constants (tau) 1 (fast-term), (tau) 2 (slow-term), A1 (fast-term amplitude contribution)) derived from the time-resolved spectra were used for samples characterization and comparison. We observed that time- resolved data distinguish collagens from cholesterols and from lipoproteins, and additionally, distinguish different types of cholesterols, different types of lipoproteins and different types of collagen from each other. For instance, the collagen lifetime (390 nm: Type I 5.2 ns, Type III 2.95 ns) was significantly longer than that of cholesterols (free 1.5 ns, linoleate 0.9 ns, oleate 1.0 ns) and that of lipoproteins (LDL 0.95 ns, VLDL 0.85 ns).

  17. Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques.

    PubMed

    Burtea, Carmen; Laurent, Sophie; Lancelot, Eric; Ballet, Sébastien; Murariu, Oltea; Rousseaux, Olivier; Port, Marc; Vander Elst, Luce; Corot, Claire; Muller, Robert N

    2009-01-01

    Molecular and cellular imaging of atherosclerosis has garnered more interest at the beginning of the 21st century, with aims to image in vivo biological properties of plaque lesions. Apoptosis seems an attractive target for the diagnosis of vulnerable atherosclerotic plaques prone to a thrombotic event. The aim of the present work was to screen for apoptosis peptide binders by phage display with the final purpose to detect apoptotic cells in atherosclerotic plaques by magnetic resonance imaging (MRI). A phosphatidylserine-specific peptide identified by phage display was thus used to design an MRI contrast agent (CA), which was evaluated as a potential in vivo reporter of apoptotic cells. A library of linear 6-mer random peptides was screened in vitro against immobilized phosphatidylserine. Phage DNA was isolated and sequenced, and the affinity of peptides for phosphatidylserine was evaluated by enzyme-linked immunosorbent assay. The phosphatidylserine-specific peptide and its scrambled homologue were attached to a linker and conjugated to DTPA-isothiocyanate. The products were purified by dialysis and by column chromatography and complexed with gadolinium chloride. After their evaluation using apoptotic cells and a mouse model of liver apoptosis, the phosphatidylserine-targeted CA was used to image atherosclerotic lesions on ApoE(-/-) transgenic mice. Apoptotic cells were detected on liver and aorta specimens by the immunostaining of phosphatidylserine and of active caspase-3. Sequencing of the phage genome highlighted nine different peptides. Their alignment with amino acid sequences of relevant proteins revealed a frequent homology with Ca2+ channels, reminiscent of the function of annexins. Alignment with molecules involved in apoptosis provides a direct correlation between peptide selection and utility. The in vivo MRI studies performed at 4.7 T provide proof of concept that apoptosis-related pathologies could be diagnosed by MRI with a low molecular weight

  18. Characterization of signal properties in atherosclerotic plaque components by intravascular MRI.

    PubMed

    Rogers, W J; Prichard, J W; Hu, Y L; Olson, P R; Benckart, D H; Kramer, C M; Vido, D A; Reichek, N

    2000-07-01

    Magnetic resonance imaging (MRI) is capable of distinguishing between atherosclerotic plaque components solely on the basis of biochemical differences. However, to date, the majority of plaque characterization has been performed by using high-field strength units or special coils, which are not clinically applicable. Thus, the purpose of the present study was to evaluate MRI properties in histologically verified plaque components in excised human carotid endarterectomy specimens with the use of a 5F catheter-based imaging coil, standard acquisition software, and a clinical scanner operating at 0.5 T. Human carotid endarterectomy specimens from 17 patients were imaged at 37 degrees C by use of an opposed solenoid intravascular radiofrequency coil integrated into a 5F double-lumen catheter interfaced to a 0.5-T General Electric interventional scanner. Cross-sectional intravascular MRI (156x250 microm in-plane resolution) that used different imaging parameters permitted the calculation of absolute T1and T2, the magnetization transfer contrast ratio, the magnitude of regional signal loss associated with an inversion recovery sequence (inversion ratio), and regional signal loss in gradient echo (gradient echo-to-spin echo ratio) in plaque components. Histological staining included hematoxylin and eosin, Masson's trichrome, Kossa, oil red O, and Gomori's iron stain. X-ray micrographs were also used to identify regions of calcium. Seven plaque components were evaluated: fibrous cap, smooth muscle cells, organizing thrombus, fresh thrombus, lipid, edema, and calcium. The magnetization transfer contrast ratio was significantly less in the fibrous cap (0.62+/-13) than in all other components (P<0.05) The inversion ratio was greater in lipid (0.91+/-0.09) than all other components (P<0.05). Calcium was best distinguished by using the gradient echo-to-spin echo ratio, which was lower in calcium (0.36+/-0.2) than in all plaque components, except for the organizing thrombus (P<0

  19. Photon counting spectral CT component analysis of coronary artery atherosclerotic plaque samples

    PubMed Central

    Coulon, P; Thran, A; Roessl, E; Martens, G; Sigovan, M; Douek, P

    2014-01-01

    Objective: To evaluate the capabilities of photon counting spectral CT to differentiate components of coronary atherosclerotic plaque based on differences in spectral attenuation and iodine-based contrast agent concentration. Methods: 10 calcified and 13 lipid-rich non-calcified histologically demonstrated atheromatous plaques from post-mortem human coronary arteries were scanned with a photon counting spectral CT scanner. Individual photons were counted and classified in one of six energy bins from 25 to 70 keV. Based on a maximum likelihood approach, maps of photoelectric absorption (PA), Compton scattering (CS) and iodine concentration (IC) were reconstructed. Intensity measurements were performed on each map in the vessel wall, the surrounding perivascular fat and the lipid-rich and the calcified plaques. PA and CS values are expressed relative to pure water values. A comparison between these different elements was performed using Kruskal–Wallis tests with pairwise post hoc Mann–Whitney U-tests and Sidak p-value adjustments. Results: Results for vessel wall, surrounding perivascular fat and lipid-rich and calcified plaques were, respectively, 1.19 ± 0.09, 0.73 ± 0.05, 1.08 ± 0.14 and 17.79 ± 6.70 for PA; 0.96 ± 0.02, 0.83 ± 0.02, 0.91 ± 0.03 and 2.53 ± 0.63 for CS; and 83.3 ± 10.1, 37.6 ± 8.1, 55.2 ± 14.0 and 4.9 ± 20.0 mmol l−1 for IC, with a significant difference between all tissues for PA, CS and IC (p < 0.012). Conclusion: This study demonstrates the capability of energy-sensitive photon counting spectral CT to differentiate between calcifications and iodine-infused regions of human coronary artery atherosclerotic plaque samples by analysing differences in spectral attenuation and iodine-based contrast agent concentration. Advances in knowledge: Photon counting spectral CT is a promising technique to identify plaque components by analysing differences in iodine-based contrast agent

  20. In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: a head to head comparison with IVUS.

    PubMed

    Marwan, Mohamed; Taher, Mohamed Awad; El Meniawy, Khaled; Awadallah, Hany; Pflederer, Tobias; Schuhbäck, Annika; Ropers, Dieter; Daniel, Werner G; Achenbach, Stephan

    2011-03-01

    Coronary atherosclerotic plaque characterisation may contribute to risk stratification for future cardiovascular events. The ability of computed tomography to classify plaques as 'fibrous' or 'lipid-rich' based on their average CT attenuation has been investigated but is fraught with substantial limitations. In this study, we evaluated the potential of analysing the distribution of CT attenuation values measured in Hounsfield Units (HU) within coronary atherosclerotic plaques to classify non-calcified plaques into fibrous and lipid-rich subtypes. Intravascular ultrasound (IVUS) served as the gold standard. We evaluated the data sets of 40 patients (30 males, 59±10 years) who had been referred for invasive coronary angiography for clinical reasons and in whom IVUS was performed in at least one coronary vessel. Using dual source CT, coronary CT angiography was performed as a part of a research protocol within 24 h previous to invasive coronary angiography. A contrast-enhanced volume dataset was acquired with retrospective ECG gating (120 kV, 400 mAs/rot, collimation 2 mm×64 mm×0.6 mm, 60-80 ml contrast agent i.v). IVUS was performed using a 40-MHz IVUS catheter (Atlantis, Boston Scientific Corporation, Natick, MA) and motorized pullback at 0.5 mm/s. Fifty five corresponding non-calcified plaques within the coronary artery system were identified in both DSCT and IVUS using bifurcation points as fiducial markers. In DSCT data sets, serial parallel cross-sections (1mm slice thickness) were rendered orthogonally to the centre line of the coronary artery for each of the 55 plaques. For each cross section and each plaque, a histogram of CT attenuation values (increments of 10HU) was determined. The percentage of pixels with a density ≤30 HU was calculated. Using IVUS as the gold standard, plaques were classified as predominantly fibrous (hyperechoic) or predominantly lipid-rich (hypoechoic). 15 predominantly fibrous plaques vs. 40 predominantly lipid-rich plaques were

  1. Validating a bimodal intravascular ultrasound (IVUS) and near-infrared fluorescence (NIRF) catheter for atherosclerotic plaque detection in rabbits

    PubMed Central

    Abran, Maxime; Stähli, Barbara E.; Merlet, Nolwenn; Mihalache-Avram, Teodora; Mecteau, Mélanie; Rhéaume, Eric; Busseuil, David; Tardif, Jean-Claude; Lesage, Frédéric

    2015-01-01

    Coronary artery disease is characterized by atherosclerotic plaque formation. Despite impressive advances in intravascular imaging modalities, in vivo molecular plaque characterization remains challenging, and different multimodality imaging systems have been proposed. We validated an engineered bimodal intravascular ultrasound imaging (IVUS) / near-infrared fluorescence (NIRF) imaging catheter in vivo using a balloon injury atherosclerosis rabbit model. Rabbit aortas and right iliac arteries were scanned in vivo after indocyanine green (ICG) injection, and compared to corresponding ex vivo fluorescence and white light images. Areas of ICG accumulation were colocalized with macroscopic atherosclerotic plaque formation. In vivo imaging was performed with the bimodal catheter integrating ICG-induced fluorescence signals into cross-sectional IVUS imaging. In vivo ICG accumulation corresponded to ex vivo fluorescence signal intensity and IVUS identified plaques. PMID:26504648

  2. Validating a bimodal intravascular ultrasound (IVUS) and near-infrared fluorescence (NIRF) catheter for atherosclerotic plaque detection in rabbits.

    PubMed

    Abran, Maxime; Stähli, Barbara E; Merlet, Nolwenn; Mihalache-Avram, Teodora; Mecteau, Mélanie; Rhéaume, Eric; Busseuil, David; Tardif, Jean-Claude; Lesage, Frédéric

    2015-10-01

    Coronary artery disease is characterized by atherosclerotic plaque formation. Despite impressive advances in intravascular imaging modalities, in vivo molecular plaque characterization remains challenging, and different multimodality imaging systems have been proposed. We validated an engineered bimodal intravascular ultrasound imaging (IVUS) / near-infrared fluorescence (NIRF) imaging catheter in vivo using a balloon injury atherosclerosis rabbit model. Rabbit aortas and right iliac arteries were scanned in vivo after indocyanine green (ICG) injection, and compared to corresponding ex vivo fluorescence and white light images. Areas of ICG accumulation were colocalized with macroscopic atherosclerotic plaque formation. In vivo imaging was performed with the bimodal catheter integrating ICG-induced fluorescence signals into cross-sectional IVUS imaging. In vivo ICG accumulation corresponded to ex vivo fluorescence signal intensity and IVUS identified plaques.

  3. Nanotherapeutics for inhibition of atherogenesis and modulation of inflammation in atherosclerotic plaques

    PubMed Central

    Lewis, Daniel R.; Petersen, Latrisha K.; York, Adam W.; Ahuja, Sonali; Chae, Hoonbyung; Joseph, Laurie B.; Rahimi, Saum; Uhrich, Kathryn E.; Haser, Paul B.; Moghe, Prabhas V.

    2016-01-01

    Aims Atherosclerotic development is exacerbated by two coupled pathophysiological phenomena in plaque-resident cells: modified lipid trafficking and inflammation. To address this therapeutic challenge, we designed and investigated the efficacy in vitro and ex vivo of a novel ‘composite’ nanotherapeutic formulation with dual activity, wherein the nanoparticle core comprises the antioxidant α-tocopherol and the shell is based on sugar-derived amphiphilic polymers that exhibit scavenger receptor binding and counteract atherogenesis. Methods and results Amphiphilic macromolecules were kinetically fabricated into serum-stable nanoparticles (NPs) using a core/shell configuration. The core of the NPs comprised either of a hydrophobe derived from mucic acid, M12, or the antioxidant α-tocopherol (α-T), while an amphiphile based on PEG-terminated M12 served as the shell. These composite NPs were then tested and validated for inhibition of oxidized lipid accumulation and inflammatory signalling in cultures of primary human macrophages, smooth muscle cells, and endothelial cells. Next, the NPs were evaluated for their athero-inflammatory effects in a novel ex vivo carotid plaque model and showed similar effects within human tissue. Incorporation of α-T into the hydrophobic core of the NPs caused a pronounced reduction in the inflammatory response, while maintaining high levels of anti-atherogenic efficacy. Conclusions Sugar-based amphiphilic macromolecules can be complexed with α-T to establish new anti-athero-inflammatory nanotherapeutics. These dual efficacy NPs effectively inhibited key features of atherosclerosis (modified lipid uptake and the formation of foam cells) while demonstrating reduction in inflammatory markers based on a disease-mimetic model of human atherosclerotic plaques. PMID:26472131

  4. Endogenous activated angiotensin-(1-7) plays a protective effect against atherosclerotic plaques unstability in high fat diet fed ApoE knockout mice.

    PubMed

    Yang, Jianmin; Yang, Xiaoyan; Meng, Xiao; Dong, Mei; Guo, Tao; Kong, Jing; Zhang, Kai; Zhang, Yun; Zhang, Cheng

    2015-04-01

    We recently found that exogenous angiotensin-(1-7) [Ang-(1-7)] inhibits Angiotensin II (Ang-II)-induced atherosclerotic lesion formation and enhances plaque stability. Our objective was to evaluate the role of endogenous activated Ang-(1-7) during atherosclerosis. In mice, the effects of endogenous Ang-(1-7) on atherogenesis in early stage and plaque stability in late stage were observed in ApoE knockout (ApoE-/-) mice fed with a high fat diet. Blockage of endogenous Ang-(1-7) with A779, an Ang-(1-7) antagonist, did not increase early plaque lesion formation, however, it remarkably enhanced contents of lipids and macrophages and decreased contents of vascular smooth muscle cells (VSMCs) and collagens in late lesions. The expressions of proinflammatory cytokines, and the expressions and activities of matrix metalloproteinases were significantly elevated in A779-treated group than those in vehicle-treated group in late lesions. Exogenous Ang-(1-7) treatment attenuated early atherosclerotic plaque formation and enhanced late plaques stability in this model. The contents of Ang-II and Ang-(1-7) and activity of ACE2 in late atherosclerotic plaques were higher than those of early atherosclerotic lesions. Endogenous activated Ang-(1-7) enhanced late atherosclerotic plaques stability but did not affect early atherosclerotic plaque formation. Therapies to elevate endogenous Ang-(1-7) may be a potentially effective approach to attenuate atherosclerotic plaques vulnerability. Copyright © 2015. Published by Elsevier Ireland Ltd.

  5. Support vector machine based classification and mapping of atherosclerotic plaques using fluorescence lifetime imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fatakdawala, Hussain; Gorpas, Dimitris S.; Bec, Julien; Ma, Dinglong M.; Yankelevich, Diego R.; Bishop, John W.; Marcu, Laura

    2016-02-01

    The progression of atherosclerosis in coronary vessels involves distinct pathological changes in the vessel wall. These changes manifest in the formation of a variety of plaque sub-types. The ability to detect and distinguish these plaques, especially thin-cap fibroatheromas (TCFA) may be relevant for guiding percutaneous coronary intervention as well as investigating new therapeutics. In this work we demonstrate the ability of fluorescence lifetime imaging (FLIm) derived parameters (lifetime values from sub-bands 390/40 nm, 452/45 nm and 542/50 nm respectively) for generating classification maps for identifying eight different atherosclerotic plaque sub-types in ex vivo human coronary vessels. The classification was performed using a support vector machine based classifier that was built from data gathered from sixteen coronary vessels in a previous study. This classifier was validated in the current study using an independent set of FLIm data acquired from four additional coronary vessels with a new rotational FLIm system. Classification maps were compared to co-registered histological data. Results show that the classification maps allow identification of the eight different plaque sub-types despite the fact that new data was gathered with a different FLIm system. Regions with diffuse intimal thickening (n=10), fibrotic tissue (n=2) and thick-cap fibroatheroma (n=1) were correctly identified on the classification map. The ability to identify different plaque types using FLIm data alone may serve as a powerful clinical and research tool for studying atherosclerosis in animal models as well as in humans.

  6. Delineation of atherosclerotic plaque using subharmonic imaging filtering techniques and a commercial intravascular ultrasound system.

    PubMed

    Sridharan, Anush; Eisenbrey, John R; Machado, Priscilla; deMuinck, Ebo D; Doyley, Marvin M; Forsberg, Flemming

    2013-01-01

    The ability to delineate atherosclerotic plaque from the surrounding tissue using custom-developed subharmonic imaging (SHI) digital filtering techniques was investigated in vivo using a commercially available system. Atherosclerosis was induced in the aorta of two Watanabe Heritable Hyperlipidemic rabbits following which injections of an ultrasound contrast agent (UCA) Definity (Lantheus Medical Imaging, N Billerica, Massachusetts) were administered. Imaging was performed using a Galaxy intravascular ultrasound (IVUS) scanner (Boston Scientific, Natick, Massachusetts) equipped with an Atlantis® SR Pro Imaging Catheter (Boston Scientific). Four preliminary band-pass filters were designed to isolate the subharmonic signal (from surrounding tissue) and applied to the radio-frequency (RF) data. Preliminary filter performances were compared in terms of vessel-tissue contrast-to-tissue ratio (CTR) and visual examination. Based on preliminary results, a subharmonic adaptive filter and a stopband (SB) filter were designed and applied to the RF data. Images were classified as fundamental, SHI, and SB. Four readers performed qualitative analysis of 168 randomly selected images (across all three imaging modes). The images were scored for overall image quality, image noise, plaque visualization, and vessel lumen visualization. A Wilcoxon signed-rank test was used to compare the scores followed by intraclass correlation (ICC) evaluation. Quantitative analysis was performed by calculating the CTRs for the vessel-to-plaque and vessel-to-tissue (compared using a paired student's t test). Qualitative analysis showed SHI and SB to have significantly less image noise relative to the fundamental mode (p < 0.001). Fundamental mode scored significantly higher than SHI and SB for the remaining three categories. ICC showed mixed results among reader evaluation for delineation of plaque. However, quantitatively, SHI produced the best vessel-plaque CTR.

  7. Supplementation with carnosine decreases plasma triglycerides and modulates atherosclerotic plaque composition in diabetic apo E(-/-) mice.

    PubMed

    Brown, Bronwyn E; Kim, Christine H J; Torpy, Fraser R; Bursill, Christina A; McRobb, Lucinda S; Heather, Alison K; Davies, Michael J; van Reyk, David M

    2014-02-01

    Carnosine has been shown to modulate triglyceride and glycation levels in cell and animal systems. In this study we investigated whether prolonged supplementation with carnosine inhibits atherosclerosis and markers of lesion stability in hyperglycaemic and hyperlipidaemic mice. Streptozotocin-induced diabetic apo E(-/-) mice were maintained for 20 weeks, post-induction of diabetes. Half of the animals received carnosine (2g/L) in their drinking water. Diabetes was confirmed by significant increases in blood glucose and glycated haemoglobin, plasma triglyceride and total cholesterol levels, brachiocephalic artery and aortic sinus plaque area; and lower body mass. Prolonged carnosine supplementation resulted in a significant (∼20-fold) increase in plasma carnosine levels, and a significant (∼23%) lowering of triglyceride levels in the carnosine-supplemented groups regardless of glycaemic status. Supplementation did not affect glycaemic status, blood cholesterol levels or loss of body mass. In the diabetic mice, carnosine supplementation did not diminish measured plaque area, but reduced the area of plaque occupied by extracellular lipid (∼60%) and increased both macrophage numbers (∼70%) and plaque collagen content (∼50%). The area occupied by α-actin-positive smooth muscle cells was not significantly increased. These data indicate that in a well-established model of diabetes-associated atherosclerosis, prolonged carnosine supplementation enhances plasma levels, and has novel and significant effects on atherosclerotic lesion lipid, collagen and macrophage levels. These data are consistent with greater lesion stability, a key goal in treatment of existing cardiovascular disease. Carnosine supplementation may therefore be of benefit in lowering triglyceride levels and suppressing plaque instability in diabetes-associated atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Assessment of human atherosclerotic carotid plaque components with multisequence MR imaging: initial experience.

    PubMed

    Cappendijk, Vincent C; Cleutjens, Kitty B J M; Kessels, Alfons G H; Heeneman, Sylvia; Schurink, Geert Willem H; Welten, Rob J T J; Mess, Werner H; Daemen, Mat J A P; van Engelshoven, Jos M A; Kooi, M Eline

    2005-02-01

    To prospectively determine, by using a stepwise logistic regression model, the optimal magnetic resonance (MR) weighting (ie, pulse sequence) combinations for plaque assessment and corresponding cutoff values of relative signal intensities (rSIs). Institutional review board approval and patient consent were obtained. Eleven patients (seven men, four women; mean age +/- standard deviation, 68 years +/- 4) with symptomatic carotid disease and stenosis of more than 70% were investigated at MR imaging before carotid endarterectomy. The MR images were matched with histologic features of the endarterectomy specimens (reference standard). The rSIs (compared with that of muscle tissue) from regions of interest were assessed qualitatively and semiquantitatively. For all major components (calcification, lipid core, intraplaque hemorrhage, and fibrous tissue), optimal cutoff points for the rSIs were determined for five MR weightings by means of receiver operating characteristic curves. The best predicting combinations of these five dichotomized MR weightings were selected by means of stepwise logistic regression analysis. The potential sensitivity and specificity of MR imaging for vulnerable plaque with hemorrhage and/or lipid core were determined. The same optimal MR weighting combinations for identifying the four plaque components were found with qualitative and semiquantitative analysis. Sensitivity and specificity for vulnerable plaque were 93% (95% confidence interval: 77%, 99%) and 96% (95% confidence interval: 86%, 100%), respectively, for the qualitative analysis and 76% (95% confidence interval: 56%, 90%) and 100% (95% confidence interval: 93%, 100%) for the semiquantitative analysis. This study demonstrates the potential of a systematic approach of atherosclerotic plaque assessment with multisequence MR imaging by using the information provided from five different MR weightings in a stepwise logistic regression model. (c) RSNA, 2005.

  9. Variability in quantitative analysis of atherosclerotic plaque inflammation using 18F-FDG PET/CT.

    PubMed

    Lensen, Karel-Jan D F; van Sijl, Alper M; Voskuyl, Alexandre E; van der Laken, Conny J; Heymans, Martijn W; Comans, Emile F I; Nurmohamed, Mike T; Smulders, Yvo M; Boellaard, Ronald

    2017-01-01

    18F-FDG-PET(/CT) is increasingly used in studies aiming at quantifying atherosclerotic plaque inflammation. Considerable methodological variability exists. The effect of data acquisition and image analysis parameters on quantitative uptake measures, such as standardized uptake value (SUV) and target-to-background ratio (TBR) has not been investigated extensively. The goal of this study was to explore the effect of several data acquisition and image analysis parameters on quantification of vascular wall 18F-FDG uptake measures, in order to increase awareness of potential variability. Three whole-body emission scans and a low-dose CT scan were acquired 38, 60 and 90 minutes after injection of 18F-FDG in six rheumatoid arthritis patients with high cardiovascular risk profiles.Data acquisition (1 and 2) and image analysis (3, 4 and 5) parameters comprised:1. 18F-FDG uptake time, 2. SUV normalisation, 3. drawing regions/volumes of interest (ROI's/VOI's) according to: a. hot-spot (HS), b. whole-segment (WS) and c. most-diseased segment (MDS), 4. Background activity, 5. Image matrix/voxel size.Intraclass correlation coefficients (ICC's) and Bland Altman plots were used to assess agreement between these techniques and between observers. A linear mixed model was used to determine the association between uptake time and continuous outcome variables. 1. Significantly higher TBRmax values were found at 90 minutes (1,57 95%CI 1,35-1,80) compared to 38 minutes (1,30 95%CI 1,21-1,39) (P = 0,024) 2. Normalising SUV for BW, LBM and BSA significantly influences average SUVmax (2,25 (±0,60) vs 1,67 (±0,37) vs 0,058 (±0,013)). 3. Intraclass correlation coefficients were high in all vascular segments when SUVmax HS was compared to SUVmax WS. SUVmax HS was consistently higher than SUVmax MDS in all vascular segments. 4. Blood pool activity significantly decreases in all (venous and arterial) segments over time, but does not differ between segments. 5. Image matrix/voxel size does not

  10. Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images

    NASA Astrophysics Data System (ADS)

    Nadkarni, Seemantini K.; Bilenca, Alberto; Bouma, Brett E.; Tearney, Guillermo J.

    2006-03-01

    Necrotic-core fibroatheromas (NCFA) with thin, mechanically weak fibrous caps overlying lipid cores comprise the majority of plaques that rupture and cause acute myocardial infarction. Laser speckle imaging (LSI) has been recently demonstrated to enable atherosclerotic plaque characterization with high accuracy. We investigate spatio-temporal analysis of LSI data, in conjunction with diffusion theory and Monte Carlo modeling of light transport, to estimate fibrous cap thickness in NCFAs. Time-varying laser speckle images of 20 NCFAs are selected for analysis. Spatio-temporal intensity fluctuations are analyzed by exponential fitting of the windowed normalized cross-correlation of sequential laser speckle patterns to obtain the speckle decorrelation time constant, τ(ρ), as a function of distance ρ from the source entry location. The distance, ρ‧, at which τ(ρ) dropped to 65% of its maximum value is recorded. Diffusion theory and Monte Carlo models are utilized to estimate the maximum photon penetration depth, zmax(ρ‧), for a distance equal to ρ‧, measured from LSI. Measurements of zmax(ρ‧) correlate well with histological measurements of fibrous cap thickness (R=0.78,p<0.0001), and paired t-tests show no significant difference between the groups (p=0.4). These results demonstrate that spatio-temporal LSI may allow the estimation of fibrous cap thickness in NCFAs, which is an important predictor of plaque stability.

  11. Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy

    PubMed Central

    Park, Jesung; Pande, Paritosh; Shrestha, Sebina; Clubb, Fred; Applegate, Brian E.; Jo, Javier A.

    2011-01-01

    OBJECTIVE To investigate the potential of endogenous multispectral fluorescence lifetime imaging microscopy (FLIM) for biochemical characterization of human coronary atherosclerotic plaques. METHODS Endogenous multispectral FLIM imaging was performed on the lumen of 58 segments of postmortem human coronary artery. The fluorescence was separated into three emission bands targeting the three main arterial endogenous fluorophores (390±20 nm for collagen, 452±22.5 nm for elastin, and 550±20 for lipids). The fluorescence normalized intensity and average lifetime from each emission band was used to classify each pixel of an image as either “High-Collagen”, “High-Lipids” or “Low-Collagen/Lipids” via multiclass Fisher’s linear discriminant analysis. RESULTS Classification of plaques as either “High-Collagen”, “High-Lipids” or “Low-Collagen/Lipids” based on the endogenous multispectral FLIM was achieved with a sensitivity/specificity of 96/98%, 89/99%, and 99/99%, respectively, where histopathology served as the gold standard. CONCLUSION The endogenous multispectral FLIM approach we have taken, which can readily be adapted for in vivo intravascular catheter based imaging, is capable of reliably identifying plaques with high content of either collagen or lipids. PMID:22138141

  12. Atherosclerotic plaque ultrasound video encoding, wireless transmission, and quality assessment using H.264.

    PubMed

    Panayides, A; Pattichis, M S; Pattichis, Constantinos S; Loizou, C P; Pantziaris, M; Pitsillides, Andreas

    2011-05-01

    We propose a unifying framework for efficient encoding, transmission, and quality assessment of atherosclerotic plaque ultrasound video. The approach is based on a spatially varying encoding scheme, where video-slice quantization parameters are varied as a function of diagnostic significance. Video slices are automatically set based on a segmentation algorithm. They are then encoded using a modified version of H.264/AVC flexible macroblock ordering (FMO) technique that allows variable quality slice encoding and redundant slices (RSs) for resilience over error-prone transmission channels. We evaluate our scheme on a representative collection of ten ultrasound videos of the carotid artery for packet loss rates up to 30%. Extensive simulations incorporating three FMO encoding methods, different quantization parameters, and different packet loss scenarios are investigated. Quality assessment is based on a new clinical rating system that provides independent evaluations of the different parts of the video (subjective). We also use objective video-quality assessment metrics and estimate their correlation to the clinical quality assessment of plaque type. We find that some objective quality assessment measures computed over the plaque video slices gave very good correlations to mean opinion scores (MOSs). Here, MOSs were computed using two medical experts. Experimental results show that the proposed method achieves enhanced performance in noisy environments, while at the same time achieving significant bandwidth demands reductions, providing transmission over 3G (and beyond) wireless networks.

  13. Combined acoustic-photoacoustic and fluorescence imaging catheter for the detection of the atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Abran, Maxime; Matteau-Pelletier, Carl; Zerouali-Boukhal, Karim; Tardif, Jean-Claude; Lesage, Frédéric

    2011-03-01

    In industrialized countries, cardiovascular diseases remain the main cause of mortality. The detection of atherosclerosis and its associated plaque using imaging techniques allows studying the efficacy of new drugs in vivo. Intravascular ultrasound (IVUS) imaging has been demonstrated to be a powerful tool to uncover structural information of atherosclerotic plaques. Recently, intravascular photoacoustic (IVPA) has been combined with IVUS imaging to add functional and/or molecular information. The IVPA/IVUS combination has been demonstrated in phantoms and ex vivo tissues to provide relevant information about the composition of the plaque, as well as its vulnerability. In this work, we extend previous work by developing a combined IVPA/IVUS system using a rotating ultrasound transducer in a catheter to which an optical fiber is attached. In addition, a third modality was included through fluorescence detection in the same fiber at a distinct wavelength from PA, opening the door to complementary information using fluorescence activatable probes. Cylindrical silicon phantoms with inclusions containing fluorophores or ink were used to validate the system. Bleaching of the fluorophore by the pulsed laser used for photoacoustic was quantified. IVUS images were obtained continuously and used to co-register photoacoustic and fluorescence signals.

  14. Icaritin Inhibits Collagen Degradation-Related Factors and Facilitates Collagen Accumulation in Atherosclerotic Lesions: A Potential Action for Plaque Stabilization.

    PubMed

    Zhang, Zong-Kang; Li, Jie; Yan, De-Xin; Leung, Wing-Nang; Zhang, Bao-Ting

    2016-01-28

    Most acute coronary syndromes result from rupture of vulnerable atherosclerotic plaques. The collagen content of plaques may critically affect plaque stability. This study tested whether Icaritin (ICT), an intestinal metabolite of Epimedium-derived flavonoids, could alter the collagen synthesis/degradation balance in atherosclerotic lesions. Rabbits were fed with an atherogenic diet for four months. Oral administration of ICT (10 mg·kg(-1)·day(-1)) was started after two months of an atherogenic diet and lasted for two months. The collagen degradation-related parameters, including macrophages accumulation, content and activity of interstitial collagenase-1 (MMP-1), and the collagen synthesis-related parameters, including amount and distribution of smooth muscle cells (SMC) and collagen mRNA/protein levels, were evaluated in the aorta. ICT reduced plasma lipid levels, inhibited macrophage accumulation, lowered MMP-1 mRNA and protein expression, and suppressed proteolytic activity of pro-MMP-1 and MMP-1 in the aorta. ICT changed the distribution of the SMCs towards the fibrous cap of lesions without increasing the amount of SMCs. Higher collagen protein content in lesions and aorta homogenates was observed with ICT treatment compared with the atherogenic diet only, without altered collagen mRNA level. These results suggest that ICT could inhibit the collagen degradation-related factors and facilitate collagen accumulation in atherosclerotic lesions, indicating a new potential of ICT in atherosclerotic plaques.

  15. Icaritin Inhibits Collagen Degradation-Related Factors and Facilitates Collagen Accumulation in Atherosclerotic Lesions: A Potential Action for Plaque Stabilization

    PubMed Central

    Zhang, Zong-Kang; Li, Jie; Yan, De-Xin; Leung, Wing-Nang; Zhang, Bao-Ting

    2016-01-01

    Most acute coronary syndromes result from rupture of vulnerable atherosclerotic plaques. The collagen content of plaques may critically affect plaque stability. This study tested whether Icaritin (ICT), an intestinal metabolite of Epimedium-derived flavonoids, could alter the collagen synthesis/degradation balance in atherosclerotic lesions. Rabbits were fed with an atherogenic diet for four months. Oral administration of ICT (10 mg·kg−1·day−1) was started after two months of an atherogenic diet and lasted for two months. The collagen degradation-related parameters, including macrophages accumulation, content and activity of interstitial collagenase-1 (MMP-1), and the collagen synthesis-related parameters, including amount and distribution of smooth muscle cells (SMC) and collagen mRNA/protein levels, were evaluated in the aorta. ICT reduced plasma lipid levels, inhibited macrophage accumulation, lowered MMP-1 mRNA and protein expression, and suppressed proteolytic activity of pro-MMP-1 and MMP-1 in the aorta. ICT changed the distribution of the SMCs towards the fibrous cap of lesions without increasing the amount of SMCs. Higher collagen protein content in lesions and aorta homogenates was observed with ICT treatment compared with the atherogenic diet only, without altered collagen mRNA level. These results suggest that ICT could inhibit the collagen degradation-related factors and facilitate collagen accumulation in atherosclerotic lesions, indicating a new potential of ICT in atherosclerotic plaques. PMID:26828485

  16. Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus.

    PubMed

    Bruckman, Michael A; Jiang, Kai; Simpson, Emily J; Randolph, Lauren N; Luyt, Leonard G; Yu, Xin; Steinmetz, Nicole F

    2014-03-12

    The underlying cause of major cardiovascular events, such as myocardial infarctions and strokes, is atherosclerosis. For accurate diagnosis of this inflammatory disease, molecular imaging is required. Toward this goal, we sought to develop a nanoparticle-based, high aspect ratio, molecularly targeted magnetic resonance (MR) imaging contrast agent. Specifically, we engineered the plant viral nanoparticle platform tobacco mosaic virus (TMV) to target vascular cell adhesion molecule (VCAM)-1, which is highly expressed on activated endothelial cells at atherosclerotic plaques. To achieve dual optical and MR imaging in an atherosclerotic ApoE(-/-) mouse model, TMV was modified to carry near-infrared dyes and chelated Gd ions. Our results indicate molecular targeting of atherosclerotic plaques. On the basis of the multivalency and multifunctionality, the targeted TMV-based MR probe increased the detection limit significantly; the injected dose of Gd ions could be further reduced 400x compared to the suggested clinical use, demonstrating the utility of targeted nanoparticle cargo delivery.

  17. Motion Artifact Reduction in Ultrasound Based Thermal Strain Imaging of Atherosclerotic Plaques Using Time Series Analysis

    PubMed Central

    Dutta, Debaditya; Mahmoud, Ahmed M.; Leers, Steven A.; Kim, Kang

    2013-01-01

    Large lipid pools in vulnerable plaques, in principle, can be detected using US based thermal strain imaging (US-TSI). One practical challenge for in vivo cardiovascular application of US-TSI is that the thermal strain is masked by the mechanical strain caused by cardiac pulsation. ECG gating is a widely adopted method for cardiac motion compensation, but it is often susceptible to electrical and physiological noise. In this paper, we present an alternative time series analysis approach to separate thermal strain from the mechanical strain without using ECG. The performance and feasibility of the time-series analysis technique was tested via numerical simulation as well as in vitro water tank experiments using a vessel mimicking phantom and an excised human atherosclerotic artery where the cardiac pulsation is simulated by a pulsatile pump. PMID:24808628

  18. Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study

    PubMed Central

    Tang, Dalin; Teng, Zhongzhao; Canton, Gador; Hatsukami, Thomas S; Dong, Li; Huang, Xueying; Yuan, Chun

    2009-01-01

    Background It is believed that mechanical stresses play an important role in atherosclerotic plaque rupture process and may be used for better plaque vulnerability assessment and rupture risk predictions. Image-based plaque models have been introduced in recent years to perform mechanical stress analysis and identify critical stress indicators which may be linked to rupture risk. However, large-scale studies based on in vivo patient data combining mechanical stress analysis, plaque morphology and composition for carotid plaque vulnerability assessment are lacking in the current literature. Methods 206 slices of in vivo magnetic resonance image (MRI) of carotid atherosclerotic plaques from 20 patients (age: 49–71, mean: 67.4; all male) were acquired for model construction. Modified Mooney-Rivlin models were used for vessel wall and all plaque components with parameter values chosen to match available data. A morphological plaque severity index (MPSI) was introduced based on in vivo plaque morphological characteristics known to correlate with plaque vulnerability. Critical stress, defined as the maximum of maximum- principal-stress (Stress-P1) values from all possible vulnerable sites, was determined for each slice for analysis. A computational plaque stress index (CPSI, with 5 grades 0–4, 4 being most vulnerable) was defined for each slice using its critical stress value and stress interval for each CPSI grade was optimized to reach best agreement with MPSI. Correlations between CPSI and MPSI, plaque cap thickness, and lipid core size were analyzed. Results Critical stress values correlated positively with lipid core size (r = 0.3879) and negatively with cap thickness (r = -0.3953). CPSI classifications had 71.4% agreement with MPSI classifications. The Pearson correlation coefficient between CPSI and MPSI was 0.849 (p < 0.0001). Using global maximum Stress-P1 value for each slice to define a global maximum stress-based CPSI (G-CPSI), the agreement rate with

  19. MiR-181b Antagonizes Atherosclerotic Plaque Vulnerability Through Modulating Macrophage Polarization by Directly Targeting Notch1.

    PubMed

    An, Tian-Hui; He, Quan-Wei; Xia, Yuan-Peng; Chen, Sheng-Cai; Baral, Suraj; Mao, Ling; Jin, Hui-Juan; Li, Ya-Nan; Wang, Meng-Die; Chen, Jian-Guo; Zhu, Ling-Qiang; Hu, Bo

    2016-10-08

    Atherosclerotic plaque vulnerability is the major cause for acute stroke and could be regulated by macrophage polarization. MicroRNA-181b (miR-181b) was involved in macrophage differential. Here, we explore whether miR-181b could regulate atherosclerotic plaque vulnerability by modulating macrophage polarization and the underline mechanisms. In acute stroke patients with atherosclerotic plaque, we found that the serum level of miR-181b was decreased. Eight-week apolipoprotein E knockout (ApoE(-/-)) mice were randomly divided into three groups (N = 10): mice fed with normal saline (Ctrl), mice fed with high-fat diet, and tail vein injection with miRNA agomir negative control (AG-NC)/miR-181b agomir (181b-AG, a synthetic miR-181b agonist). We found that the serum level of miR-181b in AG-NC group was lower than that in Ctrl group. Moreover, 181b-AG could upregulate miR-181b expression, reduce artery burden and attenuate atherosclerotic plaque vulnerability by modulating macrophage polarization. In RAW264.7 cells treated with oxidized low-density lipoprotein (ox-LDL), we found miR-181b could reverse the function of ox-LDL on M1/M2 markers at both mRNA and protein levels. Furthermore, by employing luciferase reporter assay, we found that Notch1 was a direct target of miR-181b and could be regulated by miR-181b in vivo and in vitro. Finally, inhibition of Notch1 could abolish the function of downregulating miR-181b on increasing M2 phenotype macrophages. Our study demonstrates that administration of miR-181b could reduce atherosclerotic plaque vulnerability partially through modulating macrophage phenotype by directly targeting Notch1.

  20. Scintillating Balloon-Enabled Fiber-Optic System for Radionuclide Imaging of Atherosclerotic Plaques

    PubMed Central

    Zaman, Raiyan T.; Kosuge, Hisanori; Carpenter, Colin; Sun, Conroy; McConnell, Michael V.; Xing, Lei

    2015-01-01

    scintillating crystal to the balloon: 1.65 × 102 ± 4.07 × 101 vs. 4.44 × 101 ± 2.17 × 100 (photon counts), P = 0.005. Both external optical imaging and autoradiography confirmed the high signal from the 18F-FDG in carotid plaques versus controls. Conclusion This SBRI system provides high-resolution and sensitive detection of 18F-FDG uptake by murine atherosclerotic plaques. PMID:25858046

  1. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe–/– mice during disease regression

    PubMed Central

    Potteaux, Stephane; Gautier, Emmanuel L.; Hutchison, Susan B.; van Rooijen, Nico; Rader, Daniel J.; Thomas, Michael J.; Sorci-Thomas, Mary G.; Randolph, Gwendalyn J.

    2011-01-01

    Experimental models of atherosclerosis suggest that recruitment of monocytes into plaques drives the progression of this chronic inflammatory condition. Cholesterol-lowering therapy leads to plaque stabilization or regression in human atherosclerosis, characterized by reduced macrophage content, but the mechanisms that underlie this reduction are incompletely understood. Mice lacking the gene Apoe (Apoe–/– mice) have high levels of cholesterol and spontaneously develop atherosclerotic lesions. Here, we treated Apoe–/– mice with apoE-encoding adenoviral vectors that induce plaque regression, and investigated whether macrophage removal from plaques during this regression resulted from quantitative alterations in the ability of monocytes to either enter or exit plaques. Within 2 days after apoE complementation, plasma cholesterol was normalized to wild-type levels, and HDL levels were increased 4-fold. Oil red O staining and quantitative mass spectroscopy revealed that esterified cholesterol content was markedly reduced. Plaque macrophage content decreased gradually and was 72% lower than baseline 4 weeks after apoE complementation. Importantly, this reduction in macrophages did not involve migratory egress from plaques or CCR7, a mediator of leukocyte emigration. Instead, marked suppression of monocyte recruitment coupled with a stable rate of apoptosis accounted for loss of plaque macrophages. These data suggest that therapies to inhibit monocyte recruitment to plaques may constitute a more viable strategy to reduce plaque macrophage burden than attempts to promote migratory egress. PMID:21505265

  2. Quantitative evaluation of atherosclerotic plaques using cross-polarization optical coherence tomography, nonlinear, and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Kirillin, Mikhail Yu.; Dudenkova, Varvara V.; Timashev, Peter S.; Kotova, Svetlana L.; Kiseleva, Elena B.; Timofeeva, Lidia B.; Belkova, Galina V.; Solovieva, Anna B.; Moiseev, Alexander A.; Gelikonov, Gregory V.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.

    2016-12-01

    A combination of approaches to the image analysis in cross-polarization optical coherence tomography (CP OCT) and high-resolution imaging by nonlinear microscopy and atomic force microscopy (AFM) at the different stages of atherosclerotic plaque development is studied. This combination allowed us to qualitatively and quantitatively assess the disorganization of collagen in the atherosclerotic arterial tissue (reduction and increase of CP backscatter), at the fiber (change of the geometric distribution of fibers in the second-harmonic generation microscopy images) and fibrillar (violation of packing and different nature of a basket-weave network of fibrils in the AFM images) organization levels. The calculated CP channel-related parameters are shown to have a statistically significant difference between stable and unstable (also called vulnerable) plaques, and hence, CP OCT could be a potentially powerful, minimally invasive method for vulnerable plaques detection.

  3. Molecular Imaging of Atherosclerotic Plaques Targeted to Oxidized LDL Receptor LOX-1 Using SPECT/CT and Magnetic Resonance

    PubMed Central

    Li, Dayuan; Patel, Amit; Klibanov, Alexander L.; Kramer, Christopher M.; Ruiz, Mirta; Kang, Bum-Yong; Mehta, Jawahar L.; Beller, George A.; Glover, David K.; Meyer, Craig H

    2010-01-01

    Background The oxidized-LDL receptor LOX-1 plays a crucial role in atherosclerosis. We sought to detect and assess atherosclerotic plaque in vivo using SPECT/CT and magnetic resonance imaging (MRI) using a molecular probe targeted at LOX-1. Methods & Results Apo E−/− mice on Western diet and LDLR−/− and LDLR−/−/LOX-1−/− mice on atherogenic diet were used. Imaging probes consisted of liposomes decorated with LOX-1 antibodies (LOX-1) or nonspecific IgG (nIgG), 111In or gadolinium (Gd), and DiI fluorescence markers. In vivo imaging was performed 24 hrs after intravenous injection (150 µl) of LOX-1 (or nIgG) probes labeled with either 111In (600 µCi) or Gd (0.075 mmol/kg) followed by aortic excision for phosphor imaging and Sudan IV staining or fluorescence imaging and H&E staining. The LOX-1 probe was also co-localized with specific cell types, apoptosis, and MMP9 expression using frozen aortic sections. SPECT/CT imaging of the LOX-1 probe showed aortic arch hotspots in Apo E−/− mice (n=8), confirmed by phosphor imaging. MRI showed significant Gd enhancement in atherosclerotic plaques in LDLR−/− mice with the LOX-1 (n=7), but not nIgG, probe (n=5). No signal enhancement was observed in LDLR−/−/LOX-1−/− mice injected with LOX-1 probe (n=5). These results were confirmed by ex-vivo fluorescence imaging. The LOX-1 probe bound preferentially to the plaque shoulder, a region with vulnerable plaque features including extensive LOX-1 expression, macrophage accumulation, apoptosis and MMP9 expression. Conclusions LOX-1 can be used as a target for molecular imaging of atherosclerotic plaque in vivo. Furthermore, LOX-1 imaging may identify rupture-prone atherosclerotic plaque. PMID:20442371

  4. Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer (68)Ga-Pentixafor for PET.

    PubMed

    Hyafil, Fabien; Pelisek, Jaroslav; Laitinen, Iina; Schottelius, Margret; Mohring, Miriam; Döring, Yvonne; van der Vorst, Emiel P C; Kallmayer, Michael; Steiger, Katja; Poschenrieder, Andreas; Notni, Johannes; Fischer, Johannes; Baumgartner, Christine; Rischpler, Christoph; Nekolla, Stephan G; Weber, Christian; Eckstein, Hans-Henning; Wester, Hans-Jürgen; Schwaiger, Markus

    2017-03-01

    (68)Ga-pentixafor is a radiotracer for PET that binds with nanomolar affinity to CXCR4. The CXCR4 receptor is expressed at the surface of inflammatory cells. The objective of the study was to analyze the ability of radiolabeled pentixafor to detect CXCR4 expression on inflammatory cells present in atherosclerotic plaques of an experimental rabbit model. Methods: Atherosclerotic plaques were induced by endothelial abrasion of the right carotid artery and abdominal aorta of 7 rabbits fed an atherogenic diet. Five noninjured rabbits fed a chow diet were used as controls. Rabbits were imaged on a PET/MR system after injection of (68)Ga-pentixafor (15 MBq/kg). Vascular signal was quantified as tissue-to-background ratio (TBR). Biodistribution and autoradiographic studies were performed 1 h after injection of (125)I-pentixafor (7.5 MBq/kg). In addition, blocking studies were performed in 2 atherosclerotic rabbits with preinjection of the CXCR4 inhibitor AMD3100. Tracer uptake was quantified on arterial cryosections using autoradiography and compared with CXCR4 and RAM-11 (macrophage) expression on adjacent histologic sections. Results: One hour after injection of (68)Ga-pentixafor, strong signals were detected in vivo with PET/MR imaging in atherosclerotic plaques of the abdominal aorta and right carotid artery as compared with normal control arteries (mean TBR = 1.95 ± 0.51 vs. 1.22 ± 0.25 and mean TBR = 1.24 ± 0.38 vs. 0.96 ± 0.37, respectively; P < 0.05 for both). Blocking studies with preinjection of a CXCR4 inhibitor reduced (125)I-pentixafor uptake in atherosclerotic plaques by approximately 40%. (125)I-pentixafor uptake in the vessel wall on autoradiographies was located in macrophage-rich regions of atherosclerotic plaques and correlated with the intensity of CXCR4 expression on corresponding cryosections (r(2) = 0.61; P < 0.05). Conclusion:(68)Ga-pentixafor allows for the noninvasive detection of CXCR4 expression in the vessel wall with PET and emerges as a

  5. Investigations of Carotid Stenosis to Identify Vulnerable Atherosclerotic Plaque and Determine Individual Stroke Risk.

    PubMed

    Liem, Madieke I; Kennedy, Fiona; Bonati, Leo H; van der Lugt, Aad; Coolen, Bram F; Nederveen, Aart J; Jager, Hans R; Brown, Martin M; Nederkoorn, Paul J

    2017-08-25

    Selection of patients with atherosclerotic carotid stenosis for revascularization is mainly based on the degree of luminal narrowing of the carotid artery. However, identification of other features of plaque apart from the degree of stenosis could enable better selection for intervention if they are also associated with the occurrence of stroke. Before these risk factors can possibly play a role in treatment decisions, their prognostic value needs to be proven. The purpose of this narrative review is to summarize current knowledge regarding the risk factors for stroke in patients with carotid stenosis, how they can be determined, and to what extent they predict stroke, based on recent literature. References for this review were identified by searches of PubMed between 1995 and October, 2016 and references from relevant articles. For each topic in this review different relevant search terms were used. The main search terms were 'carotid stenosis', 'atherosclerosis', 'stroke risk', and 'vulnerable plaque'. Language was restricted to English. The final reference list was generated on the basis of relevance to the topics covered in this review.

  6. Multiple pathway assessment to predict anti-atherogenic efficacy of drugs targeting macrophages in atherosclerotic plaques.

    PubMed

    Alaarg, Amr; Zheng, Kang He; van der Valk, Fleur M; da Silva, Acarilia Eduardo; Versloot, Miranda; van Ufford, Linda C Quarles; Schulte, Dominik M; Storm, Gert; Metselaar, Josbert M; Stroes, Erik S G; Hamers, Anouk A J

    2016-07-01

    Macrophages play a central role in atherosclerosis development and progression, hence, targeting macrophage activity is considered an attractive therapeutic. Recently, we documented nanomedicinal delivery of the anti-inflammatory compound prednisolone to atherosclerotic plaque macrophages in patients, which did however not translate into therapeutic efficacy. This unanticipated finding calls for in-depth screening of drugs intended for targeting plaque macrophages. We evaluated the effect of several candidate drugs on macrophage activity, rating overall performance with respect to changes in cytokine release, oxidative stress, lipid handling, endoplasmic reticulum (ER) stress, and proliferation of macrophages. Using this in vitro approach, we observed that the anti-inflammatory effect of prednisolone was counterbalanced by multiple adverse effects on other key pathways. Conversely, pterostilbene, T0901317 and simvastatin had an overall anti-atherogenic effect on multiple pathways, suggesting their potential for liposomal delivery. This dedicated assay setup provides a framework for high-throughput assessment. Further in vivo studies are warranted to determine the predictive value of this macrophage-based screening approach and its potential value in nanomedicinal drug development for cardiovascular patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Inhaled diesel emissions alter atherosclerotic plaque composition in ApoE{sup -/-} mice

    SciTech Connect

    Campen, Matthew J.; Lund, Amie K.; Knuckles, Travis L.; Conklin, Daniel J.; Bishop, Barbara; Young, David; Seilkop, Steven; Seagrave, JeanClare; Reed, Matthew D.; McDonald, Jacob D.

    2010-02-01

    Recent epidemiological studies suggest that traffic-related air pollution may have detrimental effects on cardiovascular health. Previous studies reveal that gasoline emissions can induce several enzyme pathways involved in the formation and development of atherosclerotic plaques. As a direct comparison, the present study examined the impact of diesel engine emissions on these pathways, and further examined the effects on vascular lesion pathology. Apolipoprotein E-null mice were simultaneously placed on a high-fat chow diet and exposed to four concentrations, plus a high concentration exposure with particulates (PM) removed by filtration, of diesel emissions for 6 h/day for 50 days. Aortas were subsequently assayed for alterations in matrix metalloproteinase-9, endothelin-1, and several other biomarkers. Diesel induced dose-related alterations in gene markers of vascular remodeling and aortic lipid peroxidation; filtration of PM did not significantly alter these vascular responses, indicating that the gaseous portion of the exhaust was a principal driver. Immunohistochemical analysis of aortic leaflet sections revealed no net increase in lesion area, but a significant decrease in lipid-rich regions and increasing trends in macrophage accumulation and collagen content, suggesting that plaques were advanced to a more fragile, potentially more vulnerable state by diesel exhaust exposure. Combined with previous studies, these results indicate that whole emissions from mobile sources may have a significant role in promoting chronic vascular disease.

  8. Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Phipps, Jennifer; Sun, Yinghua; Saroufeem, Ramez; Hatami, Nisa; Fishbein, Michael C.; Marcu, Laura

    2011-09-01

    This study investigates the ability of a flexible fiberoptic-based fluorescence lifetime imaging microscopy (FLIM) technique to resolve biochemical features in plaque fibrotic cap associated with plaque instability and based solely on fluorescence decay characteristics. Autofluorescence of atherosclerotic human aorta (11 autopsy samples) was measured at 48 locations through two filters, F377: 377/50 and F460: 460/60 nm (center wavelength/bandwidth). The fluorescence decay dynamic was described by average lifetime (τ) and four Laguerre coefficients (LECs) retrieved through a Laguerre deconvolution technique. FLIM-derived parameters discriminated between four groups [elastin-rich (ER), elastin and macrophage-rich (E+M), collagen-rich (CR), and lipid-rich (LR)]. For example, τF377 discriminated ER from CR (R = 0.84); τF460 discriminated E+M from CR and ER (R = 0.60 and 0.54, respectively); LEC-1F377 discriminated CR from LR and E+M (R = 0.69 and 0.77, respectively); P < 0.05 for all correlations. Linear discriminant analysis was used to classify this data set with specificity >87% (all cases) and sensitivity as high as 86%. Current results demonstrate for the first time that clinically relevant features (e.g., ratios of lipid versus collagen versus elastin) can be evaluated with a flexible-fiber based FLIM technique without the need for fluorescence intensity information or contrast agents.

  9. Invasive characterization of atherosclerotic plaque in patients with peripheral arterial disease using near-infrared spectroscopy intravascular ultrasound.

    PubMed

    Abbas, Amr E; Zacharias, Sibin K; Goldstein, James A; Hanson, Ivan D; Safian, Robert D

    2017-09-01

    We describe the characteristics of atherosclerotic plaque in patients with peripheral arterial disease (PAD) using near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS) BACKGROUND: Imaging and autopsy studies have described atherosclerotic plaque in different vascular beds, including varying degrees of lipid, fibrosis, and calcification. Recently, NIRS has been validated as an accurate method for detecting lipid-core plaque (LCP) in the coronary circulation. Invasive evaluation of plaque composition using NIRS-IVUS has not been reported in different peripheral arterial circulations. We performed invasive angiography and NIRS-IVUS in consecutive PAD patients prior to percutaneous revascularization. Imaging evaluation included parameters from angiography, IVUS, and NIRS. NIRS-IVUS findings were compared among different vascular beds with regard to the presence and extent of calcification and LCP. One hundred and forty-nine lesions in 126 PAD patients were enrolled, including the internal carotid (n = 10), subclavian/axillary (n = 9), renal (n = 14), iliac (n = 35), femoropopliteal (n = 69), and infrapopliteal (n = 12) arteries. Plaque morphology was calcified in 132 lesions (89%) and fibrous in 17 lesions (11%). Calcification varied from 100% of renal artery stenoses to 55% of subclavian/axillary artery stenoses. LCP was present in 48 lesions (32%) and prevalence varied from 60% in carotid artery stenoses to 0% in renal artery stenoses (P < 0.005). LCP was only observed in fibrocalcific plaque, and was longitudinally and circumferentially surrounded by a more extensive degree of calcium. NIRS-IVUS in stable PAD patients demonstrates a high frequency of calcific plaque and statistically significant differences in the frequency of LCP in different arterial beds. LCP, when present in the peripheral circulation, is always associated with calcified plaque. The strong co-localization of calcified plaque and LCP in severe PAD lesions

  10. Total Coronary Atherosclerotic Plaque Burden Assessment by CT Angiography for Detecting Obstructive Coronary Artery Disease Associated with Myocardial Perfusion Abnormalities

    PubMed Central

    Kishi, Satoru; Magalhães, Tiago A.; Cerci, Rodrigo J.; Matheson, Matthew B.; Vavere, Andrea; Tanami, Yutaka; Kitslaar, Pieter H.; George, Richard T.; Brinker, Jeffrey; Miller, Julie M.; Clouse, Melvin E.; Lemos, Pedro A.; Niinuma, Hiroyuki; Reiber, Johan H.C.; Rochitte, Carlos E.; Rybicki, Frank J.; Di Carli, Marcelo F.; Cox, Christopher; Lima, Joao A.C.; Arbab-Zadeh, Armin

    2016-01-01

    Background Total atherosclerotic plaque burden assessment by CT angiography (CTA) is a promising tool for diagnosis and prognosis of coronary artery disease (CAD) but its validation is restricted to small clinical studies. We tested the feasibility of semi-automatically derived coronary atheroma burden assessment for identifying patients with hemodynamically significant CAD in a large cohort of patients with heterogenous characteristics. Methods This study focused on the CTA component of the CORE320 study population. A semi-automated contour detection algorithm quantified total coronary atheroma volume defined as the difference between vessel and lumen volume. Percent atheroma volume (PAV = [total atheroma volume/total vessel volume]×100) was the primary metric for assessment (n=374). The area under the receiver operating characteristic curve (AUC) determined the diagnostic accuracy for identifying patients with hemodynamically significant CAD defined as ≥50% stenosis by quantitative coronary angiography and associated myocardial perfusion abnormality by SPECT. Results Of 374 patients, 139 (37%) had hemodynamically significant CAD. The AUC for PAV was 0.78 (95% confidence interval [CI] 0.73–0.83) compared to 0.84 [0.79–0.88] by standard expert CTA interpretation (p=0.02). Accuracy for both CTA (0.91 [0.87, 0.96]) and PAV (0.86 [0.81–0.91]) increased after excluding patients with history of CAD (p<0.01 for both). Bland-Altman analysis revealed good agreement between two observers ( bias of 280.2 mm3 [161.8, 398.7]). Conclusions A semi-automatically derived index of total coronary atheroma volume yields good accuracy for identifying patients with hemodynamically significant CAD, though marginally inferior to CTA expert reading. These results convey promise for rapid, reliable evaluation of clinically relevant CAD. PMID:26817414

  11. [18F]FDG Uptake in the Aortic Wall Smooth Muscle of Atherosclerotic Plaques in the Simian Atherosclerosis Model

    PubMed Central

    Mizuma, Hiroshi; Hokamura, Kazuya; Onoe, Hirotaka; Umemura, Kazuo

    2016-01-01

    Atherosclerosis is a self-sustaining inflammatory fibroproliferative disease that progresses in discrete stages and involves a number of cell types and effector molecules. Recently, [18F]fluoro-2-deoxy-D-glucose- ([18F]FDG-) positron emission tomography (PET) has been suggested as a tool to evaluate atherosclerotic plaques by detecting accumulated macrophages associated with inflammation progress. However, at the cellular level, it remains unknown whether only macrophages exhibit high uptake of [18F]FDG. To identify the cellular origin of [18F]FDG uptake in atherosclerotic plaques, we developed a simian atherosclerosis model and performed PET and ex vivo macro- and micro-autoradiography (ARG). Increased [18F]FDG uptake in the aortic wall was observed in high-cholesterol diet-treated monkeys and WHHL rabbits. Macro-ARG of [18F]FDG in aortic sections showed that [18F]FDG was accumulated in the media and intima in the simian model as similar to that in WHHL rabbits. Combined analysis of micro-ARG with immunohistochemistry in the simian atherosclerosis model revealed that most cellular [18F]FDG uptake observed in the media was derived not only from the infiltrated macrophages in atherosclerotic plaques but also from the smooth muscle cells (SMCs) of the aortic wall in atherosclerotic lesions. PMID:28101514

  12. [(18)F]FDG Uptake in the Aortic Wall Smooth Muscle of Atherosclerotic Plaques in the Simian Atherosclerosis Model.

    PubMed

    Iwaki, Takayuki; Mizuma, Hiroshi; Hokamura, Kazuya; Onoe, Hirotaka; Umemura, Kazuo

    2016-01-01

    Atherosclerosis is a self-sustaining inflammatory fibroproliferative disease that progresses in discrete stages and involves a number of cell types and effector molecules. Recently, [(18)F]fluoro-2-deoxy-D-glucose- ([(18)F]FDG-) positron emission tomography (PET) has been suggested as a tool to evaluate atherosclerotic plaques by detecting accumulated macrophages associated with inflammation progress. However, at the cellular level, it remains unknown whether only macrophages exhibit high uptake of [(18)F]FDG. To identify the cellular origin of [(18)F]FDG uptake in atherosclerotic plaques, we developed a simian atherosclerosis model and performed PET and ex vivo macro- and micro-autoradiography (ARG). Increased [(18)F]FDG uptake in the aortic wall was observed in high-cholesterol diet-treated monkeys and WHHL rabbits. Macro-ARG of [(18)F]FDG in aortic sections showed that [(18)F]FDG was accumulated in the media and intima in the simian model as similar to that in WHHL rabbits. Combined analysis of micro-ARG with immunohistochemistry in the simian atherosclerosis model revealed that most cellular [(18)F]FDG uptake observed in the media was derived not only from the infiltrated macrophages in atherosclerotic plaques but also from the smooth muscle cells (SMCs) of the aortic wall in atherosclerotic lesions.

  13. In-vitro study of the effects of Congo Red on the ablation of atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Beyerbacht, Hugo P.; Aggarwal, Shanti J.; Jansen, E. Duco; Welch, Ashley J.

    1991-06-01

    The possible application of the vital dye Congo Red to enhance the selective ablation of plaque was investigated. Fresh healthy human aorta samples and samples with varying degrees of atherosclerotic disease were incubated for 3 minutes in a 0.25 mg/ml solution of Congo Red in saline, washed and then irradiated either in air or under saline using an argon laser ((lambda) equals 488 and 514.5 nm, spotsize equals 1.1 mm). The experiments were repeated with undyed healthy and diseased tissue samples. The effect of Congo Red staining on ablation was evaluated by comparing the minimum irradiance and the average amount of time needed to create ablation onset, which was defined as a 'pop' sound followed by carbonization of tissue in air. Ablation thresholds in air for dyed normal tissue, fatty and fibrous plaque were lowered by 42, 60 and 66% respectively. The average time to start ablation dropped from 40 to 2 s, 13 to 1 s and 20 to 14 s respectively. When tissue samples were submerged under saline, Congo Red paradoxically reduced the difference between the ablation threshold of healthy tissue and fatty threshold. During the initial irradiation a concentration of dye around the irradiation spot was observed. This unusual finding may be due to the transport of dye during irradiation. This may explain the observed effect that tissue adjacent to the initial irradiation site had a lowered ablation threshold. By examining the complex mechanisms involved in dye enhanced ablation in may be possible to select a combination of dye and irradiation parameters to achieve selective ablation of plaque.

  14. Characterization of atherosclerotic plaque by reflection spectroscopy and thermography: a comparison

    NASA Astrophysics Data System (ADS)

    Lilledahl, Magnus B.; Haugen, Olav A.; Randeberg, Lise L.; Svaasand, Lars O.

    2005-04-01

    Many methods for detecting and measuring vulnerable atherosclerotic plaques have been proposed. These include reflection spectroscopy, thermography, ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI). This paper presents an analysis and a comparison of two of these methods, near-infrared reflection spectroscopy (NIRS) and thermography. Most of the published literature evaluate methods statistically. A more analytic approach will make it easier to compare the different methods and determine if the measured signal will be strong enough in a real measurement situation. This is the approach taken in this article. Eight samples of human aorta were examined by NIRS and subsequently prepared for histology. A total of 28 measurement points were selected. A measure of the lipid content based on reflection spectra is proposed. Comparisons of this lipid measure with histology show that the lipid content in the plaques yields relatively small changes in the value of this lipid-index. Reflectance spectra from models based on the diffusion approximation for total reflectance were simulated. Temperature measurements were performed on three Watanabe heritable hyperlipidemic (WHHL) rabbits and one New Zealand white (NZW) rabbit with a thermistor-type intravascular temperature sensor. The measurements gave no significant signals which correlated with the subsequent histology. A simple analytic model was developed which indicates that a temperature increase of more than 0.01-0.04 °C at the surface of a vessel wall, due to inflammation in a plaque, is unlikely. Such a small temperature difference will probably be obscured by normal variation in the vessel wall temperature.

  15. Selective removal of cholesterol ester in atherosclerotic plaque using nanosecond pulsed laser at 5.75 μm

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Tsukimoto, H.; Hazama, H.; Awazu, K.

    2008-02-01

    Laser angioplasty, for example XeCl excimer laser angioplasty, has gained more attention in addition to conventional methods of surgical and interventional treatment of atherosclerotic diseases such as bypass operation and balloon dilatation. Low degrees of thermal damage after ablation of atherosclerotic lesions have been achieved by XeCl excimer laser at 308 nm. However, in most cases, laser ablation is not selective and normal arterial wall is also damaged. To avoid complications such as severe dissections or perforation of the arterial wall in an angioplasty, a laser light source with high ablation efficiency but low arterial wall injury is desirable. At atherosclerotic lesions, cholesterol accumulates on the tunica intima by establishing an ester bond with fatty acids such as oleic acid, and thus cholesterol ester is the main component of atherosclerotic plaques. Mid-infrared pulsed laser at 5.75 μm is selectively well absorbed in C=O stretching vibration mode of ester bonds. The purpose of this study is to determine the effectiveness of nanosecond pulsed laser at 5.75 μm irradiation of cholesterol ester in atherosclerotic plaques. In this study, we used a mid-infrared tunable solid-state laser which is operated by difference frequency generation method, with a wavelength of 5.75 μm, a pulse width of 5 nsec and a pulse duration of 10 Hz. It was confirmed that non-invasive interaction to normal thoracic aortas could be induce by the parameters, the wavelength of 5.75 μm, the average power densities of 35 W/cm2 and the irradiation time under 10 sec. This study shows that nanosecond pulsed laser irradiations at 5.75 μm provide an alternative laser light source as an effectively cutting, less traumatic tool for removal of atherosclerotic plaque.

  16. Increased expression of fatty acid binding protein 4 and leptin in resident macrophages characterises atherosclerotic plaque rupture

    PubMed Central

    Lee, K.; Santibanez-Koref, M.; Polvikoski, T.; Birchall, D.; Mendelow, A.D.; Keavney, B.

    2013-01-01

    Objective Resident macrophages play an important role in atheromatous plaque rupture. The macrophage gene expression signature associated with plaque rupture is incompletely defined due to the complex cellular heterogeneity in the plaque. We aimed to characterise differential gene expression in resident plaque macrophages from ruptured and stable human atheromatous lesions. Methods and results We performed genome-wide expression analyses of isolated macrophage-rich regions of stable and ruptured human atherosclerotic plaques. Plaques present in carotid endarterectomy specimens were designated as stable or ruptured using clinical, radiological and histopathological criteria. Macrophage-rich regions were excised from 5 ruptured and 6 stable plaques by laser micro-dissection. Transcriptional profiling was performed using Affymetrix microarrays. The profiles were characteristic of activated macrophages. At a false discovery rate of 10%, 914 genes were differentially expressed between stable and ruptured plaques. The findings were confirmed in fourteen further stable and ruptured samples for a subset of eleven genes with the highest expression differences (p < 0.05). Pathway analysis revealed that components of the PPAR/Adipocytokine signaling pathway were the most significantly upregulated in ruptured compared to stable plaques (p = 5.4 × 10−7). Two key components of the pathway, fatty-acid binding-protein 4 (FABP4) and leptin, showed nine-fold (p = 0.0086) and five-fold (p = 0.0012) greater expression respectively in macrophages from ruptured plaques. Conclusions We found differences in gene expression signatures between macrophages isolated from stable and ruptured human atheromatous plaques. Our findings indicate the involvement of FABP4 and leptin in the progression of atherosclerosis and plaque rupture, and suggest that down-regulation of PPAR/adipocytokine signaling within plaques may have therapeutic potential. PMID:23122912

  17. Ultrastructural changes in atherosclerotic plaques following the instillation of airborne particulate matter into the lungs of rabbits

    PubMed Central

    Tranfield, Erin M; van Eeden, Stephan F; Yatera, Kazuhiro; Hogg, James C; Walker, David C

    2010-01-01

    BACKGROUND: Epidemiological studies have established that cardiovascular events account for the greatest number of air pollution-related deaths. However, the underlying structural changes are still unknown. OBJECTIVE: To investigate changes in the ultrastructure of atherosclerotic plaques in Watanabe heritable hyperlipidemic (WHHL) rabbits following the instillation of ambient particulate matter air pollution (particles smaller than 10 μm in diameter) into the lungs. METHODS: WHHL rabbits (n=8) exposed to 5 mg of ambient particles (Environmental Health Centre – 1993 [EHC-93]; suspended in saline and instilled in the airway) twice per week for four weeks were compared with control WHHL rabbits (n=8) treated with saline alone. RESULTS: All abdominal aortic plaques were examined using light and electron microscopy, which showed the following: increased accumulation of macrophage-derived foam cells immediately below the endothelial plaque surface (P=0.04); increased contact between these foam cells and the dense subendothelial extracellular matrix (P<0.005) with reduction (P<0.0001) and fragmentation (P<0.0001) of this matrix; and emigration of macrophage-derived foam cells from the plaques in exposed rabbits. In addition, immunohistochemistry verified the presence of type IV collagen in the thickened extracellular matrix material subtending the endothelium. CONCLUSIONS: The ultrastructure of atherosclerotic plaques in EHC-93-instilled rabbits differed from the ultrastructure observed in rabbits that did not receive EHC-93. These ultrastructural differences are consistent with greater endothelial instability in the plaques of atherosclerosis-prone rabbits. PMID:20847974

  18. Photosensitizer delivery to vulnerable atherosclerotic plaque: comparison of macrophage-targeted conjugate versus free chlorin(e6).

    PubMed

    Tawakol, Ahmed; Castano, Ana P; Anatelli, Florencia; Bashian, Gregory; Stern, Jeremy; Zahra, Touqir; Gad, Faten; Chirico, Stephanie; Ahmadi, Atosa; Fischman, Alan J; Muller, James E; Hamblin, Michael R

    2006-01-01

    We have previously shown that a conjugate (MA-ce6) between maleylated serum albumin and the photosensitizer chlorin(e6) (ce6) is targeted in vitro to macrophages via class A scavenger receptors. We now report on the ability of this conjugate to localize in macrophage-rich atherosclerotic plaques in vivo. Both the conjugate and the free photosensitizer ce6 are studied after injection into New Zealand White rabbits that are rendered atherosclerotic by a combination of aortic endothelial injury and cholesterol feeding into normal rabbits. Rabbits are sacrificed at 6 and 24 h after injection and intravascular fluorescence spectroscopy is carried out by fiber-based fluorimetry in intact blood-filled arteries. Surface spectrofluorimetry of numbered excised aortic segments together with injured and normal iliac arteries is carried out, and quantified ce6 content by subsequent extraction and quantitative fluorescence determination of the arterial segments and also of nontarget organs. There is good agreement between the various techniques for quantifying ce6 localization, and high contrast between arteries from atherosclerotic and normal rabbits is obtained. Fluorescence correlates with the highest burden of plaque in the aorta and the injured iliac artery. The highest accumulation in plaques is obtained using MA-ce6 at 24 h. Free ce6 gives better accumulation at 6 h compared to 24 h. The liver, spleen, lung, and gall bladder have the highest uptake in nontarget organs. Macrophage-targeted photosensitizer conjugates may have applications in both detecting and treating inflamed vulnerable plaque.

  19. Photosensitizer delivery to vulnerable atherosclerotic plaque: comparison of macrophage-targeted conjugate versus free chlorine(e6)

    NASA Astrophysics Data System (ADS)

    Tawakol, Ahmed; Castano, Ana P.; Anatelli, Florencia; Bashian, Gregory; Stern, Jeremy; Zahra, Touqir; Gad, Faten; Chirico, Stephanie; Ahmadi, Atosa; Fischman, Alan J.; Muller, James E.; Hamblin, Michael R.

    2006-03-01

    We have previously shown that a conjugate (MA-ce6) between maleylated serum albumin and the photosensitizer chlorin(e6) (ce6) is targeted in vitro to macrophages via class A scavenger receptors. We now report on the ability of this conjugate to localize in macrophage-rich atherosclerotic plaques in vivo. Both the conjugate and the free photosensitizer ce6 are studied after injection into New Zealand White rabbits that are rendered atherosclerotic by a combination of aortic endothelial injury and cholesterol feeding into normal rabbits. Rabbits are sacrificed at 6 and 24 h after injection and intravascular fluorescence spectroscopy is carried out by fiber-based fluorimetry in intact blood-filled arteries. Surface spectrofluorimetry of numbered excised aortic segments together with injured and normal iliac arteries is carried out, and quantified ce6 content by subsequent extraction and quantitative fluorescence determination of the arterial segments and also of nontarget organs. There is good agreement between the various techniques for quantifying ce6 localization, and high contrast between arteries from atherosclerotic and normal rabbits is obtained. Fluorescence correlates with the highest burden of plaque in the aorta and the injured iliac artery. The highest accumulation in plaques is obtained using MA-ce6 at 24 h. Free ce6 gives better accumulation at 6 h compared to 24 h. The liver, spleen, lung, and gall bladder have the highest uptake in nontarget organs. Macrophage-targeted photosensitizer conjugates may have applications in both detecting and treating inflamed vulnerable plaque.

  20. Identifying Vulnerable Atherosclerotic Plaque in Rabbits Using DMSA-USPIO Enhanced Magnetic Resonance Imaging to Investigate the Effect of Atorvastatin.

    PubMed

    Qi, Chunmei; Deng, Liangrong; Li, Dongye; Wu, Weiheng; Gong, Lei; Li, Yong; Zhang, Qingdui; Zhang, Tao; Zhang, Chao; Zhang, Yu

    2015-01-01

    Rupture of an atherosclerotic plaque is the primary cause of acute cardiovascular and cerebrovascular syndromes. Early and non-invasive detection of vulnerable atherosclerotic plaques (VP) would be significant in preventing some aspects of these syndromes. As a new contrast agent, dimercaptosuccinic acid (DMSA) modified ultra-small super paramagnetic iron oxide (USPIO) was synthesized and used to identify VP and rupture plaque by magnetic resonance imaging (MRI). Atherosclerosis was induced in male New Zealand White rabbits by feeding a high cholesterol diet (n = 30). Group A with atherosclerosis plaque (n = 10) were controls. VP was established in groups B (n = 10) and C (n = 10) using balloon-induced endothelial injury of the abdominal aorta. Adenovirus-carrying p53 genes were injected into the aortic segments rich in plaques after 8 weeks. Group C was treated with atorvastatin for 8 weeks. Sixteen weeks later, all rabbits underwent pharmacological triggering, and imaging were taken daily for 5 d after DMSA-USPIO infusion. At the first day and before being killed, serum MMP-9, sCD40L, and other lipid indicators were measured. DMSA-USPIO particles accumulated in VP and rupture plaques. Rupture plaques appeared as areas of hyper-intensity on DMSA-USPIO enhanced MRI, especially T2*-weighted sequences, with a signal strength peaking at 96 h. The group given atorvastatin showed few DMSA-USPIO particles and had lower levels of serum indicators. MMP-9 and sCD40L levels in group B were significantly higher than in the other 2 groups (P <0.05). After successfully establishing a VP model in rabbits, DMSA-USPIO was used to enhance MRI for clear identification of plaque inflammation and rupture. Rupture plaques were detectable in this way probably due to an activating inflammatory process. Atorvastatin reduced the inflammatory response and stabilizing VP possibly by decreasing MMP-9 and sCD40L levels.

  1. Identifying Vulnerable Atherosclerotic Plaque in Rabbits Using DMSA-USPIO Enhanced Magnetic Resonance Imaging to Investigate the Effect of Atorvastatin

    PubMed Central

    Li, Dongye; Wu, Weiheng; Gong, Lei; Li, Yong; Zhang, Qingdui; Zhang, Tao; Zhang, Chao; Zhang, Yu

    2015-01-01

    Background Rupture of an atherosclerotic plaque is the primary cause of acute cardiovascular and cerebrovascular syndromes. Early and non-invasive detection of vulnerable atherosclerotic plaques (VP) would be significant in preventing some aspects of these syndromes. As a new contrast agent, dimercaptosuccinic acid (DMSA) modified ultra-small super paramagnetic iron oxide (USPIO) was synthesized and used to identify VP and rupture plaque by magnetic resonance imaging (MRI). Methods Atherosclerosis was induced in male New Zealand White rabbits by feeding a high cholesterol diet (n = 30). Group A with atherosclerosis plaque (n = 10) were controls. VP was established in groups B (n = 10) and C (n = 10) using balloon-induced endothelial injury of the abdominal aorta. Adenovirus-carrying p53 genes were injected into the aortic segments rich in plaques after 8 weeks. Group C was treated with atorvastatin for 8 weeks. Sixteen weeks later, all rabbits underwent pharmacological triggering, and imaging were taken daily for 5 d after DMSA-USPIO infusion. At the first day and before being killed, serum MMP-9, sCD40L, and other lipid indicators were measured. Results DMSA-USPIO particles accumulated in VP and rupture plaques. Rupture plaques appeared as areas of hyper-intensity on DMSA-USPIO enhanced MRI, especially T2*-weighted sequences, with a signal strength peaking at 96 h. The group given atorvastatin showed few DMSA-USPIO particles and had lower levels of serum indicators. MMP-9 and sCD40L levels in group B were significantly higher than in the other 2 groups (P <0.05). Conclusion After successfully establishing a VP model in rabbits, DMSA-USPIO was used to enhance MRI for clear identification of plaque inflammation and rupture. Rupture plaques were detectable in this way probably due to an activating inflammatory process. Atorvastatin reduced the inflammatory response and stabilizing VP possibly by decreasing MMP-9 and sCD40L levels. PMID:25973795

  2. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis.

    PubMed

    Tang, Dalin; Yang, Chun; Kobayashi, Shunichi; Zheng, Jie; Woodard, Pamela K; Teng, Zhongzhao; Billiar, Kristen; Bach, Richard; Ku, David N

    2009-06-01

    Heart attack and stroke are often caused by atherosclerotic plaque rupture, which happens without warning most of the time. Magnetic resonance imaging (MRI)-based atherosclerotic plaque models with fluid-structure interactions (FSIs) have been introduced to perform flow and stress/strain analysis and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. For coronary arteries, cyclic bending associated with heart motion and anisotropy of the vessel walls may have significant influence on flow and stress/strain distributions in the plaque. FSI models with cyclic bending and anisotropic vessel properties for coronary plaques are lacking in the current literature. In this paper, cyclic bending and anisotropic vessel properties were added to 3D FSI coronary plaque models so that the models would be more realistic for more accurate computational flow and stress/strain predictions. Six computational models using one ex vivo MRI human coronary plaque specimen data were constructed to assess the effects of cyclic bending, anisotropic vessel properties, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. Our results indicate that cyclic bending and anisotropic properties may cause 50-800% increase in maximum principal stress (Stress-P1) values at selected locations. The stress increase varies with location and is higher when bending is coupled with axial stretch, nonsmooth plaque structure, and resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (9.8% decrease in maximum velocity, 2.5% decrease in flow rate, 15% increase in maximum flow shear stress). Inclusion of cyclic bending, anisotropic vessel material properties, accurate plaque structure, and axial stretch in computational FSI models should lead to a considerable improvement of accuracy of computational stress/strain predictions for coronary plaque vulnerability

  3. The use of plaque score measurements to assess changes in atherosclerotic plaque burden induced by lipid-lowering therapy over time: the METEOR study.

    PubMed

    Peters, Sanne A E; Dogan, Soner; Meijer, Rudy; Palmer, Mike K; Grobbee, Diederick E; Crouse, John R; O'Leary, Daniel H; Evans, Gregory W; Raichlen, Joel S; Bots, Michiel L

    2011-01-01

    To evaluate whether plaque scoring measurements are able to track changes in atherosclerotic plaque burden over time and to study whether this is affected by lipid-lowering therapy. Data used were from METEOR (Measuring Effects on Intima-Media Thickness: an Evaluation Of Rosuvastatin), a randomized controlled trial of rosuvastatin 40 mg among 984 low-risk patients with modest carotid intima-media thickening (CIMT). In this analysis, duplicate ultrasound images from 12 carotid sites were collected at the baseline and end of the study from 495 European patients and were evaluated for plaque presence and severity. Plaques were scored from near and far walls of the 12 sites (0= none; 1= minimal; 2= moderate; 3= severe) and plaque scores (PS) were combined into two summary measures for each examination. The MeanMaxPS is the mean over the 12 carotid sites of the maximum score at each site and the MaxMaxPS reflects the most severe lesion at any site. Baseline MeanMaxPS and MaxMaxPS were 0.31 (SD: 0.20) and 1.15 (SD: 0.51), respectively. Changes in MeanMaxPS and MaxMaxPS significantly differed between rosuvastatin and placebo (mean difference: -0.03 [SE: 0.01; p =0.016] and -0.09 [SE: 0.04; p =0.027], respectively). In contrast to rosuvastatin, which demonstrated no change from the baseline, placebo showed significant progression in MeanMaxPS and MaxMaxPS (p =0.002; both). The plaque-scoring method proved capable of assessing the change in atherosclerotic plaque burden over time and proved useful to evaluate lipid-lowering in asymptomatic individuals with a low risk of cardiovascular disease and subclinical atherosclerosis.

  4. Mechanism of ceroid formation in atherosclerotic plaque: in situ studies using a combination of Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Haka, Abigail S.; Kramer, John R.; Dasari, Ramachandra R.; Fitzmaurice, Maryann

    2011-01-01

    Accumulation of the lipid-protein complex ceroid is a characteristic of atherosclerotic plaque. The mechanism of ceroid formation has been extensively studied, because the complex is postulated to contribute to plaque irreversibility. Despite intensive research, ceroid deposits are defined through their fluorescence and histochemical staining properties, while their composition remains unknown. Using Raman and fluorescence spectral microscopy, we examine the composition of ceroid in situ in aorta and coronary artery plaque. The synergy of these two types of spectroscopy allows for identification of ceroid via its fluorescence signature and elucidation of its chemical composition through the acquisition of a Raman spectrum. In accordance with in vitro predictions, low density lipoprotein (LDL) appears within the deposits primarily in its peroxidized form. The main forms of modified LDL detected in both coronary artery and aortic plaques are peroxidation products from the Fenton reaction and myeloperoxidase-hypochlorite pathway. These two peroxidation products occur in similar concentrations within the deposits and represent ~40 and 30% of the total LDL (native and peroxidized) in the aorta and coronary artery deposits, respectively. To our knowledge, this study is the first to successfully employ Raman spectroscopy to unravel a metabolic pathway involved in disease pathogenesis: the formation of ceroid in atherosclerotic plaque.

  5. Mechanism of ceroid formation in atherosclerotic plaque: in situ studies using a combination of Raman and fluorescence spectroscopy

    PubMed Central

    Haka, Abigail S.; Kramer, John R.; Dasari, Ramachandra R.; Fitzmaurice, Maryann

    2011-01-01

    Accumulation of the lipid-protein complex ceroid is a characteristic of atherosclerotic plaque. The mechanism of ceroid formation has been extensively studied, because the complex is postulated to contribute to plaque irreversibility. Despite intensive research, ceroid deposits are defined through their fluorescence and histochemical staining properties, while their composition remains unknown. Using Raman and fluorescence spectral microscopy, we examine the composition of ceroid in situ in aorta and coronary artery plaque. The synergy of these two types of spectroscopy allows for identification of ceroid via its fluorescence signature and elucidation of its chemical composition through the acquisition of a Raman spectrum. In accordance with in vitro predictions, low density lipoprotein (LDL) appears within the deposits primarily in its peroxidized form. The main forms of modified LDL detected in both coronary artery and aortic plaques are peroxidation products from the Fenton reaction and myeloperoxidase-hypochlorite pathway. These two peroxidation products occur in similar concentrations within the deposits and represent ∼40 and 30% of the total LDL (native and peroxidized) in the aorta and coronary artery deposits, respectively. To our knowledge, this study is the first to successfully employ Raman spectroscopy to unravel a metabolic pathway involved in disease pathogenesis: the formation of ceroid in atherosclerotic plaque. PMID:21280898

  6. Suxiaojiuxin pill enhances atherosclerotic plaque stability by modulating the MMPs/TIMPs balance in ApoE-deficient mice.

    PubMed

    Zhang, Jinbao; Zhuang, Pengwei; Lu, Zhiqiang; Zhang, Mixia; Zhang, Teng; Zhang, Yanjun; Wang, Jinlei; Liu, Dan; Tong, Yongling

    2014-08-01

    : Suxiaojiuxin pill (SX) is a famous Chinese formulated product, which has been used to treat coronary heart disease and angina pectoris in China. This study was carried out to investigate the effect and possible mechanism of SX on the stability of atherosclerotic plaque in ApoE-deficient mice. ApoE-/- mice of 6-8 weeks old were fed with high-fat diet for developing artherosclerosis. After oral administration of SX for 8 weeks, histopathology of aortic plaque was performed by Sudan III and hematoxylin-eosin staining, and muscle protein was detected by Western blotting (WB). The mRNA and proteins associated with aortic plaque stability were detected by reverse transcription-polymerase chain reaction and WB, respectively. SX treatment could not only reduce serum triglyceride level and plaque area but also increase fibrous cap thickness and collagen content compared with the model group. WB results showed that SX could increase α-smooth muscle actin, tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2 protein expression, whereas decrease matrix metalloproteinase 2 (MMP-2) and MMP-9 protein expression. Moreover, SX could upregulate the expression of α-smooth muscle actin mRNA and downregulate the expression of vascular endothelial growth factor mRNA. These results showed that SX could enhance atherosclerotic plaque stability in ApoE-deficient mice. The mechanism may be associated with modulating the MMPs/TIMPs balance.

  7. In vivo MRI-based simulation of fatigue process: a possible trigger for human carotid atherosclerotic plaque rupture

    PubMed Central

    2013-01-01

    Background Atherosclerotic plaque is subjected to a repetitive deformation due to arterial pulsatility during each cardiac cycle and damage may be accumulated over a time period causing fibrous cap (FC) fatigue, which may ultimately lead to rupture. In this study, we investigate the fatigue process in human carotid plaques using in vivo carotid magnetic resonance (MR) imaging. Method Twenty seven patients with atherosclerotic carotid artery disease were included in this study. Multi-sequence, high-resolution MR imaging was performed to depict the plaque structure. Twenty patients were found with ruptured FC or ulceration and 7 without. Modified Paris law was used to govern crack propagation and the propagation direction was perpendicular to the maximum principal stress at the element node located at the vulnerable site. Results The predicted crack initiations from 20 patients with FC defect all matched with the locations of the in vivo observed FC defect. Crack length increased rapidly with numerical steps. The natural logarithm of fatigue life decreased linearly with the local FC thickness (R2 = 0.67). Plaques (n=7) without FC defect had a longer fatigue life compared with those with FC defect (p = 0.03). Conclusion Fatigue process seems to explain the development of cracks in FC, which ultimately lead to plaque rupture. PMID:23617791

  8. Cadmium exposure and atherosclerotic carotid plaques –Results from the Malmö diet and Cancer study

    SciTech Connect

    Fagerberg, Björn; Barregard, Lars; Sallsten, Gerd; Forsgard, Niklas; Östling, Gerd; Persson, Margaretha; Borné, Yan; and others

    2015-01-15

    Background: Epidemiological studies indicate that cadmium exposure through diet and smoking is associated with increased risk of cardiovascular disease. There are few data on the relationship between cadmium and plaques, the hallmark of underlying atherosclerotic disease. Objectives: To examine the association between exposure to cadmium and the prevalence and size of atherosclerotic plaques in the carotid artery. Methods: A population sample of 4639 Swedish middle-aged women and men was examined in 1991–1994. Carotid plaque was determined by B-mode ultrasound. Cadmium in blood was analyzed by inductively coupled plasma mass spectrometry. Results: Comparing quartile 4 with quartile 1 of blood cadmium, the odds ratio (OR) for prevalence of any plaque was 1.9 (95% confidence interval 1.6–2.2) after adjustment for sex and, age; 1.4 (1.1–1.8) after additional adjustment for smoking status; 1.4 (1.1–1.7) after the addition of education level and life style factors; 1.3 (1.03–1.8) after additional adjustment for risk factors and predictors of cardiovascular disease. No effect modification by sex was found in the cadmium-related prevalence of plaques. Similarly, ORs for the prevalence of small and large plaques were after full adjustment 1.4 (1.0–2.1) and 1.4 (0.9–2.0), respectively. The subgroup of never smokers showed no association between cadmium and atherosclerotic plaques. Conclusions: These results extend previous studies on cadmium exposure and clinical cardiovascular events by adding data on the association between cadmium and underlying atherosclerosis in humans. The role of smoking remains unclear. It may both cause residual confounding and be a source of pro-atherogenic cadmium exposure. - Highlights: • Blood cadmium level is associated with atherosclerotic plaques in the carotid artery. • The results extend previous knowledge of cadmium exposure and clinical events. • The role of smoking remains unclear.

  9. MRI study of atherosclerotic plaque progression using ultrasmall superparamagnetic iron oxide in Watanabe heritable hyperlipidemic rabbits.

    PubMed

    Kaneko, C; Nitta, N; Tsuchiya, K; Watanabe, S; Nitta-Seko, A; Ohta, S; Otani, H; Sonoda, A; Murata, K; Shiomi, M

    2015-09-01

    The purpose of this study was to evaluate plaque progression by using MRI with ultrasmall superparamagnetic iron oxide (USPIO) and by histopathological studies. We divided 12 Watanabe heritable hyperlipidemic (WHHL) rabbits into 4 groups based on their age (3, 9, 14 and 26 months) and injected them intravenously with 0.8 mmol (Fe) kg(-1) of USPIO (size, 32 nm; concentration, 15 mg dl(-1)). On the fifth post-injection day, they were again given an intravenous injection with 40 μmol kg(-1) of the same USPIO, and MR angiography (MRA) was performed. The signal-to-noise ratio (SNR) in regions of interest in the wall of the upper abdominal aorta was calculated on coronal images. Specimens from the same level of the aorta were subjected to iron staining and RAM-11 immunostaining and used for histopathological study. For statistical analysis of the MRA and histopathological findings, we used analysis of variance [Tukey's honest significant difference (HSD) test]. In 9-month-old rabbits, the SNR was significantly lower than in rabbits of the other ages (p < 0.01), and the area of RAM-11 (DAKO Corporation, Glostrup, Denmark) and iron uptake in the aortic wall was significantly larger (RAM-11, p < 0.01; iron, p < 0.05). These areas were the smallest in 3-month-old rabbits. Histopathologically, the number of macrophages was the greatest in 9-month-old rabbits. Our findings indicate that the SNR on MRI scans reflects the number of macrophages in the aortic wall of WHHL rabbits. USPIO-enhanced MRI visualized the accumulation of macrophages in early atherosclerotic plaques of WHHL rabbits in the course of natural progression.

  10. Scintillating balloon-enabled fiber-optic system for radionuclide imaging of atherosclerotic plaques.

    PubMed

    Zaman, Raiyan T; Kosuge, Hisanori; Carpenter, Colin; Sun, Conroy; McConnell, Michael V; Xing, Lei

    2015-05-01

    scintillating crystal to the balloon: 1.65 × 10(2) ± 4.07 × 10(1) vs. 4.44 × 10(1) ± 2.17 × 10(0) (photon counts), P = 0.005. Both external optical imaging and autoradiography confirmed the high signal from the (18)F-FDG in carotid plaques versus controls. This SBRI system provides high-resolution and sensitive detection of (18)F-FDG uptake by murine atherosclerotic plaques. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models.

    PubMed

    Tang, Dalin; Yang, Chun; Mondal, Sayan; Liu, Fei; Canton, Gador; Hatsukami, Thomas S; Yuan, Chun

    2008-01-01

    It is well accepted that atherosclerosis initiation and progression correlate positively with low and oscillating flow wall shear stresses (FSS). However, this mechanism cannot explain why advanced plaques continue to grow under elevated FSS conditions. In vivo magnetic resonance imaging (MRI)-based 2D/3D multi-component models with fluid-structure interactions (FSI, 3D only) for human carotid atherosclerotic plaques were introduced to quantify correlations between plaque progression measured by wall thickness increase (WTI) and plaque wall (structure) stress (PWS) conditions. A histologically validated multi-contrast MRI protocol was used to acquire multi-year in vivo MRI images. Our results using 2D models (200-700 data points/patient) indicated that 18 out of 21 patients studied showed significant negative correlation between WTI and PWS at time 2 (T2). The 95% confidence interval for the Pearson correlation coefficient is (-0.443,-0.246), p<0.0001. Our 3D FSI model supported the 2D correlation results and further indicated that combining both plaque structure stress and flow shear stress gave better approximation results (PWS, T2: R(2)=0.279; FSS, T1: R(2)=0.276; combining both: R(2)=0.637). These pilot studies suggest that both lower PWS and lower FSS may contribute to continued plaque progression and should be taken into consideration in future investigations of diseases related to atherosclerosis.

  12. A Negative Correlation between Human Carotid Atherosclerotic Plaque Progression and Plaque Wall Stress: In Vivo MRI-Based 2D/3D FSI Models

    PubMed Central

    Tang, Dalin; Yang, Chun; Mondal, Sayan; Liu, Fei; Canton, Gador; Hatsukami, Thomas S.; Yuan, Chun

    2008-01-01

    It is well accepted that atherosclerosis initiation and progression correlate positively with low and oscillating flow wall shear stresses (FSS). However, this mechanism cannot explain why advanced plaques continue to grow under elevated FSS conditions. In vivo magnetic resonance imaging (MRI)-based 2D/3D multi-component models with fluid-structure interactions (FSI, 3D only) for human carotid atherosclerotic plaques were introduced to quantify correlations between plaque progression measured by wall thickness increase (WTI) and plaque wall (structure) stress (PWS) conditions. A histologically validated multi-contrast MRI protocol was used to acquire multi-year in vivo MRI images. Our results using 2D models (200–700 data points/patient) indicated that 18 out of 21 patients studied showed significant negative correlation between WTI and PWS at time 2 (T2). The 95% confidence interval for the Pearson correlation coefficient is (−0.443, −0.246), p < 0.0001. Our 3D FSI model supported the 2D correlation results and further indicated that combining both plaque structure stress and flow shear stress gave better approximation results (PWS, T2: R2 = 0.279; FSS, T1: R2 = 0.276; Combining both: R2 = 0.637). These pilot studies suggest that both lower PWS and lower FSS may contribute to continued plaque progression and should be taken into consideration in future investigations of diseases related to atherosclerosis. PMID:18191138

  13. Intravascular Photoacoustics for Image-Guidance and Temperature Monitoring During Plasmonic Photothermal Therapy of Atherosclerotic Plaques: A Feasibility Study

    PubMed Central

    Yeager, Doug; Chen, Yun-Sheng; Litovsky, Silvio; Emelianov, Stanislav

    2014-01-01

    Recently, combined intravascular ultrasound and photoacoustic (IVUS/IVPA) imaging has been demonstrated as a novel imaging modality capable of visualizing both morphology (via IVUS) and cellular/molecular composition (via IVPA) of atherosclerotic plaques, using both endogenous tissue absorbers and exogenous contrast agents. Plasmonic gold nanoparticles were previously utilized as IVPA contrast agents which co-localize with atherosclerotic plaques, particularly phagocytically active macrophages. The present work demonstrates the use of IVUS/IVPA imaging as a tool for localized temperature monitoring during laser heating. The temperature dependent change in IVPA signal intensity of silica-coated gold nanorod contrast agents absorbing within the near-infrared optical wavelength range is evaluated and shown to have a linear relationship, with a slope greater than that of endogenous tissue. A continuous wave laser was subsequently incorporated into the IVUS/IVPA integrated catheter and utilized to selectively heat the nanoparticles with simultaneous IVPA temperature monitoring. IVUS/IVPA, therefore, provides a platform for detection and temperature monitoring of atherosclerotic plaques through the selective heating of plasmonic gold nanoparticle contrast agents. PMID:24396514

  14. A tissue-engineered 3D model of light scattering in atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Levitz, David; Hinds, Monica T.; Wang, Ruikang K.; Ma, Zhenhe; Ishii, Katsu; Tran, Noi; McCarty, Owen J. T.; Hanson, Stephen R.; Jacques, Steven L.

    2007-02-01

    The development of atherosclerotic plaques includes changes in the cellular and extracellular composition of the arterial wall. Although these changes in composition affect the manner in which light scatters in the vessel wall and thus affect any optical signal, experimentally determining how features of atherosclerosis affect optical signals has remained elusive. Using current tissue-engineering methods, we developed a 3D tissue construct model for assessing how certain features of atherosclerosis (the increased concentrations of lipids and macrophages) affect optical signals. The model is based on vascular tissue constructs made of smooth muscle cells (SMCs) and macrophages (M\\Fgr s) that are co-cultured inside a 3D scaffold matrix of collagen fibers with interspersed lipids. To make the scaffold matrix, powdered collagen was dissolved in acetic acid, homogenized, and neutralized by sequential dialyses to yield a soft gel of 2 μm thick collagen fibers in which cells were seeded. In "normal" constructs, only SMCs were seeded in the collagen gel; in "athero-like" constructs, both SMCs and M\\Fgr s (loaded or unloaded with lipid) were seeded in the gel. To demonstrate the use of this model, sets of slab-shaped normal and athero-like constructs were imaged by optical coherence tomography (OCT) and qualitatively analyzed. 2D frames from 3D OCT image cubes were compared to 2D histology sections. Our results indicate that the cellular composition of the construct affects morphological features of the OCT image.

  15. Exposure to Cigarette Smoke and the Morphology of Atherosclerotic Plaques in the Extracranial Arteries Assessed by Computed Tomography Angiography in Patients with Essential Hypertension.

    PubMed

    Gać, Paweł; Jaźwiec, Przemysław; Mazur, Grzegorz; Poręba, Rafał

    2017-01-01

    The aim of the study was to determine the relationship between exposure to cigarette smoke and the morphology of atherosclerotic plaques in the extracranial arteries assessed by computed tomography angiography in patients with hypertension. The study included 61 hypertensive patients: 17 active smokers (group A), 18 non-smokers, declaring environmental exposure to tobacco smoke (group B), and 26 non-smokers, not declaring exposure to cigarette smoke (group C). The number of segments with plaques was significantly higher in group A compared to groups B and C. The number of segments with non-calcified and mixed plaques was significantly higher in group A and group B than in group C. A positive correlation between cigarette-years and the number of segments with atherosclerotic plaques was noted. In summary, both active smoking and environmental exposure to tobacco smoke appear to increase the number of segments of the extracranial arteries with non-calcified and mixed atherosclerotic plaques.

  16. Copper and zinc concentrations in atherosclerotic plaque and serum in relation to lipid metabolism in patients with carotid atherosclerosis.

    PubMed

    Tasić, Nebojša M; Tasić, Danijela; Otašević, Petar; Veselinović, Mirjana; Jakovljević, Vladimir; Djurić, Dragan; Radak, Djordje

    2015-09-01

    Some oligoelements are now investigated as possibly having a role in atherosclerosis. The aim of this study was to compare the concentrations of copper and zinc in the serum and carotid plaque and parameters of lipid metabolism in patients with different morphology of carotid atherosclerotic plaque. Carotid endarterectomy due to the significant atherosclerotic stenosis was performed in 91 patients (mean age 64 ± 7). The control group consisted of 27 patients (mean age 58 ± 9), without carotid atherosclerosis. Atheroscletoric plaques were divided into four morphological groups, according to ultrasonic and intraoperative characteristics. Copper and zinc concentrations in the plaque, carotid artery and serum were measured by atomic absorption spectrophotometry. Serum copper concentrations were statistically significantly higher in the patients with hemorrhagic in comparison to those with calcified plaque (1.2 ± 0.9 µmol/L vs 0.7 ± 0.2 µmol/L, respectively; p = 0.021). Zinc concentrations were statistically significantly lower in plaques of the patients with fibrolipid in comparison to those with calcified plaques (22.1 ± 16.3 g/g vs 38.4 ± 25.8 µg/g, respectively; p = 0.024). A negative significant correlation was found for zinc and triglycerides in the serum in all the patients (r = -0.52, p = 0.025). In the control group we also demonstrated a positive significant correlation for low-density lipoprotein cholesterol and copper in the serum (r = 0.54, p = 0.04). The data obtained in the current study are consistent with the hypothesis that high copper and lower zinc levels may contribute to atherosclerosis and its sequelae as factors in a multifactorial disease. Further studies are necessary in order to conclude whether high concentration of copper and zinc in the serum could be risk factors for atherosclesrosis.

  17. Calculation of arterial wall temperature in atherosclerotic arteries: effect of pulsatile flow, arterial geometry, and plaque structure

    PubMed Central

    Ley, Obdulia; Kim, Taehong

    2007-01-01

    Background This paper presents calculations of the temperature distribution in an atherosclerotic plaque experiencing an inflammatory process; it analyzes the presence of hot spots in the plaque region and their relationship to blood flow, arterial geometry, and inflammatory cell distribution. Determination of the plaque temperature has become an important topic because plaques showing a temperature inhomogeneity have a higher likelihood of rupture. As a result, monitoring plaque temperature and knowing the factors affecting it can help in the prevention of sudden rupture. Methods The transient temperature profile in inflamed atherosclerotic plaques is calculated by solving an energy equation and the Navier-Stokes equations in 2D idealized arterial models of a bending artery and an arterial bifurcation. For obtaining the numerical solution, the commercial package COMSOL 3.2 was used. The calculations correspond to a parametric study where arterial type and size, as well as plaque geometry and composition, are varied. These calculations are used to analyze the contribution of different factors affecting arterial wall temperature measurements. The main factors considered are the metabolic heat production of inflammatory cells, atherosclerotic plaque length lp, inflammatory cell layer length lmp, and inflammatory cell layer thickness dmp. Results The calculations indicate that the best location to perform the temperature measurement is at the back region of the plaque (0.5 ≤ l/lp ≤ 0.7). The location of the maximum temperature, or hot spot, at the plaque surface can move during the cardiac cycle depending on the arterial geometry and is a direct result of the blood flow pattern. For the bending artery, the hot spot moves 0.6 millimeters along the longitudinal direction; for the arterial bifurcation, the hot spot is concentrated at a single location due to the flow recirculation observed at both ends of the plaque. Focusing on the thermal history of different

  18. Low TLR7 gene expression in atherosclerotic plaques is associated with major adverse cardio- and cerebrovascular events

    PubMed Central

    Karadimou, Glykeria; Folkersen, Lasse; Berg, Martin; Perisic, Ljubica; Discacciati, Andrea; Roy, Joy; Hansson, Göran K.; Persson, Jonas; Paulsson-Berne, Gabrielle

    2017-01-01

    Aims Processes in the development of atherosclerotic lesions can lead to plaque rupture or erosion, which can in turn elicit myocardial infarction or ischaemic stroke. The aims of this study were to determine whether Toll-like receptor 7 (TLR7) gene expression levels influence patient outcome and to explore the mechanisms linked to TLR7 expression in atherosclerosis. Methods and results Atherosclerotic plaques were removed by carotid endarterectomy (CEA) and subjected to gene array expression analysis (n = 123). Increased levels of TLR7 transcript in the plaques were associated with better outcome in a follow-up study over a maximum of 8 years. Patients with higher TLR7 transcript levels had a lower risk of experiencing major cardiovascular and cerebrovascular events (MACCE) during the follow-up period after CEA (hazard ratio: 2.38, P = 0.012, 95% CI 1.21–4.67). TLR7 was expressed in all plaques by T cells, macrophages and endothelial cells in capillaries, as shown by immunohistochemistry. In short-term tissue cultures, ex vivo treatment of plaques with the TLR7 ligand imiquimod elicited dose-dependent secretion of IL-10, TNF-α, GM-CSF, and IL-12/IL-23p40. This secretion was blocked with a TLR7 inhibitor. Immunofluorescent tissue analysis after TLR7 stimulation showed IL-10 expression in T cells, macrophages and vascular smooth muscle cells. TLR7 mRNA levels in the plaques were correlated with IL-10 receptor (r = 0.4031, P < 0.0001) and GM-CSF receptor A (r = 0.4354, P < 0.0001) transcripts. Conclusion These findings demonstrate that TLR7 is abundantly expressed in human atherosclerotic plaques. TLR7 ligation elicits the secretion of pro-inflammatory and anti-inflammatory cytokines, and high TLR7 expression in plaques is associated with better patient outcome, suggesting that TLR7 is a potential therapeutic target for prevention of complications of atherosclerosis. PMID:27864310

  19. Atorvastatin Upregulates the Expression of miR-126 in Apolipoprotein E-knockout Mice with Carotid Atherosclerotic Plaque.

    PubMed

    Pan, Xudong; Hou, Rongyao; Ma, Aijun; Wang, Ting; Wu, Mei; Zhu, Xiaoyan; Yang, Shaonan; Xiao, Xing

    2017-01-01

    Carotid atherosclerosis (AS) is a chronic inflammatory disease of the carotid arterial wall, which is very important in terms of the occurrence of cerebral vascular accidents. Studies have demonstrated that microRNAs (miRNAs) and their target genes are involved in the formation of atherosclerosis and that atorvastatin might reduce atherosclerotic plaques by regulating the expression of miRNAs. However, the related mechanism is not yet known. In this study, we first investigated the effects of atorvastatin on miR-126 and its target gene, i.e., vascular cell adhesion molecule-1 (VCAM-1) in apolipoprotein E-knockout (ApoE-/-) mice with carotid atherosclerotic plaque in vivo. We compared the expressions of miR-126 and VCAM-1 between the control, atherosclerotic model and atorvastatin treatment groups of ApoE-/- mice using RT-PCR and Western blot. We found the miR-126 expression was significantly down-regulated, and the VCAM-1 expression was significantly up-regulated in the atherosclerotic model group, which accelerated the progression of atherosclerosis in the ApoE-/- mice. These results following atorvastatin treatment indicated that miR-126 expression was significantly up-regulated, VCAM-1 expression was significantly down-regulated and atherosclerotic lesions were reduced. The present results might explain the mechanism by which miR-126 is involved in the formation of atherosclerosis in vivo. Our study first indicated that atorvastatin might exert its anti-inflammatory effects in atherosclerosis by regulating the expressions of miR-126 and VCAM-1 in vivo.

  20. Synthesis of acid-stabilized iron oxide nanoparticles and comparison for targeting atherosclerotic plaques: evaluation by MRI, quantitative MPS, and TEM alternative to ambiguous Prussian blue iron staining.

    PubMed

    Scharlach, Constantin; Kratz, Harald; Wiekhorst, Frank; Warmuth, Carsten; Schnorr, Jörg; Genter, Gesche; Ebert, Monika; Mueller, Susanne; Schellenberger, Eyk

    2015-07-01

    To further optimize citrate-stabilized VSOPs (very small iron oxide particles, developed for MR angiography) for identification of atherosclerotic plaques, we modified their surface during synthesis using eight other acids for electrostatic stabilization. This approach preserves effective production for clinical application. Five particles were suitable to be investigated in targeting plaques of apoE(-/-) mice. Accumulation was evaluated by ex vivo MRI, TEM, and quantitatively by magnetic particle spectroscopy (MPS). Citric- (VSOP), etidronic-, tartaric-, and malic-acid-coated particles accumulated in atherosclerotic plaques with highest accumulation for VSOP (0.2‰ of injected dose). Targets were phagolysosomes of macrophages and of altered endothelial cells. In vivo MRI with VSOP allowed for definite plaque identification. Prussian blue staining revealed abundant endogenous iron in plaques, indistinguishable from particle iron. In apoE(-/-) mice, VSOPs are still the best anionic iron oxide particles for imaging atherosclerotic plaques. MPS allows for quantification of superparamagnetic nanoparticles in such small specimens. The presence of vulnerable plaques in arteries is important for the prediction of acute coronary events. VSOP (very small iron oxide particles, developed for MR angiography) have been shown to be very sensitive in identifying atherosclerotic plaques. The authors studied here further modification to the surface of VSOP during synthesis and compared their efficacy. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using (111)In-tilmanocept.

    PubMed

    Varasteh, Zohreh; Hyafil, Fabien; Anizan, Nadège; Diallo, Devy; Aid-Launais, Rachida; Mohanta, Sarajo; Li, Yuanfang; Braeuer, Miriam; Steiger, Katja; Vigne, Jonathan; Qin, Zhengtao; Nekolla, Stephan G; Fabre, Jean-Etienne; Döring, Yvonne; Le Guludec, Dominique; Habenicht, Andreas; Vera, David R; Schwaiger, Markus

    2017-12-01

    Atherosclerotic plaque phenotypes are classified based on the extent of macrophage infiltration into the lesions, and the presence of certain macrophage subsets might be a sign for plaque vulnerability. The mannose receptor (MR) is over-expressed in activated macrophages. Tilmanocept is a tracer that targets MR and is approved in Europe and the USA for the detection of sentinel lymph nodes. In this study, our aim was to evaluate the potential of (111)In-labelled tilmanocept for the detection of MR-positive macrophages in atherosclerotic plaques of apolipoprotein E-knockout (ApoE-KO) mouse model. Tilmanocept was labelled with (111)In. The labelling stability and biodistribution of the tracer was first evaluated in control mice (n = 10) 1 h post injection (p.i.). For in vivo imaging studies, (111)In-tilmanocept was injected into ApoE-KO (n = 8) and control (n = 8) mice intravenously (i.v.). The mice were scanned 90 min p.i. using a dedicated animal SPECT/CT. For testing the specificity of (111)In-tilmanocept uptake in plaques, a group of ApoE-KO mice was co-injected with excess amount of non-labelled tilmanocept. For ex vivo imaging studies, the whole aortas (n = 9 from ApoE-KO and n = 4 from control mice) were harvested free from adventitial tissue for Sudan IV staining and autoradiography. Cryosections were prepared for immunohistochemistry (IHC). (111)In radiolabelling of tilmanocept provided a yield of greater than 99%. After i.v. injection, (111)In-tilmanocept accumulated in vivo in MR-expressing organs (i.e. liver and spleen) and showed only low residual blood signal 1 h p.i. MR-binding specificity in receptor-positive organs was demonstrated by a 1.5- to 3-fold reduced uptake of (111)In-tilmanocept after co-injection of a blocking dose of non-labelled tilmanocept. Focal signal was detected in atherosclerotic plaques of ApoE-KO mice, whereas no signal was detected in the aortas of control mice. (111)In-tilmanocept uptake was detected in

  2. Vulnerable atherosclerotic plaque elasticity reconstruction based on a segmentation-driven optimization procedure using strain measurements: theoretical framework.

    PubMed

    Le Floc'h, Simon; Ohayon, Jacques; Tracqui, Philippe; Finet, Gérard; Gharib, Ahmed M; Maurice, Roch L; Cloutier, Guy; Pettigrew, Roderic I

    2009-07-01

    It is now recognized that prediction of the vulnerable coronary plaque rupture requires not only an accurate quantification of fibrous cap thickness and necrotic core morphology but also a precise knowledge of the mechanical properties of plaque components. Indeed, such knowledge would allow a precise evaluation of the peak cap-stress amplitude, which is known to be a good biomechanical predictor of plaque rupture. Several studies have been performed to reconstruct a Young's modulus map from strain elastograms. It seems that the main issue for improving such methods does not rely on the optimization algorithm itself, but rather on preconditioning requiring the best estimation of the plaque components' contours. The present theoretical study was therefore designed to develop: 1) a preconditioning model to extract the plaque morphology in order to initiate the optimization process, and 2) an approach combining a dynamic segmentation method with an optimization procedure to highlight the modulogram of the atherosclerotic plaque. This methodology, based on the continuum mechanics theory prescribing the strain field, was successfully applied to seven intravascular ultrasound coronary lesion morphologies. The reconstructed cap thickness, necrotic core area, calcium area, and the Young's moduli of the calcium, necrotic core, and fibrosis were obtained with mean relative errors of 12%, 4% and 1%, 43%, 32%, and 2%, respectively.

  3. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques

    PubMed Central

    Fredman, Gabrielle; Hellmann, Jason; Proto, Jonathan D.; Kuriakose, George; Colas, Romain A.; Dorweiler, Bernhard; Connolly, E. Sander; Solomon, Robert; Jones, David M.; Heyer, Eric J.; Spite, Matthew; Tabas, Ira

    2016-01-01

    Chronic unresolved inflammation plays a causal role in the development of advanced atherosclerosis, but the mechanisms that prevent resolution in atherosclerosis remain unclear. Here, we use targeted mass spectrometry to identify specialized pro-resolving lipid mediators (SPM) in histologically-defined stable and vulnerable regions of human carotid atherosclerotic plaques. The levels of SPMs, particularly resolvin D1 (RvD1), and the ratio of SPMs to pro-inflammatory leukotriene B4 (LTB4), are significantly decreased in the vulnerable regions. SPMs are also decreased in advanced plaques of fat-fed Ldlr−/− mice. Administration of RvD1 to these mice during plaque progression restores the RvD1:LTB4 ratio to that of less advanced lesions and promotes plaque stability, including decreased lesional oxidative stress and necrosis, improved lesional efferocytosis, and thicker fibrous caps. These findings provide molecular support for the concept that defective inflammation resolution contributes to the formation of clinically dangerous plaques and offer a mechanistic rationale for SPM therapy to promote plaque stability. PMID:27659679

  4. Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound.

    PubMed

    Sheet, Debdoot; Karamalis, Athanasios; Eslami, Abouzar; Noël, Peter; Chatterjee, Jyotirmoy; Ray, Ajoy K; Laine, Andrew F; Carlier, Stephane G; Navab, Nassir; Katouzian, Amin

    2014-01-01

    Intravascular Ultrasound (IVUS) is a predominant imaging modality in interventional cardiology. It provides real-time cross-sectional images of arteries and assists clinicians to infer about atherosclerotic plaques composition. These plaques are heterogeneous in nature and constitute fibrous tissue, lipid deposits and calcifications. Each of these tissues backscatter ultrasonic pulses and are associated with a characteristic intensity in B-mode IVUS image. However, clinicians are challenged when colocated heterogeneous tissue backscatter mixed signals appearing as non-unique intensity patterns in B-mode IVUS image. Tissue characterization algorithms have been developed to assist clinicians to identify such heterogeneous tissues and assess plaque vulnerability. In this paper, we propose a novel technique coined as Stochastic Driven Histology (SDH) that is able to provide information about co-located heterogeneous tissues. It employs learning of tissue specific ultrasonic backscattering statistical physics and signal confidence primal from labeled data for predicting heterogeneous tissue composition in plaques. We employ a random forest for the purpose of learning such a primal using sparsely labeled and noisy samples. In clinical deployment, the posterior prediction of different lesions constituting the plaque is estimated. Folded cross-validation experiments have been performed with 53 plaques indicating high concurrence with traditional tissue histology. On the wider horizon, this framework enables learning of tissue-energy interaction statistical physics and can be leveraged for promising clinical applications requiring tissue characterization beyond the application demonstrated in this paper.

  5. Vulnerable Atherosclerotic Plaque Elasticity Reconstruction Based on a Segmentation-Driven Optimization Procedure Using Strain Measurements: Theoretical Framework

    PubMed Central

    Le Floc’h, Simon; Tracqui, Philippe; Finet, Gérard; Gharib, Ahmed M.; Maurice, Roch L.; Cloutier, Guy; Pettigrew, Roderic I.

    2016-01-01

    It is now recognized that prediction of the vulnerable coronary plaque rupture requires not only an accurate quantification of fibrous cap thickness and necrotic core morphology but also a precise knowledge of the mechanical properties of plaque components. Indeed, such knowledge would allow a precise evaluation of the peak cap-stress amplitude, which is known to be a good biomechanical predictor of plaque rupture. Several studies have been performed to reconstruct a Young’s modulus map from strain elastograms. It seems that the main issue for improving such methods does not rely on the optimization algorithm itself, but rather on preconditioning requiring the best estimation of the plaque components’ contours. The present theoretical study was therefore designed to develop: 1) a preconditioning model to extract the plaque morphology in order to initiate the optimization process, and 2) an approach combining a dynamic segmentation method with an optimization procedure to highlight the modulogram of the atherosclerotic plaque. This methodology, based on the continuum mechanics theory prescribing the strain field, was successfully applied to seven intravascular ultrasound coronary lesion morphologies. The reconstructed cap thickness, necrotic core area, calcium area, and the Young’s moduli of the calcium, necrotic core, and fibrosis were obtained with mean relative errors of 12%, 4% and 1%, 43%, 32%, and 2%, respectively. PMID:19164080

  6. Plasma FGF23 and Calcified Atherosclerotic Plaque in African Americans with Type 2 Diabetes Mellitus.

    PubMed

    Freedman, Barry I; Divers, Jasmin; Russell, Gregory B; Palmer, Nicholette D; Bowden, Donald W; Carr, J Jeffrey; Wagenknecht, Lynne E; Hightower, R Caresse; Xu, Jianzhao; Smith, Susan Carrie; Langefeld, Carl D; Hruska, Keith A; Register, Thomas C

    2015-01-01

    Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone implicated in disorders of serum phosphorus concentration and vitamin D. The role of FGF23 in vascular calcification remains controversial. Relationships between FGF23 and coronary artery calcified atherosclerotic plaque (CAC), aortoiliac calcified plaque (CP), carotid artery CP, volumetric bone mineral density (vBMD), albuminuria, and estimated glomerular filtration rate (eGFR) were determined in 545 African Americans with type 2 diabetes (T2D) and preserved kidney function in African American-Diabetes Heart Study participants. Generalized linear models were fitted to test associations between FGF23 and cardiovascular, bone, and renal phenotypes, and change in measurements over time, adjusting for age, gender, African ancestry proportion, body mass index, diabetes duration, hemoglobin A1c, blood pressure, renin-angiotensin-system inhibitors, statins, calcium supplements, serum calcium, and serum phosphate. The sample was 56.7% female with a mean (SD) age of 55.6 (9.6) years, diabetes duration of 10.3 (8.2) years, eGFR 90.9 (22.1) ml/min/1.73 m2, urine albumin:creatinine ratio (UACR) 151 (588) (median 13) mg/g, plasma FGF23 161 (157) RU/ml, and CAC 637 (1,179) mg. In fully adjusted models, FGF23 was negatively associated with eGFR (p < 0.0001) and positively associated with UACR (p < 0.0001) and CAC (p = 0.0006), but not with carotid CP or aortic CP. Baseline FGF23 concentration did not associate with changes in vBMD or CAC after a mean of 5.1 years follow-up. Plasma FGF23 concentrations were independently associated with subclinical coronary artery disease, albuminuria, and kidney function in the understudied African American population with T2D. Findings support relationships between FGF23 and vascular calcification, but not between FGF23 and bone mineral density, in African Americans lacking advanced nephropathy. © 2016 S. Karger AG, Basel.

  7. Selective removal of cholesteryl ester in atherosclerotic plaque by nanosecond pulsed laser at 5.75 μm for less-invasive laser angioplasty

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Tsukimoto, Hideki; Hazama, Hisanao; Awazu, Kunio

    2009-02-01

    Laser angioplasty, for example XeCl excimer laser coronary angioplasty (ELCA), has gained more attention for the treatment of serious stenosis blocked by plaque. Low degrees of thermal damage after ablation of atherosclerotic plaques have been achieved by ELCA. However, the large number of risks associated with the procedure, for example, dissections or perforations of the coronary arteries limits its application. A laser treatment technique with high ablation efficiency but low arterial wall injury is desirable. Mid-infrared laser with a wavelength of 5.75 µm is selectively well absorbed in C=O stretching vibration mode of ester bonds in cholesteryl ester. The purpose of this study is to determine the effectiveness of nanosecond pulsed laser at 5.75 µm irradiation for atherosclerotic plaques. We made a study on the irradiation effect to atherosclerotic plaques in tunica intima in a wet condition. In this study, we used a mid-infrared tunable solid-state laser which is operated by difference-frequency generation, with a wavelength of 5.75 µm, a pulse width of 5 ns and a pulse duration of 10 Hz as a treatment light source, and a thoracic aorta of WHHLMI rabbit as an atherosclerosis model. As a result, less-invasive interaction parameters for removing atherosclerotic plaques were confirmed. This study shows that the nanosecond pulsed laser irradiation at 5.75 µm is a powerful tool for selective and less-invasive treatment of atherosclerotic plaques.

  8. Association between serum 25-hydroxyvitamin D and carotid atherosclerotic plaque in Chinese type 2 diabetic patients

    PubMed Central

    Ding, Ya-Hui; Wei, Tie-Ming; Qian, Lin-Yan; Ma, Yuan; Lao, Di-Bo; Yao, Bin; Pang, Jie

    2017-01-01

    Abstract In this study, we investigated the distribution of vitamin D and its association with carotid atherosclerotic plaque (CP) in Chinese type 2 diabetic (T2D) patients. We performed a cross-sectional study in 210 T2D and 94 age- and gender-matched nondiabetic patients during winter months, by determining serum 25-hydroxyvitamin D (25(OH)D) levels in both diabetic and nondiabetic controls. We carried out measurements of B-mode ultrasonography of carotid arteries in each T2D patient. The 25(OH)D concentration was 26.25 nmol/L among the T2D patients. About 93.3% T2D patients suffered from hypovitaminosis D. First, we found a clear inverse correlation between the 25(OH)D concentration and CP (P <0.001). Second, an association between 25(OH)D and macrovascular disease was significant (P = 0.005). In multivariate logistic regression analysis, decreasing 25(OH)D concentration was markedly associated with CP in T2D patients. Third, after adjusting for the confounding factors, we also observed a positive correlation between low levels of 25(OH)D in T2D patients with CP, when the following parameters were measured: old age (odds ratio [OR] = 2.533, P = 0.013); smoking (OR = 3.872, P = 0.001); and high level of low-density lipoprotein (LDL) cholesterol (OR = 2.776, P = 0.009). Thus, we concluded that high prevalence of hypovitaminosis D exists in Chinese T2D patients. Further, we found a significant association between low concentration of serum 25(OH)D and the existence of high body mass index, and high circulating LDL to be substantially positive predictors of patients with CP in T2D. PMID:28353575

  9. Gremlin-1 is an inhibitor of macrophage migration inhibitory factor and attenuates atherosclerotic plaque growth in ApoE-/- Mice.

    PubMed

    Müller, Iris; Schönberger, Tanja; Schneider, Martina; Borst, Oliver; Ziegler, Melanie; Seizer, Peter; Leder, Christoph; Müller, Karin; Lang, Michael; Appenzeller, Florian; Lunov, Oleg; Büchele, Berthold; Fahrleitner, Manuela; Olbrich, Marcus; Langer, Harald; Geisler, Tobias; Lang, Florian; Chatterjee, Madhumita; de Boer, Jan Freark; Tietge, Uwe J F; Bernhagen, Jürgen; Simmet, Thomas; Gawaz, Meinrad

    2013-11-01

    Monocyte infiltration and macrophage formation are pivotal steps in atherosclerosis and plaque vulnerability. Gremlin-1/Drm is crucial in embryo-/organogenesis and has been shown to be expressed in the adult organism at sites of arterial injury and to inhibit monocyte migration. The purpose of the present study was to evaluate and characterize the role of Gremlin-1 in atherosclerosis. Here we report that Gremlin-1 is highly expressed primarily by monocytes/macrophages in aortic atherosclerotic lesions of ApoE(-/-) mice and is secreted from activated monocytes and during macrophage development in vitro. Gremlin-1 reduces macrophage formation by inhibiting macrophage migration inhibitory factor (MIF), a cytokine critically involved in atherosclerotic plaque progression and vulnerability. Gremlin-1 binds with high affinity to MIF (KD = 54 nm), as evidenced by surface plasmon resonance analysis and co-immunoprecipitation, and reduces MIF-induced release of TNF-α from macrophages. Treatment of ApoE(-/-) mice with a dimeric recombinant fusion protein, mGremlin1-Fc, but not with equimolar control Fc or inactivated mGremlin1-Fc, reduced TNF-α expression, the content of monocytes/macrophages of atherosclerotic lesions, and attenuated atheroprogression. The present data disclose that Gremlin-1 is an endogenous antagonist of MIF and define a role for Gremlin-1/MIF interaction in atherosclerosis.

  10. The Complex Fate in Plasma of Gadolinium Incorporated into High-Density Lipoproteins Used for Magnetic Imaging of Atherosclerotic Plaques

    PubMed Central

    Barazza, Alessandra; Blachford, Courtney; Even-Or, Orli; Joaquin, Victor A.; Briley-Saebo, Karen C.; Chen, Wei; Jiang, Xian-Cheng; Mulder, Willem J. M.; Cormode, David P.; Fayad, Zahi A.; Fisher, Edward A.

    2014-01-01

    We have previously reported enhancing the imaging of atherosclerotic plaques in mice using reconstituted high density lipoproteins (HDL) as nanocarriers for the MRI contrast agent gadolinium (Gd). This study focuses on the underlying mechanisms of Gd delivery to atherosclerotic plaques. HDL, LDL, and VLDL particles containing Gd chelated to phosphatidyl ethanolamine (DTPA-DMPE) and a lipidic fluorophore were used to demonstrate the transfer of Gd-phospholipids among plasma lipoproteins in vitro and in vivo. To determine the basis of this transfer, the roles of phospholipid transfer protein (PLTP) and lipoprotein lipase (LpL) in mediating the migration of Gd-DTPA-DMPE among lipoproteins were investigated. The results indicated that neither was an important factor, suggesting that spontaneous transfer of Gd-DTPA-DMPE was the most probable mechanism. Finally, two independent mouse models were used to quantify the relative contributions of HDL and LDL reconstituted with Gd-DTPA-DMPE to plaque imaging enhancement by MR. Both sets of results suggested that Gd-DTPA-DMPE originally associated with LDL was about twice as effective as that injected in the form of Gd-HDL, and that some of Gd-HDL’s effectiveness in vivo is indirect through transfer of the imaging agent to LDL. In conclusion, the fate of Gd-DTPA-DMPE associated with a particular type of lipoprotein is complex, and includes its transfer to other lipoprotein species that are then cleared from the plasma into tissues. PMID:23617731

  11. Comparison between MDCT and Grayscale IVUS in a Quantitative Analysis of Coronary Lumen in Segments with or without Atherosclerotic Plaques.

    PubMed

    Falcão, João L A A; Falcão, Breno A A; Gurudevan, Swaminatha V; Campos, Carlos M; Silva, Expedito R; Kalil-Filho, Roberto; Rochitte, Carlos E; Shiozaki, Afonso A; Coelho-Filho, Otavio R; Lemos, Pedro A

    2015-01-27

    Background: The diagnostic accuracy of 64-slice MDCT in comparison with IVUS has been poorly described and is mainly restricted to reports analyzing segments with documented atherosclerotic plaques. Objectives: We compared 64-slice multidetector computed tomography (MDCT) with gray scale intravascular ultrasound (IVUS) for the evaluation of coronary lumen dimensions in the context of a comprehensive analysis, including segments with absent or mild disease. Methods: The 64-slice MDCT was performed within 72 h before the IVUS imaging, which was obtained for at least one coronary, regardless of the presence of luminal stenosis at angiography. A total of 21 patients were included, with 70 imaged vessels (total length 114.6 ± 38.3 mm per patient). A coronary plaque was diagnosed in segments with plaque burden > 40%. Results: At patient, vessel, and segment levels, average lumen area, minimal lumen area, and minimal lumen diameter were highly correlated between IVUS and 64-slice MDCT (p < 0.01). However, 64-slice MDCT tended to underestimate the lumen size with a relatively wide dispersion of the differences. The comparison between 64-slice MDCT and IVUS lumen measurements was not substantially affected by the presence or absence of an underlying plaque. In addition, 64-slice MDCT showed good global accuracy for the detection of IVUS parameters associated with flow-limiting lesions. Conclusions: In a comprehensive, multi-territory, and whole-artery analysis, the assessment of coronary lumen by 64-slice MDCT compared with coronary IVUS showed a good overall diagnostic ability, regardless of the presence or absence of underlying atherosclerotic plaques.

  12. Comparison between MDCT and Grayscale IVUS in a Quantitative Analysis of Coronary Lumen in Segments with or without Atherosclerotic Plaques

    PubMed Central

    Falcão, João L. A. A.; Falcão, Breno A. A.; Gurudevan, Swaminatha V.; Campos, Carlos M.; Silva, Expedito R.; Kalil-Filho, Roberto; Rochitte, Carlos E.; Shiozaki, Afonso A.; Coelho-Filho, Otavio R.; Lemos, Pedro A.

    2015-01-01

    Background The diagnostic accuracy of 64-slice MDCT in comparison with IVUS has been poorly described and is mainly restricted to reports analyzing segments with documented atherosclerotic plaques. Objectives We compared 64-slice multidetector computed tomography (MDCT) with gray scale intravascular ultrasound (IVUS) for the evaluation of coronary lumen dimensions in the context of a comprehensive analysis, including segments with absent or mild disease. Methods The 64-slice MDCT was performed within 72 h before the IVUS imaging, which was obtained for at least one coronary, regardless of the presence of luminal stenosis at angiography. A total of 21 patients were included, with 70 imaged vessels (total length 114.6 ± 38.3 mm per patient). A coronary plaque was diagnosed in segments with plaque burden > 40%. Results At patient, vessel, and segment levels, average lumen area, minimal lumen area, and minimal lumen diameter were highly correlated between IVUS and 64-slice MDCT (p < 0.01). However, 64-slice MDCT tended to underestimate the lumen size with a relatively wide dispersion of the differences. The comparison between 64-slice MDCT and IVUS lumen measurements was not substantially affected by the presence or absence of an underlying plaque. In addition, 64-slice MDCT showed good global accuracy for the detection of IVUS parameters associated with flow-limiting lesions. Conclusions In a comprehensive, multi-territory, and whole-artery analysis, the assessment of coronary lumen by 64-slice MDCT compared with coronary IVUS showed a good overall diagnostic ability, regardless of the presence or absence of underlying atherosclerotic plaques. PMID:25993595

  13. Comparison between MDCT and Grayscale IVUS in a Quantitative Analysis of Coronary Lumen in Segments with or without Atherosclerotic Plaques.

    PubMed

    Falcão, João L A A; Falcão, Breno A A; Gurudevan, Swaminatha V; Campos, Carlos M; Silva, Expedito R; Kalil-Filho, Roberto; Rochitte, Carlos E; Shiozaki, Afonso A; Coelho-Filho, Otavio R; Lemos, Pedro A

    2015-04-01

    The diagnostic accuracy of 64-slice MDCT in comparison with IVUS has been poorly described and is mainly restricted to reports analyzing segments with documented atherosclerotic plaques. We compared 64-slice multidetector computed tomography (MDCT) with gray scale intravascular ultrasound (IVUS) for the evaluation of coronary lumen dimensions in the context of a comprehensive analysis, including segments with absent or mild disease. The 64-slice MDCT was performed within 72 h before the IVUS imaging, which was obtained for at least one coronary, regardless of the presence of luminal stenosis at angiography. A total of 21 patients were included, with 70 imaged vessels (total length 114.6 ± 38.3 mm per patient). A coronary plaque was diagnosed in segments with plaque burden > 40%. At patient, vessel, and segment levels, average lumen area, minimal lumen area, and minimal lumen diameter were highly correlated between IVUS and 64-slice MDCT (p < 0.01). However, 64-slice MDCT tended to underestimate the lumen size with a relatively wide dispersion of the differences. The comparison between 64-slice MDCT and IVUS lumen measurements was not substantially affected by the presence or absence of an underlying plaque. In addition, 64-slice MDCT showed good global accuracy for the detection of IVUS parameters associated with flow-limiting lesions. In a comprehensive, multi-territory, and whole-artery analysis, the assessment of coronary lumen by 64-slice MDCT compared with coronary IVUS showed a good overall diagnostic ability, regardless of the presence or absence of underlying atherosclerotic plaques.

  14. The immune response is involved in atherosclerotic plaque calcification: could the RANKL/RANK/OPG system be a marker of plaque instability?

    PubMed

    Montecucco, Fabrizio; Steffens, Sabine; Mach, François

    2007-01-01

    Atherogenesis is characterized by an intense inflammatory process, involving immune and vascular cells. These cells play a crucial role in all phases of atherosclerotic plaque formation and complication through cytokine, protease, and prothrombotic factor secretion. The accumulation of inflammatory cells and thus high amounts of soluble mediators are responsible for the evolution of some plaques to instable phenotype which may lead to rupture. One condition strongly associated with plaque rupture is calcification, a physiopathological process orchestrated by several soluble factors, including the receptor activator of nuclear factor (NF)kappaB ligand (RANKL)/receptor activator of nuclear factor (NF)kappaB (RANK)/osteoprotegerin (OPG) system. Although some studies showed some interesting correlations with acute ischemic events, at present, more evidences are needed to evaluate the predictive and diagnostic value of serum sRANKL and OPG levels for clinical use. The major limitation is probably the poor specificity of these factors for cardiovascular disease. The identification of tissue-specific isoforms could increase the importance of sRANKL and OPG in predicting calcified plaque rupture and the dramatic ischemic consequences in the brain and the heart.

  15. 64Cu-Labeled LyP-1-Dendrimer for PET-CT Imaging of Atherosclerotic Plaque

    PubMed Central

    2015-01-01

    The ability to detect and quantify macrophage accumulation can provide important diagnostic and prognostic information for atherosclerotic plaque. We have previously shown that LyP-1, a cyclic 9-amino acid peptide, binds to p32 proteins on activated macrophages, facilitating the visualization of atherosclerotic plaque with PET. Yet, the in vivo plaque accumulation of monomeric [18F]FBA-LyP-1 was low (0.31 ± 0.05%ID/g). To increase the avidity of LyP-1 constructs to p32, we synthesized a dendritic form of LyP-1 on solid phase using lysine as the core structural element. Imaging probes (FAM or 6-BAT) were conjugated to a lysine or cysteine on the dendrimer for optical and PET studies. The N-terminus of the dendrimer was further modified with an aminooxy group in order to conjugate LyP-1 and ARAL peptides bearing a ketone. Oxime ligation of peptides to both dendrimers resulted in (LyP-1)4- and (ARAL)4-dendrimers with optical (FAM) and PET probes (6-BAT). For PET-CT studies, (LyP-1)4- and (ARAL)4-dendrimer-6-BAT were labeled with 64Cu (t1/2 = 12.7 h) and intravenously injected into the atherosclerotic (ApoE–/–) mice. After two hours of circulation, PET-CT coregistered images demonstrated greater uptake of the (LyP-1)4-dendrimer-64Cu than the (ARAL)4-dendrimer-64Cu in the aortic root and descending aorta. Ex vivo images and the biodistribution acquired at three hours after injection also demonstrated a significantly higher uptake of the (LyP-1)4-dendrimer-64Cu (1.1 ± 0.26%ID/g) than the (ARAL)4-dendrimer-64Cu (0.22 ± 0.05%ID/g) in the aorta. Similarly, subcutaneous injection of the LyP-1-dendrimeric carriers resulted in preferential accumulation in plaque-containing regions over 24 h. In the same model system, ex vivo fluorescence images within aortic plaque depict an increased accumulation and penetration of the (LyP-1)4-dendrimer-FAM as compared to the (ARAL)4-dendrimer-FAM. Taken together, the results suggest that the (LyP-1)4-dendrimer can be applied for in

  16. In vivo and ex vivo measurements of the mean ADC values of lipid necrotic core and hemorrhage obtained from diffusion weighted imaging in human atherosclerotic plaques.

    PubMed

    Kim, Seong-Eun; Treiman, Gerald S; Roberts, John A; Jeong, Eun-Kee; Shi, Xianfeng; Hadley, J Rock; Parker, Dennis L

    2011-11-01

    To determine the apparent diffusion coefficient (ADC) values of lipid and hemorrhage in atherosclerotic plaque in human carotid arteries in vivo and compare the values obtained from ex vivo carotid endarterectomy specimens. In vivo diffusion-weighted imaging (DWI) of carotid plaques was performed using a 2D single shot Interleaved Multislice Inner Volume Diffusion Weighted Echo Planar Imaging (2D ss-IMIV DWEPI) on 8 subjects who subsequently underwent carotid endarterectomy. A total of 32 slices used to construct the ADC maps were reviewed for the measurement of the mean ADC values in vessel wall, hemorrhage, and lipid necrotic core. The 8 endarterectomy specimens were scanned using by three-dimensional ms-IV-DWEPI. After the ADC maps were created, the mean ADC values in the same locations selected for in vivo values were calculated. The mean ADC values obtained from in vivo DWI in normal vessel wall, lipid rich core, and hemorrhage were 1.27 ± 0.16, 0.38 ± 0.1, and 0.98 ± 0.25 × 10(-3) mm(2)/s, respectively. The mean ADC values in ex vivo lipid necrotic core, and hemorrhage were 0.33 ± 0.08, 1.28 ± 0.10 × 10(-3) mm(2)/s, respectively. These components mean ADC values obtained from in vivo and ex vivo ADC maps were compared. ADC values of the carotid plaque components in vivo are consistent with values obtained from ex vivo endarterectomy specimens. The ability to obtain consistent plaque ADC values in vivo indicates that this technique could be an integral part of the basis for plaque component identification in conjunction with other MRI techniques. Copyright © 2011 Wiley Periodicals, Inc.

  17. Atherosclerotic Plaque Tissue: Noninvasive Quantitative Assessment of Characteristics with Software-aided Measurements from Conventional CT Angiography.

    PubMed

    Sheahan, Malachi; Ma, Xiaonan; Paik, David; Obuchowski, Nancy A; St Pierre, Samantha; Newman, William P; Rae, Guenevere; Perlman, Eric S; Rosol, Michael; Keith, James C; Buckler, Andrew J

    2017-08-31

    Purpose To (a) evaluate whether plaque tissue characteristics determined with conventional computed tomographic (CT) angiography could be quantitated at higher levels of accuracy by using image processing algorithms that take characteristics of the image formation process coupled with biologic insights on tissue distributions into account by comparing in vivo results and ex vivo histologic findings and (b) assess reader variability. Materials and Methods Thirty-one consecutive patients aged 43-85 years (average age, 64 years) known to have or suspected of having atherosclerosis who underwent CT angiography and were referred for endarterectomy were enrolled. Surgical specimens were evaluated with histopathologic examination to serve as standard of reference. Two readers used lumen boundary to determine scanner blur and then optimized component densities and subvoxel boundaries to best fit the observed image by using semiautomatic software. The accuracy of the resulting in vivo quantitation of calcification, lipid-rich necrotic core (LRNC), and matrix was assessed with statistical estimates of bias and linearity relative to ex vivo histologic findings. Reader variability was assessed with statistical estimates of repeatability and reproducibility. Results A total of 239 cross sections obtained with CT angiography and histologic examination were matched. Performance on held-out data showed low levels of bias and high Pearson correlation coefficients for calcification (-0.096 mm(2) and 0.973, respectively), LRNC (1.26 mm(2) and 0.856), and matrix (-2.44 mm(2) and 0.885). Intrareader variability was low (repeatability coefficient ranged from 1.50 mm(2) to 1.83 mm(2) among tissue characteristics), as was interreader variability (reproducibility coefficient ranged from 2.09 mm(2) to 4.43 mm(2)). Conclusion There was high correlation and low bias between the in vivo software image analysis and ex vivo histopathologic quantitative measures of atherosclerotic plaque tissue

  18. Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice.

    PubMed

    Hara, Tomoya; Fukuda, Daiju; Tanaka, Kimie; Higashikuni, Yasutomi; Hirata, Yoichiro; Nishimoto, Sachiko; Yagi, Shusuke; Yamada, Hirotsugu; Soeki, Takeshi; Wakatsuki, Tetsuzo; Shimabukuro, Michio; Sata, Masataka

    2015-10-01

    Activated factor X (FXa) plays a key role in the coagulation cascade, whereas accumulating evidence suggests that it also contributes to the pathophysiology of chronic inflammation on the vasculature. In this study, we assessed the hypothesis that rivaroxaban (Riv), a direct FXa inhibitor, inhibits atherogenesis by reducing macrophage activation. Expression levels of PAR-1 and PAR-2, receptors for FXa, increased in the aorta of apolipoprotein E-deficient (ApoE(-/-)) mice compared with wild-type mice (P < 0.01, P < 0.05, respectively). Administration of Riv (5 mg/kg/day) for 20 weeks to 8-week-old ApoE(-/-) mice reduced atherosclerotic lesion progression in the aortic arch as determined by en-face Sudan IV staining compared with the non-treated group (P < 0.05) without alteration of plasma lipid levels and blood pressure. Histological analyses demonstrated that Riv significantly decreased lipid deposition, collagen loss, macrophage accumulation and matrix metallopeptidase-9 (MMP-9) expression in atherosclerotic plaques in the aortic root. Quantitative RT-PCR analyses using abdominal aorta revealed that Riv significantly reduced mRNA expression of inflammatory molecules, such as MMP-9, tumor necrosis factor-α (TNF-α). In vitro experiments using mouse peritoneal macrophages or murine macrophage cell line RAW264.7 demonstrated that FXa increased mRNA expression of inflammatory molecules (e.g., interleukin (IL)-1β and TNF-α), which was blocked in the presence of Riv. Riv attenuates atherosclerotic plaque progression and destabilization in ApoE(-/-) mice, at least in part by inhibiting pro-inflammatory activation of macrophages. These results indicate that Riv may be particularly beneficial for the management of atherosclerotic diseases, in addition to its antithrombotic activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Effect of Si-Miao-Yong-An on the stability of atherosclerotic plaque in a diet-induced rabbit model.

    PubMed

    Peng, Li; Li, Ming; Xu, Ying-Zhi; Zhang, Guang-Yin; Yang, Cui; Zhou, Ya-Nan; Li, Liang-Jun; Zhang, Jun-Ping

    2012-08-30

    Si-Miao-Yong-An (Trade name: Mai-Luo-Ning), a Chinese herbal formulation comprising Flos Lonicerae Japonicae, Radix Scrophulariae Ningpoensis, Radix Angelicae Sinensis and Radix Glycyrrhizae Uralensis, has been used in treating ischemic cardiovascular and cerebrovascular diseases for many years. Clinical and experimental studies have shown that Si-Miao-Yong-An can inhibit the inflammatory response and antagonize the blood clotting process. To investigate the effect of Si-Miao-Yong-An on atherosclerotic plaque stability in rabbit model. Seventy male rabbits were divided into four groups. Rabbits in the normal group were fed with normal diet, while rabbits in model group and drug treatment groups were fed with high cholesterol diet, underwent BSA-induced immunologic injury and balloon-induced mechanical injury. After atherosclerotic rabbits were treated with simvastatin or Si-Miao-Yong-An for 16 weeks, blood and aorta in four groups were collected for analysis. Si-Miao-Yong-An reduced the level of triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) in blood after treatment for 16 weeks. Compared with model group, Si-Miao-Yong-An decreased the content of many inflammatory cytokines in blood and plaque. Morphological analysis of abdominal aorta showed that Si-Miao-Yong-An increased fibrous cap thickness and smooth muscle cells, reduced lipid core area and macrophages, and contributed to inhibit matrix degradation and inflammatory response. In this study, we provided evidence for that Si-Miao-Yong-An could promote the stability of atherosclerotic plaque in the rabbit model, indicating that this medicine was a reasonable drug treating cardiovascular diseases in clinical. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques

    PubMed Central

    Montecucco, Fabrizio; Di Marzo, Vincenzo; da Silva, Rafaela F.; Vuilleumier, Nicolas; Capettini, Luciano; Lenglet, Sébastien; Pagano, Sabrina; Piscitelli, Fabiana; Quintao, Silvia; Bertolotto, Maria; Pelli, Graziano; Galan, Katia; Pilet, Lucie; Kuzmanovic, Kristina; Burger, Fabienne; Pane, Bianca; Spinella, Giovanni; Braunersreuther, Vincent; Gayet-Ageron, Angèle; Pende, Aldo; Viviani, Giorgio Luciano; Palombo, Domenico; Dallegri, Franco; Roux-Lombard, Pascale; Santos, Robson A.S.; Stergiopulos, Nikos; Steffens, Sabine; Mach, François

    2012-01-01

    Aims The activation of cannabinoid receptor type 2 (CB2)-mediated pathways might represent a promising anti-atherosclerotic treatment. Here, we investigated the expression of the endocannabinoid system in human carotid plaques and the impact of CB2 pharmacological activation on markers of plaque vulnerability in vivo and in vitro. Methods and results The study was conducted using all available residual human carotid tissues (upstream and downstream the blood flow) from our cohort of patients symptomatic (n = 13) or asymptomatic (n = 27) for ischaemic stroke. Intraplaque levels of 2-arachidonoylglycerol, anandamide N-arachidonoylethanolamine, N-palmitoylethanolamine, N-oleoylethanolamine, and their degrading enzymes (fatty acid amide hydrolase and monoacylglycerol lipase) were not different in human plaque portions. In the majority of human samples, CB1 (both mRNA and protein levels) was undetectable. In downstream symptomatic plaques, CB2 protein expression was reduced when compared with asymptomatic patients. In these portions, CB2 levels were inversely correlated (r = −0.4008, P = 0.0170) with matrix metalloprotease (MMP)-9 content and positively (r = 0.3997, P = 0.0174) with collagen. In mouse plaques, CB2 co-localized with neutrophils and MMP-9. Treatment with the selective CB2 agonist JWH-133 was associated with the reduction in MMP-9 content in aortic root and carotid plaques. In vitro, pre-incubation with JWH-133 reduced tumour necrosis factor (TNF)-α-mediated release of MMP-9. This effect was associated with the reduction in TNF-α-induced ERK1/2 phosphorylation in human neutrophils. Conclusion Cannabinoid receptor type 2 receptor is down-regulated in unstable human carotid plaques. Since CB2 activation prevents neutrophil release of MMP-9 in vivo and in vitro, this treatment strategy might selectively reduce carotid vulnerability in humans. PMID:22112961

  1. The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques.

    PubMed

    Montecucco, Fabrizio; Di Marzo, Vincenzo; da Silva, Rafaela F; Vuilleumier, Nicolas; Capettini, Luciano; Lenglet, Sébastien; Pagano, Sabrina; Piscitelli, Fabiana; Quintao, Silvia; Bertolotto, Maria; Pelli, Graziano; Galan, Katia; Pilet, Lucie; Kuzmanovic, Kristina; Burger, Fabienne; Pane, Bianca; Spinella, Giovanni; Braunersreuther, Vincent; Gayet-Ageron, Angèle; Pende, Aldo; Viviani, Giorgio Luciano; Palombo, Domenico; Dallegri, Franco; Roux-Lombard, Pascale; Santos, Robson A S; Stergiopulos, Nikos; Steffens, Sabine; Mach, François

    2012-04-01

    The activation of cannabinoid receptor type 2 (CB(2))-mediated pathways might represent a promising anti-atherosclerotic treatment. Here, we investigated the expression of the endocannabinoid system in human carotid plaques and the impact of CB(2) pharmacological activation on markers of plaque vulnerability in vivo and in vitro. The study was conducted using all available residual human carotid tissues (upstream and downstream the blood flow) from our cohort of patients symptomatic (n = 13) or asymptomatic (n = 27) for ischaemic stroke. Intraplaque levels of 2-arachidonoylglycerol, anandamide N-arachidonoylethanolamine, N-palmitoylethanolamine, N-oleoylethanolamine, and their degrading enzymes (fatty acid amide hydrolase and monoacylglycerol lipase) were not different in human plaque portions. In the majority of human samples, CB(1) (both mRNA and protein levels) was undetectable. In downstream symptomatic plaques, CB(2) protein expression was reduced when compared with asymptomatic patients. In these portions, CB(2) levels were inversely correlated (r = -0.4008, P = 0.0170) with matrix metalloprotease (MMP)-9 content and positively (r = 0.3997, P = 0.0174) with collagen. In mouse plaques, CB(2) co-localized with neutrophils and MMP-9. Treatment with the selective CB(2) agonist JWH-133 was associated with the reduction in MMP-9 content in aortic root and carotid plaques. In vitro, pre-incubation with JWH-133 reduced tumour necrosis factor (TNF)-α-mediated release of MMP-9. This effect was associated with the reduction in TNF-α-induced ERK1/2 phosphorylation in human neutrophils. Cannabinoid receptor type 2 receptor is down-regulated in unstable human carotid plaques. Since CB(2) activation prevents neutrophil release of MMP-9 in vivo and in vitro, this treatment strategy might selectively reduce carotid vulnerability in humans.

  2. Attenuation-based characterization of coronary atherosclerotic plaque: comparison of dual source and dual energy CT with single-source CT and histopathology.

    PubMed

    Henzler, Thomas; Porubsky, Stefan; Kayed, Hany; Harder, Nils; Krissak, U Radko; Meyer, Mathias; Sueselbeck, Tim; Marx, Alexander; Michaely, Henrik; Schoepf, U Joseph; Schoenberg, Stefan O; Fink, Christian

    2011-10-01

    To compare different CT acquisition techniques regarding for attenuation-based characterization of coronary atherosclerotic plaques using histopathology as the standard of reference. In a post mortem study 17 human hearts were studied with dual-source CT (DSCT) and dual energy CT (DECT) mode on a DSCT as well as with 16-slice single-source CT (SSCT). At autopsy, atherosclerotic lesions were cut at 5 μm sections. Histopathologic classification of the plaques according to the American Heart Association (AHA) criteria was performed by two pathologists. Attenuation values of all plaques were measured in DSCT, DECT and SSCT studies, respectively and classified based on attenuation according to modified AHA criteria. 58 coronary plaques were identified at autopsy. Regardless of the CT technique only 52/58 plaques were found at CT (sensitivity=89.6%). There was no significant difference between the mean attenuation values of different plaque types between DSCT, DECT, and SSCT: type IV: 11HU/8HU/19HU; type Va: 44HU/45HU/52HU; type Vb: 1088HU/966HU/1079HU). The sensitivity for correct classification varied depending on the plaque type (type II=0%, type III=0%, type IV=43%, type Va=58%, Vb=97%). Independent of the used acquisition technique, SSCT, DSCT and DECT show similar results for attenuation-based characterization of atherosclerotic coronary plaques. Copyright © 2010. Published by Elsevier Ireland Ltd.

  3. Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Jacob Mancuso, J.; Sapozhnikova, Veronika; Dwelle, Jordan; Ma, Li L.; Willsey, Brian; Shams Kazmi, S. M.; Qiu, Jinze; Li, Xiankai; Asmis, Reto; Johnston, Keith P.; Feldman, Marc D.; Milner, Thomas E.

    2012-03-01

    The objective of this study was to assess the ability of combined photothermal wave (PTW) imaging and optical coherence tomography (OCT) to detect, and further characterize the distribution of macrophages (having taken up plasmonic gold nanorose as a contrast agent) and lipid deposits in atherosclerotic plaques. Aortas with atherosclerotic plaques were harvested from nine male New Zealand white rabbits divided into nanorose- and saline-injected groups and were imaged by dual-wavelength (800 and 1210 nm) multifrequency (0.1, 1 and 4 Hz) PTW imaging in combination with OCT. Amplitude PTW images suggest that lateral and depth distribution of nanorose-loaded macrophages (confirmed by two-photon luminescence microscopy and RAM-11 macrophage stain) and lipid deposits can be identified at selected modulation frequencies. Radiometric temperature increase and modulation amplitude of superficial nanoroses in response to 4 Hz laser irradiation (800 nm) were significantly higher than native plaque (P<0.001). Amplitude PTW images (4 Hz) were merged into a coregistered OCT image, suggesting that superficial nanorose-loaded macrophages are distributed at shoulders on the upstream side of atherosclerotic plaques (P<0.001) at edges of lipid deposits. Results suggest that combined PTW-OCT imaging can simultaneously reveal plaque structure and composition, permitting characterization of nanorose-loaded macrophages and lipid deposits in atherosclerotic plaques.

  4. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques.

    PubMed

    Calcagno, Claudia; Lobatto, Mark E; Dyvorne, Hadrien; Robson, Philip M; Millon, Antoine; Senders, Max L; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F; Black, Alexandra; Mulder, Willem J M; Fayad, Zahi A

    2015-10-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for

  5. Vascular Endothelial Growth Factor and Monocyte Chemoattractant Protein-1 Levels Unaltered in Symptomatic Atherosclerotic Carotid Plaque Patients from North India

    PubMed Central

    Khurana, Dheeraj; Mathur, Deepali; Prabhakar, Sudesh; Thakur, Keshav; Anand, Akshay

    2013-01-01

    We aimed to identify the role of vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein (MCP-1) as a serum biomarker of symptomatic carotid atherosclerotic plaque in North Indian population. Individuals with symptomatic carotid atherosclerotic plaque have high risk of ischemic stroke. Previous studies from western countries have shown an association between VEGF and MCP-1 levels and the incidence of ischemic stroke. In this study, venous blood from 110 human subjects was collected, 57 blood samples of which were obtained from patients with carotid plaques, 38 neurological controls without carotid plaques, and another 15 healthy controls who had no history of serious illness. Serum VEGF and MCP-1 levels were measured using commercially available enzyme-linked immunosorbent assay. We also correlated the data clinically and carried out risk factor analysis based on the detailed questionnaire obtained from each patient. For risk factor analysis, a total of 70 symptomatic carotid plaque cases and equal number of age and sex matched healthy controls were analyzed. We found that serum VEGF levels in carotid plaque patients did not show any significant change when compared to either of the controls. Similarly, there was no significant upregulation of MCP-1 in the serum of these patients. The risk factor analysis revealed that hypertension, diabetes, and physical inactivity were the main correlates of carotid atherosclerosis (p < 0.05). Prevalence of patients was higher residing in urban areas as compared to rural region. We also found that patients coming from mountain region were relatively less vulnerable to cerebral atherosclerosis as compared to the ones residing at non mountain region. On the contrary, smoking, obesity, dyslipidemia, alcohol consumption, and tobacco chewing were not observed as the determinants of carotid atherosclerosis risk in North India (p > 0.05). We conclude that the pathogenesis of carotid plaques may progress

  6. Flat-Panel Versus 64-Channel Computed Tomography for In Vivo Quantitative Characterization of Aortic Atherosclerotic Plaques

    PubMed Central

    Aboshady, Ibrahim; Cody, Dianna D.; Johnson, Evan M.; Gahremanpour, Amir; Vela, Deborah; Khalil, Kamal G.; DuPont, Herbert L.; Willerson, James T.; Buja, L. Maximilian; Gladish, Gregory W.

    2010-01-01

    Background Flat-panel computed tomography (FpCT) provides better spatial resolution than 64-channel CT (64-CT) and may improve in vivo quantitative assessment of atherosclerotic plaques. Methods and Results Lesions in 184 aortic histology sections from 6 Watanabe heritable hyperlipidemic rabbits were quantitatively compared with 64-CT (image thickness, 0.625 mm) and FpCT (image thickness, 0.150 mm) images. Images were re-oriented perpendicular to the vessel centerline. For detecting plaque, FpCT and 64-CT were not significantly different (sensitivity, 76 % vs 66%; P=NS). Although FpCT was significantly more sensitive (42 % vs 0%; P<0.001) for detecting eccentric lesions, the area under the curve (AUC) for FpCT (0.6) was not significantly different from that for 64-CT (0.45; P=NS). In detecting plaques with ≤10% lipid (low attenuation foci), FpCT was significantly more sensitive than 64-CT (24% vs 0.7%; P<0.01) and had a significantly greater AUC (0.6 vs 0.5; P<0.006). Additionally, FpCT was more sensitive (65% vs 0%; P<0.01) in detecting plaques with ≤5% calcium (high attenuation foci) but not in detecting branch points. Both FpCT and histology allowed us to detect low-attenuation foci as small as 0.3 mm in diameter, whereas 64-CT allowed us to detect only low-attenuation foci ≥1.5 mm in diameter. Conclusions Flat-panel CT seemed to have more potential for quantitative screening low-risk small atherosclerotic lesions, whereas 64-CT was apparently more useful when imaging established, well-characterized lesions particularly when measuring the vascular wall thickness in a rabbit model of atherosclerosis. PMID:21185613

  7. Flat-panel versus 64-channel computed tomography for in vivo quantitative characterization of aortic atherosclerotic plaques.

    PubMed

    Aboshady, Ibrahim; Cody, Dianna D; Johnson, Evan M; Gahremanpour, Amir; Vela, Deborah; Khalil, Kamal G; Dupont, Herbert L; Willerson, James T; Buja, L Maximilian; Gladish, Gregory W

    2012-05-03

    Flat-panel computed tomography (FpCT) provides better spatial resolution than 64-channel CT (64-CT) and may improve in vivo quantitative assessment of atherosclerotic plaques. Lesions in 184 aortic histology sections from 6 Watanabe heritable hyperlipidemic rabbits were quantitatively compared with 64-CT (image thickness, 0.625 mm) and FpCT (image thickness, 0.150 mm) images. Images were re-oriented perpendicular to the vessel centerline. For detecting plaque, FpCT and 64-CT were not significantly different (sensitivity, 76% vs 66%; P=NS). Although FpCT was significantly more sensitive (42% vs 0%; P=<0.001) for detecting eccentric lesions, the area under the curve (AUC) for FpCT (0.6) was not significantly different from that for 64-CT (0.45; P=NS). In detecting plaques with ≤ 10% lipid (low attenuation foci), FpCT was significantly more sensitive than 64-CT (24% vs 0.7%; P<0.00) and had a significantly greater AUC (0.6 vs 0.5; P<0.006). Additionally, FpCT was more sensitive (65% vs 0%; P<0.00) in detecting plaques with ≤ 5% calcium (high attenuation foci) but not in detecting branch points. Both FpCT and histology allowed us to detect low-attenuation foci as small as 0.3mm in diameter, whereas 64-CT allowed us to detect only low-attenuation foci ≥ 1.5mm in diameter. Flat-panel CT seemed to have more potential for quantitatively screening low-risk small atherosclerotic lesions, whereas 64-CT was apparently more useful when imaging established, well-characterized lesions, particularly when measuring the vascular wall thickness in a rabbit model of atherosclerosis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques.

    PubMed Central

    Katz, S S; Shipley, G G; Small, D M

    1976-01-01

    95 individual human atherosclerotic lesions from 26 persons were classified into three groups under the dissecting microscope: fatty streaks, fibrous plaques, and gruel (atheromatous) plaques. Each lesion was isolated by microdissection, its lipid composition determined by chromatography, and the physical states of the lipids identified by polarizing microscopy and in some cases by X-ray diffraction. The composition of each lesion was plotted on the in vitro phase diagram of the major lipids of plaques: cholesterol, cholesterol ester, and phospholipid. The observed physical states were compared with those predicted by the location of the lipid composition on the phase diagram. The most severe lesions (gruel plaques) had an average lipid composition of cholesterol 31.5+/-1.9%, cholesterol ester 47.2+/-2.3%, and phospholipid 15.3+/-0.5%. Their compositions fell within the three-phase zone of the phase diagram, predicting the lipids to be separated into a cholesterol crystal phase, a cholesterol ester oily phase and a phospholipid liquid crystalline phase. In addition to the phospholipid liquid crystalline phase of membranes and myelin-like figures demonstrable by electron microscopy, polarizing microscopy revealed the other two predicted phases, isotropic cholesterol ester-rich droplets and cholesterol crystals. X-ray diffraction studies verified the identity of the crystals as cholesterol monohydrate. Fibrous plaques also had an average lipid composition within the three-phase zone of the phase diagram. Polarizing microscopy revealed the presence of cholesterol monohydrate crystals and lipid droplets in all of these lesions; the droplets were predominately isotropic in 28 of the 31 fibrous plaques. Although these lesions had less free cholesterol and more cholesterol ester than gruel plaques, they were otherwise similar. Fatty streaks had compositions within both the two- and three-phase zones of the phase diagram. Compared with gruel plaques, the fatty streaks

  9. Predictors of change in carotid atherosclerotic plaque inflammation and burden as measured by 18-FDG-PET and MRI, respectively, in the dal-PLAQUE study

    PubMed Central

    Woodward, Mark; Samber, Daniel; Bucerius, Jan; Tawakol, Ahmed; Kallend, David; Rudd, James H. F.; Abt, Markus; Fayad, Zahi A.

    2014-01-01

    Baseline predictors of response to treatment of patients with coronary heart disease (CHD) with respect to vascular inflammation and atherosclerotic plaque burden are poorly understood. From post hoc analysis of the dal-PLAQUE study (NCT00655473), 18F–fluorodeoxyglucose-positron emission tomography (18-FDG-PET) imaging and carotid black blood magnetic resonance imaging (MRI) were used to track changes in these vascular parameters. Baseline demographics, imaging, and biomarkers were collected/measured in 130 patients with CHD or CHD risk-equivalents, and imaging follow-up at 6 months (PET) and 24 months (MRI) was performed. Using stepwise linear regression, predictors of change in carotid plaque inflammation by PET [target-to-background ratio (TBR), n = 92] and plaque burden by MRI [wall area (WA) and total vessel area (TVA), n = 89] were determined. Variables with p < 0.05 in multivariable models were considered independently significant. Interleukin-6, systolic blood pressure and standard deviation of wall thickness (WT) at baseline were independently positively associated with 18-FDG uptake (mean of maximum [MeanMax] TBR change over 6 months). Mean of mean TBR, phospholipase A2, apolipoprotein A-I, and high-sensitivity C-reactive protein at baseline were independently negatively associated with MeanMax TBR change over 6 months. Mean WT and plasminogen activator inhibitor-1 (PAI-1) activity at baseline, and age, were independently associated with change in WA over 24 months. For TVA changes; mean WA and PAI-1 activity at baseline, age, and female gender were independent predictors. These findings may help determine patients most suitable for clinical trials employing plaque inflammation or burden changes as endpoints. PMID:24458953

  10. Aortic atherosclerotic plaque detection using a multiwavelength handheld photoacoustic imaging system

    NASA Astrophysics Data System (ADS)

    Hirano, Susumu; Namita, Takeshi; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2016-03-01

    Patients affected by diseases caused by arteriosclerosis are increasing. Atherosclerosis, which is becoming an especially difficult health problem, forms plaques from lipids such as cholesterol located in walls of the aorta, cerebral artery, and coronary artery. Because lipid-rich plaques are vulnerable and because arterial rupture causes acute vascular occlusion, early detection is crucially important to prevent plaque growth and rupture. Ultrasound systems can detect plaques but cannot discriminate between vulnerable and equable plaques. To evaluate plaques non-invasively and easily, we developed a handheld photoacoustic imaging device. Its usefulness was verified in phantom experiments with a bovine aorta in which mimic plaque had been embedded. Photoacoustic images taken at wavelengths that produce high light absorbance by lipids show strong photoacoustic signals from the boundary of the mimic plaque. Results confirmed that our system can evaluate plaque properties by analysis with the photoacoustic spectrum. The effects of surrounding tissues and tissue components on plaque evaluation were investigated using a layered phantom. The mimic plaque located under a 6 mm blood layer was also evaluated. Results of these analyses demonstrate the system's usefulness.

  11. Data on the lipoprotein (a), coronary atherosclerotic burden and vulnerable plaque phenotype in angiographic obstructive coronary artery disease.

    PubMed

    Niccoli, Giampaolo; Chin, Diana; Scalone, Giancarla; Panebianco, Mario; Abbolito, Sofia; Cosentino, Nicola; Jacoangeli, Francesca; Refaat, Hesham; Gallo, Giovanna; Salerno, Gerardo; Volpe, Massimo; Crea, Filippo; De Biase, Luciano

    2016-06-01

    Lipoprotein Lp(a) represents an independent risk factor for coronary artery disease (CAD). However, its association with CAD burden and lipid rich plaques prone to rupture in patients with acute coronary syndrome (ACS) still remains unknown. These data aim to investigate the association among serum Lipoprotein(a) (Lpa) levels, coronary atherosclerotic burden and features of culprit plaque in patients with ACS and obstructive CAD. For his reason, a total of 500 ACS patients were enrolled for the angiographic cohort and 51 ACS patients were enrolled for the optical coherence tomography (OCT) cohort. Angiographic CAD severity was assessed by Sullivan score and by Bogaty score including stenosis score and extent index, whereas OCT plaque features were evaluated at the site of the minimal lumen area and along the culprit segment. In the angiographic cohort, Lp(a) was a weak independent predictor of Sullivan score (p<0.0001), stenosis score (p<0.0001) and extent index (p<0.0001). In the OCT cohort, patients with higher Lp(a) levels (>30 md/dl) compared to patients with lower Lp(a) levels (<30 md/dl) exhibited a higher prevalence of lipidic plaque at the site of the culprit stenosis (P=0.02), a wider lipid arc (p=0.003) and a higher prevalence of thin-cap fibroatheroma (p=0.004).

  12. Data on the lipoprotein (a), coronary atherosclerotic burden and vulnerable plaque phenotype in angiographic obstructive coronary artery disease

    PubMed Central

    Niccoli, Giampaolo; Chin, Diana; Scalone, Giancarla; Panebianco, Mario; Abbolito, Sofia; Cosentino, Nicola; Jacoangeli, Francesca; Refaat, Hesham; Gallo, Giovanna; Salerno, Gerardo; Volpe, Massimo; Crea, Filippo; De Biase, Luciano

    2016-01-01

    Lipoprotein Lp(a) represents an independent risk factor for coronary artery disease (CAD). However, its association with CAD burden and lipid rich plaques prone to rupture in patients with acute coronary syndrome (ACS) still remains unknown. These data aim to investigate the association among serum Lipoprotein(a) (Lpa) levels, coronary atherosclerotic burden and features of culprit plaque in patients with ACS and obstructive CAD. For his reason, a total of 500 ACS patients were enrolled for the angiographic cohort and 51 ACS patients were enrolled for the optical coherence tomography (OCT) cohort. Angiographic CAD severity was assessed by Sullivan score and by Bogaty score including stenosis score and extent index, whereas OCT plaque features were evaluated at the site of the minimal lumen area and along the culprit segment. In the angiographic cohort, Lp(a) was a weak independent predictor of Sullivan score (p<0.0001), stenosis score (p<0.0001) and extent index (p<0.0001). In the OCT cohort, patients with higher Lp(a) levels (>30 md/dl) compared to patients with lower Lp(a) levels (<30 md/dl) exhibited a higher prevalence of lipidic plaque at the site of the culprit stenosis (P=0.02), a wider lipid arc (p=0.003) and a higher prevalence of thin-cap fibroatheroma (p=0.004) PMID:27158659

  13. Effect of Quercus infectoria and Rosa damascena on lipid profile and atherosclerotic plaque formation in rabbit model of hyperlipidemia.

    PubMed

    Gholamhoseinian, A; Shahouzehi, B; Joukar, S; Iranpoor, M

    2012-01-01

    Hyperlipidemia is the cause of many complications in the human societies. In this study, the effect of methanol extracts of Quercus infectoria (QI) galls and Rosa damascena (RD) Mill flower were studied on lipid profile and atherosclerotic plaques formation in hyperlipidemic rabbits. Thirty-six New Zeland white rabbits randomly divided into 6 groups as control (I), hyperlipidemic (II), hyperlipidemic+QI (III), hyperlipidemic+RD (IV), +Atorvastolin (V) and hyperlipidemic+Orlistat (VI) and were fed with high fat diet (0.5% cholesterol and 16% hydrogenated vegetable oil) for 45 days. At the end of the study period, lipid profile and plaque formation were assessed. Total Cholesterol (TC), Low Density Lipoprotein (LDL) and Triglyceride (TG) levels were significantly increased in hyperlipidemic group compared with control group (p < 0.001). Methanol extract consumption of Quercus infectoria significantly decreased plasma levels of TC, TG and LDL (p < 0.001). It also decreased plaques formation in semi lunar valve and thoracic aorta. Rosa damascena mill flower methanol extract moderately decreased the levels of TC, TG, LDL and plaques formation but it was not significant. HDL levels and weight of animals did not show significant difference among groups. Based on the doses used in this study, our finding indicated that QI but no RD methanol extract has anti atherogenic and hypolipidemic activities.

  14. Quantifying effect of intraplaque hemorrhage on critical plaque wall stress in human atherosclerotic plaques using three-dimensional fluid-structure interaction models.

    PubMed

    Huang, Xueying; Yang, Chun; Canton, Gador; Ferguson, Marina; Yuan, Chun; Tang, Dalin

    2012-12-01

    Recent magnetic resonance studies have indicated that intraplaque hemorrhage (IPH) may accelerate plaque progression and play an important role in plaque destabilization. However, the impact of hemorrhage on critical plaque wall stress (CPWS) and strain (CPWSn) has yet to be determined. The objective of this study was to assess the effect of the presence and size of IPH on wall mechanics. The magnetic resonance image (MRI) of one patient with histology-confirmed IPH was used to build eight 3D fluid-structure interaction (FSI) models by altering the dimensions of the existing IPH. As a secondary end point, the combined effect of IPH and fibrous cap thickness (FCT) was assessed. A volume curve fitting method (VCFM) was applied to generate a mesh that would guarantee numerical convergence. Plaque wall stress (PWS), strain (PWSn), and flow shear stress (FSS) were extracted from all nodal points on the lumen surface for analysis. Keeping other conditions unchanged, the presence of intraplaque hemorrhage caused a significant increase (27.5%) in CPWS; reduced FCT caused an increase of 22.6% of CPWS. Similar results were found for CPWSn. Furthermore, combination of IPH presence, reduced FCT, and increased IPH volume caused an 85% and 75% increase in CPWS and CPWSn, respectively. These results show that intraplaque hemorrhage has considerable impact on plaque stress and strain conditions and accurate quantification of IPH could lead to more accurate assessment of plaque vulnerability. Large-scale studies are needed to further validate our findings.

  15. Motion compensation method using dynamic programming for quantification of neovascularization in carotid atherosclerotic plaques with contrast enhanced ultrasound (CEUS)

    NASA Astrophysics Data System (ADS)

    Akkus, Zeynettin; Hoogi, Assaf; Renaud, Guillaume; ten Kate, Gerrit L.; van den Oord, Stijn C. H.; Schinkel, Arend F. L.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2012-03-01

    Intraplaque neovascularization (IPN) has been linked with progressive atherosclerotic disease and plaque instability in several studies. Quantification of IPN may allow early detection of vulnerable plaques. A dedicated motion compensation method with normalized-cross-correlation (NCC) block matching combined with multidimensional (2D+time) dynamic programming (MDP) was developed for quantification of IPN in small plaques (<30% diameter stenosis). The method was compared to NCC block matching without MDP (forward tracking (FT)) and showed to improve motion tracking. Side-by-side CEUS and B-mode ultrasound images of carotid arteries were acquired by a Philips iU22 system with a L9-3 linear array probe. The motion pattern for the plaque region was obtained from the Bmode images with MDP. MDP results were evaluated in-vitro by a phantom and in-vivo by comparing to manual tracking of three experts for multibeat-image-sequences (MIS) of 11 plaques. In the in-vivo images, the absolute error was 72+/-55μm (mean+/-SD) for X (longitudinal) and 34+/-23μm for Y (radial). The method's success rate was visually assessed on 67 MIS. The tracking was considered failed if it deviated >2 pixels (~200μm) from true motion in any frame. Tracking was scored as fully successful in 63 MIS (94%) for MDP vs. 52(78%) for FT. The range of displacement over these 63 was 1045+/-471μm (X) and 395+/-216μm (Y). The tracking sporadically failed in 4 MIS (6%) due to poor image quality, jugular vein proximity and out-of-plane motion. Motion compensation showed improved lumen-plaque contrast separation. In conclusion, the proposed method is sufficiently accurate and successful for in vivo application.

  16. [Ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance angiography combined with inflammatory factors for detecting atherosclerotic plaques in rabbits].

    PubMed

    Li, Gongxin; Wang, Luzhao; Liu, Peng; Wen, Zhibo; Huang, Fanheng; Chen, Liheng; Zhao, Xin; Lin, Lin; Zhou, Yijun

    2014-08-01

    To investigate the feasibility of Ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance angiography (USPIO-MRA) combined with interleukin-6 (IL-6) and IL-10 detection for detecting atherosclerotic plaques in rabbits. Twenty-four normal male rabbits were randomly assigned (n=8) into group A with atherosclerosis induced by damaging the aortic tunica intima with Foley's tube in combination with a high fat diet, group B with a high fat diet, and group C without any intervention. At week 12, plain and USPIO-MRA was performed in all the 24 rabbits and the results were compared with pathological examinations; blood samples were collected from the ear vein to examine blood lipids and levels of IL-6 and IL-10. The rabbits in groups A and B showed significantly different IL-6 levels (167 ± 21.3 vs 116 ± 14.3 pg/ml, P<0.05) but comparable blood lipids and IL-10 levels (P>0.05). The levels of IL-6, IL-10, TC, TG, and LDL, but not HDL, differed significantly between groups A and C and between groups B and C (P<0.01). Continuous MRA scan showed significantly different signal-to-noise ratios (SNR) between the 3 groups. USPIO-MRA combined with IL-6 and IL-10 detection is feasible in detecting atherosclerotic plaques in rabbits.

  17. Non-invasive assessment of atherosclerotic plaques effects on the segment-to-segment human carotid visco-elasticity and filtering.

    PubMed

    Bia, D; Pessana, F; Forcada, P; Zócalo, Y; Kotliar, C; Armentano, R L

    2010-01-01

    Although a variety of factors have been proposed as key factors of the atherosclerotic plaque vulnerability, the mechanisms that contribute to this problem are not yet fully characterized. In previous works we demonstrated that changes in arterial wall viscosity and elasticity and/or in the filtering function (FF) could be in the basis of arterial wall alterations. If these properties are altered in arterial wall with atherosclerotic plaques remain to be analyzed. Our aims were to analyze, the arterial wall visco-elasticity and FF of human carotid arteries with atherosclerotic plaques. To this end, instantaneous arterial diameter waveforms were obtained non-invasively (B-Mode Echography), in five sites (S1-S5) on the carotid artery. After that, diameter waveform obtained in S1 (first segment of the common carotid artery) was calibrated using pressure values, and used to quantify the pressure-diameter relationship for each segment. From pressure-diameter relationships, viscosity, elasticity and FF were quantified. Central portions of atherosclerotic plaques showed a reduced FF. At least in theoretical terms, the FF reduction could be related with the plaque vulnerability.

  18. Hexim1 heterozygosity stabilizes atherosclerotic plaque and decreased steatosis in ApoE null mice fed atherogenic diet.

    PubMed

    Dhar-Mascareno, Manya; Rozenberg, Inna; Iqbal, Jahangir; Hussain, M Mahmood; Beckles, Daniel; Mascareno, Eduardo

    2017-02-01

    Hexim-1 is an inhibitor of RNA polymerase II transcription elongation. Decreased Hexim-1 expression in animal models of chronic diseases such as left ventricular hypertrophy, obesity and cancer triggered significant changes in adaptation and remodeling. The main aim of this study was to evaluate the role of Hexim1 in lipid metabolism focused in the progression of atherosclerosis and steatosis. We used the C57BL6 apolipoprotein E (ApoE null) crossed bred to C57BL6Hexim1 heterozygous mice to obtain ApoE null - Hexim1 heterozygous mice (ApoE-HT). Both ApoE null backgrounds were fed high fat diet for twelve weeks. Then, we evaluated lipid metabolism, atherosclerotic plaque formation and liver steatosis. In order to understand changes in the transcriptome of both backgrounds during the progression of steatosis, we performed Affymetrix mouse 430 2.0 microarray. After 12 weeks of HFD, ApoE null and ApoE-HT showed similar increase of cholesterol and triglycerides in plasma. Plaque composition was altered in ApoE-HT. Additionally, liver triglycerides and steatosis were decreased in ApoE-HT mice. Affymetrix analysis revealed that decreased steatosis might be due to impaired inducible SOCS3 expression in ApoE-HT mice. In conclusion, decreased Hexim-1 expression does not alter cholesterol metabolism in ApoE null background after HFD. However, it promotes stable atherosclerotic plaque and decreased steatosis by promoting the anti-inflammatory TGFβ pathway and blocking the expression of the inducible and pro-inflammatory expression of SOCS3 respectively. Published by Elsevier Ltd.

  19. Potential to inhibit growth of atherosclerotic plaque development through modulation of macrophage neopterin/7,8-dihydroneopterin synthesis

    PubMed Central

    Gieseg, S P; Crone, E M; Flavall, E A; Amit, Z

    2007-01-01

    The rise in plasma neopterin observed with increasing severity of vascular disease is a strong indicator of the inflammatory nature of atherosclerosis. Plasma neopterin originates as the oxidation product of 7,8-dihydroneopterin secreted by γ-interferon stimulated macrophages within atherosclerotic plaques. Neopterin is increasingly being used as a marker of inflammation during clinical management of patients with a range of disorders including atherosclerosis. Yet the role of 7,8-dihydroneopterin/neopterin synthesis during the inflammatory process and plaque formation remains poorly understood and controversial. This is partially due to the unresolved role oxidants play in atherosclerosis and the opposing roles of 7,8-dihydroneopterin/neopterin. Neopterin can act as pro-oxidant, enhancing oxidant damage and triggering apoptosis in a number of different cell types. Neopterin appears to have some cellular signalling properties as well as being able to chelate and enhance the reactivity of transition metal ions during Fenton reactions. In contrast, 7,8-dihydroneopterin is also a radical scavenger, reacting with and neutralizing a range of reactive oxygen species including hypochlorite, nitric oxide and peroxyl radicals, thus protecting lipoproteins and various cell types including macrophages. This has led to the suggestion that 7,8-dihydroneopterin is synthesized to protect macrophages from the oxidants released during inflammation. The oxidant/antioxidant activity observed in vitro appears to be determined both by the relative concentration of these compounds and the specific chemistry of the in vitro system under study. How these activities might influence or modulate the development of atherosclerotic plaque in vivo will be explored in this review. PMID:17700723

  20. Carotid Atherosclerotic Plaque Characteristics on Magnetic Resonance Imaging Relate With History of Stroke and Coronary Heart Disease.

    PubMed

    Selwaness, Mariana; Bos, Daniel; van den Bouwhuijsen, Quirijn; Portegies, Marileen L P; Ikram, M Arfan; Hofman, Albert; Franco, Oscar H; van der Lugt, Aad; Wentzel, Jolanda J; Vernooij, Meike W

    2016-06-01

    Because atherosclerosis is a systemic disease, presence and composition on 1 location may relate to ischemic events in distant locations. We examined whether carotid atherosclerotic wall thickness, stenosis, and plaque composition are related to history of ischemic stroke and coronary heart disease (CHD). From the population-based Rotterdam Study, 1731 asymptomatic participants (mean age, 72.4±9.1 years; 55% males) underwent magnetic resonance imaging of both carotid arteries. We assessed carotid wall thickness, stenosis and plaque composition, that is presence of intraplaque hemorrhage, lipid, and calcification. History of ischemic stroke and CHD was assessed until date of magnetic resonance imaging. The study was approved by the institutional review board, and all participants gave informed consent. Logistic regression analyses adjusted for age and traditional cardiovascular risk factors were used to study sex-specific associations between plaque characteristics and clinical events. We found that both carotid stenosis and intraplaque hemorrhage were associated with ischemic stroke in men but not in women (men: odds ratio [OR] for stenosis [per 10% increase]: 1.17 [95% CI, 1.06-1.30] and for intraplaque hemorrhage 2.39 [95% CI, 1.32-4.35]). In both men and women, carotid stenosis was associated with CHD (men: OR per 10% increase 1.12 [95% CI, 1.04-1.21] and women: OR, 1.17 [95% CI, 1.03-1.34]) and carotid wall thickness was associated with CHD (men: OR, 1.20 [95% CI, 1.03-1.39] and women: OR, 1.21 [95% CI, 0.88-1.65]). None of the plaque components was associated with CHD. Whereas carotid plaque thickness and stenosis are associated with the history of ischemic stroke and CHD, carotid intraplaque hemorrhage is associated with ischemic stroke, but not with CHD, providing novel insights into the pathogenesis of cardiovascular events. © 2016 American Heart Association, Inc.

  1. Optical mechanisms for detection of lipid-rich atherosclerotic plaques by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hull, Edward L.; Gardner, Craig M.; Muller, James E.; Muller, Vianna J.; Salvato, Christopher V.; Lisauskas, Jennifer B.; Caplan, Jay D.

    2008-02-01

    InfraReDx has developed a spectroscopic cardiac catheter system capable of acquiring near-infrared (NIR) reflectance spectra from coronary arteries in vivo for identification of lipid-rich plaques of interest (LRP). The spectral data are analyzed with a chemometric model, producing a hyperspectral image (a chemogram) used to identify LRP in the interrogated region. In this paper, we describe a FT-IR microscopy system for measurement of the NIR scattering and absorption properties of healthy and diseased regions of human coronary arteries in small volumes (~10 μl). Scattering and absorption coefficients are obtained from sequential 140 um x 140 um regions of interest across the face of 500-micron thick, saline-irrigated fresh coronary artery sections. A customized FTIR microscope, measurement protocol, and inversion algorithm are used for optical property determination, and the system is calibrated using measurements of tissue-simulating phantoms having well-characterized optical properties. Tissue optical properties are co-registered with brightfield transmission images as well as with stained histologic thin sections (H&E, Movat Pentachrome, and Oil Red O) acquired from an immediately-adjacent section. The ultimate goal of these experiments is to establish a mechanistic link between the multivariate model predictions displayed on the InfraReDx chemogram and the light-tissue interactions that govern the measured NIR reflectance spectra.

  2. Effects of varying argon ion laser intensity and exposure time on the ablation of atherosclerotic plaque.

    PubMed

    Strikwerda, S; Bott-Silverman, C; Ratliff, N B; Goormastic, M; Cothren, R M; Costello, B; Kittrell, C; Feld, M S; Kramer, J R

    1988-01-01

    Using continuous wave (CW) argon ion laser light, a total of 253 laser exposures of varying power (1.5, 3, 5, 8 or 10 W) and duration (20-1,333 ms) were delivered to four segments of human atheromatous aorta obtained at autopsy. Exposure conditions were controlled by using an optically shielded laser catheter that provided a 500 micron spot of light of known power. Two thresholds for consistently reproducible ablation could be defined-an intensity threshold at 25.5 W/mm2 and a fluence threshold at 3.2 J/mm2. Above threshold, a fluence of 5.1 J/mm2 was found to produce the most efficient ablation, ie, removed the greatest volume (mm3) per energy delivered (J) compared to other fluence levels employed (p less than 0.0001). Between aortic segments, however, considerable variability in efficiency (mm3/J) was observed, possibly owing to different optical properties and/or plaque composition. Low-intensity laser radiation produced inconsistent ablation and extensive coagulation effects to surrounding tissue. When a fluence of 5.1 J/mm2 was constructed with a high-intensity laser beam and a short exposure time, consistent and efficient tissue removal resulted without histologic evidence of coagulation necrosis.

  3. Noninvasive Imaging of Atherosclerotic Plaque Progression: Status of Coronary CT Angiography

    PubMed Central

    Sandfort, Veit; Lima, Joao A.C.; Bluemke, David A.

    2015-01-01

    The process of coronary artery disease progression is infrequently visualized. Intravascular ultrasound has been used to gain important insights but is invasive and therefore limited to high risk patients. For low to moderate risk patients, noninvasive methods may be useful to quantitatively monitor plaque progression or regression, and to understand and personalize atherosclerosis therapy. This review discusses the potential for coronary CT angiography (CCTA) to evaluate the extent and subtypes of coronary plaque. CT technology is evolving and image quality of the method approaches the level required for plaque progression monitoring. Methods to quantify plaque on CT angiography are reviewed as well as a discussion of their use in clinical trials. Limitations of CCTA compared to competing modalities include limited evaluation of plaque subcomponents and incomplete knowledge of the value of the method especially in patients with low to moderate cardiovascular risk. PMID:26156016

  4. Overexpression of Prolyl-4-Hydroxylase-α1 Stabilizes but Increases Shear Stress-Induced Atherosclerotic Plaque in Apolipoprotein E-Deficient Mice

    PubMed Central

    Liu, Xin-xin; Li, Meng-meng; Zhang, Yu; Chen, Liang; Wang, Lin; Di, Ming-xue

    2016-01-01

    The rupture and erosion of atherosclerotic plaque can induce coronary thrombosis. Prolyl-4-hydroxylase (P4H) plays a central role in the synthesis of all known types of collagens, which are the most abundant constituent of the extracellular matrix in atherosclerotic plaque. The pathogenesis of atherosclerosis is thought to be in part caused by shear stress. In this study, we aimed to investigate a relationship between P4Hα1 and shear stress-induced atherosclerotic plaque. Carotid arteries of ApoE−/− mice were exposed to low and oscillatory shear stress conditions by the placement of a shear stress cast for 2 weeks; we divided 60 male ApoE−/− mice into three groups for treatments with saline (mock) (n = 20), empty lentivirus (lenti-EGFP) (n = 20), and lentivirus-P4Hα1 (lenti-P4Hα1) (n = 20). Our results reveal that after 2 weeks of lenti-P4Hα1 treatment both low and oscillatory shear stress-induced plaques increased collagen and the thickness of fibrous cap and decreased macrophage accumulation but no change in lipid accumulation. We also observed that overexpression of P4Ha1 increased plaque size. Our study suggests that P4Hα1 overexpression might be a potential therapeutic target in stabilizing vulnerable plaques. PMID:27818566

  5. Receptor activator of nuclear factor kappa B ligand/osteoprotegerin pathway is a promising target to reduce atherosclerotic plaque calcification.

    PubMed

    Quercioli, Alessandra; Luciano Viviani, Giorgio; Dallegri, Franco; Mach, François; Montecucco, Fabrizio

    2010-12-01

    Atherosclerotic plaque calcification represents a common pathophysiologic process in the advanced phases of the disease. Both inflammatory and vascular cells (such as osteoblast-like cells, osteoclast-like cells, dendritic cells, macrophages, smooth muscle cells, and endothelial cells) are active players in the balance between intraplaque bone deposition and resorption. Inflammatory processes underlying plaque calcification are regulated by soluble mediators that also contribute to plaque destabilization and increased vulnerability. Among different mediators, the receptor activator of nuclear factor-kappa B (NF-kappa B) ligand (RANKL)/osteoprogerin (OPG) system is a major determinant in inflammatory cell differentiation toward osteoclast-like cells. Thus, this system might be a promising parameter to be investigated as a marker of calcification-related cardiovascular risk and a therapeutic target. Despite some promising results, several limitations have been shown in the potential clinical use of serum RANKL/OPG to better assess the cardiovascular risk. At present, the potential relationship between RANKL/OPG and the content of calcium within the intima of the coronary arteries (CAC score, assessed by computed tomography) needs to be explored in large clinical studies. On the other hand, the antiatherosclerotic relevance of treatments antagonizing RANKL is still under investigation. Despite that clinical evidence is needed, this therapeutic approach might be of particular benefit in selective populations (such as rheumatoid arthritis patients) with an increased cardiovascular risk.

  6. Quantitative assessment of atherosclerotic plaques on (18)F-FDG PET/MRI: comparison with a PET/CT hybrid system.

    PubMed

    Li, Xiang; Heber, Daniel; Rausch, Ivo; Beitzke, Dietrich; Mayerhoefer, Marius E; Rasul, Sazan; Kreissl, Michael; Mitthauser, Markus; Wadsak, Wolfgang; Hartenbach, Markus; Haug, Alexander; Zhang, Xiaoli; Loewe, Christian; Beyer, Thomas; Hacker, Marcus

    2016-07-01

    PET with (18)F-FDG has the potential to assess vascular macrophage metabolism. (18)F-FDG is most often used in combination with contrast-enhanced CT to localize increased metabolism to specific arterial lesions. Novel (18)F-FDG PET/MRI hybrid imaging shows high potential for the combined evaluation of atherosclerotic plaques, due to the superior morphological conspicuity of plaque lesions. The purpose of this study was to evaluate the reliability and accuracy of (18)F-FDG PET/MRI uptake quantification compared to PET/CT as a reference standard in patients with carotid atherosclerotic plaques. The study group comprised 34 consecutive oncological patients with carotid plaques who underwent both PET/CT and PET/MRI with (18)F-FDG on the same day. The presence of atherosclerotic plaques was confirmed by 3 T MRI scans. Maximum standardized uptake values (SUVmax) for carotid plaque lesions and the average SUV of the blood pool within the adjacent internal jugular vein were determined and target-to-blood ratios (TBRs, plaque to blood pool) were calculated. Atherosclerotic lesions with maximum colocalized focal FDG uptake were assessed in each patient. SUVmax values of carotid plaque lesions were significantly lower on PET/MRI than on PET/CT (2.3 ± 0.6 vs. 3.1 ± 0.6; P < 0.01), but were significantly correlated between PET/CT and PET/MRI (Spearman's r = 0.67, P < 0.01). In contrast, TBRmax values of plaque lesions were similar on PET/MRI and on PET/CT (2.2 ± 0.3 vs. 2.2 ± 0.3; P = 0.4), and again were significantly correlated between PET/MRI and PET/CT (Spearman's r = 0.73, P < 0.01). Considering the increasing trend in SUVmax and TBRmax values from early to delayed imaging time-points on PET/CT and PET/MRI, respectively, with continuous clearance of radioactivity from the blood, a slight underestimation of TBRmax values may also be expected with PET/MRI compared with PET/CT. SUVmax and TBRmax values are widely accepted reference

  7. Systematic study of the effects of lowering low-density lipoprotein-cholesterol on regression of coronary atherosclerotic plaques using intravascular ultrasound

    PubMed Central

    2014-01-01

    Background Conflicting results currently exist on the effects of LDL-C levels and statins therapy on coronary atherosclerotic plaque, and the target level of LDL-C resulting in the regression of the coronary atherosclerotic plaques has not been settled. Methods PubMed, EMBASE, and Cochrane databases were searched from Jan. 2000 to Jan. 2014 for randomized controlled or blinded end-points trials assessing the effects of LDL-C lowering therapy on regression of coronary atherosclerotic plaque (CAP) in patients with coronary heart disease by intravascular ultrasound. Data concerning the study design, patient characteristics, and outcomes were extracted. The significance of plaques regression was assessed by computing standardized mean difference (SMD) of the volume of CAP between the baseline and follow-up. SMD were calculated using fixed or random effects models. Results Twenty trials including 5910 patients with coronary heart disease were identified. Mean lowering LDL-C by 45.4% and to level 66.8 mg/dL in the group of patients with baseline mean LDL-C 123.7 mg/dL, mean lowering LDL-C by 48.8% and to level 60.6 mg/dL in the group of patients with baseline mean LDL-C 120 mg/dL, and mean lowering LDL-C by 40.4% and to level 77.8 mg/dL in the group of patients with baseline mean LDL-C 132.4 mg/dL could significantly reduce the volume of CAP at follow up (SMD −0.108 mm3, 95% CI −0.176 ~ −0.040, p = 0.002; SMD −0.156 mm3, 95% CI −0.235 ~ −0.078, p = 0.000; SMD −0.123 mm3, 95% CI −0.199 ~ −0.048, p = 0.001; respectively). LDL-C lowering by rosuvastatin (mean 33 mg daily) and atorvastatin (mean 60 mg daily) could significantly decrease the volumes of CAP at follow up (SMD −0.162 mm3, 95% CI: −0.234 ~ −0.081, p = 0.000; SMD −0.101, 95% CI: −0.184 ~ −0.019, p = 0.016; respectively). The mean duration of follow up was from 17 ~ 21 months. Conclusions Intensive lowering LDL-C (rosuvastatin

  8. Atorvastatin and thrombogenicity of the carotid atherosclerotic plaque: the ATROCAP study.

    PubMed

    Cortellaro, Michele; Cofrancesco, Elisabetta; Arbustini, Eloisa; Rossi, Francesca; Negri, Andrea; Tremoli, Eiena; Gabrielli, Livio; Camera, Marina

    2002-07-01

    Statins appear to have beneficial effects on fibrous cap stabilisation but their effects on plaque thrombogenicity have not been reported. To evaluate the thrombogenicity of human carotid plaques before and after atorvastatin treatment, 59 patients with bilateral carotid stenosis eligible for two-step carotid endoarterectomy (CEA) were randomly assigned to atorvastatin, 20 mg/day, or placebo. Histological and immunohistochemical analyses, Tissue Factor (TF), Tissue Factor Pathway Inhibitor (TFPI) antigens (Ag) and TF activity were determined in endoarterectomy specimens obtained at baseline and after treatment. Mean TFAg and TFPIAg levels from plaques removed at the first CEA were 55 +/- 56 and 32 +/- 26 pg/mg. After placebo, TFAg and TFPIAg content was higher in the second than the first CEA. Plaques removed at the second CEA from atorvastatin-treated patients had a lower macrophage content than plaques at the first CEA. TFAg and TFPIAg levels, and TF activity in plaques after atorvastatin treatment were lower (respectively 29, 18% and 56%) than after placebo. These findings indicate that atorvastatin reduce the inflammatory/thrombotic phenotype of carotid plaque, suggesting that these drugs may indeed have a beneficial effect on cerebrovascular events.

  9. Cyclic Bending Contributes to High Stress in a Human Coronary Atherosclerotic Plaque and Rupture Risk: In Vitro Experimental Modeling and Ex Vivo MRI-Based Computational Modeling Approach.

    PubMed

    Yang, Chun; Tang, Dalin; Kobayashi, Shunichi; Zheng, Jie; Woodard, Pamela K; Teng, Zhongzhao; Bach, Richard; Ku, David N

    2008-01-01

    Many acute cardiovascular syndromes such as heart attack and stroke are caused by atherosclerotic plaque ruptures which often happen without warning. MRI-based models with fluid-structure interactions (FSI) have been introduced to perform flow and stress/strain analysis for atherosclerotic plaques and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. In this paper, cyclic bending was added to 3D FSI coronary plaque models for more accurate mechanical predictions. Curvature variation was prescribed using the data of a human left anterior descending (LAD) coronary artery. Five computational models were constructed based on ex vivo MRI human coronary plaque data to assess the effects of cyclic bending, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. In vitro experiments using a hydrogel stenosis model with cyclical bending were performed to observe effect of cyclical bending on flow conditions. Our results indicate that cyclical bending may cause more than 100% or even up to more than 1000% increase in maximum principal stress values at locations where the plaque is bent most. Stress increase is higher when bending is coupled with axial stretch, non-smooth plaque structure, or resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (21.6% decrease in maximum velocity, 10.8% decrease in flow rate, maximum flow shear stress changes were < 5%). Computational FSI models including cyclic bending, plaque components and structure, axial stretch, accurate in vivo measurements of pressure, curvature, and material properties should lead to significant improvement on stress-based plaque mechanical analysis and more accurate coronary plaque vulnerability assessment.

  10. Ultrasound imaging versus morphopathology in cardiovascular diseases. Coronary collateral circulation and atherosclerotic plaque

    PubMed Central

    Baroldi, Giorgio; Bigi, Riccardo; Cortigiani, Lauro

    2005-01-01

    This review article is aimed at comparing the results of histopathological and clinical imaging studies to assess coronary collateral circulation in humans. The role of collaterals, as emerging from morphological studies in both normal and atherosclerotic coronary vessels, is described; in addition, present role and future perpectives of echocardiographic techniques in assessing collateral circulation are briefly summarized. PMID:15740620

  11. Antibody-labeled liposomes for CT imaging of atherosclerotic plaques: in vitro investigation of an anti-ICAM antibody-labeled liposome containing iohexol for molecular imaging of atherosclerotic plaques via computed tomography.

    PubMed

    Danila, Delia; Partha, Ranga; Elrod, Don B; Lackey, Melinda; Casscells, S Ward; Conyers, Jodie L

    2009-01-01

    We evaluated the specific binding of anti-intercellular adhesion molecule 1 (ICAM-1) conjugated liposomes (immunoliposomes, or ILs) to activated human coronary artery endothelial cells (HCAEC) with the purpose of designing a computed tomographic imaging agent for early detection of atherosclerotic plaques. Covalent attachment of anti-ICAM-1 monoclonal antibodies to pre-formed liposomes stabilized with polyethylene glycol yielded ILs, with a coupling efficiency of the ICAM-1 to the liposomes of 10% to 24%. The anti-ICAM-1-labeled ILs had an average diameter of 136 nm as determined by dynamic light-scattering and cryogenic electron microscopy. The ILs' encapsulation of 5-[N-acetyl-(2,3-dihydroxypropyl)-amino)-N, N'-bis(2,3-dihydroxypropyl)-2,4,6-triiodo-benzene-1,3-dicarboxamide (iohexol) was determined to be 18% to 19% by a dialysis technique coupled with ultraviolet detection of free iohexol. This encapsulation corresponded to 30 to 38 mg iodine per mL IL solution, and the ILs exhibited 91% to 98.5% iohexol retention at room temperature and under physiologic conditions. The specific binding of the ILs to cultured, activated HCAEC was measured using flow cytometry, enzyme-linked immunosorbent assays, and fluorescence microscopy. The immunosorbent assays demonstrated the specificity of binding of anti-ICAM-1 to ICAM-1 compared with control studies using nonspecific immunoglobulin G-labeled ILs. Flow cytometry and fluorescence microscopy experiments demonstrated the expression of ICAM-1 on the surface of activated HCAEC. Therefore, our iohexol-filled ILs demonstrated potential for implementation in computed tomographic angiography to noninvasively detect atherosclerotic plaques that are prone to rupture.

  12. Plaque and arterial vulnerability investigation in a three-layer atherosclerotic human coronary artery using computational fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-08-01

    Coronary artery disease is the common form of cardiovascular diseases and known to be the main reason of deaths in the world. Fluid-Structure Interaction (FSI) simulations can be employed to assess the interactions of artery/plaque and blood to provide a more precise anticipation for rupture of arterial tissue layers and plaque tissues inside an atherosclerotic artery. To date, the arterial tissue in computational FSI simulations has been considered as a one-layer structure. However, a single layer assumption might have deeply bounded the results and, consequently, more computational simulation is needed by considering the arterial tissue as a three-layer structure. In this study, a three-dimensional computational FSI model of an atherosclerotic artery with a three-layer structure and different plaque types was established to perform a more accurate arterial wall/plaque tissue vulnerability assessment. The hyperelastic material coefficients of arterial layers were calculated and implemented in the computational model. The fully coupled fluid and structure models were solved using the explicit dynamics finite element code LS-DYNA. The results revealed the significant role of plaque types in the normal and shear stresses induced within the arterial tissue layers. The highest von Mises and shear stresses were observed on the stiffest calcified plaque with 3.59 and 3.27 MPa, while the lowest von Mises and shear stresses were seen on the hypocellular plaque with 1.15 and 0.63 MPa, respectively. Regardless of plaque types, the media and adventitia layers were played protective roles by displaying less stress on their wall, whilst the intima layer was at a high risk of rupture. The findings of this study have implications not only for determining the most vulnerable arterial layer/plaque tissue inside an atherosclerotic coronary artery but also for balloon-angioplasty, stenting, and bypass surgeries.

  13. Painting blood vessels and atherosclerotic plaques with an adhesive drug depot

    PubMed Central

    Kastrup, Christian J.; Nahrendorf, Matthias; Figueiredo, Jose Luiz; Lee, Haeshin; Kambhampati, Swetha; Lee, Timothy; Cho, Seung-Woo; Gorbatov, Rostic; Iwamoto, Yoshiko; Dang, Tram T.; Dutta, Partha; Yeon, Ju Hun; Cheng, Hao; Pritchard, Christopher D.; Vegas, Arturo J.; Siegel, Cory D.; MacDougall, Samantha; Okonkwo, Michael; Thai, Anh; Stone, James R.; Coury, Arthur J.; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G.

    2012-01-01

    The treatment of diseased vasculature remains challenging, in part because of the difficulty in implanting drug-eluting devices without subjecting vessels to damaging mechanical forces. Implanting materials using adhesive forces could overcome this challenge, but materials have previously not been shown to durably adhere to intact endothelium under blood flow. Marine mussels secrete strong underwater adhesives that have been mimicked in synthetic systems. Here we develop a drug-eluting bioadhesive gel that can be locally and durably glued onto the inside surface of blood vessels. In a mouse model of atherosclerosis, inflamed plaques treated with steroid-eluting adhesive gels had reduced macrophage content and developed protective fibrous caps covering the plaque core. Treatment also lowered plasma cytokine levels and biomarkers of inflammation in the plaque. The drug-eluting devices developed here provide a general strategy for implanting therapeutics in the vasculature using adhesive forces and could potentially be used to stabilize rupture-prone plaques. PMID:23236189

  14. The influence of atherosclerotic plaques on the pharmacokinetics of a drug eluted from bioabsorbable stents.

    PubMed

    Ferreira, José A; Gonçalves, Lino; Naghipoor, Jahed; de Oliveira, Paula; Rabczuk, Timon

    2017-01-01

    In this paper the effect of plaque composition, on the accumulation of drug released by a drug eluting stent, is analyzed. The mathematical model is represented by two coupled systems of partial differential equations that describe the pharmacokinetics of drug in the stent coating and in the arterial wall. The influence of the stiffness and porosity of soft and hard plaques is studied. A case study based on optical coherence tomography images is also included. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Relationship between indexed epicardial fat volume and coronary plaque volume assessed by cardiac multidetector CT

    PubMed Central

    You, Seulgi; Sun, Joo Sung; Park, Seon Young; Baek, Yoolim; Kang, Doo Kyoung

    2016-01-01

    Abstract We explored whether baseline indexed epicardial fat volume (EFVi) and serial changes in EFVi were associated with increase in coronary plaque volume as assessed by multidetector computed tomography. We retrospectively reviewed 87 patients with coronary artery plaque, identified during either baseline or follow-up cardiac computed tomography (CT) examinations. Each plaque volume was measured in volumetric units using a semiautomatic software tool. EFVi was quantified by calculating the total volume of epicardial tissue of CT density −190 to −30 HU, indexed to the body surface area. Clinical cardiovascular risk factors were extracted by medical record review at the time of the cardiac CT examinations. The relationship between EFVi and coronary plaque volume was explored by regression analysis. Although the EFVi did not change significantly from baseline to the time of the follow-up CT (65.7 ± 21.8 vs 66.0 ± 21.8 cm3/m3, P = 0.620), the plaque volumes were increased significantly on the follow-up CT scans. The annual change in EFVi was not accompanied by a parallel change in coronary plaque volume (P = 0.096–0.500). On univariate analysis, smoking, hypercholesterolemia, 10-year coronary heart disease risk, obesity, and baseline EFVi predicted rapid increases in lipid-rich and fibrous plaque volumes. On multivariate analysis, baseline EFVi (odds ratio = 1.029, P = 0.016) was an independent predictor of a rapid increase in lipid-rich plaque volume. EFVi was shown to be an independent predictor of a rapid increase in lipid-rich plaque volume. However, changes in EFVi were not associated with parallel changes in coronary plaque volume. PMID:27399137

  16. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice

    SciTech Connect

    Nakamura, Ikuko; Hasegawa, Koki; Wada, Yasuhiro; Hirase, Tetsuaki; Node, Koichi; Watanabe, Yasuyoshi

    2013-03-29

    Highlights: ► P-selectin regulates leukocyte recruitment as an early stage event of atherogenesis. ► We developed an antibody-based molecular imaging probe targeting P-selectin for PET. ► This is the first report on successful PET imaging for delineation of P-selectin. ► P-selectin is a candidate target for atherosclerotic plaque imaging by clinical PET. -- Abstract: Background: Sensitive detection and qualitative analysis of atherosclerotic plaques are in high demand in cardiovascular clinical settings. The leukocyte–endothelial interaction mediated by an adhesion molecule P-selectin participates in arterial wall inflammation and atherosclerosis. Methods and results: A {sup 64}Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugated anti-P-selectin monoclonal antibody ({sup 64}Cu-DOTA-anti-P-selectin mAb) probe was prepared by conjugating an anti-P-selectin monoclonal antibody with DOTA followed by {sup 64}Cu labeling. Thirty-six hours prior to PET and CT fusion imaging, 3 MBq of {sup 64}Cu-DOTA-anti-P-selectin mAb was intravenously injected into low density lipoprotein receptor-deficient Ldlr-/- mice. After a 180 min PET scan, autoradiography and biodistribution of {sup 64}Cu-DOTA-anti-P-selectin monoclonal antibody was examined using excised aortas. In Ldlr-/- mice fed with a high cholesterol diet for promotion of atherosclerotic plaque development, PET and CT fusion imaging revealed selective and prominent accumulation of the probe in the aortic root. Autoradiography of aortas that demonstrated probe uptake into atherosclerotic plaques was confirmed by Oil red O staining for lipid droplets. In Ldlr-/- mice fed with a chow diet to develop mild atherosclerotic plaques, probe accumulation was barely detectable in the aortic root on PET and CT fusion imaging. Probe biodistribution in aortas was 6.6-fold higher in Ldlr-/- mice fed with a high cholesterol diet than in those fed with a normal chow diet. {sup 64}Cu-DOTA-anti-P-selectin m

  17. High expression of genes for calcification-regulating proteins in human atherosclerotic plaques.

    PubMed Central

    Shanahan, C M; Cary, N R; Metcalfe, J C; Weissberg, P L

    1994-01-01

    Calcification is common in atheromatous plaques and may contribute to plaque rupture and subsequent thrombosis. However, little is known about the mechanisms which regulate the calcification process. Using in situ hybridization and immunohistochemistry we show that two bone-associated proteins, osteopontin (OP) and matrix Gla protein (MGP), are highly expressed in human atheromatous plaques. High levels of OP mRNA and protein were found in association with necrotic lipid cores and areas of calcification. The predominant cell type in these areas was the macrophage-derived foam cell, although some smooth muscle cells could also be identified. MGP was expressed uniformly by smooth muscle cells in the normal media and at high levels in parts of the atheromatous intima. Highest levels of this matrix-associated protein were found in lipid-rich areas of the plaque. The pattern of expression of these two genes contrasted markedly with that of calponin and SM22 alpha, genes expressed predominantly by differentiated smooth muscle cells and whose expression was generally confined to the media of the vessel. The postulated function of OP and MGP as regulators of calcification in bone and the high levels and colocalization of both in atheromatous plaques suggest they have an important role in plaque pathogenesis and stability. Images PMID:8200973

  18. Lumen irregularity dominates the relationship between mechanical stress condition, fibrous-cap thickness, and lumen curvature in carotid atherosclerotic plaque.

    PubMed

    Teng, Zhongzhao; Sadat, Umar; Ji, Guangyu; Zhu, Chengcheng; Young, Victoria E; Graves, Martin J; Gillard, Jonathan H

    2011-03-01

    High mechanical stress condition over the fibrous cap (FC) has been widely accepted as a contributor to plaque rupture. The relationships between the stress, lumen curvature, and FC thickness have not been explored in detail. In this study, we investigate lumen irregularity-dependent relationships between mechanical stress conditions, local FC thickness (LT(FC)), and lumen curvature (LC(lumen)). Magnetic resonance imaging slices of carotid plaque from 100 patients with delineated atherosclerotic components were used. Two-dimensional structure-only finite element simulations were performed for the mechanical analysis, and maximum principal stress (stress-P₁) at all integral nodes along the lumen was obtained. LT(FC) and LC(lumen) were computed using the segmented contour. The lumen irregularity (L-δir) was defined as the difference between the largest and the smallest lumen curvature. The results indicated that the relationship between stress-P₁, LT(FC), and LC(lumen) is largely dependent on L-δir. When L-δir ≥ .31 (irregular lumen), stress-P₁ strongly correlated with lumen curvature and had a weak/no correlation with local FC thickness, and in 73.4% of magnetic resonance (MR) slices, the critical stress (maximum of stress-P₁ over the diseased region) was found at the site where the lumen curvature was large. When L-δir ≤ 0.28 (relatively round lumen), stress-P₁ showed a strong correlation with local FC thickness but weak/no correlation with lumen curvature, and in 71.7% of MR slices, the critical stress was located at the site of minimum FC thickness. Using lumen irregularity as a method of identifying vulnerable plaque sites by referring to the lumen shape is a novel and simple method, which can be used for mechanics-based plaque vulnerability assessment.

  19. Lipoprotein (a) is related to coronary atherosclerotic burden and a vulnerable plaque phenotype in angiographically obstructive coronary artery disease.

    PubMed

    Niccoli, Giampaolo; Cin, Diana; Scalone, Giancarla; Panebianco, Mario; Abbolito, Sofia; Cosentino, Nicola; Jacoangeli, Francesca; Refaat, Hesham; Gallo, Giovanna; Salerno, Gerardo; Volpe, Massimo; Crea, Filippo; De Biase, Luciano

    2016-03-01

    Lipoprotein Lp(a) has been shown to be an independent risk factor for coronary artery disease (CAD). However, its association with CAD burden in patients with ACS is largely unknown, as well as the association of Lp(a) with lipid rich plaques prone to rupture. We aim at assessing CAD burden by coronary angiography and plaque features including thin cap fibroatheroma (TCFA) by optical coherence tomography (OCT) in consecutive patients presenting with acute coronary syndrome (ACS) and obstructive CAD along with serum Lp(a) levels. This study comprises an angiographic and an OCT cohort. A total of 500 ACS patients (370 men, average age 66 ± 11) were enrolled for the angiographic cohort and 51 ACS patients (29 males, average age 65 ± 11) were enrolled for the OCT cohort. Angiographic CAD severity was assessed by Sullivan score and by Bogaty score including stenosis score and extent index. OCT plaque features were evaluated at the site of the minimal lumen area and along the culprit segment. In the angiographic cohort, at multivariate analysis, Lp(a) was a weak independent predictor of Sullivan score (p < 0.0001), stenosis score (p < 0.0001) and extent index (p < 0.0001). In the OCT cohort, patients with higher Lp(a) levels (≥ 30 md/dl) compared to patients with lower Lp(a) levels (<30 md/dl) exhibited a higher prevalence of lipidic plaque at the site of the culprit stenosis (67% vs. 27%; P = 0.02), a wider lipid arc (135 ± 114 vs 59 ± 111; P = 0.03) and a higher prevalence of TCFA (38% vs. 10%; P = 0.04). Among patients with ACS, raised Lp(a) levels are associated with an increased atherosclerotic burden and it identifies a subset of patients with features of high risk coronary atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The role of PGE(2) in human atherosclerotic plaque on platelet EP(3) and EP(4) receptor activation and platelet function in whole blood.

    PubMed

    Schober, Lisa J; Khandoga, Anna L; Dwivedi, Suman; Penz, Sandra M; Maruyama, Takayuki; Brandl, Richard; Siess, Wolfgang

    2011-08-01

    Atherosclerosis has an important inflammatory component. Macrophages accumulating in atherosclerotic arteries produce prostaglandin E(2) (PGE(2)), a main inflammatory mediator. Platelets express inhibitory receptors (EP(2), EP(4)) and a stimulatory receptor (EP(3)) for this prostanoid. Recently, it has been reported in ApoE(-/-) mice that PGE(2) accumulating in inflammatory atherosclerotic lesions might contribute to atherothrombosis after plaque rupture by activating platelet EP(3), and EP(3) blockade has been proposed to be a promising new approach in anti-thrombotic therapy. The aim of our investigation was to study the role of PGE(2) in human atherosclerotic plaques on human platelet function and thrombus formation. Plaque PGE(2) might either activate or inhibit platelets depending on stimulation of either EP(3) or EP(4), respectively. We found that the two EP(3)-antagonists AE5-599 (300 nM) and AE3-240 (300 nM) specifically and completely inhibited the synergistic effect of the EP(3)-agonist sulprostone on U46619-induced platelet aggregation in blood. However, these two EP(3)-antagonists neither inhibited atherosclerotic plaque-induced platelet aggregation, GPIIb/IIIa exposure, dense and alpha granule secretion in blood nor reduced plaque-induced platelet thrombus formation under arterial flow. The EP(4)-antagonist AE3-208 (1-3 μM) potentiated in combination with PGE(2) (1 μM) ADP-induced aggregation, demonstrating that PGE(2) enhances platelet aggregation when the inhibitory EP(4)-receptor is inactivated. However, plaque-induced platelet aggregation was not augmented after platelet pre-treatment with AE3-208, indicating that plaque PGE(2) does not stimulate the EP(4)-receptor. We found that PGE(2) was present in plaques only at very low levels (15 pg PGE(2)/mg plaque). We conclude that PGE(2) in human atherosclerotic lesions does not modulate (i.e. stimulate or inhibit) atherothrombosis in blood after plaque rupture.

  1. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques.

    PubMed

    Tang, Jing-Jie; Li, Jia-Gui; Qi, Wei; Qiu, Wen-Wei; Li, Pei-Shan; Li, Bo-Liang; Song, Bao-Liang

    2011-01-05

    Sterol regulatory element-binding proteins (SREBPs) are major transcription factors activating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. In this study, we identified a small molecule, betulin, that specifically inhibited the maturation of SREBP by inducing interaction of SREBP cleavage activating protein (SCAP) and Insig. Inhibition of SREBP by betulin decreased the biosynthesis of cholesterol and fatty acid. In vivo, betulin ameliorated diet-induced obesity, decreased the lipid contents in serum and tissues, and increased insulin sensitivity. Furthermore, betulin reduced the size and improved the stability of atherosclerotic plaques. Our study demonstrates that inhibition SREBP pathway can be employed as a therapeutic strategy to treat metabolic diseases including type II diabetes and atherosclerosis. Betulin, which is abundant in birch bark, could be a leading compound for development of drugs for hyperlipidemia.

  2. [Expression and significance of integrin α5β1 and fibronectin in atherosclerotic plaques from autopsy specimens].

    PubMed

    Yu, X; Zhang, Q Q; Wang, B; Sun, L

    2017-03-08

    Objective: To investigate the expression of integrin α5β1 and fibronectin in the human aorta and coronary artery, and their effects in the development of atherosclerosis. Methods: One hundred and twenty autopsy aorta and coronary artery specimens were collected, and the expression of CD68, actin, integrin α5β1 and fibronectin was detected by immunohistochemical staining. Atherosclerotic plaques were located by CD68 and actin staining, and the degree of coronary artery stenosis was determined by elastic fiber staining and NIH Scion Image(60.1) software. The coronary artery tissues were divided into groups A (0-25%); B (26%-50%); C (51%-75%) and D (76%-100%) according to the degree of stenosis. Results: Integrin α5β1 showed cytoplasmic expression in endothelium, foam cells, monocytes, smooth muscle cells and adjacent tissue around calcification. In both the aorta and coronary artery, integrin α5β1 expression was stronger in the smooth muscle cells in the internal elastic lamina than in the tunica. The expression intensity in coronary artery smooth muscle decreased with increasing degree of coronary artery stenosis. Fibronectin showed cytoplasmic expression in foam cells, monocytes, smooth muscle cells of the internal elastic lamina and adjacent tissue around calcification. There was positive correlation of fibronectin and integrin α5β1 expression in smooth muscle cells and adjacent tissue around calcification. Conclusions: In the development of atherosclerosis, integrin α5β1 and fibronectin may participate in the regulating the migration of smooth muscle cells to the intima, and promote the formation of local calcification of atherosclerotic plaques. But integrin α5β1 is not involved in the late stage of atherosclerosis with increasing coronary artery stenosis.

  3. The F11 receptor (F11R/JAM-A) in atherothrombosis: overexpression of F11R in atherosclerotic plaques.

    PubMed

    Babinska, Anna; Azari, Bani M; Salifu, Moro O; Liu, Ruijie; Jiang, Xian-Cheng; Sobocka, Malgorzata B; Boo, Dorothy; Al Khoury, George; Deitch, Jonathan S; Marmur, Jonathan D; Ehrlich, Yigal H; Kornecki, Elizabeth

    2007-02-01

    F11R is the gene name for an adhesion protein, called the F11-receptor, aka JAM-A, which under normal physiological conditions is expressed constitutively on the surface of platelets and localized within tight junctions of endothelial cells (EC). Previous studies of the interactions between human platelets and EC suggested that F11R/JAM-A plays a crucial role in inflammatory thrombosis and atherosclerosis. The study reported here obtained in-vivo confirmation of this conclusion by investigating F11R/JAM-A protein and mRNA in patients with aortic and peripheral vascular disease and in an animal model of atherosclerosis. Molecular and immunofluorescence determinations revealed very high levels of F11R/JAM-A mRNA and F11R/JAM-A protein in atherosclerotic plaques of cardiovascular patients. Similar results were obtained with 12-week-old atherosclerosis-prone apoE-/- mice, an age in which atherosclerotic plaques are well established. Enhanced expression of the F11R/JAM-A message in cultured EC from human aortic and venous vessels was observed following exposure of the cells to cytokines. Determinations of platelet adhesion to cultured EC inflamed by combined cytokine treatment in the presence of F11R/JAM-A - antagonists provided data indicating that de novo expression of F11R/JAM-A on the luminal surface of inflamed EC has an important role in the conversion of EC to a thrombogenic surface. Further studies of these interactions under flow conditions and under in-vivo settings could provide a final proof of a causal role for F11R/JAM-A in the initiation of thrombosis. Based on our in-vitro and in-vivo studies to date, we propose that therapeutic drugs which antagonize the function of F11R/JAM-A should be tested as novel means for the prevention and treatment of atherosclerosis, heart attacks and stroke.

  4. Impact of the B Cell Growth Factor APRIL on the Qualitative and Immunological Characteristics of Atherosclerotic Plaques.

    PubMed

    Bernelot Moens, Sophie J; van Leuven, Sander I; Zheng, Kang H; Havik, Stefan R; Versloot, Miranda V; van Duivenvoorde, Leonie M; Hahne, Michael; Stroes, Erik S G; Baeten, Dominique L; Hamers, Anouk A J

    2016-01-01

    Studies on the role of B lymphocytes in atherosclerosis development, have yielded contradictory results. Whereas B lymphocyte-deficiency aggravates atherosclerosis in mice; depletion of mature B lymphocytes reduces atherosclerosis. These observations led to the notion that distinct B lymphocyte subsets have different roles. B1a lymphocytes exert an atheroprotective effect, which has been attributed to secretion of IgM, which can be deposited in atherosclerotic lesions thereby reducing necrotic core formation. Tumor necrosis factor (TNF)-family member 'A Proliferation-Inducing Ligand' (APRIL, also known as TNFSF13) was previously shown to increase serum IgM levels in a murine model. In this study, we investigated the effect of APRIL overexpression on advanced lesion formation and composition, IgM production and B cell phenotype. We crossed APRIL transgenic (APRIL-Tg) mice with ApoE knockout (ApoE-/-) mice. After a 12-week Western Type Diet, ApoE-/-APRIL-Tg mice and ApoE-/- littermates showed similar increases in body weight and lipid levels. Histologic evaluation showed no differences in lesion size, stage or necrotic area. However, smooth muscle cell (α-actin stain) content was increased in ApoE-/-APRIL-Tg mice, implying more stable lesions. In addition, increases in both plaque IgM deposition and plasma IgM levels were found in ApoE-/-APRIL-Tg mice compared with ApoE-/- mice. Flow cytometry revealed a concomitant increase in peritoneal B1a lymphocytes in ApoE-/-APRIL-Tg mice. This study shows that ApoE-/-APRIL-Tg mice have increased oxLDL-specific serum IgM levels, potentially mediated via an increase in B1a lymphocytes. Although no differences in lesion size were found, transgenic ApoE-/-APRIL-Tg mice do show potential plaque stabilizing features in advanced atherosclerotic lesions.

  5. Impact of the B Cell Growth Factor APRIL on the Qualitative and Immunological Characteristics of Atherosclerotic Plaques

    PubMed Central

    van Leuven, Sander I.; Zheng, Kang H.; Havik, Stefan R.; Versloot, Miranda V.; van Duivenvoorde, Leonie M.; Hahne, Michael; Stroes, Erik S. G.; Baeten, Dominique L.; Hamers, Anouk A. J.

    2016-01-01

    Studies on the role of B lymphocytes in atherosclerosis development, have yielded contradictory results. Whereas B lymphocyte-deficiency aggravates atherosclerosis in mice; depletion of mature B lymphocytes reduces atherosclerosis. These observations led to the notion that distinct B lymphocyte subsets have different roles. B1a lymphocytes exert an atheroprotective effect, which has been attributed to secretion of IgM, which can be deposited in atherosclerotic lesions thereby reducing necrotic core formation. Tumor necrosis factor (TNF)-family member ‘A Proliferation-Inducing Ligand’ (APRIL, also known as TNFSF13) was previously shown to increase serum IgM levels in a murine model. In this study, we investigated the effect of APRIL overexpression on advanced lesion formation and composition, IgM production and B cell phenotype. We crossed APRIL transgenic (APRIL-Tg) mice with ApoE knockout (ApoE-/-) mice. After a 12-week Western Type Diet, ApoE-/-APRIL-Tg mice and ApoE-/- littermates showed similar increases in body weight and lipid levels. Histologic evaluation showed no differences in lesion size, stage or necrotic area. However, smooth muscle cell (α-actin stain) content was increased in ApoE-/-APRIL-Tg mice, implying more stable lesions. In addition, increases in both plaque IgM deposition and plasma IgM levels were found in ApoE-/-APRIL-Tg mice compared with ApoE-/- mice. Flow cytometry revealed a concomitant increase in peritoneal B1a lymphocytes in ApoE-/-APRIL-Tg mice. This study shows that ApoE-/-APRIL-Tg mice have increased oxLDL-specific serum IgM levels, potentially mediated via an increase in B1a lymphocytes. Although no differences in lesion size were found, transgenic ApoE-/-APRIL-Tg mice do show potential plaque stabilizing features in advanced atherosclerotic lesions. PMID:27820817

  6. Upstream Transcription Factor 1 (USF1) allelic variants regulate lipoprotein metabolism in women and USF1 expression in atherosclerotic plaque.

    PubMed

    Fan, Yue-Mei; Hernesniemi, Jussi; Oksala, Niku; Levula, Mari; Raitoharju, Emma; Collings, Auni; Hutri-Kähönen, Nina; Juonala, Markus; Marniemi, Jukka; Lyytikäinen, Leo-Pekka; Seppälä, Ilkka; Mennander, Ari; Tarkka, Matti; Kangas, Antti J; Soininen, Pasi; Salenius, Juha Pekka; Klopp, Norman; Illig, Thomas; Laitinen, Tomi; Ala-Korpela, Mika; Laaksonen, Reijo; Viikari, Jorma; Kähönen, Mika; Raitakari, Olli T; Lehtimäki, Terho

    2014-04-11

    Upstream transcription factor 1 (USF1) allelic variants significantly influence future risk of cardiovascular disease and overall mortality in females. We investigated sex-specific effects of USF1 gene allelic variants on serum indices of lipoprotein metabolism, early markers of asymptomatic atherosclerosis and their changes during six years of follow-up. In addition, we investigated the cis-regulatory role of these USF1 variants in artery wall tissues in Caucasians. In the Cardiovascular Risk in Young Finns Study, 1,608 participants (56% women, aged 31.9 ± 4.9) with lipids and cIMT data were included. For functional study, whole genome mRNA expression profiling was performed in 91 histologically classified atherosclerotic samples. In females, serum total, LDL cholesterol and apoB levels increased gradually according to USF1 rs2516839 genotypes TT < CT < CC and rs1556259 AA < AG < GG as well as according to USF1 H3 (GCCCGG) copy number 0 < 1 < 2. Furthermore, the carriers of minor alleles of rs2516839 (C) and rs1556259 (G) of USF1 gene had decreased USF1 expression in atherosclerotic plaques (P = 0.028 and 0.08, respectively) as compared to non-carriers. The genetic variation in USF1 influence USF1 transcript expression in advanced atherosclerosis and regulates levels and metabolism of circulating apoB and apoB-containing lipoprotein particles in sex-dependent manner, but is not a major determinant of early markers of atherosclerosis.

  7. Intravascular detection of microvessel infiltration in atherosclerotic plaques: An intraluminal extension of acoustic angiography

    NASA Astrophysics Data System (ADS)

    Martin, K. Heath

    Cardiovascular disease is the leading cause of death worldwide, surpassing both stroke and cancer related mortality with 17.5 million deaths in 2014 alone. Atherosclerosis is the build-up of fatty deposits within arteries and is responsible for the majority of cardiovascular related deaths. Over the past decade, research in atherosclerosis has identified that a key limitation in the appropriate management of the disease is detecting and identifying dangerous fatty plaque build-ups before they dislodge and cause major cardiovascular events, such as embolisms, stroke, or myocardial infarctions. It has been noted that plaques vulnerable to rupture have several key features that may be used to distinguish them from asymptomatic plaques. One key identifier of a dangerous plaque is the presence of blood flow within the plaque itself since this is an indicator of growth and instability of the plaque. Recently, a superharmonic imaging method known as "acoustic angiography" has been shown to resolve microvasculature with unprecedented quality and could be a possible method of detecting blood vessel infiltration within these plaques. This dissertation describes the material and methods used to move the application of "acoustic angiography" to a reduced form factor typical of intravascular catheters and to demonstrate its ability to detect microvasculature. The implementation of this approach is described in terms of the contrast agents used to generate superharmonic signals, the dual-frequency transducers to image them, and the hardware needed to operate them in order to establish how these design choices can impact the quality of the images produced. Furthermore, this dissertation demonstrates how image processing methods such as adaptive windowing or automated sound speed correction can further enhance image quality of vascular targets. The results of these chapters show how acoustic angiography may be optimized using engineering considerations both in signal acquisition

  8. In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared with Fluid/Wall-Only Models.

    PubMed

    Yang, Chun; Tang, Dalin; Yuan, Chun; Hatsukami, Thomas S; Zheng, Jie; Woodard, Pamela K

    2007-01-01

    It has been recognized that fluid-structure interactions (FSI) play an important role in cardiovascular disease initiation and development. However, in vivo MRI multi-component FSI models for human carotid atherosclerotic plaques with bifurcation and quantitative comparisons of FSI models with fluid-only or structure-only models are currently lacking in the literature. A 3D non-Newtonian multi-component FSI model based on in vivo/ex vivo MRI images for human atherosclerotic plaques was introduced to investigate flow and plaque stress/strain behaviors which may be related to plaque progression and rupture. Both artery wall and plaque components were assumed to be hyperelastic, isotropic, incompressible and homogeneous. Blood flow was assumed to be laminar, non-Newtonian, viscous and incompressible. In vivo/ex vivo MRI images were acquired using histologically-validated multi-spectral MRI protocols. The 3D FSI models were solved and results were compared with those from a Newtonian FSI model and wall-only/fluid-only models. A 145% difference in maximum principal stresses (Stress-P(1)) between the FSI and wall-only models and 40% difference in flow maximum shear stress (MSS) between the FSI and fluid-only models were found at the throat of the plaque using a severe plaque sample (70% severity by diameter). Flow maximum shear stress (MSS) from the rigid wall model is much higher (20-40% in maximum MSS values, 100-150% in stagnation region) than those from FSI models.

  9. Combined imaging of oxidative stress and microscopic structure reveals new features in human atherosclerotic plaques.

    PubMed

    Lilledahl, Magnus B; Gustafsson, Håkan; Ellingsen, Pål Gunnar; Zachrisson, Helene; Hallbeck, Martin; Hagen, Vegard Stenhjem; Kildemo, Morten; Lindgren, Mikael

    2015-02-01

    Human atherosclerotic samples collected by carotid endarterectomy were investigated using electronic paramagnetic resonance imaging (EPRI) for visualization of reactive oxygen species, and nonlinear optical microscopy (NLOM) to study structural features. Regions of strong EPRI signal, indicating a higher concentration of reactive oxygen species and increased inflammation, were found to colocalize with regions dense in cholesterol crystals as revealed by NLOM. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  10. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque.

    PubMed Central

    Fu, S; Davies, M J; Stocker, R; Dean, R T

    1998-01-01

    Oxidative damage might be important in atherogenesis. Oxidized lipids are present at significant concentrations in advanced human plaque, although tissue antioxidants are mostly present at normal concentrations. Indirect evidence of protein modification (notably derivatization of lysine) or oxidation has been obtained by immunochemical methods; the specificities of these antibodies are unclear. Here we present chemical determinations of six protein-bound oxidation products: dopa, o-tyrosine, m-tyrosine, dityrosine, hydroxyleucine and hydroxyvaline, some of which reflect particularly oxy-radical-mediated reaction pathways, which seem to involve mainly the participation of transition- metal ions. We compared the relative abundance of these oxidation products in normal intima, and in human carotid plaque samples with that observed after radiolytically generated hydroxyl radical attack on BSA in vitro. The close similarities in relative abundances in the latter two circumstances indicate that hydroxyl radical damage might occur in plaque. The relatively higher level of dityrosine in plaque than that observed after radiolysis suggests the additional involvement of HOCl-mediated reactions in advanced plaque. PMID:9677308

  11. Mineral volume and morphology in carotid plaque specimens using high-resolution MRI and CT.

    PubMed

    Wolf, Ronald L; Wehrli, Suzanne L; Popescu, Andra M; Woo, John H; Song, Hee Kwon; Wright, Alexander C; Mohler, Emile R; Harding, John D; Zager, Eric L; Fairman, Ronald M; Golden, Michael A; Velazquez, Omaida C; Carpenter, Jeffrey P; Wehrli, Felix W

    2005-08-01

    High-resolution MRI methods have been used to evaluate carotid artery atherosclerotic plaque content. The purpose of this study was to assess the performance of high-resolution MRI in evaluation of the quantity and pattern of mineral deposition in carotid endarterectomy (CEA) specimens, with quantitative micro-CT as the gold standard. High-resolution MRI and CT were compared in 20 CEA specimens. Linear regression comparing mineral volumes generated from CT (VCT) and MRI (VMRI) data demonstrated good correlation using simple thresholding (VMRI=-0.01+0.98VCT; R2=0.90; threshold=4xnoise) and k-means clustering methods (VMRI=-0.005+1.38VCT; R2=0.93). Bone mineral density (BMD) and bone mineral content (BMC [mineral mass]) were calculated for CT data and BMC verified with ash weight. Patterns of mineralization like particles, granules, and sheets were more clearly depicted on CT. Mineral volumes generated from MRI or CT data were highly correlated. CT provided a more detailed depiction of mineralization patterns and provided BMD and BMC in addition to mineral volume. The extent of mineralization as well as the morphology may ultimately be useful in assessing plaque stability.

  12. Potent Vasoconstrictor Kisspeptin-10 Induces Atherosclerotic Plaque Progression and Instability: Reversal by its Receptor GPR54 Antagonist.

    PubMed

    Sato, Kengo; Shirai, Remina; Hontani, Mina; Shinooka, Rina; Hasegawa, Akinori; Kichise, Tomoki; Yamashita, Tomoyuki; Yoshizawa, Hayami; Watanabe, Rena; Matsuyama, Taka-Aki; Ishibashi-Ueda, Hatsue; Koba, Shinji; Kobayashi, Youichi; Hirano, Tsutomu; Watanabe, Takuya

    2017-04-14

    Kisspeptin-10 (KP-10), a potent vasoconstrictor and inhibitor of angiogenesis, and its receptor, GPR54, have currently received much attention in relation to pre-eclampsia. However, it still remains unknown whether KP-10 could affect atherogenesis. We evaluated the effects of KP-10 on human umbilical vein endothelial cells, human monocyte-derived macrophages, human aortic smooth muscle cells in vitro, and atherosclerotic lesions in apolipoprotein E-deficient (ApoE(-/-)) mice in vivo. KP-10 significantly increased the adhesion of human monocytes to human umbilical vein endothelial cells, which was significantly inhibited by pretreatment with P234, a GPR54 antagonist. KP-10 stimulated mRNA expression of tumor necrosis factor-α, interleukin-6, monocyte chemotactic protein-1, intercellular adhesion molecule-1, vascular adhesion molecule-1, and E-selectin in human umbilical vein endothelial cells. KP-10 significantly enhanced oxidized low-density lipoprotein-induced foam cell formation associated with upregulation of CD36 and acyl-CoA:cholesterol acyltransferase-1 in human monocyte-derived macrophages. In human aortic smooth muscle cells, KP-10 significantly suppressed angiotensin II-induced migration and proliferation, but enhanced apoptosis and activities of matrix metalloproteinase (MMP)-2 and MMP-9 by upregulation of extracellular signal-regulated kinase 1 and 2, p38, Bcl-2-associated X protein, and caspase-3. Four-week-infusion of KP-10 into ApoE(-/-) mice significantly accelerated the development of aortic atherosclerotic lesions with increased monocyte/macrophage infiltration and vascular inflammation as well as decreased intraplaque vascular smooth muscle cells contents. Proatherosclerotic effects of endogenous and exogenous KP-10 were completely canceled by P234 infusion in ApoE(-/-) mice. Our results suggest that KP-10 may contribute to accelerate the progression and instability of atheromatous plaques, leading to plaque rupture. The GPR54 antagonist may be

  13. Selective ablation of WHHLMI rabbit atherosclerotic plaque by quantum cascade laser in the 5.7 μm wavelength range for less-invasive laser angioplasty

    NASA Astrophysics Data System (ADS)

    Hashimura, Keisuke; Ishii, Katsunori; Akikusa, Naota; Edamura, Tadataka; Yoshida, Harumasa; Awazu, Kunio

    2013-06-01

    We investigated the potential of a compact and high-power quantum cascade laser (QCL) in the 5.7 μm wavelength range for less-invasive laser angioplasty. Atherosclerotic plaques consist mainly of cholesteryl esters. Radiation at a wavelength of 5.75 μm is strongly absorbed in C=O stretching vibration mode of cholesteryl esters. Our previous study achieved to make cutting differences between a normal artery and an atherosclerotic lesions using nanosecond pulsed laser by difference-frequency generation (DFG laser) at the wavelength of 5.75 μm. For applying this technique to clinical treatment, a compact laser device is required. In this study, QCL irradiation effects to a porcine normal aorta were compared with DFG laser. Subsequently, QCL irradiation effects on an atherosclerotic aorta of myocardial infarction-prone Watanabe heritable hyperlipidemic rabbit (WHHLMI rabbit) and a normal rabbit aorta were observed. As a result, the QCL could make cutting differences between the rabbit atherosclerotic and normal aortas. On the other hand, the QCL induced more thermal damage to porcine normal aorta than the DFG laser at the irradiation condition of comparable ablation depths. In conclusion, the possibility of less-invasive and selective treatment of atherosclerotic plaques using the QCL in the 5.7 μm wavelength range was revealed, although improvement of QCL was required to prevent the thermal damage of a normal artery.

  14. Discordant Lipid Pattern and Carotid Atherosclerotic Plaque. Importance of Remnant Cholesterol

    PubMed Central

    Masson, Walter; Lobo, Martín; Molinero, Graciela; Siniawski, Daniel

    2017-01-01

    Background: Subjects with levels of non-HDL-C 30 mg/dL above those of LDL-C (lipid discordance) or with high remnant cholesterol levels could have a greater residual cardiovascular risk. Objectives: To determine the prevalence of lipid discordance in a primary prevention population and analyze the clinical variables associated with it;To investigate the association between lipid discordance and remnant cholesterol with the presence of carotid plaque. Methods: Primary prevention patients without diabetes or lipid-lowering therapy were included. Regardless of the LDL-C level, we define “lipid discordance” if the non-HDL-C value exceeded 30 mg/dL that of LDL-C. Remnant cholesterol was calculated as total cholesterol minus HDL-C minus LDL-C when triglycerides were < 4.0 mmol/L. Ultrasound was used to assess carotid plaque occurrence. Multiple regression logistic models were performed. Results: The study included 772 patients (mean age 52 ± 11 years, 66% women). The prevalence of lipid discordance was 34%. Male sex and body mass index were independently associated with discordant lipid pattern. The prevalence of carotid plaque was higher in subjects with lipid discordance (40.2% vs. 29.2, p = 0.002). The multivariate analysis showed that the discordant lipid pattern was associated with the greater probability of carotid plaque (OR 1.58, 95% CI 1.08-2.34, p = 0.02). Similarly, a significant association between calculated remnant cholesterol and carotid plaque was found. Conclusion: Lipid discordance and presence of a higher level of calculated remnant cholesterol are associated with subclinical atherosclerosis. Our findings could be used to improve the residual cardiovascular risk evaluation. PMID:28699976

  15. Endovascular shear strain elastography for the detection and characterization of the severity of atherosclerotic plaques: in vitro validation and in vivo evaluation.

    PubMed

    Majdouline, Younes; Ohayon, Jacques; Keshavarz-Motamed, Zahra; Roy Cardinal, Marie-Hélène; Garcia, Damien; Allard, Louise; Lerouge, Sophie; Arsenault, Frédéric; Soulez, Gilles; Cloutier, Guy

    2014-05-01

    This work explores the potential of shear strain elastograms to identify vulnerable atherosclerotic plaques. The Lagrangian speckle model estimator (LSME) elasticity imaging method was further developed to estimate shear strain elasticity (SSE). Three polyvinyl alcohol cryogel vessel phantoms were imaged with an intravascular ultrasound (IVUS) scanner. The estimated SSE maps were validated against finite-element results. Atherosclerosis was induced in carotid arteries of eight Sinclair mini-pigs using a combination of surgical techniques, diabetes and a high-fat diet. IVUS images were acquired in vivo in 14 plaques before euthanasia and histology. All plaques were characterized by high magnitudes in SSE maps that correlated with American Heart Association atherosclerosis stage classifications (r = 0.97, p < 0.001): the worse the plaque condition the higher was the absolute value of SSE, i.e. |SSE| (e.g., mean |SSE| was 3.70 ± 0.40% in Type V plaques, whereas it was reduced to 0.11 ± 0.01% in normal walls). This study indicates the feasibility of using SSE to highlight atherosclerotic plaque vulnerability characteristics.

  16. Combined orcein and martius scarlet blue (OMSB) staining for qualitative and quantitative analyses of atherosclerotic plaques in brachiocephalic arteries in apoE/LDLR(-/-) mice.

    PubMed

    Gajda, Mariusz; Jasztal, Agnieszka; Banasik, Tomasz; Jasek-Gajda, Ewa; Chlopicki, Stefan

    2017-02-06

    Numerous cellular and extracellular components should be analyzed in sections of atherosclerotic plaques to assess atherosclerosis progression and vulnerability. Here, we combined orcein (O) staining for elastic fibers and martius scarlet blue (MSB) polychrome to visualize various morphological contents of plaque in brachiocephalic arteries (BCA) of apoE/LDLR(-/-) mice. Elastic fibers (including broken elastic laminae and 'buried' fibrous caps) were stained purple and they could be easily distinguished from collagen fibers (blue). Orcein allowed clear identification of even the finest elastic fibers. Erythrocytes were stained yellow and they could easily be discerned from mature fibrin (red). Old fibrin tends to acquire blue color. The method of OMSB staining is simple, takes less than 1 h to perform and can be adapted to automatic stainers. Most importantly, the color separation is good enough to allow digital automatic segmentation of specific components in tissue section and quantitative analysis of the plaque constituents. OMSB was used to compare atherosclerotic plaques in proximal and distal regions of BCA in apoE/LDLR(-/-) mice. In conclusion, OMSB staining represents a novel staining that could be routinely used for qualitative and quantitative microscopic assessments of formaldehyde-fixed and paraffin-embedded sections of arteries with atherosclerotic lesions.

  17. Selective treatment of atherosclerotic plaques using nanosecond pulsed laser with a wavelength of 5.75 μm for less-invasive laser angioplasty

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Tsukimoto, H.; Hazama, H.; Awazu, K.

    2009-07-01

    XeCl excimer laser coronary angioplasty (ELCA), has gained more attention for the treatment of serious stenosis blocked by plaque. Low degrees of thermal damage after ablation of atherosclerotic plaques have been achieved by ELCA. However, the large number of risks associated with the procedure, for example, dissections or perforations of the coronary arteries limits its application. The laser treatment technique with high ablation efficiency but low arterial wall injury is desirable. Mid-infrared laser with a wavelength of 5.75 μm is selectively well absorbed in C=O stretching vibration mode of ester bonds in cholesteryl ester. We studied the effectiveness of nanosecond pulsed laser at 5.75 μm for novel less-invasive laser angioplasty. In this study, we used a mid-infrared tunable solid-state laser which is operated by difference-frequency generation, at 5.75 μm, a pulse width of 5 ns and a pulse repetition rate of 10 Hz as a treatment light source, and a thoracic aorta of WHHLMI rabbit as an atherosclerosis model. As a result, less-invasive treatment parameters for removing atherosclerotic plaques in a wet condition were confirmed. This study shows that the nanosecond pulsed laser irradiation at 5.75 μm is a powerful tool for selective and less-invasive treatment of atherosclerotic plaques.

  18. Quantitative and qualitative estimation of atherosclerotic plaque burden in vivo at 7T MRI using Gadospin F in comparison to en face preparation evaluated in ApoE KO mice.

    PubMed

    Jung, Caroline; Christiansen, Sabine; Kaul, Michael Gerhard; Koziolek, Eva; Reimer, Rudolph; Heeren, Jörg; Adam, Gerhard; Heine, Markus; Ittrich, Harald

    2017-01-01

    The aim of the study was to quantify atherosclerotic plaque burden by volumetric assessment and T1 relaxivity measurement at 7T MRI using Gadospin F (GDF) in comparison to en face based measurements. 9-weeks old ApoE-/- (n = 5 for each group) and wildtype mice (n = 5) were set on high fat diet (HFD). Progression group received MRI at 9, 13, 17 and 21 weeks after HFD initiation. Regression group was reswitched to chow diet (CD) after 13 weeks HFD and monitored with MRI for 12 weeks. MRI was performed before and two hours after iv injection of GDF (100 μmol/kg) at 7T (Clinscan, Bruker) acquiring a 3D inversion recovery gradient echo sequence and T1 Mapping using Saturation Recovery sequences. Subsequently, aortas were prepared for en face analysis using confocal microscopy. Total plaque volume (TPV) and T1 relaxivity were estimated using ImageJ (V. 1.44p, NIH, USA). 2D and 3D en face analysis showed a strong and exponential increase of plaque burden over time, while plaque burden in regression group was less pronounced. Correspondent in vivo MRI measurements revealed a more linear increase of TPV and T1 relaxivity for regression group. A significant correlation was observed between 2D and 3D en face analysis (r = 0.79; p<0.001) as well as between 2D / 3D en face analysis and MRI (r = 0.79; p<0.001; r = 0.85; p<0.001) and delta R1 (r = 0.79; p<0.001; r = 0.69; p<0.01). GDF-enhanced in vivo MRI is a powerful non-invasive imaging technique in mice allowing for reliable estimation of atherosclerotic plaque burden, monitoring of disease progression and regression in preclinical studies.

  19. Impact of Wall Shear Stress and Pressure Variation on the Stability of Atherosclerotic Plaque

    NASA Astrophysics Data System (ADS)

    Taviani, V.; Li, Z. Y.; Sutcliffe, M.; Gillard, J.

    Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady and unsteady conditions assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding one dimensional models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed linearly elastic, homogeneous isotropic. The analysis showed that wall shear stress is small (less than 3.5%) with respect to pressure drop throughout the cycle even for severe stenosis. On the contrary, the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by one dimensional models. This suggests that the primary source of mistakes in one dimensional studies comes from neglecting the three dimensional geometry of the plaque. Neglecting axial forces only involves minor errors.

  20. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture

    NASA Astrophysics Data System (ADS)

    Nadkarni, Seemantini K.

    2013-12-01

    During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.

  1. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture

    PubMed Central

    2013-01-01

    Abstract. During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future. PMID:24296995

  2. Comparison of iodinated contrast media for the assessment of atherosclerotic plaque attenuation values by CT coronary angiography: observations in an ex vivo model.

    PubMed

    La Grutta, L; Galia, M; Gentile, G; Lo Re, G; Grassedonio, E; Coppolino, F; Maffei, E; Maresi, E; Lo Casto, A; Cademartiri, F; Midiri, M

    2013-01-01

    To compare the influence of different iodinated contrast media with several dilutions on plaque attenuation in an ex vivo coronary model studied by multislice CT coronary angiography. In six ex vivo left anterior descending coronary arteries immersed in oil, CT (slices/collimation 64×0.625 mm, temporal resolution 210 ms, pitch 0.2) was performed after intracoronary injection of a saline solution, and solutions of a dimeric isosmolar contrast medium (Iodixanol 320 mgI ml(-1)) and a monomeric high-iodinated contrast medium (Iomeprol 400 mgI ml(-1)) with dilutions of 1/80 (low concentration), 1/50 (medium concentration), 1/40 (high concentration) and 1/20 (very high concentration). Two radiologists drew regions of interest in the lumen and in calcified and non-calcified plaques for each solution. 29 cross-sections with non-calcified plaques and 32 cross-sections with calcified plaques were evaluated. Both contrast media showed different attenuation values within lumen and plaque (p<0.0001). The correlation between lumen and non-calcified plaque values was good (Iodixanol r=0.793, Iomeprol r=0.647). Clustered medium- and high-concentration solutions showed similar plaque attenuation values, signal-to-noise ratios (SNRs) (non-calcified plaque: medium solution SNR 31.3±15 vs 31.4±20, high solution SNR 39.4±17 vs 37.4±22; calcified plaque: medium solution SNR 305.2±133 vs 298.8±132, high solution SNR 323.9±138 vs 293±123) and derived contrast-to-noise ratios (p>0.05). Differently iodinated contrast media have a similar influence on plaque attenuation profiles. Since iodine load affects coronary plaque attenuation linearly, different contrast media may be equally employed for coronary atherosclerotic plaque imaging.

  3. The Burden of Hard Atherosclerotic Plaques Does Not Promote Endoleak Development After Endovascular Aortic Aneurysm Repair: A Risk Stratification

    SciTech Connect

    Petersen, Johannes Glodny, Bernhard

    2011-10-15

    Purpose: To objectify the influence of the atherosclerotic burden in the proximal landing zone on the development of endoleaks after endovascular abdominal aortic aneurysm repair (EVAR) or thoracic endovascular aneurysm repair (TEVAR) using objective aortic calcium scoring (ACS). Materials and Methods: This retrospective observation study included 267 patients who received an aortic endograft between 1997 and 2010 and for whom preoperative computed tomography (CT) was available to perform ACS using the CT-based V600 method. The mean follow-up period was 2 {+-} 2.3 years. Results: Type I endoleaks persisted in 45 patients (16.9%), type II in 34 (12.7%), type III in 8 (3%), and type IV or V in 3 patients, respectively (1.1% each). ACS in patients with type I endoleaks was not increased: 0.029 {+-} 0.061 ml compared with 0.075 {+-} 0.1349 ml in the rest of the patients, (p > 0.05; Whitney-Mann U-Test). There were significantly better results for the indication 'traumatic aortic rupture' than for the other indications (p < 0.05). In multivariate logistic regression analyses, age was an independent risk factor for the development of type I endoleaks in the thoracic aorta (Wald 9.5; p = 0.002), whereas ACS score was an independent protective factor (Wald 6.9; p = 0.009). In the abdominal aorta, neither age nor ACS influenced the development of endoleaks. Conclusion: Contrary to previous assumptions, TEVAR and EVAR can be carried out without increasing the risk of an endoleak of any type, even if there is a high atherosclerotic 'hard-plaque' burden of the aorta. The results are significantly better for traumatic aortic.

  4. Exclusion of Atherosclerotic Plaque from the Circulation Using Stent-Grafts: Alternative to Carotid Stenting with a Protection Device?

    SciTech Connect

    Peynircioglu, Bora Geyik, Serdar; Yavuz, Kivilcim; Cil, Barbaros E.; Saatci, Isil; Cekirge, Saruhan

    2007-09-15

    Purpose. To retrospectively assess the feasibility, safety, and clinical mid-term outcome of patients undergoing carotid artery stenting with stent-grafts. Methods. Over a 4 year period stent-grafts were used in the endovascular treatment of symptomatic internal carotid artery stenosis in 12 patients (2 women, 10 men, aged 47-83 (mean 64) years). Protection devices were not used. Possible microembolic complications were evaluated by magnetic resonance imaging (MRI) examinations of the brain before and the day after the procedure in all patients. Mean follow-up was 22 months (range 1-42 months), by Doppler ultrasonography and conventional angiography as well as clinical examination .Results. The technical success rate was 100%. A total of 13 coronary stent-grafts were used. The mean stenosis rate (in terms of diameter) was 85% and the mean length of stent-grafts used was 20.9 mm. The mean diameter to which the stent-grafts were dilated was 4.66 mm. In-hospital complications occurred in 1 patient who suffered a minor femoral access hematoma that did not require transfusion or surgical decompression. Post-stenting diffusion-weighted MRI revealed several ipsilateral silent microemboli in only 1 case, which was completely asymptomatic. Two patients had a major stroke after 2 years of follow-up. Restenosis was found in 2 patients who underwent successful balloon dilatation followed by placement of a self-expandable bare stent within the stent-grafts. Conclusions. Stent-grafts may prevent microembolic complications during stenting of atherosclerotic carotid lesions in selected cases, offering immediate exclusion of the atherosclerotic lesion from the circulation by pressing the plaque against the vessel wall. Comparative, randomized studies in larger series of patients are needed with carotid-dedicated stent-graft designs.

  5. Apelin concentrations are associated with altered atherosclerotic plaque stability mediator levels and atherosclerosis in rheumatoid arthritis.

    PubMed

    Gunter, Sule; Solomon, Ahmed; Tsang, Linda; Woodiwiss, Angela J; Robinson, Chanel; Millen, Aletta M E; Norton, Gavin R; Dessein, Patrick H

    2017-01-01

    Apelin-APJ signaling reduces cardiovascular disease (CVD) risk. In rheumatoid arthritis (RA), the atherosclerosis burden and plaque vulnerability to rupture are increased. We explored relationships between apelin concentrations and subclinical CVD in RA. Apelin levels were measured in 235 (114 black, 121 white) RA patients. Associations between apelin concentrations and ultrasound determined carotid artery intima-media thickness (cIMT) and plaque, and levels of matrix metalloproteinase (MMP)-2 and -9 that mediate plaque stability and vulnerability respectively, were identified in confounder adjusted multivariate regression analysis. In all patients, apelin concentrations were directly associated with those of MMP-2 (β (SE) = 0.324 (0.112), p = 0.004) and inversely with those of MMP-9 (β (SE) = -0.239 (0.060), p = 0.000). Apelin concentration-subclinical CVD relations were influenced by population origin, RA disease activity, erythrocyte sedimentation rate (ESR) and interleukin (IL)-6 concentrations (interaction p = 0.001 to 0.04). Accordingly, the apelin-MMP-2 concentration relationship was reproduced in white (β (SE) = 0.367 (0.146), p = 0.01) but not black RA patients (β (SE) = 0.197 (0.220), p = 0.4), and only in those without (but not with) large erythrocyte sedimentation rates (β (SE) = 0.428 (0.143), p = 0.003) or interleukin-6 levels (β (SE) = 0.485 (0.288), p = 0.04). By contrast, the apelin-MMP-9 concentration relation was reproduced more consistently. Apelin levels were inversely related to cIMT in patients with RA remission or mild (β (SE) = -0.068 (0.033), p = 0.04) but not moderate or high disease activity (β (SE) = 0.015 (0.112), p = 0.7). Apelin concentrations are associated with altered plaque stability mediator levels and atherosclerosis in patients with RA. These relations are partially dependent on population origin and systemic inflammatory status. Copyright © 2016 Elsevier Ireland Ltd. All rights

  6. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI).

    PubMed

    Smith, Bryan R; Heverhagen, Johannes; Knopp, Michael; Schmalbrock, Petra; Shapiro, John; Shiomi, Masashi; Moldovan, Nicanor I; Ferrari, Mauro; Lee, Stephen C

    2007-10-01

    Annexin V recognizes apoptotic cells by specific molecular interaction with phosphatidyl serine, a lipid that is normally sequestered in the inner leaflet of the cell membrane, but is translocated to the outer leaflet in apoptotic cells, such as foam cells of atherosclerotic plaque. Annexin V could potentially deliver carried materials (such as superparamagnetic contrast agents for magnetic resonance imaging) to sites containing apoptotic cells, such as high grade atherosclerotic lesions, so we administered biochemically-derivatized (annexin V) superparmagnetic iron oxide particles (SPIONs) parenterally to two related rabbit models of human atherosclerosis. We observe development of negative magnetic resonance imaging (MRI) contrast in atheromatous lesions and but not in healthy artery. Vascular targeting by annexin V SPIONs is atheroma-specific (i.e., does not occur in healthy control rabbits) and requires active annexin V decorating the SPION surface. Targeted SPIONs produce negative contrast at doses that are 2,000-fold lower than reported for non-specific atheroma uptake of untargeted superparamagnetic nanoparticles in plaque in the same animal model. Occlusive and mural plaques are differentiable. While most of the dose accumulates in liver, spleen, kidneys and bladder, annexin V SPIONs also partition rapidly and deeply into early apoptotic foamy macrophages in plaque. Contrast in plaque decays within 2 months, allowing MRI images to be replicated with a subsequent, identical dose of annexin V SPIONs. Thus, biologically targeted superparamagnetic contrast agents can contribute to non-invasive evaluation of cardiovascular lesions by simultaneously extracting morphological and biochemical data from them.

  7. [Simultaneous magnetic resonance angiographic and tomographic assessment of atherosclerotic plaques of carotid arteries with paramagnetic contrasting by cyclomang].

    PubMed

    Usov, V Yu; Belyanin, M L; Bobrikova, E E; Borodin, O Yu; Shimanovsky, N L; Minenko, T V; Bukhovets, I L; Plotnikov, M P; Kozlov, B N; Shipulin, V M

    2016-01-01

    The authors studied a possibility of simultaneously performing magnetic resonance (MR) angiography of carotid arteries and contrast-enhanced MR tomography of atherosclerotic plaques of carotid arteries. We examined a total of 16 patients presenting with disseminated atherosclerosis and 8 patients of the control group. Quadrature coils for examination of the head were used in order to sequentially perform MR tomography of the brain, MR angiography of carotid arteries and MR tomography of atherosclerotic plaques of carotid arteries with contrasting by 0.5M cyclomang. Angiography was carried out by means of the technique of 3D GR FFE of rapid gradient echo (TR/TE/FA/ST=10 ms/2.7 ms/20°/1.5 mm). MR tomography of the carotid arteries bifurcation was performed in the T1-weighted spin-echo mode: TR=500-900 ms, TE=10 ms, slice sickness 1-3 mm into the matrix 256x256 voxels, with the voxel size measuring 0.2x0.2x2 mm. The average time of passing of the paramagnetic through the blood vessels of the cerebral hemispheres in the control group amounted to 4.23±0.14 s for the left hemisphere and to 4.27±0.15 s for the right one. The mean time of bolus passing in patients with predominantly unilateral stenosis of the internal carotid artery amounted to 4.89±0.23 on the affected side, equalling 4.56±0.19 s on the unaffected side (p>0.05). In bilateral lesions these indices for the left and right hemispheres amounted to 4.98±0.21 s and 5.01±0.16 s (p>0.05), respectively. Contrast-enhanced MR angiography with cyclomang made it possible in all cases to visualize the localization and character of stenosis. The index of stenosis degree calculated for MR-angiogram highly significantly correlated with the indices of the ultrasonographic examination performed according to the ECST technique both for cases of unilateral (r=0.87, p<0.05) and cases of bilateral stenotic lesion (r=0.85, p<0.05). Inhomogeneous soft plaques with high content of lipids had high values of the enhancement

  8. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis

    PubMed Central

    Armingohar, Zahra; Jørgensen, Jørgen J.; Kristoffersen, Anne Karin; Abesha-Belay, Emnet; Olsen, Ingar

    2014-01-01

    Background Several studies have reported an association between chronic periodontitis (CP) and cardiovascular diseases. Detection of periodontopathogens, including red complex bacteria (RCB), in vascular lesions has suggested these bacteria to be involved in the pathogenesis of atherosclerosis and abdominal aortic aneurysms. Objective In this study, we investigate bacteria and their DNA in vascular biopsies from patients with vascular diseases (VD; i.e. abdominal aortic aneurysms, atherosclerotic carotid, and common femoral arteries), with and without CP. Methods DNA was extracted from vascular biopsies selected from 40 VD patients: 30 with CP and 10 without CP. The V3-V5 region of the 16S rDNA (V3-V5) was polymerase chain reaction (PCR)-amplified, and the amplicons were cloned into Escherichia coli, sequenced, and classified (GenBank and the Human Oral Microbiome database). Species-specific primers were used for the detection of Porphyromonas gingivalis. In addition, 10 randomly selected vascular biopsies from the CP group were subjected to scanning electron microscopy (SEM) for visualization of bacteria. Checkerboard DNA–DNA hybridization was performed to assess the presence of RCB in 10 randomly selected subgingival plaque samples from CP patients. Results A higher load and mean diversity of bacteria were detected in vascular biopsies from VD patients with CP compared to those without CP. Enterobacteriaceae were frequently detected in vascular biopsies together with cultivable, commensal oral, and not-yet-cultured bacterial species. While 70% of the subgingival plaque samples from CP patients showed presence of RCB, only P. gingivalis was detected in one vascular biopsy. Bacterial cells were seen in all 10 vascular biopsies examined by SEM. Conclusions A higher bacterial load and more diverse colonization were detected in VD lesions of CP patients as compared to patients without CP. This indicated that a multitude of bacterial species both from the gut and the

  9. Phenotypic alterations in human saphenous vein culture induced by tumor necrosis factor-alpha and lipoproteins: a preliminary development of an initial atherosclerotic plaque model

    PubMed Central

    2013-01-01

    Background Atherosclerosis is a chronic progressive inflammatory disease of blood vessels particularly the arteries. The development of atherosclerotic plaques or atherogenesis is a complex process that is influenced by cardiovascular risk factors such as vascular inflammation and dyslipidemia. This study demonstrates the ability of tumor necrosis factor-alpha (TNF-α) and low density lipoproteins (LDL) to induce atherosclerotic plaque in human saphenous vein (HSV) organ culture. Methods Normal HSV segments, from male patients who had coronary bypass graft, were cultured in DMEM containing 5% heat inactivated fetal bovine serum. TNF-α (5 ng/ml) was applied in combination with native LDL (nLDL) or oxidized LDL (oxLDL) at the dose of 50 μg/ml for 14 days. The phenotypic changes of the organ cultures characteristic of initial atherosclerotic plaques were evaluated. The effect of anti-atherogenic agent, 17-β estradiol (E2), was also determined. Results Histologic, histomorphometric, and immunohistochemical examinations revealed that HSV rings stimulated with TNF-α + nLDL or TNF-α + oxLDL can exhibit the essential morphological features of atherogenesis, including fibrous cap formation, cholesterol clefts, evident thickening of the intimal layer, increased proliferation of smooth muscle cells (SMC) and migration to the subendothelial layer, significant SMC foam cell formation, and increased expression of adhesion molecules in the vascular wall. Addition of E2 (50 nM) to the culture significantly modulated the critical changes. Consistently, mRNA profiling of the HSV model revealed that 50 of 84 genes of atherosclerosis were up-regulated. Conclusions Phenotypic changes characteristic of the initial development of atherosclerotic plaques can be induced in HSV organ culture. PMID:24010774

  10. Whole body and hematopoietic ADAM8 deficiency does not influence advanced atherosclerotic lesion development, despite its association with human plaque progression.

    PubMed

    Theodorou, Kosta; van der Vorst, Emiel P C; Gijbels, Marion J; Wolfs, Ine M J; Jeurissen, Mike; Theelen, Thomas L; Sluimer, Judith C; Wijnands, Erwin; Cleutjens, Jack P; Li, Yu; Jansen, Yvonne; Weber, Christian; Ludwig, Andreas; Bentzon, Jacob F; Bartsch, Jörg W; Biessen, Erik A L; Donners, Marjo M P C

    2017-09-15

    Although A Disintegrin And Metalloproteinase 8 (ADAM8) is not crucial for tissue development and homeostasis, it has been implicated in various inflammatory diseases by regulating processes like immune cell recruitment and activation. ADAM8 expression has been associated with human atherosclerosis development and myocardial infarction, however a causal role of ADAM8 in atherosclerosis has not been investigated thus far. In this study, we examined the expression of ADAM8 in early and progressed human atherosclerotic lesions, in which ADAM8 was significantly upregulated in vulnerable lesions. In addition, ADAM8 expression was most prominent in the shoulder region of human atherosclerotic lesions, characterized by the abundance of foam cells. In mice, Adam8 was highly expressed in circulating neutrophils and in macrophages. Moreover, ADAM8 deficient mouse macrophages displayed reduced secretion of inflammatory mediators. Remarkably, however, neither hematopoietic nor whole-body ADAM8 deficiency in mice affected atherosclerotic lesion size. Additionally, except for an increase in granulocyte content in plaques of ADAM8 deficient mice, lesion morphology was unaffected. Taken together, whole body and hematopoietic ADAM8 does not contribute to advanced atherosclerotic plaque development, at least in female mice, although its expression might still be valuable as a diagnostic/prognostic biomarker to distinguish between stable and unstable lesions.

  11. Intra-Arterial Drug and Light Delivery for Photodynamic Therapy Using Visudyne®: Implication for Atherosclerotic Plaque Treatment

    PubMed Central

    Jain, Manish; Zellweger, Matthieu; Frobert, Aurélien; Valentin, Jérémy; van den Bergh, Hubert; Wagnières, Georges; Cook, Stéphane; Giraud, Marie-Noelle

    2016-01-01

    Photodynamic therapy (PDT), which is based on the activation of photosensitizers with light, can be used to reduce plaque burden. We hypothesized that intra-arterial photosensitizer administration and photo-activation will lead to high and rapid accumulation within the plaque with reduced systemic adverse effects. Thus, this “intra-arterial” PDT would be expected to have less side effects and due to the short time involved would be compatible with percutaneous coronary interventions. Aim: We characterized the dose-dependent uptake and efficacy of intra-arterial PDT using Liposomal Verteporfin (Visudyne®), efficient for cancer-PDT but not tested before for PDT of atherosclerosis. Methods and Results: Visudyne® (100, 200, and 500 ng/ml) was perfused for 5–30 min in atherosclerotic aorta isolated from ApoE−/− mice. The fluorescence Intensity (FI) after 15 min of Visudyne® perfusion increased with doses of 100 (FI-5.5 ± 1.8), 200 (FI-31.9 ± 1.9) or 500 ng/ml (FI-42.9 ± 1.2). Visudyne® (500 ng/ml) uptake also increased with the administration time from 5 min (FI-9.8 ± 2.5) to 10 min (FI-23.3 ± 3.0) and 15 min (FI-42.9 ± 3.4) before reaching saturation at 30 min (FI-39.3 ± 2.4) contact. Intra-arterial PDT (Fluence: 100 and 200 J/cm2, irradiance-334 mW/cm2) was applied immediately after Visudyne® perfusion (500 ng/ml for 15 min) using a cylindrical light diffuser coupled to a diode laser (690 nm). PDT led to an increase of ROS (Dihydroethidium; FI-6.9 ± 1.8, 25.3 ± 5.5, 43.4 ± 13.9) and apoptotic cells (TUNEL; 2.5 ± 1.6, 41.3 ± 15.3, 58.9 ± 6%), mainly plaque macrophages (immunostaining; 0.3 ± 0.2, 37.6 ± 6.4, 45.3 ± 5.4%) respectively without laser irradiation, or at 100 and 200 J/cm2. Limited apoptosis was observed in the medial wall (0.5 ± 0.2, 8.5 ± 4.7, 15.3 ± 12.7%). Finally, Visudyne®-PDT was found to be associated with reduced vessel functionality (Myogram). Conclusion: We demonstrated that sufficient accumulation of Visudyne

  12. Tracking Monocyte Recruitment and Macrophage Accumulation in Atherosclerotic Plaque Progression Using a Novel hCD68GFP/ApoE−/− Reporter Mouse—Brief Report

    PubMed Central

    Iqbal, Asif J.; Jones, Daniel; Patel, Jyoti; Coutinho, Patricia; Taylor, Lewis; Greaves, David R.; Channon, Keith M.

    2017-01-01

    Objective— To create a model of atherosclerosis using green fluorescent protein (GFP)–targeted monocytes/macrophages, allowing analysis of both endogenous GFP+ and adoptively transferred GFP+ myeloid cells in arterial inflammation. Approach and Results— hCD68GFP reporter mice were crossed with ApoE−/− mice. Expression of GFP was localized to macrophages in atherosclerotic plaques and in angiotensin II–induced aortic aneurysms and correlated with galectin 3 and mCD68 expression. Flow cytometry confirmed GFP+ expression in CD11b+/CD64+, CD11c+/MHC-IIHI, and CD11b+/F4/80+ myeloid cells. Adoptive transfer of GFP+ monocytes demonstrated monocyte recruitment to both adventitia and atherosclerotic plaque, throughout the aortic root, within 72 hours. We demonstrated the biological utility of hCD68GFP monocytes by comparing the recruitment of wild-type and CCR2−/− monocytes to sites of inflammation. Conclusions— hCD68GFP/ApoE−/− mice provide a new approach to study macrophage accumulation in atherosclerotic plaque progression and to identify cells recruited from adoptively transferred monocytes. PMID:27908893

  13. A method to compensate for the underestimation of collagen with polarized picrosirius red imaging in human artery atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Greiner, C. A.; Grainger, S. J.; Su, J. L.; Madden, S. P.; Muller, J. E.

    2016-04-01

    Although picrosirius red (PSR) is known to be in quantifying collagen under polarized light (PL), commonly used linearly PL can result in an underestimation of collagen, as some of the fibers may appear dark if aligned with the transmission axis of the polarizers. To address this, a sample may be imaged with circularly polarized light at the expense of higher background intensity. However, the quality and alignment of the microscope illumination optics, polarizers and waveplates can still produce imaging variability with circular polarization. A simpler technique was tested that minimized variability and background intensity with linear polarization by acquiring images at multiple angles of histology slide rotation to create a composite co-registered image, permitting the optimal semi-quantitative visualization of collagen. Linear polarization imaging was performed on PSR stained artery sections. By rotating the slide at 60° intervals while maintaining illumination, polarization and exposure parameters, 6 images were acquired for each section. A composite image was created from the 6 co-registered images, and comprised of the maximum pixel intensity at each point. Images from any of the 6 rotation positions consistently showed variation in PSR signal. A composite image compensates for this variability, without loss of spatial resolution. Additionally, grayscale analysis showed an increased intensity range of 15 - 50% with a linearly polarized composite image over a circularly polarized image after background correction, indicating better SNR. This proposed technique will be applied in the development of a near infrared spectroscopy algorithm to detect vulnerable atherosclerotic plaques in vivo.

  14. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques.

    PubMed Central

    Giachelli, C M; Bae, N; Almeida, M; Denhardt, D T; Alpers, C E; Schwartz, S M

    1993-01-01

    In an earlier report, we used differential cloning to identify genes that might be critical in controlling arterial neointima formation (Giachelli, C., N. Bae, D. Lombardi, M. Majesky, and S. Schwartz. 1991. Biochem. Biophys. Res. Commun. 177:867-873). In this study, we sequenced the complete cDNA and conclusively identified one of these genes, 2B7, as rat osteopontin. Using immunochemistry and in situ hybridization, we found that medial smooth muscle cells (SMC) in uninjured arteries contained very low levels of osteopontin protein and mRNA. Injury to either the adult rat aorta or carotid artery using a balloon catheter initiated a qualitatively similar time-dependent increase in both osteopontin protein and mRNA in arterial SMC. Expression was transient and highly localized to neointimal SMC during the proliferative and migratory phases of arterial injury, suggesting a possible role for osteopontin in these processes. In vitro, basic fibroblast growth factor (bFGF), transforming growth factor-beta (TGF-beta), and angiotensin II (AII), all proteins implicated in the rat arterial injury response, elevated osteopontin expression in confluent vascular SMC. Finally, we found that osteopontin was a novel component of the human atherosclerotic plaque found most strikingly associated with calcified deposits. These data implicate osteopontin as a potentially important mediator of arterial neointima formation as well as dystrophic calcification that often accompanies this process. Images PMID:8408622

  15. Mycophenolate mofetil (MMF): firing at the atherosclerotic plaque from different angles?

    PubMed

    van Leuven, Sander I; Kastelein, John J P; Allison, Anthony C; Hayden, Michael R; Stroes, Erik S G

    2006-02-01

    Atherosclerosis is characterized by a persistent, low-grade inflammatory state in which immune cell activation is inseparably linked to plaque formation and destabilization. The T-lymphocyte in particular has emerged as a pivotal player throughout the course of atherogenesis. As a consequence, the concept that immune modulation is a suitable target for cardiovascular prevention is currently an important focus of research. Mycophenolate mofetil (MMF) has emerged as a non-competitive inhibitor of inosine monophosphate dehydrogenase (IMPDH) that exerts cytostatic effects, particularly on proliferating T-lymphocytes. In addition, MMF has other immune-modulating effects, such as downregulation of the expression of adhesion molecules and attenuation of monocyte and macrophage responses. Given the added benefit that MMF is well tolerated, this immunosuppressive agent constitutes an attractive candidate for the modulation of inflammatory activation in atherogenesis. The present review provides an overview of the potential anti-atherogenic properties of MMF.

  16. Effects of Low Carbohydrate High Protein (LCHP) diet on atherosclerotic plaque phenotype in ApoE/LDLR-/- mice: FT-IR and Raman imaging.

    PubMed

    Wrobel, T P; Marzec, K M; Chlopicki, S; Maślak, E; Jasztal, A; Franczyk-Żarów, M; Czyżyńska-Cichoń, I; Moszkowski, T; Kostogrys, R B; Baranska, M

    2015-09-22

    Low Carbohydrate High Protein (LCHP) diet displays pro-atherogenic effects, however, the exact mechanisms involved are still unclear. Here, with the use of vibrational imaging, such as Fourier transform infrared (FT-IR) and Raman (RS) spectroscopies, we characterize biochemical content of plaques in Brachiocephalic Arteries (BCA) from ApoE/LDLR(-/-) mice fed LCHP diet as compared to control, recomended by American Institute of Nutrition, AIN diet. FT-IR images were taken from 6-10 sections of BCA from each mice and were complemented with RS measurements with higher spatial resolution of chosen areas of plaque sections. In aortic plaques from LCHP fed ApoE/LDLR(-/-) mice, the content of cholesterol and cholesterol esters was increased, while that of proteins was decreased as evidenced by global FT-IR analysis. High resolution imaging by RS identified necrotic core/foam cells, lipids (including cholesterol crystals), calcium mineralization and fibrous cap. The decreased relative thickness of the outer fibrous cap and the presence of buried caps were prominent features of the plaques in ApoE/LDLR(-/-) mice fed LCHP diet. In conclusion, FT-IR and Raman-based imaging provided a complementary insight into the biochemical composition of the plaque suggesting that LCHP diet increased plaque cholesterol and cholesterol esters contents of atherosclerotic plaque, supporting the cholesterol-driven pathogenesis of LCHP-induced atherogenesis.

  17. Effects of Low Carbohydrate High Protein (LCHP) diet on atherosclerotic plaque phenotype in ApoE/LDLR−/− mice: FT-IR and Raman imaging

    PubMed Central

    Wrobel, T. P.; Marzec, K. M.; Chlopicki, S.; Maślak, E.; Jasztal, A.; Franczyk-Żarów, M.; Czyżyńska-Cichoń, I.; Moszkowski, T.; Kostogrys, R. B.; Baranska, M.

    2015-01-01

    Low Carbohydrate High Protein (LCHP) diet displays pro-atherogenic effects, however, the exact mechanisms involved are still unclear. Here, with the use of vibrational imaging, such as Fourier transform infrared (FT-IR) and Raman (RS) spectroscopies, we characterize biochemical content of plaques in Brachiocephalic Arteries (BCA) from ApoE/LDLR−/− mice fed LCHP diet as compared to control, recomended by American Institute of Nutrition, AIN diet. FT-IR images were taken from 6–10 sections of BCA from each mice and were complemented with RS measurements with higher spatial resolution of chosen areas of plaque sections. In aortic plaques from LCHP fed ApoE/LDLR−/− mice, the content of cholesterol and cholesterol esters was increased, while that of proteins was decreased as evidenced by global FT-IR analysis. High resolution imaging by RS identified necrotic core/foam cells, lipids (including cholesterol crystals), calcium mineralization and fibrous cap. The decreased relative thickness of the outer fibrous cap and the presence of buried caps were prominent features of the plaques in ApoE/LDLR−/− mice fed LCHP diet. In conclusion, FT-IR and Raman-based imaging provided a complementary insight into the biochemical composition of the plaque suggesting that LCHP diet increased plaque cholesterol and cholesterol esters contents of atherosclerotic plaque, supporting the cholesterol-driven pathogenesis of LCHP–induced atherogenesis. PMID:26391802

  18. Use of high-resolution 3.0-T magnetic resonance imaging to characterize atherosclerotic plaques in patients with cerebral infarction

    PubMed Central

    XU, PENG; LV, LULU; LI, SHAODONG; GE, HAITAO; RONG, YUTAO; HU, CHUNFENG; XU, KAI

    2015-01-01

    The present study aimed to evaluate the utility of high-resolution magnetic resonance imaging (MRI) in the characterization of atherosclerotic plaques in patients with acute and non-acute cerebral infarction. High-resolution MRI of unilateral stenotic middle cerebral arteries was performed to evaluate the degree of stenosis, the wall and plaque areas, plaque enhancement patterns and lumen remodeling features in 15 and 17 patients with acute and non-acute cerebral infarction, respectively. No significant difference was identified in the vascular stenosis rate between acute and non-acute patients. Overall, plaque eccentricity was observed in 29 patients, including 13 acute and 16 non-acute cases, with no significant difference identified between these groups. The wall area of stenotic arteries and the number of cases with plaque enhancement were significantly greater in the acute patients, but no significant difference in plaque or lumen area was identified between the 2 patient groups. Lumen remodeling patterns of stenotic arteries significantly differed between the acute and non-acute patients; the former predominantly demonstrated positive remodeling, and the latter group demonstrated evidence of negative remodeling. In conclusion, patients with acute and non-acute cerebral infarction exhibit specific characteristics in stenotic arteries and plaques, which can be effectively evaluated by high-resolution MRI. PMID:26668651

  19. Insulin resistance predicts progression of de novo atherosclerotic plaques in patients with coronary heart disease: a one-year follow-up study.

    PubMed

    An, Xuanqi; Yu, Dong; Zhang, Ruiyan; Zhu, Jinzhou; Du, Run; Shi, Yuhang; Xiong, Xiaowei

    2012-06-18

    The aim of our study was to explore and evaluate the relationship between insulin resistance and progression of coronary atherosclerotic plaques. With the great burden coronary heart disease is imposing on individuals, healthcare professionals have already embarked on determining its potential modifiable risk factors in the light of preventive medicine. Insulin resistance has been generally recognized as a novel risk factor based on epidemiological studies; however, few researches have focused on its effect on coronary atherosclerotic plaque progression. From June 7, 2007 to December 30, 2011, 366 patients received their index coronary angiogram and were subsequently found to have coronary atherosclerotic plaques or normal angiograms were consecutively enrolled in the study by the department of cardiology at the Ruijin Hospital, which is affiliated to the Shanghai Jiaotong University School of Medicine. All patients had follow-up angiograms after the 1-year period for evaluating the progression of the coronary lesions. The modified Gensini score was adopted for assessing coronary lesions while the HOMA-IR method was utilized for determining the state of their insulin resistance. Baseline characteristics and laboratory test results were described and the binomial regression analysis was conducted to investigate the relationship between insulin resistance and coronary atherosclerotic plaque progression. Index and follow-up Gensini scores were similar between the higher insulin lower insulin resistant groups (9.09 ± 14.33 vs 9.44 ± 12.88, p = 0.813 and 17.21 ± 18.46 vs 14.09 ± 14.18, p =0.358). However the Gensini score assessing coronary lesion progression between both visits was significantly elevated in the higher insulin resistant group (8.13 ± 11.83 versus 4.65 ± 7.58, p = 0.019). Multivariate logistic binomial regression analysis revealed that insulin resistance (HOMA-IR > 3.4583) was an independent predictor for coronary arterial plaque progression (OR

  20. Non-Lethal Sonodynamic Therapy Inhibits Atherosclerotic Plaque Progression in ApoE-/- Mice and Attenuates ox-LDL-mediated Macrophage Impairment by Inducing Heme Oxygenase-1.

    PubMed

    Wang, Yu; Wang, Wei; Xu, Haobo; Sun, Yan; Sun, Jing; Jiang, Yongxing; Yao, Jianting; Tian, Ye

    2017-01-01

    Previous studies from our group showed that low-intensity sonodynamic therapy (SDT) has protective effects on atherosclerosis (AS). However, because the intensity of ultrasound passing through tissue is attenuated, the consequences of very low-intensity SDT, referred to as non-lethal SDT (NL-SDT), on atherosclerotic plaques are unclear. The aim of this study was to determine whether NL-SDT affects atherosclerotic plaques and to elucidate the possible underlying mechanisms. An AS model was established using ApoE-/- mice fed a western diet. En face Oil Red O staining was used to measure atherosclerotic plaque size. Hematoxylin and eosin staining and immunohistochemical staining were used to observe plaque morphology and assess the location of macrophages and heme oxygenase 1 (HO-1). HO-1 mRNA and protein levels in AS plaques were evaluated by real-time PCR and western blotting. Human THP-1 cells and mouse peritoneal macrophages were used in this study. Western blotting was used to investigate the expression of cellular proteins after NL-SDT. Macrophage apoptosis was evaluated by TUNEL assays and flow cytometry with Annexin V/PI double staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured with 2'-7'-dichlorofluorescein diacetate (DCFH-DA) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazolyl carbocyanine iodide (JC-1) staining, respectively. NL-SDT significantly inhibited AS progression and reduced the necrotic core area. NL-SDT induced HO-1 expression in lesional macrophages and in cultured macrophages. NL-SDT activated the protein kinase B (AKT) and extracellular signal-related protein kinase (ERK) pathways and the transcription factor NF-E2-related factor 2 (Nrf2).NL-SDT significantly reduced oxidized LDL (ox-LDL)-induced macrophage MMP collapse, ROS production and cell apoptosis. Zinc protoporphyrin (ZnPP), a HO-1-specific inhibitor, reversed the protective effects of NL-SDT. NL-SDT inhibits

  1. Arterial luminal curvature and fibrous-cap thickness affect critical stress conditions within atherosclerotic plaque: an in vivo MRI-based 2D finite-element study.

    PubMed

    Teng, Zhongzhao; Sadat, Umar; Li, Zhiyong; Huang, Xueying; Zhu, Chengcheng; Young, Victoria E; Graves, Martin J; Gillard, Jonathan H

    2010-10-01

    High mechanical stress in atherosclerotic plaques at vulnerable sites, called critical stress, contributes to plaque rupture. The site of minimum fibrous cap (FC) thickness (FC(MIN)) and plaque shoulder are well-documented vulnerable sites. The inherent weakness of the FC material at the thinnest point increases the stress, making it vulnerable, and it is the big curvature of the lumen contour over FC which may result in increased plaque stress. We aimed to assess critical stresses at FC(MIN) and the maximum lumen curvature over FC (LC(MAX)) and quantify the difference to see which vulnerable site had the highest critical stress and was, therefore, at highest risk of rupture. One hundred patients underwent high resolution carotid magnetic resonance (MR) imaging. We used 352 MR slices with delineated atherosclerotic components for the simulation study. Stresses at all the integral nodes along the lumen surface were calculated using the finite-element method. FC(MIN) and LC(MAX) were identified, and critical stresses at these sites were assessed and compared. Critical stress at FC(MIN) was significantly lower than that at LC(MAX) (median: 121.55 kPa; inter quartile range (IQR) = [60.70-180.32] kPa vs. 150.80 kPa; IQR = [91.39-235.75] kPa, p < 0.0001). If critical stress at FC(MIN) was only used, then the stress condition of 238 of 352 MR slices would be underestimated, while if the critical stress at LC(MAX) only was used, then 112 out of 352 would be underestimated. Stress analysis at FC(MIN) and LC(MAX) should be used for a refined mechanical risk assessment of atherosclerotic plaques, since material failure at either site may result in rupture.

  2. In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared with Fluid/Wall-Only Models

    PubMed Central

    Yang, Chun; Tang, Dalin; Yuan, Chun; Hatsukami, Thomas S.; Zheng, Jie; Woodard, Pamela K.

    2009-01-01

    It has been recognized that fluid-structure interactions (FSI) play an important role in cardiovascular disease initiation and development. However, in vivo MRI multi-component FSI models for human carotid atherosclerotic plaques with bifurcation and quantitative comparisons of FSI models with fluid-only or structure-only models are currently lacking in the literature. A 3D non-Newtonian multi-component FSI model based on in vivo/ex vivo MRI images for human atherosclerotic plaques was introduced to investigate flow and plaque stress/strain behaviors which may be related to plaque progression and rupture. Both artery wall and plaque components were assumed to be hyperelastic, isotropic, incompressible and homogeneous. Blood flow was assumed to be laminar, non-Newtonian, viscous and incompressible. In vivo/ex vivo MRI images were acquired using histologically-validated multi-spectral MRI protocols. The 3D FSI models were solved and results were compared with those from a Newtonian FSI model and wall-only/fluid-only models. A 145% difference in maximum principal stresses (Stress-P1) between the FSI and wall-only models and 40% difference in flow maximum shear stress (MSS) between the FSI and fluid-only models were found at the throat of the plaque using a severe plaque sample (70% severity by diameter). Flow maximum shear stress (MSS) from the rigid wall model is much higher (20–40% in maximum MSS values, 100–150% in stagnation region) than those from FSI models. PMID:19784387

  3. Association of Neutrophil-to-Lymphocyte Ratio with the Severity and Morphology of Coronary Atherosclerotic Plaques Detected by Multidetector Computerized Tomography

    PubMed Central

    Ateş, Ahmet Hakan; Aytemir, Kudret; Koçyiğit, Duygu; Yalcin, Muhammed Ulvi; Gürses, Kadri Murat; Yorgun, Hikmet; Canpolat, Uğur; Hazırolan, Tuncay; Özer, Necla

    2016-01-01

    Background Studies have demonstrated a consistent relationship between white blood cell (WBC) counts and coronary artery disease (CAD). The neutrophil/lymphocyte ratio (NLR) has been considered as a potential marker for identifying individuals under risk of CAD and associated events. In this study, we aimed to evaluate whether NLR was associated with the severity and morphology of coronary atherosclerotic plaques shown by multidetector computed tomography (MDCT). Methods Our study population consisted of 684 patients who underwent dual-source 64 slice MDCT for the assessment of CAD. Coronary arteries were evaluated on a 16-segment basis and critical coronary plaque was described as luminal narrowing > 50%, whereas plaque morphology was assessed on a per segment basis. Total WBC, neutrophil and lymphocyte counts were determined using commercially available assay kits. Results WBC count [7700 (6400-8800) vs. 6800 (5700-7900), p < 0.05] and NLR [2.40 (1.98-3.07) vs. 1.86 (1.50-2.38), p < 0.001] were found to be higher in patients with critical stenosis than in those without. In the binary logistic regression analysis, NLR was a predictor of critical stenosis (odds ratio, 1.68; 95% confidence interval, 1.39-2.03, p < 0.001). NLR levels differed among plaque morphology subtypes (p < 0.05) and was significantly higher in non-calcified plaque (NCP) compared to mixed plaque (MP) and calcified plaque (CP) (p < 0.05). In the multinomial logistic regression analysis, NLR was found to be an independent predictor of NCP, MP and CP (p < 0.001). Conclusions These data show that NLR is associated with both the severity and morphology of coronary atherosclerotic disease. PMID:27899854

  4. [The effect of soy isoflavones on ATP binding cassette A1 expression level in rats without ovaries with atherosclerotic plaque].

    PubMed

    Li, Xian-biao; Ji, Li-li; Li, Yong; Zhang, Yu-mei

    2009-10-01

    .657 +/- 2.397, 1.361 +/- 0.266, 7.069 +/- 2.264, 11.793 +/- 2.515 respectively (F = 37.383, P < 0.01); ABCA1 protein expression in aorta of groups A, B, C, E were: 6.756 +/- 1.310, 0.027 +/- 0.006, 0.035 +/- 0.002 and 7.479 +/- 1.520 respectively (F = 91.999, P < 0.01). Compared to basic control group, atherosclerotic plaque could be observed in atherosclerotic model group, and it could be partially reversed by isoflavones addition. Soy isoflavones treatment might inhibit atherosclerotic progression by lowering the level of blood lipid and increasing ABCA1 expression.

  5. Discordant Lipid Pattern and Carotid Atherosclerotic Plaque. Importance of Remnant Cholesterol.

    PubMed

    Masson, Walter; Lobo, Martín; Molinero, Graciela; Siniawski, Daniel

    2017-06-01

    Subjects with levels of non-HDL-C 30 mg/dL above those of LDL-C (lipid discordance) or with high remnant cholesterol levels could have a greater residual cardiovascular risk. To determine the prevalence of lipid discordance in a primary prevention population and analyze the clinical variables associated with it; To investigate the association between lipid discordance and remnant cholesterol with the presence of carotid plaque. Primary prevention patients without diabetes or lipid-lowering therapy were included. Regardless of the LDL-C level, we define "lipid discordance" if the non-HDL-C value exceeded 30 mg/dL that of LDL-C. Remnant cholesterol was calculated as total cholesterol minus HDL-C minus LDL-C when triglycerides were < 4.0 mmol/L. Ultrasound was used to assess carotid plaque occurrence. Multiple regression logistic models were performed. The study included 772 patients (mean age 52 ± 11 years, 66% women). The prevalence of lipid discordance was 34%. Male sex and body mass index were independently associated with discordant lipid pattern. The prevalence of carotid plaque was higher in subjects with lipid discordance (40.2% vs. 29.2, p = 0.002). The multivariate analysis showed that the discordant lipid pattern was associated with the greater probability of carotid plaque (OR 1.58, 95% CI 1.08-2.34, p = 0.02). Similarly, a significant association between calculated remnant cholesterol and carotid plaque was found. Lipid discordance and presence of a higher level of calculated remnant cholesterol are associated with subclinical atherosclerosis. Our findings could be used to improve the residual cardiovascular risk evaluation. Indivíduos com níveis de não HDL-C excedendo em 30 mg/dl aqueles de LDL-C (discordância lipídica) ou com altos níveis de colesterol remanescente poderiam ter maior risco cardiovascular residual. determinar a prevalência de discordância lipídica em uma população de prevenção primária e analisar as variáveis cl

  6. Circulating adiponectin levels in relation to carotid atherosclerotic plaque presence, ischemic stroke risk, and mortality: A systematic review and meta-analyses.

    PubMed

    Gorgui, Jessica; Gasbarrino, Karina; Georgakis, Marios K; Karalexi, Maria A; Nauche, Bénédicte; Petridou, Eleni Th; Daskalopoulou, Stella S

    2017-04-01

    Low circulating levels of adiponectin, an anti-inflammatory and vasculoprotective adipokine, are associated with obesity, type 2 diabetes, and atherosclerotic disease. Presence of unstable plaques in the carotid artery is a known etiological factor causing ischemic strokes. Herein, we systematically reviewed the association between circulating adiponectin and progression of carotid atherosclerotic disease, particularly evaluating the occurrence of (1) carotid atherosclerotic plaques, (2) ischemic stroke, and (3) mortality in subjects who suffered a previous ischemic stroke. Medline, Embase, Biosis, Scopus, Web of Science, and Pubmed were searched for published studies and conference abstracts. The effect size and 95% confidence intervals (CIs) of the individual studies were pooled using fixed-effect or random-effect models. The quality of the eligible studies was evaluated using the Newcastle-Ottawa quality assessment scale. Sensitivity, subgroup, and meta-regression analyses were performed to address the impact of various risk factors on the association between adiponectin and ischemic stroke risk. Twelve studies fulfilled the inclusion criteria for 3 independent meta-analyses. The association of increasing circulating adiponectin levels (5μg/mL-increment) with presence of carotid plaque was not conclusive (n=327; OR: 1.07; 95% CI: 0.85-1.35; 2 studies), whereas high adiponectin levels showed a significant 8% increase in risk of ischemic stroke (n=13,683; 7 studies), with a more sizable association observed among men compared to women. HDL was observed to have a marginal effect on the association between adiponectin and ischemic stroke, while other evaluated parameters were not found to be effect modifiers. A non-significant association of adiponectin with mortality was yielded (n=663; OR: 2.58; 95% CI: 0.69-9.62; 3 studies). Although no publication bias was evident, there was significant between-study heterogeneity in most analyses. It appears that the direction

  7. Mass Transport and Shear Stress as Mediators of Flow Effects on Atherosclerotic Plaque Origin and Growth

    NASA Astrophysics Data System (ADS)

    Gorder, Riley; Aliseda, Alberto

    2009-11-01

    The carotid artery bifurcation (CAB) is one of the leading site for atherosclerosis, a major cause of mortality and morbidity in the developed world. The specific mechanisms by which perturbed flow at the bifurcation and in the carotid bulge promotes plaque formation and growth are not fully understood. Shear stress, mass transport, and flow residence times are considered dominant factors. Shear stress causes restructuring of endothelial cells at the arterial wall which changes the wall's permeability. Long residence times are associated with enhanced mass transport through increased diffusion of lipids and white blood cells into the arterial wall. Although momentum and mass transfer are traditionally coupled by correlations similar to Reynolds Analogy, the complex flow patterns present in this region due to the pulsatile, transitional, detached flow associated with the complex geometry makes the validity of commonly accepted assumptions uncertain. We create solid models of the CAB from MRI or ultrasound medical images, build flow phantoms on clear polyester resin and use an IOR matching, blood mimicking, working fluid. Using PIV and dye injection techniques the shear stress and scalar transport are experimentally investigated. Our goal is to establish a quantitative relationship between momentum and mass transfer under a wide range of physiologically normal and pathological conditions.

  8. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque.

    PubMed

    Derlin, Thorsten; Richter, Ulrich; Bannas, Peter; Begemann, Philipp; Buchert, Ralph; Mester, Janos; Klutmann, Susanne

    2010-06-01

    The aim of this study was to examine the prevalence, distribution, and topographic relationship of vascular (18)F-sodium fluoride uptake and arterial calcification in major arteries. Image data obtained from 75 patients undergoing whole-body (18)F-sodium fluoride PET/CT were evaluated retrospectively. Arterial radiotracer uptake and calcification were analyzed qualitatively and semiquantitatively. (18)F-sodium fluoride uptake was observed at 254 sites in 57 (76%) of the 75 study patients, and calcification was observed at 1,930 sites in 63 (84%) of the patients. Colocalization of radiotracer accumulation and calcification could be observed in 223 areas of uptake (88%). However, only 12% of all arterial calcification sites showed increased radiotracer uptake. Our data indicate the feasibility of (18)F-sodium fluoride PET/CT for the imaging of mineral deposition in arterial wall alterations. (18)F-sodium fluoride PET/CT may provide relevant information about the morphologic and functional properties of calcified plaque.

  9. Characteristics of carotid atherosclerotic plaques of chronic lipid apheresis patients as assessed by In Vivo High-Resolution CMR - a comparative analysis

    PubMed Central

    2012-01-01

    Background Components of carotid atherosclerotic plaques can reliably be identified and quantified using high resolution in vivo 3-Tesla CMR. It is suspected that lipid apheresis therapy in addition to lowering serum lipid levels also has an influence on development and progression of atherosclerotic plaques. The purpose of this study was to evaluate the influence of chronic lipid apheresis (LA) on the composition of atherosclerotic carotid plaques. Methods 32 arteries of 16 patients during chronic LA-therapy with carotid plaques and stenosis of 1–80% were matched according to degree of stenosis with 32 patients, who had recently suffered an ischemic stroke. Of these patients only the asymptomatic carotid artery was analyzed. All patients underwent black-blood 3 T CMR of the carotids using parallel imaging and dedicated surface coils. Cardiovascular risk factors were recorded. Morphology and composition of carotid plaques were evaluated. For statistical evaluation Fisher’s Exact and unpaired t-test were used. A p-value <0.05 was considered statistically significant. Results Patients in the LA-group were younger (63.5 vs. 73.9. years, p<0.05), had a higher prevalence of hypercholesterolemia and of established coronary heart disease in patients and in first-degree relatives (p<0.05, respectively). LA-patients had smaller maximum wall areas (49.7 vs. 59.6mm2, p<0.05), showed lower prevalence of lipid cores (28.1% vs. 56.3%, p<0.05) and the lipid content was smaller than in the control group (5.0 vs. 11.6%, p<0.05). Minimum lumen areas and maximum total vessel areas did not differ significantly between both groups. Conclusion Results of this study suggest that, despite a severer risk profile for cardiovascular complications in LA-patients, chronic LA is associated with significantly lower lipid content in carotid plaques compared to plaques of patients without LA with similar degrees of stenosis, which is characteristic of clinically stable plaques. PMID:23194143

  10. Fiber-Optic System for Dual-Modality Imaging of Glucose Probes 18F-FDG and 6-NBDG in Atherosclerotic Plaques

    PubMed Central

    Zaman, Raiyan T.; Kosuge, Hisanori; Pratx, Guillem; Carpenter, Colin; Xing, Lei; McConnell, Michael V.

    2014-01-01

    Background Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)–the leading cause of death in the United States. Thus, the ultimate goal of this research is to advance our understanding of human CAD by improving the characterization of metabolically active vulnerable plaques within the coronary arteries using a novel catheter-based imaging system. The aims of this study include (1) developing a novel fiber-optic imaging system with a scintillator to detect both 18F and fluorescent glucose probes, and (2) validating the system on ex vivo murine plaques. Methods A novel design implements a flexible fiber-optic catheter consisting of both a radio-luminescence and a fluorescence imaging system to detect radionuclide 18F-fluorodeoxyglucose (18F-FDG) and the fluorescent analog 6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-Deoxyglucose (6-NBDG), respectively. Murine macrophage-rich atherosclerotic carotid plaques were imaged ex vivo after intravenous delivery of 18F-FDG or 6-NBDG. Confirmatory optical imaging by IVIS-200 and autoradiography were also performed. Results Our fiber-optic imaging system successfully visualized both 18F-FDG and 6-NBDG probes in atherosclerotic plaques. For 18F-FDG, the ligated left carotid arteries (LCs) exhibited 4.9-fold higher radioluminescence signal intensity compared to the non-ligated right carotid arteries (RCs) (2.6×104±1.4×103 vs. 5.4×103±1.3×103 A.U., P = 0.008). Similarly, for 6-NBDG, the ligated LCs emitted 4.3-fold brighter fluorescent signals than the control RCs (1.6×102±2.7×101 vs. 3.8×101±5.9 A.U., P = 0.002). The higher uptake of both 18F-FDG and 6-NBDG in ligated LCs were confirmed with the IVIS-200 system. Autoradiography further verified the higher uptake of 18F-FDG by the LCs. Conclusions This novel fiber-optic imaging system was sensitive to both radionuclide and fluorescent glucose probes taken up by murine atherosclerotic plaques. In addition, 6

  11. 18F-FDG PET and intravascular ultrasonography (IVUS) images compared with histology of atherosclerotic plaques: 18F-FDG accumulates in foamy macrophages.

    PubMed

    Ishino, Seigo; Ogawa, Mikako; Mori, Ikuo; Nishimura, Satoshi; Ikeda, Shota; Sugita, Taku; Oikawa, Tatsuo; Horiguchi, Takashi; Magata, Yasuhiro

    2014-04-01

    Intravascular ultrasonography (IVUS) and (18)F-FDG PET have been used to evaluate the efficacy of antiatherosclerosis drugs. These two modalities image different characteristics of atherosclerotic plaques, and a comparison of IVUS and PET images with histology has not been performed. The aim of this study was to align IVUS and PET images using anatomic landmarks in Watanabe heritable hyperlipidaemic (WHHL) rabbits, enabling comparison of their depiction of aortic atherosclerosis. Cellular (18)F-FDG localization was evaluated by (3)H-FDG microautoradiography (micro-ARG). A total of 19 WHHL rabbits (7 months of age) were divided into three groups: baseline (n = 6), 3 months (n = 4), and 6 months (n = 9). PET, IVUS and histological images of the same aortic segments were analysed. Infiltration by foamy macrophages was scored from 0 to IV using haematoxylin and eosin (H&E) and antimacrophage immunohistochemical staining, and compared with (3)H-FDG micro-ARG findings in two additional WHHL rabbits. IVUS images did not identify foamy macrophage deposition but revealed the area of intimal lesions (r = 0.87). (18)F-FDG PET revealed foamy macrophage distribution in the plaques. The intensity of (18)F-FDG uptake was correlated positively with the degree of foamy macrophage infiltration. Micro-ARG showed identical (3)H-FDG accumulation in the foamy macrophages surrounding the lipid core of the plaques. F-FDG PET localized and quantified the degree of infiltration of foamy macrophages in atherosclerotic lesions. IVUS defined the size of lesions. (18)F-FDG PET is a promising imaging technique for evaluating atherosclerosis and for monitoring changes in the composition of atherosclerotic plaques affecting their stability.

  12. MicroRNA-33 Deficiency Reduces the Progression of Atherosclerotic Plaque in ApoE−/− Mice

    PubMed Central

    Horie, Takahiro; Baba, Osamu; Kuwabara, Yasuhide; Chujo, Yoshimasa; Watanabe, Shin; Kinoshita, Minako; Horiguchi, Masahito; Nakamura, Tomoyuki; Chonabayashi, Kazuhisa; Hishizawa, Masakatsu; Hasegawa, Koji; Kume, Noriaki; Yokode, Masayuki; Kita, Toru; Kimura, Takeshi; Ono, Koh

    2012-01-01

    Background Cholesterol efflux from cells to apolipoprotein A-I (apoA-I) acceptors via the ATP-binding cassette transporters ABCA1 and ABCG1 is thought to be central in the antiatherogenic mechanism. MicroRNA (miR)-33 is known to target ABCA1 and ABCG1 in vivo. Methods and Results We assessed the impact of the genetic loss of miR-33 in a mouse model of atherosclerosis. MiR-33 and apoE double-knockout mice (miR-33−/−Apoe−/−) showed an increase in circulating HDL-C levels with enhanced cholesterol efflux capacity compared with miR-33+/+Apoe−/− mice. Peritoneal macrophages from miR-33−/−Apoe−/− mice showed enhanced cholesterol efflux to apoA-I and HDL-C compared with miR-33+/+Apoe−/− macrophages. Consistent with these results, miR-33−/−Apoe−/− mice showed reductions in plaque size and lipid content. To elucidate the roles of miR-33 in blood cells, bone marrow transplantation was performed in these mice. Mice transplanted with miR-33−/−Apoe−/− bone marrow showed a significant reduction in lipid content in atherosclerotic plaque compared with mice transplanted with miR-33+/+Apoe−/− bone marrow, without an elevation of HDL-C. Some of the validated targets of miR-33 such as RIP140 (NRIP1) and CROT were upregulated in miR-33−/−Apoe−/− mice compared with miR-33+/+Apoe−/− mice, whereas CPT1a and AMPKα were not. Conclusions These data demonstrate that miR-33 deficiency serves to raise HDL-C, increase cholesterol efflux from macrophages via ABCA1 and ABCG1, and prevent the progression of atherosclerosis. Many genes are altered in miR-33-deficient mice, and detailed experiments are required to establish miR-33 targeting therapy in humans. PMID:23316322

  13. Upregulation of miR-142-5p in atherosclerotic plaques and regulation of oxidized low-density lipoprotein-induced apoptosis in macrophages

    PubMed Central

    XU, RUIJIN; BI, CHENGLONG; SONG, JIANTAO; WANG, LIN; GE, CHENG; LIU, XINXIN; ZHANG, MEI

    2015-01-01

    MicroRNA (miR)-142-5p is a member of the miR-142 family, which have been shown to be associated with tumors, stem cells and disorders of the immune system. However, the role of miR-142-5p in atherosclerosis has yet to be investigated. In the present study, an atherosclerotic apolipoprotein E-deficient (apoE−/−) mouse model was constructed and fed a high-fat diet. The expression levels of miR-142-5p in the murine atherosclerotic plaques were detected by gene microarray analysis. In addition, an in vitro assay was used to determine the expression levels of miR-142-5p in human endothelial cells, smooth muscle cells and macrophages, which were treated with oxidized low-density lipoprotein (ox-LDL). Furthermore, a miR-142-5p inhibitor and mimic was transfected into cultured human macrophages, in order to observe the effects on transforming growth factor-β2 (TGF-β2) expression. The effects of co-transfection of the miR-142-5p inhibitor or mimic with TGF-β2, in human macrophages, on the rate of apoptosis was analyzed. The expression levels of miR-142-5p were 6.84-fold higher in mice with stable atherosclerotic plaques, and 2.69-fold higher in mice with vulnerable atherosclerotic plaques, as compared with the controls. Furthermore, the expression levels of miR-142-5p were upregulated in the cultured human macrophages. The percentage of apoptotic cells was lowest in the macrophages transfected with both TGF-β2 and miR-142-5p inhibitors and treated with ox-LDL. The expression levels of miR-142-5p were upregulated in the atherosclerotic plaques of the apoE−/− mice. The findings of the present study have shown that the upregulation of miR-142-5p expression may regulate apoptosis in human macrophages by targeting TGF-β2. This effect may have an important role in the progression of atherosclerosis. PMID:25586666

  14. Upregulation of miR-142-5p in atherosclerotic plaques and regulation of oxidized low-density lipoprotein-induced apoptosis in macrophages.

    PubMed

    Xu, Ruijin; Bi, Chenglong; Song, Jiantao; Wang, Lin; Ge, Cheng; Liu, Xinxin; Zhang, Mei

    2015-05-01

    MicroRNA (miR)‑142‑5p is a member of the miR‑142 family, which have been shown to be associated with tumors, stem cells and disorders of the immune system. However, the role of miR‑142‑5p in atherosclerosis has yet to be investigated. In the present study, an atherosclerotic apolipoprotein E‑deficient (apoE‑/‑) mouse model was constructed and fed a high‑fat diet. The expression levels of miR‑142‑5p in the murine atherosclerotic plaques were detected by gene microarray analysis. In addition, an in vitro assay was used to determine the expression levels of miR‑142‑5p in human endothelial cells, smooth muscle cells and macrophages, which were treated with oxidized low‑density lipoprotein (ox‑LDL). Furthermore, a miR‑142‑5p inhibitor and mimic was transfected into cultured human macrophages, in order to observe the effects on transforming growth factor‑β2 (TGF‑β2) expression. The effects of co‑transfection of the miR‑142‑5p inhibitor or mimic with TGF‑β2, in human macrophages, on the rate of apoptosis was analyzed. The expression levels of miR‑142‑5p were 6.84‑fold higher in mice with stable atherosclerotic plaques, and 2.69‑fold higher in mice with vulnerable atherosclerotic plaques, as compared with the controls. Furthermore, the expression levels of miR‑142‑5p were upregulated in the cultured human macrophages. The percentage of apoptotic cells was lowest in the macrophages transfected with both TGF‑β2 and miR‑142‑5p inhibitors and treated with ox‑LDL. The expression levels of miR‑142‑5p were upregulated in the atherosclerotic plaques of the apoE‑/‑ mice. The findings of the present study have shown that the upregulation of miR‑142‑5p expression may regulate apoptosis in human macrophages by targeting TGF‑β2. This effect may have an important role in the progression of atherosclerosis.

  15. Chocolate Consumption is Inversely Associated with Calcified Atherosclerotic Plaque in the Coronary Arteries: The NHLBI Family Heart Study

    PubMed Central

    Djoussé, Luc; Hopkins, Paul N.; Arnett, Donna K.; Pankow, James S.; Borecki, Ingrid; North, Kari E.; Ellison, R. Curtis

    2010-01-01

    Background and Aims While a diet rich in anti-oxidant has been favorably associated with coronary disease and hypertension, limited data have evaluated the influence of such diet on subclinical disease. Thus, we sought to examine whether chocolate consumption is associated with calcified atherosclerotic plaque in the coronary arteries (CAC). Methods In a cross-sectional design, we studied 2,217 participants of the NHLBI Family Heart Study. Chocolate consumption was assessed by a semi-quantitative food-frequency questionnaire and CAC was measured by cardiac CT. We defined prevalent CAC using an Agatston score of at least 100 and fitted generalized estimating equations to calculate prevalence odds ratios of CAC. Results There was an inverse association between frequency of chocolate consumption and prevalent CAC. Odds ratios (95% CI) for CAC were 1.0 (reference), 0.94 (0.66-1.35), 0.78 (0.53-1.13), and 0.68 (0.48-0.97) for chocolate consumption of 0, 1-3 times per month, once per week, and 2+ times per week, respectively (p for trend 0.022), adjusting for age, sex, energy intake, waist-hip ratio, education, smoking, alcohol consumption, ratio of total-to-HDL-cholesterol, non-chocolate candy, and diabetes mellitus. Controlling for additional confounders did not alter the findings. Exclusion of subjects with coronary heart disease or diabetes mellitus did not materially change the odds ratio estimates but did modestly decrease the overall significance (p = 0.07). Conclusions These data suggest that chocolate consumption might be inversely associated with prevalent CAC. PMID:20655129

  16. Chocolate consumption is inversely associated with calcified atherosclerotic plaque in the coronary arteries: the NHLBI Family Heart Study.

    PubMed

    Djoussé, Luc; Hopkins, Paul N; Arnett, Donna K; Pankow, James S; Borecki, Ingrid; North, Kari E; Curtis Ellison, R

    2011-02-01

    While a diet rich in anti-oxidant has been favorably associated with coronary disease and hypertension, limited data have evaluated the influence of such diet on subclinical disease. Thus, we sought to examine whether chocolate consumption is associated with calcified atherosclerotic plaque in the coronary arteries (CAC). In a cross-sectional design, we studied 2217 participants of the NHLBI Family Heart Study. Chocolate consumption was assessed by a semi-quantitative food frequency questionnaire and CAC was measured by cardiac CT. We defined prevalent CAC using an Agatston score of at least 100 and fitted generalized estimating equations to calculate prevalence odds ratios of CAC. There was an inverse association between frequency of chocolate consumption and prevalent CAC. Odds ratios (95% CI) for CAC were 1.0 (reference), 0.94 (0.66-1.35), 0.78 (0.53-1.13), and 0.68 (0.48-0.97) for chocolate consumption of 0, 1-3 times per month, once per week, and 2+ times per week, respectively (p for trend 0.022), adjusting for age, sex, energy intake, waist-hip ratio, education, smoking, alcohol consumption, ratio of total-to-HDL-cholesterol, non-chocolate candy, and diabetes mellitus. Controlling for additional confounders did not alter the findings. Exclusion of subjects with coronary heart disease or diabetes mellitus did not materially change the odds ratio estimates but did modestly decrease the overall significance (p = 0.07). These data suggest that chocolate consumption might be inversely associated with prevalent CAC. Published by Elsevier Ltd.