Science.gov

Sample records for atlantic leatherback turtles

  1. Endangered species: Pan-Atlantic leatherback turtle movements.

    PubMed

    Hays, Graeme C; Houghton, Jonathan D R; Myers, Andrew E

    2004-06-03

    The overall extent of habitat use by leatherback turtles in the North Atlantic, and hence their possible interactions with longline fisheries, is unknown. Here we use long-term satellite telemetry to reveal that leatherbacks range throughout the North Atlantic, indicating that closing limited areas to longline fisheries will probably have only partial success in reducing turtle bycatch. Although turtles dive very deeply on occasion (one descended to a maximum depth of 1,230 metres, which represents the deepest dive ever recorded for a reptile), they generally restrict their diving to less than 250 metres, which increases the chance that they will encounter longline hooks.

  2. Isotope analysis reveals foraging area dichotomy for atlantic leatherback turtles.

    PubMed

    Caut, Stéphane; Fossette, Sabrina; Guirlet, Elodie; Angulo, Elena; Das, Krishna; Girondot, Marc; Georges, Jean-Yves

    2008-03-26

    The leatherback turtle (Dermochelys coriacea) has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI). Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal) and foraging latitude (North Atlantic vs. West African coasts, respectively). Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by commercial fisheries. Our results also emphasize the use of eggs, a less-invasive sampling

  3. Isotope Analysis Reveals Foraging Area Dichotomy for Atlantic Leatherback Turtles

    PubMed Central

    Angulo, Elena; Das, Krishna; Girondot, Marc

    2008-01-01

    Background The leatherback turtle (Dermochelys coriacea) has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI). Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. Methodology/Principal Findings Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal) and foraging latitude (North Atlantic vs. West African coasts, respectively). Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. Conclusions/Significance Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by commercial fisheries. Our

  4. Leatherback Turtle Movements, Dive Behavior, and Habitat Characteristics in Ecoregions of the Northwest Atlantic Ocean

    PubMed Central

    Dodge, Kara L.; Galuardi, Benjamin; Miller, Timothy J.; Lutcavage, Molly E.

    2014-01-01

    Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m−3), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km−1) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging

  5. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean.

    PubMed

    Dodge, Kara L; Galuardi, Benjamin; Miller, Timothy J; Lutcavage, Molly E

    2014-01-01

    Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m(-3)), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km(-1)) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging

  6. Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre.

    PubMed

    Dodge, Kara L; Galuardi, Benjamin; Lutcavage, Molly E

    2015-04-07

    Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre

    PubMed Central

    Dodge, Kara L.; Galuardi, Benjamin; Lutcavage, Molly E.

    2015-01-01

    Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. PMID:25761714

  8. Tracking leatherback turtles from the world's largest rookery: assessing threats across the South Atlantic

    PubMed Central

    Witt, Matthew J.; Augowet Bonguno, Eric; Broderick, Annette C.; Coyne, Michael S.; Formia, Angela; Gibudi, Alain; Mounguengui Mounguengui, Gil Avery; Moussounda, Carine; NSafou, Monique; Nougessono, Solange; Parnell, Richard J.; Sounguet, Guy-Philippe; Verhage, Sebastian; Godley, Brendan J.

    2011-01-01

    Despite extensive work carried out on leatherback turtles (Dermochelys coriacea) in the North Atlantic and Indo-Pacific, very little is known of the at-sea distribution of this species in the South Atlantic, where the world's largest population nests in Gabon (central Africa). This paucity of data is of marked concern given the pace of industrialization in fisheries with demonstrable marine turtle bycatch in African/Latin American waters. We tracked the movements of 25 adult female leatherback turtles obtaining a range of fundamental and applied insights, including indications for methodological advancement. Individuals could be assigned to one of three dispersal strategies, moving to (i) habitats of the equatorial Atlantic, (ii) temperate habitats off South America or (iii) temperate habitats off southern Africa. While occupying regions with high surface chlorophyll concentrations, these strategies exposed turtles to some of the world's highest levels of longline fishing effort, in addition to areas with coastal gillnet fisheries. Satellite tracking highlighted that at least 11 nations should be involved in the conservation of this species in addition to those with distant fishing fleets. The majority of tracking days were, however, spent in the high seas, where effective implementation of conservation efforts is complex to achieve. PMID:21208949

  9. Tracking leatherback turtles from the world's largest rookery: assessing threats across the South Atlantic.

    PubMed

    Witt, Matthew J; Augowet Bonguno, Eric; Broderick, Annette C; Coyne, Michael S; Formia, Angela; Gibudi, Alain; Mounguengui Mounguengui, Gil Avery; Moussounda, Carine; NSafou, Monique; Nougessono, Solange; Parnell, Richard J; Sounguet, Guy-Philippe; Verhage, Sebastian; Godley, Brendan J

    2011-08-07

    Despite extensive work carried out on leatherback turtles (Dermochelys coriacea) in the North Atlantic and Indo-Pacific, very little is known of the at-sea distribution of this species in the South Atlantic, where the world's largest population nests in Gabon (central Africa). This paucity of data is of marked concern given the pace of industrialization in fisheries with demonstrable marine turtle bycatch in African/Latin American waters. We tracked the movements of 25 adult female leatherback turtles obtaining a range of fundamental and applied insights, including indications for methodological advancement. Individuals could be assigned to one of three dispersal strategies, moving to (i) habitats of the equatorial Atlantic, (ii) temperate habitats off South America or (iii) temperate habitats off southern Africa. While occupying regions with high surface chlorophyll concentrations, these strategies exposed turtles to some of the world's highest levels of longline fishing effort, in addition to areas with coastal gillnet fisheries. Satellite tracking highlighted that at least 11 nations should be involved in the conservation of this species in addition to those with distant fishing fleets. The majority of tracking days were, however, spent in the high seas, where effective implementation of conservation efforts is complex to achieve.

  10. Flexible foraging movements of leatherback turtles across the North Atlantic Ocean.

    PubMed

    Hays, Graeme C; Hobson, Victoria J; Metcalfe, Julian D; Righton, David; Sims, David W

    2006-10-01

    Some marine species have been shown to target foraging at particular hotspots of high prey abundance. However, we show here that in the year after a nesting season, female leatherback turtles (Dermochelys coriacea) in the Atlantic generally spend relatively little time in fixed hotspots, especially those with a surface signature revealed in satellite imagery, but rather tend to have a pattern of near continuous traveling. Associated with this traveling, distinct changes in dive behavior indicate that turtles constantly fine tune their foraging behavior and diel activity patterns in association with local conditions. Switches between nocturnal vs. diurnal activity are rare in the animal kingdom but may be essential for survival on a diet of gelatinous zooplankton where patches of high prey availability are rare. These results indicate that in their first year after nesting, leatherback turtles do not fit the general model of migration where responses to resources are suppressed during transit. However, their behavior may be different in their sabbatical years away from nesting beaches. Our results highlight the importance of whole-ocean fishing gear regulations to minimize turtle bycatch.

  11. Pan-atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries.

    PubMed

    Fossette, S; Witt, M J; Miller, P; Nalovic, M A; Albareda, D; Almeida, A P; Broderick, A C; Chacón-Chaverri, D; Coyne, M S; Domingo, A; Eckert, S; Evans, D; Fallabrino, A; Ferraroli, S; Formia, A; Giffoni, B; Hays, G C; Hughes, G; Kelle, L; Leslie, A; López-Mendilaharsu, M; Luschi, P; Prosdocimi, L; Rodriguez-Heredia, S; Turny, A; Verhage, S; Godley, B J

    2014-04-07

    Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters.

  12. Pan-Atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries

    PubMed Central

    Fossette, S.; Witt, M. J.; Miller, P.; Nalovic, M. A.; Albareda, D.; Almeida, A. P.; Broderick, A. C.; Chacón-Chaverri, D.; Coyne, M. S.; Domingo, A.; Eckert, S.; Evans, D.; Fallabrino, A.; Ferraroli, S.; Formia, A.; Giffoni, B.; Hays, G. C.; Hughes, G.; Kelle, L.; Leslie, A.; López-Mendilaharsu, M.; Luschi, P.; Prosdocimi, L.; Rodriguez-Heredia, S.; Turny, A.; Verhage, S.; Godley, B. J.

    2014-01-01

    Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters. PMID:24523271

  13. Endangered species: where leatherback turtles meet fisheries.

    PubMed

    Ferraroli, Sandra; Georges, Jean-Yves; Gaspar, Philippe; Le Maho, Yvon

    2004-06-03

    The dramatic worldwide decline in populations of the leatherback turtle (Dermochelys coriacea) is largely due to the high mortality associated with their interaction with fisheries, so a reduction of this overlap is critical to their survival. The discovery of narrow migration corridors used by the leatherbacks in the Pacific Ocean raised the possibility of protecting the turtles by restricting fishing in these key areas. Here we use satellite tracking to show that there is no equivalent of these corridors in the North Atlantic Ocean, because the turtles disperse actively over the whole area. But we are able to identify a few 'hot spots' where leatherbacks meet fisheries and where conservation efforts should be focused.

  14. Recent Demographic History and Present Fine-Scale Structure in the Northwest Atlantic Leatherback (Dermochelys coriacea) Turtle Population

    PubMed Central

    Molfetti, Érica; Torres Vilaça, Sibelle; Georges, Jean-Yves; Plot, Virginie; Delcroix, Eric; Le Scao, Rozen; Lavergne, Anne; Barrioz, Sébastien; dos Santos, Fabrício Rodrigues; de Thoisy, Benoît

    2013-01-01

    The leatherback turtle Dermochelys coriacea is the most widely distributed sea turtle species in the world. It exhibits complex life traits: female homing and migration, migrations of juveniles and males that remain poorly known, and a strong climatic influence on resources, breeding success and sex-ratio. It is consequently challenging to understand population dynamics. Leatherbacks are critically endangered, yet the group from the Northwest Atlantic is currently considered to be under lower risk than other populations while hosting some of the largest rookeries. Here, we investigated the genetic diversity and the demographic history of contrasted rookeries from this group, namely two large nesting populations in French Guiana, and a smaller one in the French West Indies. We used 10 microsatellite loci, of which four are newly isolated, and mitochondrial DNA sequences of the control region and cytochrome b. Both mitochondrial and nuclear markers revealed that the Northwest Atlantic stock of leatherbacks derives from a single ancestral origin, but show current genetic structuration at the scale of nesting sites, with the maintenance of migrants amongst rookeries. Low nuclear genetic diversities are related to founder effects that followed consequent bottlenecks during the late Pleistocene/Holocene. Most probably in response to climatic oscillations, with a possible influence of early human hunting, female effective population sizes collapsed from 2 million to 200. Evidence of founder effects and high numbers of migrants make it possible to reconsider the population dynamics of the species, formerly considered as a metapopulation model: we propose a more relaxed island model, which we expect to be a key element in the currently observed recovering of populations. Although these Northwest Atlantic rookeries should be considered as a single evolutionary unit, we stress that local conservation efforts remain necessary since each nesting site hosts part of the genetic

  15. Recent demographic history and present fine-scale structure in the Northwest Atlantic leatherback (Dermochelys coriacea) turtle population.

    PubMed

    Molfetti, Erica; Vilaça, Sibelle Torres; Georges, Jean-Yves; Plot, Virginie; Delcroix, Eric; Le Scao, Rozen; Lavergne, Anne; Barrioz, Sébastien; dos Santos, Fabrício Rodrigues; de Thoisy, Benoît

    2013-01-01

    The leatherback turtle Dermochelys coriacea is the most widely distributed sea turtle species in the world. It exhibits complex life traits: female homing and migration, migrations of juveniles and males that remain poorly known, and a strong climatic influence on resources, breeding success and sex-ratio. It is consequently challenging to understand population dynamics. Leatherbacks are critically endangered, yet the group from the Northwest Atlantic is currently considered to be under lower risk than other populations while hosting some of the largest rookeries. Here, we investigated the genetic diversity and the demographic history of contrasted rookeries from this group, namely two large nesting populations in French Guiana, and a smaller one in the French West Indies. We used 10 microsatellite loci, of which four are newly isolated, and mitochondrial DNA sequences of the control region and cytochrome b. Both mitochondrial and nuclear markers revealed that the Northwest Atlantic stock of leatherbacks derives from a single ancestral origin, but show current genetic structuration at the scale of nesting sites, with the maintenance of migrants amongst rookeries. Low nuclear genetic diversities are related to founder effects that followed consequent bottlenecks during the late Pleistocene/Holocene. Most probably in response to climatic oscillations, with a possible influence of early human hunting, female effective population sizes collapsed from 2 million to 200. Evidence of founder effects and high numbers of migrants make it possible to reconsider the population dynamics of the species, formerly considered as a metapopulation model: we propose a more relaxed island model, which we expect to be a key element in the currently observed recovering of populations. Although these Northwest Atlantic rookeries should be considered as a single evolutionary unit, we stress that local conservation efforts remain necessary since each nesting site hosts part of the genetic

  16. Exercise warms adult leatherback turtles.

    PubMed

    Bostrom, Brian L; Jones, David R

    2007-06-01

    Leatherback sea turtles (Dermochelys coriacea) can maintain body temperature (T(B)) up to 18 degrees C above that of the surrounding sea water (T(W)) which allows leatherbacks to enter cold temperate waters and have the largest global range of any reptile. Using a cylindrical model of a leatherback we investigated the extent to which heat production through variation of swim speed could be used in a leatherback's thermal strategy. Drag force of a full scale cast of a leatherback was measured in a low velocity wind tunnel to obtain an estimate of the metabolic cost needed to offset drag. Heat released in the core of a turtle as a byproduct of the metabolic cost of locomotion is conducted from the core of the turtle to the surrounding water through its insulation layer. By keeping insulation thickness constant, we highlight the effectiveness of swim speed in maintaining T(B)-T(W). Our model, when tested against published data at a given T(W), showed a close correlation between predicted and measured swimming speed at a given T(B). We conclude that the ability to maintain a large T(B)-T(W) is an interplay between mass, insulation thickness and water temperature selection but behavioural control of swimming speed predominates.

  17. Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): a cause for concern in this species?

    PubMed

    Perrault, Justin R

    2014-08-01

    Bodily accumulation of certain toxic elements can cause physiologic harm to marine organisms and be detrimental to their health and survival. The leatherback sea turtle (Dermochelys coriacea) is a broadly distributed marine reptile capable of consuming hundreds of kilograms of gelatinous zooplankton each day. Little is known about toxicants present in these prey items. Specifically, mercury is a known neurotoxin with no known essential function, while selenium detoxifies bodily mercury, but can be toxic at elevated concentrations. I collected 121 leatherback prey items (i.e., gelatinous zooplankton) from known leatherback foraging grounds and sampled the esophagus and stomach contents of stranded turtles. All samples were analyzed for total mercury and selenium. Additionally, two prey items and three liver samples were analyzed for methylmercury, the most toxic form of the element. Total mercury concentrations in prey items ranged from 0.2 to 17 ppb, while selenium concentrations ranged from <10 to 616 ppb; methylmercury concentrations in liver ranged from 25 to 236 ppb. Prey items had methylmercury concentrations below the limits of detection (<0.4 ppb). Hazard quotients and exposure rates indicate that leatherbacks of all life stages may be at risk for selenium toxicity. For endangered species like the leatherback, continued anthropogenic deposition of mercury and selenium into the environment is concerning, especially since bodily mercury and selenium concentrations increase as organisms age. Because leatherbacks are long-lived and have large daily prey consumption rates, mercury and selenium loads may increase to physiologically harmful levels in this imperiled species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. 50 CFR 226.207 - Critical habitat for leatherback turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for leatherback turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.207 Critical habitat for leatherback turtle. Leatherback Sea Turtle (dermochelys coriacea) The waters adjacent...

  19. 50 CFR 226.207 - Critical habitat for leatherback turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for leatherback turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.207 Critical habitat for leatherback turtle. Leatherback Sea Turtle (dermochelys coriacea) The waters adjacent...

  20. Navigational challenges in the oceanic migrations of leatherback sea turtles.

    PubMed

    Sale, Alessandro; Luschi, Paolo

    2009-11-07

    The open-sea movements of marine animals are affected by the drifting action of currents that, if not compensated for, can produce non-negligible deviations from the correct route towards a given target. Marine turtles are paradigmatic skilful oceanic navigators that are able to reach remote goals at the end of long-distance migrations, apparently overcoming current drift effects. Particularly relevant is the case of leatherback turtles (Dermochelys coriacea), which spend entire years in the ocean, wandering in search of planktonic prey. Recent analyses have revealed how the movements of satellite-tracked leatherbacks in the Indian, Atlantic and Pacific Oceans are strongly dependent on the oceanic currents, up to the point that turtles are often passively transported over long distances. However, leatherbacks are known to return to specific areas to breed every 2-3 years, thus finding their way back home after long periods in the oceanic environment. Here we examine the navigational consequences of the leatherbacks' close association with currents and discuss how the combined reliance on mechanisms of map-based navigation and local orientation cues close to the target may allow leatherbacks to accomplish the difficult task of returning to specific sites after years spent wandering in a moving medium.

  1. Navigational challenges in the oceanic migrations of leatherback sea turtles

    PubMed Central

    Sale, Alessandro; Luschi, Paolo

    2009-01-01

    The open-sea movements of marine animals are affected by the drifting action of currents that, if not compensated for, can produce non-negligible deviations from the correct route towards a given target. Marine turtles are paradigmatic skilful oceanic navigators that are able to reach remote goals at the end of long-distance migrations, apparently overcoming current drift effects. Particularly relevant is the case of leatherback turtles (Dermochelys coriacea), which spend entire years in the ocean, wandering in search of planktonic prey. Recent analyses have revealed how the movements of satellite-tracked leatherbacks in the Indian, Atlantic and Pacific Oceans are strongly dependent on the oceanic currents, up to the point that turtles are often passively transported over long distances. However, leatherbacks are known to return to specific areas to breed every 2–3 years, thus finding their way back home after long periods in the oceanic environment. Here we examine the navigational consequences of the leatherbacks' close association with currents and discuss how the combined reliance on mechanisms of map-based navigation and local orientation cues close to the target may allow leatherbacks to accomplish the difficult task of returning to specific sites after years spent wandering in a moving medium. PMID:19625321

  2. Assignment tests, telemetry and tag-recapture data converge to identify natal origins of leatherback turtles foraging in Atlantic Canadian waters.

    PubMed

    Stewart, Kelly R; James, Michael C; Roden, Suzanne; Dutton, Peter H

    2013-07-01

    Investigating migratory connectivity between breeding and foraging areas is critical to effective management and conservation of highly mobile marine taxa, particularly threatened, endangered, or economically important species that cross through regional, national and international boundaries. The leatherback turtle (Dermochelys coriacea, Vandelli 1761) is one such transboundary species that spends time at breeding areas at low latitudes in the northwest Atlantic during spring and summer. From there, they migrate widely throughout the North Atlantic, but many show fidelity to one region off eastern Canada, where critical foraging habitat has been proposed. Our goal was to identify nesting beach origins for turtles foraging here. Using genetics, we identified natal beaches for 288 turtles that were live-captured off the coast of Nova Scotia, Canada. Turtles were sampled (skin or blood) and genotyped using 17 polymorphic microsatellite markers. Results from three assignment testing programs (ONCOR, GeneClass2 and Structure) were compared. Our nesting population reference data set included 1417 individuals from nine Atlantic nesting assemblages. A supplementary data set for 83 foraging turtles traced to nesting beaches using flipper tags and/or PIT tags (n = 72), or inferred from satellite telemetry (n = 11), enabled ground-truthing of the assignments. We first assigned turtles using only genetic information and then used the supplementary recapture information to verify assignments. ONCOR performed best, assigning 64 of the 83 recaptured turtles to natal beaches (77·1%). Turtles assigned to Trinidad (164), French Guiana (72), Costa Rica (44), St. Croix (7), and Florida (1) reflect the relative size of those nesting populations, although none of the turtles were assigned to four other potential source nesting assemblages. Our results demonstrate the utility of genetic approaches for determining source populations of foraging marine animals and include the first

  3. Leatherback turtles: the menace of plastic.

    PubMed

    Mrosovsky, N; Ryan, Geraldine D; James, Michael C

    2009-02-01

    The leatherback, Dermochelyscoriacea, is a large sea turtle that feeds primarily on jellyfish. Floating plastic garbage could be mistaken for such prey. Autopsy records of 408 leatherback turtles, spanning 123 years (1885-2007), were studied for the presence or absence of plastic in the GI tract. Plastic was reported in 34% of these cases. If only cases from our first report (1968) of plastic were considered, the figure was 37%. Blockage of the gut by plastic was mentioned in some accounts. These findings are discussed in the context of removal of top predators from poorly understood food chains.

  4. Coastal leatherback turtles reveal conservation hotspot.

    PubMed

    Robinson, Nathan J; Morreale, Stephen J; Nel, Ronel; Paladino, Frank V

    2016-11-25

    Previous studies have shown that the world's largest reptile - the leatherback turtle Dermochelys coriacea - conducts flexible foraging migrations that can cover thousands of kilometres between nesting sites and distant foraging areas. The vast distances that may be travelled by migrating leatherback turtles have greatly complicated conservation efforts for this species worldwide. However, we demonstrate, using a combination of satellite telemetry and stable isotope analysis, that approximately half of the nesting leatherbacks from an important rookery in South Africa do not migrate to distant foraging areas, but rather, forage in the coastal waters of the nearby Mozambique Channel. Moreover, this coastal cohort appears to remain resident year-round in shallow waters (<50 m depth) in a relatively fixed area. Stable isotope analyses further indicate that the Mozambique Channel also hosts large numbers of loggerhead turtles Caretta caretta. The rare presence of a resident coastal aggregation of leatherback turtles not only presents a unique opportunity for conservation, but alongside the presence of loggerhead turtles and other endangered marine megafauna in the Mozambique Channel, highlights the importance of this area as a marine biodiversity hotspot.

  5. Coastal leatherback turtles reveal conservation hotspot

    PubMed Central

    Robinson, Nathan J.; Morreale, Stephen J.; Nel, Ronel; Paladino, Frank V.

    2016-01-01

    Previous studies have shown that the world’s largest reptile – the leatherback turtle Dermochelys coriacea – conducts flexible foraging migrations that can cover thousands of kilometres between nesting sites and distant foraging areas. The vast distances that may be travelled by migrating leatherback turtles have greatly complicated conservation efforts for this species worldwide. However, we demonstrate, using a combination of satellite telemetry and stable isotope analysis, that approximately half of the nesting leatherbacks from an important rookery in South Africa do not migrate to distant foraging areas, but rather, forage in the coastal waters of the nearby Mozambique Channel. Moreover, this coastal cohort appears to remain resident year-round in shallow waters (<50 m depth) in a relatively fixed area. Stable isotope analyses further indicate that the Mozambique Channel also hosts large numbers of loggerhead turtles Caretta caretta. The rare presence of a resident coastal aggregation of leatherback turtles not only presents a unique opportunity for conservation, but alongside the presence of loggerhead turtles and other endangered marine megafauna in the Mozambique Channel, highlights the importance of this area as a marine biodiversity hotspot. PMID:27886262

  6. Mycobacterium haemophilum infection in a juvenile leatherback sea turtle (Dermochelys coriacea).

    PubMed

    Donnelly, Kyle; Waltzek, Thomas B; Wellehan, James F X; Stacy, Nicole I; Chadam, Maria; Stacy, Brian A

    2016-11-01

    Mycobacteriosis is infrequently reported in free-ranging sea turtles. Nontuberculous Mycobacterium haemophilum was identified as the causative agent of disseminated mycobacteriosis in a juvenile leatherback turtle (Dermochelys coriacea) that was found stranded on the Atlantic coast of Florida. Disseminated granulomatous inflammation was identified histologically, most notably affecting the nervous system. Identification of mycobacterial infection was based on cytologic, molecular, histologic, and microbiologic methods. Among stranded sea turtles received for diagnostic evaluation from the Atlantic and Gulf of Mexico coasts of the United States between 2004 and 2015, the diagnosis of mycobacteriosis was overrepresented in stranded oceanic-phase juveniles compared with larger size classes, which suggests potential differences in susceptibility or exposure among different life phases in this region. We describe M. haemophilum in a sea turtle, which contributes to the knowledge of diseases of small juvenile sea turtles, an especially cryptic life phase of the leatherback turtle.

  7. The influence of fluvial dynamics and North Atlantic swells on the beach habitat of leatherback turtles at Grande Riviere Trinidad.

    PubMed

    Darsan, Junior; Jehu, Adam; Asmath, Hamish; Singh, Asha; Wilson, Matthew

    2016-09-15

    Grande Riviere beach, located on the north coast of Trinidad, West Indies, is internationally recognised as a critical habitat/nesting ground for the endangered leatherback turtles (Dermochelys coriacea). Episodic extreme flooding of the Grande Riviere River led to the shifting of the river mouth and resulted in backshore beach erosion, with the most recent recorded event occurring in 2012. Following this event, the construction of a sand dam to arrest further erosion which threatened coastal infrastructure, precipitated a host of new problems ranging from beach instability to public health threats. In January 2013, high energy swell waves naturally in-filled the erosion channel, and the beach recovery continued over the successive months, thereby rendering the intervention in the previous year questionable. This paper presents a geomorphological analysis of beach dynamics for Grande Riviere, within the context of this erosion event. Data on beach profiles, sediment and coastal processes were collected using standard geomorphological techniques. Beach topographic analysis and water quality tests on impounded water in the erosion channel were conducted. Results indicate that the event created an erosion channel of 4843.42 m(3) over a contiguous area of 2794.25 m(2). While swell waves were able to naturally infill the channel, they also eroded 17,762 m(3) of sand overall across the beach. Water quality tests revealed that the impounded water was classified as a pollutant, and created challenges for remediation. Hydrologic and coastal geomorphologic interplay is responsible for the existence and sustainability of this coastal system. It is also evident that the beach system is able to recover naturally following extreme events. Our results demonstrate that effective and integrated management of such critical habitats remains dependent upon continuous monitoring data which should be used to inform policy and decision making. Copyright © 2016 Elsevier Ltd. All

  8. Bottom-up and climatic forcing on the worldwide population of leatherback turtles.

    PubMed

    Saba, Vincent S; Spotila, James R; Chavez, Francisco P; Musick, John A

    2008-05-01

    Nesting populations of leatherback turtles (Dermochelys coriacea) in the Atlantic and western Indian Oceans are increasing or stable while those in the Pacific are declining. It has been suggested that leatherbacks in the eastern Pacific may be resource limited due to environmental variability derived from the El Niño Southern Oscillation (ENSO), but this has yet to be tested. Here we explored bottom-up forcing and the responding reproductive output of nesting leatherbacks worldwide. We achieved this through an extensive review of leatherback nesting and migration data and by analyzing the spatial, temporal, and quantitative nature of resources as indicated by net primary production at post-nesting female migration and foraging areas. Leatherbacks in the eastern Pacific were the smallest in body size and had the lowest reproductive output due to less productive and inconsistent resources within their migration and foraging areas. This derived from natural interannual and multidecadal climate variability together with an influence of anthropogenic climate warming that is possibly affecting these natural cycles. The reproductive output of leatherbacks in the Atlantic and western Indian Oceans was nearly twice that of turtles in the eastern Pacific. The inconsistent nature of the Pacific Ocean may also render western Pacific leatherbacks susceptible to a more variable reproductive output; however, it appears that egg harvesting on nesting beaches is their major threat. We suggest that the eastern Pacific leatherback population is more sensitive to anthropogenic mortality due to recruitment rates that are lower and more variable, thus accounting for much of the population differences compared to Atlantic and western Indian turtles.

  9. Diel foraging behavior of gravid leatherback sea turtles in deep waters of the Caribbean Sea.

    PubMed

    Casey, James; Garner, Jeanne; Garner, Steve; Williard, Amanda Southwood

    2010-12-01

    It is generally assumed that leatherback turtles (Dermochelys coriacea), like other species of sea turtle, do not feed while offshore from nesting beaches, and rely instead on fat reserves to fuel reproductive activities. Recent studies, however, provide evidence that leatherbacks may forage during the internesting interval while offshore in the Western Atlantic Ocean and Caribbean Sea. Bio-logging technology was used to investigate the foraging behavior of female leatherback turtles at St Croix, US Virgin Islands. Leatherback gastrointestinal tract temperatures (T(GT)) were analyzed for sudden fluctuations indicative of ingestions, and laboratory ingestion simulations were used to characterize temperature fluctuations associated with ingestion of prey versus seawater. Dive patterns associated with prey ingestion were characterized and the proportion of prey ingestion during the day (05:00-18:59 h) and night (19:00-04:59 h) were compared. A combined total of 111 prey ingestions for seven leatherback turtles were documented during the internesting interval. The number of prey ingestions ranged from six to 48 for individual turtles, and the majority (87.4%) of these events occurred during the daytime. Prey ingestions were most frequently associated with V-shaped dives, and the mean (±1 s.d.) maximum dive depth with prey ingestion ranged from 154±51 to 232±101 m for individual turtles. Although leatherbacks were found to opportunistically feed during the internesting interval, the low prey ingestion rates indicate that energy reserves acquired prior to the breeding season are critical for successful reproduction by leatherbacks from the St Croix, USVI nesting population.

  10. Atlantic Leatherback Migratory Paths and Temporary Residence Areas

    PubMed Central

    López-Mendilaharsu, Milagros; Miller, Philip; Domingo, Andrés; Evans, Daniel; Kelle, Laurent; Plot, Virginie; Prosdocimi, Laura; Verhage, Sebastian; Gaspar, Philippe; Georges, Jean-Yves

    2010-01-01

    Background Sea turtles are long-distance migrants with considerable behavioural plasticity in terms of migratory patterns, habitat use and foraging sites within and among populations. However, for the most widely migrating turtle, the leatherback turtle Dermochelys coriacea, studies combining data from individuals of different populations are uncommon. Such studies are however critical to better understand intra- and inter-population variability and take it into account in the implementation of conservation strategies of this critically endangered species. Here, we investigated the movements and diving behaviour of 16 Atlantic leatherback turtles from three different nesting sites and one foraging site during their post-breeding migration to assess the potential determinants of intra- and inter-population variability in migratory patterns. Methodology/Principal Findings Using satellite-derived behavioural and oceanographic data, we show that turtles used Temporary Residence Areas (TRAs) distributed all around the Atlantic Ocean: 9 in the neritic domain and 13 in the oceanic domain. These TRAs did not share a common oceanographic determinant but on the contrary were associated with mesoscale surface oceanographic features of different types (i.e., altimetric features and/or surface chlorophyll a concentration). Conversely, turtles exhibited relatively similar horizontal and vertical behaviours when in TRAs (i.e., slow swimming velocity/sinuous path/shallow dives) suggesting foraging activity in these productive regions. Migratory paths and TRAs distribution showed interesting similarities with the trajectories of passive satellite-tracked drifters, suggesting that the general dispersion pattern of adults from the nesting sites may reflect the extent of passive dispersion initially experienced by hatchlings. Conclusions/Significance Intra- and inter-population behavioural variability may therefore be linked with initial hatchling drift scenarios and be highly

  11. Atlantic leatherback migratory paths and temporary residence areas.

    PubMed

    Fossette, Sabrina; Girard, Charlotte; López-Mendilaharsu, Milagros; Miller, Philip; Domingo, Andrés; Evans, Daniel; Kelle, Laurent; Plot, Virginie; Prosdocimi, Laura; Verhage, Sebastian; Gaspar, Philippe; Georges, Jean-Yves

    2010-11-09

    Sea turtles are long-distance migrants with considerable behavioural plasticity in terms of migratory patterns, habitat use and foraging sites within and among populations. However, for the most widely migrating turtle, the leatherback turtle Dermochelys coriacea, studies combining data from individuals of different populations are uncommon. Such studies are however critical to better understand intra- and inter-population variability and take it into account in the implementation of conservation strategies of this critically endangered species. Here, we investigated the movements and diving behaviour of 16 Atlantic leatherback turtles from three different nesting sites and one foraging site during their post-breeding migration to assess the potential determinants of intra- and inter-population variability in migratory patterns. Using satellite-derived behavioural and oceanographic data, we show that turtles used Temporary Residence Areas (TRAs) distributed all around the Atlantic Ocean: 9 in the neritic domain and 13 in the oceanic domain. These TRAs did not share a common oceanographic determinant but on the contrary were associated with mesoscale surface oceanographic features of different types (i.e., altimetric features and/or surface chlorophyll a concentration). Conversely, turtles exhibited relatively similar horizontal and vertical behaviours when in TRAs (i.e., slow swimming velocity/sinuous path/shallow dives) suggesting foraging activity in these productive regions. Migratory paths and TRAs distribution showed interesting similarities with the trajectories of passive satellite-tracked drifters, suggesting that the general dispersion pattern of adults from the nesting sites may reflect the extent of passive dispersion initially experienced by hatchlings. Intra- and inter-population behavioural variability may therefore be linked with initial hatchling drift scenarios and be highly influenced by environmental conditions. This high degree of behavioural

  12. Ocular morphology of the Leatherback sea turtle (Dermochelys coriacea).

    PubMed

    Brudenall, Denise K; Schwab, Ivan R; Fritsches, Kerstin A

    2008-01-01

    The Leatherback sea turtle is the largest extant reptile and the sole member of the family Dermochelyidae. Here, the eye of this critically endangered marine turtle was investigated to determine the anatomy, optics, and optical sensitivity. Three Leatherback sea turtles, Dermochelys coriacea. The eye is small in proportion to body size of the adult compared to other vertebrates, with prominence of the retractor bulbi and pyramidalis muscles. The nictitans shows extensive folding of the bulbar conjunctiva as an apparent mechanism to increase the surface area for mucus secretion. The intraocular anatomy is consistent with an eye adapted to aquatic vision with minimal curvature of the cornea, a near-spherical lens, deep ciliary cleft and highly vascularized ciliary body. The optical sensitivity, a measure of the sensitivity to light of a given optical system, is higher than in other marine turtles studied but lower than those found in teleost fish that share a habitat with the Leatherback sea turtle. The Leatherback sea turtle shows ocular features that are characteristic of Chelonians with similarities to aquatic mammals. The calculated optical sensitivity suggests that compared to pelagic fishes, for instance, the Leatherback sea turtle eye is not particularly well adapted for vision in dim light even though this species is known to venture into deep, dark waters, and might feed at night.

  13. 50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for leatherback turtles... HABITAT § 226.207 Critical habitat for leatherback turtles (Dermochelys coriacea). Critical habitat is designated for leatherback turtles as described in this section. The textual descriptions of critical habitat...

  14. 50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for leatherback turtles... HABITAT § 226.207 Critical habitat for leatherback turtles (Dermochelys coriacea). Critical habitat is designated for leatherback turtles as described in this section. The textual descriptions of critical habitat...

  15. 50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for leatherback turtles... HABITAT § 226.207 Critical habitat for leatherback turtles (Dermochelys coriacea). Critical habitat is designated for leatherback turtles as described in this section. The textual descriptions of critical habitat...

  16. Behaviour and physiology: the thermal strategy of leatherback turtles.

    PubMed

    Bostrom, Brian L; Jones, T Todd; Hastings, Mervin; Jones, David R

    2010-11-10

    Adult leatherback turtles (Dermochelys coriacea) exhibit thermal gradients between their bodies and the environment of ≥8°C in sub-polar waters and ≤4°C in the tropics. There has been no direct evidence for thermoregulation in leatherbacks although modelling and morphological studies have given an indication of how thermoregulation may be achieved. We show for the first time that leatherbacks are indeed capable of thermoregulation from studies on juvenile leatherbacks of 16 and 37 kg. In cold water (< 25°C), flipper stroke frequency increased, heat loss through the plastron, carapace and flippers was minimized, and a positive thermal gradient of up to 2.3°C was maintained between body and environment. In warm water (25 - 31°C), turtles were inactive and heat loss through their plastron, carapace and flippers increased. The thermal gradient was minimized (0.5°C). Using a scaling model, we estimate that a 300 kg adult leatherback is able to maintain a maximum thermal gradient of 18.2°C in cold sub-polar waters. In juvenile leatherbacks, heat gain is controlled behaviourally by increasing activity while heat flux is regulated physiologically, presumably by regulation of blood flow distribution. Hence, harnessing physiology and behaviour allows leatherbacks to keep warm while foraging in cold sub-polar waters and to prevent overheating in a tropical environment.

  17. Behaviour and Physiology: The Thermal Strategy of Leatherback Turtles

    PubMed Central

    Bostrom, Brian L.; Jones, T. Todd; Hastings, Mervin; Jones, David R.

    2010-01-01

    Background Adult leatherback turtles (Dermochelys coriacea) exhibit thermal gradients between their bodies and the environment of ≥8°C in sub-polar waters and ≤4°C in the tropics. There has been no direct evidence for thermoregulation in leatherbacks although modelling and morphological studies have given an indication of how thermoregulation may be achieved. Methodology/Principal Findings We show for the first time that leatherbacks are indeed capable of thermoregulation from studies on juvenile leatherbacks of 16 and 37 kg. In cold water (< 25°C), flipper stroke frequency increased, heat loss through the plastron, carapace and flippers was minimized, and a positive thermal gradient of up to 2.3°C was maintained between body and environment. In warm water (25 – 31°C), turtles were inactive and heat loss through their plastron, carapace and flippers increased. The thermal gradient was minimized (0.5°C). Using a scaling model, we estimate that a 300 kg adult leatherback is able to maintain a maximum thermal gradient of 18.2°C in cold sub-polar waters. Conclusions/Significance In juvenile leatherbacks, heat gain is controlled behaviourally by increasing activity while heat flux is regulated physiologically, presumably by regulation of blood flow distribution. Hence, harnessing physiology and behaviour allows leatherbacks to keep warm while foraging in cold sub-polar waters and to prevent overheating in a tropical environment. PMID:21085716

  18. Comparative health assessment of western Pacific leatherback turtles (Dermochelys coriacea) foraging off the coast of California, 2005-2007

    USGS Publications Warehouse

    Harris, Heather S.; Benson, Scott R.; Gilardi, Kirsten V.; Poppenga, Robert H.; Work, Thierry M.; Dutton, Peter H.; Mazet, Jonna A.K.

    2011-01-01

    Leatherback turtles (Dermochelys coriacea) are critically endangered, primarily threatened by the overharvesting of eggs, fisheries entanglement, and coastal development. The Pacific leatherback population has experienced a catastrophic decline over the past two decades. Leatherbacks foraging off the coast of California are part of a distinct Western Pacific breeding stock that nests on beaches in Indonesia, Papua New Guinea, and the Solomon Islands. Although it has been proposed that the rapid decline of Pacific leatherback turtles is due to increased adult mortality, little is known about the health of this population. Health assessments in leatherbacks have examined females on nesting beaches, which provides valuable biological information, but might have limited applicability to the population as a whole. During September 2005 and 2007, we conducted physical examinations on 19 foraging Pacific leatherback turtles and measured normal physiologic parameters, baseline hematologic and plasma biochemistry values, and exposure to heavy metals (cadmium, lead, and mercury), organochlorine contaminants, and domoic acid. We compared hematologic values of foraging Pacific leatherbacks with their nesting counterparts in Papua New Guinea (n=11) and with other nesting populations in the Eastern Pacific in Costa Rica (n=8) and in the Atlantic in St. Croix (n=12). This study provides the most comprehensive assessment to date of the health status of leatherbacks in the Pacific. We found significant differences in blood values between foraging and nesting leatherbacks, which suggests that health assessment studies conducted only on nesting females might not accurately represent the whole population. The establishment of baseline physiologic data and blood values for healthy foraging leatherback turtles, including males, provides valuable data for long-term health monitoring and comparative studies of this endangered population.

  19. Comparative health assessment of western Pacific leatherback turtles (Dermochelys coriacea) foraging off the coast of California, 2005-2007

    USGS Publications Warehouse

    Harris, Heather S.; Benson, Scott R.; Gilardi, Kirsten V.; Poppenga, Robert H.; Work, Thierry M.; Dutton, Peter H.; Mazet, Jonna A.K.

    2011-01-01

    Leatherback turtles (Dermochelys coriacea) are critically endangered, primarily threatened by the overharvesting of eggs, fisheries entanglement, and coastal development. The Pacific leatherback population has experienced a catastrophic decline over the past two decades. Leatherbacks foraging off the coast of California are part of a distinct Western Pacific breeding stock that nests on beaches in Indonesia, Papua New Guinea, and the Solomon Islands. Although it has been proposed that the rapid decline of Pacific leatherback turtles is due to increased adult mortality, little is known about the health of this population. Health assessments in leatherbacks have examined females on nesting beaches, which provides valuable biological information, but might have limited applicability to the population as a whole. During September 2005 and 2007, we conducted physical examinations on 19 foraging Pacific leatherback turtles and measured normal physiologic parameters, baseline hematologic and plasma biochemistry values, and exposure to heavy metals (cadmium, lead, and mercury), organochlorine contaminants, and domoic acid. We compared hematologic values of foraging Pacific leatherbacks with their nesting counterparts in Papua New Guinea (n=11) and with other nesting populations in the Eastern Pacific in Costa Rica (n=8) and in the Atlantic in St. Croix (n=12). This study provides the most comprehensive assessment to date of the health status of leatherbacks in the Pacific. We found significant differences in blood values between foraging and nesting leatherbacks, which suggests that health assessment studies conducted only on nesting females might not accurately represent the whole population. The establishment of baseline physiologic data and blood values for healthy foraging leatherback turtles, including males, provides valuable data for long-term health monitoring and comparative studies of this endangered population.

  20. Comparative health assessment of Western Pacific leatherback turtles (Dermochelys coriacea) foraging off the coast of California, 2005-2007.

    PubMed

    Harris, Heather S; Benson, Scott R; Gilardi, Kirsten V; Poppenga, Robert H; Work, Thierry M; Dutton, Peter H; Mazet, Jonna A K

    2011-04-01

    Leatherback turtles (Dermochelys coriacea) are critically endangered, primarily threatened by the overharvesting of eggs, fisheries entanglement, and coastal development. The Pacific leatherback population has experienced a catastrophic decline over the past two decades. Leatherbacks foraging off the coast of California are part of a distinct Western Pacific breeding stock that nests on beaches in Indonesia, Papua New Guinea, and the Solomon Islands. Although it has been proposed that the rapid decline of Pacific leatherback turtles is due to increased adult mortality, little is known about the health of this population. Health assessments in leatherbacks have examined females on nesting beaches, which provides valuable biological information, but might have limited applicability to the population as a whole. During September 2005 and 2007, we conducted physical examinations on 19 foraging Pacific leatherback turtles and measured normal physiologic parameters, baseline hematologic and plasma biochemistry values, and exposure to heavy metals (cadmium, lead, and mercury), organochlorine contaminants, and domoic acid. We compared hematologic values of foraging Pacific leatherbacks with their nesting counterparts in Papua New Guinea (n=11) and with other nesting populations in the Eastern Pacific in Costa Rica (n=8) and in the Atlantic in St. Croix (n=12). This study provides the most comprehensive assessment to date of the health status of leatherbacks in the Pacific. We found significant differences in blood values between foraging and nesting leatherbacks, which suggests that health assessment studies conducted only on nesting females might not accurately represent the whole population. The establishment of baseline physiologic data and blood values for healthy foraging leatherback turtles, including males, provides valuable data for long-term health monitoring and comparative studies of this endangered population.

  1. Hydrodynamic role of longitudinal ridges in a leatherback turtle swimming

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2015-11-01

    The leatherback sea turtle (Dermochelys coriacea), the fastest swimmer and the deepest diver among marine turtles, has five longitudinal ridges on its carapace. These ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the hydrodynamic role of these ridges in the leatherback turtle swimming, we model a carapace with and without ridges by using three dimensional surface data of a stuffed leatherback turtle in the National Science Museum, Korea. The experiment is conducted in a wind tunnel in the ranges of the real leatherback turtle's Reynolds number (Re) and angle of attack (α). The longitudinal ridges function differently according to the flow condition (i.e. Re and α). At low Re and negative α that represent the swimming condition of hatchlings and juveniles, the ridges significantly decrease the drag by generating streamwise vortices and delaying the main separation. On the other hand, at high Re and positive α that represent the swimming condition of adults, the ridges suppress the laminar separation bubble near the front part by generating streamwise vortices and enhance the lift and lift-to-drag ratio. Supported by the NRF program (2011-0028032).

  2. Behavioral and metabolic contributions to thermoregulation in freely swimming leatherback turtles at high latitudes.

    PubMed

    Casey, James P; James, Michael C; Williard, Amanda S

    2014-07-01

    Leatherback turtles in the Northwest Atlantic Ocean have a broad geographic range that extends from nesting beaches near the equator to seasonal foraging grounds as far north as Canada. The ability of leatherbacks to maintain core body temperature (Tb) higher than that of the surrounding water is thought to be a key element of their biology that permits them to exploit productive waters at high latitudes. We provide the first recordings of Tb from freely swimming leatherbacks at a northern foraging ground, and use these data to assess the importance of behavioral adjustments and metabolic sources of heat for maintenance of the thermal gradient (Tg). The mean Tb for individual leatherbacks ranged from 25.4 ± 1.7 to 27.3 ± 0.3 °C, and Tg ranged from 10.7 ± 2.4 to 12.1 ± 1.7 °C. Variation in mean Tb was best explained by the amount of time that turtles spent in the relatively warm surface waters. A diel trend in Tb was apparent, with daytime cooling suggestive of prey ingestion and night-time warming attributable to endogenous heat production. We estimate that metabolic rates necessary to support the observed Tg are ~3 times higher than resting metabolic rate, and that specific dynamic action is an important source of heat for foraging leatherbacks. © 2014. Published by The Company of Biologists Ltd.

  3. Persistent leatherback turtle migrations present opportunities for conservation.

    PubMed

    Shillinger, George L; Palacios, Daniel M; Bailey, Helen; Bograd, Steven J; Swithenbank, Alan M; Gaspar, Philippe; Wallace, Bryan P; Spotila, James R; Paladino, Frank V; Piedra, Rotney; Eckert, Scott A; Block, Barbara A

    2008-07-15

    Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.

  4. Persistent Leatherback Turtle Migrations Present Opportunities for Conservation

    PubMed Central

    Shillinger, George L; Palacios, Daniel M; Bailey, Helen; Bograd, Steven J; Swithenbank, Alan M; Gaspar, Philippe; Wallace, Bryan P; Spotila, James R; Paladino, Frank V; Piedra, Rotney; Eckert, Scott A; Block, Barbara A

    2008-01-01

    Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004–2005, 2005–2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre. PMID:18630987

  5. Serial assessment of the physiological status of leatherback turtles (Dermochelys coriacea) during direct capture events in the northwestern Atlantic Ocean: comparison of post-capture and pre-release data.

    PubMed

    Innis, Charles J; Merigo, Constance; Cavin, Julie M; Hunt, Kathleen; Dodge, Kara L; Lutcavage, Molly

    2014-01-01

    The physiological status of seven leatherback turtles (Dermochelys coriacea) was assessed at two time points during ecological research capture events in the northwestern Atlantic Ocean. Data were collected as soon as possible after securing each turtle onboard the capture vessel and again immediately prior to release. Measured parameters included sea surface temperature, body temperature, morphometric data, sex, heart rate, respiratory rate and various haematological and blood biochemical variables. Results indicated generally stable physiological status in comparison to previously published studies of this species. However, blood pH and blood potassium concentrations increased significantly between the two time points (P = 0.0018 and P = 0.0452, respectively). Turtles were affected by a mild initial acidosis (mean [SD] temperature-corrected pH = 7.29 [0.07]), and blood pH increased prior to release (mean [SD] = 7.39 [0.07]). Initial blood potassium concentrations were considered normal (mean [SD] = 4.2 [0.9] mmol/l), but turtles experienced a mild to moderate increase in blood potassium concentrations during the event (mean [SD] pre-release potassium = 5.9 [1.7] mmol/l, maximum = 8.5 mmol/l). While these data support the general safety of direct capture for study of this species, the observed changes in blood potassium concentrations are of potential concern due to possible adverse effects of hyperkalaemia on cardiac function. The results of this study highlight the importance of physiological monitoring during scientific capture events. The results are also likely to be relevant to unintentional leatherback capture events (e.g. fisheries interactions), when interactions may be more prolonged or extreme.

  6. Serial assessment of the physiological status of leatherback turtles (Dermochelys coriacea) during direct capture events in the northwestern Atlantic Ocean: comparison of post-capture and pre-release data

    PubMed Central

    Innis, Charles J.; Merigo, Constance; Cavin, Julie M.; Hunt, Kathleen; Dodge, Kara L.; Lutcavage, Molly

    2014-01-01

    The physiological status of seven leatherback turtles (Dermochelys coriacea) was assessed at two time points during ecological research capture events in the northwestern Atlantic Ocean. Data were collected as soon as possible after securing each turtle onboard the capture vessel and again immediately prior to release. Measured parameters included sea surface temperature, body temperature, morphometric data, sex, heart rate, respiratory rate and various haematological and blood biochemical variables. Results indicated generally stable physiological status in comparison to previously published studies of this species. However, blood pH and blood potassium concentrations increased significantly between the two time points (P = 0.0018 and P = 0.0452, respectively). Turtles were affected by a mild initial acidosis (mean [SD] temperature-corrected pH = 7.29 [0.07]), and blood pH increased prior to release (mean [SD] = 7.39 [0.07]). Initial blood potassium concentrations were considered normal (mean [SD] = 4.2 [0.9] mmol/l), but turtles experienced a mild to moderate increase in blood potassium concentrations during the event (mean [SD] pre-release potassium = 5.9 [1.7] mmol/l, maximum = 8.5 mmol/l). While these data support the general safety of direct capture for study of this species, the observed changes in blood potassium concentrations are of potential concern due to possible adverse effects of hyperkalaemia on cardiac function. The results of this study highlight the importance of physiological monitoring during scientific capture events. The results are also likely to be relevant to unintentional leatherback capture events (e.g. fisheries interactions), when interactions may be more prolonged or extreme. PMID:27293669

  7. Validation of ultrasound as a noninvasive tool to measure subcutaneous fat depth in leatherback sea turtles (Dermochelys coriacea)

    USGS Publications Warehouse

    Harris, Heather S.; Benson, Scott R.; James, Michael C.; Martin, Kelly J.; Stacy, Brian A.; Daoust, Pierre-Yves; Rist, Paul M.; Work, Thierry M.; Balazs, George H.; Seminoff, Jeffrey A.

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45–90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  8. VALIDATION OF ULTRASOUND AS A NONINVASIVE TOOL TO MEASURE SUBCUTANEOUS FAT DEPTH IN LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA).

    PubMed

    Harris, Heather S; Benson, Scott R; James, Michael C; Martin, Kelly J; Stacy, Brian A; Daoust, Pierre-Yves; Rist, Paul M; Work, Thierry M; Balazs, George H; Seminoff, Jeffrey A

    2016-03-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  9. Solitary Large Intestinal Diverticulitis in Leatherback Turtles (Dermochelys coriacea).

    PubMed

    Stacy, B A; Innis, C J; Daoust, P-Y; Wyneken, J; Miller, M; Harris, H; James, M C; Christiansen, E F; Foley, A

    2015-07-01

    Leatherback sea turtles are globally distributed and endangered throughout their range. There are limited data available on disease in this species. Initial observations of solitary large intestinal diverticulitis in multiple leatherbacks led to a multi-institutional review of cases. Of 31 subadult and adult turtles for which complete records were available, all had a single exudate-filled diverticulum, as large as 9.0 cm in diameter, arising from the large intestine immediately distal to the ileocecal junction. All lesions were chronic and characterized by ongoing inflammation, numerous intralesional bacteria, marked attenuation of the muscularis, ulceration, and secondary mucosal changes. In three cases, Morganella morganii was isolated from lesions. Diverticulitis was unrelated to the cause of death in all cases, although risk of perforation and other complications are possible. © The Author(s) 2014.

  10. Population level "flipperedness" in the eastern Pacific leatherback turtle.

    PubMed

    Sieg, Annette E; Zandonà, Eugenia; Izzo, Victor M; Paladino, Frank V; Spotila, James R

    2010-01-05

    Limb preference is a behavioral indicator of lateralized brain function that was recently elucidated experimentally in lower vertebrates. We assessed natural spontaneous limb use of nesting eastern Pacific leatherback turtles by recording which hindlimb flipper was extended overtop the cloaca to cover the egg chamber during oviposition. We found a population level right bias in 1889 observations of 361 individuals. This is the first report of a limb preference in Testudinata.

  11. Resource Requirements of the Pacific Leatherback Turtle Population

    PubMed Central

    Jones, T. Todd; Bostrom, Brian L.; Hastings, Mervin D.; Van Houtan, Kyle S.; Pauly, Daniel; Jones, David R.

    2012-01-01

    The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924–1112) with the Pacific population consuming 2.1×106 t of jellyfish annually (range 1.0–3.7×106) equivalent to 4.2×108 megajoules (MJ) (range 2.0–7.4×108). Model estimates suggest 2–7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×106 t of jellyfish or 2.2×108 MJ per year). Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians); they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback's needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output. PMID:23071518

  12. Resource requirements of the Pacific leatherback turtle population.

    PubMed

    Jones, T Todd; Bostrom, Brian L; Hastings, Mervin D; Van Houtan, Kyle S; Pauly, Daniel; Jones, David R

    2012-01-01

    The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924-1112) with the Pacific population consuming 2.1×10(6) t of jellyfish annually (range 1.0-3.7×10(6)) equivalent to 4.2×10(8) megajoules (MJ) (range 2.0-7.4×10(8)). Model estimates suggest 2-7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×10(6) t of jellyfish or 2.2×10(8) MJ per year). Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians); they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback's needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output.

  13. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment.

    PubMed

    Houghton, Jonathan D R; Doyle, Thomas K; Wilson, Mark W; Davenport, John; Hays, Graeme C

    2006-08-01

    Leatherback turtles (Dermochelys coriacea) are obligate predators of gelatinous zooplankton. However, the spatial relationship between predator and prey remains poorly understood beyond sporadic and localized reports. To examine how jellyfish (Phylum Cnidaria: Orders Semaeostomeae and Rhizostomeae) might drive the broad-scale distribution of this wide ranging species, we employed aerial surveys to map jellyfish throughout a temperate coastal shelf area bordering the northeast Atlantic. Previously unknown, consistent aggregations of Rhizostoma octopus extending over tens of square kilometers were identified in distinct coastal "hotspots" during consecutive years (2003-2005). Examination of retrospective sightings data (>50 yr) suggested that 22.5% of leatherback distribution could be explained by these hotspots, with the inference that these coastal features may be sufficiently consistent in space and time to drive long-term foraging associations.

  14. The leatherback turtle, Dermochelys coriacea, exhibits both polyandry and polygyny.

    PubMed

    Crim, J L; Spotila, L D; Spotila, J R; O'Connor, M; Reina, R; Williams, C J; Paladino, F V

    2002-10-01

    The leatherback turtle (Dermochelys coriacea) is an endangered species, and world-wide populations are declining. To understand better the mating structure of this pelagic and fragile species, we investigated paternity in nearly 1000 hatchlings from Playa Grande in Parque Marino Nacional Las Baulas, Costa Rica. We collected DNA samples from 36 adult female leatherbacks and assessed allele frequency distributions for three microsatellite loci. For 20 of these 36 females, we examined DNA from hatchlings representing multiple clutches, and in some cases assessed up to four successive clutches from the same female. We inferred paternal alleles by comparing maternal and hatchling genotypes. We could not reject the null hypothesis of single paternity in 12 of 20 families (31 of 50 clutches), but we did reject the null hypothesis in two families (eight of 50 clutches). In the remaining six families, the null hypothesis could not be accepted or rejected with certainty because the number of hatchlings exhibiting extra nonmaternal alleles was small, and could thus be a result of mutation or sample error. Successive clutches laid by the same female had the same paternal allelic contribution, indicating sperm storage or possibly monogamy. None of 20 females shared the same three-locus genotype whereas there were two instances of shared genotypes among 17 inferred paternal three-locus genotypes. We conclude that both polyandry and polygyny are part of the mating structure of this leatherback sea turtle population.

  15. Egg components, egg size, and hatchling size in leatherback turtles.

    PubMed

    Wallace, Bryan P; Sotherland, Paul R; Tomillo, Pilar Santidrian; Bouchard, Sarah S; Reina, Richard D; Spotila, James R; Paladino, Frank V

    2006-12-01

    Relationships between egg size, egg components, and neonate size have been investigated across a wide range of oviparous taxa. Differences in egg traits among taxa reflect not only phylogenetic differences, but also interactions between biotic (i.e., maternal resource allocation) and abiotic (i.e. nest environment conditions) factors. We examined relationships between egg mass, egg composition, and hatchling size in leatherback turtles (Dermochelys coriacea) because of the unique egg and reproductive characteristics of this species and of sea turtles in general. Albumen comprised 63.0%+/-2.8% (mean+/-S.D.) of egg mass and explained most of the variation in egg mass, whereas yolk comprised only 33.0%+/-2.7%. Additionally, leatherback albumen dry mass was approximately 16% of albumen wet mass. Whereas hatchling mass increased significantly with egg mass (n = 218 clutches), hatchling mass increased by only approximately 2 g for each 10 g increase in egg mass and was approximately 10-20 g greater than yolk mass. Taken together, our results indicate that albumen might play a particularly significant role in leatherback embryonic development, and that leatherback eggs are both capable of water uptake from the nest substrate and also possess a large reservoir of water in the albumen. Relationships between egg mass and egg components, such as variation in egg mass being largely explained by variation in albumen mass and egg mass containing a relatively high proportion of albumen solids, are more similar to bird eggs than to eggs of other non-avian reptiles. However, hatchling mass correlates more with yolk mass than with albumen mass, unlike patterns observed in bird eggs of similar composition.

  16. Spatio-temporal foraging patterns of a giant zooplanktivore, the leatherback turtle

    NASA Astrophysics Data System (ADS)

    Fossette, Sabrina; Hobson, Victoria J.; Girard, Charlotte; Calmettes, Beatriz; Gaspar, Philippe; Georges, Jean-Yves; Hays, Graeme C.

    2010-05-01

    Understanding food web functioning through the study of natural bio-indicators may constitute a valuable and original approach. In the context of jellyfish proliferation in many overexploited marine ecosystems studying the spatio-temporal foraging patterns of the giant "jellyvore" leatherback turtle turns out to be particularly relevant. Here we analyzed long-term tracking data to assess spatio-temporal foraging patterns in 21 leatherback turtles during their pluri-annual migration in the Northern Atlantic. Through an analytical approach based on the animal's own motion (independent of currents) and diving behavior distinct zones of high and low foraging success were identified. High foraging success occurred in a sub-equatorial zone spanning the width of the Atlantic and at high (>30°N) latitudes. Between these zones in the centre of North Atlantic gyre there was low foraging success. This "ocean desert" area was traversed at high speed by leatherbacks on their way to more productive areas at higher latitudes. Animals traveled slowly in high foraging success areas and dived shallower (17.2 ± 8.0 km day - 1 and 53.6 ± 33.1 m mean ± SD respectively) than in low foraging success areas (51.0 ± 13.1 km day - 1 and 81.8 ± 56.2 m mean ± SD respectively). These spatio-temporal foraging patterns seem to relatively closely match the main features of the integrated meso-zooplankton distribution in the North Atlantic. Our method of defining high foraging success areas is intuitive and relatively easy to implement but also takes into account the impact of oceanic currents on animal's behavior.

  17. Genetic diversity and origin of leatherback turtles (Dermochelys coriacea) from the Brazilian coast.

    PubMed

    Vargas, Sarah M; Araújo, Flávia C F; Monteiro, Danielle S; Estima, Sérgio C; Almeida, Antônio P; Soares, Luciano S; Santos, Fabrício R

    2008-01-01

    The leatherback sea turtle (Dermochelys coriacea) population that nests in Brazil is restricted to a few individuals, but high densities of pelagic individuals are observed along the southern and southeastern Brazilian coast. We investigated the diversity of the mitochondrial DNA (mtDNA) control region in order to understand the relationship between nesting and pelagic leatherbacks from Brazil and elsewhere. High-quality 711-bp sequences were generated, analyzed, and compared with published data from worldwide populations. We detected the presence of shared haplotypes between nesting and pelagic aggregates from Brazil, as well as haplotypes shared with other nesting areas from the Atlantic and Pacific. Furthermore, the use of longer control region sequences allowed the subdivision of the common Atlantic haplotype A into 3 different haplotypes (A1, A3, and A4), thus improving the resolution of mtDNA-based leatherback phylogeography. The use of longer sequences partially supported a closer association between nesting and pelagic individuals from Brazil and pointed to a complex origin for the pelagic individuals in the Brazilian coast.

  18. Field anaesthesia of leatherback sea turtles (Dermochelys coriacea).

    PubMed

    Harms, C A; Eckert, S A; Kubis, S A; Campbell, M; Levenson, D H; Crognale, M A

    2007-07-07

    Ten nesting leatherback sea turtles on Trinidad were anaesthetised for electroretinogram (ERG) measurements, using ketamine and medetomidine, reversed with atipamezole. They weighed 242 to 324 kg and were given initial doses of 3 to 8 mg/kg ketamine and 30 to 80 microg/kg medetomidine administered into an external jugular vein; six of the turtles received supplementary doses of 2.6 to 3.9 mg/kg ketamine combined with 0 to 39 microg/kg medetomidine. The lower doses were used initially to ensure against overdosage and reduce the chances of residual effects after the turtles returned to the water, but successful ergs called for step-wise dose increases to the required level of anaesthesia. Respiratory rate, heart rate, electrocardiogram, cloacal temperature, and venous blood gases were monitored, and blood was collected for plasma biochemistry. At the end of the erg procedure, atipamezole was administered at 150 to 420 microg/kg (five times the dose of medetomidine), half intramuscularly and half intravascularly. The turtles were monitored and prevented from re-entering the water until their behaviour was normal. No apparent mortalities or serious anaesthetic complications occurred. The observed within-season return nesting rate of the anaesthetised turtles was comparable with that of unanaesthetised turtles.

  19. Leatherback sea turtle shell: A tough and flexible biological design.

    PubMed

    Chen, Irene H; Yang, Wen; Meyers, Marc A

    2015-12-01

    The leatherback sea turtle is unique among chelonians for having a soft skin which covers its osteoderms. The osteoderm is composed of bony plates that are interconnected with collagen fibers in a structure called suture. The soft dermis and suture geometry enable a significant amount of flexing of the junction between adjacent osteoderms. This design allows the body to contract better than a hard-shelled sea turtle as it dives to depths of over 1,000 m. The leatherback turtle has ridges along the carapace to enhance the hydrodynamic flow and provide a tailored stiffness. The osteoderms are of two types: flat and ridged. The structure of the two types of osteoderms is characterized and their mechanical properties are investigated with particular attention to the failure mechanisms. They both are bony structures with a porous core sandwiched between compact layers that form the outside and inside surfaces. The compressive strength is highly anisotropic by virtue of the interaction between loading orientation and arrangement of porous and compact components of osteoderms. The angle of interpenetration at the suture of osteoderms is analyzed and compared with analytical predictions. The sutures have a triangular shape with an angle of ∼30° which provides a balance between the tensile strength of the osteoderms and shear strength of the collagen fiber layer and is verified by Li-Ortiz-Boyce in a previous study. This is confirmed by an FEM analysis. A calculation is developed to quantify the flexibility of the carapace and plastron as a function of the angular displacement at the sutures, predicting the interdependence between geometrical parameters and flexibility. The leatherback turtle is a magnificent chelonian whose decreasing numbers have brought it to the brink of extinction in the Pacific Ocean. This first study of the structure of its shell provides important new insights that explain its amazing capacity for diving: depths of over 1,000 m have been recorded

  20. Maternal investment in reproduction and its consequences in leatherback turtles.

    PubMed

    Wallace, Bryan P; Sotherland, Paul R; Tomillo, Pilar Santidrian; Reina, Richard D; Spotila, James R; Paladino, Frank V

    2007-05-01

    Maternal investment in reproduction by oviparous non-avian reptiles is usually limited to pre-ovipositional allocations to the number and size of eggs and clutches, thus making these species good subjects for testing hypotheses of reproductive optimality models. Because leatherback turtles (Dermochelys coriacea) stand out among oviparous amniotes by having the highest clutch frequency and producing the largest mass of eggs per reproductive season, we quantified maternal investment of 146 female leatherbacks over four nesting seasons (2001-2004) and found high inter- and intra-female variation in several reproductive characteristics. Estimated clutch frequency [coefficient of variation (CV) = 31%] and clutch size (CV = 26%) varied more among females than did egg mass (CV = 9%) and hatchling mass (CV = 7%). Moreover, clutch size had an approximately threefold higher effect on clutch mass than did egg mass. These results generally support predictions of reproductive optimality models in which species that lay several, large clutches per reproductive season should exhibit low variation in egg size and instead maximize egg number (clutch frequency and/or size). The number of hatchlings emerging per nest was positively correlated with clutch size, but fraction of eggs in a clutch yielding hatchlings (emergence success) was not correlated with clutch size and varied highly among females. In addition, seasonal fecundity and seasonal hatchling production increased with the frequency and the size of clutches (in order of effect size). Our results demonstrate that female leatherbacks exhibit high phenotypic variation in reproductive traits, possibly in response to environmental variability and/or resulting from genotypic variability within the population. Furthermore, high seasonal and lifetime fecundity of leatherbacks probably reflect compensation for high and unpredictable mortality during early life history stages in this species.

  1. Global analysis of the effect of local climate on the hatchling output of leatherback turtles.

    PubMed

    Santidrián Tomillo, Pilar; Saba, Vincent S; Lombard, Claudia D; Valiulis, Jennifer M; Robinson, Nathan J; Paladino, Frank V; Spotila, James R; Fernández, Carlos; Rivas, Marga L; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-11-17

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21(st) century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.

  2. Global analysis of the effect of local climate on the hatchling output of leatherback turtles

    PubMed Central

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-01-01

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100. PMID:26572897

  3. Global analysis of the effect of local climate on the hatchling output of leatherback turtles

    NASA Astrophysics Data System (ADS)

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-11-01

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.

  4. Effect of longitudinal ridges on the aerodynamic performance of a leatherback turtle model

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Kim, Heesu; Lee, Sang-Im; Choi, Haecheon

    2012-11-01

    Leatherback sea turtles (Dermochelys coriacea) are known as the fastest swimmer and the deepest diver in the open ocean among marine turtles. Unlike other marine turtles, leatherback sea turtles have five longitudinal ridges on their carapace. To investigate the effect of these longitudinal ridges on the aerodynamic performance of a leatherback turtle model, the experiment is conducted in a wind tunnel at Re = 1.0 × 105 - 1.4 × 106 (including that of real leatherback turtle in cruising condition) based on the model length. We measure the drag and lift forces on the leatherback turtle model with and without longitudinal ridges. The presence of longitudinal ridges increases both the lift and drag forces on the model, but increases the lift-to-drag ratio by 15 - 40%. We also measure the velocity field around the model with and without the ridges using particle image velocimetry. More details will be shown in the presentation. Supported by the NRF program (2011-0028032).

  5. Effect of longitudinal ridges on the hydrodynamic performance of a leatherback turtle model

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2014-11-01

    Leatherback sea turtles (Dermochelys coriacea) known as the fastest swimmer and the deepest diver among marine turtles have five longitudinal ridges on their carapace, and these ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the effect of these ridges on the hydrodynamic performance of the leatherback turtle, we model a carapace with and without ridges using a stuffed leatherback turtle in the National Science Museum, Korea. We measure the drag and lift forces on the ridged model in the ranges of real leatherback turtles' Reynolds number (Re) and angle of attack (α), and compare them with those of non-ridged model. At α < 6°, longitudinal ridges decrease drag on the ridged model by up to 32% compared to non-ridged model. On the other hand, at α > 6°, the drag and lift coefficients of the ridged model are higher than those of the non-ridged model, and the lift-to-drag ratio of the ridged model is higher by about 7% than that of the non-ridged model. We also measure the velocity field around both models using a particle image velocimetry and explain the hydrodynamic role of ridges in relation to diving behaviors of leatherback sea turtles. Supported by the NRF Program (2011-0028032).

  6. Acinetobacter sp. HM746599 isolated from leatherback turtle blood.

    PubMed

    Soslau, Gerald; Russell, Jacob A; Spotila, James R; Mathew, Andrew J; Bagsiyao, Pamela

    2011-09-01

    A newly described bacterial isolate, Acinetobacter sp. HM746599, has been obtained from leatherback sea turtle hatchling blood. The implication is that the hatchling was infected during development in the egg, which is substantiated by other studies to be reported by us in the future. The 16S rRNA gene sequence of the bacterium (GenBank accession number: HM746599) showed the greatest similarity to the identified species, Acinetobacter beijerinckii (97.6-99.78%) and Acinetobacter venetianus (99.78%). Acinetobacter sp. HM746599 are gram-negative, rod-shaped coccobacilli and are hemolytic/cytotoxic to human and sea turtle red blood cells (RBCs). Hemolysis is not the result of any detectable soluble toxin. Acinetobacter beijerinckii and A. venetianus hemolyze sheep RBCs while Acinetobacter sp. HM746599 does not, and unlike A. venetianus, the growth of Acinetobacter sp. HM746599 and A. beijerinckii is not supported by l-arginine. Many Acinetobacter species, especially hemolytic ones, are pathogenic to immunologically compromised humans and it is possible that, in addition to sea turtles, this bacterium might also be a danger to susceptible humans who handle infected hatchlings. The bacteria are available from CCUG (Culture Collection, University Gothenburg, Göteborg, Sweden) and from NRRL (Agricultural Research Service Culture Collection, Peoria, IL). © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Hierarchical State-Space Estimation of Leatherback Turtle Navigation Ability

    PubMed Central

    Mills Flemming, Joanna; Jonsen, Ian D.; Field, Christopher A.

    2010-01-01

    Remotely sensed tracking technology has revealed remarkable migration patterns that were previously unknown; however, models to optimally use such data have developed more slowly. Here, we present a hierarchical Bayes state-space framework that allows us to combine tracking data from a collection of animals and make inferences at both individual and broader levels. We formulate models that allow the navigation ability of animals to be estimated and demonstrate how information can be combined over many animals to allow improved estimation. We also show how formal hypothesis testing regarding navigation ability can easily be accomplished in this framework. Using Argos satellite tracking data from 14 leatherback turtles, 7 males and 7 females, during their southward migration from Nova Scotia, Canada, we find that the circle of confusion (the radius around an animal's location within which it is unable to determine its location precisely) is approximately 96 km. This estimate suggests that the turtles' navigation does not need to be highly accurate, especially if they are able to use more reliable cues as they near their destination. Moreover, for the 14 turtles examined, there is little evidence to suggest that male and female navigation abilities differ. Because of the minimal assumptions made about the movement process, our approach can be used to estimate and compare navigation ability for many migratory species that are able to carry electronic tracking devices. PMID:21203382

  8. Hierarchical state-space estimation of leatherback turtle navigation ability.

    PubMed

    Mills Flemming, Joanna; Jonsen, Ian D; Myers, Ransom A; Field, Christopher A

    2010-12-28

    Remotely sensed tracking technology has revealed remarkable migration patterns that were previously unknown; however, models to optimally use such data have developed more slowly. Here, we present a hierarchical Bayes state-space framework that allows us to combine tracking data from a collection of animals and make inferences at both individual and broader levels. We formulate models that allow the navigation ability of animals to be estimated and demonstrate how information can be combined over many animals to allow improved estimation. We also show how formal hypothesis testing regarding navigation ability can easily be accomplished in this framework. Using Argos satellite tracking data from 14 leatherback turtles, 7 males and 7 females, during their southward migration from Nova Scotia, Canada, we find that the circle of confusion (the radius around an animal's location within which it is unable to determine its location precisely) is approximately 96 km. This estimate suggests that the turtles' navigation does not need to be highly accurate, especially if they are able to use more reliable cues as they near their destination. Moreover, for the 14 turtles examined, there is little evidence to suggest that male and female navigation abilities differ. Because of the minimal assumptions made about the movement process, our approach can be used to estimate and compare navigation ability for many migratory species that are able to carry electronic tracking devices.

  9. Blood values in free-ranging nesting leatherback sea turtles (Dermochelys coriacea) on the coast of the Republic of Gabon.

    PubMed

    Deem, Sharon L; Dierenfeld, Ellen S; Sounguet, Guy Phillipe; Alleman, A Rick; Cray, Carolyn; Poppenga, Robert H; Norton, Terry M; Karesh, William B

    2006-12-01

    Leatherback sea turtles (Dermochelys coriacea) are the most endangered of the seven species of sea turtles. The health status of leatherbacks is largely unknown, although the number of nesting females recorded throughout the world has decreased precipitously in the last few decades. Central African beaches may provide one of the last strongholds for nesting leatherback females. In the region, oil extraction and incidental capture pose significant threats to the health of the population. Physical examinations, hematology, plasma biochemistry, plasma corticosterone concentration, plasma protein electrophoresis, plasma vitamin concentrations, and toxicological parameters were evaluated in nesting female leatherbacks in the Republic of Gabon. The general clinical condition of the 35 turtles examined in this study was rated as good. The blood value results for a subset of these turtles are presented and compared to published results from other sea turtles. To the authors' knowledge, these are the first published baseline hematology, plasma biochemistry, and plasma protein electrophoresis values from clinically healthy nesting leatherback turtles.

  10. Dive and beak movement patterns in leatherback turtles Dermochelys coriacea during internesting intervals in French Guiana.

    PubMed

    Fossette, Sabrina; Gaspar, Philippe; Handrich, Yves; Le Maho, Yvon; Georges, Jean-Yves

    2008-03-01

    1. Investigating the foraging patterns of free-ranging species is essential to estimate energy/time budgets for assessing their real reproductive strategy. Leatherback turtles Dermochelys coriacea (Vandelli 1761), commonly considered as capital breeders, have been reported recently to prospect actively during the breeding season in French Guiana, Atlantic Ocean. In this study we investigate the possibility of this active behaviour being associated with foraging, by studying concurrently diving and beak movement patterns in gravid females equipped with IMASEN (Inter-MAndibular Angle SENsor). 2. Four turtles provided data for periods varying from 7.3 to 56.1 h while exhibiting continuous short and shallow benthic dives. Beak movement ('b-m') events occurred in 34% of the dives, on average 1.8 +/- 1.4 times per dive. These b-m events lasted between 1.5 and 20 s and occurred as isolated or grouped (two to five consecutive beak movements) events in 96.0 +/- 4.0% of the recorded cases, and to a lesser extent in series (> five consecutive beak movements). 3. Most b-m events occurred during wiggles at the bottom of U- and W-shaped dives and at the beginning and end of the bottom phase of the dives. W-shaped dives were associated most frequently with beak movements (65% of such dives) and in particular with grouped beak movements. 4. Previous studies proposed wiggles to be indicator of predatory activity, U- and W-shaped dives being putative foraging dives. Beak movements recorded in leatherbacks during the first hours of their internesting interval in French Guiana may be related to feeding attempts. 5. In French Guiana, leatherbacks show different mouth-opening patterns for different dive patterns, suggesting that they forage opportunistically on occasional prey, with up to 17% of the dives appearing to be successful feeding dives. 6. This study highlights the contrasted strategies adopted by gravid leatherbacks nesting on the Pacific coasts of Costa Rica, in the deep

  11. Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles.

    PubMed

    Jonsen, Ian D; Myers, Ransom A; James, Michael C

    2006-09-01

    1. Biological and statistical complexity are features common to most ecological data that hinder our ability to extract meaningful patterns using conventional tools. Recent work on implementing modern statistical methods for analysis of such ecological data has focused primarily on population dynamics but other types of data, such as animal movement pathways obtained from satellite telemetry, can also benefit from the application of modern statistical tools. 2. We develop a robust hierarchical state-space approach for analysis of multiple satellite telemetry pathways obtained via the Argos system. State-space models are time-series methods that allow unobserved states and biological parameters to be estimated from data observed with error. We show that the approach can reveal important patterns in complex, noisy data where conventional methods cannot. 3. Using the largest Atlantic satellite telemetry data set for critically endangered leatherback turtles, we show that the diel pattern in travel rates of these turtles changes over different phases of their migratory cycle. While foraging in northern waters the turtles show similar travel rates during day and night, but on their southward migration to tropical waters travel rates are markedly faster during the day. These patterns are generally consistent with diving data, and may be related to changes in foraging behaviour. Interestingly, individuals that migrate southward to breed generally show higher daytime travel rates than individuals that migrate southward in a non-breeding year. 4. Our approach is extremely flexible and can be applied to many ecological analyses that use complex, sequential data.

  12. Effects of diving and swimming behavior on body temperatures of pacific leatherback turtles in tropical seas.

    PubMed

    Southwood, A L; Andrews, R D; Paladino, F V; Jones, D R

    2005-01-01

    Mathematical models and recordings of cloacal temperature suggest that leatherback turtles (Dermochelys coriacea) maintain core body temperature higher than ambient water temperature (T(W)) while freely swimming at sea. We investigated the thermoregulatory capabilities of free-ranging leatherbacks and, specifically, the effect that changes in diving patterns and ambient temperatures have on leatherback body temperatures (T(B)). Data loggers were used to record subcarapace and gastrointestinal tract temperatures (T(SC) and T(GT), respectively), T(W), swim speed, dive depth, and dive times of female leatherback turtles during internesting intervals off the coast of Guanacaste, Costa Rica. Mean T(SC) (28.7 degrees -29.0 degrees C) was significantly higher than mean T(W) (25.0 degrees -27.5 degrees C). There was a significant positive relationship between T(SC) and T(W) and a significant negative correlation between T(SC) and dive depth and T(GT) and dive depth. Rapid fluctuations in T(GT) occurred during the first several days of the internesting interval, which suggests that turtles were ingesting prey or water during this time. Turtles spent 79%-91% of the time at sea swimming at speeds greater than 0.2 m s(-1), and the average swim speed was 0.7 +/- 0.2 m s(-1). Results from this study show that alterations in diving behavior and T(W) affect T(B) of leatherback turtles in the tropics. Body temperatures of free-ranging leatherback turtles correspond well with values for T(B) predicted by mathematical models for tropical conditions.

  13. Identification of distinct movement patterns in Pacific leatherback turtle populations influenced by ocean conditions.

    PubMed

    Bailey, Helen; Benson, Scott R; Shillinger, George L; Bograd, Steven J; Dutton, Peter H; Eckert, Scott A; Morreale, Stephen J; Paladino, Frank V; Eguchi, Tomoharu; Foley, David G; Block, Barbara A; Piedra, Rotney; Hitipeuw, Creusa; Tapilatu, Ricardo F; Spotila, James R

    2012-04-01

    Interactions with fisheries are believed to be a major cause of mortality for adult leatherback turtles (Dermochelys coriacea), which is of particular concern in the Pacific Ocean, where they have been rapidly declining. In order to identify where these interactions are occurring and how they may be reduced, it is essential first to understand the movements and behavior of leatherback turtles. There are two regional nesting populations in the East Pacific (EP) and West Pacific (WP), comprising multiple nesting sites. We synthesized tracking data from the two populations and compared their movement patterns. A switching state-space model was applied to 135 Argos satellite tracks to account for observation error, and to distinguish between migratory and area-restricted search behaviors. The tracking data, from the largest leatherback data set ever assembled, indicated that there was a high degree of spatial segregation between EP and WP leatherbacks. Area-restricted search behavior mainly occurred in the southeast Pacific for the EP leatherbacks, whereas the WP leatherbacks had several different search areas in the California Current, central North Pacific, South China Sea, off eastern Indonesia, and off southeastern Australia. We also extracted remotely sensed oceanographic data and applied a generalized linear mixed model to determine if leatherbacks exhibited different behavior in relation to environmental variables. For the WP population, the probability of area-restricted search behavior was positively correlated with chlorophyll-a concentration. This response was less strong in the EP population, but these turtles had a higher probability of search behavior where there was greater Ekman upwelling, which may increase the transport of nutrients and consequently prey availability. These divergent responses to oceanographic conditions have implications for leatherback vulnerability to fisheries interactions and to the effects of climate change. The occurrence of

  14. Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea): video evidence from animal-borne cameras.

    PubMed

    Heaslip, Susan G; Iverson, Sara J; Bowen, W Don; James, Michael C

    2012-01-01

    The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08-3:38 h), and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata) was the dominant prey (83-100%), but moon jellyfish (Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001). Estimates of energy intake averaged 66,018 kJ • d(-1) but were as high as 167,797 kJ • d(-1) corresponding to turtles consuming an average of 330 kg wet mass • d(-1) (up to 840 kg • d(-1)) or approximately 261 (up to 664) jellyfish • d(-1). Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass • d(-1) equating to an average energy intake of 3-7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to

  15. Jellyfish Support High Energy Intake of Leatherback Sea Turtles (Dermochelys coriacea): Video Evidence from Animal-Borne Cameras

    PubMed Central

    Heaslip, Susan G.; Iverson, Sara J.; Bowen, W. Don; James, Michael C.

    2012-01-01

    The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08–3:38 h), and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata) was the dominant prey (83–100%), but moon jellyfish (Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001). Estimates of energy intake averaged 66,018 kJ•d−1 but were as high as 167,797 kJ•d−1 corresponding to turtles consuming an average of 330 kg wet mass•d−1 (up to 840 kg•d−1) or approximately 261 (up to 664) jellyfish•d-1. Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass•d−1 equating to an average energy intake of 3–7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to

  16. Biotic and abiotic factors affect the nest environment of embryonic leatherback turtles, Dermochelys coriacea.

    PubMed

    Wallace, Bryan P; Sotherland, Paul R; Spotila, James R; Reina, Richard D; Franks, Bryan F; Paladino, Frank V

    2004-01-01

    Clutches of leatherback turtles, Dermochelys coriacea, have lower hatching success than those of other sea turtles, but causes of high embryonic mortality are unknown. We measured characteristics of clutches along with spatial and temporal changes in PO(2) and temperature during incubation to determine the extent to which they affected the developmental environment of leatherback embryos. Minimum PO(2) in nests decreased as both the total number and mass of metabolizing embryos increased. Increases in both the number and mass of metabolizing embryos caused an increase in maximum nest temperature. However, neither PO(2) nor temperature was correlated with hatching success. Our measurements of relatively high nest PO(2) (lowest 17.1 kPa or 16.9% O(2)) indicate that hypoxia apparently does not cause the low hatching success of leatherback clutches. Oxygen partial pressure increased and temperature decreased from the center toward the periphery of leatherback nests. We inferred from these measurements that positions of eggs within nests vary in quality and potentially affect overall developmental success of entire clutches. The large metabolic mass of leatherback clutches and limits to gas flux imposed by the sand create a situation in which leatherback embryos collectively affect their own environment.

  17. Leatherback sea turtle stewardship to attain local, regional, and global marine conservation and management

    Treesearch

    Randall Arauz; Todd Steiner

    2007-01-01

    The leatherback sea turtle (Dermochelys coriacea) is the largest marine reptile with one of the longest known ocean migrations in the world and an important part of marine biodiversity. It is also important to the economies of coastal communities in developing countries, especially in areas where eco-tourism has replaced unsustainable harvest and...

  18. Effect of tidal overwash on the embryonic development of leatherback turtles in French Guiana.

    PubMed

    Caut, Stéphane; Guirlet, Elodie; Girondot, Marc

    2010-05-01

    In marine turtles, the physical conditions experienced by eggs during incubation affect embryonic development. In the leatherback, hatching success is known to be low in relation to other marine turtles as a result of high embryonic mortality. Moreover, the hatching success on Yalimapo in French Guiana, one major nesting beach for this species, is lower compared to other nesting sites. We assessed the rate of leatherback turtle embryonic mortality in order to investigate the tolerance of leatherback turtle clutches laid on Yalimapo beach to tidal overwash, and we highlight causes of poor hatching success. Of the 89 nests studied, 27 were overlapped by tide at least once during the incubation period (of which five nests were lost by erosion). The hatching success was on average significantly lower in overwashed nests than in non-overwashed, highlighting the existence of embryonic developmental arrest linked to tidal inundation. The stages of developmental arrest and their proportion are linked with time, frequency and level of overwash events. In the context of global warming and associated sea-level rise, understanding the detrimental effect of tidal inundation on the development of marine turtle nests is of interest in nesting sites where turtles are likely to be forced to nest closer to the tide line, thus exposing their nests to greater risk of nest overlap with sea and tidal inundation. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (Dermochelys coriacea), Linked to Foraging Success and Population Status

    PubMed Central

    Bailey, Helen; Fossette, Sabrina; Bograd, Steven J.; Shillinger, George L.; Swithenbank, Alan M.; Georges, Jean-Yves; Gaspar, Philippe; Strömberg, K. H. Patrik; Paladino, Frank V.; Spotila, James R.; Block, Barbara A.; Hays, Graeme C.

    2012-01-01

    Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d−1) and transit at high speeds (20–45 km d−1). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d−1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic. PMID:22615767

  20. Movement patterns for a critically endangered species, the leatherback turtle (Dermochelys coriacea), linked to foraging success and population status.

    PubMed

    Bailey, Helen; Fossette, Sabrina; Bograd, Steven J; Shillinger, George L; Swithenbank, Alan M; Georges, Jean-Yves; Gaspar, Philippe; Strömberg, K H Patrik; Paladino, Frank V; Spotila, James R; Block, Barbara A; Hays, Graeme C

    2012-01-01

    Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d(-1)) and transit at high speeds (20-45 km d(-1)). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d(-1) indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic.

  1. Pink spot, white spot: the pineal skylight of the leatherback turtle (Dermochelys coriacea Vandelli 1761) skull and its possible role in the phenology of feeding migrations

    USGS Publications Warehouse

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2014-01-01

    Leatherback turtles, Dermochelys coriacea, which have an irregular pink area on the crown of the head known as the pineal or ‘pink spot’, forage upon jellyfish in cool temperate waters along the western and eastern margins of the North Atlantic during the summer. Our study showed that the skeletal structures underlying the pink spot in juvenile and adult turtles are compatible with the idea of a pineal dosimeter function that would support recognition of environmental light stimuli. We interrogated an extensive turtle sightings database to elucidate the phenology of leatherback foraging during summer months around Great Britain and Ireland and compared the sightings with historical data for sea surface temperatures and day lengths to assess whether sea surface temperature or light periodicity/levels were likely abiotic triggers prompting foraging turtles to turn south and leave their feeding grounds at the end of the summer. We found that sea temperature was too variable and slow changing in the study area to be useful as a trigger and suggest that shortening of day lengths as the late summer equilux is approached provides a credible phenological cue, acting via the pineal, for leatherbacks to leave their foraging areas whether they are feeding close to Nova Scotia or Great Britain and Ireland.

  2. On the dispersal of leatherback turtle hatchlings from Mesoamerican nesting beaches

    PubMed Central

    Shillinger, George L.; Di Lorenzo, Emanuele; Luo, Hao; Bograd, Steven J.; Hazen, Elliott L.; Bailey, Helen; Spotila, James R.

    2012-01-01

    So little is known about the early life history of leatherback turtles (Dermochelys coriacea) from hatchling to adulthood that this period has been termed the ‘lost years’. For critically endangered eastern Pacific leatherback populations, continued and rapid declines underscore the urgent need to develop conservation strategies across all life stages. We investigate leatherback hatchling dispersal from four Mesoamerican nesting beaches using passive tracer experiments within a regional ocean modelling system. The evolution of tracer distribution from each of the nesting beaches showed the strong influence of eddy transport and coastal currents. Modelled hatchlings from Playa Grande, Costa Rica, were most likely to be entrained and transported offshore by large-scale eddies coincident with the peak leatherback nesting and hatchling emergence period. These eddies potentially serve as ‘hatchling highways’, providing a means of rapid offshore transport away from predation and a productive refuge within which newly hatched turtles can develop. We hypothesize that the most important leatherback nesting beach remaining in the eastern Pacific (Playa Grande) has been evolutionarily selected as an optimal nesting site owing to favourable ocean currents that enhance hatchling survival. PMID:22378803

  3. On the dispersal of leatherback turtle hatchlings from Mesoamerican nesting beaches.

    PubMed

    Shillinger, George L; Di Lorenzo, Emanuele; Luo, Hao; Bograd, Steven J; Hazen, Elliott L; Bailey, Helen; Spotila, James R

    2012-06-22

    So little is known about the early life history of leatherback turtles (Dermochelys coriacea) from hatchling to adulthood that this period has been termed the 'lost years'. For critically endangered eastern Pacific leatherback populations, continued and rapid declines underscore the urgent need to develop conservation strategies across all life stages. We investigate leatherback hatchling dispersal from four Mesoamerican nesting beaches using passive tracer experiments within a regional ocean modelling system. The evolution of tracer distribution from each of the nesting beaches showed the strong influence of eddy transport and coastal currents. Modelled hatchlings from Playa Grande, Costa Rica, were most likely to be entrained and transported offshore by large-scale eddies coincident with the peak leatherback nesting and hatchling emergence period. These eddies potentially serve as 'hatchling highways', providing a means of rapid offshore transport away from predation and a productive refuge within which newly hatched turtles can develop. We hypothesize that the most important leatherback nesting beach remaining in the eastern Pacific (Playa Grande) has been evolutionarily selected as an optimal nesting site owing to favourable ocean currents that enhance hatchling survival.

  4. The role of infrequent and extraordinary deep dives in leatherback turtles (Dermochelys coriacea).

    PubMed

    Houghton, Jonathan D R; Doyle, Thomas K; Davenport, John; Wilson, Rory P; Hays, Graeme C

    2008-08-01

    Infrequent and exceptional behaviours can provide insight into the ecology and physiology of a particular species. Here we examined extraordinarily deep (300-1250 m) and protracted (>1h) dives made by critically endangered leatherback turtles (Dermochelys coriacea) in the context of three previously suggested hypotheses: predator evasion, thermoregulation and exploration for gelatinous prey. Data were obtained via satellite relay data loggers attached to adult turtles at nesting beaches (N=11) and temperate foraging grounds (N=2), constituting a combined tracking period of 9.6 years (N=26,146 dives) and spanning the entire North Atlantic Ocean. Of the dives, 99.6% (N=26,051) were to depths <300 m with only 0.4% (N=95) extending to greater depths (subsequently termed ;deep dives'). Analysis suggested that deep dives: (1) were normally distributed around midday; (2) may exceed the inferred aerobic dive limit for the species; (3) displayed slow vertical descent rates and protracted durations; (4) were much deeper than the thermocline; and (5) occurred predominantly during transit, yet ceased once seasonal residence on foraging grounds began. These findings support the hypothesis that deep dives are periodically employed to survey the water column for diurnally descending gelatinous prey. If a suitable patch is encountered then the turtle may cease transit and remain within that area, waiting for prey to approach the surface at night. If unsuccessful, then migration may continue until a more suitable site is encountered. Additional studies using a meta-analytical approach are nonetheless recommended to further resolve this matter.

  5. Endocrine responses to diverse stressors of capture, entanglement and stranding in leatherback turtles (Dermochelys coriacea)

    PubMed Central

    Hunt, Kathleen E.; Innis, Charles J.; Merigo, Constance; Rolland, Rosalind M.

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) are exposed to many anthropogenic stressors, yet almost no data on stress physiology exist for this species. As a first step toward understanding the physiological responses of leatherback turtles to stress, and with the particular goal of assessment of the effect of capture, we quantified corticosterone (an adrenal stress hormone) and thyroxine (a regulator of metabolic rate, often inhibited by chronic stress) in 17 healthy leatherback turtles captured at sea for scientific study, with comparisons to 15 ‘distressed’ leatherbacks that were found entangled in fishing gear (n = 8), confined in a weir net (n = 1) or stranded on shore (n = 6). Distressed leatherbacks had significantly elevated corticosterone (mean ± SEM 10.05 ± 1.72 ng/ml, median 8.38 ng/ml) and free thyroxine (mean 0.86 ± 0.37 pg/ml, median 0.08 pg/ml) compared with healthy leatherbacks sampled immediately before release (after ∼40 min of handling; corticosterone, mean 4.97 ± 0.62 ng/ml, median 5.21 ng/ml; and free thyroxine, mean 0.05 ± 0.05 pg/ml, median 0.00 pg/ml). The elevated thyroxine in distressed turtles compared with healthy turtles might indicate an energetic burden of entanglement and stranding. Six of the healthy leatherbacks were sampled twice, at ∼25 and ∼50 min after the time of first disturbance. In all six individuals, corticosterone was higher in the later sample (earlier sample, mean 2.74 ± 0.88 ng/ml, median 2.61 ng/ml; later sample, mean 5.43 ± 1.29 ng/ml, median 5.38 ng/ml), indicating that capture and handling elicit an adrenal stress response in this species. However, the corticosterone elevation after capture appeared relatively mild compared with the corticosterone concentrations of the entangled and stranded turtles. The findings suggest that capture and handling using the protocols described (e.g. capture duration <1 h) might represent only a mild stressor, whereas entanglement and stranding might represent

  6. Endocrine responses to diverse stressors of capture, entanglement and stranding in leatherback turtles (Dermochelys coriacea).

    PubMed

    Hunt, Kathleen E; Innis, Charles J; Merigo, Constance; Rolland, Rosalind M

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) are exposed to many anthropogenic stressors, yet almost no data on stress physiology exist for this species. As a first step toward understanding the physiological responses of leatherback turtles to stress, and with the particular goal of assessment of the effect of capture, we quantified corticosterone (an adrenal stress hormone) and thyroxine (a regulator of metabolic rate, often inhibited by chronic stress) in 17 healthy leatherback turtles captured at sea for scientific study, with comparisons to 15 'distressed' leatherbacks that were found entangled in fishing gear (n = 8), confined in a weir net (n = 1) or stranded on shore (n = 6). Distressed leatherbacks had significantly elevated corticosterone (mean ± SEM 10.05 ± 1.72 ng/ml, median 8.38 ng/ml) and free thyroxine (mean 0.86 ± 0.37 pg/ml, median 0.08 pg/ml) compared with healthy leatherbacks sampled immediately before release (after ∼40 min of handling; corticosterone, mean 4.97 ± 0.62 ng/ml, median 5.21 ng/ml; and free thyroxine, mean 0.05 ± 0.05 pg/ml, median 0.00 pg/ml). The elevated thyroxine in distressed turtles compared with healthy turtles might indicate an energetic burden of entanglement and stranding. Six of the healthy leatherbacks were sampled twice, at ∼25 and ∼50 min after the time of first disturbance. In all six individuals, corticosterone was higher in the later sample (earlier sample, mean 2.74 ± 0.88 ng/ml, median 2.61 ng/ml; later sample, mean 5.43 ± 1.29 ng/ml, median 5.38 ng/ml), indicating that capture and handling elicit an adrenal stress response in this species. However, the corticosterone elevation after capture appeared relatively mild compared with the corticosterone concentrations of the entangled and stranded turtles. The findings suggest that capture and handling using the protocols described (e.g. capture duration <1 h) might represent only a mild stressor, whereas entanglement and stranding might represent moderate

  7. Climate change impacts on leatherback turtle pelagic habitat in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Willis-Norton, Ellen; Hazen, Elliott L.; Fossette, Sabrina; Shillinger, George; Rykaczewski, Ryan R.; Foley, David G.; Dunne, John P.; Bograd, Steven J.

    2015-03-01

    Eastern Pacific populations of the leatherback turtle (Dermochelys coriacea) have declined by over 90% during the past three decades. The decline is primarily attributed to human pressures, including unsustainable egg harvest, development on nesting beaches, and by-catch mortality. In particular, the effects of climate change may impose additional stresses upon already threatened leatherback populations. This study analyzes how the pelagic habitat of Eastern Pacific leatherbacks may be affected by climate change over the next century. This population adheres to a persistent migration pattern; following nesting at Playa Grande, Costa Rica, individuals move rapidly through equatorial currents and into foraging habitat within the oligotrophic South Pacific Gyre. Forty-six nesting females were fitted with satellite tags. Based on the turtle positions, ten environmental variables were sampled along the tracks. Presence/absence habitat models were created to determine the oceanographic characteristics of the preferred turtle habitat. Core pelagic habitat was characterized by relatively low sea surface temperatures and chlorophyll-a. Based on these habitat models, we predicted habitat change using output from the Geophysical Fluid Dynamics Laboratory prototype Earth System Model under the Special Report on Emissions Scenario A2 (business-as-usual). Although the model predicted both habitat losses and gains throughout the region, we estimated that overall the core pelagic habitat of the Eastern Pacific leatherback population will decline by approximately 15% within the next century. This habitat modification might increase pressure on a critically endangered population, possibly forcing distributional shifts, behavioral changes, or even extinction.

  8. Behavioral inference of diving metabolic rate in free-ranging leatherback turtles.

    PubMed

    Bradshaw, Corey J A; McMahon, Clive R; Hays, Graeme C

    2007-01-01

    Good estimates of metabolic rate in free-ranging animals are essential for understanding behavior, distribution, and abundance. For the critically endangered leatherback turtle (Dermochelys coriacea), one of the world's largest reptiles, there has been a long-standing debate over whether this species demonstrates any metabolic endothermy. In short, do leatherbacks have a purely ectothermic reptilian metabolic rate or one that is elevated as a result of regional endothermy? Recent measurements have provided the first estimates of field metabolic rate (FMR) in leatherback turtles using doubly labeled water; however, the technique is prohibitively expensive and logistically difficult and produces estimates that are highly variable across individuals in this species. We therefore examined dive duration and depth data collected for nine free-swimming leatherback turtles over long periods (up to 431 d) to infer aerobic dive limits (ADLs) based on the asymptotic increase in maximum dive duration with depth. From this index of ADL and the known mass-specific oxygen storage capacity (To(2)) of leatherbacks, we inferred diving metabolic rate (DMR) as To2/ADL. We predicted that if leatherbacks conform to the purely ectothermic reptilian model of oxygen consumption, these inferred estimates of DMR should fall between predicted and measured values of reptilian resting and field metabolic rates, as well as being substantially lower than the FMR predicted for an endotherm of equivalent mass. Indeed, our behaviorally derived DMR estimates (mean=0.73+/-0.11 mL O(2) min(-1) kg(-1)) were 3.00+/-0.54 times the resting metabolic rate measured in unrestrained leatherbacks and 0.50+/-0.08 times the average FMR for a reptile of equivalent mass. These DMRs were also nearly one order of magnitude lower than the FMR predicted for an endotherm of equivalent mass. Thus, our findings lend support to the notion that diving leatherback turtles are indeed ectothermic and do not demonstrate

  9. The Gulf Stream frontal system: A key oceanographic feature in the habitat selection of the leatherback turtle?

    NASA Astrophysics Data System (ADS)

    Chambault, Philippine; Roquet, Fabien; Benhamou, Simon; Baudena, Alberto; Pauthenet, Etienne; de Thoisy, Benoît; Bonola, Marc; Dos Reis, Virginie; Crasson, Rodrigue; Brucker, Mathieu; Le Maho, Yvon; Chevallier, Damien

    2017-05-01

    Although some associations between the leatherback turtle Dermochelys coriacea and the Gulf Stream current have been previously suggested, no study has to date demonstrated strong affinities between leatherback movements and this particular frontal system using thorough oceanographic data in both the horizontal and vertical dimensions. The importance of the Gulf Stream frontal system in the selection of high residence time (HRT) areas by the North Atlantic leatherback turtle is assessed here for the first time using state-of-the-art ocean reanalysis products. Ten adult females from the Eastern French Guianese rookery were satellite tracked during post-nesting migration to relate (1) their horizontal movements to physical gradients (Sea Surface Temperature (SST), Sea Surface Height (SSH) and filaments) and biological variables (micronekton and chlorophyll a), and (2) their diving behaviour to vertical structures within the water column (mixed layer, thermocline, halocline and nutricline). All the turtles migrated northward towards the Gulf Stream north wall. Although their HRT areas were geographically remote (spread between 80-30 °W and 28-45 °N), all the turtles targeted similar habitats in terms of physical structures, i.e. strong gradients of SST, SSH and a deep mixed layer. This close association with the Gulf Stream frontal system highlights the first substantial synchronization ever observed in this species, as the HRTs were observed in close match with the autumn phytoplankton bloom. Turtles remained within the enriched mixed layer at depths of 38.5±7.9 m when diving in HRT areas, likely to have an easier access to their prey and maximize therefore the energy gain. These depths were shallow in comparison to those attained within the thermocline (82.4±5.6 m) while crossing the nutrient-poor subtropical gyre, probably to reach cooler temperatures and save energy during the transit. In a context of climate change, anticipating the evolution of such frontal

  10. Behaviour and buoyancy regulation in the deepest-diving reptile: the leatherback turtle.

    PubMed

    Fossette, Sabrina; Gleiss, Adrian C; Myers, Andy E; Garner, Steve; Liebsch, Nikolai; Whitney, Nicholas M; Hays, Graeme C; Wilson, Rory P; Lutcavage, Molly E

    2010-12-01

    In the face of the physical and physiological challenges of performing breath-hold deep dives, marine vertebrates have evolved different strategies. Although behavioural strategies in marine mammals and seabirds have been investigated in detail, little is known about the deepest-diving reptile - the leatherback turtle (Dermochelys coriacea). Here, we deployed tri-axial accelerometers on female leatherbacks nesting on St Croix, US Virgin Islands, to explore their diving strategy. Our results show a consistent behavioural pattern within dives among individuals, with an initial period of active swimming at relatively steep descent angles (∼-40 deg), with a stroke frequency of 0.32 Hz, followed by a gliding phase. The depth at which the gliding phase began increased with the maximum depth of the dives. In addition, descent body angles and vertical velocities were higher during deeper dives. Leatherbacks might thus regulate their inspired air-volume according to the intended dive depth, similar to hard-shelled turtles and penguins. During the ascent, turtles actively swam with a stroke frequency of 0.30 Hz but with a low vertical velocity (∼0.40 ms(-1)) and a low pitch angle (∼+26 deg). Turtles might avoid succumbing to decompression sickness ('the bends') by ascending slowly to the surface. In addition, we suggest that the low body temperature of this marine ectotherm compared with that of endotherms might help reduce the risk of bubble formation by increasing the solubility of nitrogen in the blood. This physiological advantage, coupled with several behavioural and physical adaptations, might explain the particular ecological niche the leatherback turtle occupies among marine reptiles.

  11. Maternal Health Status Correlates with Nest Success of Leatherback Sea Turtles (Dermochelys coriacea) from Florida

    PubMed Central

    Perrault, Justin R.; Miller, Debra L.; Eads, Erica; Johnson, Chris; Merrill, Anita; Thompson, Larry J.; Wyneken, Jeanette

    2012-01-01

    Of the seven sea turtle species, the critically endangered leatherback sea turtle (Dermochelys coriacea) exhibits the lowest and most variable nest success (i.e., hatching success and emergence success) for reasons that remain largely unknown. In an attempt to identify or rule out causes of low reproductive success in this species, we established the largest sample size (n = 60–70 for most values) of baseline blood parameters (protein electrophoresis, hematology, plasma biochemistry) for this species to date. Hematologic, protein electrophoretic and biochemical values are important tools that can provide information regarding the physiological condition of an individual and population health as a whole. It has been proposed that the health of nesting individuals affects their reproductive output. In order to establish correlations with low reproductive success in leatherback sea turtles from Florida, we compared maternal health indices to hatching success and emergence success of their nests. As expected, hatching success (median = 57.4%) and emergence success (median = 49.1%) in Floridian leatherbacks were low during the study period (2007–2008 nesting seasons), a trend common in most nesting leatherback populations (average global hatching success = ∼50%). One protein electrophoretic value (gamma globulin protein) and one hematologic value (red blood cell count) significantly correlated with hatching success and emergence success. Several maternal biochemical parameters correlated with hatching success and/or emergence success including alkaline phosphatase activity, blood urea nitrogen, calcium, calcium∶phosphorus ratio, carbon dioxide, cholesterol, creatinine, and phosphorus. Our results suggest that in leatherbacks, physiological parameters correlate with hatching success and emergence success of their nests. We conclude that long-term and comparative studies are needed to determine if certain individuals produce nests with lower

  12. Crying a river: how much salt-laden jelly can a leatherback turtle really eat?

    PubMed

    Davenport, John

    2017-05-01

    Leatherback turtles (Dermochelys coriacea) are capital breeders that accumulate blubber (33 kJ g(-1) wet mass) by hyperphagia on a gelatinous diet at high latitudes; they breed in the tropics. A jellyfish diet is energy poor (0.1-0.2 kJ g(-1) wet mass) so leatherbacks must ingest large quantities. Two published estimates of feeding rate [50% body mass day(-1) (on Rhizostoma pulmo) and 73% body mass day(-1) (on Cyanea capillata)] have been criticised as too high. Jellyfish have high salt and water contents that must be removed to access organic material and energy. Most salt is removed (as NaCl) by paired lachrymal salt glands. Divalent ions are lost via the gut. In this study, the size of adult salt glands (0.622 kg for a 450 kg turtle; relatively three times the size of salt glands in cheloniid turtles) was measured for the first time by computed tomography scanning. Various published values for leatherback field metabolic rate, body fluid composition and likely blubber accumulation rates are combined with known jellyfish salt, water and organic compositions to calculate feasible salt gland secretion rates and feeding rates. The results indicate that leatherbacks can produce about 10-15 ml secretion g(-1) salt gland mass h(-1) (tear osmolality 1800 mOsm kg(-1)). This will permit consumption of 80% body mass day(-1) of Ccapillata Calculations suggest that leatherbacks will find it difficult/impossible to accumulate sufficient blubber for reproduction in a single feeding season. Rapid jellyfish digestion and short gut transit times are essential. © 2017. Published by The Company of Biologists Ltd.

  13. Maternal health status correlates with nest success of leatherback sea turtles (Dermochelys coriacea) from Florida.

    PubMed

    Perrault, Justin R; Miller, Debra L; Eads, Erica; Johnson, Chris; Merrill, Anita; Thompson, Larry J; Wyneken, Jeanette

    2012-01-01

    Of the seven sea turtle species, the critically endangered leatherback sea turtle (Dermochelys coriacea) exhibits the lowest and most variable nest success (i.e., hatching success and emergence success) for reasons that remain largely unknown. In an attempt to identify or rule out causes of low reproductive success in this species, we established the largest sample size (n = 60-70 for most values) of baseline blood parameters (protein electrophoresis, hematology, plasma biochemistry) for this species to date. Hematologic, protein electrophoretic and biochemical values are important tools that can provide information regarding the physiological condition of an individual and population health as a whole. It has been proposed that the health of nesting individuals affects their reproductive output. In order to establish correlations with low reproductive success in leatherback sea turtles from Florida, we compared maternal health indices to hatching success and emergence success of their nests. As expected, hatching success (median = 57.4%) and emergence success (median = 49.1%) in Floridian leatherbacks were low during the study period (2007-2008 nesting seasons), a trend common in most nesting leatherback populations (average global hatching success = ∼50%). One protein electrophoretic value (gamma globulin protein) and one hematologic value (red blood cell count) significantly correlated with hatching success and emergence success. Several maternal biochemical parameters correlated with hatching success and/or emergence success including alkaline phosphatase activity, blood urea nitrogen, calcium, calcium:phosphorus ratio, carbon dioxide, cholesterol, creatinine, and phosphorus. Our results suggest that in leatherbacks, physiological parameters correlate with hatching success and emergence success of their nests. We conclude that long-term and comparative studies are needed to determine if certain individuals produce nests with lower hatching

  14. Ontogeny of energetics in leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) sea turtle hatchlings.

    PubMed

    Jones, T Todd; Reina, Richard D; Darveau, Charles-A; Lutz, Peter L

    2007-06-01

    Changes in activity related oxygen consumption were measured in leatherback and olive ridley sea turtle hatchlings over their first month after emergence from the nest. Leatherbacks emerged with 75-90 KJ of energy in the residual yolk for growth and activity whereas olive ridleys emerged with 45 KJ. In leatherbacks (n=8), resting mass-specific oxygen consumption rates decreased by 53% over the first post-hatching month (0.34+0.03 mL O(2) h(-1) g(-1) to 0.16+0.01 mL O(2) h(-1) g(-1), respectively), while for ridleys (n=8) the fall was 35% (0.20+0.03 mL O(2) h(-1) g(-1) to 0.13+0.01 mL O(2) h(-1) g(-1), respectively). Olive ridley factorial aerobic scope doubled (1.93+0.30 to 3.97+0.51) over the first month but there was no significant increase in leatherback factorial aerobic scope (1.39+0.21 to 1.60+0.13). Leatherback hatchlings gained on average 20% initial body mass (7.68+1.66 g) over the first week, with 70 to 80% of this increase due to water accumulation. Olive ridleys gained 14% (1.83+0.16 g) in initial mass over the first week of age. We propose that the differences in aerobic scope and energy reserves are related to differences in early life ecological stratagems of these species.

  15. Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming

    PubMed Central

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2016-01-01

    Leatherback sea turtles (Dermochelys coriacea) are known to have a superior diving ability and be highly adapted to pelagic swimming. They have five longitudinal ridges on their carapace. Although it was conjectured that these ridges might be an adaptation for flow control, no rigorous study has been performed to understand their hydrodynamic roles. Here we show that these ridges are slightly misaligned to the streamlines around the body to generate streamwise vortices, and suppress or delay flow separation on the carapace, resulting in enhanced hydrodynamic performances during different modes of swimming. Our results suggest that shapes of some morphological features of living creatures, like the longitudinal ridges of the leatherback turtles, need not be streamlined for excellent hydro- or aerodynamic performances, contrary to our common physical intuition. PMID:27694826

  16. Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2016-10-01

    Leatherback sea turtles (Dermochelys coriacea) are known to have a superior diving ability and be highly adapted to pelagic swimming. They have five longitudinal ridges on their carapace. Although it was conjectured that these ridges might be an adaptation for flow control, no rigorous study has been performed to understand their hydrodynamic roles. Here we show that these ridges are slightly misaligned to the streamlines around the body to generate streamwise vortices, and suppress or delay flow separation on the carapace, resulting in enhanced hydrodynamic performances during different modes of swimming. Our results suggest that shapes of some morphological features of living creatures, like the longitudinal ridges of the leatherback turtles, need not be streamlined for excellent hydro- or aerodynamic performances, contrary to our common physical intuition.

  17. Post-mortem investigations on a leatherback turtle Dermochelys coriacea stranded along the Northern Adriatic coastline.

    PubMed

    Poppi, Lisa; Zaccaroni, Annalisa; Pasotto, Daniela; Dotto, Giorgia; Marcer, Federica; Scaravelli, Dino; Mazzariol, Sandro

    2012-08-13

    Leatherback sea turtles Dermochelys coriacea are regularly reported in the Mediterranean Sea but rarely reach the northern Adriatic Sea. In the summer of 2009, a well-preserved carcass of an adult female of this species was found dead along the coast of Lido di Venezia. A complete necropsy was carried out, along with evaluation of levels of tissue trace elements. The the post-mortem revealed acute severe bacterial gastroenteritis caused by Photobacterium damselae ssp. piscicida, an opportunistic agent that infected an apparently debilitated animal weakened by ingested plastic debris. High levels of heavy metals (Hg, Pb, Cd and As) found in the liver and kidneys might have contributed to the animal's demise. These findings support previous indications that marine debris is one of the major threats to marine animals, particularly for critically endangered species such as the leatherback turtle.

  18. Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming.

    PubMed

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2016-10-03

    Leatherback sea turtles (Dermochelys coriacea) are known to have a superior diving ability and be highly adapted to pelagic swimming. They have five longitudinal ridges on their carapace. Although it was conjectured that these ridges might be an adaptation for flow control, no rigorous study has been performed to understand their hydrodynamic roles. Here we show that these ridges are slightly misaligned to the streamlines around the body to generate streamwise vortices, and suppress or delay flow separation on the carapace, resulting in enhanced hydrodynamic performances during different modes of swimming. Our results suggest that shapes of some morphological features of living creatures, like the longitudinal ridges of the leatherback turtles, need not be streamlined for excellent hydro- or aerodynamic performances, contrary to our common physical intuition.

  19. Leatherback turtles are capital breeders: morphometric and physiological evidence from longitudinal monitoring.

    PubMed

    Plot, Virginie; Jenkins, Thomas; Robin, Jean-Patrice; Fossette, Sabrina; Georges, Jean-Yves

    2013-01-01

    Organisms compensate for reproduction costs through two major strategies: capital breeders store body reserves before reproduction and do not feed during the breeding season, whereas income breeders adjust their food intake depending on concurrent reproductive needs. Sea turtles are commonly considered capital breeders. Yet recent biometric and behavioral studies have suggested that sea turtles may in fact feed during reproduction. We tested this hypothesis in the leatherback turtle Dermochelys coriacea, nesting in French Guiana. Our study is based on the innovative use of longitudinal monitoring for morphological (body size, body mass, and body condition) and physiological (plasma glucose, triacylglycerides, urea, calcium, and hematocrit) measurements in 35 females throughout the 2006 nesting season. During their 71-d nesting period, leatherbacks lost a mean (±SE) of [Formula: see text] kg (i.e., ∼11% of their initial body mass of [Formula: see text] kg). Simultaneously, a significant decrease in plasma concentrations of glucose, triacylglycerides, and urea was observed throughout the nesting season, following typical patterns reported in other long-fasting animals that rely on lipid body stores. At the end of the nesting season, the interindividual variability in plasma concentrations was very low, which may characterize some minimum thresholds associated with the end of reproduction. We also identified a minimum necessary threshold for female body condition at the onset of reproduction; the body condition of any females beginning the nesting period below this threshold decreased dramatically. This study makes a compelling case that, in French Guiana, gravid leatherback females are anorexic during the nesting season (i.e., leatherback turtles are capital breeders). We further highlight the mechanisms that prevent this multiparous reptile from jeopardizing its own body condition while not feeding during reproduction.

  20. Embryonic Death Is Linked to Maternal Identity in the Leatherback Turtle (Dermochelys coriacea)

    PubMed Central

    Rafferty, Anthony R.; Santidrián Tomillo, Pilar; Spotila, James R.; Paladino, Frank V.; Reina, Richard D.

    2011-01-01

    Leatherback turtles have an average global hatching success rate of ∼50%, lower than other marine turtle species. Embryonic death has been linked to environmental factors such as precipitation and temperature, although, there is still a lot of variability that remains to be explained. We examined how nesting season, the time of nesting each season, the relative position of each clutch laid by each female each season, maternal identity and associated factors such as reproductive experience of the female (new nester versus remigrant) and period of egg retention between clutches (interclutch interval) affected hatching success and stage of embryonic death in failed eggs of leatherback turtles nesting at Playa Grande, Costa Rica. Data were collected during five nesting seasons from 2004/05 to 2008/09. Mean hatching success was 50.4%. Nesting season significantly influenced hatching success in addition to early and late stage embryonic death. Neither clutch position nor nesting time during the season had a significant affect on hatching success or the stage of embryonic death. Some leatherback females consistently produced nests with higher hatching success rates than others. Remigrant females arrived earlier to nest, produced more clutches and had higher rates of hatching success than new nesters. Reproductive experience did not affect stage of death or the duration of the interclutch interval. The length of interclutch interval had a significant affect on the proportion of eggs that failed in each clutch and the developmental stage they died at. Intrinsic factors such as maternal identity are playing a role in affecting embryonic death in the leatherback turtle. PMID:21695086

  1. Embryonic death is linked to maternal identity in the leatherback turtle (Dermochelys coriacea).

    PubMed

    Rafferty, Anthony R; Santidrián Tomillo, Pilar; Spotila, James R; Paladino, Frank V; Reina, Richard D

    2011-01-01

    Leatherback turtles have an average global hatching success rate of ~50%, lower than other marine turtle species. Embryonic death has been linked to environmental factors such as precipitation and temperature, although, there is still a lot of variability that remains to be explained. We examined how nesting season, the time of nesting each season, the relative position of each clutch laid by each female each season, maternal identity and associated factors such as reproductive experience of the female (new nester versus remigrant) and period of egg retention between clutches (interclutch interval) affected hatching success and stage of embryonic death in failed eggs of leatherback turtles nesting at Playa Grande, Costa Rica. Data were collected during five nesting seasons from 2004/05 to 2008/09. Mean hatching success was 50.4%. Nesting season significantly influenced hatching success in addition to early and late stage embryonic death. Neither clutch position nor nesting time during the season had a significant affect on hatching success or the stage of embryonic death. Some leatherback females consistently produced nests with higher hatching success rates than others. Remigrant females arrived earlier to nest, produced more clutches and had higher rates of hatching success than new nesters. Reproductive experience did not affect stage of death or the duration of the interclutch interval. The length of interclutch interval had a significant affect on the proportion of eggs that failed in each clutch and the developmental stage they died at. Intrinsic factors such as maternal identity are playing a role in affecting embryonic death in the leatherback turtle.

  2. How do hatcheries influence embryonic development of sea turtle eggs? Experimental analysis and isolation of microorganisms in leatherback turtle eggs.

    PubMed

    Patino-Martinez, Juan; Marco, Adolfo; Quiñones, Liliana; Abella, Elena; Abad, Roberto Muriel; Diéguez-Uribeondo, Javier

    2012-01-01

    Many conservation programs consider translocation of turtle nests to hatcheries as a useful technique. The repeated use of the same incubation substrate over several seasons in these hatcheries could, however, be harmful to embryos if pathogens were able to accumulate or if the physical and chemical characteristics of the incubation environment were altered. However, this hypothesis has yet to be tested. We conducted two field experiments to evaluate the effects of hatchery sand and eggshell decay on the embryonic development of leatherback sea turtle eggs in Colombia. We identified the presence of both fungi and bacteria species on leatherback turtle eggs. Sea turtle eggs exposed to previously used hatchery substrates or to decaying eggshells during the first and middle third of the embryonic development produced hatchlings that were smaller and/or weighed less than control eggs. However, this did not negatively influence hatching success. The final third of embryonic development seems to be less susceptible to infection by microorganisms associated with decaying shells. We discuss the mechanisms that could be affecting sea turtle egg development when in contact with fungi. Further studies should seek to understand the infection process and the stages of development in which the fungi are more virulent to the eggs of this critically endangered species.

  3. Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.

    PubMed Central

    Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F

    2003-01-01

    While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents. PMID:14667360

  4. Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.

    PubMed

    Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F

    2003-11-07

    While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents.

  5. Maternal transfer of trace elements in leatherback turtles (Dermochelys coriacea) of French Guiana.

    PubMed

    Guirlet, Elodie; Das, Krishna; Girondot, Marc

    2008-07-30

    In sea turtles, parental investment is limited to the nutrients and energy invested in eggs that will support embryonic development. Leatherback females have the largest clutches with the biggest eggs of the sea turtles and the highest reproductive output in reptiles. The migration between foraging sites and nesting beaches also represents high energy expenditure. The toxicokinetic of pollutants in the tissues is thus expected to vary during those periods but there is a lack of information in reptiles. Concentrations of essential (Copper, Zinc, Selenium) and non-essentials elements (Cadmium, Lead, Mercury) were determined in blood (n=78) and eggs (n=76) of 46 free-ranging leatherback females collected in French Guiana. Maternal transfer to eggs and relationships between blood and eggs concentrations during the nesting season were investigated. All trace elements were detectable in both tissues. Levels of toxic metals were lower than essential elements likely due to the high pelagic nature of leatherbacks that seems to limit exposure to toxic elements. Significant relationships between blood and egg concentrations were observed for Se and Cd. Se could have an important role in embryonic development of leatherback turtles and Cd transfer could be linked to similar carrier proteins as Se. Finally, as multiple clutches were sampled from each female, trends in trace elements were investigated along the nesting season. No change was observed in eggs but changes were recorded in blood concentrations of Cu. Cu level decreased while blood Pb levels increased through the nesting season. The high demand on the body during the breeding season seems to affect blood Cu concentrations. Calcium requirement for egg production with concomitant Pb mobilization could explain the increase in blood Pb concentrations along the nesting season.

  6. An oceanographic context for the foraging ecology of eastern Pacific leatherback turtles: Consequences of ENSO

    NASA Astrophysics Data System (ADS)

    Saba, Vincent S.; Shillinger, George L.; Swithenbank, Alan M.; Block, Barbara A.; Spotila, James R.; Musick, John A.; Paladino, Frank V.

    2008-05-01

    We analyzed some of the primary biological and physical dynamics within the eastern Pacific leatherback turtle ( Dermochelys coriacea) migration area in relation to ENSO and leatherback nesting ecology at Parque Nacional Marino Las Baulas (PNMB), Costa Rica. We used data from remote sensing to calculate resource availability via a net primary production (NPP) model, and to analyze the physical dynamics of the migration area via sea surface temperature fronts. Within the migration area, NPP north of 15°S was highly governed by interannual variability as indicated by the Multivariate ENSO Index while south of 15°S, production had a more seasonal signal. Nesting peaks of leatherbacks at PNMB were associated with cool, highly productive La Niña events and with large-scale equatorial phytoplankton blooms encompassing 110°W that were induced by iron enrichment following the termination of El Niño events. Resource availability in the northern migration area (eastern equatorial Pacific) appeared to determine the nesting response for the population at PNMB, Costa Rica. We suggest that ENSO significantly influences the nesting ecology of leatherbacks at PNMB because the majority of the population consists of pelagic foragers that strictly rely on the eastern equatorial Pacific for prey consumption prior to the nesting season. Coastal foragers may be a minority in the population because of high mortality rates associated with coastal gillnet fisheries along Central and South America.

  7. Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).

    PubMed

    Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W

    2015-07-01

    Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers.

  8. A model for simulating the active dispersal of juvenile sea turtles with a case study on western Pacific leatherback turtles

    PubMed Central

    Lalire, Maxime

    2017-01-01

    Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the

  9. A model for simulating the active dispersal of juvenile sea turtles with a case study on western Pacific leatherback turtles.

    PubMed

    Gaspar, Philippe; Lalire, Maxime

    2017-01-01

    Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the

  10. Behaviour of leatherback sea turtles, Dermochelys coriacea, during the migratory cycle

    PubMed Central

    James, Michael C; Myers, Ransom A; Ottensmeyer, C. Andrea

    2005-01-01

    Leatherback sea turtles, Dermochelys coriacea, undertake broad oceanic movements. While satellite telemetry has been used to investigate the post-nesting behaviour of female turtles tagged on tropical nesting beaches, long-term behavioural patterns of turtles of different sexes and sizes have not been described. Here we investigate behaviour for 25 subadult and adult male and female turtles satellite-tagged in temperate waters off Nova Scotia, Canada. Although sex and reproductive condition contributed to variation in migratory patterns, the migratory cycle of all turtles included movement between temperate and tropical waters. Marked changes in rates of travel, and diving and surfacing behaviour, accompanied southward movement away from northern foraging areas. As turtles approached higher latitudes the following spring and summer, they assumed behaviours consistent with regular foraging activity and eventually settled in coastal areas off Canada and the northeastern USA. Behavioural patterns corresponding to various phases of the migratory cycle were consistent across multiple animals and were repeated within individuals that completed return movements to northern waters. We consider the potential biological significance of these patterns, including how turtle behaviour relates to predator avoidance, thermoregulation and prey distribution. PMID:16048769

  11. Behaviour of leatherback sea turtles, Dermochelys coriacea, during the migratory cycle.

    PubMed

    James, Michael C; Myers, Ransom A; Ottensmeyer, C Andrea

    2005-08-07

    Leatherback sea turtles, Dermochelys coriacea, undertake broad oceanic movements. While satellite telemetry has been used to investigate the post-nesting behaviour of female turtles tagged on tropical nesting beaches, long-term behavioural patterns of turtles of different sexes and sizes have not been described. Here we investigate behaviour for 25 subadult and adult male and female turtles satellite-tagged in temperate waters off Nova Scotia, Canada. Although sex and reproductive condition contributed to variation in migratory patterns, the migratory cycle of all turtles included movement between temperate and tropical waters. Marked changes in rates of travel, and diving and surfacing behaviour, accompanied southward movement away from northern foraging areas. As turtles approached higher latitudes the following spring and summer, they assumed behaviours consistent with regular foraging activity and eventually settled in coastal areas off Canada and the northeastern USA. Behavioural patterns corresponding to various phases of the migratory cycle were consistent across multiple animals and were repeated within individuals that completed return movements to northern waters. We consider the potential biological significance of these patterns, including how turtle behaviour relates to predator avoidance, thermoregulation and prey distribution.

  12. Seasonal trends in nesting leatherback turtle (Dermochelys coriacea) serum proteins further verify capital breeding hypothesis

    PubMed Central

    Perrault, Justin R.; Wyneken, Jeanette; Page-Karjian, Annie; Merrill, Anita; Miller, Debra L.

    2014-01-01

    Serum protein concentrations provide insight into the nutritional and immune status of organisms. It has been suggested that some marine turtles are capital breeders that fast during the nesting season. In this study, we documented serum proteins in neophyte and remigrant nesting leatherback sea turtles (Dermochelys coriacea). This allowed us to establish trends across the nesting season to determine whether these physiological parameters indicate if leatherbacks forage or fast while on nesting grounds. Using the biuret method and agarose gel electrophoresis, total serum protein (median = 5.0 g/dl) and protein fractions were quantified and include pre-albumin (median = 0.0 g/dl), albumin (median = 1.81 g/dl), α1-globulin (median = 0.90 g/dl), α2-globulin (median = 0.74 g/dl), total α-globulin (median = 1.64 g/dl), β-globulin (median = 0.56 g/dl), γ-globulin (median = 0.81 g/dl) and total globulin (median = 3.12 g/dl). The albumin:globulin ratio (median = 0.59) was also calculated. Confidence intervals (90%) were used to establish reference intervals. Total protein, albumin and total globulin concentrations declined in successive nesting events. Protein fractions declined at less significant rates or remained relatively constant during the nesting season. Here, we show that leatherbacks are most likely fasting during the nesting season. A minimal threshold of total serum protein concentrations of around 3.5–4.5 g/dl may physiologically signal the end of the season's nesting for individual leatherbacks. The results presented here lend further insight into the interaction between reproduction, fasting and energy reserves and will potentially improve the conservation and management of this imperiled species. PMID:27293623

  13. Seasonal trends in nesting leatherback turtle (Dermochelys coriacea) serum proteins further verify capital breeding hypothesis.

    PubMed

    Perrault, Justin R; Wyneken, Jeanette; Page-Karjian, Annie; Merrill, Anita; Miller, Debra L

    2014-01-01

    Serum protein concentrations provide insight into the nutritional and immune status of organisms. It has been suggested that some marine turtles are capital breeders that fast during the nesting season. In this study, we documented serum proteins in neophyte and remigrant nesting leatherback sea turtles (Dermochelys coriacea). This allowed us to establish trends across the nesting season to determine whether these physiological parameters indicate if leatherbacks forage or fast while on nesting grounds. Using the biuret method and agarose gel electrophoresis, total serum protein (median = 5.0 g/dl) and protein fractions were quantified and include pre-albumin (median = 0.0 g/dl), albumin (median = 1.81 g/dl), α1-globulin (median = 0.90 g/dl), α2-globulin (median = 0.74 g/dl), total α-globulin (median = 1.64 g/dl), β-globulin (median = 0.56 g/dl), γ-globulin (median = 0.81 g/dl) and total globulin (median = 3.12 g/dl). The albumin:globulin ratio (median = 0.59) was also calculated. Confidence intervals (90%) were used to establish reference intervals. Total protein, albumin and total globulin concentrations declined in successive nesting events. Protein fractions declined at less significant rates or remained relatively constant during the nesting season. Here, we show that leatherbacks are most likely fasting during the nesting season. A minimal threshold of total serum protein concentrations of around 3.5-4.5 g/dl may physiologically signal the end of the season's nesting for individual leatherbacks. The results presented here lend further insight into the interaction between reproduction, fasting and energy reserves and will potentially improve the conservation and management of this imperiled species.

  14. COCCIDIAL INFECTION OF THE ADRENAL GLANDS OF LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA).

    PubMed

    Ferguson, Sara D; Wellehan, James F X; Frasca, Salvatore; Innis, Charles J; Harris, Heather S; Miller, Melissa; Weber, E Scott; Walden, Heather Stockdale; Greiner, Ellis C; Merigo, Constance; Stacy, Brian A

    2016-10-01

    Histologic lesions incidental to the cause of death were observed in the adrenal glands of 17 subadult and adult leatherback sea turtles ( Dermochelys coriacea ) found dead or moribund on or near shore in North America. Round bodies, 250-300 μm in diameter composed of an outer capsule and large multinucleated cells surrounding a central mass of acellular material were distributed throughout the affected glands. Protozoal etiology was suspected based on some resemblance to coccidia; however, features diagnostic for coccidial infection were lacking in all but one case, which had a focal area of adrenalitis containing zoites. A novel eucoccidian partial 18S rRNA genetic sequence was consistently detected in adrenal glands with lesions. With the use of quantitative PCR, a specific area of the V4 region of the coccidian 18S gene was quantified in affected adrenal glands and correlated significantly with density of the histologic lesions. A second distinct, but closely related, 18S sequence was also amplified from the adrenal gland of one turtle and from a fecal sample containing unsporulated coccidian oocysts. The two 18S sequences identified from leatherback sea turtles form a clade within the family Eimeriidae. Further investigation is required to understand better the morphology of the life stages, life cycle, and potential effects of this coccidian parasite on adrenal function.

  15. Climate Driven Egg and Hatchling Mortality Threatens Survival of Eastern Pacific Leatherback Turtles

    PubMed Central

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Blanco, Gabriela S.; Stock, Charles A.; Paladino, Frank V.; Spotila, James R.

    2012-01-01

    Egg-burying reptiles need relatively stable temperature and humidity in the substrate surrounding their eggs for successful development and hatchling emergence. Here we show that egg and hatchling mortality of leatherback turtles (Dermochelys coriacea) in northwest Costa Rica were affected by climatic variability (precipitation and air temperature) driven by the El Niño Southern Oscillation (ENSO). Drier and warmer conditions associated with El Niño increased egg and hatchling mortality. The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) projects a warming and drying in Central America and other regions of the World, under the SRES A2 development scenario. Using projections from an ensemble of global climate models contributed to the IPCC report, we project that egg and hatchling survival will rapidly decline in the region over the next 100 years by ∼50–60%, due to warming and drying in northwestern Costa Rica, threatening the survival of leatherback turtles. Warming and drying trends may also threaten the survival of sea turtles in other areas affected by similar climate changes. PMID:22649544

  16. Monitoring persistent organic pollutants in leatherback turtles (Dermochelys coriacea) confirms maternal transfer.

    PubMed

    Stewart, Kelly R; Keller, Jennifer M; Templeton, Ryan; Kucklick, John R; Johnson, Chris

    2011-07-01

    To assess threats to endangered species, it is critical to establish baselines for contaminant concentrations that may have detrimental consequences to individuals or populations. We measured contaminants in blubber and fat from dead leatherback turtles and established baselines in blood and eggs in nesting turtles. In fat, blubber, blood and eggs, the predominant PCBs were 153+132, 187+182, 138+163, 118, and 180+193. Total PCBs, 4,4'-DDE, total PBDEs and total chlordanes were significantly and positively correlated between blood and eggs, suggesting maternal transfer. Significant positive relationships also existed between fat and blubber in stranded leatherbacks. Less lipophilic PCBs appeared to more readily transfer from females to their eggs. PBDE profiles in the four tissues were similar to other wildlife populations but different from some turtle studies. Concentrations were lower than those shown to have acute toxic effects in other aquatic reptiles, but may have sub-lethal effects on hatchling body condition and health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Climate driven egg and hatchling mortality threatens survival of eastern Pacific leatherback turtles.

    PubMed

    Santidrián Tomillo, Pilar; Saba, Vincent S; Blanco, Gabriela S; Stock, Charles A; Paladino, Frank V; Spotila, James R

    2012-01-01

    Egg-burying reptiles need relatively stable temperature and humidity in the substrate surrounding their eggs for successful development and hatchling emergence. Here we show that egg and hatchling mortality of leatherback turtles (Dermochelys coriacea) in northwest Costa Rica were affected by climatic variability (precipitation and air temperature) driven by the El Niño Southern Oscillation (ENSO). Drier and warmer conditions associated with El Niño increased egg and hatchling mortality. The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) projects a warming and drying in Central America and other regions of the World, under the SRES A2 development scenario. Using projections from an ensemble of global climate models contributed to the IPCC report, we project that egg and hatchling survival will rapidly decline in the region over the next 100 years by ∼50-60%, due to warming and drying in northwestern Costa Rica, threatening the survival of leatherback turtles. Warming and drying trends may also threaten the survival of sea turtles in other areas affected by similar climate changes.

  18. Pathologic findings in hatchling and posthatchling leatherback sea turtles (Dermochelys coriacea) from Florida.

    PubMed

    Miller, Debra L; Wyneken, Jeanette; Rajeev, Sreekumari; Perrault, Justin; Mader, Douglas R; Weege, James; Baldwin, Charles A

    2009-10-01

    In an attempt to identify critical health issues affecting the survival of endangered leatherback sea turtles (Dermochelys coriacea), a prospective study was conducted in several dead-in-nest hatchlings and captive posthatchlings to examine pathologic changes and presence of pathogenic microorganisms. Numerous histopathologic changes were identified. Although bacterial etiologies were suspected in deaths of captive individuals, a single causative organism was not identified but rather, a mixed population of bacterial flora was cultured. Muscle degeneration observed in most samples implicates a potential environmental factor in species survival and needs future investigation.

  19. Fat head: an analysis of head and neck insulation in the leatherback turtle (Dermochelys coriacea).

    PubMed

    Davenport, John; Fraher, John; Fitzgerald, Edward; McLaughlin, Patrick; Doyle, Tom; Harman, Luke; Cuffe, Tracy

    2009-09-01

    Adult leatherback turtles are gigantothermic/endothermic when foraging in cool temperate waters, maintaining a core body temperature within the main body cavity of ca. 25 degrees C despite encountering surface temperatures of ca. 15 degrees C and temperatures as low as 0.4 degrees C during dives. Leatherbacks also eat very large quantities of cold, gelatinous prey (medusae and pyrosomas). We hypothesised that the head and neck of the leatherback would have structural features to minimise cephalic heat loss and limit cooling of the head and neck during food ingestion. By gross dissection and analytical computed tomography (validated by ground truthing dissection) of an embalmed specimen we confirmed this prediction. 21% of the head and neck was occupied by adipose tissue. This occurred as intracranial blubber, encapsulating the salt glands, medial portions of the eyeballs, plus the neurocranium and brain. The dorsal and lateral surfaces of the neck featured thick blubber pads whereas the carotid arteries and jugular veins were deeply buried in the neck and protected laterally by blubber. The oesophagus was surrounded by a thick sheath of adipose tissue whereas the oropharyngeal cavity had an adipose layer between it and the bony proportion of the palate, providing further ventral insulation for salt glands and neurocranium.

  20. Spatial and temporal statistical analysis of bycatch data: Patterns of sea turtle bycatch in the North Atlantic

    USGS Publications Warehouse

    Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.

    2008-01-01

    Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.

  1. Cost-effectiveness of alternative conservation strategies with application to the Pacific leatherback turtle.

    PubMed

    Gjertsen, Heidi; Squires, Dale; Dutton, Peter H; Eguchi, Tomoharu

    2014-02-01

    Although holistic conservation addressing all sources of mortality for endangered species or stocks is the preferred conservation strategy, limited budgets require a criterion to prioritize conservation investments. We compared the cost-effectiveness of nesting site and at-sea conservation strategies for Pacific leatherback turtles (Dermochelys coriacea). We sought to determine which conservation strategy or mix of strategies would produce the largest increase in population growth rate per dollar. Alternative strategies included protection of nesters and their eggs at nesting beaches in Indonesia, gear changes, effort restrictions, and caps on turtle takes in the Hawaiian (U.S.A.) longline swordfish fishery, and temporal and area closures in the California (U.S.A.) drift gill net fishery. We used a population model with a biological metric to measure the effects of conservation alternatives. We normalized all effects by cost to prioritize those strategies with the greatest biological effect relative to its economic cost. We used Monte Carlo simulation to address uncertainty in the main variables and to calculate probability distributions for cost-effectiveness measures. Nesting beach protection was the most cost-effective means of achieving increases in leatherback populations. This result creates the possibility of noncompensatory bycatch mitigation, where high-bycatch fisheries invest in protecting nesting beaches. An example of this practice is U.S. processors of longline tuna and California drift gill net fishers that tax themselves to finance low-cost nesting site protection. Under certain conditions, fisheries interventions, such as technologies that reduce leatherback bycatch without substantially decreasing target species catch, can be cost-effective. Reducing bycatch in coastal areas where bycatch is high, particularly adjacent to nesting beaches, may be cost-effective, particularly, if fisheries in the area are small and of little commercial value.

  2. Unique characteristics of the trachea of the juvenile leatherback turtle facilitate feeding, diving and endothermy

    USGS Publications Warehouse

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2014-01-01

    The adult leatherback turtle Dermochelys coriacea overlaps in body size (300–500 kg) with many marine mammals, yet develops from a 50 g hatchling. Adults can dive deeper than 1200 m and have core body temperatures of 25 °C; hatchlings are near-surface dwellers. Juvenile leatherbacks have rarely been studied; here we present anatomical information for the upper respiratory tract of 3 turtles (66.7–83.0 cm straight carapace length; 33.2–53.4 kg body mass) incidentally captured by long-line fisheries. Combined with existing information from adults and hatchlings, our data show that there is an ontogenic shift in tracheal structure, with cartilaginous rings becoming broader and eventually fusing anteriorly. This ontogenic shift during independent existence is unique among extant deep-diving air breathing vertebrates. Tract wall thickness is graded, becoming progressively thinner from larynx to bronchi. In addition, cross-sectional shape becomes increasingly dorsoventrally flattened (more elliptical) from anterior to posterior. These characteristics ensure that the tract will collapse from posterior to anterior during dives. This study contains the first report of a double (= internally bifurcated) posterior section of the trachea; it is suggested that this allows continuous food movement along the esophagus without tracheal collapse. The whole upper respiratory tract (from larynx to lungs) has a vascular lining (thicker anteriorly than posteriorly) that appears to be a simple analog of the complex turbinates of birds and mammals. Our study confirmed that the leatherback tracheal structure represents a distinctive way of dealing with the challenges of diving in deep, cold sea water.

  3. Maternal transfer of chlorinated contaminants in the leatherback turtles, Dermochelys coriacea, nesting in French Guiana.

    PubMed

    Guirlet, Elodie; Das, Krishna; Thomé, Jean-Pierre; Girondot, Marc

    2010-04-01

    We examined the maternal transfer of organochlorine contaminants (OCs), pesticides (DDTS and HCHs) and polychlorinated biphenyls (PCBs), and the temporal variation of blood and eggs concentrations from 38 leatherback turtles (Dermochelys coriacea) nesting in French Guiana. PCBs were found to be the dominant OCs with respective mean concentrations of 55.14 ng g(-1) lipid-mass for egg and 1.26 ng mL(-1) wet-mass for blood. OC concentrations were lower than concentrations measured in other marine turtles which might be due to the lower trophic position (diet based on gelatinous zooplankton) and to the location of their foraging and nesting grounds. All OCs detected in leatherback blood were detected in eggs, suggesting a maternal transfer of OCs. This transfer was shown to depend on female blood concentration for SigmaDDTs and for the most prevalent PCB congeners, since significant relationships were found between paired blood-egg concentrations. During the nesting season, OC concentrations in eggs and the percentage of lipid in eggs were found to decline in successive clutches, highlighting a process of offloading from females to their eggs and a decreasing investment of lipid from females into their clutches. OCs in eggs tended to be higher in females spending 3 years in the foraging grounds between two nesting seasons than in those spending 2 years, suggesting an impact of time spacing two breeding seasons, called remigration interval, and of location of the foraging grounds. 2010 Elsevier Ltd. All rights reserved.

  4. Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean.

    PubMed

    Roe, John H; Morreale, Stephen J; Paladino, Frank V; Shillinger, George L; Benson, Scott R; Eckert, Scott A; Bailey, Helen; Tomillo, Pilar Santidrián; Bograd, Steven J; Eguchi, Tomoharu; Dutton, Peter H; Seminoff, Jeffrey A; Block, Barbara A; Spotila, James R

    2014-02-22

    Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch.

  5. Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean

    PubMed Central

    Roe, John H.; Morreale, Stephen J.; Paladino, Frank V.; Shillinger, George L.; Benson, Scott R.; Eckert, Scott A.; Bailey, Helen; Tomillo, Pilar Santidrián; Bograd, Steven J.; Eguchi, Tomoharu; Dutton, Peter H.; Seminoff, Jeffrey A.; Block, Barbara A.; Spotila, James R.

    2014-01-01

    Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch. PMID:24403331

  6. Hierarchical modeling of bycatch rates of sea turtles in the western North Atlantic

    USGS Publications Warehouse

    Gardner, B.; Sullivan, P.J.; Epperly, S.; Morreale, S.J.

    2008-01-01

    Previous studies indicate that the locations of the endangered loggerhead Caretta caretta and critically endangered leatherback Dermochelys coriacea sea turtles are influenced by water temperatures, and that incidental catch rates in the pelagic longline fishery vary by region. We present a Bayesian hierarchical model to examine the effects of environmental variables, including water temperature, on the number of sea turtles captured in the US pelagic longline fishery in the western North Atlantic. The modeling structure is highly flexible, utilizes a Bayesian model selection technique, and is fully implemented in the software program WinBUGS. The number of sea turtles captured is modeled as a zero-inflated Poisson distribution and the model incorporates fixed effects to examine region-specific differences in the parameter estimates. Results indicate that water temperature, region, bottom depth, and target species are all significant predictors of the number of loggerhead sea turtles captured. For leatherback sea turtles, the model with only target species had the most posterior model weight, though a re-parameterization of the model indicates that temperature influences the zero-inflation parameter. The relationship between the number of sea turtles captured and the variables of interest all varied by region. This suggests that management decisions aimed at reducing sea turtle bycatch may be more effective if they are spatially explicit. ?? Inter-Research 2008.

  7. Bioenergetics and diving activity of internesting leatherback turtles Dermochelys coriacea at Parque Nacional Marino Las Baulas, Costa Rica.

    PubMed

    Wallace, Bryan P; Williams, Cassondra L; Paladino, Frank V; Morreale, Stephen J; Lindstrom, R Todd; Spotila, James R

    2005-10-01

    Physiology, environment and life history demands interact to influence marine turtle bioenergetics and activity. However, metabolism and diving behavior of free-swimming marine turtles have not been measured simultaneously. Using doubly labeled water, we obtained the first field metabolic rates (FMRs; 0.20-0.74 W kg(-1)) and water fluxes (16-30% TBW day(-1), where TBW=total body water) for free-ranging marine turtles and combined these data with dive information from electronic archival tags to investigate the bioenergetics and diving activity of reproductive adult female leatherback turtles Dermochelys coriacea. Mean dive durations (7.8+/-2.4 min (+/-1 s.d.), bottom times (2.7+/-0.8 min), and percentage of time spent in water temperatures (Tw) < or =24 degrees C (9.5+/-5.7%) increased with increasing mean maximum dive depths (22.6+/-7.1 m; all P< or =0.001). The FMRs increased with longer mean dive durations, bottom times and surface intervals and increased time spent in Tw< or =24 degrees C (all r2> or =0.99). This suggests that low FMRs and activity levels, combined with shuttling between different water temperatures, could allow leatherbacks to avoid overheating while in warm tropical waters. Additionally, internesting leatherback dive durations were consistently shorter than aerobic dive limits calculated from our FMRs (11.7-44.3 min). Our results indicate that internesting female leatherbacks maintained low FMRs and activity levels, thereby spending relatively little energy while active at sea. Future studies should incorporate data on metabolic rate, dive patterns, water temperatures, and body temperatures to develop further the relationship between physiological and life history demands and marine turtle bioenergetics and activity.

  8. Why are hatching and emergence success low? Mercury and selenium concentrations in nesting leatherback sea turtles (Dermochelys coriacea) and their young in Florida.

    PubMed

    Perrault, Justin; Wyneken, Jeanette; Thompson, Larry J; Johnson, Chris; Miller, Debra L

    2011-08-01

    Leatherback sea turtles (Dermochelys coriacea) have low hatching and emergence success compared to other sea turtle species. Postmortem examinations of hatchlings showed degeneration of heart and skeletal muscle that was similar to that found in other neonates with selenium deficient mothers. Selenium deficiency can result from elevated concentrations of bodily mercury. Ingested mercury is detoxified by the liver through mercury-selenium compound formation. In animals persistently exposed to mercury, the liver's ability to detoxify this element may decrease, especially if dietary selenium is insufficient. We measured mercury and selenium concentrations in nesting female leatherbacks and their hatchlings from Florida and compared the levels to hatching and emergence success. Both liver selenium and the liver selenium-to-mercury ratio positively correlated with leatherback hatching and emergence success. This study provides the first evidence for the roles of mercury and selenium in explaining low reproductive success in a globally imperiled species, the leatherback sea turtle. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Salt and water regulation by the leatherback sea turtle Dermochelys coriacea.

    PubMed

    Reina, Richard D; Jones, T Todd; Spotila, James R

    2002-07-01

    We measured the salt and water balance of hatchling leatherback sea turtles, Dermochelys coriacea, during their first few days of life to investigate how they maintain homeostasis under the osmoregulatory challenge of a highly desiccating terrestrial environment and then a hyperosmotic marine environment. Hatchlings desiccated rapidly when denied access to sea water, with their hematocrit increasing significantly from 30.32+/-0.54 % to 38.51+/-1.35 % and plasma Na(+) concentration increasing significantly from 138.2+/-3.3 to 166.2+/-11.2 mmol l(-1) in 12 h. When hatchlings were subsequently put into sea water, hematocrit decreased and plasma Na(+) concentration was unchanged but both were significantly elevated above pretreatment values. In other hatchlings kept in sea water for 48 h, body mass and plasma Na(+) concentration increased significantly, but hematocrit did not increase. These data show that hatchlings were able to osmoregulate effectively and gain mass by drinking sea water. We stimulated hatchlings to secrete salt from the salt glands by injecting a salt load of 27 mmol kg(-1). The time taken for secretion to begin in newly hatched turtles was longer than that in 4-day-old hatchlings, but the secretory response was identical at 4.15+/-0.40 and 4.13+/-0.59 mmol Na(+) kg(-1) h(-1) respectively. Adrenaline and methacholine were both potent inhibitors of salt gland secretion in a dose-dependent manner, although methacholine administered simultaneously with a subthreshold salt load elicited a transient secretory response. The results showed that hatchling leatherbacks are able to tolerate significant changes in internal composition and efficiently use their salt glands to establish internal ionic and water balance when in sea water.

  10. High and variable mortality of leatherback turtles reveal possible anthropogenic impacts.

    PubMed

    Santidrián Tomillo, P; Robinson, N J; Sanz-Aguilar, A; Spotila, J R; Paladino, F V; Tavecchia, G

    2017-08-01

    The number of nesting leatherback turtles (Dermochelys coriacea) in the eastern Pacific Ocean has declined dramatically since the late 1980s. This decline has been attributed to egg poaching and interactions with fisheries. However, it is not clear how much of the decline should also be ascribed to variability in the physical characteristics of the ocean. We used data on individually marked turtles that nest at Playa Grande, Costa Rica, to address whether climatic variability affects survival and inter-breeding interval. Because some turtles might nest undetected, we used capture-recapture models to model survival probability accounting for a detection failure. In addition, as the probability of reproduction is constrained by past nesting events, we formulated a new parameterization to estimate inter-breeding intervals and contrast hypotheses on the role of climatic covariates on reproductive frequency. Average annual survival for the period 1993-2011 was low (0.78) and varied over time ranging from 0.49 to 0.99 with a negative temporal trend mainly due to the high mortality values registered after 2004. Survival probability was not associated with the Multivariate ENSO Index of the South Pacific Ocean (MEI) but this index explained 24% of the temporal variability in the reproductive frequency. The probability of a turtle to permanently leave after the first encounter was 26%. This high proportion of transients might be associated with a high mortality cost of the first reproduction or with a long-distance nesting dispersal after the first nesting season. Although current data do not allow separating these two hypotheses, low encounter rate at other locations and high investment in reproduction, supports the first hypothesis. The low and variable annual survival probability has largely contributed to the decline of this leatherback population. The lack of correlation between survival probability and the most important climatic driver of oceanic processes in the

  11. Measuring the level of agreement in hematologic and biochemical values between blood sampling sites in leatherback sea turtles (Dermochelys coriacea).

    PubMed

    Stewart, Kimberly; Mitchell, Mark A; Norton, Terry; Krecek, Rosina C

    2012-12-01

    Conservation programs to protect endangered sea turtles are being instituted worldwide. A common practice in these programs is to collect blood to evaluate the health of the turtles. Several different venipuncture sites are used to collect blood from sea turtles for hematologic and biochemistry tests, depending on the species. To date, it is unknown what affect venipuncture site may have on sample results. The purpose of this study was to measure the level of agreement between hematologic and biochemistry values collected from the dorsal cervical sinus and the interdigital vein of leatherback (Dermochelys coriacea) sea turtles. Paired heparinized blood samples were obtained from the dorsal cervical sinus and the interdigital vein of 12 adult female nesting leatherback sea turtles on Keys Beach, St. Kitts, West Indies. Even though the sample population was small, the data for each chemistry were normally distributed, except for creatine kinase (CK). There was no significant difference when comparing biochemistry or hematologic values by venipuncture site, except for CK (P = 0.02). The level of agreement between sampling sites was considered good for albumin, calcium, globulin, glucose, packed cell volume, phosphorus, potassium, sodium, total protein, total solids, uric acid, white blood cell count, and all of the individual white cell types, while the level of agreement for aspartate aminotransferase and CK were considered poor. This information, coupled with the fact that the interdigital vein affords a less-invasive procedure, demonstrates that the interdigital vein is an appropriate location to use when establishing a hematologic and biochemical profile for leatherback sea turtles.

  12. Beach dynamics and nest distribution of the leatherback turtle (Dermochelys coriacea) at Grande Riviere Beach, Trinidad & Tobago.

    PubMed

    Lum, Lori Lee

    2005-05-01

    Grande Riviere Beach in Trinidad and Tobago is an important nesting site in the Caribbean for the Critically Endangered leatherback sea turtle, Dermochelys coriacea. Community members were concerned that beach erosion and seasonal river flooding were destroying many of the nests deposited annually and thought that a hatchery was a possible solution. Over the 2001 turtle nesting season, the Institute of Marine Affairs (IMA) assessed the spatial and temporal distribution of nests using the Global Positioning System recorded to reference points, and beach dynamics using permanent bench mark profile stations, to determine areas of high risk and more stable areas for nesting. A total of 1449 leatherback nests were positioned. It was evident that at the start of the season in March, the majority of leatherback nests were deposited at the eastern section of the beach. After May, there was a continuing westward shift in nest distribution as the season progressed until August and beach erosion in the eastern section became predominant. The backshore remained relatively stable along the entire beach throughout the nesting season, and erosion was predominant in the foreshore at the eastern section of the beach, from the middle to the end of the season. Similar trends in accretion and erosion were observed in 2000. River flooding did not occur during the study period or in the previous year. With both high risk and more stable regions for turtle nesting available at Grande Riviere Beach, there was no compelling evidence to justify the need for a hatchery.

  13. Salmonella enterica prevalence in leatherback sea turtles (Dermochelys coriacea) in St. Kitts, West Indies.

    PubMed

    Dutton, Clayton S; Revan, Floyd; Wang, Chengming; Xu, Chuanling; Norton, Terry M; Stewart, Kimberly M; Kaltenboeck, Bernhard; Soto, Esteban

    2013-09-01

    Salmonella spp. are gram-negative bacteria capable of causing diseases in a wide range of aquatic and terrestrial animals, including humans. Sea and terrestrial turtles have been recognized as carriers of this zoonotic pathogen. In this project, conventional and molecular diagnostic methods were combined to investigate the prevalence of Salmonella enterica in leatherback sea turtles (Dermochelys coriacea) that used the island of St. Kitts, West Indies as a nesting ground during 2011 (n = 21). Isolates obtained from selective media were screened and colonies suspected of being Salmonella spp. were confirmed by fluorescence resonance energy transfer polymerase chain reaction. The prevalence of S. enterica within this sample population during this period was found to be 14.2%. Moreover, due to the increasing risk of antibiotic resistance in enteric bacteria, antimicrobial susceptibility was investigated in all recovered Salmonella spp. isolates utilizing the broth microdilution method. All isolates were susceptible to the lowest concentration of kanamycin, gentamicin, ciprofloxacin, enrofloxacin, nalidixic acid, and trimethoprim/sulfamethoxazole tested. Further research should be pursued to understand the interaction of this bacterial pathogen with the environment, host, and other microbial communities, and to further develop faster, more sensitive, and more specific diagnostic methods.

  14. Sedation and anesthesia of hatchling leatherback sea turtles (Dermochelys coriacea) for auditory evoked potential measurement in air and in water.

    PubMed

    Harms, Craig A; Piniak, Wendy E D; Eckert, Scott A; Stringer, Elizabeth M

    2014-03-01

    Sedation or anesthesia of hatchling leatherback sea turtles was employed to acquire auditory evoked potential (AEP) measurements in air and in water to assess their hearing sensitivity in relation to potential consequences from anthropogenic noise. To reduce artifacts in AEP collection caused by muscle movement, hatchlings were sedated with midazolam 2 or 3 mg/kg i.v. for in-air (n = 7) or in-water (n = 11) AEP measurements; hatchlings (n = 5) were anesthetized with ketamine 6 mg/kg and dexmedetomidine 30 microg/kg i.v. reversed with atipamezole 300 microg/kg, half i.m. and half i.v. for in-air AEP measurements. Midazolam-sedated turtles were also physically restrained with a light elastic wrap. For in-water AEP measurements, sedated turtles were brought to the surface every 45-60 sec, or whenever they showed intention signs for breathing, and not submerged again until they took a breath. Postprocedure temperature-corrected venous blood pH, pCO2, pO2, and HCO3- did not differ among groups, although for the midazolam-sedated in-water group, pCO2 trended lower, and in the ketamine-dexmedetomidine anesthetized group there was one turtle considered clinically acidotic (temperature-corrected pH = 7.117). Venous blood lactate was greater for hatchlings recently emerged from the nest than for turtles sedated with midazolam in air, with the other two groups falling intermediate between, but not differing significantly from the high and low lactate groups. Disruptive movements were less frequent with anesthesia than with sedation in the in-air group. Both sedation with midazolam and anesthesia with ketamine-dexmedetomidine were successful for allowing AEP measurements in hatchling leatherback sea turtles. Sedation allowed the turtle to protect its airway voluntarily while limiting flipper movement. Midazolam or ketamine-dexmedetomidine (and reversal with atipamezole) would be useful for other procedures requiring minor or major restraint in leatherback sea turtle hatchlings

  15. Swim speed and movement patterns of gravid leatherback sea turtles (Dermochelys coriacea) at St Croix, US Virgin Islands.

    PubMed

    Eckert, Scott A

    2002-12-01

    Swim speed, dive behavior and movements were recorded for seven female leatherback sea turtles (Dermochelys coriacea Vandelli 1761) during a single internesting interval near St Croix in the US Virgin Islands. Modal speeds ranged from 0.56 to 0.84 m s(-1), maximum speed range 1.9-2.8 m s(-1). Turtles swam continuously throughout the day and night. There were two swim-speed patterns; the most common was slightly U-shaped, with high speeds at the initiation and conclusion of the dive, and the less common was continuous high-speed swimming. The U-shaped speed patterns were coincident with vertical diving by the turtles, while the second pattern occurred most frequently during the daytime, with the turtle swimming within 2 m of the surface. This latter swim behavior appeared to be designed to maximize efficiency for long-distance travel. The hypothesis that leatherbacks rest or bask at midday during their internesting interval is refuted by this study.

  16. Conservation hotspots for the turtles on the high seas of the Atlantic Ocean.

    PubMed

    Huang, Hsiang-Wen

    2015-01-01

    Understanding the distribution of bycaught sea turtles could inform conservation strategies and priorities. This research analyses the distribution of turtles caught as longline fisheries bycatch on the high seas of the Atlantic Ocean. This research collected 18,142 bycatch observations and 47.1 million hooks from large-scale Taiwanese longline vessels in the Atlantic Ocean from June 2002 to December 2013. The coverage rates were ranged from 0.48% to 17.54% by year. Seven hundred and sixty-seven turtles were caught, and the major species were leatherback (59.8%), olive ridley (27.1%) and loggerhead turtles (8.7%). Most olive ridley (81.7%) and loggerhead (82.1%) turtles were hooked, while the leatherbacks were both hooked (44.0%) and entangled (31.8%). Depending on the species, 21.4% to 57.7% were dead when brought onboard. Most of the turtles were caught in tropical areas, especially in the Gulf of Guinea (15°N-10°S, 30°W-10°E), but loggerheads were caught in the south Atlantic Ocean (25°S-35°S, 40°W-10°E and 30°S-40°S, 55°W-45°W). The bycatch rate was the highest at 0.030 per 1000 hooks for leatherbacks in the tropical area. The bycatch rates of olive ridley ranged from 0 to 0.010 per thousand hooks. The loggerhead bycatch rates were higher in the northern and southern Atlantic Ocean and ranged from 0.0128 to 0.0239 per thousand hooks. Due to the characteristics of the Taiwanese deep-set longline fleet, bycatch rates were lower than those of coastal longline fisheries, but mortality rates were higher because of the long hours of operation. Gear and bait modification should be considered to reduce sea turtle bycatch and increase survival rates while reducing the use of shallow hooks would also be helpful.

  17. Conservation Hotspots for the Turtles on the High Seas of the Atlantic Ocean

    PubMed Central

    Huang, Hsiang-Wen

    2015-01-01

    Understanding the distribution of bycaught sea turtles could inform conservation strategies and priorities. This research analyses the distribution of turtles caught as longline fisheries bycatch on the high seas of the Atlantic Ocean. This research collected 18,142 bycatch observations and 47.1 million hooks from large-scale Taiwanese longline vessels in the Atlantic Ocean from June 2002 to December 2013. The coverage rates were ranged from 0.48% to 17.54% by year. Seven hundred and sixty-seven turtles were caught, and the major species were leatherback (59.8%), olive ridley (27.1%) and loggerhead turtles (8.7%). Most olive ridley (81.7%) and loggerhead (82.1%) turtles were hooked, while the leatherbacks were both hooked (44.0%) and entangled (31.8%). Depending on the species, 21.4% to 57.7% were dead when brought onboard. Most of the turtles were caught in tropical areas, especially in the Gulf of Guinea (15°N-10°S, 30°W-10°E), but loggerheads were caught in the south Atlantic Ocean (25°S-35°S, 40°W-10°E and 30°S-40°S, 55°W-45°W). The bycatch rate was the highest at 0.030 per 1000 hooks for leatherbacks in the tropical area. The bycatch rates of olive ridley ranged from 0 to 0.010 per thousand hooks. The loggerhead bycatch rates were higher in the northern and southern Atlantic Ocean and ranged from 0.0128 to 0.0239 per thousand hooks. Due to the characteristics of the Taiwanese deep-set longline fleet, bycatch rates were lower than those of coastal longline fisheries, but mortality rates were higher because of the long hours of operation. Gear and bait modification should be considered to reduce sea turtle bycatch and increase survival rates while reducing the use of shallow hooks would also be helpful. PMID:26267796

  18. Interannual Differences for Sea Turtles Bycatch in Spanish Longliners from Western Mediterranean Sea

    PubMed Central

    Báez, José C.; García-Barcelona, Salvador

    2014-01-01

    Recent studies showed that regional abundance of loggerhead and leatherback turtles could oscillate interannually according to oceanographic and climatic conditions. The Western Mediterranean is an important fishing area for the Spanish drifting longline fleet, which mainly targets swordfish, bluefin tuna, and albacore. Due to the spatial overlapping in fishing activity and turtle distribution, there is an increasing sea turtle conservation concern. The main goal of this study is to analyse the interannual bycatch of loggerhead and leatherback turtles by the Spanish Mediterranean longline fishery and to test the relationship between the total turtle by-catch of this fishery and the North Atlantic Oscillation (NAO). During the 14 years covered in this study, the number of sea turtle bycatches was 3,940 loggerhead turtles and 8 leatherback turtles, 0.499 loggerhead turtles/1000 hooks and 0.001014 leatherback turtles/1000 hooks. In the case of the loggerhead turtle the positive phase of the NAO favours an increase of loggerhead turtles in the Western Mediterranean Sea. However, in the case of leatherback turtle the negative phase of the NAO favours the presence of leatherback turtle. This contraposition could be related to the different ecophysiological response of both species during their migration cycle. PMID:24764769

  19. Interannual differences for sea turtles bycatch in Spanish longliners from Western Mediterranean Sea.

    PubMed

    Báez, José C; Macías, David; García-Barcelona, Salvador; Real, Raimundo

    2014-01-01

    Recent studies showed that regional abundance of loggerhead and leatherback turtles could oscillate interannually according to oceanographic and climatic conditions. The Western Mediterranean is an important fishing area for the Spanish drifting longline fleet, which mainly targets swordfish, bluefin tuna, and albacore. Due to the spatial overlapping in fishing activity and turtle distribution, there is an increasing sea turtle conservation concern. The main goal of this study is to analyse the interannual bycatch of loggerhead and leatherback turtles by the Spanish Mediterranean longline fishery and to test the relationship between the total turtle by-catch of this fishery and the North Atlantic Oscillation (NAO). During the 14 years covered in this study, the number of sea turtle bycatches was 3,940 loggerhead turtles and 8 leatherback turtles, 0.499 loggerhead turtles/1000 hooks and 0.001014 leatherback turtles/1000 hooks. In the case of the loggerhead turtle the positive phase of the NAO favours an increase of loggerhead turtles in the Western Mediterranean Sea. However, in the case of leatherback turtle the negative phase of the NAO favours the presence of leatherback turtle. This contraposition could be related to the different ecophysiological response of both species during their migration cycle.

  20. Frequency response characteristics of isolated retinas from hatchling leatherback (Dermochelys coriacea L.) and loggerhead (Caretta caretta L.) sea turtles.

    PubMed

    Horch, Kenneth; Salmon, Michael

    2009-04-15

    Electroretinographic recordings were made from hatchling loggerhead and leatherback sea turtle eyecup preparations during presentation of sinusoidally modulated lights of different frequencies, mean intensities and colors. Cross-correlation analysis was performed to determine the extent to which the responses followed the intensity modulated light sources. For both species mean light intensity had no significant effect on the frequency modulated responses over a 1.5 log unit range of intensities. Both species showed the best following to blue light and the poorest tracking to red light. Leatherback retinas did not follow frequencies above 10 Hz, while loggerhead responses extended out to 15 Hz. These visual low pass filter characteristics are consistent with attributes of the visual ecology of each species, as well as with the latencies and slow rise times exhibited by these retinas to brief flashes of light.

  1. Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down

    USGS Publications Warehouse

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2015-01-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting.

  2. Topsy-turvy: turning the counter-current heat exchange of leatherback turtles upside down

    PubMed Central

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2015-01-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting. PMID:26445982

  3. Topsy-turvy: turning the counter-current heat exchange of leatherback turtles upside down.

    PubMed

    Davenport, John; Jones, T Todd; Work, Thierry M; Balazs, George H

    2015-10-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting.

  4. Mercury and selenium concentrations in leatherback sea turtles (Dermochelys coriacea): population comparisons, implications for reproductive success, hazard quotients and directions for future research.

    PubMed

    Perrault, Justin R; Miller, Debra L; Garner, Jeanne; Wyneken, Jeanette

    2013-10-01

    Leatherback sea turtles (Dermochelys coriacea) are long-distance migrants that travel thousands of km from foraging grounds to breeding and nesting grounds. These extensive journeys are fueled by ingestion of an estimated 300-400 kg of prey/d and likely result in exposure to high concentrations of environmental toxicants (e.g., mercury compounds). Increased bodily concentrations of mercury and its compounds in nesting female turtles may have detrimental effects on reproductive success. Leatherbacks have relatively low reproductive success compared with other sea turtles (global average hatching success ~50-60%). To assess toxicants and necessary nutrients as factors affecting leatherback turtle reproductive success at Sandy Point National Wildlife Refuge (SPNWR), St. Croix, U.S. Virgin Islands, we collected blood from nesting female leatherbacks and tissues from their hatchlings (blood from live turtles, liver and yolk sac from dead turtles). We compared the concentrations in those tissues to hatching and emergence success. We found that on SPNWR, hatching and emergence success were more closely related to seasonal factors than to total mercury and selenium concentrations in both nesting females and hatchlings. Selenium concentrations of nesting females were positively correlated with those of their hatchlings. Mercury and selenium in the liver of hatchlings were positively correlated with one another. Turtles with greater remigration intervals tended to have higher blood selenium concentrations, suggesting that selenium accumulates in leatherbacks through time. Through hazard quotients, we found evidence that selenium may be at or above concentrations that may cause physiologic harm to hatchlings. We also found evidence that population level differences exist for these trace elements. The concentrations of mercury and selenium established in this manuscript form a baseline for future toxicant studies.

  5. [Impact of artificial light on nesting in the leatherback turtle Dermochelys coriacea (Testudines: Dermochelyidae) at Cipara beach, Venezuela].

    PubMed

    Rondón Médicci, María; Buitrago, Joaquín; Mccoy, Michael

    2009-09-01

    The number of Leatherback turtle nests and their spatial distribution was compared between years with and without artificial light, and between dark and lighted beach segments, in Cipara Beach, Paria Peninsula, Venezuela. Residents were interviewed to identify their perceptions about the impact of artificial light on sea turtles. Mean volume of sand per meter of beach was larger at La Peña, Cipara and La Remate and smaller at Varadero (p<0.001), increasing from April to June and later decreasing until August (p<0.05). Mean percentage of gravel was higher at Varadero and La Peña, and lower at La Remate and Cipara. Most interviewed people said that artificial light does not affect sea turtles. Between 2000 and 2005, 1,217 leatherback landings and 1,056 nests were observed. Successful nests increased with the years (p=0.035) as well as total nest number (p=0.015). From 2000 through 2003 there were 743 landings, 661 nests and 374 clutches. During the two years with electric light (2004-2005), there were 474 landings, 395 nests and 232 clutches. Proportion of landings with nest building decreased significantly during the years with electric light (p=0.005), but nesting success did not vary (p=0.402). No significant difference was found between landings per beach meter in dark and lighted sectors (p=0.244), between nests built (p=0.379) and in the rate of successful nesting (p=0.516). Dark and lighted sectors did not differ in the proportion of landings with nest building (p=0.067) and success rate (p=0.833).

  6. Trade-off between current reproductive effort and delay to next reproduction in the leatherback sea turtle.

    PubMed

    Rivalan, Philippe; Prévot-Julliard, Anne-Caroline; Choquet, Remi; Pradel, Roger; Jacquemin, Bertrand; Girondot, Marc

    2005-10-01

    The trade-off between current and future reproduction plays an important role in demographic analyses. This can be revealed by the relationship between the number of years without reproduction and reproductive investment within a reproductive year. However, estimating both the duration between two successive breeding season and reproductive effort is often limited by variable recapture or resighting effort. Moreover, a supplementary difficulty is raised when nonbreeder individuals are not present sampling breeding grounds, and are therefore unobservable. We used capture-recapture (CR) models to investigate intermittent breeding and reproductive effort to test a putative physiological trade-off in a long-lived species with intermittent breeding, the leatherback sea turtle. We used CR data collected on breeding females on Awa:la-Ya:lima:po beach (French Guiana, South America) from 1995 to 2002. By adding specific constraints in multistate (MS) CR models incorporating several nonobservable states, we modelled the breeding cycle in leatherbacks and then estimated the reproductive effort according to the number of years elapsed since the last nesting season. Using this MS CR framework, the mean survival rate was estimated to 0.91 and the average resighting probability to 0.58 (ranged from 0.30 to 0.99). The breeding cycle was found to be limited to 3 years. These results therefore suggested that animals whose observed breeding intervals are greater than 3 years were most likely animals that escaped detection during their previous nesting season(s). CR data collected in 2001 and 2002 allowed us to compare the individual reproductive effort between females that skipped one breeding season and females that skipped two breeding seasons. These inferences led us to conclude that a trade-off between current and future reproduction exists in leatherbacks nesting in French Guiana, likely linked to the resource provisioning required to invest in reproduction.

  7. Shape and material characteristics of the trachea in the leatherback sea turtle promote progressive collapse and reinflation during dives.

    PubMed

    Murphy, Colm; Kelliher, Denis; Davenport, John

    2012-09-01

    The leatherback turtle regularly undertakes deep dives and has been recorded attaining depths in excess of 1200 m. Its trachea is an almost solid, elliptical-section tube of uncalcified hyaline cartilage with minimal connective tissue between successive rings. The structure appears to be advantageous for diving and perfectly designed for withstanding repeated collapse and reinflation. This study applies Boyle's law to the respiratory system (lungs, trachea and larynx) and estimates the changes in tracheal volume during a dive. These changes are subsequently compared with the results predicted by a corresponding finite element (FE) structural model, itself based on laboratory studies of the trachea of an adult turtle. Boyle's law predicts that the lungs will collapse first during the initial stages of a dive with tracheal compression beginning at much deeper depths after complete air mass expulsion from the lungs. The FE model reproduces the changes extremely well (agreeing closely with Boyle's law estimations) and provides visual representation of the deformed tracheal luminal area. Initially, the trachea compresses both ventrally and dorsally before levelling ventrally. Bulges are subsequently formed laterally and become more pronounced at deeper depths. The geometric configuration of the tracheal structure confers both homogeneity and strength upon it, which makes it extremely well suited for enduring repeated collapse and re-expansion. The structure actually promotes collapse and is an adaptation to the turtle's natural environment in which large numbers of deep dives are performed annually.

  8. Breeding Sex Ratios in Adult Leatherback Turtles (Dermochelys coriacea) May Compensate for Female-Biased Hatchling Sex Ratios

    PubMed Central

    Stewart, Kelly R.; Dutton, Peter H.

    2014-01-01

    For vertebrates with temperature-dependent sex determination, primary (or hatchling) sex ratios are often skewed, an issue of particular relevance to concerns over effects of climate change on populations. However, the ratio of breeding males to females, or the operational sex ratio (OSR), is important to understand because it has consequences for population demographics and determines the capacity of a species to persist. The OSR also affects mating behaviors and mate choice, depending on the more abundant sex. For sea turtles, hatchling and juvenile sex ratios are generally female-biased, and with warming nesting beach temperatures, there is concern that populations may become feminized. Our purpose was to evaluate the breeding sex ratio for leatherback turtles at a nesting beach in St. Croix, USVI. In 2010, we sampled nesting females and later sampled their hatchlings as they emerged from nests. Total genomic DNA was extracted and all individuals were genotyped using 6 polymorphic microsatellite markers. We genotyped 662 hatchlings from 58 females, matching 55 females conclusively to their nests. Of the 55, 42 females mated with one male each, 9 mated with 2 males each and 4 mated with at least 3 males each, for a multiple paternity rate of 23.6%. Using GERUD1.0, we reconstructed parental genotypes, identifying 47 different males and 46 females for an estimated breeding sex ratio of 1.02 males for every female. Thus we demonstrate that there are as many actively breeding males as females in this population. Concerns about female-biased adult sex ratios may be premature, and mate choice or competition may play more of a role in sea turtle reproduction than previously thought. We recommend monitoring breeding sex ratios in the future to allow the integration of this demographic parameter in population models. PMID:24505403

  9. Estimating Limit Reference Points for Western Pacific Leatherback Turtles (Dermochelys coriacea) in the U.S. West Coast EEZ.

    PubMed

    Curtis, K Alexandra; Moore, Jeffrey E; Benson, Scott R

    2015-01-01

    Biological limit reference points (LRPs) for fisheries catch represent upper bounds that avoid undesirable population states. LRPs can support consistent management evaluation among species and regions, and can advance ecosystem-based fisheries management. For transboundary species, LRPs prorated by local abundance can inform local management decisions when international coordination is lacking. We estimated LRPs for western Pacific leatherbacks in the U.S. West Coast Exclusive Economic Zone (WCEEZ) using three approaches with different types of information on local abundance. For the current application, the best-informed LRP used a local abundance estimate derived from nest counts, vital rate information, satellite tag data, and fishery observer data, and was calculated with a Potential Biological Removal estimator. Management strategy evaluation was used to set tuning parameters of the LRP estimators to satisfy risk tolerances for falling below population thresholds, and to evaluate sensitivity of population outcomes to bias in key inputs. We estimated local LRPs consistent with three hypothetical management objectives: allowing the population to rebuild to its maximum net productivity level (4.7 turtles per five years), limiting delay of population rebuilding (0.8 turtles per five years), or only preventing further decline (7.7 turtles per five years). These LRPs pertain to all human-caused removals and represent the WCEEZ contribution to meeting population management objectives within a broader international cooperative framework. We present multi-year estimates, because at low LRP values, annual assessments are prone to substantial error that can lead to volatile and costly management without providing further conservation benefit. The novel approach and the performance criteria used here are not a direct expression of the "jeopardy" standard of the U.S. Endangered Species Act, but they provide useful assessment information and could help guide international

  10. Estimating Limit Reference Points for Western Pacific Leatherback Turtles (Dermochelys coriacea) in the U.S. West Coast EEZ

    PubMed Central

    Curtis, K. Alexandra; Moore, Jeffrey E.; Benson, Scott R.

    2015-01-01

    Biological limit reference points (LRPs) for fisheries catch represent upper bounds that avoid undesirable population states. LRPs can support consistent management evaluation among species and regions, and can advance ecosystem-based fisheries management. For transboundary species, LRPs prorated by local abundance can inform local management decisions when international coordination is lacking. We estimated LRPs for western Pacific leatherbacks in the U.S. West Coast Exclusive Economic Zone (WCEEZ) using three approaches with different types of information on local abundance. For the current application, the best-informed LRP used a local abundance estimate derived from nest counts, vital rate information, satellite tag data, and fishery observer data, and was calculated with a Potential Biological Removal estimator. Management strategy evaluation was used to set tuning parameters of the LRP estimators to satisfy risk tolerances for falling below population thresholds, and to evaluate sensitivity of population outcomes to bias in key inputs. We estimated local LRPs consistent with three hypothetical management objectives: allowing the population to rebuild to its maximum net productivity level (4.7 turtles per five years), limiting delay of population rebuilding (0.8 turtles per five years), or only preventing further decline (7.7 turtles per five years). These LRPs pertain to all human-caused removals and represent the WCEEZ contribution to meeting population management objectives within a broader international cooperative framework. We present multi-year estimates, because at low LRP values, annual assessments are prone to substantial error that can lead to volatile and costly management without providing further conservation benefit. The novel approach and the performance criteria used here are not a direct expression of the “jeopardy” standard of the U.S. Endangered Species Act, but they provide useful assessment information and could help guide

  11. Breeding sex ratios in adult leatherback turtles (Dermochelys coriacea) may compensate for female-biased hatchling sex ratios.

    PubMed

    Stewart, Kelly R; Dutton, Peter H

    2014-01-01

    For vertebrates with temperature-dependent sex determination, primary (or hatchling) sex ratios are often skewed, an issue of particular relevance to concerns over effects of climate change on populations. However, the ratio of breeding males to females, or the operational sex ratio (OSR), is important to understand because it has consequences for population demographics and determines the capacity of a species to persist. The OSR also affects mating behaviors and mate choice, depending on the more abundant sex. For sea turtles, hatchling and juvenile sex ratios are generally female-biased, and with warming nesting beach temperatures, there is concern that populations may become feminized. Our purpose was to evaluate the breeding sex ratio for leatherback turtles at a nesting beach in St. Croix, USVI. In 2010, we sampled nesting females and later sampled their hatchlings as they emerged from nests. Total genomic DNA was extracted and all individuals were genotyped using 6 polymorphic microsatellite markers. We genotyped 662 hatchlings from 58 females, matching 55 females conclusively to their nests. Of the 55, 42 females mated with one male each, 9 mated with 2 males each and 4 mated with at least 3 males each, for a multiple paternity rate of 23.6%. Using GERUD1.0, we reconstructed parental genotypes, identifying 47 different males and 46 females for an estimated breeding sex ratio of 1.02 males for every female. Thus we demonstrate that there are as many actively breeding males as females in this population. Concerns about female-biased adult sex ratios may be premature, and mate choice or competition may play more of a role in sea turtle reproduction than previously thought. We recommend monitoring breeding sex ratios in the future to allow the integration of this demographic parameter in population models.

  12. Persistent organic pollutant levels in eggs of leatherback turtles (Dermochelys coriacea) point to a decrease in hatching success.

    PubMed

    De Andrés, Eva; Gómara, Belén; González-Paredes, Daniel; Ruiz-Martín, José; Marco, Adolfo

    2016-03-01

    Sea turtles are susceptible to environmental pollution, since many harmful effects have been reported for different chemicals over the last two decades. In this context, persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are of particular concern due to their endocrine-disrupting nature. The aims of this study were to provide additional baseline data on PCB and PBDE concentrations in eggs of Dermochelys coriacea; and to investigate whether any of the congeners could compromise reproductive success in this species. A total of 18 nests from different females were studied during the nesting season of 2008 at Reserva Pacuare Beach, in the Caribbean side of Costa Rica. Reproductive parameters (viability, fertility and hatching rates) were calculated for all nests and hatchling morphometrics were successfully measured in 8 of them. Two to three fresh eggs per nest were taken for contaminant study. Different congeners of POPs were purified and identified using gas chromatography (GC) coupled to an ion trap detector (GC-ITD MS/MS), as described below. Mean ± SD concentrations were calculated for POP congeners within each nest and clustering was also evaluated. Correlations were performed searching for potential relationships with reproductive parameters. POP levels were similar to those reported in French-Guiana populations and slightly lower than those associated to Florida populations. Sum of PBDEs showed a negative correlation to the hatching success, suggesting potential harmful effects of these contaminants on the reproduction of leatherbacks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Beach erosion and nest site selection by the leatherback sea turtle Dermochelys coriacea (Testudines: Dermochelyidae) and implications for management practices at Playa Gandoca, Costa Rica.

    PubMed

    Spanier, Matthew J

    2010-12-01

    Leatherback sea turtles (Dermochelys coriacea) nest on dynamic, erosion-prone beaches. Erosive processes and resulting nest loss have long been presumed to be a hindrance to clutch survival. In order to better understand how leatherbacks cope with unstable nesting beaches, I investigated the role of beach erosion in leatherback nest site selection at Playa Gandoca, Costa Rica. I also examined the potential effect of nest relocation, a conservation strategy in place at Playa Gandoca to prevent nest loss to erosion, on the temperature of incubating clutches. I monitored changes in beach structure as a result of erosion at natural nest sites during the time the nest was laid, as well as in subsequent weeks. To investigate slope as a cue for nest site selection, I measured the slope of the beach where turtles ascended from the sea to nest, as well as the slopes at other random locations on the beach for comparison. I examined temperature differences between natural and relocated nest sites with thermocouples placed in the sand at depths typical of leatherback nests. Nests were distributed non-randomly in a clumped distribution along the length of the beach and laid at locations that were not undergoing erosion. The slope at nest sites was significantly different than at randomly chosen locations on the beach. The sand temperature at nest depths was significantly warmer at natural nest sites than at locations of relocated nests. The findings of this study suggest leatherbacks actively select nest sites that are not undergoing erosive processes, with slope potentially being used as a cue for site selection. The relocation of nests appears to be inadvertently cooling the nest environment. Due to the fact that leatherback clutches undergo temperature-dependent sex determination, the relocation of nests may be producing an unnatural male biasing of hatchlings. The results of this study suggest that the necessity of relocation practices, largely in place to protect nests

  14. Effects of illegal harvest of eggs on the population decline of leatherback turtles in Las Baulas Marine National Park, Costa Rica.

    PubMed

    Tomillo, Pilar Santidrián; Saba, Vincent S; Piedra, Rotney; Paladino, Frank V; Spotila, James R

    2008-10-01

    Within 19 years the nesting population of leatherback turtles (Dermochelys coriacea) at Parque Nacional Marino Las Baulas declined from 1500 turtles nesting per year to about 100. We analyzed the effects of fishery bycatch and illegal harvesting (poaching) of eggs on this population. We modeled the population response to different levels of egg harvest (90, 75, 50, and 25%) and the effect of eradicating poaching at different times during the population decline. We compared effects of 90% poaching with those of 20% adult mortality because both of these processes were present in the population at Las Baulas. There was a stepwise decline in number of nesting turtles at all levels of egg harvest. Extirpation times for different levels of poaching ranged from 45 to 282 years. The nesting population declined more slowly and survived longer with 20% adult mortality (146 years) than it did with 90% poaching (45 years). Time that elapsed until poaching stopped determined the average population size at which the population stabilized, ranging from 90 to 420 nesting turtles. Our model predicted that saving clutches lost naturally would restore the population when adult mortality rates were low and would contribute more to population recovery when there were short remigration intervals between nesting seasons and a large proportion of natural loss of clutches. Because the model indicated that poaching was the most important cause of the leatherback decline at Las Baulas, protecting nests on the beach and protecting the beach from development are critical for survival of this population. Nevertheless, the model predicted that current high mortality rates of adults will prevent population recovery. Therefore, protection of the beach habitat and nests must be continued and fishery bycatch must be reduced to save this population.

  15. Does prey size matter? Novel observations of feeding in the leatherback turtle (Dermochelys coriacea) allow a test of predator–prey size relationships

    PubMed Central

    Fossette, Sabrina; Gleiss, Adrian C.; Casey, James P.; Lewis, Andrew R.; Hays, Graeme C.

    2012-01-01

    Optimal foraging models predict that large predators should concentrate on large prey in order to maximize their net gain of energy intake. Here, we show that the largest species of sea turtle, Dermochelys coriacea, does not strictly adhere to this general pattern. Field observations combined with a theoretical model suggest that a 300 kg leatherback turtle would meet its energetic requirements by feeding for 3–4 h a day on 4 g jellyfish, but only if prey were aggregated in high-density patches. Therefore, prey abundance rather than prey size may, in some cases, be the overriding parameter for foraging leatherbacks. This is a classic example where the presence of small prey in the diet of a large marine predator may reflect profitable foraging decisions if the relatively low energy intake per small individual prey is offset by high encounter rates and minimal capture and handling costs. This study provides, to our knowledge, the first quantitative estimates of intake rate for this species. PMID:22090203

  16. Does prey size matter? Novel observations of feeding in the leatherback turtle (Dermochelys coriacea) allow a test of predator-prey size relationships.

    PubMed

    Fossette, Sabrina; Gleiss, Adrian C; Casey, James P; Lewis, Andrew R; Hays, Graeme C

    2012-06-23

    Optimal foraging models predict that large predators should concentrate on large prey in order to maximize their net gain of energy intake. Here, we show that the largest species of sea turtle, Dermochelys coriacea, does not strictly adhere to this general pattern. Field observations combined with a theoretical model suggest that a 300 kg leatherback turtle would meet its energetic requirements by feeding for 3-4 h a day on 4 g jellyfish, but only if prey were aggregated in high-density patches. Therefore, prey abundance rather than prey size may, in some cases, be the overriding parameter for foraging leatherbacks. This is a classic example where the presence of small prey in the diet of a large marine predator may reflect profitable foraging decisions if the relatively low energy intake per small individual prey is offset by high encounter rates and minimal capture and handling costs. This study provides, to our knowledge, the first quantitative estimates of intake rate for this species.

  17. Risk assessment reveals high exposure of sea turtles to marine debris in French Mediterranean and metropolitan Atlantic waters

    NASA Astrophysics Data System (ADS)

    Darmon, Gaëlle; Miaud, Claude; Claro, Françoise; Doremus, Ghislain; Galgani, François

    2017-07-01

    Debris impact on marine wildlife has become a major issue of concern. Mainy species have been identified as being threatened by collision, entanglement or ingestion of debris, generally plastics, which constitute the predominant part of the recorded marine debris. Assessing sensitive areas, where exposure to debris are high, is thus crucial, in particular for sea turtles which have been proposed as sentinels of debris levels for the Marine Strategy Framework Directive and for the Unep-MedPol convention. Our objective here was to assess sea turtle exposure to marine debris in the 3 metropolitan French fronts. Using aerial surveys performed in the Channel, the Atlantic and the Mediterranean regions in winter and summer 2011-2012, we evaluated exposure areas and magnitude in terms of spatial overlap, encounter probability and density of surrounding debris at various spatial scales. Major overlapping areas appeared in the Atlantic and Mediterranean fronts, concerning mostly the leatherback and the loggerhead turtles respectively. The probability for individuals to be in contact with debris (around 90% of individuals within a radius of 2 km) and the density of debris surrounding individuals (up to 16 items with a radius of 2 km, 88 items within a radius of 10 km) were very high, whatever the considered spatial scale, especially in the Mediterranean region and during the summer season. The comparison of the observed mean debris density with random distribution suggested that turtles selected debris areas. This may occur if both debris and turtles drift to the same areas due to currents, if turtles meet debris accidentally by selecting high food concentration areas, and/or if turtles actively seek debris out, confounding them with their preys. Various factors such as species-specific foraging strategies or oceanic features which condition the passive diffusion of debris, and sea turtles in part, may explain spatio-temporal variations in sensitive areas. Further research

  18. Mass spectrometry-based sequencing and SRM-based quantitation of two novel vitellogenin isoforms in the leatherback sea turtle (Dermochelys coriacea).

    PubMed

    Plumel, Marine I; Wasselin, Thierry; Plot, Virginie; Strub, Jean-Marc; Van Dorsselaer, Alain; Carapito, Christine; Georges, Jean-Yves; Bertile, Fabrice

    2013-09-06

    No biomarker has yet been discovered to identify the reproductive status of the endangered leatherback sea turtle (Dermochelys coriacea). Although vitellogenin (VTG) could be used for this, its sequence is not known in D. coriacea and no quantitative assay has been carried out in this species to date. Using de novo sequencing-based proteomics, we unambiguously characterized sequences of two different VTG isoforms that we named Dc-VTG1 and Dc-VTG2. To our knowledge, this is the first clear evidence of different VTG isoforms and the structural characterization of derived yolk proteins in reptiles. This work illustrates how massive de novo sequencing can characterize novel sequences when working on "exotic" nonmodel species in which even nucleotide sequences are not available. We developed assays for absolute quantitation of these two isoforms using selected reaction monitoring (SRM) mass spectrometry, thus providing the first SRM assays developed specifically for a nonsequenced species. Plasma levels of Dc-VTG1 and Dc-VTG2 decreased as the nesting season proceeded, and were closely related to the increased levels of reproductive effort. The SRM assays developed here therefore provide an original and efficient approach for the reliable monitoring of reproduction cycles not only in D. coriacea, but potentially in other turtle species.

  19. Distribution and ecology of marine turtles in waters off the southeastern United States

    USGS Publications Warehouse

    Fritts, T.H.; Hoffman, W.; McGehee, M.A.

    1983-01-01

    Aerial surveys of marine waters up to 222 km from shore in the Gulf of Mexico and nearby Atlantic Ocean suggest that marine turtles are largely distributed in waters less than 100 m in depth. The loggerhead turtle (Caretta caretta) was observed nearly 50 times as often in waters off eastern and western Florida as in the western Gulf of Mexico. Loggerheads were present year round but the frequency of sightings in the winter months was lower than at other seasons. Green turtles (Chelonia rnydas) were infrequently observed but were most conspicuous in waters off eastern Florida. Kemp's ridleys (Lepidochelys kempi) were most frequently sighted off southwestern Florida and rarely observed in the western Gulf of Mexico. Leatherback turtles (Dermochelys coriacea) were more conspicuous on the continental shelf than in adjacent deeper waters. A concentration of leatherback and loggerhead turtles occurred west of the Gulf Stream Current in August 1980, near Brevard County, Florida.

  20. Ontogenetic changes in tracheal structure facilitate deep dives and cold water foraging in adult leatherback sea turtles.

    PubMed

    Davenport, John; Fraher, John; Fitzgerald, Ed; McLaughlin, Patrick; Doyle, Tom; Harman, Luke; Cuffe, Tracy; Dockery, Peter

    2009-11-01

    Adult leatherbacks are large animals (300-500 kg), overlapping in size with marine pinniped and cetacean species. Unlike marine mammals, they start their aquatic life as 40-50 g hatchlings, so undergo a 10,000-fold increase in body mass during independent existence. Hatchlings are limited to the tropics and near-surface water. Adults, obligate predators on gelatinous plankton, encounter cold water at depth (<1280 m) or high latitude and are gigantotherms that maintain elevated core body temperatures in cold water. This study shows that there are great ontogenetic changes in tracheal structure related to diving and exposure to cold. Hatchling leatherbacks have a conventional reptilian tracheal structure with circular cartilaginous rings interspersed with extensive connective tissue. The adult trachea is an almost continuous ellipsoidal cartilaginous tube composed of interlocking plates, and will collapse easily in the upper part of the water column during dives, thus avoiding pressure-related structural and physiological problems. It is lined with an extensive, dense erectile vascular plexus that will warm and humidify cold inspired air and possibly retain heat on expiration. A sub-luminal lymphatic plexus is also present. Mammals and birds have independently evolved nasal turbinates to fulfil such a respiratory thermocontrol function; for them, turbinates are regarded as diagnostic of endothermy. This is the first demonstration of a turbinate equivalent in a living reptile.

  1. Coupled solar-magnetic orientation during leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) long-distance migration

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.

    2010-12-01

    Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional

  2. [False eggs (SAGs) facilitate social post-hatching emergence behaviour in Leatherback turtles Dermochelys coriacea (Testudines: Dermochelyidae) nests].

    PubMed

    Patiño-Martinez, Juan; Marco, Adolfo; Quiñones, Liliana; Calabuig, Cecilia P

    2010-09-01

    Hatchling emergence to the beach surface from deep sand nests occurs without parental care. Social behaviour among siblings is crucial to overcome this first challenge in sea turtles life. This study, carried out at the Caribbean coast of Colombia, describes the emergence social behaviour of hatchlings from eight nests, and assess the nests translocation effects on temporal patterns of emergence. For the first time, we propose that space released by dehydration of shelled albumen globes (SAGs) at the top of the clutch, might be a reproductive advantage, while facilitating neonates to group together in a very limited space, and favouring the synchrony of emergence. The mean time of groups emergence was of 3.3 days, varying between 1 and 6 days. We found that relocation of the nests did not significantly affect the temporal pattern of emergence, which was mainly nocturnal (77.7% of natural nests and 81.7% of translocated ones). The maximum number of emergences to the surface occurred at the lowest air temperatures (22:00h-06:00h). The selective advantage of this pattern is probably related to the greater rate of predation and mortality by hyperthermia observed during the day.

  3. 75 FR 27649 - 2010 Annual Determination for Sea Turtle Observer Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... (Lepidochelys kempii), leatherback (Dermochelys coriacea), and hawksbill (Eretmochelys imbricata) sea turtles... Turtle Observer Requirements AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... turtle interactions in a given fishery, evaluate existing measures to reduce or prevent prohibited...

  4. Two herpesviruses associated with disease in wild Atlantic loggerhead sea turtles (Caretta caretta).

    PubMed

    Stacy, Brian A; Wellehan, James F X; Foley, Allen M; Coberley, Sadie S; Herbst, Lawrence H; Manire, Charles A; Garner, Michael M; Brookins, Milagros D; Childress, April L; Jacobson, Elliott R

    2008-01-01

    Herpesviruses are associated with lung-eye-trachea disease and gray patch disease in maricultured green turtles (Chelonia mydas) and with fibropapillomatosis in wild sea turtles of several species. With the exception fibropapillomatosis, no other diseases of wild sea turtles of any species have been associated with herpesviral infection. In the present study, six necropsied Atlantic loggerhead sea turtles (Caretta caretta) had gross and histological evidence of viral infection, including oral, respiratory, cutaneous, and genital lesions characterized by necrosis, ulceration, syncytial cell formation, and intranuclear inclusion bodies. Nested polymerase chain reaction targeting a conserved region of the herpesvirus DNA-dependent-DNA polymerase gene yielded two unique herpesviral sequences referred to as loggerhead genital-respiratory herpesvirus and loggerhead orocutaneous herpesvirus. Phylogenetic analyses indicate that these viruses are related to and are monophyletic with other chelonian herpesviruses within the subfamily alpha-herpesvirinae. We propose the genus Chelonivirus for this monophyletic group of chelonian herpesviruses.

  5. Young green turtles, Chelonia mydas, exposed to plastic in a frontal area of the SW Atlantic.

    PubMed

    González Carman, Victoria; Acha, E Marcelo; Maxwell, Sara M; Albareda, Diego; Campagna, Claudio; Mianzan, Hermes

    2014-01-15

    Ingestion of anthropogenic debris represents an important threat to marine turtle populations. Information has been limited to inventories of debris ingested and its consequences, but why ingestion occurs and the conditions that enable it are less understood. Here we report on the occurrence of plastic ingestion in young green turtles (Chelonia mydas) inhabiting the Río de la Plata (SW Atlantic). This estuarine area is characterized by a frontal system that accumulates anthropogenic debris. We explored exposure of green turtles to plastic and its ingestion via debris distribution, habitat use and digestive tract examination. Results indicated that there is considerable overlap of frontal accumulated plastic and core foraging areas of the animals. Exposure results in ingestion, as shown by the high frequency of plastic found in the digestive tracts. The Río de la Plata estuarine front is an area of conservation concern for young green turtles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Deepwater Horizon oil spill impacts on sea turtles could span the Atlantic.

    PubMed

    Putman, Nathan F; Abreu-Grobois, F Alberto; Iturbe-Darkistade, Iñaky; Putman, Emily M; Richards, Paul M; Verley, Philippe

    2015-12-01

    We investigated the extent that the 2010 Deepwater Horizon oil spill potentially affected oceanic-stage sea turtles from populations across the Atlantic. Within an ocean-circulation model, particles were backtracked from the Gulf of Mexico spill site to determine the probability of young turtles arriving in this area from major nesting beaches. The abundance of turtles in the vicinity of the oil spill was derived by forward-tracking particles from focal beaches and integrating population size, oceanic-stage duration and stage-specific survival rates. Simulations indicated that 321 401 (66 199-397 864) green (Chelonia mydas), loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) turtles were likely within the spill site. These predictions compared favourably with estimates from in-water observations recently made available to the public (though our initial predictions for Kemp's ridley were substantially lower than in-water estimates, better agreement was obtained with modifications to mimic behaviour of young Kemp's ridley turtles in the northern Gulf). Simulations predicted 75.2% (71.9-76.3%) of turtles came from Mexico, 14.8% (11-18%) from Costa Rica, 5.9% (4.8-7.9%) from countries in northern South America, 3.4% (2.4-3.5%) from the United States and 1.6% (0.6-2.0%) from West African countries. Thus, the spill's impacts may extend far beyond the current focus on the northern Gulf of Mexico.

  7. Comparative study of organohalogen contamination between two populations of Eastern Atlantic loggerhead sea turtles (Caretta caretta).

    PubMed

    Camacho, María; Boada, Luis D; Orós, Jorge; López, Pedro; Zumbado, Manuel; Almeida-González, Maira; Luzardo, Octavio P

    2013-12-01

    We evaluated the presence of 37 organohalogen contaminants in plasma samples from 162 juvenile and 197 adult loggerhead turtles (Caretta caretta) from the archipelagos of the Canary Islands and Cape Verde, respectively, and compared the contamination profiles found. We detected five organochlorine pesticides (OCP) and 16 polychlorinated biphenyls (PCBs). The concentrations of the two groups of contaminants were higher in turtles from the Canary Islands (OCPs, 1.04 vs. 0.37 ng/mL; PCBs, 1.92 vs. 0.08 ng/mL). We also observed a different profile of PCB contamination between the two populations. In addition, there was a negative correlation between body size and the total concentration of PCBs in the Canary Islands turtles, but not in turtles from Cape Verde. The present study presents the first data on the organochlorine contaminants (OCs) of live turtles from Canary Islands. In addition, we perform a comparison of the levels and profiles of OCs between these two different groups of loggerhead sea turtles from the Eastern Atlantic.

  8. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic.

    PubMed

    Bjorndal, Karen A; Bolten, Alan B; Chaloupka, Milani; Saba, Vincent S; Bellini, Cláudio; Marcovaldi, Maria A G; Santos, Armando J B; Bortolon, Luis Felipe Wurdig; Meylan, Anne B; Meylan, Peter A; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E; van Dam, Robert P; Willis, Sue; Nava, Mabel; Hart, Kristen M; Cherkiss, Michael S; Crowder, Andrew G; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M; Foley, Allen M; Bailey, Rhonda; Carthy, Raymond R; Scarpino, Russell; McMichael, Erin; Provancha, Jane A; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M; Boulon, Ralf H; Collazo, Jaime A; Wershoven, Robert; Guzmán Hernández, Vicente; Stringell, Thomas B; Sanghera, Amdeep; Richardson, Peter B; Broderick, Annette C; Phillips, Quinton; Calosso, Marta; Claydon, John A B; Metz, Tasha L; Gordon, Amanda L; Landry, Andre M; Shaver, Donna J; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J; McGowan, Andrew; Witt, Matthew J; Campbell, Cathi L; Lagueux, Cynthia J; Bethel, Thomas L; Kenyon, Lory

    2017-11-01

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles-hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta-exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)-the strongest on record-combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the

  9. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic

    USGS Publications Warehouse

    Bjorndal, Karen A.; Bolten, Alan B.; Chaloupka, Milani; Saba, Vincent S.; Bellini, Cláudio; Marcovaldi, Maria A.G.; Santos, Armando J.B.; Bortolon, Luis Felipe Wurdig; Meylan, Anne B.; Meylan, Peter A.; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C.; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E.; van Dam, Robert P.; Willis, Sue; Nava, Mabel; Hart, Kristen M.; Cherkiss, Michael S.; Crowder, Andrew; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A.; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M.; Foley, Allen M.; Bailey, Rhonda; Carthy, Raymond R.; Scarpino, Russell; McMichael, Erin; Provancha, Jane A.; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M.; Boulon, Ralf H.; Collazo, Jaime; Wershoven, Robert; Hernández, Vicente Guzmán; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A.B.; Metz, Tasha L.; Gordon, Amanda L.; Landry, Andre M.; Shaver, Donna J.; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J.; McGowan, Andrew; Witt, Matthew J.; Campbell, Cathi L.; Lagueux, Cynthia J.; Bethel, Thomas L.; Kenyon, Lory

    2017-01-01

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles – hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta – exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO) – the strongest on record – combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -0.94) and the Multivariate ENSO Index (MEI) for all years (r = 0.74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study

  10. Size Scaling in Western North Atlantic Loggerhead Turtles Permits Extrapolation between Regions, but Not Life Stages.

    PubMed

    Marn, Nina; Klanjscek, Tin; Stokes, Lesley; Jusup, Marko

    2015-01-01

    Sea turtles face threats globally and are protected by national and international laws. Allometry and scaling models greatly aid sea turtle conservation and research, and help to better understand the biology of sea turtles. Scaling, however, may differ between regions and/or life stages. We analyze differences between (i) two different regional subsets and (ii) three different life stage subsets of the western North Atlantic loggerhead turtles by comparing the relative growth of body width and depth in relation to body length, and discuss the implications. Results suggest that the differences between scaling relationships of different regional subsets are negligible, and models fitted on data from one region of the western North Atlantic can safely be used on data for the same life stage from another North Atlantic region. On the other hand, using models fitted on data for one life stage to describe other life stages is not recommended if accuracy is of paramount importance. In particular, young loggerhead turtles that have not recruited to neritic habitats should be studied and modeled separately whenever practical, while neritic juveniles and adults can be modeled together as one group. Even though morphometric scaling varies among life stages, a common model for all life stages can be used as a general description of scaling, and assuming isometric growth as a simplification is justified. In addition to linear models traditionally used for scaling on log-log axes, we test the performance of a saturating (curvilinear) model. The saturating model is statistically preferred in some cases, but the accuracy gained by the saturating model is marginal.

  11. Size Scaling in Western North Atlantic Loggerhead Turtles Permits Extrapolation between Regions, but Not Life Stages

    PubMed Central

    Marn, Nina; Klanjscek, Tin; Stokes, Lesley; Jusup, Marko

    2015-01-01

    Introduction Sea turtles face threats globally and are protected by national and international laws. Allometry and scaling models greatly aid sea turtle conservation and research, and help to better understand the biology of sea turtles. Scaling, however, may differ between regions and/or life stages. We analyze differences between (i) two different regional subsets and (ii) three different life stage subsets of the western North Atlantic loggerhead turtles by comparing the relative growth of body width and depth in relation to body length, and discuss the implications. Results and Discussion Results suggest that the differences between scaling relationships of different regional subsets are negligible, and models fitted on data from one region of the western North Atlantic can safely be used on data for the same life stage from another North Atlantic region. On the other hand, using models fitted on data for one life stage to describe other life stages is not recommended if accuracy is of paramount importance. In particular, young loggerhead turtles that have not recruited to neritic habitats should be studied and modeled separately whenever practical, while neritic juveniles and adults can be modeled together as one group. Even though morphometric scaling varies among life stages, a common model for all life stages can be used as a general description of scaling, and assuming isometric growth as a simplification is justified. In addition to linear models traditionally used for scaling on log-log axes, we test the performance of a saturating (curvilinear) model. The saturating model is statistically preferred in some cases, but the accuracy gained by the saturating model is marginal. PMID:26629702

  12. Turtles

    USGS Publications Warehouse

    Lovich, Jeffrey E.; LaRoe, Edward T.; Farris, Gaye S.; Puckett, Catherine E.; Doran, Peter D.; Mac, Michael J.

    1995-01-01

    Turtles have existed virtually unchanged for the last 200 million years. Unfortunately, some of the same traits that allowed them to survive the ages often predispose them to endangerment. Delayed maturity and low and variable annual reproductive success make turtles unusually susceptible to increased mortality through exploitation and habitat modifications (Brooks et al. 1991; Congdon et al. 1993). In general, turtles are overlooked by wildlife managers in spite of their ecological significance and importance to humans. Turtles are, however, important as scavengers, herbivores, and carnivores, and often contribute significant biomass to ecosystems. In addition, they are an important link in ecosystems, providing dispersal mechanisms for plants, contributing to environmental diversity, and fostering symbiotic associations with a diverse array of organisms. Adults and eggs of many turtles have been used as a food resource by humans for centuries (Brooks et al. 1988; Lovich 1994). As use pressures and habitat destruction increase, management that considers the life-history traits of turtles will be needed.

  13. Deepwater Horizon oil spill impacts on sea turtles could span the Atlantic

    PubMed Central

    Putman, Nathan F.; Abreu-Grobois, F. Alberto; Iturbe-Darkistade, Iñaky; Putman, Emily M.; Richards, Paul M.; Verley, Philippe

    2015-01-01

    We investigated the extent that the 2010 Deepwater Horizon oil spill potentially affected oceanic-stage sea turtles from populations across the Atlantic. Within an ocean-circulation model, particles were backtracked from the Gulf of Mexico spill site to determine the probability of young turtles arriving in this area from major nesting beaches. The abundance of turtles in the vicinity of the oil spill was derived by forward-tracking particles from focal beaches and integrating population size, oceanic-stage duration and stage-specific survival rates. Simulations indicated that 321 401 (66 199–397 864) green (Chelonia mydas), loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) turtles were likely within the spill site. These predictions compared favourably with estimates from in-water observations recently made available to the public (though our initial predictions for Kemp's ridley were substantially lower than in-water estimates, better agreement was obtained with modifications to mimic behaviour of young Kemp's ridley turtles in the northern Gulf). Simulations predicted 75.2% (71.9–76.3%) of turtles came from Mexico, 14.8% (11–18%) from Costa Rica, 5.9% (4.8–7.9%) from countries in northern South America, 3.4% (2.4–3.5%) from the United States and 1.6% (0.6–2.0%) from West African countries. Thus, the spill's impacts may extend far beyond the current focus on the northern Gulf of Mexico. PMID:26701754

  14. Reference intervals and relationships between health status, carapace length, body mass, and water temperature and concentrations of plasma total protein and protein electrophoretogram fractions in Atlantic loggerhead sea turtles and green turtles.

    PubMed

    Osborne, Ann G; Jacobson, Elliott R; Bresette, Michael J; Singewald, Dave A; Scarpino, Russell A; Bolten, Alan B

    2010-09-01

    To determine reference intervals for concentrations of plasma total protein (TP) and electrophoretogram fractions (ELFs) for healthy, wild loggerhead sea turtles (Caretta caretta) and green turtles (Chelonia mydas) and to assess relationships between TP and ELF concentrations and health status, body size, body mass, and water temperature. Evaluation study. 437 healthy and 35 ill Atlantic loggerhead sea turtles and 152 healthy and 3 ill Atlantic green turtles. Free-ranging turtles were captured from a nuclear power plant intake canal in southern Florida. Plasma samples were obtained from all turtles. Plasma TP and ELF concentrations were measured, and reference intervals were calculated. Wilcoxon rank-sum tests were used to compare TP and ELF values between healthy and ill loggerhead sea turtles. Spearman rank correlations were evaluated between concentrations of TP and ELFs and carapace length, body mass, and water temperature. Reference intervals for TP concentrations were 2.2 to 5.2 g/dL and 2.0 to 5.4 g/dL for loggerhead sea turtles and green turtles, respectively. Except for gamma-globulin, concentrations of ELFs were significantly higher in healthy than in ill loggerhead sea turtles. There was a positive correlation between TP, alpha-globulin, beta-globulin, and gamma-globulin concentrations and water temperature in loggerhead sea turtles and between only TP and alpha-globulin concentrations and water temperature in green turtles. Reference intervals for concentrations of TP and ELFs for healthy, free-ranging loggerhead sea turtles and green turtles can be used in combination with other diagnostic tools to assess health status of sea turtles.

  15. Leatherback nests increasing significantly in Florida, USA; trends assessed over 30 years using multilevel modeling.

    PubMed

    Stewart, Kelly; Sims, Michelle; Meylan, Anne; Witherington, Blair; Brost, Beth; Crowder, Larry B

    2011-01-01

    Understanding population status for endangered species is critical to developing and evaluating recovery plans mandated by the Endangered Species Act. For sea turtles, changes in abundance are difficult to detect because most life stages occur in the water. Currently, nest counts are the most reliable way of assessing trends. We determined the rate of growth for leatherback turtle (Dermochelys coriacea) nest numbers in Florida (USA) using a multilevel Poisson regression. We modeled nest counts from 68 beaches over 30 years and, using beach-level covariates (including latitude), we allowed for partial pooling of information between neighboring beaches. This modeling approach is ideal for nest count data because it recognizes the hierarchical structure of the data while incorporating variables related to survey effort. Nesting has increased at all 68 beaches in Florida, with trends ranging from 3.1% to 16.3% per year. Overall, across the state, the number of nests has been increasing by 10.2% per year since 1979. Despite being a small population (probably < 1000 individuals), this nesting population may help achieve objectives in the federal recovery plan. This exponential growth rate mirrors trends observed for other Atlantic populations and may be driven partially by improved protection of nesting beaches. However, nesting is increasing even where beach protection has not been enhanced. Climate variability and associated marine food web dynamics, which could enhance productivity and reduce predators, may be driving this trend.

  16. Comparative study of hematologic and plasma biochemical variables in Eastern Atlantic juvenile and adult nesting loggerhead sea turtles (Caretta caretta).

    PubMed

    Casal, Ana B; Camacho, María; López-Jurado, Luis F; Juste, Candelaria; Orós, Jorge

    2009-06-01

    Plasma biochemical and hematologic variables are important in the management of endangered sea turtles, such as loggerheads. However, studies on blood biochemistry and hematology of loggerheads are limited, and different concentrations according to variable criteria have been reported. The purpose of this study was to establish and compare baseline plasma chemistry and hematology values in Eastern Atlantic juvenile and adult nesting loggerhead sea turtles (Caretta caretta). Blood samples were collected from 69 healthy juvenile loggerhead sea turtles after their rehabilitation in captivity, and from 34 adult nesting loggerheads after oviposition. Fresh blood was used for leukocyte differential count and PCV determination. Heparinized blood was used for RBC and WBC counts. Plasma biochemical concentrations were measured using an automated biochemical analyzer. For the comparative study, nonparametric statistical analysis was done using the Mann-Whitney U-test. Minimum, maximum, and median concentrations were obtained for 14 hematologic and 15 plasma chemistry variables. Statistically significant differences between juvenile and adult turtles were found for PCV; RBC, WBC, and leukocyte differential counts; total protein, albumin, globulins, calcium, triglycerides, glucose, total cholesterol and urea concentrations; and lactate dehydrogenase activity. Age, size, and reproductive status cause important variations in the hematologic and plasma biochemical results of loggerheads. The reference values obtained in this study may be used as a standard profile, useful for veterinary surgeons involved in sea turtle conservation.

  17. Living together but remaining apart: Atlantic and Mediterranean loggerhead sea turtles (Caretta caretta) in shared feeding grounds.

    PubMed

    Carreras, Carlos; Pascual, Marta; Cardona, Luis; Marco, Adolfo; Bellido, Juan Jesús; Castillo, Juan José; Tomás, Jesús; Raga, Juan Antonio; Sanfélix, Manuel; Fernández, Gloria; Aguilar, Alex

    2011-01-01

    Juvenile loggerhead sea turtles (Caretta caretta) from Atlantic nesting populations migrate into the western Mediterranean, where they share feeding grounds with turtles originating in the Mediterranean. In this scenario, male-mediated gene flow may lead to the homogenization of these distant populations. To test this hypothesis, we genotyped 7 microsatellites from 56 Atlantic individuals sampled from feeding grounds in the western Mediterranean and then compared the observed allele frequencies with published data of 112 individuals from Mediterranean nesting beaches. Mediterranean populations were found to be genetically differentiated from the Atlantic stock reaching the western Mediterranean (F(st) = 0.029, P < 0.001); therefore, the possible mating events between Atlantic and Mediterranean individuals are not sufficient to homogenize these 2 areas. The differentiation observed between these 2 areas demonstrates that microsatellites are sufficiently powerful for mixed stock analysis and that individual assignment (IA) tests can be performed in combination with mitochondrial DNA (mtDNA) analysis. In a set of 197 individuals sampled in western Mediterranean feeding grounds, 87% were robustly assigned to Atlantic or Mediterranean groups with the combined marker, as compared with only 52% with mtDNA alone. These findings provide a new approach for tracking the movements of these oceanic migrants and have strong implications for the conservation of the species.

  18. Heat and Volume Fluxes at the Turtle Pits Vent Site, southern Mid Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Köhler, Janna; Walter, Maren; Mertens, Christian; Sültenfuß, Jürgen; Rhein, Monika

    2010-05-01

    The Turtle Pits vent site consists of eight known high temperature vents and several diffuse vent sites which are distributed over three hydrothermal fields: Turtle Pits, Comfortless Cove, and Red Lion. These vent fields are located in a north-south orientated rift valley at the Mid-Atlantic Ridge (MAR) near 5°S. The total volume and heat emissions of the entire Turtle Pits site have been calculated with three different approaches using data collected during a Meteor cruise in May 2006 and a L'Atalante cruise in January 2008. The data sets consist of vertical profiles and towed transects of temperature, salinity, and turbidity, as well as direct velocity measurements with a lowered acoustic Doppler current profiler (LADCP) and water samples for Helium isotope analysis. Vent fluid samples for noble gas analysis where taken with ROVs. Since the vent fluid is highly enriched in primordial 3He this noble gas can be used as a conservative tracer for vent fluid. The geographical setting of the vent site confines the particle plume to the rift valley since the depth of the valley exceeds the rise height of the plume. Therefore the fluxes of heat and volume can be estimated from the horizontal helium transport in the valley in combination with a mean 3He endmember concentration determined from the water samples taken with the ROVs. The comparison of the 3He concentrations measured south of the hydrothermal vents with the 3He signal north of the hydrothermal vents suggests a rather strong northward flow. This is confirmed by the tide corrected velocities observed with the LADCP during the Meteor cruise. The northward volume transport has been calculated using the local bathymetry and tide corrected velocities from the Meteor cruise. In combination with the 3He concentrations and the average 3He endmember concentration a flux of 1000 l/s is estimated, which corresponds to a heat flux of 1400 MW. The measured temperature anomalies within the plume combined with the known

  19. 77 FR 474 - 2012 Annual Determination for Sea Turtle Observer Requirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... (Lepidochelys kempii), leatherback (Dermochelys coriacea), and hawksbill (Eretmochelys imbricata) sea turtles... National Oceanic and Atmospheric Administration RIN 0648-XA892 2012 Annual Determination for Sea Turtle... learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent...

  20. Population genetics and phylogeography of sea turtles.

    PubMed

    Bowen, B W; Karl, S A

    2007-12-01

    The seven species of sea turtles occupy a diversity of niches, and have a history tracing back over 100 million years, yet all share basic life-history features, including exceptional navigation skills and periodic migrations from feeding to breeding habitats. Here, we review the biogeographic, behavioural, and ecological factors that shape the distribution of genetic diversity in sea turtles. Natal homing, wherein turtles return to their region of origin for mating and nesting, has been demonstrated with mtDNA sequences. These maternally inherited markers show strong population structure among nesting colonies while nuclear loci reveal a contrasting pattern of male-mediated gene flow, a phenomenon termed 'complex population structure'. Mixed-stock analyses indicate that multiple nesting colonies can contribute to feeding aggregates, such that exploitation of turtles in these habitats can reduce breeding populations across the region. The mtDNA data also demonstrate migrations across entire ocean basins, some of the longest movements of marine vertebrates. Multiple paternity occurs at reported rates of 0-100%, and can vary by as much as 9-100% within species. Hybridization in almost every combination among members of the Cheloniidae has been documented but the frequency and ultimate ramifications of hybridization are not clear. The global phylogeography of sea turtles reveals a gradient based on habitat preference and thermal regime. The cold-tolerant leatherback turtle (Dermochelys coriacea) shows no evolutionary partitions between Indo-Pacific and Atlantic populations, while the tropical green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and ridleys (Lepidochelys olivacea vs. L. kempi) have ancient separations between oceans. Ridleys and loggerhead (Caretta caretta) also show more recent colonization between ocean basins, probably mediated by warm-water gyres that occasionally traverse the frigid upwelling zone in southern Africa. These rare events may

  1. Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective

    USGS Publications Warehouse

    Bjorndal, Karen A.; Chaloupka, Milani; Saba, Vincent S.; Diez, Carlos E.; van Dam, Robert P.; Krueger, Barry H.; Horrocks, Julia A.; Santos, Armando J.B.; Bellini, Cláudio; Marcovaldi, Maria A.G.; Nava, Mabel; Willis, Sue; Godley, Brendan J.; Gore, Shannon; Hawkes, Lucy A.; McGowan, Andrew; Witt, Matthew J.; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A.B.; Blumenthal, Janice; Moncada, Felix; Nodarse, Gonzalo; Medina, Yosvani; Dunbar, Stephen G.; Wood, Lawrence D.; Lagueux, Cynthia J.; Campbell, Cathi L.; Meylan, Anne B.; Meylan, Peter A.; Burns Perez, Virginia R.; Coleman, Robin A.; Strindberg, Samantha; Guzmán-H, Vicente; Hart, Kristen M.; Cherkiss, Michael S.; Hillis-Starr, Zandy; Lundgren, Ian; Boulon, Ralf H.; Connett, Stephen; Outerbridge, Mark E.; Bolten, Alan B.

    2016-01-01

    Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs. Main

  2. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic.

    PubMed

    Gaube, Peter; Barceló, Caren; McGillicuddy, Dennis J; Domingo, Andrés; Miller, Philip; Giffoni, Bruno; Marcovaldi, Neca; Swimmer, Yonat

    2017-01-01

    Marine animals, such as turtles, seabirds and pelagic fishes, are observed to travel and congregate around eddies in the open ocean. Mesoscale eddies, large swirling ocean vortices with radius scales of approximately 50-100 km, provide environmental variability that can structure these populations. In this study, we investigate the use of mesoscale eddies by 24 individual juvenile loggerhead sea turtles (Caretta caretta) in the Brazil-Malvinas Confluence region. The influence of eddies on turtles is assessed by collocating the turtle trajectories to the tracks of mesoscale eddies identified in maps of sea level anomaly. Juvenile loggerhead sea turtles are significantly more likely to be located in the interiors of anticyclones in this region. The distribution of surface drifters in eddy interiors reveals no significant association with the interiors of cyclones or anticyclones, suggesting higher prevalence of turtles in anticyclones is a result of their behavior. In the southern portion of the Brazil-Malvinas Confluence region, turtle swimming speed is significantly slower in the interiors of anticyclones, when compared to the periphery, suggesting that these turtles are possibly feeding on prey items associated with anomalously low near-surface chlorophyll concentrations observed in those features.

  3. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic

    PubMed Central

    Barceló, Caren; McGillicuddy, Dennis J.; Domingo, Andrés; Miller, Philip; Giffoni, Bruno; Marcovaldi, Neca; Swimmer, Yonat

    2017-01-01

    Marine animals, such as turtles, seabirds and pelagic fishes, are observed to travel and congregate around eddies in the open ocean. Mesoscale eddies, large swirling ocean vortices with radius scales of approximately 50–100 km, provide environmental variability that can structure these populations. In this study, we investigate the use of mesoscale eddies by 24 individual juvenile loggerhead sea turtles (Caretta caretta) in the Brazil-Malvinas Confluence region. The influence of eddies on turtles is assessed by collocating the turtle trajectories to the tracks of mesoscale eddies identified in maps of sea level anomaly. Juvenile loggerhead sea turtles are significantly more likely to be located in the interiors of anticyclones in this region. The distribution of surface drifters in eddy interiors reveals no significant association with the interiors of cyclones or anticyclones, suggesting higher prevalence of turtles in anticyclones is a result of their behavior. In the southern portion of the Brazil-Malvinas Confluence region, turtle swimming speed is significantly slower in the interiors of anticyclones, when compared to the periphery, suggesting that these turtles are possibly feeding on prey items associated with anomalously low near-surface chlorophyll concentrations observed in those features. PMID:28249020

  4. Mixed-stock analysis in green turtles Chelonia mydas: mtDNA decipher current connections among west Atlantic populations.

    PubMed

    Costa Jordao, Juliana; Bondioli, Ana Cristina Vigliar; Almeida-Toledo, Lurdes Foresti de; Bilo, Karin; Berzins, Rachel; Le Maho, Yvon; Chevallier, Damien; de Thoisy, Benoit

    2017-03-01

    The green turtle Chelonia mydas undertakes wide-ranging migrations between feeding and nesting sites, resulting in mixing and isolation of genetic stocks. We used mtDNA control region to characterize the genetic composition, population structure, and natal origins of C. mydas in the West Atlantic Ocean, at one feeding ground (State of Rio de Janeiro, Brazil), and three Caribbean nesting grounds (French Guiana, Guadeloupe, and Suriname). The feeding ground presented considerable frequency of common haplotypes from the South Atlantic, whereas the nesting sites presented a major contribution of the most common haplotype from the Caribbean. MSA revealed multiple origins of individuals at the feeding ground, notably from Ascension Island, Guinea Bissau, and French Guiana. This study enables a better understanding of the dispersion patterns and highlights the importance of connecting both nesting and feeding areas. Effective conservation initiatives need to encompass these ecologically and geographically distinct sites as well as those corridors connecting them.

  5. Marine turtle mitogenome phylogenetics and evolution.

    PubMed

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Alonzo; Dutton, Peter H; Thomas P Gilbert, M; Morin, Phillip A

    2012-10-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae. Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all sea turtles, and reveal phylogeographic patterns within globally-distributed species. Although there was clear concordance between phylogenies and geographic origin of samples in most taxa, we found evidence of more recent dispersal events in the loggerhead and olive ridley turtles, suggesting more recent migrations (<1 Myr) in these species. Overall, our results demonstrate the complexity of sea-turtle diversity, and indicate the need for further research in phylogeography and molecular evolution.

  6. Respiration in Neonate Sea Turtles

    PubMed Central

    Paladino, Frank V.; Strohl, Kingman P.; Pilar Santidrián, T.; Klann, Kenneth; Spotila, James R.

    2007-01-01

    The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings’ response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ventilation characteristics that are similar to those of adults: a single breath followed by a long respiratory pause, slow frequency, and high metabolic rate. With hypercapnic challenge, both species responded primarily by elevating respiratory frequency via a decrease in the non-ventilatory period. Leatherback resting tidal volume increased with age but otherwise, neither species’ resting respiratory pattern nor response to gas challenge changed significantly over the first few days after hatching. At the time of nest emergence, sea turtles have achieved a respiratory pattern that is similar to that of actively diving adults. PMID:17258487

  7. 75 FR 53925 - Sea Turtle Conservation; Shrimp and Summer Flounder Trawling Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... to 5.1 cm); the inclusion of the Boone Big Boy TED for use in the shrimp fishery; the use of three... measurements of 15 nesting female leatherback turtles and used these data to construct an aluminum pipe-frame...-inch mesh flap webbing passed the certification test under the small turtle testing protocol. Boone Big...

  8. Historical versus Contemporary Climate Forcing on the Annual Nesting Variability of Loggerhead Sea Turtles in the Northwest Atlantic Ocean

    PubMed Central

    Arendt, Michael D.; Schwenter, Jeffrey A.; Witherington, Blair E.; Meylan, Anne B.; Saba, Vincent S.

    2013-01-01

    A recent analysis suggested that historical climate forcing on the oceanic habitat of neonate sea turtles explained two-thirds of interannual variability in contemporary loggerhead (Caretta caretta) sea turtle nest counts in Florida, where nearly 90% of all nesting by this species in the Northwest Atlantic Ocean occurs. Here, we show that associations between annual nest counts and climate conditions decades prior to nest counts and those conditions one year prior to nest counts were not significantly different. Examination of annual nest count and climate data revealed that statistical artifacts influenced the reported 31-year lag association with nest counts. The projected importance of age 31 neophytes to annual nest counts between 2020 and 2043 was modeled using observed nest counts between 1989 and 2012. Assuming consistent survival rates among cohorts for a 5% population growth trajectory and that one third of the mature female population nests annually, the 41% decline in annual nest counts observed during 1998–2007 was not projected for 2029–2038. This finding suggests that annual nest count trends are more influenced by remigrants than neophytes. Projections under the 5% population growth scenario also suggest that the Peninsular Recovery Unit could attain the demographic recovery criteria of 106,100 annual nests by 2027 if nest counts in 2019 are at least comparable to 2012. Because the first year of life represents only 4% of the time elapsed through age 31, cumulative survival at sea across decades explains most cohort variability, and thus, remigrant population size. Pursuant to the U.S. Endangered Species Act, staggered implementation of protection measures for all loggerhead life stages has taken place since the 1970s. We suggest that the 1998–2007 nesting decline represented a lagged perturbation response to historical anthropogenic impacts, and that subsequent nest count increases since 2008 reflect a potential recovery response. PMID

  9. Temporal, spatial, and body size effects on growth rates of loggerhead sea turtles (Caretta caretta) in the Northwest Atlantic

    USGS Publications Warehouse

    Bjorndal, Karen A.; Schroeder, Barbara A.; Foley, Allen M.; Witherington, Blair E.; Bresette, Michael; Clark, David; Herren, Richard M.; Arendt, Michael D.; Schmid, Jeffrey R.; Meylan, Anne B.; Meylan, Peter A.; Provancha, Jane A.; Hart, Kristen M.; Lamont, Margaret M.; Carthy, Raymond R.; Bolten, Alan B.

    2013-01-01

    In response to a call from the US National Research Council for research programs to combine their data to improve sea turtle population assessments, we analyzed somatic growth data for Northwest Atlantic (NWA) loggerhead sea turtles (Caretta caretta) from 10 research programs. We assessed growth dynamics over wide ranges of geography (9–33°N latitude), time (1978–2012), and body size (35.4–103.3 cm carapace length). Generalized additive models revealed significant spatial and temporal variation in growth rates and a significant decline in growth rates with increasing body size. Growth was more rapid in waters south of the USA (<24°N) than in USA waters. Growth dynamics in southern waters in the NWA need more study because sample size was small. Within USA waters, the significant spatial effect in growth rates of immature loggerheads did not exhibit a consistent latitudinal trend. Growth rates declined significantly from 1997 through 2007 and then leveled off or increased. During this same interval, annual nest counts in Florida declined by 43 % (Witherington et al. in Ecol Appl 19:30–54, 2009) before rebounding. Whether these simultaneous declines reflect responses in productivity to a common environmental change should be explored to determine whether somatic growth rates can help interpret population trends based on annual counts of nests or nesting females. Because of the significant spatial and temporal variation in growth rates, population models of NWA loggerheads should avoid employing growth data from restricted spatial or temporal coverage to calculate demographic metrics such as age at sexual maturity.

  10. Historical versus contemporary climate forcing on the annual nesting variability of loggerhead sea turtles in the Northwest Atlantic Ocean.

    PubMed

    Arendt, Michael D; Schwenter, Jeffrey A; Witherington, Blair E; Meylan, Anne B; Saba, Vincent S

    2013-01-01

    A recent analysis suggested that historical climate forcing on the oceanic habitat of neonate sea turtles explained two-thirds of interannual variability in contemporary loggerhead (Caretta caretta) sea turtle nest counts in Florida, where nearly 90% of all nesting by this species in the Northwest Atlantic Ocean occurs. Here, we show that associations between annual nest counts and climate conditions decades prior to nest counts and those conditions one year prior to nest counts were not significantly different. Examination of annual nest count and climate data revealed that statistical artifacts influenced the reported 31-year lag association with nest counts. The projected importance of age 31 neophytes to annual nest counts between 2020 and 2043 was modeled using observed nest counts between 1989 and 2012. Assuming consistent survival rates among cohorts for a 5% population growth trajectory and that one third of the mature female population nests annually, the 41% decline in annual nest counts observed during 1998-2007 was not projected for 2029-2038. This finding suggests that annual nest count trends are more influenced by remigrants than neophytes. Projections under the 5% population growth scenario also suggest that the Peninsular Recovery Unit could attain the demographic recovery criteria of 106,100 annual nests by 2027 if nest counts in 2019 are at least comparable to 2012. Because the first year of life represents only 4% of the time elapsed through age 31, cumulative survival at sea across decades explains most cohort variability, and thus, remigrant population size. Pursuant to the U.S. Endangered Species Act, staggered implementation of protection measures for all loggerhead life stages has taken place since the 1970s. We suggest that the 1998-2007 nesting decline represented a lagged perturbation response to historical anthropogenic impacts, and that subsequent nest count increases since 2008 reflect a potential recovery response.

  11. Concentrations and distributions of metals in tissues of stranded green sea turtles (Chelonia mydas) from the southern Atlantic coast of Brazil.

    PubMed

    da Silva, Cinthia Carneiro; Varela, Antonio Sergio; Barcarolli, Indianara Fernanda; Bianchini, Adalto

    2014-01-01

    Silver (Ag), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) concentrations were analyzed in tissues of juvenile green sea turtles (Chelonia mydas) found stranded along the southern Atlantic coast in Brazil. Green sea turtles were collected (n=29), measured (curved carapace length: CCL) and had their muscle, liver, and kidney dissected for metal concentration measurements. Sex was identified in 18 individuals (10 females and 8 males) through gonad histology. No gender differences in CCL and tissue metal concentrations were observed. In the muscle, there was a negative correlation between CCL and Cd and Cu concentrations. Metal concentrations were lower in the muscle than in the liver and kidney. Zn concentration in the muscle was the highest of all metals analyzed (16.6 mg/kg). The kidney showed the highest concentrations of Pb, Cd and Zn (5.4, 28.3 and 54.3 mg/kg, respectively), while the liver had the highest values of Ag and Cu (0.8 and 100.9 mg/kg, respectively). Tissue Ag, Zn and Cd concentrations were similar to those found in green sea turtles from other regions while Cu and Pb values were elevated, likely due to the metal-rich water and sediment reported in the collection area. In the liver and kidney, concentrations of non-essential (Ag, Cd and Pb) and essential (Cu or Zn) metals were positively correlated, likely due to an induced metallothionein synthesis to protect tissue against the toxic effect of metals. This is the first study to report and correlate the concentrations of essential and non-essential metals in tissues of green sea turtles in the Brazilian southern Atlantic coast, an important feeding and developing area for this turtle species. © 2013 Elsevier B.V. All rights reserved.

  12. Cutting the longline to extinction: new sea turtle campaign takes aim at industrial longline fishing and mercury-poisoned seafood.

    PubMed

    Ovetz, Robert

    2004-01-01

    Chanting "Get on the right track . . . stop killing the leatherback!," a festive protest of people of many ages dressed in colorful turtle costumes wound its way along the busy streets of San Francisco's Fishermen's Wharf. The action last October marked the launching of the Bay Area-based Sea Turtle Restoration Project's Save the Leatherback (www.savetheleatherback.com) campaign for a moratorium on longline fishing in the Pacific Ocean. Longline fishing in the Pacific kills tens of thousands of sea turtles annually to serve up swordfish, shark, and tuna poisoned with high levels of methylmercury for lucrative seafood markets in Japan, the United States, and Europe.

  13. Plasma levels of pollutants are much higher in loggerhead turtle populations from the Adriatic Sea than in those from open waters (Eastern Atlantic Ocean).

    PubMed

    Bucchia, Matteo; Camacho, María; Santos, Marcelo R D; Boada, Luis D; Roncada, Paola; Mateo, Rafael; Ortiz-Santaliestra, Manuel E; Rodríguez-Estival, Jaime; Zumbado, Manuel; Orós, Jorge; Henríquez-Hernández, Luis A; García-Álvarez, Natalia; Luzardo, Octavio P

    2015-08-01

    In this paper we determined the levels of 63 environmental contaminants, including organic (PCBs, organochlorine pesticides, and PAHs) and inorganic (As, Cd, Cu, Pb, Hg and Zn) compounds in the blood of loggerhead turtles (Caretta caretta) from two comparable populations that inhabit distinct geographic areas: the Adriatic Sea (Mediterranean basin) and the Canary Islands (Eastern Atlantic Ocean). All animals were sampled at the end of a period of rehabilitation in centers of wildlife recovery, before being released back into the wild, so they can be considered to be in good health condition. The dual purpose of this paper is to provide reliable data on the current levels of contamination of this species in these geographic areas, and secondly to compare the results of both populations, as it has been reported that marine biota inhabiting the Mediterranean basin is exposed to much higher pollution levels than that which inhabit in other areas of the planet. According to our results it is found that current levels of contamination by organic compounds are considerably higher in Adriatic turtles than in the Atlantic ones (∑PCBs, 28.45 vs. 1.12ng/ml; ∑OCPs, 1.63 vs. 0.19ng/ml; ∑PAHs, 13.39 vs. 4.91ng/ml; p<0.001 in all cases). This is the first time that levels of PAHs are reported in the Adriatic loggerheads. With respect to inorganic contaminants, although the differences were not as great, the Adriatic turtles appear to have higher levels of some of the most toxic elements such as mercury (5.74 vs. 7.59μg/ml, p<0.01). The results of this study confirm that the concentrations are larger in turtles from the Mediterranean, probably related to the high degree of anthropogenic pressure in this basin, and thus they are more likely to suffer adverse effects related to contaminants.

  14. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level.

  15. Lethal lesions and amputation caused by plastic debris and fishing gear on the loggerhead turtle Caretta caretta (Linnaeus, 1758). Three case reports from Terceira Island, Azores (NE Atlantic).

    PubMed

    Barreiros, João P; Raykov, Violin S

    2014-09-15

    In this note we report and discuss three cases involving two serious injuries and one death on three specimens of the loggerhead turtle Caretta caretta, found in Terceira Island, Azores (NE Atlantic). Plastic debris and lost/discarded fishing gear caused these accidents. In fact, these types of marine litter are known to cause several accidents all over the world involving many taxa. However, we think that this issue has probably a much wider impact and detected cases such as those reported here are but just a small sample of the whole unknown dimension of this serious marine pollution problem.

  16. Are thermal barriers "higher" in deep sea turtle nests?

    PubMed

    Santidrián Tomillo, Pilar; Fonseca, Luis; Paladino, Frank V; Spotila, James R; Oro, Daniel

    2017-01-01

    Thermal tolerances are affected by the range of temperatures that species encounter in their habitat. Daniel Janzen hypothesized in his "Why mountain passes are higher in the tropics" that temperature gradients were effective barriers to animal movements where climatic uniformity was high. Sea turtles bury their eggs providing some thermal stability that varies with depth. We assessed the relationship between thermal uniformity and thermal tolerance in nests of three species of sea turtles. We considered that barriers were "high" when small thermal changes had comparatively large effects and "low" when the effects were small. Mean temperature was lower and fluctuated less in species that dig deeper nests. Thermal barriers were comparatively "higher" in leatherback turtle (Dermochelys coriacea) nests, which were the deepest, as embryo mortality increased at lower "high" temperatures than in olive ridley (Lepidochelys olivacea) and green turtle (Chelonia mydas) nests. Sea turtles have temperature-dependent sex determination (TSD) and embryo mortality increased as temperature approached the upper end of the transitional range of temperatures (TRT) that produces both sexes (temperature producing 100% female offspring) in leatherback and olive ridley turtles. As thermal barriers are "higher" in some species than in others, the effects of climate warming on embryo mortality is likely to vary among sea turtles. Population resilience to climate warming may also depend on the balance between temperatures that produce female offspring and those that reduce embryo survival.

  17. Are thermal barriers "higher" in deep sea turtle nests?

    PubMed Central

    Santidrián Tomillo, Pilar; Fonseca, Luis; Paladino, Frank V.; Spotila, James R.; Oro, Daniel

    2017-01-01

    Thermal tolerances are affected by the range of temperatures that species encounter in their habitat. Daniel Janzen hypothesized in his “Why mountain passes are higher in the tropics” that temperature gradients were effective barriers to animal movements where climatic uniformity was high. Sea turtles bury their eggs providing some thermal stability that varies with depth. We assessed the relationship between thermal uniformity and thermal tolerance in nests of three species of sea turtles. We considered that barriers were “high” when small thermal changes had comparatively large effects and “low” when the effects were small. Mean temperature was lower and fluctuated less in species that dig deeper nests. Thermal barriers were comparatively “higher” in leatherback turtle (Dermochelys coriacea) nests, which were the deepest, as embryo mortality increased at lower “high” temperatures than in olive ridley (Lepidochelys olivacea) and green turtle (Chelonia mydas) nests. Sea turtles have temperature-dependent sex determination (TSD) and embryo mortality increased as temperature approached the upper end of the transitional range of temperatures (TRT) that produces both sexes (temperature producing 100% female offspring) in leatherback and olive ridley turtles. As thermal barriers are “higher” in some species than in others, the effects of climate warming on embryo mortality is likely to vary among sea turtles. Population resilience to climate warming may also depend on the balance between temperatures that produce female offspring and those that reduce embryo survival. PMID:28545092

  18. Global sea turtle conservation successes

    PubMed Central

    Mazaris, Antonios D.; Schofield, Gail; Gkazinou, Chrysoula; Almpanidou, Vasiliki; Hays, Graeme C.

    2017-01-01

    We document a tendency for published estimates of population size in sea turtles to be increasing rather than decreasing across the globe. To examine the population status of the seven species of sea turtle globally, we obtained 299 time series of annual nesting abundance with a total of 4417 annual estimates. The time series ranged in length from 6 to 47 years (mean, 16.2 years). When levels of abundance were summed within regional management units (RMUs) for each species, there were upward trends in 12 RMUs versus downward trends in 5 RMUs. This prevalence of more upward than downward trends was also evident in the individual time series, where we found 95 significant increases in abundance and 35 significant decreases. Adding to this encouraging news for sea turtle conservation, we show that even small sea turtle populations have the capacity to recover, that is, Allee effects appear unimportant. Positive trends in abundance are likely linked to the effective protection of eggs and nesting females, as well as reduced bycatch. However, conservation concerns remain, such as the decline in leatherback turtles in the Eastern and Western Pacific. Furthermore, we also show that, often, time series are too short to identify trends in abundance. Our findings highlight the importance of continued conservation and monitoring efforts that underpin this global conservation success story. PMID:28948215

  19. An immunohistochemical approach to identify the sex of young marine turtles.

    PubMed

    Tezak, Boris M; Guthrie, Kathleen; Wyneken, Jeanette

    2017-03-13

    Marine turtles exhibit temperature-dependent sex determination (TSD). During critical periods of embryonic development, the nest's thermal environment directs whether an embryo will develop as a male or female. At warmer sand temperatures nests tend to produce female-biased sex ratios. The rapid increase of global temperature highlights the need for a clear assessment of its effects on sea turtle sex ratios. However, estimating hatchling sex ratios at rookeries remains imprecise due to the lack of sexual dimorphism in young marine turtles. We rely mainly upon laparoscopic procedures to verify hatchling sex; however, in some species, morphological sex can be ambiguous even at the histological level. Recent studies using immunohistochemical (IHC) techniques identified that embryonic snapping turtle (Chelydra serpentina) ovaries over-expressed a particular Cold-induced RNA Binding Protein in comparison to testes. This feature allows the identification of females vs. males. We modified this technique to successfully identify the sexes of loggerhead sea turtle (Caretta caretta) hatchlings, and independently confirmed the results by standard histological and laparoscopic methods that reliably identify sex in this species. We next tested the CIRBP IHC method on gonad samples from leatherback turtles (Dermochelys coriacea). Leatherbacks display delayed gonad differentiation, when compared to other sea turtles, making hatchling gonads difficult to sex using standard H and E stain histology. The IHC approach was successful in both C. caretta and D. coriacea samples, offering a much-needed tool to establish baseline hatchling sex ratios, particularly for assessing impacts of climate change effects on leatherback turtle hatchlings and sea turtle demographics. This article is protected by copyright. All rights reserved.

  20. Trophic status drives interannual variability in nesting numbers of marine turtles.

    PubMed

    Broderick, A C; Godley, B J; Hays, G C

    2001-07-22

    Large annual fluctuations are seen in breeding numbers in many populations of non-annual breeders. We examined the interannual variation in nesting numbers of populations of green (Chelonia mydas) (n = 16 populations), loggerhead (Caretta caretta) (n = 10 populations), leatherback (Dermochelys coriacea) (n = 9 populations) and hawksbill turtles (Eretmochelys imbricata) (n = 10 populations). Interannual variation was greatest in the green turtle. When comparing green and loggerhead turtles nesting in Cyprus we found that green turtles were more likely to change the interval between laying seasons and showed greater variation in the number of clutches laid in a season. We suggest that these differences are driven by the varying trophic statuses of the different species. Green turtles are herbivorous, feeding on sea grasses and macro-algae, and this primary production will be more tightly coupled with prevailing environmental conditions than the carnivorous diet of the loggerhead turtle.

  1. Turtles, birds, and mammals in the northern Gulf of Mexico and nearby Atlantic waters: an overview based on aerial surveys of OCS (Outer Continental Shelf) areas, with emphasis on oil and gas effects

    SciTech Connect

    Fritts, T.H.; Irvine, A.B.; Jennings, R.D.; Collum, L.A.; Hoffman, W.

    1983-07-01

    Aerial line transect surveys of marine turtles, birds, and mammals were conducted in four areas of the Gulf of Mexico and nearby Atlantic waters. Areas surveyed were 111 km by 222 km and located off Brownsville, Texas; Marsh Island, Louisiana; Naples, Florida; and Merritt Island, Florida. Data on distribution, abundance, seasonal occurrence, and habitat use are reported in accounts for each of the 88 species observed. Information on reproduction, behavior, and potential impacts of Outer Continental Shelf (OCS) development are also discussed.

  2. Are coastal protected areas always effective in achieving population recovery for nesting sea turtles?

    PubMed

    Nel, Ronel; Punt, André E; Hughes, George R

    2013-01-01

    Sea turtles are highly migratory and usually dispersed, but aggregate off beaches during the nesting season, rendering them vulnerable to coastal threats. Consequently, coastal Marine Protection Areas (MPAs) have been used to facilitate the recovery of turtle populations, but the effectiveness of these programs is uncertain as most have been operating for less than a single turtle generation (or<20 yr). South Africa, however, hosts one of the longest running conservation programs, protecting nesting loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) turtles since 1963 in a series of coastal MPAs. This provides a unique opportunity to evaluate the long-term effect of spatial protection on the abundance of two highly migratory turtle species with different life history characteristics. Population responses were assessed by modeling the number of nests over time in an index area (13 km) and an expanded monitoring area (53 km) with varying survey effort. Loggerhead abundance increased dramatically from∼250 to>1700 nests pa (index area) especially over the last decade, while leatherback abundance increased initially∼10 to 70 nests pa (index area), but then stabilized. Although leatherbacks have higher reproductive output per female and comparable remigration periods and hatching success to loggerheads, the leatherback population failed to expand. Our results suggest that coastal MPAs can work but do not guarantee the recovery of sea turtle populations as pressures change over time. Causes considered for the lack of population growth include factors in the MPA (expansion into unmonitored areas or incubation environment) of outside of the MPA (including carrying capacity and fishing mortality). Conservation areas for migratory species thus require careful design to account for species-specific needs, and need to be monitored to keep track of changing pressures.

  3. Are Coastal Protected Areas Always Effective in Achieving Population Recovery for Nesting Sea Turtles?

    PubMed Central

    Nel, Ronel; Punt, André E.; Hughes, George R.

    2013-01-01

    Sea turtles are highly migratory and usually dispersed, but aggregate off beaches during the nesting season, rendering them vulnerable to coastal threats. Consequently, coastal Marine Protection Areas (MPAs) have been used to facilitate the recovery of turtle populations, but the effectiveness of these programs is uncertain as most have been operating for less than a single turtle generation (or<20 yr). South Africa, however, hosts one of the longest running conservation programs, protecting nesting loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) turtles since 1963 in a series of coastal MPAs. This provides a unique opportunity to evaluate the long-term effect of spatial protection on the abundance of two highly migratory turtle species with different life history characteristics. Population responses were assessed by modeling the number of nests over time in an index area (13 km) and an expanded monitoring area (53 km) with varying survey effort. Loggerhead abundance increased dramatically from∼250 to>1700 nests pa (index area) especially over the last decade, while leatherback abundance increased initially∼10 to 70 nests pa (index area), but then stabilized. Although leatherbacks have higher reproductive output per female and comparable remigration periods and hatching success to loggerheads, the leatherback population failed to expand. Our results suggest that coastal MPAs can work but do not guarantee the recovery of sea turtle populations as pressures change over time. Causes considered for the lack of population growth include factors in the MPA (expansion into unmonitored areas or incubation environment) of outside of the MPA (including carrying capacity and fishing mortality). Conservation areas for migratory species thus require careful design to account for species-specific needs, and need to be monitored to keep track of changing pressures. PMID:23671683

  4. Role of chemical and visual cues in food recognition by leatherback posthatchlings (Dermochelys coriacea L).

    PubMed

    Constantino, Maricela A; Salmon, Michael

    2003-01-01

    We raised leatherback posthatchlings in the laboratory for up to 7 weeks to study the role of visual and chemical cues in food recognition and food-seeking behavior. Turtles were reared on a formulated (artificial gelatinous) diet and had no contact with test materials until experiments began. Subjects were presented with visual cues (a plastic jellyfish; white plastic shapes [circle, square, diamond] similar in surface area to the plastic model), chemical cues (homogenates of lion's mane jellyfish, Cyanea capillata; moon jellyfish, Aurelia aurita; and a ctenophore, Ocyropsis sp., introduced through a water filter outflow), and visual and chemical cues presented simultaneously. Visual stimuli evoked an increase in swimming activity, biting, diving, and orientation toward the object. Chemical cues elicited an increase in biting, and orientation into water currents (rheotaxis). When chemical and visual stimuli were combined, turtles ignored currents and oriented toward the visual stimuli. We conclude that both cues are used to search for, and locate, food but that visual cues may be of primary importance. We hypothesize that under natural conditions turtles locate food visually, then, as a consequence of feeding, associate chemical with visual cues. Chemical cues then may function alone as a feeding attractant.

  5. Leatherbacks Swimming In Silico: Modeling and Verifying Their Momentum and Heat Balance Using Computational Fluid Dynamics

    PubMed Central

    Dudley, Peter N.; Bonazza, Riccardo; Jones, T. Todd; Wyneken, Jeanette; Porter, Warren P.

    2014-01-01

    As global temperatures increase throughout the coming decades, species ranges will shift. New combinations of abiotic conditions will make predicting these range shifts difficult. Biophysical mechanistic niche modeling places bounds on an animal’s niche through analyzing the animal’s physical interactions with the environment. Biophysical mechanistic niche modeling is flexible enough to accommodate these new combinations of abiotic conditions. However, this approach is difficult to implement for aquatic species because of complex interactions among thrust, metabolic rate and heat transfer. We use contemporary computational fluid dynamic techniques to overcome these difficulties. We model the complex 3D motion of a swimming neonate and juvenile leatherback sea turtle to find power and heat transfer rates during the stroke. We combine the results from these simulations and a numerical model to accurately predict the core temperature of a swimming leatherback. These results are the first steps in developing a highly accurate mechanistic niche model, which can assists paleontologist in understanding biogeographic shifts as well as aid contemporary species managers about potential range shifts over the coming decades. PMID:25354303

  6. Contextualising the Last Survivors: Population Structure of Marine Turtles in the Dominican Republic.

    PubMed

    Carreras, Carlos; Godley, Brendan J; León, Yolanda M; Hawkes, Lucy A; Revuelta, Ohiana; Raga, Juan A; Tomás, Jesús

    2013-01-01

    Nesting by three species of marine turtles persists in the Dominican Republic, despite historic threats and long-term population decline. We conducted a genetic survey of marine turtles in the Dominican Republic in order to link them with other rookeries around the Caribbean. We sequenced a 740bp fragment of the control region of the mitochondrial DNA of 92 samples from three marine turtle species [hawksbill (n = 48), green (n = 2) and leatherback (n = 42)], and incorporated published data from other nesting populations and foraging grounds. The leatherback turtle (Dermochelys coriacea) in the Dominican Republic appeared to be isolated from Awala-Yalimapo, Cayenne, Trinidad and St. Croix but connected with other Caribbean populations. Two distinct nesting populations of hawksbill turtles (Eremochelys imbricata) were detected in the Dominican Republic and exhibited interesting patterns of connectivity with other nesting sites and juvenile and adult male foraging aggregations. The green sea turtle (Chelonia mydas) has almost been extirpated from the Dominican Republic and limited inference could be made from our samples. Finally, results were compared with Lagrangian drifting buoys and published Lagrangian virtual particles that travelled through the Dominican Republic and Caribbean waters. Conservation implications of sink-source effects or genetic isolation derived from these complex inter-connections are discussed for each species and population.

  7. Contextualising the Last Survivors: Population Structure of Marine Turtles in the Dominican Republic

    PubMed Central

    Carreras, Carlos; Godley, Brendan J.; León, Yolanda M.; Hawkes, Lucy A.; Revuelta, Ohiana; Raga, Juan A.; Tomás, Jesús

    2013-01-01

    Nesting by three species of marine turtles persists in the Dominican Republic, despite historic threats and long-term population decline. We conducted a genetic survey of marine turtles in the Dominican Republic in order to link them with other rookeries around the Caribbean. We sequenced a 740bp fragment of the control region of the mitochondrial DNA of 92 samples from three marine turtle species [hawksbill (n = 48), green (n = 2) and leatherback (n = 42)], and incorporated published data from other nesting populations and foraging grounds. The leatherback turtle (Dermochelys coriacea) in the Dominican Republic appeared to be isolated from Awala-Yalimapo, Cayenne, Trinidad and St. Croix but connected with other Caribbean populations. Two distinct nesting populations of hawksbill turtles (Eremochelys imbricata) were detected in the Dominican Republic and exhibited interesting patterns of connectivity with other nesting sites and juvenile and adult male foraging aggregations. The green sea turtle (Chelonia mydas) has almost been extirpated from the Dominican Republic and limited inference could be made from our samples. Finally, results were compared with Lagrangian drifting buoys and published Lagrangian virtual particles that travelled through the Dominican Republic and Caribbean waters. Conservation implications of sink-source effects or genetic isolation derived from these complex inter-connections are discussed for each species and population. PMID:23840394

  8. Environmental Impact Research Program. Life History and Environmental Requirements of Loggerhead Sea Turtles.

    DTIC Science & Technology

    1986-01-01

    coast they swim until ? °... they encounter sargassum rafts in the Gulf Stream (Caidwell 1968; Smith 1968; . ’’ Fletemeyer 1978a, 1978b; Carr and...K. A., Meylan, A. B., and Turner, F. J. 1983. "Sea Turtles Nesting at Melbourne Beach, Florida; I: Size, Growth, and Reproductive Biology...Associated with Sargassum Weed," -’ Quarterly Journal of the Florida Academy of Science, Vol 31, No. 4, ..... pp 271-272. 1969. "Addition of the Leatherback

  9. Sulphur Cycling at the Mid-Atlantic Ridge: Isotopic Evidence From the Logatchev and Turtle Pits Hydrothermal Fields

    NASA Astrophysics Data System (ADS)

    Eickmann, B.; Strauss, H.; Koschinsky, A.; Kuhn, T.; Petersen, S.; Schmidt, K.

    2005-12-01

    Mid-ocean ridges and associated hydrothermal vent systems represent a unique scenario in which the interaction of hydrosphere, lithosphere and biosphere and the related element cycling can be studied. Sulphur participates in inorganic and microbially driven processes and plays, thus, an important role at these vent sites. The sulphur isotopic compositions of different sulphur-bearing minerals as well as dissolved sulphur compounds provide a tool for identifying the sulphur source and pertinent processes of sulphur cycling. Here, we present sulphur isotope data from an ongoing study of the Logatchev hydrothermal field at 14°45' N and the Turtle Pits hydrothermal field at 4°48' S. The former is located in 2900 to 3060 m water depth, hosted by ultramafic rocks, while the latter is situated in 2990 m water depth, hosted by basaltic rocks. Different metal sulphides (chalcopyrite, pyrite, pyrrhotite, various copper sulphides), either particles from the emanating hot fluid itself or pieces of active and inactive black smokers, display δ34S values between +2 and +9 ‰. So far, no significant difference is discernible between mineral precipitates from both hydrothermal fields. However, differences exist between different generations of sulphide precipitates. Based on respective data from other sites of hydrothermal activity at mid-ocean ridges, this sulphur isotope range suggests that sulphur in the hydrothermal fluid and mineral precipitates represents a mixture between mantle sulphur and reduced seawater sulphate. Anhydrite precipitates from hydrothermal chimneys, located inside sulphide conduits, and obvious late stage gypsum needles from voids, yielded sulphur isotope values between +17.5 and +20.0 ‰. This clearly identifies seawater sulphate as the principal sulphur source. Variable, but generally low abundances of sulphide and sulphate in differently altered mafic and ultramafic rocks point to a complex fluid-rock interaction. Sulphur isotope values for total

  10. Turtle Girls

    ERIC Educational Resources Information Center

    Nelson, Charles; Ponder, Jennifer

    2010-01-01

    The day the Turtle Girls received Montel's adoption papers, piercing screams ricocheted across the school grounds instantaneously and simultaneously--in that moment, each student felt the joy of civic stewardship. Read on to find out how a visit to The Turtle Hospital inspired a group of elementary students to create a club devoted to supporting…

  11. Turtle Girls

    ERIC Educational Resources Information Center

    Nelson, Charles; Ponder, Jennifer

    2010-01-01

    The day the Turtle Girls received Montel's adoption papers, piercing screams ricocheted across the school grounds instantaneously and simultaneously--in that moment, each student felt the joy of civic stewardship. Read on to find out how a visit to The Turtle Hospital inspired a group of elementary students to create a club devoted to supporting…

  12. Comparison of functional aspects of the coagulation cascade in human and sea turtle plasmas.

    PubMed

    Soslau, Gerald; Wallace, Bryan; Vicente, Catherine; Goldenberg, Seth J; Tupis, Todd; Spotila, James; George, Robert; Paladino, Frank; Whitaker, Brent; Violetta, Gary; Piedra, Rotney

    2004-08-01

    Functional hemostatic pathways are critical for the survival of all vertebrates and have been evolving for more than 400 million years. The overwhelming majority of studies of hemostasis in vertebrates have focused on mammals with very sparse attention paid to reptiles. There have been virtually no studies of the coagulation pathway in sea turtles whose ancestors date back to the Jurassic period. Sea turtles are often exposed to rapidly altered environmental conditions during diving periods. This may reduce their blood pH during prolonged hypoxic dives. This report demonstrates that five species of turtles possess only one branch of the mammalian coagulation pathway, the extrinsic pathway. Mixing studies of turtle plasmas with human factor-deficient plasmas indicate that the intrinsic pathway factors VIII and IX are present in turtle plasma. These two factors may play a significant role in supporting the extrinsic pathway by feedback loops. The intrinsic factors, XI and XII are not detected which would account for the inability of reagents to induce coagulation via the intrinsic pathway in vitro. The analysis of two turtle factors, factor II (prothrombin) and factor X, demonstrates that they are antigenically/functionally similar to the corresponding human factors. The turtle coagulation pathway responds differentially to both pH and temperature relative to each turtle species and relative to human samples. The coagulation time (prothrombin time) increases as the temperature decreases between 37 and 15 degrees C. The increased time follows a linear relationship, with similar slopes for loggerhead, Kemps ridley and hawksbill turtles as well as for human samples. Leatherback turtle samples show a dramatic nonlinear increased time below 23 degrees C, and green turtle sample responses were similar but less dramatic. All samples also showed increased prothrombin times as the pH decreased from 7.8 to 6.4, except for three turtle species. The prothrombin times decreased

  13. Detection of Salmonella enterica Serovar Montevideo and Newport in Free-ranging Sea Turtles and Beach Sand in the Caribbean and Persistence in Sand and Seawater Microcosms.

    PubMed

    Ives, A-K; Antaki, E; Stewart, K; Francis, S; Jay-Russell, M T; Sithole, F; Kearney, M T; Griffin, M J; Soto, E

    2016-12-23

    Salmonellae are Gram-negative zoonotic bacteria that are frequently part of the normal reptilian gastrointestinal flora. The main objective of this project was to estimate the prevalence of non-typhoidal Salmonella enterica in the nesting and foraging populations of sea turtles on St. Kitts and in sand from known nesting beaches. Results suggest a higher prevalence of Salmonella in nesting leatherback sea turtles compared with foraging green and hawksbill sea turtles. Salmonella was cultured from 2/9 and identified by molecular diagnostic methods in 3/9 leatherback sea turtle samples. Salmonella DNA was detected in one hawksbill turtle, but viable isolates were not recovered from any hawksbill sea turtles. No Salmonella was detected in green sea turtles. In samples collected from nesting beaches, Salmonella was only recovered from a single dry sand sample. All recovered isolates were positive for the wzx gene, consistent with the O:7 serogroup. Further serotyping characterized serovars Montevideo and Newport present in cloacal and sand samples. Repetitive-element palindromic PCR (rep-PCR) fingerprint analysis and pulsed-field gel electrophoresis of the 2014 isolates from turtles and sand as well as archived Salmonella isolates recovered from leatherback sea turtles in 2012 and 2013, identified two distinct genotypes and four different pulsotypes, respectively. The genotyping and serotyping were directly correlated. To determine the persistence of representative strains of each serotype/genotype in these environments, laboratory-controlled microcosm studies were performed in water and sand (dry and wet) incubated at 25 or 35°C. Isolates persisted for at least 32 days in most microcosms, although there were significant decreases in culturable bacteria in several microcosms, with the greatest reduction in dry sand incubated at 35°C. This information provides a better understanding of the epizootiology of Salmonella in free-ranging marine reptiles and the potential

  14. Predaceous ants, beach replenishment, and nest placement by sea turtles.

    PubMed

    Wetterer, James K; Wood, Lawrence D; Johnson, Chris; Krahe, Holly; Fitchett, Stephanie

    2007-10-01

    Ants known for attacking and killing hatchling birds and reptiles include the red imported fire ant (Solenopsis invicta Buren), tropical fire ant [Solenopsis geminata (Fabr.)], and little fire ant [Wasmannia auropunctata (Roger)]. We tested whether sea turtle nest placement influenced exposure to predaceous ants. In 2000 and 2001, we surveyed ants along a Florida beach where green turtles (Chelonia mydas L.), leatherbacks (Dermochelys coriacea Vandelli), and loggerheads (Caretta caretta L.) nest. Part of the beach was artificially replenished between our two surveys. As a result, mean beach width experienced by nesting turtles differed greatly between the two nesting seasons. We surveyed 1,548 sea turtle nests (2000: 909 nests; 2001: 639 nests) and found 22 ant species. S. invicta was by far the most common species (on 431 nests); S. geminata and W. auropunctata were uncommon (on 3 and 16 nests, respectively). In 2000, 62.5% of nests had ants present (35.9% with S. invicta), but in 2001, only 30.5% of the nests had ants present (16.4% with S. invicta). Turtle nests closer to dune vegetation had significantly greater exposure to ants. Differences in ant presence on turtle nests between years and among turtle species were closely related to differences in nest placement relative to dune vegetation. Beach replenishment significantly lowered exposure of nests to ants because on the wider beaches turtles nested farther from the dune vegetation. Selective pressures on nesting sea turtles are altered both by the presence of predaceous ants and the practice of beach replenishment.

  15. Distorting gene pools by conservation: Assessing the case of doomed turtle eggs.

    PubMed

    Mrosovsky, N

    2006-10-01

    Sea turtles have a high reproductive output and high mortality at early stages of the life cycle. In particular, many nests are laid below or close to high tide lines, and subsequently large numbers of eggs may be inundated and destroyed. A common conservation procedure is to relocate such doomed eggs to higher ground. This article examines this practice in the light of recent data revealing that some individual turtles tend to nest relatively near the water and others relatively higher up the beach. Discussion is focused on the question of why apparently poor placement of nests has not been selected against. Comparison between the ecology of leatherback and hawksbill turtle nesting beaches suggests that predictability of environmental conditions on the nesting beaches has an important influence on patterns of nest-site selection. Options are outlined for the management of nesting beaches where a high proportion of turtle eggs is subject to destruction by flooding.

  16. Distorting Gene Pools by Conservation: Assessing the Case of Doomed Turtle Eggs

    NASA Astrophysics Data System (ADS)

    Mrosovsky, N.

    2006-10-01

    Sea turtles have a high reproductive output and high mortality at early stages of the life cycle. In particular, many nests are laid below or close to high tide lines, and subsequently large numbers of eggs may be inundated and destroyed. A common conservation procedure is to relocate such doomed eggs to higher ground. This article examines this practice in the light of recent data revealing that some individual turtles tend to nest relatively near the water and others relatively higher up the beach. Discussion is focused on the question of why apparently poor placement of nests has not been selected against. Comparison between the ecology of leatherback and hawksbill turtle nesting beaches suggests that predictability of environmental conditions on the nesting beaches has an important influence on patterns of nest-site selection. Options are outlined for the management of nesting beaches where a high proportion of turtle eggs is subject to destruction by flooding.

  17. Sea turtle distribution along the boundary of the Gulf Stream current off eastern Florida

    USGS Publications Warehouse

    Hoffman, W.; Fritts, T.H.

    1982-01-01

    Aerial surveys, out to 222 km off the east coast of central Florida during August 1980, revealed that marine turtles were distributed in a narrow zone west of the Gulf Stream. Of 255 loggerhead turtles, Caretta caretta, only three were observed east of the western boundary of the Gulf Stream. Radiometric thermometry revealed that the waters occupied by most Caretta were markedly cooler than the nearby waters of the Gulf Stream. Of 18 leatherback turtles, Dermochelys coriacea, all were seen west of the Gulf Stream in waters less than 70 m in depth. Marine turtles off eastern Florida are confined seasonally to nearshore waters west of the Gulf Stream. The records of Dermochelys in nearshore waters are in contrast with a deep water oceanic ecology often hypothesized for this species.

  18. Island-finding ability of marine turtles.

    PubMed Central

    Hays, Graeme C; Akesson, Susanne; Broderick, Annette C; Glen, Fiona; Godley, Brendan J; Papi, Floriano; Luschi, Paolo

    2003-01-01

    Green turtles (Chelonia mydas) swim from foraging grounds along the Brazilian coast to Ascension Island to nest, over 2200 km distant in the middle of the equatorial Atlantic. To test the hypothesis that turtles use wind-borne cues to locate Ascension Island we found turtles that had just completed nesting and then moved three individuals 50 km northwest (downwind) of the island and three individuals 50 km southeast (upwind). Their subsequent movements were tracked by satellite. Turtles released downwind returned to Ascension Island within 1, 2 and 4 days, respectively. By contrast, those released upwind had far more difficulty in relocating Ascension Island, two eventually returning after 10 and 27 days and the third heading back to Brazil after failing to find its way back to the island. These findings strongly support the hypothesis that wind-borne cues are used by turtles to locate Ascension Island. PMID:12952621

  19. Island-finding ability of marine turtles.

    PubMed

    Hays, Graeme C; Akesson, Susanne; Broderick, Annette C; Glen, Fiona; Godley, Brendan J; Papi, Floriano; Luschi, Paolo

    2003-08-07

    Green turtles (Chelonia mydas) swim from foraging grounds along the Brazilian coast to Ascension Island to nest, over 2200 km distant in the middle of the equatorial Atlantic. To test the hypothesis that turtles use wind-borne cues to locate Ascension Island we found turtles that had just completed nesting and then moved three individuals 50 km northwest (downwind) of the island and three individuals 50 km southeast (upwind). Their subsequent movements were tracked by satellite. Turtles released downwind returned to Ascension Island within 1, 2 and 4 days, respectively. By contrast, those released upwind had far more difficulty in relocating Ascension Island, two eventually returning after 10 and 27 days and the third heading back to Brazil after failing to find its way back to the island. These findings strongly support the hypothesis that wind-borne cues are used by turtles to locate Ascension Island.

  20. 78 FR 65959 - Proposed Designation of Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta caretta...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta caretta, Under the Endangered Species Act... related to our Proposed Designation of Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta... Critical Habitat for the Northwest Atlantic Ocean Loggerhead Sea Turtle Distinct Population Segment (DPS...

  1. 78 FR 51705 - Proposed Designation of Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta caretta...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta caretta, Under the Endangered Species Act... related to our Proposed Designation of Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta... Designation of Critical Habitat for the Northwest Atlantic Ocean Loggerhead Sea Turtle Distinct Population...

  2. Repair and Dredging of Bear Creek Marina Final Environmental Assessment

    DTIC Science & Technology

    2007-06-01

    Leatherback sea turtle (Dermochelys coriacea), Atlantic hawksbill sea turtle , (Eretmochelys imbricate), the green turtle (Chelonia mydas), the loggerhead...biological resources. Threatened and endangered species (sturgeon and sea turtles ) would not be affected. Marine mammals (dolphins) would not be...would also restrict sediments from affecting seagrass beds outside of the marina and deter sturgeon, sea turtles and marina mammals from entering the

  3. Molecular phylogeny for marine turtles based on sequences of the ND4-leucine tRNA and control regions of mitochondrial DNA.

    PubMed

    Dutton, P H; Davis, S K; Guerra, T; Owens, D

    1996-06-01

    Marine turtles are divided into two families, the Dermochelyidae and the Cheloniidae. The majority of species are currently placed within the two tribes of the Cheloniidae, the Chelonini and the Carettini, but debate continues over generic and tribal affinities as well as species boundaries. We used nucleotide sequences (907 bp) from the ND4-LEU tRNA region and the control region (526 bp) of mitochondrial DNA to resolve areas of uncertainty in marine turtle (Chelonioidae) systematics. The ND4-LEU tRNA fragment was more conserved than the fragment from the control region, with sequence divergences ranging from 0.026 to 0.148 and 0.067 to 0.267, respectively. Parsimony analysis based only on the ND4-LEU tRNA data suggests that the hawksbill, Eretmochelys imbricata, lies within the tribe Carettni and is closely related to the genus Caretta, but could not resolve the position of the flatback, Natator depressus. A similar analysis based only on the control region sequence data suggested that N. depressus is affiliated with the Chelonini, but failed to resolve the position of E. imbricata and the loggerhead, Caretta caretta. In contrast to these results, the combination of both data sets with published cytochrome b data produced a phylogeny based on 1924 bp of sequence data which resolves the position of E. imbricata relative to Caretta and Lepidochelys and joins N. depressus as sister to the Carettini. Based on the molecular data, the Chelonini contains the Chelonia species, while the Carettini contains the remaining species of Cheloniidae. The control region sequence divergence between Pacific and Atlantic populations of the leatherback, Dermochelys coriacea, was relatively low (0.0081) when compared with the green turtle, Chelonia mydas (0.071-0.074). Atlantic and Pacific populations of Ch. mydas were found to be paraphyletic with respect to the black turtle, Ch. agassizi, suggesting that the current taxonomic designations within the Pacific Chelonia are questionable

  4. Metal contamination as a possible etiology of fibropapillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean.

    PubMed

    da Silva, Cinthia Carneiro; Klein, Roberta Daniele; Barcarolli, Indianara Fernanda; Bianchini, Adalto

    2016-01-01

    Environmental contaminants have been suggested as a possible cause of fibropapillomatosis (FP) in green sea turtles. In turn, a reduced concentration of serum cholesterol has been indicated as a reliable biomarker of malignancy in vertebrates, including marine turtles. In the present study, metal (Ag, Cd, Cu, Fe, Ni, Pb and Zn) concentrations, oxidative stress parameters [antioxidant capacity against peroxyl radicals (ACAP), protein carbonyls (PC), lipid peroxidation (LPO), frequency of micronucleated cells (FMC)], water content, cholesterol concentration and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity were analyzed in the blood/serum of juvenile (29.3-59.5cm) female green sea turtles (Chelonia mydas) with FP (n=14) and without FP (n=13) sampled at Ubatuba coast (São Paulo State, southeastern Brazil). Green sea turtles were grouped and analyzed according to the severity of tumors. Individuals heavily afflicted with FP showed significantly higher blood Cu, Pb and Fe concentrations, blood LPO levels, as well as significantly lower serum cholesterol concentrations and HMGR activity than turtles without FP. Significant and positive correlations were observed between HMGR activity and cholesterol concentrations, as well as LPO levels and Fe and Pb concentrations. In turn, Cu and Pb concentrations were significantly and negatively correlated with HMGR activity and cholesterol concentration. Furthermore, Cu, Fe and Pb were positively correlated with each other. Therefore, the reduced concentration of serum cholesterol observed in green sea turtles heavily afflicted with FP is related to a Cu- and Pb-induced inhibition of HMGR activity paralleled by a higher LPO rate induced by increased Fe and Pb concentrations. As oxidative stress is implicated in the pathogenesis of viral infections, our findings support the idea that metal contamination, especially by Cu, Fe and Pb, may be implicated in the etiology of FP in green sea turtles through oxidative stress

  5. Gulf Coast Sea Turtle Hatchlings Released at KSC

    NASA Image and Video Library

    The first group of hatchlings from endangered sea turtle eggs brought from beaches along the northern U.S. Gulf Coast was released into the Atlantic Ocean off NASA's Kennedy Space Center in Florida...

  6. Comparative study of polycyclic aromatic hydrocarbons (PAHs) in plasma of Eastern Atlantic juvenile and adult nesting loggerhead sea turtles (Caretta caretta).

    PubMed

    Camacho, María; Boada, Luis D; Orós, Jorge; Calabuig, Pascual; Zumbado, Manuel; Luzardo, Octavio P

    2012-09-01

    Polycyclic aromatic hydrocarbons (PAHs) were measured in plasma samples of 162 juvenile loggerhead sea turtles (Caretta caretta) from Canary Islands, and 205 adult nesting loggerheads from Cape Verde. All the 367 samples showed detectable values of some type of PAH. Phenanthrene was the PAH most frequently detected and at the highest concentration in both populations. Median concentrations of ∑PAHs in the plasma of loggerheads from the Canary Islands and Cape Verde were similar (5.5 and 4.6 ng/ml, respectively). Di- and tri-cyclic PAHs were predominant in both populations suggesting petrogenic origin rather than urban sources of PAHs. In the group of turtles from Canary Islands, there was evident an increasing level of contamination over the last few years. The present study represents the first data of contamination by PAHs in sea turtles from the studied areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Pleated turtle escapes the box--shape changes in Dermochelys coriacea.

    PubMed

    Davenport, John; Plot, Virginie; Georges, Jean-Yves; Doyle, Thomas K; James, Michael C

    2011-10-15

    Typical chelonians have a rigid carapace and plastron that form a box-like structure that constrains several aspects of their physiology and ecology. The leatherback sea turtle, Dermochelys coriacea, has a flexible bony carapace strengthened by seven longitudinal ridges, whereas the plastron is reduced to an elliptical outer bony structure, so that the ventrum has no bony support. Measurements of the shell were made on adult female leatherbacks studied on the feeding grounds of waters off Nova Scotia (NS) and on breeding beaches of French Guiana (FG) to examine whether foraging and/or breeding turtles alter carapace size and/or shape. NS turtles exhibited greater mass and girth for a given curved carapace length (CCL) than FG turtles. Girth:CCL ratios rose during the feeding season, indicating increased girth. Measurements were made of the direct (straight) and surface (curved) distances between the medial longitudinal ridge and first right-hand longitudinal ridge (at 50% CCL). In NS turtles, the ratio of straight to curved inter-ridge distances was significantly higher than in FG turtles, indicating distension of the upper surfaces of the NS turtles between the ridges. FG females laid 11 clutches in the breeding season; although CCL and curved carapace width remained stable, girth declined between each nesting episode, indicating loss of mass. Straight to curved inter-ridge distance ratios did not change significantly during the breeding season, indicating loss of dorsal blubber before the onset of breeding. The results demonstrate substantial alterations in size and shape of female D. coriacea over periods of weeks to months in response to alterations in nutritional and reproductive status.

  8. Turtles, birds, and mammals in the northern Gulf of Mexico and nearby Atlantic waters. An overview based on aerial surveys of OCS areas, with emphasis on oil and gas effects

    SciTech Connect

    Fritts, T.H.; Irvine, A.B.; Jennings, R.D.; Collum, L.A.; Hoffman, W.; McGehee, M.A.

    1983-07-01

    Aerial line transect surveys of marine turtles, birds, and mammals were conducted in four areas of the Gulf of Mexico and nearby Atlantic waters. Areas surveyed were 111 km by 222 km and located off Brownsville, Texas; Marsh Island, Louisiana; Naples, Florida; and Merritt Island, Florida. Data on distribution, abundance, seasonal occurrence, and habitat use are reported in accounts for each of the 88 species observed. Information on reproduction, behavior, and potential impacts of Outer Continental Shelf (OCS) development are also discussed. Later chapters summarize the fauna of each of the four areas; characterize the inshore, nearshore, and offshore fauna; and discuss the effects of OCS development on marine vertebrates. 460 references, 167 figures, 65 tables.

  9. Impact of jaguar Panthera onca (Carnivora: Felidae) predation on marine turtle populations in Tortuguero, Caribbean coast of Costa Rica.

    PubMed

    Arroyo-Arce, Stephanny; Salom-Pérez, Roberto

    2015-09-01

    Little is known about the effects of jaguars on the population of marine turtles nesting in Tortuguero National Park, Costa Rica. This study assessed jaguar predation impact on three species of marine turtles (Chelonia mydas, Dermochelys coriacea and Eretmochelys imbricata) that nest in Tortuguero beach. Jaguar predation data was obtained by using two methodologies, literature review (historical records prior the year 2005) and weekly surveys along the 29 km stretch of beach during the period 2005-2013. Our results indicated that jaguar predation has increased from one marine turtle in 1981 to 198 in 2013. Jaguars consumed annually an average of 120 (SD = 45) and 2 (SD = 3) green turtles and leatherbacks in Tortuguero beach, respectively. Based on our results we concluded that jaguars do not represent a threat to the population of green turtles that nest in Tortuguero beach, and it is not the main cause for population decline for leatherbacks and hawksbills. Future research should focus on continuing to monitor this predator-prey relationship as well as the factors that influence it so the proper management decisions can be taken.

  10. Environmental effects of dredging: Alternative dredging equipment and operational methods to minimize sea turtle mortalities. Technical notes

    SciTech Connect

    Dickerson, D.D.; Nelson, D.A.

    1990-12-01

    Five species of sea turtles occur along the United States coastlines and are listed as threatened or endangered. The loggerhead sea turtle (Caretta caretta) is listed as threatened, while the Kemp`s ridley (Lepidochelys kenipi), the hawksbill (Eretmochelys imbricata), and the leatherback (Dermochelys coriacea) are all less abundant and listed as endangered. Florida breeding populations of the green sea turtle (Chelonia mydas) are listed as endangered, but green turtles in other US waters are considered threatened. The National Marine Fisheries Service (NMFS) has determined, based on the best available information, that because of their life cycle and behavioral patterns only the loggerhead, the green, and the Kemp`s ridley are put at risk by hopper dredging activities (Studt 1987).

  11. Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and δ15N Analysis of Amino Acids

    PubMed Central

    Seminoff, Jeffrey A.; Benson, Scott R.; Arthur, Karen E.; Eguchi, Tomoharu; Dutton, Peter H.; Tapilatu, Ricardo F.; Popp, Brian N.

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ15N values of bulk skin, with distinct “low δ15N” and “high δ15N” groups. δ15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  12. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    PubMed

    Seminoff, Jeffrey A; Benson, Scott R; Arthur, Karen E; Eguchi, Tomoharu; Dutton, Peter H; Tapilatu, Ricardo F; Popp, Brian N

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15)N values of bulk skin, with distinct "low δ(15)N" and "high δ(15)N" groups. δ(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  13. Programmatic Environmental Assessment for the Construction, Maintenance and Demolition of Communications, Wind, Water, and Camera Towers at the 45th Space Wing, Florida

    DTIC Science & Technology

    2005-10-01

    Atlantic loggerhead turtle , Atlantic green sea turtle , leatherback turtle , hawksbill turtle , gopher tortoise, Eastern indigo snake, roseate spoonbill...Integrated Natural Resources Management Plan (INRMP) with specific land-management objectives identified in the Scrub Jay and Sea Turtle Management Plans...skimmers have also been documented nesting on the beach. Beaches on CCAFS are also very important nesting habitat for two species of sea turtles

  14. First satellite tracks of neonate sea turtles redefine the 'lost years' oceanic niche.

    PubMed

    Mansfield, Katherine L; Wyneken, Jeanette; Porter, Warren P; Luo, Jiangang

    2014-04-22

    Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle 'lost years'. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle 'lost years' paradigms.

  15. Geomagnetic Navigation in Sea Turtles

    NASA Astrophysics Data System (ADS)

    Lohmann, K.; Putman, N.; Lohmann, C.

    2011-12-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida undertake a transoceanic migration in which they gradually circle the north Atlantic Ocean before returning to the North American coast. Newly hatched turtles (hatchlings) begin the migration with a 'magnetic map' in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial geographic boundaries. In laboratory experiments, young turtles that had never before been in the ocean were exposed to fields like those that exist at various, widely separated locations along their transoceanic migratory route. Turtles responded by swimming in directions that would, in each case, help them remain within the North Atlantic gyre currents and advance along the migratory pathway. The results demonstrate that turtles can derive both longitudinal and latitudinal information from the Earth's field, and provide strong evidence that hatchling loggerheads inherit a remarkably elaborate set of responses that function in guiding them along their open-sea migratory route. For young sea turtles, couplings of oriented swimming to regional magnetic fields appear to provide the fundamental building blocks from which natural selection can sculpt a sequence of responses capable of guiding first-time ocean migrants along complex migratory routes. The results imply that hatchlings from different populations in different parts of the world are likely to have magnetic navigational responses uniquely suited for the migratory routes that each group follows. Thus, from a conservation perspective, turtles from different populations are not interchangeable. From an evolutionary perspective, the responses are not incompatible with either secular variation or magnetic polarity reversals. As Earth's field gradually changes, strong selective pressure presumably acts to maintain an approximate match between the responses of hatchlings and the fields that exist at critical points along

  16. Renal oxalosis in free-ranging green turtles Chelonia mydas.

    PubMed

    Stacy, Brian A; Santoro, Mario; Morales, Juan Alberto; Huzella, Louis M; Kalasinsky, Victor F; Foley, Allen; Mettee, Nancy; Jacobson, Elliott R

    2008-06-19

    Eighteen green turtles Chelonia mydas recovered from the Atlantic and Gulf coasts of Florida and Tortuguero National Park, Costa Rica, were diagnosed with renal oxalosis by histopathological examination. Affected sea turtles included 14 adults and 4 immature animals, which comprised 26% (18/69) of green turtle necropsy cases available for review. Calcium oxalate deposition ranged from small to moderate amounts and was associated with granuloma formation and destruction of renal tubules. All affected turtles died from traumatic events or health problems unrelated to renal oxalosis; however, 1 immature turtle had notable associated renal injury. Crystal composition was confirmed by infrared and scanning electron microscopy and energy dispersive X-ray analysis. The source of calcium oxalate is unknown and is presumed to be of dietary origin.

  17. Identification of likely foraging habitat of pelagic loggerhead sea turtles ( Caretta caretta) in the North Atlantic through analysis of telemetry track sinuosity

    NASA Astrophysics Data System (ADS)

    McCarthy, Abigail L.; Heppell, Selina; Royer, Francois; Freitas, Carla; Dellinger, Thomas

    2010-07-01

    Changes in the behavior of individual animals in response to environmental characteristics can provide important information about habitat preference, as well as the relative risk that animals may face based on the amount of time spent in hazardous areas. We analyzed movement and habitat affinities of ten loggerhead turtles ( Caretta caretta) tagged with satellite transmitters in the spring and fall of 1998 near Madeira, Portugal for periods of 2-10 months. We analyzed the behavior of these individuals in relation to the marine environment they occupied. As a measure of behavior we calculated the straightness index (SI), the ratio of the displacement of the animal to the total distance traveled, for individual weekly segments of the 10 tracks. We then extracted information about chlorophyll a concentration, sea-surface temperature (SST), bathymetry, and geostrophic current of the ocean in a 20-km buffer surrounding the tracks, and examined their relationship to the straightness index using generalized linear models. Chlorophyll a value, bathymetry and SST were significantly related to the straightness index of the tracks of all ten animals, as was the circular standard deviation of the geostrophic current (Wald’s test: p = 0.001, p = 0.008, p = 0.025, and p = 0.049, respectively). We found a significant negative relationship between straightness index and chlorophyll, and positive relationships with ocean depth and SST indicating that animals are spending more time and searching more thoroughly in areas with high chlorophyll concentrations and in areas that are shallower, while moving in straight paths through very warm areas. We also found a positive relationship between straightness index and the circular standard deviation of surrounding geostrophic currents suggesting that these turtles are more likely to move in a straight line when in the presence of diffuse, less-powerful currents. Based on these relationships, we propose that conservation planning to

  18. Management and protection protocols for nesting sea turtles on Cape Hatteras National Seashore, North Carolina

    USGS Publications Warehouse

    Cohen, J.B.

    2005-01-01

    Executive Summary 1. The southeast U.S. population of the loggerhead turtle (Caretta caretta) has increased since the species was listed as federally threatened in 1978. Since standardized monitoring began in North Carolina in 1995, the number of nests at Cape Hatteras National Seashore (CAHA) fluctuated from year to year, and was lowest in 1996 and 1997 (39 nests) and highest in 2003 (101 nests). Green turtles (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) have nested in small numbers at CAHA, sporadically over time. 2. Hatching success of sea turtle nests typically approaches 80%. At CAHA hatching success from 1999-2003 was low when hurricanes hit during the nesting season (30%-38%), and ranged from 52%-70% otherwise. Hatching success at CAHA is usually correlated with hatching success in the surrounding subpopulation (north Florida to North Carolina). 3. Inclement weather, predation, and human recreation can negatively impact nesting rate and hatching success. 4. Currently there is little protection from recreation at CAHA for nesting females and nests that have not been found by monitors. We propose three management options to provide such protection, and to increase protection for known nests and hatchlings. We propose an adaptive management framework for assessing the effectiveness of these management options in improving sea turtle nesting rate and nest and hatchling survival. 5. We recommend continued efforts to trap and remove mammalian predators from all sea turtle habitat. We further recommend intensive monitoring and surveillance of protected areas to determine the extent and timing of threats to nests and broods, including nest overwash, predation, and disturbance or vandalism by humans. 6. Continue to relocate nests and assist stranded turtles according to North Carolina Wildlife Resources Commission guidelines. 7. Artificial light sources pose a serious threat to sea turtles in some parts of CAHA, which must be remedied immediately

  19. Palaeontology: turtles in transition.

    PubMed

    Lee, Michael S Y

    2013-06-17

    One of the major remaining gaps in the vertebrate fossil record concerns the origin of turtles. The enigmatic little reptile Eunotosaurus could represent an important transitional form, as it has a rudimentary shell that resembles the turtle carapace.

  20. Characterization of marine mammals and turtles in the mid- and north-Atlantic areas of the US Outer Continental Shelf: executive summary for 1979. Final report 1979-81

    SciTech Connect

    Not Available

    1981-04-01

    The program's objectives are as follows: (1) to determine which species of marine mammals and marine turtles inhabit and/or migrate through the study area; (2) to identify, delineate and describe areas of importance (feeding, breeding, calving, etc.) to marine mammals and marine turtles in the study area; (3) to determine the temporal and spatial distribution of marine mammals and marine turtles in the study area; (4) to estimate the size of and extent of marine mammal and marine turtle populations in the study area; and (5) to emphasize the above item 1-4 for those species classified as threatened or endangered by the Department of Interior and Department of Commerce.

  1. Underwater sightings of sea turtles in the northern Gulf of Mexico. Final report

    SciTech Connect

    Rosman, I.; Boland, G.S.; Martin, L.; Chandler, C.

    1987-10-01

    Between 1975 and 1985, eight scientific studies were conducted in the northern Gulf of Mexico. The purpose here was to review the data collected from all eight studies for information concerning underwater sightings of sea turtles. Records of 1,024 scuba dives, 909 hours of underwater video and submersible observations, and some 1,500 days of time-lapse photographic observations were compiled from published reports, data logs, and photographic material. The effort yielded 268 verifiable underwater sightings of sea turtles, 231 of which came from time-lapse cameras. The majority of sightings that could be identified by species were of loggerheads. Other species sighted included three leatherbacks and one Kemp's Ridley.

  2. Opening and closing mechanisms of the leatherback sea turtle larynx: a crucial role for the tongue.

    PubMed

    Fraher, John; Davenport, John; Fitzgerald, Edward; McLaughlin, Patrick; Doyle, Tom; Harman, Luke; Cuffe, Tracy

    2010-12-15

    A combination of dissection and computed tomography scanning has provided significant novel insights into the structure and function of the Dermochelys coriacea larynx and its associated muscles. Several previously unknown features of the laryngeal aditus (glottis) are described and their functional significance in its opening and closure are considered. The tongue plays an essential part in producing and maintaining closure during dives and feeding bouts. Closure is brought about by compression of the glottis under the action of the two hyoglossus muscles. The tongue thus plays the role of the epiglottis of mammals, sealing the entrance to the larynx. As is already clear, opening is brought about by abduction of the arytenoid cartilages. In addition, there is a powerful mechanism for maintaining the larynx in close apposition to the hyoid plate during feeding and neck flexion, thereby enhancing the efficiency of feeding.

  3. Regional magnetic fields as navigational markers for sea turtles.

    PubMed

    Lohmann, K J; Cain, S D; Dodge, S A; Lohmann, C M

    2001-10-12

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida undertake a transoceanic migration in which they gradually circle the north Atlantic Ocean before returning to the North American coast. Here we report that hatchling loggerheads, when exposed to magnetic fields replicating those found in three widely separated oceanic regions, responded by swimming in directions that would, in each case, help keep turtles within the currents of the North Atlantic gyre and facilitate movement along the migratory pathway. These results imply that young loggerheads have a guidance system in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial geographic boundaries.

  4. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    PubMed Central

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  5. The Classroom Animal: Box Turtles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1986-01-01

    Provides basic information on the anatomy, physiology, behaviors, and distribution patterns of the box turtle. Offers suggestions for the turtle's care and maintenance in a classroom environment. (ML)

  6. The Classroom Animal: Box Turtles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1986-01-01

    Provides basic information on the anatomy, physiology, behaviors, and distribution patterns of the box turtle. Offers suggestions for the turtle's care and maintenance in a classroom environment. (ML)

  7. Natal homing in juvenile loggerhead turtles (Caretta caretta).

    PubMed

    Bowen, Brian W; Bass, Anna L; Chow, Shaio-Mei; Bostrom, Meredith; Bjorndal, Karen A; Bolten, Alan B; Okuyama, Toshinori; Bolker, Benjamin M; Epperly, Sheryan; Lacasella, Erin; Shaver, Donna; Dodd, Mark; Hopkins-Murphy, Sally R; Musick, John A; Swingle, Mark; Rankin-Baransky, Karen; Teas, Wendy; Witzell, Wayne N; Dutton, Peter H

    2004-12-01

    Juvenile loggerhead turtles (Caretta caretta) from West Atlantic nesting beaches occupy oceanic (pelagic) habitats in the eastern Atlantic and Mediterranean, whereas larger juvenile turtles occupy shallow (neritic) habitats along the continental coastline of North America. Hence the switch from oceanic to neritic stage can involve a trans-oceanic migration. Several researchers have suggested that at the end of the oceanic phase, juveniles are homing to feeding habitats in the vicinity of their natal rookery. To test the hypothesis of juvenile homing behaviour, we surveyed 10 juvenile feeding zones across the eastern USA with mitochondrial DNA control region sequences (N = 1437) and compared these samples to potential source (nesting) populations in the Atlantic Ocean and Mediterranean Sea (N = 465). The results indicated a shallow, but significant, population structure of neritic juveniles (PhiST = 0.0088, P = 0.016), and haplotype frequency differences were significantly correlated between coastal feeding populations and adjacent nesting populations (Mantel test R2 = 0.52, P = 0.001). Mixed stock analyses (using a Bayesian algorithm) indicated that juveniles occurred at elevated frequency in the vicinity of their natal rookery. Hence, all lines of evidence supported the hypothesis of juvenile homing in loggerhead turtles. While not as precise as the homing of breeding adults, this behaviour nonetheless places juvenile turtles in the vicinity of their natal nesting colonies. Some of the coastal hazards that affect declining nesting populations may also affect the next generation of turtles feeding in nearby habitats.

  8. Hierarchical, quantitative biogeographic provinces for all North American turtles and their contribution to the biogeography of turtles and the continent

    USGS Publications Warehouse

    Ennen, Joshua R.; Matamoros, Wilfredo A.; Agha, Mickey; Lovich, Jeffrey E.; Sweat, Sarah C.; Hoagstrom, Christopher W.

    2017-01-01

    and endemism concentrated along the more stable Gulf of México and Atlantic (south of the last permafrost maximum) coasts. Although distribution data indicate two aquatic turtles are most cold tolerant (i.e., Chrysemys picta, Chelydra serpentina), aquatic turtles overall show the most restriction to warmer, wetter climates. Sequential addition of semiaquatic and terrestrial turtles into analyses shows, as expected, that these taxa flesh out turtle faunas in climatically harsh (e.g., grasslands) or remote (e.g., California, Sonoran Desert) regions. The turtle assemblages of southwestern versus southeastern North America are distinct. But there is a transition zone across the semiarid plains of the Texas Gulf Coast, High Plains, and Chihuahuan Desert, including a strong boundary congruent with the Cochise Filter-Barrier. This is not a simple subdivision of Neotropical versus Nearctic taxa, as some lineages from both realms span the transition zone.

  9. THE BOG TURTLE: Georgia's Rarest Turtle.

    ERIC Educational Resources Information Center

    Wilson, Lawrence

    1991-01-01

    This article discusses the description and range, the status, the habitat, the natural history, and the proper management of the diminutive, rare, and endangered species known as the box turtle. (JJK)

  10. THE BOG TURTLE: Georgia's Rarest Turtle.

    ERIC Educational Resources Information Center

    Wilson, Lawrence

    1991-01-01

    This article discusses the description and range, the status, the habitat, the natural history, and the proper management of the diminutive, rare, and endangered species known as the box turtle. (JJK)

  11. Body temperature stability achieved by the large body mass of sea turtles.

    PubMed

    Sato, Katsufumi

    2014-10-15

    To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses. © 2014. Published by The Company of Biologists Ltd.

  12. An odyssey of the green sea turtle: Ascension Island revisited

    PubMed Central

    Bowen, Brian W.; Meylan, Anne B.; Avise, John C.

    1989-01-01

    Green turtles (Chelonia mydas) that nest on Ascension Island, in the south-central Atlantic, utilize feeding grounds along the coast of Brazil, more than 2000 km away. To account for the origins of this remarkable migratory behavior, Carr and Coleman [Carr, A. & Coleman, P. J. (1974) Nature (London) 249, 128-130] proposed a vicariant biogeographic scenario involving plate tectonics and natal homing. Under the Carr-Coleman hypothesis, the ancestors of Ascension Island green turtles nested on islands adjacent to South America in the late Cretaceous, soon after the opening of the equatorial Atlantic Ocean. Over the last 70 million years, these volcanic islands have been displaced from South America by sea-floor spreading, at a rate of about 2 cm/year. A population-specific instinct to migrate to Ascension Island is thus proposed to have evolved gradually over tens of millions of years of genetic isolation. Here we critically test the Carr-Coleman hypothesis by assaying genetic divergence among several widely separated green turtle rookeries. We have found fixed or nearly fixed mitochondrial DNA (mtDNA) restriction site differences between some Atlantic rookeries, suggesting a severe restriction on contemporary gene flow. Data are consistent with a natal homing hypothesis. However, an extremely close similarity in overall mtDNA sequences of surveyed Atlantic green turtles from three rookeries is incompatible with the Carr-Coleman scenario. The colonization of Ascension Island, or at least extensive gene flow into the population, has been evolutionarily recent. Images PMID:16594013

  13. An odyssey of the green sea turtle: Ascension Island revisited.

    PubMed

    Bowen, B W; Meylan, A B; Avise, J C

    1989-01-01

    Green turtles (Chelonia mydas) that nest on Ascension Island, in the south-central Atlantic, utilize feeding grounds along the coast of Brazil, more than 2000 km away. To account for the origins of this remarkable migratory behavior, Carr and Coleman [Carr, A. & Coleman, P. J. (1974) Nature (London) 249, 128-130] proposed a vicariant biogeographic scenario involving plate tectonics and natal homing. Under the Carr-Coleman hypothesis, the ancestors of Ascension Island green turtles nested on islands adjacent to South America in the late Cretaceous, soon after the opening of the equatorial Atlantic Ocean. Over the last 70 million years, these volcanic islands have been displaced from South America by sea-floor spreading, at a rate of about 2 cm/year. A population-specific instinct to migrate to Ascension Island is thus proposed to have evolved gradually over tens of millions of years of genetic isolation. Here we critically test the Carr-Coleman hypothesis by assaying genetic divergence among several widely separated green turtle rookeries. We have found fixed or nearly fixed mitochondrial DNA (mtDNA) restriction site differences between some Atlantic rookeries, suggesting a severe restriction on contemporary gene flow. Data are consistent with a natal homing hypothesis. However, an extremely close similarity in overall mtDNA sequences of surveyed Atlantic green turtles from three rookeries is incompatible with the Carr-Coleman scenario. The colonization of Ascension Island, or at least extensive gene flow into the population, has been evolutionarily recent.

  14. Investigation of plastic debris ingestion by four species of sea turtles collected as bycatch in pelagic Pacific longline fisheries

    USGS Publications Warehouse

    Clukey, Katherine E.; Lepczyk, Christopher A.; Balazs, George H.; Work, Thierry M.; Lynch, Jennifer M.

    2017-01-01

    Ingestion of marine debris is an established threat to sea turtles. The amount, type, color and location of ingested plastics in the gastrointestinal tracts of 55 sea turtles from Pacific longline fisheries from 2012 to 2016 were quantified, and compared across species, turtle length, body condition, sex, capture location, season and year. Six approaches for quantifying amounts of ingested plastic strongly correlated with one another and included: number of pieces, mass, volume and surface area of plastics, ratio of plastic mass to body mass, and percentage of the mass of gut contents consisting of plastic. All olive ridley (n = 37), 90% of green (n = 10), 80% of loggerhead (n = 5) and 0% of leatherback (n = 3) turtles had ingested plastic; green turtles ingested significantly more than olive ridleys. Most debris was in the large intestines. No adverse health impacts (intestinal lesions, blockage, or poor body condition) due directly to plastic ingestion were noted.

  15. Prime time for turtle conservation

    Treesearch

    A. Ross Kiester; Deanna H. Olson

    2011-01-01

    Our turtle heritage is diminishing at a rate outpacing that of other main animal groups. The 2011-Year of the Turtle partnership and campaign is an opportunity to raise awareness for turtles, celebrate our turtle heritage, herald conservation and research successes, and identify gaps in our understanding that can be the focus of future work. We outline seven...

  16. Florida snapping turtle

    NASA Image and Video Library

    2007-10-22

    A rare photo of a Florida snapping turtle out in the open on Beach Road, near NASA's Kennedy Space Center. Found only in Florida and Georgia, this species is related to the common snapping turtle. It is considered a dangerous turtle because it can snap very quickly with its extremely strong jaws. Its tail, which is almost as long as its shell, has saw-edges along the top. The shell also has rough points down the middle. The shell is tan to dark brown and may have green algae growing on it. It can grow to 17 inches long and weigh 45 pounds. Snapping turtles usually live in ponds under the shadows and don’t like to rest in the sun like most turtles. They eat almost anything: water bugs, fish, lizards, small birds, mice, plants and even dead animals

  17. Florida snapping turtle

    NASA Image and Video Library

    2007-10-22

    A rare photo of a Florida snapping turtle out in the open on Beach Road, near NASA's Kennedy Space Center. Found only in Florida and Georgia, this species is related to the common snapping turtle. It is considered a dangerous turtle because it can snap very quickly with its extremely strong jaws. Its tail, which is almost as long as its shell, has saw-edges along the top. The shell also has rough points down the middle. The shell is tan to dark brown and may have green algae growing on it. It can grow to 17 inches long and weigh 45 pounds. Snapping turtles usually live in ponds under the shadows and don’t like to rest in the sun like most turtles. They eat almost anything: water bugs, fish, lizards, small birds, mice, plants and even dead animals.

  18. Hatching behavior in turtles.

    PubMed

    Spencer, Ricky-John; Janzen, Fredric J

    2011-07-01

    Incubation temperature plays a prominent role in shaping the phenotypes and fitness of embryos, including affecting developmental rates. In many taxa, including turtles, eggs are deposited in layers such that thermal gradients alter developmental rates within a nest. Despite this thermal effect, a nascent body of experimental work on environmentally cued hatching in turtles has revealed unexpected synchronicity in hatching behavior. This review discusses environmental cues for hatching, physiological mechanisms behind synchronous hatching, proximate and ultimate causes for this behavior, and future directions for research. Four freshwater turtle species have been investigated experimentally, with hatching in each species elicited by different environmental cues and responding via various physiological mechanisms. Hatching of groups of eggs in turtles apparently involves some level of embryo-embryo communication and thus is not a purely passive activity. Although turtles are not icons of complex social behavior, life-history theory predicts that the group environment of the nest can drive the evolution of environmentally cued hatching.

  19. Monoclonal antibodies for the measurement of class-specific antibody responses in the green turtle, Chelonia mydas.

    PubMed

    Herbst, L H; Klein, P A

    1995-06-01

    Ridley (Lepidochelys olivacea), Kemp's Ridley (Lepidochelys kempi), Hawksbill (Eretmochelys imbricata), and Leatherback (Dermochelys coriacea). While the Mabs specific for IgM and 5.7S IgY reacted only with the green turtle, two Mabs specific for light chain reacted with all species except the leatherback, and nine mabs specific for 7S IgY heavy chain reacted with all five species. Thus, these Mabs may be useful for immunodiagnostic applications in these endangered species as well.

  20. Underwater Hearing in Turtles.

    PubMed

    Willis, Katie L

    2016-01-01

    The hearing of turtles is poorly understood compared with the other reptiles. Although the mechanism of transduction of sound into a neural signal via hair cells has been described in detail, the rest of the auditory system is largely a black box. What is known is that turtles have higher hearing thresholds than other reptiles, with best frequencies around 500 Hz. They also have lower underwater hearing thresholds than those in air, owing to resonance of the middle ear cavity. Further studies demonstrated that all families of turtles and tortoises share a common middle ear cavity morphology, with scaling best suited to underwater hearing. This supports an aquatic origin of the group. Because turtles hear best under water, it is important to examine their vulnerability to anthropogenic noise. However, the lack of basic data makes such experiments difficult because only a few species of turtles have published audiograms. There are also almost no behavioral data available (understandable due to training difficulties). Finally, few studies show what kinds of sounds are behaviorally relevant. One notable paper revealed that the Australian snake-necked turtle (Chelodina oblonga) has a vocal repertoire in air, at the interface, and under water. Findings like these suggest that there is more to the turtle aquatic auditory scene than previously thought.

  1. Metabolic scaling in turtles.

    PubMed

    Ultsch, Gordon R

    2013-04-01

    Bennett and Dawson (1976) presented an analysis of the relationship of metabolic rate (MR) and body mass among turtles, based on 10 studies, but unlike most of other groups of ectotherms, there has been no update to include the many later reports on turtles. Here I present a review of the data on turtle metabolic rates at 20, 25, and 30°C, along with regression equations and graphical analyses from a large number of studies. Two generalities emerge: (1) reported metabolic rates for sea turtles are higher than for other chelonians, although it is not certain whether this is an intrinsic characteristic of sea turtles or an artifact related to experimental conditions (such as greater activity of sea turtles in metabolic chambers and the fact that a number of studies were done with the turtles out of water), and (2) the slopes of the log-log plots of metabolic rate (MR) vs. body mass [b in the allometric equation MR=a(mass)(b)] are mostly lower than previously reported in smaller studies.

  2. Adaptive patterns of mitogenome evolution are associated with the loss of shell scutes in turtles.

    PubMed

    Escalona, Tibisay; Weadick, Cameron J; Antunes, Agostinho

    2017-06-06

    The mitochondrial genome encodes several protein components of the oxidative phosphorylation (OXPHOS) pathway and is critical for aerobic respiration. These proteins have evolved adaptively in many taxa, but linking molecular-level patterns with higher-level attributes (e.g., morphology, physiology) remains a challenge. Turtles are a promising system for exploring mitochondrial genome evolution as different species face distinct respiratory challenges and employ multiple strategies for ensuring efficient respiration. One prominent adaptation to a highly aquatic lifestyle in turtles is the secondary loss of keratenized shell scutes (i.e., soft-shells), which is associated with enhanced swimming ability and, in some species, cutaneous respiration. We used codon models to examine patterns of selection on mitochondrial protein-coding genes along the three turtle lineages that independently evolved soft-shells. We found strong evidence for positive selection along the branches leading to the pig-nosed turtle (Carettochelys insculpta) and the softshells clade (Trionychidae), but only weak evidence for the leatherback (Dermochelys coriacea) branch. Positively selected sites were found to be particularly prevalent in OXPHOS Complex I proteins, especially subunit ND2, along both positively selected lineages, consistent with convergent adaptive evolution. Structural analysis showed that many of the identified sites are within key regions or near residues involved in proton transport, indicating that positive selection may have precipitated substantial changes in mitochondrial function. Overall, our study provides evidence that physiological challenges associated with adaptation to a highly aquatic lifestyle have shaped the evolution of the turtle mitochondrial genome in a lineage-specific manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Perfluoroalkyl contaminants in plasma of five sea turtle species: comparisons in concentration and potential health risks.

    PubMed

    Keller, Jennifer M; Ngai, Lily; Braun McNeill, Joanne; Wood, Lawrence D; Stewart, Kelly R; O'Connell, Steven G; Kucklick, John R

    2012-06-01

    The authors compared blood plasma concentrations of 13 perfluoroalkyl contaminants (PFCs) in five sea turtle species with differing trophic levels. Wild sea turtles were blood sampled from the southeastern region of the United States, and plasma was analyzed using liquid chromatography tandem mass spectrometry. Mean concentrations of perfluorooctane sulfonate (PFOS), the predominant PFC, increased with trophic level from herbivorous greens (2.41 ng/g), jellyfish-eating leatherbacks (3.95 ng/g), omnivorous loggerheads (6.47 ng/g), to crab-eating Kemp's ridleys (15.7 ng/g). However, spongivorous hawksbills had surprisingly high concentrations of PFOS (11.9 ng/g) and other PFCs based on their trophic level. These baseline concentrations of biomagnifying PFCs demonstrate interesting species and geographical differences. The measured PFOS concentrations were compared with concentrations known to cause toxic effects in laboratory animals, and estimated margins of safety (EMOS) were calculated. Small EMOS (<100), suggestive of potential risk of adverse health effects, were observed for all five sea turtle species for immunosuppression. Estimated margins of safety less than 100 were also observed for liver, thyroid, and neurobehavorial effects for the more highly exposed species. These baseline concentrations and the preliminary EMOS exercise provide a better understanding of the potential health risks of PFCs for conservation managers to protect these threatened and endangered species. Copyright © 2012 SETAC.

  4. Turtles as hopeful monsters.

    PubMed

    Rieppel, O

    2001-11-01

    A recently published study on the development of the turtle shell highlights the important role that development plays in the origin of evolutionary novelties. The evolution of the highly derived adult anatomy of turtles is a prime example of a macroevolutionary event triggered by changes in early embryonic development. Early ontogenetic deviation may cause patterns of morphological change that are not compatible with scenarios of gradualistic, stepwise transformation. Copyright 2001 John Wiley & Sons, Inc.

  5. Fishery gear interactions from stranded bottlenose dolphins, Florida manatees and sea turtles in Florida, U.S.A.

    PubMed

    Adimey, Nicole M; Hudak, Christine A; Powell, Jessica R; Bassos-Hull, Kim; Foley, Allen; Farmer, Nicholas A; White, Linda; Minch, Karrie

    2014-04-15

    Documenting the extent of fishery gear interactions is critical to wildlife conservation efforts, especially for reducing entanglements and ingestion. This study summarizes fishery gear interactions involving common bottlenose dolphins (Tursiops truncatus truncatus), Florida manatees (Trichechus manatus latirostris) and sea turtles: loggerhead (Caretta caretta), green turtle (Chelonia mydas), leatherback (Dermochelys coriacea), hawksbill (Eretmochelys imbricata), Kemp's ridley (Lepidochelys kempii), and olive ridley (Lepidochelys olivacea) stranding in Florida waters during 1997-2009. Fishery gear interactions for all species combined were 75.3% hook and line, 18.2% trap pot gear, 4.8% fishing nets, and 1.7% in multiple gears. Total reported fishery gear cases increased over time for dolphins (p<0.05), manatees (p<0.01), loggerheads (p<0.05) and green sea turtles (p<0.05). The proportion of net interaction strandings relative to total strandings for loggerhead sea turtles increased (p<0.05). Additionally, life stage and sex patterns were examined, fishery gear interaction hotspots were identified and generalized linear regression modeling was conducted.

  6. Fibropapillomatosis in green turtles Chelonia mydas in Brazil: characteristics of tumors and virus.

    PubMed

    Rodenbusch, C R; Baptistotte, C; Werneck, M R; Pires, T T; Melo, M T D; de Ataíde, M W; Testa, P; Alieve, M M; Canal, C W

    2014-10-16

    Fibropapillomatosis (FP) is a benign neoplasia that affects physiological functions of sea turtles and may lead to death. High prevalence of FP in sea turtle populations has prompted several research groups to study the disease and the associated herpesvirus, chelonid herpesvirus 5 (ChHV5). The present study detected and quantified ChHV5 in 153 fibropapilloma samples collected from green turtles Chelonia mydas on the Brazilian coast between 2009 and 2010 to characterize the relationship between viral load and tumor characteristics. Of the tumor samples collected, 73 and 87% were positive for ChHV5 in conventional PCR and real-time PCR, respectively, and viral loads ranged between 1 and 118.62 copies cell⁻¹. Thirty-three percent of turtles were mildly, 28% were moderately and 39% were severely affected with FP. Skin samples were used as negative control. High viral loads correlated positively with increasing FP severity in turtles sampled on the Brazilian coast and with samples from turtles found dead in the states of São Paulo and Bahia. Six viral variants were detected in tumor samples, 4 of which were similar to the Atlantic phylogenetic group. Two variants were similar to the western Atlantic/eastern Caribbean phylogenetic group. Co-infection in turtles with more than one variant was observed in the states of São Paulo and Bahia.

  7. Young Children and Turtle Graphics Programming: Understanding Turtle Commands.

    ERIC Educational Resources Information Center

    Cuneo, Diane O.

    The LOGO programing language developed for children includes a set of primitive graphics commands that control the displacement and rotation of a display screen cursor called a turtle. The purpose of this study was to examine 4- to 7-year-olds' understanding of single turtle commands as transformations that connect turtle states and to…

  8. First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche

    PubMed Central

    Mansfield, Katherine L.; Wyneken, Jeanette; Porter, Warren P.; Luo, Jiangang

    2014-01-01

    Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle ‘lost years’. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle ‘lost years’ paradigms. PMID:24598420

  9. GLOBAL PHYLOGEOGRAPHY OF THE LOGGERHEAD TURTLE (CARETTA CARETTA) AS INDICATED BY MITOCHONDRIAL DNA HAPLOTYPES.

    PubMed

    Bowen, Brian W; Kamezaki, Naoki; Limpus, Colin J; Hughes, George R; Meylan, Anne B; Avise, John C

    1994-12-01

    Restriction-site analyses of mitochondrial DNA (mtDNA) from the loggerhead sea turtle (Caretta caretta) reveal substantial phylogeographic structure among major nesting populations in the Atlantic, Indian, and Pacific oceans and the Mediterranean sea. Based on 176 samples from eight nesting populations, most breeding colonies were distinguished from other assayed nesting locations by diagnostic and often fixed restriction-site differences, indicating a strong propensity for natal homing by nesting females. Phylogenetic analyses revealed two distinctive matrilines in the loggerhead turtle that differ by a mean estimated sequence divergence p = 0.009, a value similar in magnitude to the deepest intraspecific mtDNA node (p = 0.007) reported in a global survey of the green sea turtle Chelonia mydas. In contrast to the green turtle, where a fundamental phylogenetic split distinguished turtles in the Atlantic Ocean and the Mediterranean Sea from those in the Indian and Pacific oceans, genotypes representing the two primary loggerhead mtDNA lineages were observed in both Atlantic-Mediterranean and Indian-Pacific samples. We attribute this aspect of phylogeographic structure in Caretta caretta to recent interoceanic gene flow, probably mediated by the ability of this temperate-adapted species to utilize habitats around southern Africa. These results demonstrate how differences in the ecology and geographic ranges of marine turtle species can influence their comparative global population structures. © 1994 The Society for the Study of Evolution.

  10. The Classroom Animal: Snapping Turtles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1987-01-01

    Describes the distinctive features of the common snapping turtle. Discusses facts and misconceptions held about the turtle. Provides guidelines for proper care and treatment of a young snapper in a classroom environment. (ML)

  11. The magnetic map of hatchling loggerhead sea turtles.

    PubMed

    Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F

    2012-04-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida, U.S.A., undertake a transoceanic migration in which they gradually circle the North Atlantic Ocean before returning to the North American coast. Hatchlings in the open sea are guided at least partly by a 'magnetic map' in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial locations along the migratory route. The magnetic map exists in turtles that have never migrated and thus appears to be inherited. Turtles derive both longitudinal and latitudinal information from the Earth's field, most likely by exploiting unique combinations of field inclination and intensity that occur in different geographic areas. Similar mechanisms may function in the migrations of diverse animals.

  12. Turtle Watch: Community Engagement and Action

    ERIC Educational Resources Information Center

    Lewis, Elaine; Baudains, Catherine

    2015-01-01

    Many threats face the freshwater turtle, Chelodina colliei, also known as the oblong turtle. A community education project, Turtle Watch, focused on this target species and enabled effective conservation action to be implemented. Turtle Watch was conducted in the Perth Metropolitan Area of Western Australia, as the oblong turtle inhabits the…

  13. Turtle Watch: Community Engagement and Action

    ERIC Educational Resources Information Center

    Lewis, Elaine; Baudains, Catherine

    2015-01-01

    Many threats face the freshwater turtle, Chelodina colliei, also known as the oblong turtle. A community education project, Turtle Watch, focused on this target species and enabled effective conservation action to be implemented. Turtle Watch was conducted in the Perth Metropolitan Area of Western Australia, as the oblong turtle inhabits the…

  14. Conservation hotspots for marine turtle nesting in the United States based on coastal development.

    PubMed

    Fuentes, Mariana M P B; Gredzens, Christian; Bateman, Brooke L; Boettcher, Ruth; Ceriani, Simona A; Godfrey, Matthew H; Helmers, David; Ingram, Dianne K; Kamrowski, Ruth L; Pate, Michelle; Pressey, Robert L; Radeloff, Volker C

    2016-12-01

    Coastal areas provide nesting habitat for marine turtles that is critical for the persistence of their populations. However, many coastal areas are highly affected by coastal development, which affects the reproductive success of marine turtles. Knowing the extent to which nesting areas are exposed to these threats is essential to guide management initiatives. This information is particularly important for coastal areas with both high nesting density and dense human development, a combination that is common in the United States. We assessed the extent to which nesting areas of the loggerhead (Caretta caretta), the green (Chelonia mydas), the Kemp's ridley (Lepidochelys kempii), and leatherback turtles (Dermochelys coriacea) in the continental United States are exposed to coastal development and identified conservation hotspots that currently have high reproductive importance and either face high exposure to coastal development (needing intervention), or have low exposure to coastal development, and are good candidates for continued and future protection. Night-time light, housing, and population density were used as proxies for coastal development and human disturbance. About 81.6% of nesting areas were exposed to housing and human population, and 97.8% were exposed to light pollution. Further, most (>65%) of the very high- and high-density nesting areas for each species/subpopulation, except for the Kemp's ridley, were exposed to coastal development. Forty-nine nesting sites were selected as conservation hotspots; of those high-density nesting sites, 49% were sites with no/low exposure to coastal development and the other 51% were exposed to high-density coastal development. Conservation strategies need to account for ~66.8% of all marine turtle nesting areas being on private land and for nesting sites being exposed to large numbers of seasonal residents. © 2016 by the Ecological Society of America.

  15. The occurrence of chemical elements and POPs in loggerhead turtles (Caretta caretta): an overview.

    PubMed

    D'Ilio, S; Mattei, D; Blasi, M F; Alimonti, A; Bogialli, S

    2011-08-01

    Chemical elements and persistent organic pollutants (POPs) are globally present in aquatic systems and their potential transfer to loggerhead marine turtles (Caretta caretta) has become a serious threat for their health status. The environmental fate of these xenobiotics may be traced by the analysis of turtles' tissues and blood. Generally, loggerhead turtles exhibited a higher metal load than other turtle species, this could be explained by differences in diet habits being food the main source of exposure. Literature shows that muscle, liver and kidney are most considered for the quantification of chemical elements, while, organic compounds are typically investigated in liver and fat. This paper is an overview of the international studies carried out on the quantification of chemical elements, polychlorinated biphenyls (PCBs), organochlorines (OCs) and perfluorinated compounds (PFCs), in tissues, organs and fluids of C. caretta from the Mediterranean Sea, the Atlantic and the Pacific Oceans.

  16. A phylogenomic analysis of turtles.

    PubMed

    Crawford, Nicholas G; Parham, James F; Sellas, Anna B; Faircloth, Brant C; Glenn, Travis C; Papenfuss, Theodore J; Henderson, James B; Hansen, Madison H; Simison, W Brian

    2015-02-01

    Molecular analyses of turtle relationships have overturned prevailing morphological hypotheses and prompted the development of a new taxonomy. Here we provide the first genome-scale analysis of turtle phylogeny. We sequenced 2381 ultraconserved element (UCE) loci representing a total of 1,718,154bp of aligned sequence. Our sampling includes 32 turtle taxa representing all 14 recognized turtle families and an additional six outgroups. Maximum likelihood, Bayesian, and species tree methods produce a single resolved phylogeny. This robust phylogeny shows that proposed phylogenetic names correspond to well-supported clades, and this topology is more consistent with the temporal appearance of clades and paleobiogeography. Future studies of turtle phylogeny using fossil turtles should use this topology as a scaffold for their morphological phylogenetic analyses.

  17. Turtle Graphics of Morphic Sequences

    NASA Astrophysics Data System (ADS)

    Zantema, Hans

    2016-02-01

    The simplest infinite sequences that are not ultimately periodic are pure morphic sequences: fixed points of particular morphisms mapping single symbols to strings of symbols. A basic way to visualize a sequence is by a turtle curve: for every alphabet symbol fix an angle, and then consecutively for all sequence elements draw a unit segment and turn the drawing direction by the corresponding angle. This paper investigates turtle curves of pure morphic sequences. In particular, criteria are given for turtle curves being finite (consisting of finitely many segments), and for being fractal or self-similar: it contains an up-scaled copy of itself. Also space-filling turtle curves are considered, and a turtle curve that is dense in the plane. As a particular result we give an exact relationship between the Koch curve and a turtle curve for the Thue-Morse sequence, where until now for such a result only approximations were known.

  18. Neurologic examination of sea turtles.

    PubMed

    Chrisman, C L; Walsh, M; Meeks, J C; Zurawka, H; LaRock, R; Herbst, L; Schumacher, J

    1997-10-15

    To determine whether neurologic examination techniques established for use on dogs and cats could be adapted for use on sea turtles. Prospective controlled observational study. 4 healthy Green Turtles (Chelonia mydas), 1 healthy Kemp's ridley sea turtle (Lepidochelys kempi), and 6 Green Turtles suspected to have neurologic abnormalities. Neurologic examinations were performed while sea turtles were in and out of the water and in ventral and dorsal recumbency. Mentation, general activity, head and body posture, movement and coordination, thoracic and pelvic limb movement, strength and muscle tone, and tail movement were observed. Thoracic and pelvic limb flexor reflexes and nociception, righting response, cranial nerve reflexes, clasp and cloacal reflexes, and neck, dorsal scute, cloacal and tail nociception were tested. Results of neurologic evaluations were consistent for healthy sea turtles. Sea turtles suspected to have neurologic abnormalities had abnormal results. Many of the neurologic examination techniques used to evaluate dogs and cats can be adapted and used to evaluate sea turtles. A standardized neurologic examination should result in an accurate assessment of neurologic function in impaired sea turtles and should help in evaluating effects of rehabilitation efforts and suitability for return to their natural environment.

  19. Learning & Knowledge Production in North Carolina Sea Turtle Conservation Communities of Practice

    ERIC Educational Resources Information Center

    Martin, Kathleen Carol

    2010-01-01

    This dissertation focused upon non-formal and informal learning practices and knowledge production amongst [adult] participants involved in local sea turtle conservation practices along the US Atlantic coast. In the United States, adult learning and adult education has historically occurred within non-formal settings (e.g., through community-based…

  20. Learning & Knowledge Production in North Carolina Sea Turtle Conservation Communities of Practice

    ERIC Educational Resources Information Center

    Martin, Kathleen Carol

    2010-01-01

    This dissertation focused upon non-formal and informal learning practices and knowledge production amongst [adult] participants involved in local sea turtle conservation practices along the US Atlantic coast. In the United States, adult learning and adult education has historically occurred within non-formal settings (e.g., through community-based…

  1. The current situation of inorganic elements in marine turtles: A general review and meta-analysis.

    PubMed

    Cortés-Gómez, Adriana A; Romero, Diego; Girondot, Marc

    2017-10-01

    Inorganic elements (Pb, Cd, Hg, Al, As, Cr, Cu, Fe, Mn, Ni, Se and Zn) are present globally in aquatic systems and their potential transfer to marine turtles can be a serious threat to their health status. The environmental fate of these contaminants may be traced by the analysis of turtle tissues. Loggerhead turtles (Caretta caretta) are the most frequently investigated of all the sea turtle species with regards to inorganic elements, followed by Green turtles (Chelonia mydas); all the other species have considerably fewer studies. Literature shows that blood, liver, kidney and muscle are the tissues most frequently used for the quantification of inorganic elements, with Pb, Cd, Cu and Zn being the most studied elements. Chelonia mydas showed the highest concentrations of Cr in muscle (4.8 ± 0.12), Cu in liver (37 ± 7) and Mg in kidney (17 μg g(-1) ww), Cr and Cu from the Gulf of Mexico and Mg from Japanese coasts; Lepidochelys olivacea presented the highest concentrations of Pb in blood (4.46 5) and Cd in kidney (150 ± 110 μg g(-1) ww), both from the Mexican Pacific; Caretta caretta from the Mediterranean Egyptian coast had the highest report of Hg in blood (0.66 ± 0.13 μg g(-1) ww); and Eretmochelys imbricata from Japan had the highest concentration of As in muscle (30 ± 13 13 μg g(-1) ww). The meta-analysis allows us to examine some features that were not visible when data was analyzed alone. For instance, Leatherbacks show a unique pattern of concentration compared to other species. Additionally, contamination of different tissues shows some tendencies independent of the species with liver and kidney on one side and bone on the other being different from other tissues. This review provides a general perspective on the accumulation and distribution of these inorganic elements alongside existing information for the 7 sea turtle species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    ERIC Educational Resources Information Center

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are…

  3. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    ERIC Educational Resources Information Center

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are…

  4. First record of hybridization between green Chelonia mydas and hawksbill Eretmochelys imbricata sea turtles in the Southeast Pacific.

    PubMed

    Kelez, Shaleyla; Velez-Zuazo, Ximena; Pacheco, Aldo S

    2016-01-01

    Hybridization among sea turtle species has been widely reported in the Atlantic Ocean, but their detection in the Pacific Ocean is limited to just two individual hybrid turtles, in the northern hemisphere. Herein, we report, for the first time in the southeast Pacific, the presence of a sea turtle hybrid between the green turtle Chelonia mydas and the hawksbill turtle Eretmochelys imbricata. This juvenile sea turtle was captured in northern Peru (4°13'S; 81°10'W) on the 5(th) of January, 2014. The individual exhibited morphological characteristics of C. mydas such as dark green coloration, single pair of pre-frontal scales, four post-orbital scales, and mandibular median ridge, while the presence of two claws in each frontal flipper, and elongated snout resembled the features of E. imbricata. In addition to morphological evidence, we confirmed the hybrid status of this animal using genetic analysis of the mitochondrial gene cytochrome oxidase I, which revealed that the hybrid individual resulted from the cross between a female E. imbricata and a male C. mydas. Our report extends the geographical range of occurrence of hybrid sea turtles in the Pacific Ocean, and is a significant observation of interspecific breeding between one of the world's most critically endangered populations of sea turtles, the east Pacific E. imbricata, and a relatively healthy population, the east Pacific C. mydas.

  5. First record of hybridization between green Chelonia mydas and hawksbill Eretmochelys imbricata sea turtles in the Southeast Pacific

    PubMed Central

    Velez-Zuazo, Ximena; Pacheco, Aldo S.

    2016-01-01

    Hybridization among sea turtle species has been widely reported in the Atlantic Ocean, but their detection in the Pacific Ocean is limited to just two individual hybrid turtles, in the northern hemisphere. Herein, we report, for the first time in the southeast Pacific, the presence of a sea turtle hybrid between the green turtle Chelonia mydas and the hawksbill turtle Eretmochelys imbricata. This juvenile sea turtle was captured in northern Peru (4°13′S; 81°10′W) on the 5th of January, 2014. The individual exhibited morphological characteristics of C. mydas such as dark green coloration, single pair of pre-frontal scales, four post-orbital scales, and mandibular median ridge, while the presence of two claws in each frontal flipper, and elongated snout resembled the features of E. imbricata. In addition to morphological evidence, we confirmed the hybrid status of this animal using genetic analysis of the mitochondrial gene cytochrome oxidase I, which revealed that the hybrid individual resulted from the cross between a female E. imbricata and a male C. mydas. Our report extends the geographical range of occurrence of hybrid sea turtles in the Pacific Ocean, and is a significant observation of interspecific breeding between one of the world’s most critically endangered populations of sea turtles, the east Pacific E. imbricata, and a relatively healthy population, the east Pacific C. mydas. PMID:26925333

  6. Long-Term Climate Forcing in Loggerhead Sea Turtle Nesting

    PubMed Central

    Van Houtan, Kyle S.; Halley, John M.

    2011-01-01

    The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions—such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence. PMID:21589639

  7. Sea turtles: navigating with magnetism.

    PubMed

    Lohmann, Kenneth J

    2007-02-06

    Young sea turtles use the Earth's magnetic field as a source of navigational information during their epic transoceanic migrations and while homing. A new study using satellite telemetry has now demonstrated for the first time that adult turtles also navigate using the Earth's magnetic field.

  8. The diapsid origin of turtles.

    PubMed

    Schoch, Rainer R; Sues, Hans-Dieter

    2016-06-01

    The origin of turtles has been a persistent unresolved problem involving unsettled questions in embryology, morphology, and paleontology. New fossil taxa from the early Late Triassic of China (Odontochelys) and the Late Middle Triassic of Germany (Pappochelys) now add to the understanding of (i) the evolutionary origin of the turtle shell, (ii) the ancestral structural pattern of the turtle skull, and (iii) the phylogenetic position of Testudines. As has long been postulated on the basis of molecular data, turtles evolved from diapsid reptiles and are more closely related to extant diapsids than to parareptiles, which had been suggested as stem group by some paleontologists. The turtle cranium with its secondarily closed temporal region represents a derived rather than a primitive condition and the plastron partially evolved through the fusion of gastralia. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Phylogeography, Genetic Diversity, and Management Units of Hawksbill Turtles in the Indo-Pacific

    PubMed Central

    Jensen, Michael P.; Ho, Simon Y. W.; Mobaraki, Asghar; Broderick, Damien; Mortimer, Jeanne A.; Whiting, Scott D.; Miller, Jeff; Prince, Robert I. T.; Bell, Ian P.; Hoenner, Xavier; Limpus, Colin J.; Santos, Fabrício R.; FitzSimmons, Nancy N.

    2016-01-01

    Hawksbill turtle (Eretmochelys imbricata) populations have experienced global decline because of a history of intense commercial exploitation for shell and stuffed taxidermied whole animals, and harvest for eggs and meat. Improved understanding of genetic diversity and phylogeography is needed to aid conservation. In this study, we analyzed the most geographically comprehensive sample of hawksbill turtles from the Indo-Pacific Ocean, sequencing 766bp of the mitochondrial control region from 13 locations (plus Aldabra, n = 4) spanning over 13500 km. Our analysis of 492 samples revealed 52 haplotypes distributed in 5 divergent clades. Diversification times differed between the Indo-Pacific and Atlantic lineages and appear to be related to the sea-level changes that occurred during the Last Glacial Maximum. We found signals of demographic expansion only for turtles from the Persian Gulf region, which can be tied to a more recent colonization event. Our analyses revealed evidence of transoceanic migration, including connections between feeding grounds from the Atlantic Ocean and Indo-Pacific rookeries. Hawksbill turtles appear to have a complex pattern of phylogeography, showing a weak isolation by distance and evidence of multiple colonization events. Our novel dataset will allow mixed-stock analyses of hawksbill turtle feeding grounds in the Indo-Pacific by providing baseline data needed for conservation efforts in the region. Eight management units are proposed in our study for the Indo-Pacific region that can be incorporated in conservation plans of this critically endangered species. PMID:26615184

  10. Phylogeography, Genetic Diversity, and Management Units of Hawksbill Turtles in the Indo-Pacific.

    PubMed

    Vargas, Sarah M; Jensen, Michael P; Ho, Simon Y W; Mobaraki, Asghar; Broderick, Damien; Mortimer, Jeanne A; Whiting, Scott D; Miller, Jeff; Prince, Robert I T; Bell, Ian P; Hoenner, Xavier; Limpus, Colin J; Santos, Fabrício R; FitzSimmons, Nancy N

    2016-05-01

    Hawksbill turtle (Eretmochelys imbricata) populations have experienced global decline because of a history of intense commercial exploitation for shell and stuffed taxidermied whole animals, and harvest for eggs and meat. Improved understanding of genetic diversity and phylogeography is needed to aid conservation. In this study, we analyzed the most geographically comprehensive sample of hawksbill turtles from the Indo-Pacific Ocean, sequencing 766 bp of the mitochondrial control region from 13 locations (plus Aldabra, n = 4) spanning over 13500 km. Our analysis of 492 samples revealed 52 haplotypes distributed in 5 divergent clades. Diversification times differed between the Indo-Pacific and Atlantic lineages and appear to be related to the sea-level changes that occurred during the Last Glacial Maximum. We found signals of demographic expansion only for turtles from the Persian Gulf region, which can be tied to a more recent colonization event. Our analyses revealed evidence of transoceanic migration, including connections between feeding grounds from the Atlantic Ocean and Indo-Pacific rookeries. Hawksbill turtles appear to have a complex pattern of phylogeography, showing a weak isolation by distance and evidence of multiple colonization events. Our novel dataset will allow mixed-stock analyses of hawksbill turtle feeding grounds in the Indo-Pacific by providing baseline data needed for conservation efforts in the region. Eight management units are proposed in our study for the Indo-Pacific region that can be incorporated in conservation plans of this critically endangered species.

  11. The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry.

    PubMed Central

    Luschi, P; Hays, G C; Del Seppia, C; Marsh, R; Papi, F

    1998-01-01

    Previous tagging studies of the movements of green turtles (Chelonia mydas) nesting at Ascension Island have shown that they shuttle between this remote target in the Atlantic Ocean and their feeding grounds on the Brazilian coast, a distance of 2300 km or more. Since a knowledge of sea turtle migration routes might allow inferences on the still unknown navigational mechanisms of marine animals, we tracked the postnesting migration of six green turtle females from Ascension Island to Brazil. Five of them reached the proximity of the easternmost stretch of the Brazilian coast, covering 1777-2342 km in 33-47 days. Their courses were impressively similar for the first 1000 km, with three turtles tracked over different dates following indistinguishable paths for the first 300 km. Only the sixth turtle made some relatively short trips in different directions around Ascension. The tracks show that turtles (i) are able to maintain straight courses over long distances in the open sea; (ii) may perform exploratory movements in different directions; (iii) appropriately correct their course during the journey according to external information; and (iv) initially keep the same direction as the west-south-westerly flowing current, possibly guided by chemical cues. PMID:9881473

  12. Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway.

    PubMed

    Fuxjager, Matthew J; Eastwood, Brian S; Lohmann, Kenneth J

    2011-08-01

    Young loggerhead sea turtles (Caretta caretta) from the east coast of Florida, USA, undertake a transoceanic migration around the North Atlantic Gyre, the circular current system that flows around the Sargasso Sea. Previous experiments indicated that loggerhead hatchlings, when exposed to magnetic fields replicating those that exist at five widely separated locations along the migratory pathway, responded by swimming in directions that would, in each case, help turtles remain in the gyre and advance along the migratory route. In this study, hatchlings were exposed to several additional magnetic fields that exist along or outside of the gyre's northern boundary. Hatchlings responded to fields that exist within the gyre currents by swimming in directions consistent with their migratory route at each location, whereas turtles exposed to a field that exists north of the gyre had an orientation that was statistically indistinguishable from random. These results are consistent with the hypothesis that loggerhead turtles entering the sea for the first time possess a navigational system in which a series of regional magnetic fields sequentially trigger orientation responses that help steer turtles along the migratory route. By contrast, hatchlings may fail to respond to fields that exist in locations beyond the turtles' normal geographic range.

  13. 77 FR 17494 - Endangered Species; Receipt of Applications for Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ..., CA; PRT-60610A The applicant requests a permit to import biological specimens of loggerhead sea turtles (Caretta caretta), leatherback sea turtles (Dermochelys coriacea), and leatherback sea turtles... eldii), barasingha (Rucervus duvaucelii), Arabian oryx (Oryx leucoryx), scimitar-horned oryx...

  14. Turtle Mtns., ND

    NASA Image and Video Library

    2015-04-24

    This image from NASA Terra spacecraft shows the Turtle Mountains, which straddle the US-Canada border in central North Dakota. Underlain by 55 million year old sandstones and shales of the Cannonball Formation, the upland surface was sculpted by glaciations. Due to the mountain's 150m elevation above the surrounding lowlands, glacial ice tended to stagnate, forming thousands of lakes and sloughs. The image was acquired May 19, 2006, covers an area of 43.5 x 53.1 km, and is located at 49 degrees north, 100.1 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19435

  15. 77 FR 72882 - Endangered Species; Receipt of Applications for Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... specimens from loggerhead sea turtles (Caretta caretta), hawksbill sea turtles (Eretmochelys imbricata), and leatherback sea turtles (Dermochelys coriacea) that occur in the wild at Tetepare Island, Solomon Islands,...

  16. Genomic variation of the fibropapilloma-associated marine turtle herpes virus across seven geographic areas and three host species

    USGS Publications Warehouse

    Greenblatt, R.J.; Quackenbush, S.L.; Casey, R.N.; Rovnak, J.; Balazs, G.H.; Work, Thierry M.; Casey, J.W.; Sutton, C.A.

    2005-01-01

    Fibropapillomatosis (FP) of marine turtles is an emerging neoplastic disease associated with infection by a novel turtle herpesvirus, fibropapilloma-associated turtle herpesvirus (FPTHV). This report presents 23 kb of the genome of an FPTHV infecting a Hawaiian green turtle (Chelonia mydas). By sequence homology, the open reading frames in this contig correspond to herpes simplex virus genes UL23 through UL36. The order, orientation, and homology of these putative genes indicate that FPTHV is a member of the Alphaherpesvirinae. The UL27-, UL30-, and UL34-homologous open reading frames from FPTHVs infecting nine FP-affected marine turtles from seven geographic areas and three turtle species (C. mydas, Caretta caretta, and Lepidochelys olivacea) were compared. A high degree of nucleotide sequence conservation was found among these virus variants. However, geographic variations were also found: the FPTHVs examined here form four groups, corresponding to the Atlantic Ocean, West pacific, mid-Pacific, and east Pacific. Our results indicate that FPTHV was established in marine turtle populations prior to the emergence of FP as it is currently known.

  17. Shared Epizoic Taxa and Differences in Diatom Community Structure Between Green Turtles (Chelonia mydas) from Distant Habitats.

    PubMed

    Majewska, Roksana; de Vijver, Bart Van; Nasrolahi, Ali; Ehsanpour, Maryam; Afkhami, Majid; Bolaños, Federico; Iamunno, Franco; Santoro, Mario; De Stefano, Mario

    2017-05-06

    The first reports of diatoms growing on marine mammals date back to the early 1900s. However, only recently has direct evidence been provided for similar associations between diatoms and sea turtles. We present a comparison of diatom communities inhabiting carapaces of green turtles Chelonia mydas sampled at two remote sites located within the Indian (Iran) and Atlantic (Costa Rica) Ocean basins. Diatom observations and counts were carried out using scanning electron microscopy. Techniques involving critical point drying enabled observations of diatoms and other microepibionts still attached to sea turtle carapace and revealed specific aspects of the epizoic community structure. Species-poor, well-developed diatom communities were found on all examined sea turtles. Significant differences between the two host sea turtle populations were observed in terms of diatom abundance and their community structure (including growth form structure). A total of 12 and 22 diatom taxa were found from sea turtles in Iran and Costa Rica, respectively, and eight of these species belonging to Amphora, Chelonicola, Cocconeis, Navicula, Nitzschia and Poulinea genera were observed in samples from both locations. Potential mechanisms of diatom dispersal and the influence of the external environment, sea turtle behaviour, its life stage, and foraging and breeding habitats, as well as epibiotic bacterial flora on epizoic communities, are discussed.

  18. Young Children Learn Geometric Concepts Using Logo with a Screen Turtle and a Floor Turtle.

    ERIC Educational Resources Information Center

    Weaver, Constance L.

    This research was designed to investigate several primary questions in comparing the Logo floor turtle to the Logo screen turtle: (1) Do young children gain different geometric concepts from experiences with the floor turtle than they do with the screen turtle? (2) Do young children learn to use the four basic Logo commands more efficiently with…

  19. Mapping the western pond turtle (Actinemys marmorata) and painted turtle (Chrysemys picta) in western North America

    Treesearch

    Kimberly L. Barela; Deanna H. Olson

    2014-01-01

    We georeferenced Western Pond Turtle (Actinemys marmorata) and Painted Turtle (Chrysemys picta) locality records in western North America, compiling diverse institutional data sets, including data from 9 US states and Canadian provinces. For the entire range of the Western Pond Turtle and the western range of the Painted Turtle...

  20. Blood biochemistry reference values for wild juvenile loggerhead sea turtles (Caretta caretta) from Madeira archipelago.

    PubMed

    Delgado, Cláudia; Valente, Ana; Quaresma, Isabel; Costa, Margarida; Dellinger, Thomas

    2011-07-01

    Standard biochemical parameters were determined in wild juvenile loggerhead sea turtles Caretta caretta living offshore Madeira Island, northeast Atlantic. We analyzed the influence of age, sex, sea surface temperature, and body condition index on biochemical parameters including uric acid, total bilirubin, total cholesterol, creatinine kinase (CK), glucose, total protein, urea nitrogen, lactate dehydrogenase, aspartate aminotranspherase (AST), gamma-glutamyl transferase (GGT), albumin, alkaline phosphatase (ALP), sodium (NA), potassium (K), chloride, calcium, phosphorus, and magnesium. Significant positive correlations were found between turtle body size and total cholesterol, total protein, and albumin. Total protein and the enzymes AST and CK were lower than reported levels in adults. Calcium levels were lower than those reported in adult or captive turtles, but similar to wild juveniles from Australian waters, and were interpreted as normal for this age category. These data may be useful to evaluate the health status of stranded or injured animals and to improve veterinary care at rehabilitation centers.

  1. Effects of rising temperature on the viability of an important sea turtle rookery

    NASA Astrophysics Data System (ADS)

    Laloë, Jacques-Olivier; Cozens, Jacquie; Renom, Berta; Taxonera, Albert; Hays, Graeme C.

    2014-06-01

    A warming world poses challenges for species with temperature-dependent sex determination, including sea turtles, for which warmer incubation temperatures produce female hatchlings. We combined in situ sand temperature measurements with air temperature records since 1850 and predicted warming scenarios from the Intergovernmental Panel on Climate Change to derive 250-year time series of incubation temperatures, hatchling sex ratios, and operational sex ratios for one of the largest sea turtles rookeries globally (Cape Verde Islands, Atlantic). We estimate that light-coloured beaches currently produce 70.10% females whereas dark-coloured beaches produce 93.46% females. Despite increasingly female skewed sex ratios, entire feminization of this population is not imminent. Rising temperatures increase the number of breeding females and hence the natural rate of population growth. Predicting climate warming impacts across hatchlings, male-female breeding ratios and nesting numbers provides a holistic approach to assessing the conservation concerns for sea turtles in a warming world.

  2. Engaging Students in Science: Turtle Nestwatch

    ERIC Educational Resources Information Center

    Lewis, Elaine; Baudains, Catherine; Mansfield, Caroline

    2009-01-01

    Involving students in authentic science work is one way to enhance their interest in science. This paper reports a project in which Year 4-7 students actively participated in a study that involved the provision of a suitable nesting site for local turtles. The students collected data on turtle nests at the site and evidence of turtle hatchlings at…

  3. 50 CFR 223.205 - Sea turtles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except...

  4. 50 CFR 223.205 - Sea turtles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except...

  5. TORTIS (Toddler's Own Recursive Turtle Interpreter System).

    ERIC Educational Resources Information Center

    Perlman, Radia

    TORTIS (Toddler's Own Recursive Turtle Interpreter System) is a device which can be used to study or nurture the cognitive development of preschool children. The device consists of a "turtle" which the child can control by use of buttons on a control panel. The "turtle" can be made to move in prescribed directions, to take a…

  6. 50 CFR 223.205 - Sea turtles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except...

  7. 50 CFR 223.205 - Sea turtles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except...

  8. Engaging Students in Science: Turtle Nestwatch

    ERIC Educational Resources Information Center

    Lewis, Elaine; Baudains, Catherine; Mansfield, Caroline

    2009-01-01

    Involving students in authentic science work is one way to enhance their interest in science. This paper reports a project in which Year 4-7 students actively participated in a study that involved the provision of a suitable nesting site for local turtles. The students collected data on turtle nests at the site and evidence of turtle hatchlings at…

  9. Green turtle (Chelonia mydas) genetic diversity at Paranaguá Estuarine Complex feeding grounds in Brazil.

    PubMed

    Jordão, Juliana Costa; Bondioli, Ana Cristina Vigliar; Guebert, Flavia Maria; de Thoisy, Benoit; Toledo, Lurdes Foresti de Almeida

    2015-01-01

    Sea turtles are marine reptiles that undertake long migrations through their life, with limited information regarding juvenile stages. Feeding grounds (FGs), where they spend most of their lives, are composed by individuals from different natal origins, known as mixed stock populations. The aim of this study was to assess genetic composition, natal origins and demographic history of juvenile green turtles (Chelonia mydas) at the Paranaguá Estuarine Complex (PEC), Brazil, considered a Natural World Heritage site. Tissue samples of stranded animals were collected (n = 60), and 700 bp mitochondrial DNA sequences were generated and compared to shorter sequences from previously published studies. Global exact tests of differentiation revealed significant differences among PEC and the other FGs, except those at the South Atlantic Ocean. Green turtles at PEC present genetic signatures similar to those of nesting females from Ascension Island, Guinea Bissau and Aves Island/Surinam. Population expansion was evidenced to have occurred 20-25 kYA, reinforcing the hypothesis of recovery from Southern Atlantic refugia after the last Glacial Maximum. These results contribute to a better understanding of the dynamics of green turtle populations at a protected area by providing knowledge on the dispersion patterns and reinforcing the importance of the interconnectivity between nesting and foraging populations.

  10. Green turtle (Chelonia mydas) genetic diversity at Paranaguá Estuarine Complex feeding grounds in Brazil

    PubMed Central

    Jordão, Juliana Costa; Bondioli, Ana Cristina Vigliar; Guebert, Flavia Maria; de Thoisy, Benoit; Toledo, Lurdes Foresti de Almeida

    2015-01-01

    Sea turtles are marine reptiles that undertake long migrations through their life, with limited information regarding juvenile stages. Feeding grounds (FGs), where they spend most of their lives, are composed by individuals from different natal origins, known as mixed stock populations. The aim of this study was to assess genetic composition, natal origins and demographic history of juvenile green turtles (Chelonia mydas) at the Paranaguá Estuarine Complex (PEC), Brazil, considered a Natural World Heritage site. Tissue samples of stranded animals were collected (n = 60), and 700 bp mitochondrial DNA sequences were generated and compared to shorter sequences from previously published studies. Global exact tests of differentiation revealed significant differences among PEC and the other FGs, except those at the South Atlantic Ocean. Green turtles at PEC present genetic signatures similar to those of nesting females from Ascension Island, Guinea Bissau and Aves Island/Surinam. Population expansion was evidenced to have occurred 20–25 kYA, reinforcing the hypothesis of recovery from Southern Atlantic refugia after the last Glacial Maximum. These results contribute to a better understanding of the dynamics of green turtle populations at a protected area by providing knowledge on the dispersion patterns and reinforcing the importance of the interconnectivity between nesting and foraging populations. PMID:26500439

  11. An Analysis of Sea Turtle Demographics along Maryland Shores, 1990-2015

    NASA Astrophysics Data System (ADS)

    Rhoades, C.; Driscoll, C.; Weschler, A.; Crawford, M.

    2016-02-01

    The Maryland Department of Natural Resources Marine Mammal and Sea Turtle Stranding Program was established in the fall of 1990, and responded to their first documented sea turtle stranding in the summer of 1991. Over this twenty-five year period, 575 dead strandings of sea turtles have been documented. This research project analyzes all sea turtle case files from the initiation of this program for the following parameters in order to associate stranding trends; species, location (Atlantic Ocean v. Chesapeake Bay), seasonality, length, relative age, condition code, and sex. Further understanding these protected species will assist in conserving their coastal ecosystem and securing these species a sustainable future. Along with the parameters previously discussed, this study will also consider the factors contributing to the animal's death, if determined. These potential causes incorporate natural causes such as disease, and also detail instances of human interaction, including: dredge takes, commercial or recreational fishing interaction, power plant entrainment, propeller and boat strikes. A total of approximately 17% of the dead stranded sea turtles Maryland Department of Natural Resources responded to were found to have some proven aspect of human interaction. Lastly, in order to further investigate for human interaction stomach contents were analyzed for plastics or other forms of marine debris. This project will contribute to MD DNR and NOAA's mission, goals, and objectives by further understanding these protected species in order to conserve their coastal ecosystem and secure these species a sustainable future.

  12. Palaeoecology of triassic stem turtles sheds new light on turtle origins.

    PubMed

    Joyce, Walter G; Gauthier, Jacques A

    2004-01-07

    Competing hypotheses of early turtle evolution contrast sharply in implying very different ecological settings-aquatic versus terrestrial-for the origin of turtles. We investigate the palaeoecology of extinct turtles by first demonstrating that the forelimbs of extant turtles faithfully reflect habitat preferences, with short-handed turtles being terrestrial and long-handed turtles being aquatic. We apply this metric to the two successive outgroups to all living turtles with forelimbs preserved, Proganochelys quenstedti and Palaeochersis talampayensis, to discover that these earliest turtle outgroups were decidedly terrestrial. We then plot the observed distribution of aquatic versus terrestrial habits among living turtles onto their hypothesized phylogenies. Both lines of evidence indicate that although the common ancestor of all living turtles was aquatic, the earliest turtles clearly lived in a terrestrial environment. Additional anatomical and sedimentological evidence favours these conclusions. The freshwater aquatic habitat preference so characteristic of living turtles cannot, consequently, be taken as positive evidence for an aquatic origin of turtles, but must rather be considered a convergence relative to other aquatic amniotes, including the marine sauropterygians to which turtles have sometimes been allied.

  13. Palaeoecology of triassic stem turtles sheds new light on turtle origins.

    PubMed Central

    Joyce, Walter G.; Gauthier, Jacques A.

    2004-01-01

    Competing hypotheses of early turtle evolution contrast sharply in implying very different ecological settings-aquatic versus terrestrial-for the origin of turtles. We investigate the palaeoecology of extinct turtles by first demonstrating that the forelimbs of extant turtles faithfully reflect habitat preferences, with short-handed turtles being terrestrial and long-handed turtles being aquatic. We apply this metric to the two successive outgroups to all living turtles with forelimbs preserved, Proganochelys quenstedti and Palaeochersis talampayensis, to discover that these earliest turtle outgroups were decidedly terrestrial. We then plot the observed distribution of aquatic versus terrestrial habits among living turtles onto their hypothesized phylogenies. Both lines of evidence indicate that although the common ancestor of all living turtles was aquatic, the earliest turtles clearly lived in a terrestrial environment. Additional anatomical and sedimentological evidence favours these conclusions. The freshwater aquatic habitat preference so characteristic of living turtles cannot, consequently, be taken as positive evidence for an aquatic origin of turtles, but must rather be considered a convergence relative to other aquatic amniotes, including the marine sauropterygians to which turtles have sometimes been allied. PMID:15002764

  14. Patterning of the turtle shell.

    PubMed

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Projected response of an endangered marine turtle population to climate change

    NASA Astrophysics Data System (ADS)

    Saba, Vincent S.; Stock, Charles A.; Spotila, James R.; Paladino, Frank V.; Tomillo, Pilar Santidrián

    2012-11-01

    Assessing the potential impacts of climate change on individual species and populations is essential for the stewardship of ecosystems and biodiversity. Critically endangered leatherback turtles in the eastern Pacific Ocean are excellent candidates for such an assessment because their sensitivity to contemporary climate variability has been substantially studied. If incidental fisheries mortality is eliminated, this population still faces the challenge of recovery in a rapidly changing climate. Here we combined an Earth system model, climate model projections assessed by the Intergovernmental Panel on Climate Change and a population dynamics model to estimate a 7% per decade decline in the Costa Rica nesting population over the twenty-first century. Whereas changes in ocean conditions had a small effect on the population, the ~2.5°C warming of the nesting beach was the primary driver of the decline through reduced hatching success and hatchling emergence rate. Hatchling sex ratio did not substantially change. Adjusting nesting phenology or changing nesting sites may not entirely prevent the decline, but could offset the decline rate. However, if future observations show a long-term decline in hatching success and emergence rate, anthropogenic climate mitigation of nests (for example, shading, irrigation) may be able to preserve the nesting population.

  16. The origin of turtles: a paleontological perspective.

    PubMed

    Joyce, Walter G

    2015-05-01

    The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles. © 2015 Wiley Periodicals, Inc.

  17. Emydid herpesvirus 1 infection in northern map turtles (Graptemys geographica) and painted turtles (Chrysemys picta).

    PubMed

    Ossiboff, Robert J; Newton, Alisa L; Seimon, Tracie A; Moore, Robert P; McAloose, Denise

    2015-05-01

    A captive, juvenile, female northern map turtle (Graptemys geographica) was found dead following a brief period of weakness and nasal discharge. Postmortem examination identified pneumonia with necrosis and numerous epithelial, intranuclear viral inclusion bodies, consistent with herpesviral pneumonia. Similar intranuclear inclusions were also associated with foci of hepatocellular and splenic necrosis. Polymerase chain reaction (PCR) screening of fresh, frozen liver for the herpesviral DNA-dependent DNA polymerase gene yielded an amplicon with 99.2% similarity to recently described emydid herpesvirus 1 (EmyHV-1). Molecular screening of turtles housed in enclosures that shared a common circulation system with the affected map turtle identified 4 asymptomatic, EmyHV-1 PCR-positive painted turtles (Chrysemys picta) and 1 asymptomatic northern map turtle. Herpesvirus transmission between painted and map turtles has been previously suggested, and our report provides the molecular characterization of a herpesvirus in asymptomatic painted turtles that can cause fatal herpesvirus-associated disease in northern map turtles.

  18. Basking Behavior of Painted Turtles.

    ERIC Educational Resources Information Center

    Zipko, Stephen J.

    1982-01-01

    Examines the basking postures of captive eastern painted turtles exposed to two different sources of illumination (white floor lamps and infrared heat lamps) and three types of substrates (sphagnum, rock, wood) and discusses possible ecological and evolutionary significance of these behaviors. (Author/JN)

  19. Basking Behavior of Painted Turtles.

    ERIC Educational Resources Information Center

    Zipko, Stephen J.

    1982-01-01

    Examines the basking postures of captive eastern painted turtles exposed to two different sources of illumination (white floor lamps and infrared heat lamps) and three types of substrates (sphagnum, rock, wood) and discusses possible ecological and evolutionary significance of these behaviors. (Author/JN)

  20. Immunoglobulin genes of the turtles.

    PubMed

    Magadán-Mompó, Susana; Sánchez-Espinel, Christian; Gambón-Deza, Francisco

    2013-03-01

    The availability of reptile genomes for the use of the scientific community is an exceptional opportunity to study the evolution of immunoglobulin genes. The genome of Chrysemys picta bellii and Pelodiscus sinensis is the first one that has been reported for turtles. The scanning for immunoglobulin genes resulted in the presence of a complex locus for the immunoglobulin heavy chain (IGH). This IGH locus in both turtles contains genes for 13 isotypes in C. picta bellii and 17 in P. sinensis. These correspond with one immunoglobulin M, one immunoglobulin D, several immunoglobulins Y (six in C. picta bellii and eight in P. sinensis), and several immunoglobulins that are similar to immunoglobulin D2 (five in C. picta belli and seven in P. sinensis) that was previously described in Eublepharis macularius. It is worthy to note that IGHD2 are placed in an inverted transcriptional orientation and present sequences for two immunoglobulin domains that are similar to bird IgA domains. Furthermore, its phylogenetic analysis allows us to consider about the presence of IGHA gene in a primitive reptile, so we would be dealing with the memory of the gene that originated from the bird IGHA. In summary, we provide a clear picture of the immunoglobulins present in a turtle, whose analysis supports the idea that turtles emerged from the evolutionary line from the differentiation of birds and the presence of the IGHA gene present in a common ancestor.

  1. The endoskeletal origin of the turtle carapace.

    PubMed

    Hirasawa, Tatsuya; Nagashima, Hiroshi; Kuratani, Shigeru

    2013-01-01

    The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of these costo-neural elements have long remained elusive. Here we show, through comparative morphological and embryological analyses, that the major part of the carapace is derived purely from endoskeletal ribs. We examine turtle embryos and find that the costal and neural plates develop not within the dermis, but within deeper connective tissue where the rib and intercostal muscle anlagen develop. We also examine the fossils of an outgroup of turtles to confirm that the structure equivalent to the turtle carapace developed independently of the true osteoderm. Our results highlight the hitherto unravelled evolutionary course of the turtle shell.

  2. The endoskeletal origin of the turtle carapace

    PubMed Central

    Hirasawa, Tatsuya; Nagashima, Hiroshi; Kuratani, Shigeru

    2013-01-01

    The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of these costo-neural elements have long remained elusive. Here we show, through comparative morphological and embryological analyses, that the major part of the carapace is derived purely from endoskeletal ribs. We examine turtle embryos and find that the costal and neural plates develop not within the dermis, but within deeper connective tissue where the rib and intercostal muscle anlagen develop. We also examine the fossils of an outgroup of turtles to confirm that the structure equivalent to the turtle carapace developed independently of the true osteoderm. Our results highlight the hitherto unravelled evolutionary course of the turtle shell. PMID:23836118

  3. Blood gases, biochemistry and haematology of Galápagos hawksbill turtles (Eretmochelys imbricata)

    PubMed Central

    Muñoz-Pérez, Juan Pablo; Hirschfeld, Maximilian; Alarcón-Ruales, Daniela; Denkinger, Judith; Castañeda, Jason Guillermo; García, Juan; Lohmann, Kenneth J.

    2017-01-01

    Abstract The hawksbill turtle, Eretmochelys imbricata, is a marine chelonian with a circum-global distribution, but the species is critically endangered and has nearly vanished from the eastern Pacific. Although reference blood parameter intervals have been published for many chelonian species and populations, including nesting Atlantic hawksbills, no such baseline biochemical and blood gas values have been reported for wild Pacific hawksbill turtles. Blood samples were drawn from eight hawksbill turtles captured in near shore foraging locations within the Galápagos archipelago over a period of four sequential years; three of these turtles were recaptured and sampled on multiple occasions. Of the eight sea turtles sampled, five were immature and of unknown sex, and the other three were females. A portable blood analyzer was used to obtain near immediate field results for a suite of blood gas and chemistry parameters. Values affected by temperature were corrected in two ways: (i) with standard formulas and (ii) with auto-corrections made by the portable analyzer. A bench top blood chemistry analyzer was used to measure a series of biochemistry parameters from plasma. Standard laboratory haematology techniques were employed for red and white blood cell counts and to determine haematocrit manually, which was compared to the haematocrit values generated by the portable analyzer. The values reported in this study provide reference data that may be useful in comparisons among populations and in detecting changes in health status among Galápagos sea turtles. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease or environmental disasters. PMID:28496982

  4. Blood gases, biochemistry and haematology of Galápagos hawksbill turtles (Eretmochelys imbricata).

    PubMed

    Muñoz-Pérez, Juan Pablo; Lewbart, Gregory A; Hirschfeld, Maximilian; Alarcón-Ruales, Daniela; Denkinger, Judith; Castañeda, Jason Guillermo; García, Juan; Lohmann, Kenneth J

    2017-01-01

    The hawksbill turtle, Eretmochelys imbricata, is a marine chelonian with a circum-global distribution, but the species is critically endangered and has nearly vanished from the eastern Pacific. Although reference blood parameter intervals have been published for many chelonian species and populations, including nesting Atlantic hawksbills, no such baseline biochemical and blood gas values have been reported for wild Pacific hawksbill turtles. Blood samples were drawn from eight hawksbill turtles captured in near shore foraging locations within the Galápagos archipelago over a period of four sequential years; three of these turtles were recaptured and sampled on multiple occasions. Of the eight sea turtles sampled, five were immature and of unknown sex, and the other three were females. A portable blood analyzer was used to obtain near immediate field results for a suite of blood gas and chemistry parameters. Values affected by temperature were corrected in two ways: (i) with standard formulas and (ii) with auto-corrections made by the portable analyzer. A bench top blood chemistry analyzer was used to measure a series of biochemistry parameters from plasma. Standard laboratory haematology techniques were employed for red and white blood cell counts and to determine haematocrit manually, which was compared to the haematocrit values generated by the portable analyzer. The values reported in this study provide reference data that may be useful in comparisons among populations and in detecting changes in health status among Galápagos sea turtles. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease or environmental disasters.

  5. Functional Measures of Sea Turtle Hearing

    DTIC Science & Technology

    2005-09-01

    anatomy among stages and species and physiologically by brainstem evoked potential techniques. Sea turtles employed in this work were provided by NMFS...SUPPLEMENTARY NOTES 14. ABSTRACT Sea turtle hearing was investigated fmorphometrically by analyzing variations in auditory anatomy a and physiologically by...A t Project Title: Functional Measures of Sea Turtle Hearing ONR Award No: N00014-02-1-0510 Organization Award No: 13051000 Final Report Award Period

  6. Status of marine turtle rehabilitation in Queensland

    PubMed Central

    Flint, Mark; Limpus, Colin James; Mills, Paul

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59%) of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39%) turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive) and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental stressors causing

  7. Status of marine turtle rehabilitation in Queensland.

    PubMed

    Flint, Jaylene; Flint, Mark; Limpus, Colin James; Mills, Paul

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59%) of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39%) turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive) and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental stressors causing

  8. Amniote phylogeny and the position of turtles.

    PubMed

    Hedges, S Blair

    2012-07-27

    The position of turtles among amniotes remains in dispute, with morphological and molecular comparisons giving different results. Morphological analyses align turtles with either lizards and their relatives, or at the base of the reptile tree, whereas molecular analyses, including a recent study by Chiari et al. in BMC Biology, place turtles with birds and crocodilians. Molecular studies have not wavered as the numbers of genes and species have increased, but morphologists have been reluctant to embrace the molecular tree.

  9. Clinical Pathology Reference Intervals for an In-Water Population of Juvenile Loggerhead Sea Turtles (Caretta caretta) in Core Sound, North Carolina, USA

    PubMed Central

    Kelly, Terra R.; McNeill, Joanne Braun; Avens, Larisa; Hall, April Goodman; Goshe, Lisa R.; Hohn, Aleta A.; Godfrey, Matthew H.; Mihnovets, A. Nicole; Cluse, Wendy M.; Harms, Craig A.

    2015-01-01

    The loggerhead sea turtle (Caretta caretta) is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as “threatened” on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing rehabilitation. PMID

  10. Clinical pathology reference intervals for an in-water population of juvenile loggerhead sea turtles (Caretta caretta) in Core Sound, North Carolina, USA.

    PubMed

    Kelly, Terra R; McNeill, Joanne Braun; Avens, Larisa; Hall, April Goodman; Goshe, Lisa R; Hohn, Aleta A; Godfrey, Matthew H; Mihnovets, A Nicole; Cluse, Wendy M; Harms, Craig A

    2015-01-01

    The loggerhead sea turtle (Caretta caretta) is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as "threatened" on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing rehabilitation.

  11. Turtle groups or turtle soup: dispersal patterns of hawksbill turtles in the Caribbean.

    PubMed

    Blumenthal, J M; Abreu-Grobois, F A; Austin, T J; Broderick, A C; Bruford, M W; Coyne, M S; Ebanks-Petrie, G; Formia, A; Meylan, P A; Meylan, A B; Godley, B J

    2009-12-01

    Despite intense interest in conservation of marine turtles, spatial ecology during the oceanic juvenile phase remains relatively unknown. Here, we used mixed stock analysis and examination of oceanic drift to elucidate movements of hawksbill turtles (Eretmochelys imbricata) and address management implications within the Caribbean. Among samples collected from 92 neritic juvenile hawksbills in the Cayman Islands we detected 11 mtDNA control region haplotypes. To estimate contributions to the aggregation, we performed 'many-to-many' mixed stock analysis, incorporating published hawksbill genetic and population data. The Cayman Islands aggregation represents a diverse mixed stock: potentially contributing source rookeries spanned the Caribbean basin, delineating a scale of recruitment of 200-2500 km. As hawksbills undergo an extended phase of oceanic dispersal, ocean currents may drive patterns of genetic diversity observed on foraging aggregations. Therefore, using high-resolution Aviso ocean current data, we modelled movement of particles representing passively drifting oceanic juvenile hawksbills. Putative distribution patterns varied markedly by origin: particles from many rookeries were broadly distributed across the region, while others would appear to become entrained in local gyres. Overall, we detected a significant correlation between genetic profiles of foraging aggregations and patterns of particle distribution produced by a hatchling drift model (Mantel test, r = 0.77, P < 0.001; linear regression, r = 0.83, P < 0.001). Our results indicate that although there is a high degree of mixing across the Caribbean (a 'turtle soup'), current patterns play a substantial role in determining genetic structure of foraging aggregations (forming turtle groups). Thus, for marine turtles and other widely distributed marine species, integration of genetic and oceanographic data may enhance understanding of population connectivity and management requirements.

  12. 78 FR 13642 - Endangered Species; File No. 17506

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... captures, green, loggerhead, hawksbill, Kemp's ridley, and leatherback sea turtles would be counted during... to take green (Chelonia mydas), loggerhead (Caretta caretta), hawksbill (Eretmochelys imbricata), Kemp's ridley (Lepidochelys kempii), and leatherback (Dermochelys coriaceae) sea turtles for...

  13. 76 FR 76950 - Endangered Species; File No. 16134

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... permit to conduct research on leatherback, loggerhead, green, hawksbill, and Kemp's ridley sea turtles in... a permit to take green (Chelonia mydas), Kemp's ridley (Lepidochelys kempii), hawksbill (Eretmochelys imbricata), leatherback (Dermochelys coriacea), and loggerhead (Caretta caretta) sea turtles...

  14. Sea Turtles and Strategies for Language Skills.

    ERIC Educational Resources Information Center

    Tippins, Deborah; And Others

    1993-01-01

    Describes teaching strategies, including science activities, for challenging students' misconceptions about turtles and helping limited-English-proficiency students enhance their language proficiency. (PR)

  15. Modeling neck mobility in fossil turtles.

    PubMed

    Werneburg, Ingmar; Hinz, Juliane K; Gumpenberger, Michaela; Volpato, Virginie; Natchev, Nikolay; Joyce, Walter G

    2015-05-01

    Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the central articulations, which raises cautions about reconstructing the mobility of fossil vertebrates. A 3D-model of the Late Triassic turtle Proganochelys quenstedti reveals that this early stem turtle was able to retract its head by tucking it sideways below the shell. The simple ventrolateral bend seen in this stem turtle, however, contrasts with the complex double-bend of extant turtles. The initial evolution of neck retraction therefore occurred in a near-synchrony with the origin of the turtle shell as a place to hide the unprotected neck. In this early, simplified retraction mode, the conical osteoderms on the neck provided further protection. © 2014 Wiley Periodicals, Inc.

  16. Sea Turtles and Strategies for Language Skills.

    ERIC Educational Resources Information Center

    Tippins, Deborah; And Others

    1993-01-01

    Describes teaching strategies, including science activities, for challenging students' misconceptions about turtles and helping limited-English-proficiency students enhance their language proficiency. (PR)

  17. A Mycoplasma species of Emydidae turtles in the northeastern USA.

    PubMed

    Ossiboff, Robert J; Raphael, Bonnie L; Ammazzalorso, Alyssa D; Seimon, Tracie A; Niederriter, Holly; Zarate, Brian; Newton, Alisa L; McAloose, Denise

    2015-04-01

    Mycoplasma infections can cause significant morbidity and mortality in captive and wild chelonians. As part of a health assessment of endangered bog turtles (Glyptemys muhlenbergii) in the northeastern US, choanal and cloacal swabs from these and other sympatric species, including spotted turtles (Clemmys guttata), eastern box turtles (Terrapene carolina carolina), wood turtles (Glyptemys insculpta), and common snapping turtles (Chelydra serpentina) from 10 sampling sites in the states (US) of Delaware, New Jersey, and Pennsylvania, were tested by PCR for Mycoplasma. Of 108 turtles tested, 63 (58.3%) were PCR positive for Mycoplasma including 58 of 83 bog turtles (70%), three of three (100%) eastern box turtles, and two of 11 (18%) spotted turtles; all snapping turtles (n = 7) and wood turtles (n = 4) were negative. Sequence analysis of portions of the 16S-23S intergenic spacer region and the 16S ribosomal RNA gene revealed a single, unclassified species of Mycoplasma that has been previously reported in eastern box turtles, ornate box turtles (Terrapene ornata ornata), western pond turtles (Emys marmorata), and red-eared sliders (Trachemys scripta elegans). We document a high incidence of Mycoplasma, in the absence of clinical disease, in wild emydid turtles. These findings, along with wide distribution of the identified Mycoplasma sp. across a broad geographic region, suggest this bacterium is likely a commensal inhabitant of bog turtles, and possibly other species of emydid turtles, in the northeastern US.

  18. A new, nearly complete stem turtle from the Jurassic of South America with implications for turtle evolution.

    PubMed

    Sterli, Juliana

    2008-06-23

    Turtles have been known since the Upper Triassic (210Myr old); however, fossils recording the first steps of turtle evolution are scarce and often fragmentary. As a consequence, one of the main questions is whether living turtles (Testudines) originated during the Late Triassic (210Myr old) or during the Middle to Late Jurassic (ca 160Myr old). The discovery of the new fossil turtle, Condorchelys antiqua gen. et sp. nov. from the Middle to Upper Jurassic (ca 160-146Myr old) of South America (Patagonia, Argentina), presented here sheds new light on early turtle evolution. An updated cladistic analysis of turtles shows that C. antiqua and other fossil turtles are not crown turtles, but stem turtles. This cladistic analysis also shows that stem turtles were more diverse than previously thought, and that until the Middle to Upper Jurassic there were turtles without the modern jaw closure mechanism.

  19. Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences

    USGS Publications Warehouse

    Shamblin, Brian M.; Bagley, Dean A.; Ehrhart, Llewellyn M.; Desjardin, Nicole A.; Martin, R. Erik; Hart, Kristen M.; Naro-Maciel, Eugenia; Rusenko, Kirt; Stiner, John C.; Sobel, Debra; Johnson, Chris; Wilmers, Thomas; Wright, Laura J.; Nairn, Campbell J.

    2014-01-01

    Green turtle (Chelonia mydas) nesting has increased dramatically in Florida over the past two decades, ranking the Florida nesting aggregation among the largest in the Greater Caribbean region. Individual beaches that comprise several hundred kilometers of Florida’s east coast and Keys support tens to thousands of nests annually. These beaches encompass natural to highly developed habitats, and the degree of demographic partitioning among rookeries was previously unresolved. We characterized the genetic structure of ten Florida rookeries from Cape Canaveral to the Dry Tortugas through analysis of 817 base pair mitochondrial DNA (mtDNA) control region sequences from 485 nesting turtles. Two common haplotypes, CM-A1.1 and CM-A3.1, accounted for 87 % of samples, and the haplotype frequencies were strongly partitioned by latitude along Florida’s Atlantic coast. Most genetic structure occurred between rookeries on either side of an apparent genetic break in the vicinity of the St. Lucie Inlet that separates Hutchinson Island and Jupiter Island, representing the finest scale at which mtDNA structure has been documented in marine turtle rookeries. Florida and Caribbean scale analyses of population structure support recognition of at least two management units: central eastern Florida and southern Florida. More thorough sampling and deeper sequencing are necessary to better characterize connectivity among Florida green turtle rookeries as well as between the Florida nesting aggregation and others in the Greater Caribbean region.

  20. Evidence for transoceanic migrations by loggerhead sea turtles in the southern Pacific Ocean

    PubMed Central

    Boyle, M.C.; FitzSimmons, N.N.; Limpus, C.J.; Kelez, S.; Velez-Zuazo, X.; Waycott, M.

    2009-01-01

    Post-hatchling loggerhead turtles (Caretta caretta) in the northern Pacific and northern Atlantic Oceans undertake transoceanic developmental migrations. Similar migratory behaviour is hypothesized in the South Pacific Ocean as post-hatchling loggerhead turtles are observed in Peruvian fisheries, yet no loggerhead rookeries occur along the coast of South America. This hypothesis was supported by analyses of the size-class distribution of 123 post-hatchling turtles in the South Pacific and genetic analysis of mtDNA haplotypes of 103 nesting females in the southwest Pacific, 19 post-hatchlings stranded on the southeastern Australian beaches and 22 post-hatchlings caught by Peruvian longline fisheries. Only two haplotypes (CCP1 93% and CCP5 7%) were observed across all samples, and there were no significant differences in haplotype frequencies between the southwest Pacific rookeries and the post-hatchlings. By contrast, the predominant CCP1 haplotype is rarely observed in North Pacific rookeries and haplotype frequencies were strongly differentiated between the two regions (Fst=0.82; p=<0.00001). These results suggest that post-hatchling loggerhead turtles emerging from the southwest Pacific rookeries are undertaking transoceanic migrations to the southeastern Pacific Ocean, thus emphasizing the need for a broader focus on juvenile mortality throughout the South Pacific to develop effective conservation strategies. PMID:19324768

  1. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches.

    PubMed

    Hawkes, Lucy A; Broderick, Annette C; Coyne, Michael S; Godfrey, Matthew H; Lopez-Jurado, Luis-Felipe; Lopez-Suarez, Pedro; Merino, Sonia Elsy; Varo-Cruz, Nuria; Godley, Brendan J

    2006-05-23

    Marine turtles undergo dramatic ontogenic changes in body size and behavior, with the loggerhead sea turtle, Caretta caretta, typically switching from an initial oceanic juvenile stage to one in the neritic, where maturation is reached and breeding migrations are subsequently undertaken every 2-3 years. Using satellite tracking, we investigated the migratory movements of adult females from one of the world's largest nesting aggregations at Cape Verde, West Africa. In direct contrast with the accepted life-history model for this species, results reveal two distinct adult foraging strategies that appear to be linked to body size. The larger turtles (n = 3) foraged in coastal waters, whereas smaller individuals (n = 7) foraged oceanically. The conservation implications of these findings are profound, with the population compartmentalized into habitats that may be differentially impacted by fishery threats in what is a global fishing hotspot. Although the protection of discrete areas containing coastal individuals may be attainable, the more numerous pelagic individuals are widely dispersed with individuals roaming over more than half a million square kilometers. Therefore, mitigation of fisheries by-catch for sea turtles in the east Atlantic will likely require complex and regionally tailored actions to account for this dichotomous behavior.

  2. Finding the 'lost years' in green turtles: insights from ocean circulation models and genetic analysis.

    PubMed

    Putman, Nathan F; Naro-Maciel, Eugenia

    2013-10-07

    Organismal movement is an essential component of ecological processes and connectivity among ecosystems. However, estimating connectivity and identifying corridors of movement are challenging in oceanic organisms such as young turtles that disperse into the open sea and remain largely unobserved during a period known as 'the lost years'. Using predictions of transport within an ocean circulation model and data from published genetic analysis, we present to our knowledge, the first basin-scale hypothesis of distribution and connectivity among major rookeries and foraging grounds (FGs) of green turtles (Chelonia mydas) during their 'lost years'. Simulations indicate that transatlantic dispersal is likely to be common and that recurrent connectivity between the southwestern Indian Ocean and the South Atlantic is possible. The predicted distribution of pelagic juvenile turtles suggests that many 'lost years hotspots' are presently unstudied and located outside protected areas. These models, therefore, provide new information on possible dispersal pathways that link nesting beaches with FGs. These pathways may be of exceptional conservation concern owing to their importance for sea turtles during a critical developmental period.

  3. Outbreaks of Salmonellosis From Small Turtles.

    PubMed

    Walters, Maroya Spalding; Simmons, Latoya; Anderson, Tara C; DeMent, Jamie; Van Zile, Kathleen; Matthias, Laura P; Etheridge, Sonia; Baker, Ronald; Healan, Cheryl; Bagby, Rita; Reporter, Roshan; Kimura, Akiko; Harrison, Cassandra; Ajileye, Kadri; Borders, Julie; Crocker, Kia; Smee, Aaron; Adams-Cameron, Meg; Joseph, Lavin A; Tolar, Beth; Trees, Eija; Sabol, Ashley; Garrett, Nancy; Bopp, Cheryl; Bosch, Stacey; Behravesh, Casey Barton

    2016-01-01

    Turtle-associated salmonellosis (TAS), especially in children, is a reemerging public health issue. In 1975, small pet turtles (shell length <4 inches) sales were banned by federal law; reductions in pediatric TAS followed. Since 2006, the number of multistate TAS outbreaks has increased. We describe 8 multistate outbreaks with illness-onset dates occurring in 2011-2013. We conducted epidemiologic, environmental, and traceback investigations. Cases were defined as infection with ≥ 1 of 10 molecular subtypes of Salmonella Sandiego, Pomona, Poona, Typhimurium, and I 4,[5],12:i:-. Water samples from turtle habitats linked to human illnesses were cultured for Salmonella. We identified 8 outbreaks totaling 473 cases from 41 states, Washington DC, and Puerto Rico with illness onsets during May 2011-September 2013. The median patient age was 4 years (range: 1 month-94 years); 45% percent were Hispanic; and 28% were hospitalized. In the week preceding illness, 68% (187 of 273) of case-patients reported turtle exposure; among these, 88% (124 of 141) described small turtles. Outbreak strains were isolated from turtle habitats linked to human illnesses in seven outbreaks. Traceback investigations identified 2 Louisiana turtle farms as the source of small turtles linked to 1 outbreak; 1 outbreak strain was isolated from turtle pond water from 1 turtle farm. Eight multistate outbreaks associated with small turtles were investigated during 2011-2013. Children <5 years and Hispanics were disproportionately affected. Prevention efforts should focus on patient education targeting families with young children and Hispanics and enactment of state and local regulations to complement federal sales restrictions. Copyright © 2016 by the American Academy of Pediatrics.

  4. Longitude perception and bicoordinate magnetic maps in sea turtles.

    PubMed

    Putman, Nathan F; Endres, Courtney S; Lohmann, Catherine M F; Lohmann, Kenneth J

    2011-03-22

    Long-distance animal migrants often navigate in ways that imply an awareness of both latitude and longitude. Although several species are known to use magnetic cues as a surrogate for latitude, it is not known how any animal perceives longitude. Magnetic parameters appear to be unpromising as longitudinal markers because they typically vary more in a north-south rather than an east-west direction. Here we report, however, that hatchling loggerhead sea turtles (Caretta caretta) from Florida, USA, when exposed to magnetic fields that exist at two locations with the same latitude but on opposite sides of the Atlantic Ocean, responded by swimming in different directions that would, in each case, help them advance along their circular migratory route. The results demonstrate for the first time that longitude can be encoded into the magnetic positioning system of a migratory animal. Because turtles also assess north-south position magnetically, the findings imply that loggerheads have a navigational system that exploits the Earth's magnetic field as a kind of bicoordinate magnetic map from which both longitudinal and latitudinal information can be extracted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Evaluating the landscape of fear between apex predatory sharks and mobile sea turtles across a large dynamic seascape.

    PubMed

    Hammerschlag, Neil; Broderick, Annette C; Coker, John W; Coyne, Michael S; Dodd, Mark; Frick, Michael G; Godfrey, Matthew H; Godley, Brendan J; Griffin, DuBose B; Hartog, Kyra; Murphy, Sally R; Murphy, Thomas M; Nelson, Emily Rose; Williams, Kristina L; Witt, Matthew J; Hawkes, Lucy A

    2015-08-01

    The "landscape of fear" model has been proposed as a unifying concept in ecology, describing, in part, how animals behave and move about in their environment. The basic model predicts that as an animal's landscape changes from low to high risk of predation, prey species will alter their behavior to risk avoidance. However, studies investigating and evaluating the landscape of fear model across large spatial scales (tens to hundreds of thousands of square kilometers) in dynamic, open, aquatic systems involving apex predators and highly mobile prey are lacking. To address this knowledge gap, we investigated predator-prey relationships between. tiger sharks (Galeocerdo cuvier) and loggerhead turtles (Caretta caretta) in the North Atlantic Ocean. This included the use of satellite tracking to examine shark and turtle distributions as well as their surfacing behaviors under varying levels of home range overlap. Our findings revealed patterns that deviated from our a priori predictions based on the landscape of fear model. Specifically, turtles did not alter their surfacing behaviors to risk avoidance when overlap in shark-turtle core home range was high. However, in areas of high overlap with turtles, sharks exhibited modified surfacing behaviors that may enhance predation opportunity. We suggest that turtles may be an important factor in determining shark,distribution, whereas for turtles, other life history trade-offs may play a larger role in defining their habitat use. We propose that these findings are a result of both biotic and physically driven factors that independently or synergistically affect predator-prey interactions in this system. These results have implications for evolutionary biology, community ecology; and wildlife conservation. Further, given the difficulty in studying highly migratory marine species, our approach and conclusions may be applied to the study of other predator-prey systems.

  6. Why do turtles live so long

    SciTech Connect

    Gibbons, J.W.

    1987-04-01

    Turtles appear to live longer than most other species of vertebrates, according to both maximal lifespans from zoo records and survivorship patterns in natural populations. Turtle longevity may reflect low metabolic activity, an absence of physiological and anatomical senility, a large investment in the adult's protective shell, and a life history with a long maturation period.

  7. More on Sea Turtles and Seaweed

    ERIC Educational Resources Information Center

    Xin, Tian

    2005-01-01

    "Sea turtle" and "seaweed"--otherwise known as "returnee from abroad" and "unemployed from abroad," respectively-- are a pair of popular new terms that are innately connected. In this article, the author discusses the common plight faced by "sea turtles" and "seaweeds" who returned from…

  8. More on Sea Turtles and Seaweed

    ERIC Educational Resources Information Center

    Xin, Tian

    2005-01-01

    "Sea turtle" and "seaweed"--otherwise known as "returnee from abroad" and "unemployed from abroad," respectively-- are a pair of popular new terms that are innately connected. In this article, the author discusses the common plight faced by "sea turtles" and "seaweeds" who returned from…

  9. Dune vegetation fertilization by nesting sea turtles.

    PubMed

    Hannan, Laura B; Roth, James D; Ehrhart, Llewellyn M; Weishampel, John F

    2007-04-01

    Sea turtle nesting presents a potential pathway to subsidize nutrient-poor dune ecosystems, which provide the nesting habitat for sea turtles. To assess whether this positive feedback between dune plants and turtle nests exists, we measured N concentration and delta15N values in dune soils, leaves from a common dune plant (sea oats [Uniola paniculata]), and addled eggs of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) across a nesting gradient (200-1050 nests/km) along a 40.5-km stretch of beach in east central Florida, USA. The delta15N levels were higher in loggerhead than green turtle eggs, denoting the higher trophic level of loggerhead turtles. Soil N concentration and delta15N values were both positively correlated to turtle nest density. Sea oat leaf tissue delta15N was also positively correlated to nest density, indicating an increased use of augmented marine-based nutrient sources. Foliar N concentration was correlated with delta15N, suggesting that increased nutrient availability from this biogenic vector may enhance the vigor of dune vegetation, promoting dune stabilization and preserving sea turtle nesting habitat.

  10. The evolutionary position of turtles revised

    NASA Astrophysics Data System (ADS)

    Zardoya, Rafael; Meyer, Axel

    2001-05-01

    Consensus on the evolutionary position of turtles within the amniote phylogeny has eluded evolutionary biologists for more than a century. This phylogenetic problem has remained unsolved partly because turtles have such a unique morphology that only few characters can be used to link them with any other group of amniotes. Among the many alternative hypotheses that have been postulated to explain the origin and phylogenetic relationships of turtles, a general agreement among paleontologists emerged in favoring the placement of turtles as the only living survivors of the anapsid reptiles (those that lack temporal fenestrae in the skull). However, recent morphological and molecular studies have radically changed our view of amniote phylogenetic relationships, and evidence is accumulating that supports the diapsid affinities of turtles. Molecular studies favor archosaurs (crocodiles and birds) as the living sister group of turtles, whereas morphological studies support lepidosaurs (tuatara, lizards, and snakes) as the closest living relatives of turtles. Accepting these hypotheses implies that turtles cannot be viewed any longer as primitive reptiles, and that they might have lost the temporal holes in the skull secondarily rather than never having had them.

  11. 50 CFR Appendix F to Part 622 - Specifications for Sea Turtle Mitigation Gear and Sea Turtle Handling and Release Requirements

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Specifications for Sea Turtle Mitigation Gear and Sea Turtle Handling and Release Requirements F Appendix F to Part 622 Wildlife and Fisheries... 622—Specifications for Sea Turtle Mitigation Gear and Sea Turtle Handling and Release Requirements...

  12. Use of Electronic Tag Data and Associated Analytical Tools to Identify and Predict Habitat Utilization of Marine Mammals

    DTIC Science & Technology

    2010-09-30

    western, central, or south Pacific basin ( leatherback sea turtles, black-footed albatrosses, sooty shearwaters, bluefin tuna, and salmon sharks; Figure...elephant seals and leatherback sea turtles; The mechanisms and cues underlying fidelity to seasonally-modulated migration pathways are not entirely...mako sharks), seabirds (Laysan and black-footed albatrosses and sooty shearwaters), turtles ( leatherbacks and loggerheads), and cetaceans (blue, fin

  13. North American box turtles: A natural history

    USGS Publications Warehouse

    Dodd, C. Kenneth

    2002-01-01

    Once a familiar backyard visitor in many parts of the United States and Mexico, the box turtle is losing the battle against extinction. In North American Box Turtles, C. Kenneth Dodd, Jr., has written the first book-length natural history of the twelve species and subspecies of this endangered animal. This volume includes comprehensive information on the species’ evolution, behavior, courtship and reproduction, habitat use, diet, population structure, systematics, and disease. Special features include color photos of all species, subspecies, and their habitats; a simple identification guide to both living and fossil species; and a summary of information on fossil Terrapene and Native uses of box turtles. End-of-chapter sections highlight future research directions, including the need for long-term monitoring and observation of box turtles within their natural habitat and conservation applications. A glossary and a bibliography of literature on box turtles accompany the text.

  14. Turtle Nest Monitoring with Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Szlavecz, K.; Terzis, A.; Musaloiu, R.; Liang, C.; Cogan, J.; Klofas, J.; Xia, L.; Swarth, C.; Matthews, S.

    2007-12-01

    We have recently developed a wireless sensor system for environmental monitoring. The system is based upon the sensor platform by Telos, soil moisture sensors from Decagon and our own temperature sensors. The system was deployed at the Jug Bay Wetland Sanctuary, around several nests of Eastern Box Turtles (Terrapene carolina). Conditions in the soil where turtles excavate their nests can have a profound effect on egg survival, hatchling survival and on the sex of hatchling turtles. Turtles prefer nesting in sunny areas where solar radiation provides the heat source that warms the developing embryos. Our system has provided a continuous monitoring of all these parameters over a period of several months in the summer of 2007. The data show several interesting phenomena about temperature gradients in the vicinity of the turtle nests. The deployment also served as a validation of our second generation sensor platform, which performed remarkably well.

  15. Transitional fossils and the origin of turtles.

    PubMed

    Lyson, Tyler R; Bever, Gabe S; Bhullar, Bhart-Anjan S; Joyce, Walter G; Gauthier, Jacques A

    2010-12-23

    The origin of turtles is one of the most contentious issues in systematics with three currently viable hypotheses: turtles as the extant sister to (i) the crocodile-bird clade, (ii) the lizard-tuatara clade, or (iii) Diapsida (a clade composed of (i) and (ii)). We reanalysed a recent dataset that allied turtles with the lizard-tuatara clade and found that the inclusion of the stem turtle Proganochelys quenstedti and the 'parareptile' Eunotosaurus africanus results in a single overriding morphological signal, with turtles outside Diapsida. This result reflects the importance of transitional fossils when long branches separate crown clades, and highlights unexplored issues such as the role of topological congruence when using fossils to calibrate molecular clocks.

  16. Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan.

    PubMed

    Agusa, Tetsuro; Takagi, Kozue; Kubota, Reiji; Anan, Yasumi; Iwata, Hisato; Tanabe, Shinsuke

    2008-05-01

    Concentrations of total arsenic (As) and individual compounds were determined in green and hawksbill turtles from Ishigaki Island, Japan. In both species, total As concentrations were highest in muscle among the tissues. Arsenobetaine was a major compound in most tissues of both turtles. High concentrations of trimethylarsine oxide were detected in hawksbill turtles. A significant negative correlation between standard carapace length (SCL), an indicator of age, and total As levels in green turtles was found. In contrast, the levels increased with SCL of hawksbill turtles. Shifts in feeding habitats with growth may account for such a growth-dependent accumulation of As. Although concentrations of As in marine sponges, the major food of hawksbill turtles are not high compared to those in algae eaten by green turtles, As concentrations in hawksbill turtles were higher than those in green turtles, indicating that hawksbill turtles may have a specific accumulation mechanism for As.

  17. Mitochondrial DNA Profiling of Illegal Tortoiseshell Products Derived from Hawksbill Sea Turtles.

    PubMed

    Foran, David R; Ray, Rebecca L

    2016-07-01

    The hawksbill sea turtle (Eretmochelys imbricata) is a highly endangered species, commonly poached for its ornate shell. "Tortoiseshell" products made from the shell are widely, although illegally, available in many countries. Hawksbills have a circumglobal distribution; thus, determining their origin is difficult, although genetic differences exist geographically. In the research presented, a procedure was developed to extract and amplify mitochondrial DNA from tortoiseshell items, in an effort to better understand where the species is being poached. Confiscated tortoiseshell items were obtained from the U.S. Fish and Wildlife Service, and DNA from 56 of them was analyzed. Multiple mitochondrial haplotypes were identified, including five not previously reported. Only one tortoiseshell item proved to be of Atlantic origin, while all others corresponded to genetic stocks in the Indo-Pacific region. The developed methodology allows for unique, and previously unattainable, genetic information on the illegal poaching of sea turtles for the decorative tortoiseshell trade.

  18. Challenges in Evaluating the Severity of Fibropapillomatosis: A Proposal for Objective Index and Score System for Green Sea Turtles (Chelonia mydas) in Brazil

    PubMed Central

    Rossi, Silmara; Sánchez-Sarmiento, Angélica María; Vanstreels, Ralph Eric Thijl; dos Santos, Robson Guimarães; Prioste, Fabiola Eloisa Setim; Gattamorta, Marco Aurélio; Grisi-Filho, José Henrique Hildebrand; Matushima, Eliana Reiko

    2016-01-01

    Fibropapillomatosis (FP) is a neoplastic disease that affects marine turtles worldwide, especially green sea turtles (Chelonia mydas). FP tumors can develop on the body surface of marine turtles and also internally in the oral cavity and viscera. Depending on their quantity, size and anatomical distribution, these tumors can interfere with hydrodynamics and the ability to feed, hence scoring systems have been proposed in an attempt to quantify the clinical manifestation of FP. In order to establish a new scoring system adapted to geographic regions, we examined 214 juvenile green sea turtles with FP caught or rescued at Brazilian feeding areas, counted their 7466 tumors and classified them in relation to their size and anatomical distribution. The patterns in quantity, size and distribution of tumors revealed interesting aspects in the clinical manifestation of FP in specimens studied in Brazil, and that FP scoring systems developed for other areas might not perform adequately when applied to sea turtles on the Southwest Atlantic Ocean. We therefore propose a novel method to evaluate the clinical manifestation of FP: fibropapillomatosis index (FPI) that provides the Southwest Atlantic fibropapillomatosis score (FPSSWA). In combination, these indexing and scoring systems allow for a more objective, rapid and detailed evaluation of the severity of FP in green sea turtles. While primarily designed for the clinical manifestation of FP currently witnessed in our dataset, this index and the score system can be adapted for other areas and compare the characteristics of the disease across regions. In conclusion, scoring systems to classify the severity of FP can assist our understanding on the environmental factors that modulate its development and its impacts on the individual and population health of green sea turtles. PMID:27936118

  19. Challenges in Evaluating the Severity of Fibropapillomatosis: A Proposal for Objective Index and Score System for Green Sea Turtles (Chelonia mydas) in Brazil.

    PubMed

    Rossi, Silmara; Sánchez-Sarmiento, Angélica María; Vanstreels, Ralph Eric Thijl; Dos Santos, Robson Guimarães; Prioste, Fabiola Eloisa Setim; Gattamorta, Marco Aurélio; Grisi-Filho, José Henrique Hildebrand; Matushima, Eliana Reiko

    2016-01-01

    Fibropapillomatosis (FP) is a neoplastic disease that affects marine turtles worldwide, especially green sea turtles (Chelonia mydas). FP tumors can develop on the body surface of marine turtles and also internally in the oral cavity and viscera. Depending on their quantity, size and anatomical distribution, these tumors can interfere with hydrodynamics and the ability to feed, hence scoring systems have been proposed in an attempt to quantify the clinical manifestation of FP. In order to establish a new scoring system adapted to geographic regions, we examined 214 juvenile green sea turtles with FP caught or rescued at Brazilian feeding areas, counted their 7466 tumors and classified them in relation to their size and anatomical distribution. The patterns in quantity, size and distribution of tumors revealed interesting aspects in the clinical manifestation of FP in specimens studied in Brazil, and that FP scoring systems developed for other areas might not perform adequately when applied to sea turtles on the Southwest Atlantic Ocean. We therefore propose a novel method to evaluate the clinical manifestation of FP: fibropapillomatosis index (FPI) that provides the Southwest Atlantic fibropapillomatosis score (FPSSWA). In combination, these indexing and scoring systems allow for a more objective, rapid and detailed evaluation of the severity of FP in green sea turtles. While primarily designed for the clinical manifestation of FP currently witnessed in our dataset, this index and the score system can be adapted for other areas and compare the characteristics of the disease across regions. In conclusion, scoring systems to classify the severity of FP can assist our understanding on the environmental factors that modulate its development and its impacts on the individual and population health of green sea turtles.

  20. Chemical Contaminants Found in the Gastrointestinal Tract of Loggerhead Sea Turtles (Caretta caretta)

    NASA Astrophysics Data System (ADS)

    Athey, S. N.; Seaton, P. J.; Mead, R. N.

    2016-02-01

    Plastic is becoming increasingly more abundant in the marine environment. Plastic ingestion has been shown to be a source of exposure to a variety of harmful compounds, such as polycyclic aromatic hydrocarbons (PAHs), bisphenol A (BPA), and phthalates, which are known for their negative physiological effects on the endocrine system as well as their ability to adsorb and leach from plastic into the bodies of marine organisms. The physiological effects of these compounds on loggerhead sea turtles (Caretta caretta) still remain unknown. This study investigated the presence of toxicants on marine plastic samples collected from Bermuda, the Sargasso Sea, and the North Atlantic Ocean. Gas chromatography/triple quadruple mass spectrometry (GC/MS) analysis showed PAHs were present on many plastic debris samples. Plastic additives such as phthalates and (BPA) were also found. ΣPAH concentrations for anthracene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene for 2013 environmental plastic samples averaged 26.7ng/g of plastic. This study also examined the presence of these compounds in fluids from the stomach, small intestine, and large intestine from two adult loggerhead turtles. GC/MS analysis also showed the presence of BPA and phthalates on plastic samples, as well as in two out of the six gastrointestinal fluids samples. Average ΣPAH concentration for GI fluids for the loggerheads in the study was 58.7 ng/mL. This study showed plastic could be a significant source of PAHs in sea turtles and the first to detect PAHs in sea turtle GI fluid. Loggerhead sea turtles are a long living species and could accumulate high concentrations of these endocrine-disrupting chemicals throughout their lifetime.

  1. Interpreting the spatio-temporal patterns of sea turtle strandings: Going with the flow

    USGS Publications Warehouse

    Hart, K.M.; Mooreside, P.; Crowder, L.B.

    2006-01-01

    Knowledge of the spatial and temporal distribution of specific mortality sources is crucial for management of species that are vulnerable to human interactions. Beachcast carcasses represent an unknown fraction of at-sea mortalities. While a variety of physical (e.g., water temperature) and biological (e.g., decomposition) factors as well as the distribution of animals and their mortality sources likely affect the probability of carcass stranding, physical oceanography plays a major role in where and when carcasses strand. Here, we evaluate the influence of nearshore physical oceanographic and wind regimes on sea turtle strandings to decipher seasonal trends and make qualitative predictions about stranding patterns along oceanfront beaches. We use results from oceanic drift-bottle experiments to check our predictions and provide an upper limit on stranding proportions. We compare predicted current regimes from a 3D physical oceanographic model to spatial and temporal locations of both sea turtle carcass strandings and drift bottle landfalls. Drift bottle return rates suggest an upper limit for the proportion of sea turtle carcasses that strand (about 20%). In the South Atlantic Bight, seasonal development of along-shelf flow coincides with increased numbers of strandings of both turtles and drift bottles in late spring and early summer. The model also predicts net offshore flow of surface waters during winter - the season with the fewest relative strandings. The drift bottle data provide a reasonable upper bound on how likely carcasses are to reach land from points offshore and bound the general timeframe for stranding post-mortem (< two weeks). Our findings suggest that marine turtle strandings follow a seasonal regime predictable from physical oceanography and mimicked by drift bottle experiments. Managers can use these findings to reevaluate incidental strandings limits and fishery takes for both nearshore and offshore mortality sources. ?? 2005 Elsevier Ltd

  2. Evolutionary origin of the turtle skull.

    PubMed

    Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S

    2015-09-10

    Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.

  3. 75 FR 22073 - Fisheries of the Northeastern United States; Atlantic Sea Scallop Fishery; Framework Adjustment 21

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Proposed rule... scallop fishery: Total allowable catch (TAC); open area days-at-sea (DAS) and Sea Scallop Access Area... minimize impacts of incidental take of sea turtles as required by the March 14, 2008, Atlantic Sea...

  4. Biochemical responses to fibropapilloma and captivity in the green turtle.

    PubMed

    Swimmer, J Y

    2000-01-01

    Blood biochemical parameters were compared for green turtles (Chelonia mydas) with and without green turtle fibropapillomatosis (GTFP) from both captive and wild populations in Hawaii (USA) and from a captive population from California (USA), during the period between 1994 and 1996. Statistical analysis did not detect an influence of disease in any of the blood parameters for free-ranging turtles; however, captive turtles in Hawaii with GTFP had significantly higher levels of alkaline phosphatase and significantly lower levels of lactate compared to non-tumored captive turtles. Multivariate analysis found that biochemical profiles could be used to accurately predict if turtles were healthy or afflicted with GTFP. Discriminant function analysis correctly classified turtles as being with or without GTFP in 89% of cases, suggesting that diseased animals had a distinct signature of plasma biochemistries. Measurements of blood parameters identified numerous differences between captive and wild green turtles in Hawaii. Levels of corticosterone, lactate, triglyceride, glucose, and calcium were significantly higher in wild green turtles as compared to captive turtles, while uric acid levels were significantly lower in wild turtles as compared to captive turtles. Additionally, turtles from Sea World of California (San Diego, California, USA), which had been in captivity the longest, had higher levels of alanine aminotransferase and triglycerides as compared to nearly all other groups. Differences in diet, sampling methods, environmental conditions, and turtle size, help to interpret these results.

  5. Geographic variation in marine turtle fibropapillomatosis

    USGS Publications Warehouse

    Greenblatt, R.J.; Work, Thierry M.; Dutton, P.; Sutton, C.A.; Spraker, T.R.; Casey, R.N.; Diez, C.E.; Parker, Dana C.; St. Ledger, J.; Balazs, G.H.; Casey, J.W.

    2005-01-01

    We document three examples of fibropapillomatosis by histology, quantitative polymerase chain reaction (qPCR), and sequence analysis from three different geographic areas. Tumors compatible in morphology with fibropapillomatosis were seen in green turtles from Puerto Rico and San Diego (California) and in a hybrid loggerhead/ hawksbill turtle from Florida Bay (Florida). Tumors were confirmed as fibropapillomas on histology, although severity of disease varied between cases. Polymerase chain reaction (PCR) analyses revealed infection with the fibropapilloma-associated turtle herpesvirus (FPTHV) in all cases, albeit at highly variable copy numbers per cell. Alignment of a portion of the polymerase gene from each fibropapilloma-associated turtle herpesvirus isolate demonstrated geographic variation in sequence. These cases illustrate geographic variation in both the pathology and the virology of fibropapillomatosis.

  6. Geographic variation in marine turtle fibropapillomatosis.

    PubMed

    Greenblatt, Rebecca J; Work, Thierry M; Dutton, Peter; Sutton, Claudia A; Spraker, Terry R; Casey, Rufina N; Diez, Carlos E; Parker, Denise; St Leger, Judy; Balazs, George H; Casey, James W

    2005-09-01

    We document three examples of fibropapillomatosis by histology, quantitative polymerase chain reaction (qPCR), and sequence analysis from three different geographic areas. Tumors compatible in morphology with fibropapillomatosis were seen in green turtles from Puerto Rico and San Diego (California) and in a hybrid loggerhead/ hawksbill turtle from Florida Bay (Florida). Tumors were confirmed as fibropapillomas on histology, although severity of disease varied between cases. Polymerase chain reaction (PCR) analyses revealed infection with the fibropapilloma-associated turtle herpesvirus (FPTHV) in all cases, albeit at highly variable copy numbers per cell. Alignment of a portion of the polymerase gene from each fibropapilloma-associated turtle herpesvirus isolate demonstrated geographic variation in sequence. These cases illustrate geographic variation in both the pathology and the virology of fibropapillomatosis.

  7. Geographic variation in marine turtle fibropapillomatosis

    USGS Publications Warehouse

    Greenblatt, R.J.; Work, T.M.; Dutton, P.; Sutton, C.A.; Spraker, T.R.; Casey, R.N.; Diez, C.E.; Parker, Dana C.; St. Ledger, J.; Balazs, G.H.; Casey, J.W.

    2005-01-01

    We document three examples of fibropapillomatosis by histology, quantitative polymerase chain reaction (qPCR), and sequence analysis from three different geographic areas. Tumors compatible in morphology with fibropapillomatosis were seen in green turtles from Puerto Rico and San Diego (California) and in a hybrid loggerhead/ hawksbill turtle from Florida Bay (Florida). Tumors were confirmed as fibropapillomas on histology, although severity of disease varied between cases. Polymerase chain reaction (PCR) analyses revealed infection with the fibropapilloma-associated turtle herpesvirus (FPTHV) in all cases, albeit at highly variable copy numbers per cell. Alignment of a portion of the polymerase gene from each fibropapilloma-associated turtle herpesvirus isolate demonstrated geographic variation in sequence. These cases illustrate geographic variation in both the pathology and the virology of fibropapillomatosis.

  8. Bibliography of marine turtles in Hawaii

    SciTech Connect

    Payne, S.F.

    1981-07-01

    Information on the organisms at proposed Ocean Thermal Energy Conversion (OTEC) sites is required to assess the potential impacts of OTEC power plant operations. This bibliography is the product of a literature survey on marine turtles at two proposed OTEC sites in Hawaii. The OTEC sites are located off Keahole Point, Hawaii and Kahe Point, Oahu. The references included in this bibliography provide information on the distribution, ecology and biology of marine turtles in Hawaii.

  9. An Updated AP2 Beamline TURTLE Model

    SciTech Connect

    Gormley, M.; O'Day, S.

    1991-08-23

    This note describes a TURTLE model of the AP2 beamline. This model was created by D. Johnson and improved by J. Hangst. The authors of this note have made additional improvements which reflect recent element and magnet setting changes. The magnet characteristics measurements and survey data compiled to update the model will be presented. A printout of the actual TURTLE deck may be found in appendix A.

  10. Magnetite in Black Sea Turtles (Chelonia agassizi)

    NASA Astrophysics Data System (ADS)

    Fuentes, A.; Urrutia-Fucugauchi, J.; Garduño, V.; Sanchez, J.; Rizzi, A.

    2004-12-01

    Previous studies have reported experimental evidence for magnetoreception in marine turtles. In order to increase our knowledge about magnetoreception and biogenic mineralization, we have isolated magnetite particles from the brain of specimens of black sea turtles Chelonia agassizi. Our samples come from natural deceased organisms collected the reserve area of Colola Maruata in southern Mexico. The occurrence of magnetite particles in brain tissue of black sea turtles offers the opportunity for further studies to investigate possible function of ferrimagnetic material, its mineralogical composition, grain size, texture and its location and structural arrangement within the host tissue. After sample preparation and microscopic examination, we localized and identified the ultrafine unidimensional particles of magnetite by scanning electron microscope (SEM). Particles present grain sizes between 10.0 to 40.0Mm. Our study provides, for the first time, evidence for biogenic formation of this material in the black sea turtles. The ultrafine particles are apparently superparamagnetic. Preliminary results from rock magnetic measurements are also reported and correlated to the SEM observations. The black turtle story on the Michoacan coast is an example of formerly abundant resource which was utilized as a subsistence level by Nahuatl indigenous group for centuries, but which is collapsing because of intensive illegal commercial exploitation. The most important nesting and breeding grounds for the black sea turtle on any mainland shore are the eastern Pacific coastal areas of Maruata and Colola, in Michoacan. These beaches are characterized by important amounts of magnetic mineral (magnetites and titanomagnetites) mixed in their sediments.

  11. Fossorial Origin of the Turtle Shell.

    PubMed

    Lyson, Tyler R; Rubidge, Bruce S; Scheyer, Torsten M; de Queiroz, Kevin; Schachner, Emma R; Smith, Roger M H; Botha-Brink, Jennifer; Bever, G S

    2016-07-25

    The turtle shell is a complex structure that currently serves a largely protective function in this iconically slow-moving group [1]. Developmental [2, 3] and fossil [4-7] data indicate that one of the first steps toward the shelled body plan was broadening of the ribs (approximately 50 my before the completed shell [5]). Broadened ribs alone provide little protection [8] and confer significant locomotory [9, 10] and respiratory [9, 11] costs. They increase thoracic rigidity [8], which decreases speed of locomotion due to shortened stride length [10], and they inhibit effective costal ventilation [9, 11]. New fossil material of the oldest hypothesized stem turtle, Eunotosaurus africanus [12] (260 mya) [13, 14] from the Karoo Basin of South Africa, indicates the initiation of rib broadening was an adaptive response to fossoriality. Similar to extant fossorial taxa [8], the broad ribs of Eunotosaurus provide an intrinsically stable base on which to operate a powerful forelimb digging mechanism. Numerous fossorial correlates [15-17] are expressed throughout Eunotosaurus' skeleton. Most of these features are widely distributed along the turtle stem and into the crown clade, indicating the common ancestor of Eunotosaurus and modern turtles possessed a body plan significantly influenced by digging. The adaptations related to fossoriality likely facilitated movement of stem turtles into aquatic environments early in the groups' evolutionary history, and this ecology may have played an important role in stem turtles surviving the Permian/Triassic extinction event. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Young Children and Turtle Graphics Programming: Generating and Debugging Simple Turtle Programs.

    ERIC Educational Resources Information Center

    Cuneo, Diane O.

    Turtle graphics is a popular vehicle for introducing children to computer programming. Children combine simple graphic commands to get a display screen cursor (called a turtle) to draw designs on the screen. The purpose of this study was to examine young children's abilities to function in a simple computer programming environment. Four- and…

  13. First fossil gravid turtle provides insight into the evolution of reproductive traits in turtles.

    PubMed

    Zelenitsky, Darla K; Therrien, Franc Ois; Joyce, Walter G; Brinkman, Donald B

    2008-12-23

    Here we report on the first discovery of shelled eggs inside the body cavity of a fossil turtle and on an isolated egg clutch, both referable to the Cretaceous turtle Adocus. These discoveries provide a unique opportunity to gain insight into the reproductive traits of an extinct turtle and to understand the evolution of such traits among living turtles. The gravid adult and egg clutch indicate that Adocus laid large clutches of rigid-shelled spherical eggs and established their nests near rivers, traits that are shared by its closest living relatives, the soft-shelled turtles. Adocus eggshell, however, was probably more rigid than that of living turtles, based on its great thickness and structure, features that may represent unique adaptations to intense predation or to arid nest environments. In light of the reproductive traits observed in Adocus, the distribution of reproductive traits among turtles reveals that large clutches of rigid-shelled eggs are primitive for hidden-necked turtles (cryptodirans) and that spherical eggs may have evolved independently within this group.

  14. Modifications of traps to reduce bycatch of freshwater turtles

    USGS Publications Warehouse

    Bury, R. Bruce

    2011-01-01

    Mortality of freshwater turtles varies among types and deployments of traps. There are few or no losses in hoop or fyke traps set where turtles may reach air, including placement in shallows, addition of floats on traps, and tying traps securely to a stake or to shore. Turtle mortality occurs when traps are set deep, traps are checked at intervals >1 day, and when turtles are captured as bycatch. Devices are available that exclude turtles from traps set for crab or game fish harvest. Slotted gates in front of the trap mouth reduce turtle entry, but small individuals still may be trapped. Incidental take of turtles is preventable by integrating several designs into aquatic traps, such as adding floats to the top of traps so turtles may reach air or an extension tube (chimney, ramp) that creates an escape route.

  15. Juvenile turtles for mosquito control in water storage tanks.

    PubMed

    Borjas, G; Marten, G G; Fernandez, E; Portillo, H

    1993-09-01

    Juvenile turtles, Trachemys scripta, provided highly effective control of mosquito larvae in cement tanks (pilas) where water was stored for household cleaning. When single turtles were introduced to tanks with histories of high mosquito production, nearly all turtles remained in good health and no mosquito larvae survived to the pupal stage. Families welcome turtles in their water storage containers in Honduras. Humane conditions for turtles can be assured by providing small quantities of table scraps to supplement their diet and by placing a small floating platform in the tank for basking. Although turtles can serve as alternate hosts for Salmonella, available evidence suggests that turtles in tanks should not be a source of human infection. Further confirmation that there is no Salmonella hazard should precede routine use of turtles for mosquito control.

  16. The Box Turtle: Room with a View on Species Decline.

    ERIC Educational Resources Information Center

    Belzer, Bill; Steisslinger, Mary Beth

    1999-01-01

    Surveys salient aspects of eastern box-turtle natural history. Explores the societal and ecological factors that have contributed to the decline of the box-turtle population. Contains 18 references. (WRM)

  17. The Box Turtle: Room with a View on Species Decline.

    ERIC Educational Resources Information Center

    Belzer, Bill; Steisslinger, Mary Beth

    1999-01-01

    Surveys salient aspects of eastern box-turtle natural history. Explores the societal and ecological factors that have contributed to the decline of the box-turtle population. Contains 18 references. (WRM)

  18. Breeding loggerhead marine turtles Caretta caretta in Dry Tortugas National Park, USA, show high fidelity to diverse habitats near nesting beaches

    USGS Publications Warehouse

    Hart, Kristen M.; Zawada, David G.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko

    2016-01-01

    We used satellite telemetry to identify in-water habitat used by individuals in the smallest North-west Atlantic subpopulation of adult nesting loggerhead turtles Caretta caretta during the breeding season. During 2010, 2011 and 2012 breeding periods, a total of 20 adult females used habitats proximal to nesting beaches with various levels of protection within Dry Tortugas National Park. We then used a rapid, high-resolution, digital imaging system to map habitat adjacent to nesting beaches, revealing the diversity and distribution of available benthic cover. Turtle behaviour showing measurable site-fidelity to these diverse habitats has implications for managing protected areas and human activities within them. Protecting diverse benthic areas adjacent to loggerhead turtle nesting beaches here and elsewhere could provide benefits for overall biodiversity conservation.

  19. Whose turtles are they, anyway?

    PubMed

    Mortimer, Jeanne A; Meylan, Peter A; Donnelly, Marydele

    2007-01-01

    The hawksbill turtle (Eretmochelys imbricata), listed since 1996 by the IUCN as Critically Endangered and by the Convention on International Trade in Endangered Species (CITES) as an Appendix I species, has been the subject of attention and controversy during the past 10 years due to the efforts of some nations to re-open banned international trade. The most recent debate has centred on whether it is appropriate for Cuba to harvest hawksbills from shared foraging aggregations within her national waters. In this issue of Molecular Ecology, Bowen et al. have used molecular genetic data to show that such harvests are likely to have deleterious effects on the health of hawksbill populations throughout the Caribbean.

  20. Against oversimplifying the issues on relocating turtle eggs.

    PubMed

    Mrosovsky, Nicholas

    2008-04-01

    Translocating sea turtle eggs at risk from high tides to safer places is one of the most widely undertaken conservation measures on behalf of these species. Recent research work has shown that individual female turtles differ in their nest-site preferences. If more of the nests saved by translocation come from turtles with tendencies to lay near the water, might this perhaps interfere with natural selection? This possibility adds to the controversy already surrounding relocation of turtle nests.

  1. Against Oversimplifying the Issues on Relocating Turtle Eggs

    NASA Astrophysics Data System (ADS)

    Mrosovsky, Nicholas

    2008-04-01

    Translocating sea turtle eggs at risk from high tides to safer places is one of the most widely undertaken conservation measures on behalf of these species. Recent research work has shown that individual female turtles differ in their nest-site preferences. If more of the nests saved by translocation come from turtles with tendencies to lay near the water, might this perhaps interfere with natural selection? This possibility adds to the controversy already surrounding relocation of turtle nests.

  2. Hydrothermal Fluxes at the Turtle Pits Vent Site, southern MAR

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Walter, M.; Mertens, C.; Sültenfuß, J.; Rhein, M.

    2009-04-01

    The Turtle Pits vent fields are located in a north-south orientated rift valley at the Mid-Atlantic Ridge (MAR) near 5oS. The site consists of three known hydrothermal fields: Turtle Pits, Comfortless Cove, and Red Lion. Data collected during a Meteor cruise in May 2006 and a L' Atalante cruise in January 2008 are used to calculate the total emission of volume, heat, and helium of the site. The data sets consist of vertical profiles and towed transsects of temperature, salinity, and turbidity, as well as direct velocity measurements with a lowered acoustic Doppler current profiler (LADCP) and water samples for Helium isotope analysis. Vent fluid samples for noble gas analysis where taken with an ROV. The particle plume is confined to the rift valley since the depth of the valley exceeds the rise height of the plume. Therefore the fluxes of heat and volume can be estimated from the helium fluxes at the vent sites in comparison with the horizontal helium transport in the valley. The comparison of the 3He concentration measured south of the hydrothermal vents with the 3He signal north of the hydrothermal vents suggests a rather strong northward flow. This is confirmed by the tide corrected velocities observed with the LADCP during the Meteor cruise. The northward volume transport has been calculated using the local bathymetry and tide corrected velocities from the Meteor cruise. In combination with the 3He concentrations and an average 3He end member concentration a flux of 900 l/s is estimated, which corresponds to a heat flux of 450 MW. The rise height of the particle plume estimated from the turbidity data combined with the known background stratification yields an estimate of the total flux of the hydrothermal vents which is one order of magnitude lower.

  3. Calcium transport in turtle bladder

    SciTech Connect

    Sabatini, S.; Kurtzman, N.A. )

    1987-12-01

    Unidirectional {sup 45}Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J{sup net}{sub Ca}) was secretory (serosa to mucosa). Ouabain reversed J{sup net}{sub Ca} to an absorptive flux. Amiloride reduced both fluxes such that J{sup net}{sub Ca} was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J{sup net}{sub Ca} decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J{sup net}{sub Ca} was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue {sup 45}Ca content was {approx equal}30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca{sup 2+}-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na{sup +}-K{sup +}-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa.

  4. Reptilian prey of the sonora mud turtle (Kinosternon sonoriense) with comments on saurophagy and ophiophagy in North American Turtles

    USGS Publications Warehouse

    Lovich, J.; Drost, C.; Monatesti, A.J.; Casper, D.; Wood, D.A.; Girard, M.

    2010-01-01

    We detected evidence of predation by the Sonora mud turtle (Kinosternon sonoriense) on the Arizona alligator lizard (Elgaria kingii nobilis) and the ground snake (Sonora semiannulata) at Montezuma Well, Yavapai County, Arizona. Lizards have not been reported in the diet of K. sonoriense, and saurophagy is rare in turtles of the United States, having been reported previously in only two other species:, the false map turtle (Graptemys pseudogeographica) and the eastern box turtle (Terrapene carolina). While the diet of K. sonoriense includes snakes, ours is the first record of S. semiannulata as food of this turtle. Ophiophagy also is rare in turtles of the United States with records for only five other species of turtles. Given the opportunistic diets of many North American turtles, including K. sonoriense, the scarcity of published records of saurophagy and ophiophagy likely represents a shortage of observations, not rarity of occurrence.

  5. Male hatchling production in sea turtles from one of the world’s largest marine protected areas, the Chagos Archipelago

    NASA Astrophysics Data System (ADS)

    Esteban, Nicole; Laloë, Jacques-Olivier; Mortimer, Jeanne A.; Guzman, Antenor N.; Hays, Graeme C.

    2016-02-01

    Sand temperatures at nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012–2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature. Depth effects were minimal, perhaps modulated by shade from vegetation. Coolest and warmest temperatures were recorded in the sites heavily shaded in vegetation during the austral winter and in sites partially shaded in vegetation during summer respectively. Overall, sand temperatures were relatively cool during the nesting seasons of both species which would likely produce fairly balanced hatchling sex ratios of 53% and 63% male hatchlings, respectively, for hawksbill and green turtles. This result contrasts with the predominantly high female skew reported for offspring at most rookeries around the globe and highlights how local beach characteristics can drive incubation temperatures. Our evidence suggests that sites characterized by heavy shade associated with intact natural vegetation are likely to provide conditions suitable for male hatchling production in a warming world.

  6. Male hatchling production in sea turtles from one of the world’s largest marine protected areas, the Chagos Archipelago

    PubMed Central

    Esteban, Nicole; Laloë, Jacques-Olivier; Mortimer, Jeanne A.; Guzman, Antenor N.; Hays, Graeme C.

    2016-01-01

    Sand temperatures at nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012–2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature. Depth effects were minimal, perhaps modulated by shade from vegetation. Coolest and warmest temperatures were recorded in the sites heavily shaded in vegetation during the austral winter and in sites partially shaded in vegetation during summer respectively. Overall, sand temperatures were relatively cool during the nesting seasons of both species which would likely produce fairly balanced hatchling sex ratios of 53% and 63% male hatchlings, respectively, for hawksbill and green turtles. This result contrasts with the predominantly high female skew reported for offspring at most rookeries around the globe and highlights how local beach characteristics can drive incubation temperatures. Our evidence suggests that sites characterized by heavy shade associated with intact natural vegetation are likely to provide conditions suitable for male hatchling production in a warming world. PMID:26832230

  7. Male hatchling production in sea turtles from one of the world's largest marine protected areas, the Chagos Archipelago.

    PubMed

    Esteban, Nicole; Laloë, Jacques-Olivier; Mortimer, Jeanne A; Guzman, Antenor N; Hays, Graeme C

    2016-02-02

    Sand temperatures at nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012-2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature. Depth effects were minimal, perhaps modulated by shade from vegetation. Coolest and warmest temperatures were recorded in the sites heavily shaded in vegetation during the austral winter and in sites partially shaded in vegetation during summer respectively. Overall, sand temperatures were relatively cool during the nesting seasons of both species which would likely produce fairly balanced hatchling sex ratios of 53% and 63% male hatchlings, respectively, for hawksbill and green turtles. This result contrasts with the predominantly high female skew reported for offspring at most rookeries around the globe and highlights how local beach characteristics can drive incubation temperatures. Our evidence suggests that sites characterized by heavy shade associated with intact natural vegetation are likely to provide conditions suitable for male hatchling production in a warming world.

  8. Finding the ‘lost years’ in green turtles: insights from ocean circulation models and genetic analysis

    PubMed Central

    Putman, Nathan F.; Naro-Maciel, Eugenia

    2013-01-01

    Organismal movement is an essential component of ecological processes and connectivity among ecosystems. However, estimating connectivity and identifying corridors of movement are challenging in oceanic organisms such as young turtles that disperse into the open sea and remain largely unobserved during a period known as ‘the lost years’. Using predictions of transport within an ocean circulation model and data from published genetic analysis, we present to our knowledge, the first basin-scale hypothesis of distribution and connectivity among major rookeries and foraging grounds (FGs) of green turtles (Chelonia mydas) during their ‘lost years’. Simulations indicate that transatlantic dispersal is likely to be common and that recurrent connectivity between the southwestern Indian Ocean and the South Atlantic is possible. The predicted distribution of pelagic juvenile turtles suggests that many ‘lost years hotspots’ are presently unstudied and located outside protected areas. These models, therefore, provide new information on possible dispersal pathways that link nesting beaches with FGs. These pathways may be of exceptional conservation concern owing to their importance for sea turtles during a critical developmental period. PMID:23945687

  9. 50 CFR 648.106 - Sea Turtle conservation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Sea Turtle conservation. 648.106 Section... Summer Flounder Fisheries § 648.106 Sea Turtle conservation. Link to an amendment published at 76 FR 60629, Sept. 29, 2011. Sea turtle regulations are found at 50 CFR parts 222 and 223. Effective Date Note...

  10. Sea Turtles: An Auditorium Program, Grades 6-9.

    ERIC Educational Resources Information Center

    National Aquarium in Baltimore, MD. Dept. of Education.

    The National Aquarium in Baltimore's sea turtle auditorium program introduces students in grades 6-9 to the seven (or eight, depending on which expert is consulted) species of sea turtles alive today. The program, which includes slides, films, artifacts, and discussion, focuses on sea turtle biology and conservation. This booklet covers most of…

  11. Decline of the Sea Turtles: Causes and Prevention.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Life Sciences.

    A report submitted by the Committee on Sea Turtle Conservation, addresses threats to the world's sea turtle populations to fulfill a mandate of the Endangered Species Act Amendments of 1988. It presents information on the populations, biology, ecology, and behavior of five endangered or threatened turtle species: the Kemp's ridley, loggerhead,…

  12. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals...

  13. 50 CFR 665.812 - Sea turtle take mitigation measures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii...

  14. 50 CFR 648.109 - Sea turtle conservation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50...

  15. 50 CFR 665.812 - Sea turtle take mitigation measures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii...

  16. 50 CFR 648.109 - Sea turtle conservation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50...

  17. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as...

  18. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals...

  19. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals...

  20. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as...

  1. 50 CFR 665.812 - Sea turtle take mitigation measures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii...

  2. 50 CFR 648.109 - Sea turtle conservation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50...

  3. 50 CFR 648.106 - Sea Turtle conservation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Sea Turtle conservation. 648.106 Section 648.106 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.106 Sea Turtle conservation. Sea turtle regulations are found at 50...

  4. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as...

  5. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as...

  6. 50 CFR 648.109 - Sea turtle conservation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50...

  7. Sea Turtles: An Auditorium Program, Grades 6-9.

    ERIC Educational Resources Information Center

    National Aquarium in Baltimore, MD. Dept. of Education.

    The National Aquarium in Baltimore's sea turtle auditorium program introduces students in grades 6-9 to the seven (or eight, depending on which expert is consulted) species of sea turtles alive today. The program, which includes slides, films, artifacts, and discussion, focuses on sea turtle biology and conservation. This booklet covers most of…

  8. Young Children's Misconceptions of Simple Turtle Graphics Commands.

    ERIC Educational Resources Information Center

    Cuneo, Diane O.

    Four- and 5-year-olds' understanding of basic turtle graphics commands was examined before and after a hands-on, interactive problem-solving experience. Children (n=32) saw display screen events consisting of an initial turtle state, a command transformation, and the resulting turtle state. They were asked to give the command executed in each…

  9. Tracking sea turtles in the Everglades

    USGS Publications Warehouse

    Hart, Kristin M.

    2008-01-01

    The U.S. Geological Survey (USGS) has a long history of conducting research on threatened, endangered, and at-risk species inhabiting both terrestrial and marine environments, particularly those found within national parks and protected areas. In the coastal Gulf of Mexico region, for example, USGS scientist Donna Shaver at Padre Island National Seashore in Texas has focused on “headstarting” hatchlings of the rare Kemp’s ridley sea turtle (Lepidochelys kempii). She is also analyzing trends in sea turtle strandings onshore and interactions with Gulf shrimp fisheries. Along south Florida’s Gulf coast, the USGS has focused on research and monitoring for managing the greater Everglades ecosystem. One novel project involves the endangered green sea turtle (Chelonia mydas). The ecology and movements of adult green turtles are reasonably well understood, largely due to decades of nesting beach monitoring by a network of researchers and volunteers. In contrast, relatively little is known about the habitat requirements and movements of juvenile and subadult sea turtles of any species in their aquatic environment.

  10. Evolutionary origin of the turtle shell.

    PubMed

    Lyson, Tyler R; Bever, Gabe S; Scheyer, Torsten M; Hsiang, Allison Y; Gauthier, Jacques A

    2013-06-17

    The origin of the turtle shell has perplexed biologists for more than two centuries. It was not until Odontochelys semitestacea was discovered, however, that the fossil and developmental data could be synthesized into a model of shell assembly that makes predictions for the as-yet unestablished history of the turtle stem group. We build on this model by integrating novel data for Eunotosaurus africanus-a Late Guadalupian (∼260 mya) Permian reptile inferred to be an early stem turtle. Eunotosaurus expresses a number of relevant characters, including a reduced number of elongate trunk vertebrae (nine), nine pairs of T-shaped ribs, inferred loss of intercostal muscles, reorganization of respiratory muscles to the ventral side of the ribs, (sub)dermal outgrowth of bone from the developing perichondral collar of the ribs, and paired gastralia that lack both lateral and median elements. These features conform to the predicted sequence of character acquisition and provide further support that E. africanus, O. semitestacea, and Proganochelys quenstedti represent successive divergences from the turtle stem lineage. The initial transformations of the model thus occurred by the Middle Permian, which is congruent with molecular-based divergence estimates for the lineage, and remain viable whether turtles originated inside or outside crown Diapsida. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Immune response in the turtle (Chrysemys picta)

    PubMed Central

    Coe, J. E.

    1972-01-01

    The immune response of painted turtles (Chrysemys picta) to four purified protein antigens was evaluated by radioimmunoelectrophoresis. Specific antibody production was consistently detected and antigen binding was related to four immunoglobulin (Ig) precipitin lines (called Ig1, 2, 3, 4) in turtle serum. Antibody activity was detected first in the Ig1 or Ig2 and then later in the course of immunization in Ig3 and Ig4. Ig1 was about 19S in size, was not detectable after reduction and alkylation, and was the only Ig absent from turtle lymph. Ig3 and Ig4 were about 7S in size and Ig2 appeared slightly heavier by sucrose density gradient and Sephadex G-200 analysis. Haemagglutinins produced after primary inoculation were routinely sensitive to mild reduction and alkylation although antigen-binding capacity was still detectable. However, mercaptoethanol-resistant haemagglutinins were found in sera from turtles after booster injections of antigen. The electrophoretically slowest gamma globulin in turtle serum did not develop specific antigen-binding capacity, but did bind Fe59 and presumably represents a transferrin-like protein. ImagesFIG. 1FIG. 2FIG. 4 PMID:4114647

  12. Temporal bone arrangements in turtles: an overview.

    PubMed

    Werneburg, Ingmar

    2012-06-01

    The temporal region of turtles is characterized by significant anatomical diversity. Turtles show a pure anapsid morphotype that exhibits various different marginal reductions known as emarginations. As a result of this diversity, turtles can be taken as a model by which to understand the processes that may have resulted in the highly debated anatomy of the amniote temporal region in general. In this review on almost forgotten literature, I summarize ten potential factors that may act on the skull to shape the temporal region of turtles. These are: (1) phylogenetic constraints, (2) skull weights, (3) type of food, (4) skull dimensions, (5) muscle bulging, (6) ear anatomy and jaw muscle bending mechanisms, (7) extent and nature of muscle attachment sites, (8) internal forces within the jaw adductor chamber, (9) environmental pressure, and (10) neck bending mechanisms. Particular focus is laid on the interrelationship of the jaw musculature and the dermatocranial armour, which were assumed to influence each other to a certain degree. In the literature, cranial dimensions were assumed to influence temporal bone formation within major tetrapod groups. Among these, turtles seem to represent a kind of intermixture, a phenomenon that may be reflected in their specific anatomy. The references presented should be understood as product of the scientific environment in which they developed and the older literature does not always insist current empirical demands. However, the intuitive and creative ideas and the comprehensive anatomical considerations of these authors may inspire future studies in several fields related to this topic.

  13. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species.

    PubMed

    Robinson, Nathan J; Majewska, Roksana; Lazo-Wasem, Eric A; Nel, Ronel; Paladino, Frank V; Rojas, Lourdes; Zardus, John D; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals.

  14. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species

    PubMed Central

    Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals. PMID:27257972

  15. 75 FR 61133 - Marine Mammals and Endangered Species; File Nos. 808-1735, 14233, 14506, 14603, and 14726

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... research on green, hawksbill, Kemp's ridley, loggerhead, and leatherback sea turtles had been submitted by... ridley, hawksbill, and leatherback sea turtles. A subset of green sea turtles may have a transmitter... amendment to conduct research ] on marine mammals or sea turtles. See SUPPLEMENTARY INFORMATION...

  16. Do roads reduce painted turtle (Chrysemys picta) populations?

    PubMed

    Dorland, Alexandra; Rytwinski, Trina; Fahrig, Lenore

    2014-01-01

    Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.

  17. Decompression sickness ('the bends') in sea turtles.

    PubMed

    García-Párraga, D; Crespo-Picazo, J L; de Quirós, Y Bernaldo; Cervera, V; Martí-Bonmati, L; Díaz-Delgado, J; Arbelo, M; Moore, M J; Jepson, P D; Fernández, Antonio

    2014-10-16

    Decompression sickness (DCS), as clinically diagnosed by reversal of symptoms with recompression, has never been reported in aquatic breath-hold diving vertebrates despite the occurrence of tissue gas tensions sufficient for bubble formation and injury in terrestrial animals. Similarly to diving mammals, sea turtles manage gas exchange and decompression through anatomical, physiological, and behavioral adaptations. In the former group, DCS-like lesions have been observed on necropsies following behavioral disturbance such as high-powered acoustic sources (e.g. active sonar) and in bycaught animals. In sea turtles, in spite of abundant literature on diving physiology and bycatch interference, this is the first report of DCS-like symptoms and lesions. We diagnosed a clinico-pathological condition consistent with DCS in 29 gas-embolized loggerhead sea turtles Caretta caretta from a sample of 67. Fifty-nine were recovered alive and 8 had recently died following bycatch in trawls and gillnets of local fisheries from the east coast of Spain. Gas embolization and distribution in vital organs were evaluated through conventional radiography, computed tomography, and ultrasound. Additionally, positive response following repressurization was clinically observed in 2 live affected turtles. Gas embolism was also observed postmortem in carcasses and tissues as described in cetaceans and human divers. Compositional gas analysis of intravascular bubbles was consistent with DCS. Definitive diagnosis of DCS in sea turtles opens a new era for research in sea turtle diving physiology, conservation, and bycatch impact mitigation, as well as for comparative studies in other air-breathing marine vertebrates and human divers.

  18. Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge.

    PubMed

    Pascual-Anaya, Juan; Hirasawa, Tatsuya; Sato, Iori; Kuraku, Shigehiro; Kuratani, Shigeru

    2014-01-01

    The turtle shell is a wonderful example of a genuine morphological novelty, since it has no counterpart in any other extant vertebrate lineages. The evolutionary origin of the shell is a question that has fascinated evolutionary biologists for over two centuries and it still remains a mystery. One of the turtle innovations associated with the shell is the carapacial ridge (CR), a bulge that appears at both sides of the dorsal lateral trunk of the turtle embryo and that probably controls the formation of the carapace, the dorsal moiety of the shell. Although from the beginning of this century modern genetic techniques have been applied to resolve the evolutionary developmental origin of the CR, the use of different models with, in principle, dissimilar results has hampered the establishment of a common mechanism for the origin of the shell. Although modern turtles are divided into two major groups, Cryptodira (or hidden-necked turtles) and Pleurodira (or side-necked turtles), molecular developmental studies have been carried out mostly using cryptodiran models. In this study, we revisit the past data obtained from cryptodiran turtles in order to reconcile the different results. We also analyze the histological anatomy and the expression pattern of main CR factors in a pleurodiran turtle, the red-bellied short-necked turtle Emydura subglobosa. We suggest that the turtle shell probably originated concomitantly with the co-option of the canonical Wnt signaling pathway into the CR in the last common ancestor of the turtle.

  19. Helminth communities of the exotic introduced turtle, Trachemys scripta elegans in southwestern Spain: Transmission from native turtles.

    PubMed

    Hidalgo-Vila, J; Díaz-Paniagua, C; Ribas, A; Florencio, M; Pérez-Santigosa, N; Casanova, J C

    2009-06-01

    We report the prevalence and diversity of helminth parasites found in native turtles Mauremys leprosa and Emys orbicularis from three localities in southwestern Spain and we describe the helminth communities of exotic turtles Trachemys scripta elegans coexisting in the wild with both native turtle species. Five nematodes species were identified, of which Serpinema microcephalus was the only species common between two localities, although infection parameters were different between them. This is the first report of cross transmission of S. microcephalus and Falcaustra donanaensis from native to exotic turtles and the first report of genus Physaloptera in turtles of the Palearctic Region. Continuous releasing of exotic pet turtles in wildlife ecosystems increases the risk of parasite introductions and, consequently, potential transmission to native species, and highlights the impending need for regulation of pet turtle trade in Europe.

  20. A new stem turtle from the Middle Jurassic of Scotland: new insights into the evolution and palaeoecology of basal turtles.

    PubMed

    Anquetin, Jérémy; Barrett, Paul M; Jones, Marc E H; Moore-Fay, Scott; Evans, Susan E

    2009-03-07

    The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic-Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle.

  1. A new stem turtle from the Middle Jurassic of Scotland: new insights into the evolution and palaeoecology of basal turtles

    PubMed Central

    Anquetin, Jérémy; Barrett, Paul M.; Jones, Marc E.H.; Moore-Fay, Scott; Evans, Susan E.

    2008-01-01

    The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic–Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle. PMID:19019789

  2. Saving sea turtles: the evolution of the IUCN Marine Turtle Group.

    PubMed

    Davis, Frederick R

    2005-09-01

    When Peter Scott became chairman of the Survival Service Commission of the International Union for the Conservation of Nature and Natural Resources (IUCN) in 1963, he invited Archie Carr to chair the Marine Turtle Group (MTG). A leading authority on the ecology and conservation of sea turtles, Carr believed that the MTG could be the first international forum for sea turtle research and conservation. The assembly of data for the IUCN Red Data Book revealed which species of turtles were threatened with extinction and the array of risks that they faced. Although Carr and Scott differed on what courses of action should be taken in light of this, the MTG did emerge as an important international congress that remains an inspiration to current marine protection efforts.

  3. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan.

    PubMed

    Wang, Zhuo; Pascual-Anaya, Juan; Zadissa, Amonida; Li, Wenqi; Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2013-06-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.

  4. Acquisition of Salmonella flora by turtle hatchlings on commercial turtle farms.

    PubMed

    Izadjoo, M J; Pantoja, C O; Siebeling, R J

    1987-08-01

    A commercial turtle pond in South Louisiana was studied to identify the mechanism by which turtle hatchlings acquire Salmonella flora. The visceral organs and mature eggs removed from 31 adult gravid female turtles over the course of two egg-laying seasons and from 37 adult females during one winter dormant period were examined bacteriologically for Salmonella. Pond water, egg nest soil, and hatchlings produced by eggs removed from the oviducts and nest soil were also tested. Eighty-eight turtles hatched from eggs removed from the oviducts of 15 turtles at necropsy did not excrete or harbor systemically Salmonella, nor were these pathogens isolated from ovarian tissue or immature eggs. The findings suggest transovarian transmission of these pathogens does not occur frequently. Turtles hatched from eggs retrieved from soil nests 1 to 2 h after deposition harbor and excrete these organisms. This result coupled with the isolation of these pathogens from the cloaca, colon contents, and bursal fluid from 18 females captured in the act of egg laying supports the cloaca to egg and nest soil to egg mode for salmonellae infection in the resultant hatchling. Salmonella arizonae and Salmonella serogroups B, C2, and E1 were isolated from the cloaca, colon contents, pond water, and nest soil, and were excreted by hatchlings produced from eggs removed from the soil nests. These same serogroups were isolated from the colon contents of 19 of 37 females tested during the dormant period, suggesting the salmonellae persist in the pond environment in the adult throughout the year.

  5. A sinemydid turtle from the Jehol Biota provides insights into the basal divergence of crown turtles.

    PubMed

    Zhou, Chang-Fu; Rabi, Márton

    2015-11-10

    Morphological phylogenies stand in a major conflict with molecular hypotheses regarding the phylogeny of Cryptodira, the most diverse and widely distributed clade of extant turtles. However, molecular hypotheses are often considered a better estimate of phylogeny given that it is more consistent with the stratigraphic and geographic distribution of extinct taxa. That morphology fails to reproduce the molecular topology partly originates from problematic character polarization due to yet another contradiction around the composition of the cryptodiran stem lineage. Extinct sinemydids are one of these problematic clades: they have been either placed among stem-cryptodires, stem-chelonioid sea turtles, or even stem-turtles. A new sinemydid from the Early Cretaceous Jehol Biota (Yixian Formation, Barremian-Early Aptian) of China, Xiaochelys ningchengensis gen. et sp. nov., allows for a reassessment of the phylogenetic position of Sinemydidae. Our analysis indicates that sinemydids mostly share symplesiomorphies with sea turtles and their purported placement outside the crown-group of turtles is an artefact of previous datasets. The best current phylogenetic estimate is therefore that sinemydids are part of the stem lineage of Cryptodira together with an array of other Jurassic to Cretaceous taxa. Our study further emphasises the importance of using molecular scaffolds in global turtle analyses.

  6. A sinemydid turtle from the Jehol Biota provides insights into the basal divergence of crown turtles

    PubMed Central

    Zhou, Chang-Fu; Rabi, Márton

    2015-01-01

    Morphological phylogenies stand in a major conflict with molecular hypotheses regarding the phylogeny of Cryptodira, the most diverse and widely distributed clade of extant turtles. However, molecular hypotheses are often considered a better estimate of phylogeny given that it is more consistent with the stratigraphic and geographic distribution of extinct taxa. That morphology fails to reproduce the molecular topology partly originates from problematic character polarization due to yet another contradiction around the composition of the cryptodiran stem lineage. Extinct sinemydids are one of these problematic clades: they have been either placed among stem-cryptodires, stem-chelonioid sea turtles, or even stem-turtles. A new sinemydid from the Early Cretaceous Jehol Biota (Yixian Formation, Barremian-Early Aptian) of China, Xiaochelys ningchengensis gen. et sp. nov., allows for a reassessment of the phylogenetic position of Sinemydidae. Our analysis indicates that sinemydids mostly share symplesiomorphies with sea turtles and their purported placement outside the crown-group of turtles is an artefact of previous datasets. The best current phylogenetic estimate is therefore that sinemydids are part of the stem lineage of Cryptodira together with an array of other Jurassic to Cretaceous taxa. Our study further emphasises the importance of using molecular scaffolds in global turtle analyses. PMID:26553740

  7. Arsenic accumulation in three species of sea turtles.

    PubMed

    Saeki, K; Sakakibara, H; Sakai, H; Kunito, T; Tanabe, S

    2000-09-01

    Arsenic in the liver, kidney and muscle of three species of sea turtles, e.g., green turtles (Chelonia mydas), loggerhead turtles (Caretta caretta) and hawksbill turtles (Eretmochelys imbricata), were determined using HG-AAS, followed by arsenic speciation analysis using HPLC-ICP-MS. The order of arsenic concentration in tissues was muscle > kidney > liver. Unexpectedly, the arsenic concentrations in the hawksbill turtles feeding mainly on sponges were higher than the two other turtles primarily eating algae and mollusk which accumulate a large amount of arsenic. Especially, the muscles of the hawksbill turtles contained remarkably high arsenic concentrations averaging 153 mg kg(-1) dry weight with the range of 23.1-205 mg kg(-1) (n = 4), even in comparison with the data from other organisms. The arsenic concentrations in the tissues of the green turtles were significantly decreased with standard carapace length as an indicator of growth. In arsenic compounds, arsenobetaine was mostly detected in the tissues of all the turtles. Besides arsenobetaine, a small amount of dimethylarsinic acid was also observed in the hawksbill turtles.

  8. Sea Turtle Navigation and the Detection of Geomagnetic Field Features

    NASA Astrophysics Data System (ADS)

    Lohmann, Kenneth J.; Lohmann, Catherine M. F.

    The lives of sea turtles consist of a continuous series of migrations. As hatchlings, the turtles swim from their natal beaches into the open sea, often taking refuge in circular current systems (gyres) that serve as moving, open-ocean nursery grounds. The juveniles of many populations subsequently take up residence in coastal feeding areas that are located hundreds or thousands of kilometres from the beaches on which the turtles hatched; some juveniles also migrate between summer and winter habitats. As adults, turtles periodically leave their feeding grounds and migrate to breeding and nesting regions, after which many return to their own specific feeding sites. The itinerant lifestyle characteristic of most sea turtle species is thus inextricably linked to an ability to orient and navigate accurately across large expanses of seemingly featureless ocean.In some sea turtle populations, migratory performance reaches extremes. The total distances certain green turtles (Chelonia mydas) and loggerheads (Caretta caretta) traverse over the span of their lifetimes exceed tens of thousands of kilometres, several times the diameter of the turtle's home ocean basin. Adult migrations between feeding and nesting habitats can require continuous swimming for periods of several weeks. In addition, the paths of migrating turtles often lead almost straight across the open ocean and directly to the destination, leaving little doubt that turtles can navigate to distant target sites with remarkable efficiency.

  9. Shell bone histology indicates terrestrial palaeoecology of basal turtles

    PubMed Central

    Scheyer, Torsten M; Sander, P.Martin

    2007-01-01

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, ‘aquatic’ turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record. PMID:17519193

  10. Body burdens of heavy metals in Lake Michigan wetland turtles.

    PubMed

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  11. Shell bone histology indicates terrestrial palaeoecology of basal turtles.

    PubMed

    Scheyer, Torsten M; Sander, P Martin

    2007-08-07

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.

  12. Biology and medicine of turtles and tortoises.

    PubMed

    Mautino, M; Page, C D

    1993-11-01

    Turtles and tortoises are unique reptiles that are gaining popularity as pets. Their anatomy and defense posture hinder, but do not preclude, clinical assessment and performance of routine diagnostic and therapeutic procedures by the clinician. A basic working knowledge of chelonian taxonomy, anatomy, physiology, husbandry, common diseases, and therapeutics will enable the veterinarian to provide health care to this order of reptiles.

  13. "Turtle Island Tales." Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Carr, Gail

    This performance guide is designed for teachers to use with students before and after a shadow play performance of "Turtle Island Tales" by Hobey Ford and His Golden Rod Puppets. The guide, called a "Cuesheet," contains seven activity sheets for use in class, addressing: (1) The Tales (offering brief outlines of the three tales…

  14. Genetic structure and natal origins of immature hawksbill turtles (Eretmochelys imbricata) in Brazilian waters.

    PubMed

    Proietti, Maira C; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A; Monteiro, Danielle S; Pattiaratchi, Charitha; Secchi, Eduardo R

    2014-01-01

    Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.

  15. Genetic Structure and Natal Origins of Immature Hawksbill Turtles (Eretmochelys imbricata) in Brazilian Waters

    PubMed Central

    Proietti, Maira C.; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A.; Monteiro, Danielle S.; Pattiaratchi, Charitha; Secchi, Eduardo R.

    2014-01-01

    Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations. PMID:24558419

  16. A toothed turtle from the Late Jurassic of China and the global biogeographic history of turtles.

    PubMed

    Joyce, Walter G; Rabi, Márton; Clark, James M; Xu, Xing

    2016-10-28

    Turtles (Testudinata) are a successful lineage of vertebrates with about 350 extant species that inhabit all major oceans and landmasses with tropical to temperate climates. The rich fossil record of turtles documents the adaptation of various sub-lineages to a broad range of habitat preferences, but a synthetic biogeographic model is still lacking for the group. We herein describe a new species of fossil turtle from the Late Jurassic of Xinjiang, China, Sichuanchelys palatodentata sp. nov., that is highly unusual by plesiomorphically exhibiting palatal teeth. Phylogenetic analysis places the Late Jurassic Sichuanchelys palatodentata in a clade with the Late Cretaceous Mongolochelys efremovi outside crown group Testudines thereby establishing the prolonged presence of a previously unrecognized clade of turtles in Asia, herein named Sichuanchelyidae. In contrast to previous hypotheses, M. efremovi and Kallokibotion bajazidi are not found within Meiolaniformes, a clade that is here reinterpreted as being restricted to Gondwana. A revision of the global distribution of fossil and recent turtle reveals that the three primary lineages of derived, aquatic turtles, including the crown, Paracryptodira, Pan-Pleurodira, and Pan-Cryptodira can be traced back to the Middle Jurassic of Euramerica, Gondwana, and Asia, respectively, which resulted from the primary break up of Pangaea at that time. The two primary lineages of Pleurodira, Pan-Pelomedusoides and Pan-Chelidae, can similarly be traced back to the Cretaceous of northern and southern Gondwana, respectively, which were separated from one another by a large desert zone during that time. The primary divergence of crown turtles was therefore driven by vicariance to the primary freshwater aquatic habitat of these lineages. The temporally persistent lineages of basal turtles, Helochelydridae, Meiolaniformes, Sichuanchelyidae, can similarly be traced back to the Late Mesozoic of Euramerica, southern Gondwana, and Asia. Given

  17. 75 FR 75489 - Endangered and Threatened Species Permit Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... provide education to the public about Kemp's ridley sea turtle (Lepidochelys kempii), hawksbill sea turtle (Eretmochelys imbricate), and leatherback sea turtle (Dermochelys coriacea) that are nesting and/or have...

  18. 75 FR 7434 - Endangered and Threatened Species; Proposed Rule to Revise the Critical Habitat Designation for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Turtle; Extension of Public Comment Period AGENCY: National Marine Fisheries Service (NMFS), National... designation for the endangered leatherback sea turtle (Dermochelys coriacea) by designating additional areas... 0648-AX06, and addressed to: David Cottingham, Chief, Marine Mammal and Sea Turtle...

  19. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan.

    PubMed

    Anan, Y; Kunito, T; Watanabe, I; Sakai, H; Tanabe, S

    2001-12-01

    Concentrations of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Ba, Hg, Tl, and Pb) were determined in the liver, kidney, and muscle of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Okinawa, Japan. Accumulation features of trace elements in the three tissues were similar between green and hawksbill turtles. No gender differences in trace element accumulation in liver and kidney were found for most of the elements. Significant growth-dependent variations were found in concentrations of some elements in tissues of green and hawksbill turtles. Significant negative correlations (p < 0.05) were found between standard carapace length (SCL) and the concentrations of Cu, Zn, and Se in the kidney and V in muscle of green turtles and Mn in the liver, Rb and Ag in kidney, and Hg in muscle of hawksbill turtles. Concentrations of Sr, Mo, Ag, Sb, and Tl in the liver, Sb in kidney, and Sb and Ba in muscle of green turtles and Se and Hg in the liver and Co, Se, and Hg in kidney of hawksbill turtles increased with an increase in SCL (p < 0.05). Green and hawksbill turtles accumulated extremely high concentrations of Cu in the liver and Cd in kidney, whereas the levels of Hg in liver were low in comparison with those of other higher-trophic-level marine animals. High accumulation of Ag in the liver of green turtles was also observed. To evaluate the trophic transfer of trace elements, concentrations of trace elements were determined in stomach contents of green and hawksbill turtles. A remarkably high trophic transfer coefficient was found for Ag and Cd in green turtles and for Cd and Hg in hawksbill turtles.

  20. 77 FR 54566 - Endangered Species; File No. 16134

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... (Chelonia mydas), Kemp's ridley (Lepidochelys kempii), hawksbill (Eretmochelys imbricata), leatherback (Dermochelys coriacea), and loggerhead (Caretta caretta) sea turtles for purposes of scientific research... 222-226). The five-year permit authorizes research on leatherback, loggerhead, green, hawksbill,...

  1. Global Conservation Priorities for Marine Turtles

    PubMed Central

    Wallace, Bryan P.; DiMatteo, Andrew D.; Bolten, Alan B.; Chaloupka, Milani Y.; Hutchinson, Brian J.; Abreu-Grobois, F. Alberto; Mortimer, Jeanne A.; Seminoff, Jeffrey A.; Amorocho, Diego; Bjorndal, Karen A.; Bourjea, Jérôme; Bowen, Brian W.; Briseño Dueñas, Raquel; Casale, Paolo; Choudhury, B. C.; Costa, Alice; Dutton, Peter H.; Fallabrino, Alejandro; Finkbeiner, Elena M.; Girard, Alexandre; Girondot, Marc; Hamann, Mark; Hurley, Brendan J.; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Musick, John A.; Nel, Ronel; Pilcher, Nicolas J.; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B.

    2011-01-01

    Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a “conservation priorities portfolio” system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for

  2. Hatchling turtles survive freezing during winter hibernation.

    PubMed

    Storey, K B; Storey, J M; Brooks, S P; Churchill, T A; Brooks, R J

    1988-11-01

    Hatchlings of the painted turtle (Chrysemys picta marginata) are unique as the only reptile and highest vertebrate life form known to tolerate the natural freezing of extracellular body fluids during winter hibernation. Turtles survived frequent exposures to temperatures as low as -6 degrees C to -8 degrees C in their shallow terrestrial nests over the 1987-1988 winter. Hatchlings collected in April 1988 had a mean supercooling point of -3.28 +/- 0.24 degrees C and survived 24 hr of freezing at -4 degrees C with 53.4% +/- 1.98% of total body water as ice. Recovery appeared complete after 20 hr of thawing at 3 degrees C. However, freezing at -10.9 degrees C, resulting in 67% ice, was lethal. A survey of possible cryoprotectants revealed a 2- to 3-fold increase in glucose content of liver and blood and a 3-fold increase in blood glycerol in response to freezing. Although quantitatively low, these responses by spring turtles strongly indicate that these may be the winter-active cryoprotectants. The total amino acid pool of blood also increased 2.25-fold in freezing-exposed turtles, and taurine accounted for 52% of the increase. Most organs accumulated high concentrations of lactate during freezing, a response to the ischemic state imposed by extracellular freezing. Changes in glycogen phosphorylase activity and levels of glucose 6-phosphate and fructose 2,6-bisphosphate were also consistent with a dependence on anaerobic glycolysis during freezing. Studies of the molecular mechanisms of natural freeze tolerance in these turtles may identify protective strategies that can be used in mammalian organ cryopreservation technology.

  3. Hatchling turtles survive freezing during winter hibernation.

    PubMed Central

    Storey, K B; Storey, J M; Brooks, S P; Churchill, T A; Brooks, R J

    1988-01-01

    Hatchlings of the painted turtle (Chrysemys picta marginata) are unique as the only reptile and highest vertebrate life form known to tolerate the natural freezing of extracellular body fluids during winter hibernation. Turtles survived frequent exposures to temperatures as low as -6 degrees C to -8 degrees C in their shallow terrestrial nests over the 1987-1988 winter. Hatchlings collected in April 1988 had a mean supercooling point of -3.28 +/- 0.24 degrees C and survived 24 hr of freezing at -4 degrees C with 53.4% +/- 1.98% of total body water as ice. Recovery appeared complete after 20 hr of thawing at 3 degrees C. However, freezing at -10.9 degrees C, resulting in 67% ice, was lethal. A survey of possible cryoprotectants revealed a 2- to 3-fold increase in glucose content of liver and blood and a 3-fold increase in blood glycerol in response to freezing. Although quantitatively low, these responses by spring turtles strongly indicate that these may be the winter-active cryoprotectants. The total amino acid pool of blood also increased 2.25-fold in freezing-exposed turtles, and taurine accounted for 52% of the increase. Most organs accumulated high concentrations of lactate during freezing, a response to the ischemic state imposed by extracellular freezing. Changes in glycogen phosphorylase activity and levels of glucose 6-phosphate and fructose 2,6-bisphosphate were also consistent with a dependence on anaerobic glycolysis during freezing. Studies of the molecular mechanisms of natural freeze tolerance in these turtles may identify protective strategies that can be used in mammalian organ cryopreservation technology. PMID:3186730

  4. Turtle-Associated Salmonellosis, United States, 2006–2014

    PubMed Central

    Tauxe, Robert V.; Behravesh, Casey Barton

    2016-01-01

    During 2006–2014, a total of 15 multistate outbreaks of turtle-associated salmonellosis in humans were reported in the United States. Exposure to small pet turtles has long been recognized as a source of human salmonellosis. The risk to public health has persisted and may be increasing. Turtles are a popular reptilian pet among children, and numerous risky behaviors for the zoonotic transmission of Salmonella bacteria to children have been reported in recent outbreaks. Despite a long-standing federal ban against the sale and distribution of turtles <4 in (<10.16 cm) long, these small reptiles can be readily acquired through multiple venues and continue to be the main source of turtle-associated salmonellosis in children. Enhanced efforts are needed to minimize the disease risk associated with small turtle exposure. Prevention will require novel partnerships and a comprehensive One Health approach involving human, animal, and environmental health. PMID:27315584

  5. First records of dive durations for a hibernating sea turtle.

    PubMed

    Hochscheid, Sandra; Bentivegna, Flegra; Hays, Graeme C

    2005-03-22

    The first published record, from the early 1970s, of hibernation in sea turtles is based on the reports of the indigenous Indians and fishermen from Mexico, who hunted dormant green turtles (Chelonia mydas) in the Gulf of California. However, there were no successful attempts to investigate the biology of this particular behaviour further. Hence, data such as the exact duration and energetic requirements of dormant winter submergences are lacking. We used new satellite relay data loggers to obtain the first records of up to 7h long dives of a loggerhead turtle (Caretta caretta) overwintering in Greek waters. These represent the longest dives ever reported for a diving marine vertebrate. There is strong evidence that the dives were aerobic, because the turtle surfaced only for short intervals and before the calculated oxygen stores were depleted. This evidence suggests that the common belief that sea turtles hibernate underwater, as some freshwater turtles do, is incorrect.

  6. Prevalence of Salmonella spp. in pet turtles and their environment.

    PubMed

    Back, Du-San; Shin, Gee-Wook; Wendt, Mitchell; Heo, Gang-Joon

    2016-09-01

    Pet turtles are known as a source of Salmonella infection to humans when handled in captivity. Thirty four turtles purchased from pet shops and online markets in Korea were examined to determine whether the turtles and their environment were contaminated with Salmonella spp. Salmonella spp. were isolated from fecal samples of 17 turtles. These isolates were identified as S. enterica through 16S rRNA gene sequencing. The isolation rate of Salmonella spp. from the soil and water samples increased over time. We concluded that a high percentage of turtles being sold in pet shops were infected with Salmonella spp., and their environments tend to become contaminated over time unless they are maintained properly. These results indicate that pet turtles could be a potential risk of salmonellosis in Korea.

  7. Prevalence of Salmonella spp. in pet turtles and their environment

    PubMed Central

    Back, Du-San; Shin, Gee-Wook; Wendt, Mitchell

    2016-01-01

    Pet turtles are known as a source of Salmonella infection to humans when handled in captivity. Thirty four turtles purchased from pet shops and online markets in Korea were examined to determine whether the turtles and their environment were contaminated with Salmonella spp. Salmonella spp. were isolated from fecal samples of 17 turtles. These isolates were identified as S. enterica through 16S rRNA gene sequencing. The isolation rate of Salmonella spp. from the soil and water samples increased over time. We concluded that a high percentage of turtles being sold in pet shops were infected with Salmonella spp., and their environments tend to become contaminated over time unless they are maintained properly. These results indicate that pet turtles could be a potential risk of salmonellosis in Korea. PMID:27729933

  8. First records of dive durations for a hibernating sea turtle

    PubMed Central

    Hochscheid, Sandra; Bentivegna, Flegra; Hays, Graeme C

    2005-01-01

    The first published record, from the early 1970s, of hibernation in sea turtles is based on the reports of the indigenous Indians and fishermen from Mexico, who hunted dormant green turtles (Chelonia mydas) in the Gulf of California. However, there were no successful attempts to investigate the biology of this particular behaviour further. Hence, data such as the exact duration and energetic requirements of dormant winter submergences are lacking. We used new satellite relay data loggers to obtain the first records of up to 7 h long dives of a loggerhead turtle (Caretta caretta) overwintering in Greek waters. These represent the longest dives ever reported for a diving marine vertebrate. There is strong evidence that the dives were aerobic, because the turtle surfaced only for short intervals and before the calculated oxygen stores were depleted. This evidence suggests that the common belief that sea turtles hibernate underwater, as some freshwater turtles do, is incorrect. PMID:17148134

  9. Observations of fibropapillomatosis in green turtles (Chelonia mydas) in Indonesia.

    PubMed

    Adnyana, W; Ladds, P W; Blair, D

    1997-10-01

    To determine the prevalence and manifestations of fibropapillomatosis in green turtles in Indonesia, to identify any relationship between fibropapillomatosis and concurrent parasitic infection, to ascertain the effect of fibropapillomatosis on health, and to examine whether environment might have an effect on the prevalence of fibropapillomatosis. 4407 green turtles (Chelonia mydas) and 401 hawksbill turtles (Eretmochelys imbricata) were examined. The occurrence of fibropapillomatosis was correlated with sex, maturity, curved carapace length, body weight/curved carapace length ratio, the number and distribution of tumours on the skin, parasite burdens, some haematological variables and the region of capture. Fibropapillomatosis was seen only in green turtles, and the overall prevalence in these was 21.5%. This prevalence increased with the curved carapace length up to 85 cm. The average number of tumours per affected turtle was 5 +/- SD 4.1 (range, 1 to 29), and was negatively correlated with the body weight/curved carapace length ratio (rs = -0.8; P = 0.001). The red blood cell count in turtles with fibropapilloma was lower than in non-fibropapilloma turtles captured and examined at the same time (P = 0.001). The prevalence of fibropapilloma in turtles captured near densely populated, industrial regions (26.3%) was greater than in turtles from sparsely populated areas (17.7%). Fibropapillomatosis in green sea turtles in Indonesia is of moderate occurrence: young mature turtles (curved carapace length = 85 cm) are most frequently affected. Fibropapilloma adversely affects health of turtles. Fluke infestation seems not to be a causal factor, but viral infection, perhaps with concurrent stress of environmental origin, seems likely.

  10. Susceptibility of two turtle species to eastern equine encephalitis virus.

    PubMed

    Smith, A L; Anderson, C R

    1980-10-01

    Two species of turtle collected in southern New England were inoculated subcutaneously with eastern equine encephalitis virus. The spotted turtles (Clemmys guttata) developed viremia and neutralizing antibody after exposure to 3 logs or more of virus. Viremia was not detected in the eastern painted turtles (Chrysemys picta), and neutralizing antibody was detected in only 1 of 15 inoculated C. picta; however, since pre-inoculation serum was not obtained from this animal, the possibility of natural infection cannot be eliminated.

  11. Navigation and seasonal migratory orientation in juvenile sea turtles.

    PubMed

    Avens, Larisa; Lohmann, Kenneth J

    2004-05-01

    Juvenile loggerhead and green turtles that inhabit inshore waters of North Carolina, USA undertake long seasonal migrations, after which they often return to specific feeding areas. In addition, juvenile turtles are capable of homing to specific sites after being displaced. As a first step towards investigating the navigational mechanisms that underlie these movements, juvenile turtles were captured in coastal waters of North Carolina and displaced 30-167 km along circuitous routes while deprived of visual cues. At the testing location, turtles were tethered in a circular arena and permitted to swim while their orientation was monitored. Between May and September, when juvenile loggerhead and green turtles inhabit feeding areas along the North Carolina coast, turtles oriented in directions that corresponded closely with the most direct route back to their capture locations. During October and November, however, both loggerhead and green turtles oriented southward, a direction consistent with the migratory paths of turtles beginning their autumn migration. The results demonstrate for the first time that both homing and migratory orientation can be elicited in juvenile turtles under laboratory conditions in which orientation cues can be readily manipulated. In addition, the results provide evidence that juvenile loggerheads can assess their position relative to a goal using local cues available at the test site and are therefore capable of map-based navigation.

  12. Tumors in sea turtles: The insidious menace of fibropapillomatosis

    USGS Publications Warehouse

    Work, Thierry M.; Balazs, George H.

    2013-01-01

    Early in July 2013, a colleague in New Caledonia reported the stranding of a green sea turtle on the far northwest of the island. The animal had washed up dead on a rocky beach with multiple large tumors on its neck and hind flippers. To all appearances, the turtle had fibropapillomatosis (FP), a tumor disease affecting marine turtles globally. This was the first known case of FP on the island—an alarming find, and another example of the creeping expansion of this disease in green turtles around the world.

  13. Body plan of turtles: an anatomical, developmental and evolutionary perspective.

    PubMed

    Nagashima, Hiroshi; Kuraku, Shigehiro; Uchida, Katsuhisa; Kawashima-Ohya, Yoshie; Narita, Yuichi; Kuratani, Shigeru

    2012-03-01

    The evolution of the turtle shell has long been one of the central debates in comparative anatomy. The turtle shell consists of dorsal and ventral parts: the carapace and plastron, respectively. The basic structure of the carapace comprises vertebrae and ribs. The pectoral girdle of turtles sits inside the carapace or the rib cage, in striking contrast to the body plan of other tetrapods. Due to this topological change in the arrangement of skeletal elements, the carapace has been regarded as an example of evolutionary novelty that violates the ancestral body plan of tetrapods. Comparing the spatial relationships of anatomical structures in the embryos of turtles and other amniotes, we have shown that the topology of the musculoskeletal system is largely conserved even in turtles. The positional changes seen in the ribs and pectoral girdle can be ascribed to turtle-specific folding of the lateral body wall in the late developmental stages. Whereas the ribs of other amniotes grow from the axial domain to the lateral body wall, turtle ribs remain arrested axially. Marginal growth of the axial domain in turtle embryos brings the morphologically short ribs in to cover the scapula dorsocaudally. This concentric growth appears to be induced by the margin of the carapace, which involves an ancestral gene expression cascade in a new location. These comparative developmental data allow us to hypothesize the gradual evolution of turtles, which is consistent with the recent finding of a transitional fossil animal, Odontochelys, which did not have the carapace but already possessed the plastron.

  14. An ancestral turtle from the Late Triassic of southwestern China.

    PubMed

    Li, Chun; Wu, Xiao-Chun; Rieppel, Olivier; Wang, Li-Ting; Zhao, Li-Jun

    2008-11-27

    The origin of the turtle body plan remains one of the great mysteries of reptile evolution. The anatomy of turtles is highly derived, which renders it difficult to establish the relationships of turtles with other groups of reptiles. The oldest known turtle, Proganochelys from the Late Triassic period of Germany, has a fully formed shell and offers no clue as to its origin. Here we describe a new 220-million-year-old turtle from China, somewhat older than Proganochelys, that documents an intermediate step in the evolution of the shell and associated structures. A ventral plastron is fully developed, but the dorsal carapace consists of neural plates only. The dorsal ribs are expanded, and osteoderms are absent. The new species shows that the plastron evolved before the carapace and that the first step of carapace formation is the ossification of the neural plates coupled with a broadening of the ribs. This corresponds to early embryonic stages of carapace formation in extant turtles, and shows that the turtle shell is not derived from a fusion of osteoderms. Phylogenetic analysis places the new species basal to all known turtles, fossil and extant. The marine deposits that yielded the fossils indicate that this primitive turtle inhabited marginal areas of the sea or river deltas.

  15. Tumors in sea turtles: the insidious menace of fibropapillomatosis

    USGS Publications Warehouse

    Work, Thierry M.; Balazs, George H.

    2013-01-01

    Early in July 2013, a colleague in New Caledonia reported the stranding of a green sea turtle on the far northwest of the island. The animal had washed up dead on a rocky beach with multiple large tumors on its neck and hind flippers. To all appearances, the turtle had fibropapillomatosis (FP), a tumor disease affecting marine turtles globally. This was the first known case of FP on the island—an alarming find, and another example of the creeping expansion of this disease in green turtles around the world.

  16. A Middle Triassic stem-turtle and the evolution of the turtle body plan.

    PubMed

    Schoch, Rainer R; Sues, Hans-Dieter

    2015-07-30

    The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The ∼220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the ∼260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period (∼240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.

  17. The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown.

    PubMed

    Joyce, Walter G; Schoch, Rainer R; Lyson, Tyler R

    2013-12-06

    Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. The primary homology of the character "sutured pelvis" is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic.

  18. The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown

    PubMed Central

    2013-01-01

    Background Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. Results The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. Conclusions The primary homology of the character “sutured pelvis” is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic. PMID:24314094

  19. Collapse and conservation of shark populations in the Northwest Atlantic.

    PubMed

    Baum, Julia K; Myers, Ransom A; Kehler, Daniel G; Worm, Boris; Harley, Shelton J; Doherty, Penny A

    2003-01-17

    Overexploitation threatens the future of many large vertebrates. In the ocean, tunas and sea turtles are current conservation concerns because of this intense pressure. The status of most shark species, in contrast, remains uncertain. Using the largest data set in the Northwest Atlantic, we show rapid large declines in large coastal and oceanic shark populations. Scalloped hammerhead, white, and thresher sharks are each estimated to have declined by over 75% in the past 15 years. Closed-area models highlight priority areas for shark conservation, and the need to consider effort reallocation and site selection if marine reserves are to benefit multiple threatened species.

  20. Comparative phylogeny and historical perspectives on population genetics of the Pacific hawksbill (Eretmochelys imbricata) and green turtles (Chelonia mydas), inferred from feeding populations in the Yaeyama Islands, Japan.

    PubMed

    Nishizawa, Hideaki; Okuyama, Junichi; Kobayashi, Masato; Abe, Osamu; Arai, Nobuaki

    2010-01-01

    Mitochondrial DNA sequence polymorphisms and patterns of genetic diversity represent the genealogy and relative impacts of historical, geographic, and demographic events on populations. In this study, historical patterns of population dynamics and differentiation in hawksbill (Eretmochelys imbricata) and green turtles (Chelonia mydas) in the Pacific were estimated from feeding populations in the Yaeyama Islands, Japan. Phylogenetic relationships of the haplotypes indicated that hawksbill and green turtles in the Pacific probably underwent very similar patterns and processes of population dynamics over the last million years, with population subdivision during the early Pleistocene and population expansion after the last glacial maximum. These significant contemporary historical events were suggested to have been caused by climatic and sea-level fluctuations. On the other hand, comparing our results to long-term population dynamics in the Atlantic, population subdivisions during the early Pleistocene were specific to Pacific hawksbill and green turtles. Therefore, regional differences in historical population dynamics are suggested. Despite limited sampling locations, these results are the first step in estimating the historical trends in Pacific sea turtles by using phylogenetics and population genetics.

  1. Do Roads Reduce Painted Turtle (Chrysemys picta) Populations?

    PubMed Central

    Dorland, Alexandra; Rytwinski, Trina; Fahrig, Lenore

    2014-01-01

    Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles. PMID:24858065

  2. Habitat Suitability Index Models: Snapping turtle

    USGS Publications Warehouse

    Graves, Brent M.; Anderson, Stanley H.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the snapping turtle (Chelydra serpentina). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) and 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  3. Habitat Suitability Index Models: Slider turtle

    USGS Publications Warehouse

    Morreale, Stephen J.; Gibbons, J. Whitfield

    1986-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the slider turtle (Pseudemys scripta). The model consolidates habitat use information into a framework appropriate for field application and is scaled to produce an index between 0.0 (unsuitable habitat) and 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  4. Reproductive Disorders and Perinatology of Sea Turtles.

    PubMed

    Spadola, Filippo; Morici, Manuel; Santoro, Mario; Oliveri, Matteo; Insacco, Gianni

    2017-05-01

    Sea turtles' reproductive disorders are underdiagnosed, but potentially, there are several diseases that may affect gonads, genitalia, and annexes. Viruses, bacteria, and parasites may cause countless disorders, but more frequently the cause is traumatic or linked to human activities. Furthermore, veterinary management of the nest is of paramount importance as well as the care of newborns (also in captivity). This article gives an overview on the methods used to manage nests and reproductive activities of these endangered chelonians species.

  5. 75 FR 52937 - Turtle Bayou Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Energy Regulatory Commission Turtle Bayou Gas Storage Company, LLC; Notice of Application August 20, 2010. Take notice that on August 6, 2010, Turtle Bayou Gas Storage Company, LLC (Turtle Bayou), One Office... caverns and related facilities to be located in Chambers and Liberty Counties, Texas. Turtle Bayou...

  6. Hawksbill × loggerhead sea turtle hybrids at Bahia, Brazil: where do their offspring go?

    PubMed Central

    Reisser, Julia; Marins, Luis F.; Marcovaldi, Maria A.; Soares, Luciano S.; Monteiro, Danielle S.; Wijeratne, Sarath; Pattiaratchi, Charitha; Secchi, Eduardo R.

    2014-01-01

    Hybridization between hawksbill (Eretmochelys imbricata) and loggerhead (Caretta caretta) breeding groups is unusually common in Bahia state, Brazil. Such hybridization is possible because hawksbill and loggerhead nesting activities overlap temporally and spatially along the coast of this state. Nevertheless, the destinations of their offspring are not yet known. This study is the first to identify immature hawksbill × loggerhead hybrids (n = 4) from this rookery by analyzing the mitochondrial DNA (mtDNA) of 157 immature turtles morphologically identified as hawksbills. We also compare for the first time modeled dispersal patterns of hawksbill, loggerhead, and hybrid offspring considering hatching season and oceanic phase duration of turtles. Particle movements varied according to season, with a higher proportion of particles dispersing southwards throughout loggerhead and hybrid hatching seasons, and northwards during hawksbill season. Hybrids from Bahia were not present in important hawksbill feeding grounds of Brazil, being detected only at areas more common for loggerheads. The genetic and oceanographic findings of this work indicate that these immature hybrids, which are morphologically similar to hawksbills, could be adopting behavioral traits typical of loggerheads, such as feeding in temperate waters of the western South Atlantic. Understanding the distribution, ecology, and migrations of these hybrids is essential for the development of adequate conservation and management plans. PMID:24688839

  7. Hawksbill × loggerhead sea turtle hybrids at Bahia, Brazil: where do their offspring go?

    PubMed

    Proietti, Maira C; Reisser, Julia; Marins, Luis F; Marcovaldi, Maria A; Soares, Luciano S; Monteiro, Danielle S; Wijeratne, Sarath; Pattiaratchi, Charitha; Secchi, Eduardo R

    2014-01-01

    Hybridization between hawksbill (Eretmochelys imbricata) and loggerhead (Caretta caretta) breeding groups is unusually common in Bahia state, Brazil. Such hybridization is possible because hawksbill and loggerhead nesting activities overlap temporally and spatially along the coast of this state. Nevertheless, the destinations of their offspring are not yet known. This study is the first to identify immature hawksbill × loggerhead hybrids (n = 4) from this rookery by analyzing the mitochondrial DNA (mtDNA) of 157 immature turtles morphologically identified as hawksbills. We also compare for the first time modeled dispersal patterns of hawksbill, loggerhead, and hybrid offspring considering hatching season and oceanic phase duration of turtles. Particle movements varied according to season, with a higher proportion of particles dispersing southwards throughout loggerhead and hybrid hatching seasons, and northwards during hawksbill season. Hybrids from Bahia were not present in important hawksbill feeding grounds of Brazil, being detected only at areas more common for loggerheads. The genetic and oceanographic findings of this work indicate that these immature hybrids, which are morphologically similar to hawksbills, could be adopting behavioral traits typical of loggerheads, such as feeding in temperate waters of the western South Atlantic. Understanding the distribution, ecology, and migrations of these hybrids is essential for the development of adequate conservation and management plans.

  8. Incubation temperature effects on hatchling performance in the loggerhead sea turtle (Caretta caretta).

    PubMed

    Fisher, Leah R; Godfrey, Matthew H; Owens, David W

    2014-01-01

    Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta). We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects.

  9. Incubation Temperature Effects on Hatchling Performance in the Loggerhead Sea Turtle (Caretta caretta)

    PubMed Central

    Fisher, Leah R.; Godfrey, Matthew H.; Owens, David W.

    2014-01-01

    Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta). We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects. PMID:25517114

  10. Identification of wood turtle nesting areas for protection and management

    Treesearch

    Richard R. Buech; Lynelle G. Hanson; Mark D. Nelson

    1997-01-01

    The wood turtle, Clemmys insculpta, is a long-lived, semi-aquatic, riverine species that inhabits forested regions of the northcentral and northeastern United States and adjacent regions of Canada. Many states list the wood turtle as "Endangered" or "Threatened" and it is now listed on Appendix II of the Convention on...

  11. Endohelminths of European pond turtle Emys orbicularis in Southwest Iran.

    PubMed

    Shayegh, Hossein; Rajabloo, Mohammad; Gholamhosseini, Amin; Mootabi Alavi, Amir; Salarian, Parisa; Zolfaghari, Ali

    2016-03-01

    Very little is known about parasitic diseases of European pond turtles (Emys orbicularis) in Iran. The objective of this study is to examine parasitic fauna of European pond turtles collected from Fars province, southwest Iran. Carcasses of turtles (n = 52) which died during dredging procedure are collected from earthen fishery basins in Zarghan region. They have been died earlier during dredging procedure in different farms. Three species of helminths in total were found in gastrointestinal tract, including two nematodes (Serpinema microcephalus and Falcaustra araxiana) and one digenean trematod (Telorchis assula). Large intestines of all examined turtles were infected by F. araxiana (100 %, Mean intensity = 18) and this nematode were also found in gastric nodules. Nine turtles (17.3 %, 3 male, 6 female, Mean intensity = 3) were infected with Serpinema microcephalus. T. assula were found in 25 turtles (48.07 %, 5 male, 20 female, mean intensity = 5). Helminths were not found in any examined organs and no ectoparasite found eighter. F. araxiana is the most prevalent nematode in European pond turtles. Detection of Serpinema.microcephalus is in agreement with the fact which this parasite is common parasite of turtles in all over the world. T. assula might be transmitted between variety of reptiles so presence of the trematod should be considered as a risk factor for other reptiles.

  12. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals of... for any other type of commercial or public distribution. (c) Exceptions. The provisions of this section are not applicable to: (1) The sale, holding for sale, and distribution of live turtles and viable...

  13. Assessing Trophic Position and Mercury Accumulation in Sanpping Turtles

    EPA Science Inventory

    This study determined the trophic position and the total mercury concentrations of snapping turtles (Chelydra serpentina) captured from 26 freshwater sites in Rhode Island. Turtles were captured in baited wire cages, and a non-lethal sampling technique was used in which tips of ...

  14. Magnetic Navigation in Sea Turtles: Insights from Secular Variation

    NASA Astrophysics Data System (ADS)

    Putman, N. F.; Lohmann, K.

    2011-12-01

    Sea turtles are iconic migrants that posses a sensitive magnetic-sense that guides their long-distance movements in a variety of contexts. In the first few hours after hatching turtles use the magnetic field to maintain an offshore compass heading to reach deeper water, out of the reach of nearshore predators. Young turtles engage in directed swimming in response to regional magnetic fields that exist along their transoceanic migratory path. Older turtles also use magnetic information to relocate foraging sites and islands used for nesting after displacement. Numerous hypotheses have been put forth to explain how magnetic information functions in these movements, however, there is little consensus among animal navigation researchers. A particular vexing issue is how magnetic navigation can function under the constraints of the constant, gradual shifting of the earth's magnetic field (secular variation). Here, I present a framework based on models of recent geomagnetic secular variation to explore several navigational mechanisms proposed for sea turtles. I show that while examination of secular variation likely falsifies some hypothetical navigational strategies, it provides key insights into the selective pressures that could maintain other navigational mechanisms. Moreover, examination of secular variation's influence on the navigational precision in reproductive migrations of sea turtles offers compelling explanations for the population structure along sea turtle nesting beaches as well as spatiotemporal variation in nesting turtle abundance.

  15. Learning from Experience: A Report from Mexico's Turtle Trip 2000.

    ERIC Educational Resources Information Center

    Jankowska, Marta Maja

    2000-01-01

    Fifteen high school students and adults from Idaho traveled to Mexico to assist the One World Workforce with monitoring the nests of olive ridley sea turtles. Only 1 percent of these endangered turtles mature to adulthood. The volunteers protected the eggs from poachers and helped the hatchlings get safely to the water. (TD)

  16. The Green Sea Turtle of the Cayman Islands

    ERIC Educational Resources Information Center

    Considine, James L.; Winberry, John J.

    1978-01-01

    The green sea turtle is an economically valuable animal because of the many articles produced from it, including food stuffs. This article describes the history of turtle hunting and the attempts that have been made to domesticate and raise this reptile in captivity. (MA)

  17. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for hawksbill turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  18. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for hawksbill turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  19. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for green turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of Culebra...

  20. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for green turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of Culebra...

  1. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for hawksbill turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  2. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for green turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of Culebra...

  3. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for hawksbill turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  4. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for hawksbill turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  5. LOGGERHEAD SEA TURTLE LATE NESTING ECOLOGY IN VIRGINIA BEACH, VIRGINIA

    EPA Science Inventory

    T'he.loggerhead sea turtle (Caretta came is the only recurrent nesting species of sea turtle in southeastern Virginia (Lutcavage & Musick, 1985; Dodd, 1988). Inasmuch as the loggerhead is a federally threatened species, the opportunity to gather data on its nesting ecology is imp...